PL-2

RPI Image Processing Laboratory Bulletin No. |Rev. |Page
COMPUTER DOCUMENTATION U175 1.0 1

TITLE:

Raster-To-Vector Conversion with A Vector Ordering Post-process

ABSTRACT:

Described are programs for raster-to-vector conversion and vector ordering,
Applications exist in the areas of photo-interpretation, cartography,
data-processing, raster scanning, image processing, map-data-processing
and computer vision.

DESCRIPTION:

To run the vector conversion program on the Prime computer type:
SEG UNSPSOFTXY2VEC

and

SEG UNSPSOFT.”VEC20RDER

XY2VEC reads in a file of X-Y positions in the following form:
IT
IT

Where the 'I' is an integer which ranges from 0..511.

The output is a file called VEC which consists of vector data
formatted as follows:

ITITI

Where the first 2 'I's are the X and Y coordinate of the head

of the vector and the second 2 'I's are the X and Y coordinate of the
taill of the vector.

When VEC20RDER is run the vectors in 'VEC' are ordered into a file
called 'ORDER'. The ordering attempts to minimize the path length traveled
by a pen plotter. See the program VEC2TRANS to output the vectors

to the pen plotter. VEC2TRANS may be released in user bulletin

form at a later date but is currently installed in the UNSPSOFTware.

The following document exists on line in the file:

UNSPSOFT? DOC)XY2VEC
[Use additional sheets if necessary]
Date: Total
E;?pared Douglas Lyon 5/22/87 Pages: 41

Table of Contents

ABSTRACT.....I..'...'............ll.I....'l....l.....l.'lll..I-.'2

ACKNOWLEDGMENT: ¢ o e sevececocccosssscnsscsososcsosnnnacasasesscseeed
INTRODUCTION: ceeecovocccescoososssccosssassscacsoanossoscsancensssD
LITERATURE SURVEY.:ceevecsvecscossvocccccosasonssnscnsassennnceceebd
EXPERIMENTAL RESULTScececececcocccccacasoscosaonassnsoscsosscscnssnsces8
RASTER-TO-VECTOR CONVERSION:ecessocosccescsovosossssascsccscsccsosll
ORDERING VECTORS:cescesvossccscccscccssnososeosssonscsssnsscssssseell
TECHNIQUES_FOR_IMPROVEMENT.eceocccccccosncsccsossssnnasossscsnnscoeel?
CONCLUSION:ceeescseoccacsosessscsscsocscconosssssassnsssvnssnssccesld
BIBLIOGRAPHY :ecveeevecsovesoscecscososossnssscnasssssscsasssssseell
XY2VEC.PASCAL:ccsesesovsovcensacasssnssnesasssssssosssacsscscsassceell

VECZORDER.PASCAL........'.........l.'....l'llll.l.l..."l'......27

FIGURES..I...'.O0.0.0.0Q!."'.Q.!...l.ti.o'l.l....t....l..ll.'o.3l

ABSTRACT

This paper describes real implementations of raster-to-vector and
vector-ordering algorithms. The programs have been coded for
clarity and portability, they are not optimized for machine
efficiency. These programs were designed for processing small
numbers of vectors and their implementation shows them to be
O(N**2), When N is small, the quadratic nature of the shown
implementation can be ignored. Several suggestions have been made
for speed up of this class of algorithm for large N [Nagy 19801].
When N is small, however, these suggestion appear to slow down the
algorithm. Constant factors in the algorithm must not be
overlooked (esp. with small N), and program size and complexity
will increase with the incorporation of the more sophisticated
techniques. No attempt is made at line thinning or in eliminating
redundant points. X-Y coordinates are assumed to appear in
scanline order. Techniques for edge detection and 1line thinning

are not addressed.

Page 2

Keywords:

Photo-interpretation, cartography, data-processing, raster
scanning, image processing, map-data-processing, and computer

vision.

Page 3

ACKNOWLEDGMENT

The author 1is happy to acknowledge the following assitance

received during the course of paper creation,

To Professor Randolf Franklin for providing the incentive to write

this paper as a term project in his Computational Geometry course.

To Tom DeWitt, who supplied edge detected images for figures one

and two.

To Geoff Huebner, who supplied the edge detection algorithm and

images for figures three and five.

To all those I have forgotten to mention.

Thanks!

Page 4

INTRODUCTION

The purpose of this paper is to demonstrate a raster-to-vector
algorithm with a vector-ordering post process. Several examples
are shown and data collected from them indicates they run in
O(N**2) time. The scope of this paper is limited to descriptions
of the algorithms, an attempt to place them in the context of
current research, and suggestions for improvement. No noise
reductions techniques are used, except the throwing out of single

pixels which cannot complete a vector.

Page 5

LITERATURE SURVEY

Raster-to-vector conversion is a form of scan conversion and is
typically divided into 3 stages:: 1line thinning, line extraction,

and topology reconstruction.

The algorithm presented here makes no assumptions about 1line
thinning (the process of reducing 1lines to unit thickness);
therefore, the topic of line thinning is not addressed. When the
algorithm presented is given lines which are not unit thickness,

many parallel vectors result.

Line extraction is the process of building vector information from
X-Y pixel positions. This is what the raster-to-vector algorithm

does. Line intersections <cause multiple vectors to result with

this algorithm.

Vector ordering is a form of topology reconstruction. In topology
resonstruction, line segments are joined to minimize plot time and

to approximate the original image.

Page 6

Line~following algorithms tend to be a simpler <c¢lass of vector
ordering algorithms but are usually slower [Boyle, 19841 [Gibson

and Lenzmeir, 1981].

It is hard to evaluate other systems for their raster-to-vector
software. At an ASP/ASSM convention in March 1982, Interaction
Systems Corporation demonstrated a product which appeared
promising, but no gquantitative details are known. Intergraph is
also known as a developer of this type of software, also
proprietary. Other vendors known to be working in the field are,
Laser Scan (a line following approach) and Environmental Research

Technology, Inc. [Crane 1981]1. Again no details are available.

Page 7

EXPERIMENTAL RESULTS

The following tables summarize experimental results obtained from
real data processed by the raster-to-vector and vector-ordering

algorithms. A graphical summary can be seen in Figure 7.

In the summary of results below, N is the number of vectors,

raster-to-vector and ordering are conversion times in CPU seconds,

Ordered Plot and Unordered Plot are plot times in real seconds.

Page 8

IFigurel N |Raster-to-Vector! Orderingl Ordered Plot| Unordered Plot |

G ———— T ———— i —— T —— e S S T . T ——— T f f—— ——f—— ——— ————

Pl 1212 | 67 | 10 | 40 I 44 |
I 2 1387 | 177 I 25 I 56 I 56 I
I3 112731 1293 I 100 | 128 ! 168 I
I 4 11179 | 4039 I 189 | 208 I 252 |
Il 5 124171 5060 | 448 | 246 I 392 [
| 6 1912 | 1231 | 94 I 124 I 198 |

. S S e S S S —— T T S T i — -

These result, when plotted against a normalized N**2 result, seem to ver

the N**2 nature of the proposed algorithms.

Page 9

RASTER-TO-VECTOR CONVERSION

The following is a description of an algorithm for
raster-to-vector conversion. The 1input to the program is a file
of pixel positions (X-Y coordinates). The output from the program

is a file of vectors.

The main portion of the program 1is divided into 3 parts:
initialization (garbage in), point_processing (garbage compaction)
and printing data (garbage out). During the initialization phase
an array (list_array) of vector type (more on this 1later) is
initialized to be empty. During the point processing phase, a
point is read in and compared to the list_array (initially empty).
In each comparison an attempt is made to establish the point as a
member of an existing vector. A point is a member of an existing
vector if it can adopt the position of being at the head or tail
of that vector without causing the vector to change slope beyond a

slope tolerance. Slope tolerance 1is established by the user of

Page 10

the program and is a critical parameter. Slope tolerance affects
how far a vector can deviate from the initial slope of the vector

before a new point is not accepted.

What follows is a p-code summary of the above description.

for each_point in the_list_of_points do
stash_point

What stash_point does is it tries to stash a point in an existing
list of vectors and if it can't it starts a new vector.

point_not_stashed := true;

try_to_stash_a_point

if point_not_stashed then new_point
Try_to_stash_a_point checks for the number of vectors being equal
to zero, if so, it tries to place the point 1in the 1list of
vectors.

if number_of_ vectors = 0 then new_point

else
try_to_put_in_vectors

Try_to_put_in_vectors is the place where optimization techniques
seem most promising. It examines every vector and checks to see
if the point can be placed there,

for each_vector in the_list_of_vectors do

if point_not_stashed then try_to_put_in_head
if point_not_stashed then try_to_put_in_tail

Page 11

The act of trying to place a point in a head or tail of a vector
is performed in constant time by checking to see if the point is
adjacent and the new slope is acceptable. 1If this is true then

the looping over the vectors can be ceased.

If there are N points to place and N vectors in which to place

them, the algorithm can take O(N**2) time if all the points must

be placed in N vectors (worse case).

Page 12

ORDERING VECTORS

The following is a description of the vector ordering algorithm.
This algorithm takes as input a file of vectors (called vec) and

produces as output a file of ordered vectors (called order).

The vectors are ordered with an eye towards minimizing the plot
time. The algorithm takes the form of a distance minimization
algorithm; that is, for a given vector to be plotted (called the
current output vector), the list of input vectors is searched for
a vector with an end point a minimum distance away from the tail
of the current output vector. This next vector is then copied
from the input vector list to the next position on the output
vector list and becomes the new output vector. This approach
requires that an input list of N vectors be searched N times.
This means that the time of a search for N vectors is O(N**2).
Literature on the subject seems to indicate that the problem is
analogous to the Traveling Salesman problem (identifying the

problem as being NP-complete).

Page 13

Evaluation must not stop at running time, however, and techniques
for speeding up such an algorithm seem moot if the algorithm does
not yield a desirable result in the first place. The vectors are
sorted to minimize total path length of a steered drawing device.
For a constant speed plotter, we can thus conclude that the total
plot time should see some reduction. If it does not then it is
not worth even considering a method for running time reduction of
the ordering algorithm. Evaluation of plot time can be performed
theoretically, but in the areas of experimental computer science
it seems fashonable to test an implementation on experimental
data. Both techniques are seemingly appropriate, but the
appearance is deceiving when the input data is coming in scan line
order (as the xy2vec algorithm produces them). Thus, plot time in
scanline order wastes a "flyback" of the pen (much the same as a
carriage return on a printer) and may be sped up using the obvious
technique of reversing the order of every other scanline. Thus
the plotting order would no longer be left to right, top to bottom
but right to 1left, 1left to right, in top to bottom order. Such
fixes seem like experimental hacks at best (such is the nature of
experimental computer science). The trade off seems to be between
CPU time and plotting time (with the cost of software development
being a one time capital intensive venture). Since the CPU time
costs are spiralling downward (outpacing plotting speed increases)
it seems only fair that the CPU should pitch in a bit to help the

plotter along.

Page 14

How does the Program work?

The main program is divided into 3 stages: "garbage in"
(initialize), processing (process_vectors), and "“garbage out"
(write_vectors). The "garbage in" phase (initialize) opens a file
for read access (called vec) and opens a file for write access
(called order). It reads in all the vectors into an array called
'input_array' and sets the number_of_vectors to the number of
vectors in the input array. The input_array is an array of
input_type records which contains the locations of the vector end
points and a boolean flag which indicates whether the vector is

eligible (more on this later).

Process_vectors checks to see if there is only 1 vector in the
input_array. If there is only 1 vector, it is a singularity; the
vector is moved to the first position in the output_array, and the
procedure terminates. If there 1is more than one vector in the

input_array, the process_many_vectors procedure is called.

Process_vectors keeps two pointers: one called
current_input_vector, another called next_output_vector.
Current_input_vector is a pointer into the input_array and
identifies the current input vector to be considered.
Next_output_vector is a pointer to the output_array and moves down
the output_array in an incremental fashion. The procedure is best

described by the P-code which follows:

Page 15

For next_output_vector := 1 TO number_of_vectors DO
BEGIN
move (current_input_vector, next_output_vector);
current_input_vector := next_closest_vector_head(next_out
put_vector);
END
The idea here 1is that a move(l,2) places vector 1 on the
input_array into position 2 of the output_array. In addition,
move marks the vector in the input_array as being ineligible for
further processing (hence the boolean flag). The
next_closest_vector head is a function which returns the vector in
the input_array which has an end point nearest the tail of the
current output vector. Next_closest_vector_head 1looks at the
distance from the output vectors tail to both the head and tail of
the current_input_vector and uses the minimum. If the tail is the
minimum of the 2 end-points, then next_closest vector_head flips

the vector around so that the head and tail of the vector (its

orientation) are reversed.

Next_closest_vector head relies on 2 helping functions for

calculating distance:
distance_from_input_vectors_head_to_output_vectors_tail and
distance_from_input_vectors_tail_to_output_vectors_tail. These

actually calculate the distance squared (rather than the square
root of the sum of the differences) since these formulas yield the

same criterion.

Page 16

TECHNIQUES FOR IMPROVEMENT

The following techniques for improvement seem promising but have

not been tried by the author.

Raster~-to-vector conversion may be reduced to a constant time
algorithm if the conversion is to unit length vectors. A single
pass chain generating algorithm has been shown to work in 0(S)
time, where S is the number of scan-lines in an image [Chakravarty
1981, 1982]. Here the length of each vector is 2 pixels long and
arrived at by convolving a 3x3 matrix in raster order to obtain
chains in raster order. At this point outlines may be found and
quickly removed. This greatly reduces the amount of data to be

processed by the ordering phase [Nitzan and Agin 19791].

The vector-ordering algorithm may see excellent speed increase
with the introduction of an adaptive grid [Franklin 1984]. Here
each vector formed is entered into an array which 1is indexed by
cell. Each «cell is an element in a grid which is superimposed on
the image frame. This -enables access to vectors by relative
position within a grid, and this greatly improves vector ordering
performance. Starting with a vector in one cell, the ordering of

searching for other vectors would be 1in the same cell first,

Page 17

adjacent cells next. Since there is strong coherence in the data
(not randomly distributed, as Franklin suggests), the conversion

time analysis will be case sensitive.
Only a practical implementation with a study of experimental

results can result in a conclusive analysis of the proposed

algorithm. It seems however, quite promising.

Page 18

CONCLUSION

Two algorithms were shown which convert raster information from a
scanned picture into ordered vectors. Provisions have been made
to obtain conversions which are not exact but which can greatly
reduce the number of vectors. Time for conversion has been shown
to be O(N**2) by theoretical analysis and by experimental data.
The suggested improvements make raster-to-vector conversion
constant time and greatly reduce vector-ordering time. While
research shows that proprietary algorithms exist, which may well
accomplish the tasks described, the algorithms shown here were
developed independantly and thus place raster-to-vector and

vector-ordering in the public domain.

Page 19

BIBLIOGRAPHY

Antell, R.E. 1983. "The Laser-Scan Fastrak Automatic Digitizing
System, " Proceedings, Auto-Carto V.

Barrett, R.C., and B.W. Jordan. 1974. "Scan Conversion
Algorithms for a Cell Orgainized Raster Display." Communications
of the ACM. 17 (March):157-63

Chakravarty, I. 1981 "A single-pass chain generating algorithm
for region boundaries", Computer Graphics and 1Image Processing,
(15), February 1981, pp.” " 182—="193"

Chakravarty, I. 1982. The Use of Characteristic Views As A Basis
For Recognition Of Thre€e-Dimensional Objects Ph.D. Thesis for

CbmpUtéf‘ﬁnd Systems Engineering Department at Rensselaer
Polytechnic Institute, Troy, NY.

Franklin, W.R. 1979. "Evaluation of Algorithms to Display Vector
Plots on Raster Devices." Computer Graphics and Image Processing
11: 377-90.

Franklin, W.R. 1984. "Adaptive Grids for Geometric Operations",
Auto-Carto Six Edited by David H. Douglas, University of Toronto

Press, Canada.

Gibson, L., and C. Lenzmeirer. 198l. "A Hierarchical Pattern
Extraction System for Hexagonally Sampled Images." Unpublished
report prepared for the Air Force Office of Scientific Research by
Interactive Systems Corporation.

Page 20

Nagy, G. 1980. "what Is a 'Good' Data Structure for 2-D Points?"
Map Data Processing Edited by Freeman, H. and Pieroni, G.,

Academic Press, Inc., NY, NY.

Nitzan, D. and G.J. Agin, "Fast methods for finding object
outlines", Computer Graphics and Image Processing, 9, (1), Jan.

1979.

Peuquet, D. and A.R. Boyle. 1984. Raster Scanning, Processing
and Plotting of Cartographic Documents, SPAD Syslems, Ltd.,

Williamsville, NY.

Prager, J.M. "Extracting and 1labelling boundary segments in
natural scenes", IEEE Trans. on Pattern Analysis and Machine

Intelligence, PAMI-2, (I, Jan. 1980.

Tamura, Hideyuki._ 1978. "A Comparison of Line Thinning
Algorithms from a Digital Geometry Standpoint." Proceedings of
the Fourth Internationsl Joint Conference on PatteTw Recognition,

Kyoto, Japan. Pages 715-719.

Page 21

XY2VEC. PASCAL

PROGRAM xy2vec (INPUT, OUTPUT);

CONST
max_number_of_vectors = 2560;

TYPE

slope_type = RECORD

{This represents the initial slope of a vector}
dy,dx : REAL;

END;

point_type = RECORD
X, vy ¢+ 0 .. 511;
END;

vector_type = RECORD
initial_slope : slope_type; {This is installed when tail is
installed}

head : point_type; {Head is installed first}
tail : point_type;
{Both tail an head are subject to change}
tail_is_empty : BOOLEAN;
END;
VAR

list_array ARRAY [1l..max_number_of_vectors] OF

vector_ type;

input_file ¢ TEXT;

output_£file : TEXT;

dy_new, dy_old ¢ REAL;

dx_new, dx_old ¢ REAL;

X t INTEGER;

Y ¢ INTEGER;

index ¢ INTEGER;

number_of_vectors : INTEGER; {number of vectors in list_array}
point_not_stashed : BOOLEAN;

{flags the placement of a point into store}

PROCEDURE initialize:
VAR

index : INTEGER;
BEGIN
{write('calling initialize');}
REWRITE (output_£file, 'vec'):;
RESET (input_file, 'xy');

Page 22

PROCEDURE find_dy_dx(i : INTEGER);
BEGIN
WITH list_arraylil DO
BEGIN
IF tail_is_empty THEN
writeln('***ERROR, dx_dy being calculated on an empty tail');
dy_new := head.y - Yy:
dx_new := head.x - X;
dy_old := initial_slope.dy;
dx_old := initial_slcpe.dx;
END; {with!}
END; {find_dy_dx}

FUNCTION slope_close_enough : BOOLEAN;
BEGIN
{writeln('calling slope_close_enough');1}
slope_close_enough := FALSE;
IF (dx_new = 0) AND (dx_old = 0) THEN slope_close_enough := TRUE
ELSE
BEGIN
IF NOT ((dx_new = 0) OR (dx_old = 0)) THEN
slope_close_enough :=
(dy_new / dx_new) = (dy_old / dx_old) ;

END; {elsel

END; {slope_close_enoughl

FUNCTION slope_acceptable(i :INTEGER) : BOOLEAN;
BEGIN
slope_acceptable := FALSE;
IF list_arraylil.tail_is_empty THEN slope_acceptable := FALSE
ELSE
BEGIN
find_dy_dx(i);
IF slope_close_enough THEN slope_acceptable := TRUE
ELSE slope_acceptable := FALSE;
END; {ELSE}
END; {slope_acceptable}

PROCEDURE try_to_put_in_head(i : INTEGER);
BEGIN
WITH list_arraylil] DO
BEGIN
IF is_adjacent(head.x,head.y,x,y) AND
slope_acceptable(i) THEN
install_head (i) ;
END; {with}
END; {try_to_put_in_head}

Page 24

PROCEDURE try_ to_put_in_tail(i : INTEGER);
BEGIN
WITH list_arraylil]l DO
BEGIN
IF (is_adjacent(tail.x,tail.y,x,y) AND slope_acceptable(i))
OR
(tail_is_empty AND is_adjacent(head.x,head.y.x,y))
THEN install_tail (i)
END; {WITH}
END; {try_to_put_in_taill

PROCEDURE increment number_of_vectors;
BEGIN
number_of_vectors := number_of_vectors + 1;
IF number_of_vectors > MAX_NUMBER_OF_VECTORS THEN
WRITELN
('The number of vectors has been exceeded..run continued.'):
END; { increment_number_of_vectors}

PROCEDURE new_point; {this is used for each new vector}
BEGIN
point_not_stashed := FALSE;
increment_number_of_vectors;
WITH list_array [number_of_vectors] DO
BEGIN
head.x
head.y
tail_is_empty := TRUE;
END; {with list_array}
END; {new_point}

- we

PROCEDURE try_to_put_in_vectors; {number_of_vectors <> 0 and not
a new. point}
VAR
index : INTEGER;
BEGIN
{writeln('calling try_to_put_in_vectors');}
FOR index := 1 TO number_of_vectors DO {for all vectors }
BEGIN
IF point_not_stashed THEN try_to_put_in_head(index);
IF point_not_stashed THEN try to_put_in_tail (index);
END; {FOR!}
END; {try_to_put_in_vectors}

PROCEDURE try_to_stash_a_point; {verify}
BEGIN
{writeln('calling try_to_stash_a_point');}
IF number_of_vectors = 0
THEN new_point {verified!}
ELSE try_to_put_in_vectors; {verifyl
END; {try_to_stash_a_point}

Page 25

PROCEDURE stash_point; {verify!}
BEGIN
READLN(input_file, x, y):
point_not_stashed := TRUE;
try_to_stash_a_point; {verify}
IF point_not_stashed
THEN
BEGIN
point_not stashed := FALSE;
new_point; {verify}
END; {IF}
END; {stash_point}

PROCEDURE print_out_data;
VAR
index : INTEGER;

BEGIN
WRITELN('the number of vectors is ',number_of_vectors:l);

FOR index := 1 to number of_vectors DO
WITH list_arraylindex] DO
IF NOT tail_is_empty THEN
writeln(output_£file,
head.x:1, ' ', head.y:1l,' ',tail.x:1,' ',tail.y:1);
END; {print_out_data}

BEGIN {main portion of code 1}

initialize;

WHILE NOT EOF (input_file) DO
stash_point; {verify!

print_out_data;

CLOSE (output_£file);

CLOSE (input_£file);

END.

Page 26

VEC20RDER. PASCAL

Program vec2order2(Input, Output);

CONST

max_number_of_vectors = 5000;

some_big_number

TYPE

point_type =

x, v s 0..511;

END;

vector_type

10000007

head tpoint_type;

tail spoint_type;

END;

input_type =

head spoint_type;

tail tpoint_type;

eligible :boolean;

END;
VAR

output_array sARRAY [l..max_number_of_vectors]l OF

vector ty

pe;

input_array ¢ARRAY [l..max_number_of_vectors] OF

input_ty

pe;

input_£file :TEXT;

output_f£file :TEXT;

X s INTEGER;

Y :INTEGER;

index ¢:INTEGER;

number_of_vectors :INTEGER;

PROCEDURE reverse_input_vector(input_vector : INTEGER);
{reverses the head and tail of a vector in the input array!l

VAR temp : INTEGER;

BEGIN

WITH input_arraylinput_vectorl DO

BEGIN
temp :=

head.x :=
tail.x :=

temp :=

head.y :=

head.x;
tail.x;

tail.y;

Page 27

tail.y := temp;
END; {withl}
END; {reverse_input_vector}

PROCEDURE write_vectors;
{writes the vectors in the output array to the output_file}
VAR i1 : INTEGER;

BEGIN
FOR i := 1 TO number_of_vectors DO

WITH output_arraylindex] DO
writeln(output_file, head.x, head.y, tail.x, tail.y);
index := number_of_vectors;
END;

PROCEDURE initialize;
BEGIN
REWRITE (output_file, 'order');
RESET (input_£file, 'vec');
number_of_vectors := 1;
WHILE NOT EOF(input_£file) DO
WITH input_arraylnumber_of_vectors] DO
BEGIN
eligible := TRUE;
number_of_vectors := number_of_vectors + 1;
READLN(input_file, head.x, head.y, tail.x, tail.y);
END;
writeln('Read in ', number_of_vectors:1l, ' vectors.');
number_of_vectors := number_of_vectors - 1;
{The number of vectors will never be negitive}
END; {initialize}

PROCEDURE move(from, fin :INTEGER);
{Move a vector from the input array to the output array}
BEGIN

input_arraylfroml.eligible := FALSE;

WITH output_arrayl[fin] DO

BEGIN
head.x := input_arraylfrom].head.x;
head.y := input_arraylfroml].head.y;
tail.x := input_arrayl(froml.tail.x;
tail.y := input_arraylfroml.tail.y;
END;
END;

FUNCTION distance_from input_vectors_head_to_output_vectors_tail
(i, o :INTEGER) :INTEGER;
VAR
dx, dy :INTEGER;
BEGIN
WITH output_arraylol] DO
BEGIN
IF (input_arraylil.eligible)
THEN
BEGIN

Page 28

dx := tail.x - input_arraylil.head.x;
dy := tail.y - input_arraylil.head.y;
distance_from_input_vectors_head_to_output_vectors_tail
s=dx * dx + dy * dy;
END {IF..THEN}
ELSE
distance_from input_vectors_head_to_output_vectors_t
ail
3= ~1;
END; {IF}
END; {distance_from input_vectors_head_tc_output_vectors_tail}

FUNCTION distance_from_input_vectors_tail_to_output_vectors_tail
(i, o :INTEGER) :INTEGER;
VAR
dx, dy :INTEGER;
BEGIN
WITH output_arraylol]l DO
BEGIN
IF (input_arraylil.eligible)
THEN
BEGIN
dx := tail.x - input_arraylil.tail.x;
dy := tail.y - input_arraylil.tail.y;
distance_from input_vectors_tail_to_output_vectors_tai

dx * dx + dy * dy;
END {IF..THEN}
ELSE distance_from_input_vectors_tail_to_output_vectors_tai
1l :=-1;
END; {if}
END; {distance_from input_vectors_tail_to_output_vectors_tail}

FUNCTION next_closest_vector_head (base_output_vector :INTEGER) :I
?TEEER;t an output vector and find the closest input vector, if th
eoglgﬁe input vector which is closest is the tail, flip it around}
VAginimum_distance_so_far, d, d2, current_vector_candidate :INTEGE
EEGIN \

minimum_distance_so_far := some_big_number;

FOR current_vector candidate := 1 TO number_of_vectors DO

BESIT= distance_from_input_vectors_head_to_output_vectors_tail

(current_vector_candidate, base_output_

vector);
D2
:= distance_from_input_vectors_tail_to_output_vectors_tai
1(‘
current_vector_candidate, base_output_
vector);

Page 29

IF (4@ < minimum_distance_so_far) AND ({(d > 0) OR (d =

THEN
BEGIN

minimum_distance_so_far
next_closest_vector head

END {THEN}
ELSE
BEGIN

0))

d;
= current_vector_candidate;

IF (d2 < minimum_distance_so_far) AND ((d2 > 0) OR
(d2.= 0))

THEN
BEGIN

minimum_distance_so_far
next_closest_vector_head

date;

d2;
current_vector candi

reverse_input_vector(current_vector_candidate);

END; {IF}

END; {ELSE}
END; {FOR}

END; {next_closest_vector_head}

PROCEDURE process_many_vectors;
VAR
current_input_vector,

BEGIN
current_input_vector := 1;
FOR next_output_vector := 1 TO

BEGIN
move (current_input_vector,
current_input_vector :=
next_closest_vector

END; {for}

END; {process_many_vectors}
PROCEDURE process_vectors;
BEGIN

IF number_of_vectors = 1

THEN move(l,1l)

ELSE process_many_vectors;
END; {process_vectors}
{MAIN}

BEGIN
initialize;
process_vectors;
write_vectors;
END. {main}

Page

next_output_vector

tINTEGER;

number_of_vectors DO

next_output_vector);

head (next_output_vector);

30

., Fig. 3

Fig. 4

I R]

B s it

v

SO A AL @ R S MM PANSIA | TR .y
L}

v, 'bid |

SIO0JO9A JO JaqwnN = N

aN= 8

awll NdD
40JO3A O] 12isDY =8 X

g, ‘b4

SJIOJJ9A JO JaquinN = N

NZHMD

swll NdO
BupapiQ 10J09A =8

v

22 ‘bid4

SJOJO9A JO JaqunN = N

paJapioun = O
paiapiQ = X

awn]
buiioid

