Course 35.694
NATURAL LANGUAGE PROCESSING WITH PROLOG
by
Douglas Lyon, BSCSE

A report submitted to
Professor Franklin

April 1985

Electrical Computer and Systems Engineering Department
Pensselaer Polytechnic Institute
Troy, New York, 12180

Phone (518)266-6248

ABSTRACT

A method is described for transforming a minimal English
subset into Prolog. ‘The transformation 1is divided into
three stages:

1. Simple limited English into predicate calculus.

2. Predicate calculus into conjunctive nomal formm.

3. Conjunctive nomal fom into Prolog.

Sentences which are correctly transfommed include:

"Every man loves a woman." and

"John loves a woman."
Most permutations of the above sentences are pemitted
provided the sentences remain simple. Constraints on the
system include context free grammer, noun phrase followed

by verb phrase, and zero deviation between semantic and

pragmatic meaning.

Applications include creation and consultation of data

bases, theorem proving, and expert systems.

Acknowledgment

The research reported here was supported by Professor

Randolph Franklin.

Many thanks to Professor David Wieck for verifying the
examples on conjunctive nomal fom and for providing

thoughts on the subject of mechanical theorem proving.

This material is based upon work supported by the MNational
Science Foundation under grant no. ECS-8351942, the Rome
Air Development Center, contract number, F30602-85~C~0008,
subcontract 353-9023-7, and by the Data System Division of

the International Business Machines Corp.

Table of Contents

Y €S = Lo
ACKNOW]IEAGEMENEt e v eeeeeeereaseesrssesosssacscccsansacsnconsssesscnnsesed
Chapter 1: INtrodUCtioN.cseseeesececoesseescssencssscnsonsoscsssacasssd
Chapter 2: English to Predicate CalCUlUS..ecevsccccoceccrosacososcscee?
Chapter 3: Predicate Calculus to Conjunctive Normal FOITeeeseoseoesssl0
Chapter 4: Conjunctive Nomal FOIM O PrOlOUe.eceesesescsescssoscssssld
CONCLUSION. tevesecceecnsoesessessssssacsscnsssosssscansacsssnonnssasal?
BibliOgraphyeceeesecessesesassessssosccnscvocscoevonssescsansassesnsasll
Appendix A Prime ASCIL.eeeeeesseossvscscasescscacccancsasoncconconsssll
APPendiX B: COGceeeeeennovenessossssesscssasanssscsvarcccassanosooaseoesll

Vltaotuooot.ooooo‘oooooo.b‘u.-oo-ocooo0000-ooooo-o.oo...oon.oo-oo..-033

Chapter 1l: Introduction

Matural language processing is concemmed with theories and
techniques that address the problem of natural language
communication with computers. Being able to translate
English into a computer program is an example of natural
language processing. It is a human activity which is
attributed to a "programmer". Telling the computer what we
mean is the name of the programming game and is a central

issue of natural language processing.

The aim of this research is to translate a limited subset
of English into Prolog. The English subset has a natural
syntax (grammar) and rigorously defined semantics.
Examples of properly transformed sentences include "john
loves a woman.", "a woman loves john", “"every man 1loves a
woman" ana so on. The topic is one of machine translation.
It is significant to the natural language processing sphere
of interest because it ignores the gap between what is
intended and what is understood. The study of the gap
between what 1s meant (semantics) and what is understood
(pragmatics) is called semiology. By avoiding semiological
considerations we can keep the topics considered in an

analytic domain.

Consider the class of languages called computer languages
(ie. FORTRAN). In a computer language there is no gap

between the semantic and pragmatic meaning. Since the

i

Chapter 1: Introduction

English used by this research has rigorously defined
semantics it is like a computer language because there 1is
no gap between the semantic and pragmatic meaning. For
example, if the program were to accept the following
English statements as rules for its database:

"God is love. Love is blind. FRay Charles is blind."

then it would conclude (perhaps incorrectly) that

Ray Charles is God.

Fesearchers in the field have thus concluded that a natural
language system that understands the semantic and pragmatic
meaning of a sentence must "come to an understanding of the
user's motivation and the multiple purposes served by any

given piece of language." [LEHNERT 821

Many different approaches have been used in the past to
arrive at a workable natural language processing system.
Top~down (ie. hypothesig-driven) parsing uses a grammar
and tries to fit it to a string [WINOGRAD 83]. A
context-free grammer is an example of a top-down parsing
scheme where one starts with productions for the initial
symbol, and builds an expansion by substitution which will

get to the symbols in the string [GAZDAR 81].

The work described in this paper uses a

definite-~clause~grammar notation [PEREIRA and WARREN 801 to

Chapter 1: Introduction

generate Predicate Calculus directly from English
[COLMERAUER 82].
"Predicate Calculus is a fomal Ilanguage which can
express statments about limited domains. It comprises a
set of symbols, and rules for combining these into termms
and fomulae." [CHANG and Keisler 37]
See [CROSSLEY et al. 721 for further infommation on
Predicate Calculus. The Predicate Calculus is transformed
into conjunctive nomal fom [CLOCKSIN 81] and then into

Proclog.

Chapter 2: English to Predicate Calculus

The conversion of English into predicate calculus 1is
described by functional specification of the main

predicates.

Read_in(S) returns a Prolog list (here after referred to as
a list) in the variable S. The list is typed in at the
teminal in free fom by the user. Thus:

:= read_in(S).

the quick brown fox.

S = [the, quick, brown, foxl

Please note that Prolog responses are underlined.

In the following notation :

a & b means a AND b.

a # b means a OR b.

a => b means a implies b.

a <~> b means a is equivalent to b.
“a means not a.
all(a,b) means b is true no matter what a stands for.
exists(a,b) means there is something that a c¢an stand
for, such that b is true.

The predicate "sentence" 1s used to transfom the list

returned by read in into predicate calculus.

Chapter 2: English to Predicate Calculus

Example 1 - Translation to predicate calculus.

/% VR*x%1 is5 the main file */

:= consult (***)

g :— read_in(s),

/* S is the Sentence in list fomm */
sentence (S,F,Pc),

/* Pc is the predicate calculus */
write (Pc),

ni,

nl,

g.

17

every man loves a woman.

all (X,man(X) -> exists(Y,woman(Y) & loves(X,Y)))

every woman loves a man.

all (X,woman (X) -> exists(Y,man(¥Y) & loves(¥,Y)))

john loves a woman.

exists (X,woman (X) & loves(john,X))

a woman loves john.

exists (X,woman (X) & loves (X, john))

Chapter 2: English to Predicate Calculus

john loves every woman that loves a man.

all (X,woman({X) & exists(Y,man(Y) & loves(X,Y)) ->

loves (john,X))

every woman that john loves loves a woman that 1loves a
man.

all (X,woman (X) -> loves (john,X))

The last example will not yield a correct answer because it
is in violation of the grammer. A sentence must be a noun
phrase followed by a verb phrase. In the sentence "every
woman that John loves loves a woman that loves a man." the
object of the sentence is "every woman that John loves". A
good rule of thumb to avoid this error would be to keep
transitive verbs (in this case "loves") from following each
other. A more elegant solution is to program the system to

recognize the use of a comma in the sentence.

Chapter 3: Predicate Calculus to Conjunctive Normal Form

Conjunctive nomal fom is a rearrangement of a logical
expression so that all the conjunctions (ANDs) appear
outside of the disjunctions (ORs). In our notation the
symbol '&' 1is a conjunction and the symbol '#' is a

disjunction.

In the example which follows Predicate Calulus formulae are
rewritten automatically in conjunctive normmal fom. A five
stage approach is taken in order to achieve the
transfomation. In stage one we replace a -> b (a implies

b) with ("a) # b

and we replace

a <-> b (a is equivalent to b) with (@ & b) # ("a & "b).
In stage two we move negation inward thus,

“(a & b) is changed to (Ta) # ("b),

“(a # b) 1is changed to (Ta) & ("b),

“exists(a,p) is changed to all(a,”p),

and

~“ali(a,p) 1s changed to exists(a,”p).
Stage three removes existential quantifiers by introducing
Skolem constants so

exits (X, female(X) & motherof (X, eve)) is changed to

female (gl) & motherof (gl,eve).
Stage four moves the universal quantifiers outwards. For
example:

all (X, m(X) => all(Y,w(¥Y) => p) is changed to

10

Chapter 3: Predicate Calculus to Conjunctive Nomal Form

all(X, all(Y, m(X) => w(¥) => p)))

Finally, stage 5 distributes AND over OR. For example:
(A & B) # C is the same as (A # C) & (B # C)

A$# (B&C) is the same as (A #B) & (A # C)

See [CLOCKSIN and MELLISH 81] for further details.

1 ?listing(qg).
g() :-
read_in(s),
sentence (S, F,Pc),
write (the predicate calculus is),nl,
write(Pc),nl,nl,
implout (Pc,X1) ,
write (with implications removed),nl,
write (X1),
nl,ni,
neqgin(x1,x2),
write (with negation moved inward),ni,
write (X2),nl,nl,
skolem(X2,%3,I11),
write (with Skolem constants introduced) ,ni,
write (X3) ,nl,ni,
univout (X3,X4),
write (with universal guantifiers moved out),ni,
write (X4),nl,nl,
conjn(X4,Xx5),
write (with & distributed over #),nl,
write (X5),nl,ni,
G
1 2q.

every man loves a woman.
the predicate calculus is
all,man(X) -> exists{Y,woman(Y) & loves(¥,Y)))

with implications removea
all(¥X,” man(X) # exists(Y,woman(¥) & loves(X,Y¥)))

with negation moved inward
all(X,” man(X) # exists(Y,woman(¥) & loves(%,Y)))

with Skolem constants introduced
all(X,” man(X) # woman(gl(X)) & loves (X,al(X)))

11

Chapter 3: Predicate Calculus to Conjunctive Momal Form

with universal quantifiers moved ou:
T man(X) # womaa. . cves (K, gl(X))

with & distributed over #
(" man(X) # woman(gl(X))) & ~ man(X) # loves(X,gl(X))

every woman loves a man.
the predicate calculus is
all (X,woman (X) -> exists{(¥,man(¥) & loves(X,Y)))

with implications removed
all (X,” woman(X) # exists(Y,man(¥) & loves(¥%,Y)))

with negation moved inward
all(X,” woman(X) # exists(Y,man(Y) & loves(¥,Y)))

with Skolem constants introduced
all(X,” woman(X) # man(g2(X)) & loves(X,g2(X)))

with universal quantifiers moved out
~woman (X) ¥ man(g2(X)) & loves(X,g2(X))

with & distributed over #
" woman (X) ¥ man(g2(X))) & ~ woman(X) # loves(X,g2(X))

john loves a woman.

the predicate calculus is
exists (X,woman (X) & loves(john,X))

with implications removed
exists(X,woman (X} & loves (john,X))

with negation moved inward
exists X,woman (X) & loves (john,X))

with Skolem constants introduced
woman (g2) & loves(john,g2)

with universal guantifiers moved out
woman (g2) & loves (john,g2)

with & distributed over #
woman (g2) & loves (john,g2)

a woman loves john.

the predicate calculus is
exists (X,woman (X) & loves(X,john))

with implications removed

12

Chapter 3: Predicate Calculus to Conjunctive Normal Form

exists (X,woman(X) & loves(X,john))

with negation moved inward
exists (X,woman(X) & loves (X, john))

with Skolem constants introduced
woman (g2) & loves (g2, john)

with universal quantifiers moved out
woman (g2) & loves (g2, john)

with & distributed over #
woman (g2) & loves (g2, john)

john loves every woman that loves a man.

the predicate calculus is

all(X,woman (X) & exists(Y,man(Y) & loves(X,Y)) ->
loves(john,X))

with implications removed
all(X,” (woman(X) & exists(¥,man(¥) & loves(X,¥))) ¥
loves (john, X))

with negation moved inward
all(X, (" woman(X) # all(Y,” man(Y) # ~ loves(X,Y))) ¢
loves (john, X))

with Skolem constants introduced
all(X, (" woman(X) # all(Y,” man(Y) # ~ loves(X,Y))) #
loves (john,X))

with universal quantifiers moved out
(" woman(X) # "~ man(Y) # ~ loves(X,Y)) # loves(john,X)

with & distributed over #
(" woman(X) # ~ man(¥) # ~ loves(X,Y)) # loves(john,X)

13

Chapter 4: Conjunctive Nomal Form to Prolog

Prolog (gfggramming in iggic) is a programming language
which uses logical clauses and a resolution theorem prover
to make assertions and rules about how a problem may be
solved [BOWEN, et al. 82]. If English can be transformed
into Prolog properly (and only very limited English subsets
can) we should find English specifications of programs to
be themselves 'runnable' after only machine translation.
It could then be said that if the result is not what was
wanted the specification was incomplete or not correct.
Naturally this is guite a lofty goal and is quit beyond the
scope of this research, it is simply a suggestion of what
is possible.

t— consult (¥*%)

g :~ repeat,

write ('>>>'), /* prompt the user */

read_in(S), /* S returns a list which was typed at the
terminal */

sentence (S,F,Pc) ,/* Pc is the predicate calculus version
of the list S */

write ('the predicate calculus is'),nl,write(Pc¢),nl,nl,
implout (Pc, X1), /* implicaticns removed

negin(xXl,X2), /* negation moved inward
skolem(X2,X3,[1),/* Skolem constants introduced

univout (X3,X4), /* universal guantifiers moved out
conjn(X4,X5), /* & distributed over #

write ('the conjunctive no rmal form
is') ,nl,write (¥5),nl,nl,

clausify (X5,Clauses, (1),

write ('the clauses are'),nl,pclauses(Clauses),

Je

-

1 2q.

>>>every man loves a woman.
the predicate calculus is
all (X,man (X} -> exists(Y,woman(Y) & loves(X,Y)))

the conjunctive nommal fom is
(" man(X) # woman(g1(X))) & ~ man(X) # loves (X,gl(X))

14

Chapter 4: Conjunctive Nomal Fom to Prolog

the clauses are
woman (gl(X)) :- man(X).
loves (X,gl(X)) :- man(X).

>>>every man loves every womar.
the predicate calculus is
all (X,man(X) -> all{Y,woman(Y) -> loves(X,¥)))

the comjunctive nomal form is
“man(X) # © woman(Y) # loves(X,Y)

the clauses are
ioves(X,Y) :- man(X), woman(X).

>>revery woman loves a man.
the predicate calculus is
all(X,woman (X) -> exists(Y,man(Y) & loves(X,¥)))

the conjunctive nomal fom is
(" woman (X) # man(g2(X))) & ~ woman(X) # loves(X,g2(X))

the clauses are
man(g2(X)) :- woman(X).
loves (X,g2(X)) :- woman(X).

>>>john loves a woman.
the predicate calculus is
exists (X,woman (X) & loves(john,X))

the conjunctive nommal form is
woman (g2) & loves(john,g2)

the clauses are
woman (g2) .
loves(john,g2).

>>>a woman loves john.
the predicate calculus is
exists (X,woman (X) & loves(X,john))

the conjunctive romal fom is
woman (g2) & loves(g2,john)

the clauses are

woman (g2) .
loves (g2,jonhn) .

15

Chapter 4: Conjunctive Normal Form to Prolog

16

Conclusion

The next step in the progression from English to Prolog is
to use the Prolog produced by the system described in order
to make inferences from transformations of English
statements. A step beyond is to recognize uncertainty by
modifying the behavior of the inference engine to recognize
probabilistic properties of objects. It 1is conceivable
that persons without technical expertise may generate
databases for expert systems [HENDRIX 77]1. An application
of natural language processing used currently [REBOH 79] is
the creation of a knowledge acquisition system as a tool to
build expert systems [WATERMAN and HAYES-ROTH 82]. In the
rule oriented programming environment of Prolog, the rules
may be treated as properties of an object. The atoms of an
English string may then indicate meta-rules [THOMPSON 82]
needed to transfom them into the Predicate Calculus. A
paradigm may then be organized around recursively
composable sets of pattern-action rules (ie. frames
[MINSKY 751, conceptual dependencies [sCHAMK 751 p
knowledge structure, scripts [SCHANK and ABELSON 77]...)
where behavior can include the side effect of accessing

properties.

More work is required on the subject of transformation in
order to the transfomation from English to Prolog more
robust. The work described in this report only scratches

the surface of the English to Prolog conversion probler.

17

Conclusion

Even when ignoring the semiological consideration, a good
amount of "sentence sense" is required to make a general
transformation. Considering the difficulty of the English
to Prolog transfommation, it is evident that an expert

gystem should be used.

18

Bibliography

[BOBROW and STEFIKI
Bobrow, D.G. and Stefik, M. The Loops Hanual,
available from David Catton, Artificial Intelligence
Ltd., 62-78 Merton Rd., Watford WDl 7BY,
England. Tel: 0923-47707

[BOWEN, et al. 82]
Bowen et al. Decsystem-10 PROLOG User's HManual Dept.
of Artificial Intelligence, Edinburgh, 1982. Occasional
Paper 27.

[BUNDY 84]
Bundy, Alan, Catalogue of Artifical Intelligence Tools,

Springer-Verlaq, New York, 1984.

[CHANG and KEISLER 37]
Chang, C.C. and Keisler, A.J. Model Theory,

North-Holland, 1937.

[CLOCKSIN and MELLISH 811
Clocksin, W.F. and Mellish, C.S. Programming in Preclog

Springer Verlag, 198l.

[COLMERMUER 821
Colmerauver, Alain "An interesting Subset of Hatural
Language", Logic Programming, Clark and Tarnlund

(editors), Academic Press New York, 1982.

[CROSSLEY et al. 721
Crossley et al. What is Mathematical Logic?, Oxford

University Press, 1872.

[GAZDAR 811
Gazdar, G. "Phrase Structure Grammar" The Nature of
Syntactic Representations, Jacobson and Pullum (editor),
Reidal, Dorcdrecht, 1981.

[HENDRIX 77]
The LIFER HManual T 138 edition, SRI Internationail,
Menlo Park, 1877.

[LEHNERT 82]

18

Bibliography

Lehnert and Ringle, Strategies For Natural Language
Processing, Lawrence Erlbaum Assoclates, Hillsdale, NJ,

[LEWIS 80]
Lewis, Anthony The FORTRAN Reference Guide, Prime

Computer, Inc. 1980

[MINSKY 751
Minsky, M. "A framework for representing knowledge."
is P.H. Winston (editor), The Psychology of Computer

Vision McGraw-Hill, 1975.

[PEREIRA and WARREN 80]
Pereira, F. and Warren, D.H.D. "Definite Clause
Grammers for Language Analysis - A survey of the
Fomalism and a Comparison with Audgmented Transition
Networks", Artificial Intelligence 13:231-278, 1980.

[REBCH 79]
Reboh, R. "The Knowledge Acguisition System" in Duda,
R.O. (editor), A Computer-bBased Conssultant foor
Mineral Exploration. SRI international, Artificial
Intelligence Center, Menlo Park, September, 1979. Final
Report, SRI Project 6415.

[SCHANE 75]
Schank, R.C. (editor), Conceptual Information

Processing North-Holland, 1975,

[SCHANK AMND ABELSON 771
Schank, R. and Abelson, R., Scripts, Plans, Goals and

Understanding Lawrence Erlbaumm Associates, 1977.

[THOMPSCN 821
"Handling Metarules in a Parser for GPSG." 1In Barlow,
M., Flickinger, D. and Sag, I. (editor), Developments
in Generalised Phrase Structure Grammer. Bioomington,
Indiana University Linguistics Club, 1982. Stanford
Working Papers in Grammatical Theory Volume 2.

[WALEER 781
Walker, Donald E., Understanding Spoken Language,

20

Bibl icgraphy

Elsevier North-Holland, Inc., New York, WY, 1978.

[WATERVMAN AMD HAYES-ROTH 821
Waterman, D. and Hayes-Roth, F. An Investigation of
Tools for Building Expert Systems.

Technical Report
R-2818-NSF, Rand Corporation, June, 1982.

[WARREN, PEREIRA and PEREIRA 77]
Warren, D.H.D., Pereira, L.M., and Pereira, F.
"Prolog - the language its implementation
compared with Lisp." In AQHM Symposium on AI and
Programming Languages. Association for Computing
Machinery, 1977.

and

[WINOGRAD 83]
Winograd, T., Language as a Cognitive Process,
Addison-Wesley, 1983

21

Appendix A: Prime ASCII

The ASCII used in the software of this report is
specific to a Prime computer. "The Prime internal
standard for the parity bit is one", this means that
128, decimal, is added to all ASCII characters [LFWIS
80]. Thus digits 0,1,2, etc are 176, 177, 178, etc
in that order. This sort of code dependent thing
becomes important 1in the Gensym predicate (where the
number 176 should be changed to 48 for most machines,

and in read_in, where numbers are being compared.

22

Appendix B: Code

/* given a word and the character after it read
in the rest of the sentence */

/* S returns a list which was typed at the teminal *
/
read_in([Wlvsl) :-

get0(C),

readwora(C,w,Cl),

restsent (W,C1,Ws) .

restsent W,_,[1) :-
lastword (W), !.

restsent (W,C, [WllWsl) :-
readgword(C,wW1,Cl),
restsent (Wl,Cl1,Ws).

/* read in a single word, given an initial character
*/
/* and rember what character came after the word */
readword (C,W,Cl) :-

single_character(C),!,

name (W, [C]),

get0(Cl) .
readword (C,W,C2) =~

in_word(C,New(),!,

get0(Cl),

restword(€1,Cs,C2),

name (W, [NewCiCsl).
reacword(C,W,C2) :~

get0(Cl),

readword(Cl,w,C2).

restword(C, [NewCiCs1,C2) :-
in_word(C,NewC), !,
getO(CD),
restword(Cl1,Cs,C2) .

restword(C, [1,C).

/* these characters should form words on there own
all number should have 128 base ten subtracted from
then

for transportation to standard ASCII systems */

single_character(172). /* , */
single_character(187). /* ; */
single_character(188). /* : */
single_character(191). /* 2 */
single_character(161). /* | */
single_character(174). /* . */

/* these characters can appear within a word */
in_word(C,C) :-

Bppendix B: Code

C > 224,

C < 251. /*¥ab ... z2 %/
in_word(C,L) :-

c > 192,

C < 219,

LisC+ 32. /*AB ... 2 */
in word(C,C) :-

c > 175,

C < 186. /*1 2 ... 9 %/
in_word(167,167). /* ' */
inword(173,173) . /* = */

lastword(.) .
lastword(!).
lastword(?).

/* This prints out a list in a pretty format */
print (D) :-

pp(D,1).
print (D) :-~

pp(D,1).

/* pp helps to pretty print a list */

pp(lHITI,I) = ¢,
Jis I + 3,
pp(H,J),
ppx (T,J) ,
nl.

ppX,I) == !,
tabulate (1),
write (X),
write().

pp(IHIT],I) -,
Jis I+ 3,
pp(H,J) ,
ppx (T,J),
nl.

peX, 1) = !,
tabulate (1),
write (¥),
write().

pex ([1,_).

ppx ([HIT],I) :-
pp(H, 1),
pex(T,I).

ppx ([1,_).

pex ([HIT],I) :-
pp (H,I),
ppx (T, 1) .

24

Appendix B: Code

/* 7 is the predicate calculus version of the list
*/
sentence (X,Y,2) :-

noun_phrase (X,U,V,X1,2),

verb phrase(U,Y,V,X1).

noun_phrase (X,Y,2,U0,V) :-
deteminer(¥X,X1,2,Y1,0,V),
noun (¥1,21,2Z,01),
rel_clause(21,Y,7,U01,Y1).

noun_phrase(X,Y,%,0,U0) :-
proper_noun (X,Y,Z) .

verb_phrase (X,Y,%Z,0) :-
trans_verb(X,V,Z,X1,YD),!,
noun_phrase (V,Y,X1,Y1,0).

verb_phrase (X,Y,2,U0) :-
intrans_verb(X,Y,Z,0).

rel_clause(X,Y,2,0,U0 & V) 2=
X = [thatlX1],
verb_phrase (X1,Y,2,V).
rel_clause (¥X,Y,2,0,0) :-
X =Y.

deteminer(X,Y,2,U0,V,all(Z,U0 -> V)) :-
X = [everylY].

deteminer(X,Y,2,0,V,exists(Z,U & V)} :-
X = [al¥Y].

noun{X,Y,Z,man(zZ)) :-
X = [manlyl.

noun (X,Y,Z,woman(Z)) :—
X = [womanlYl.

noun (X,Y,Z,computer(2)) :-
X = [computerlY].

proper_noun (X, Y, john) :-
X = [johnl¥].

proper_noun (X,Y,kevin) :-
X = [kevinlYl.

trans_verb(¥,Y,2,U,loves(Z,U}) :-
X = [loveslyl.
trans_verb(X,Y,2,U0,hates (Z,U0)) :~
X = [hateslY].
trans_verb(¥,%,2,U,2 is U) :-
X = [isl¥Y].

intrans_verb(X,Y,2,lives(Z)) :-
¥ = [liveslY].

25

Appendix B: Code

/* This permits one list too be subtracted from anoth
er. */
/* subst(a,b, la,b,cl,la,a,cl) */

substitute (F1,v1,V2,F2).

/* append allows one list to be appended to another *
/
/* append([], atom, atom) */
/* append ([d], [oo], [d,00])
append([1,L,L).
append ([X1L11,L2, [XIL3]) :-
append(L1,12,13).
append([1,L,L).
append ([X1L1],L2, [XIL3]) :-
append(L1,L2,L3).

/* Create a new atom starting with a root provided an
d */
/* finishing with a unique number */
gensym(Root ,Atom) :-
get_num (Root, Num) ,
name (Root , Namel) ,
integer_name (Num, Nane2) ,
apoend (Namel , Name?2 , Name) ,
name (Atom, Name) .

get_num(Foot,Num) :-

/* this root encountered before */

retract (current_num(Root,Numl)) , !,

Num is Muml + 1,

asserta (current_num(Root,Numl)).

/% first time for the root */
get_num(Root,1) :-

/* Convert from an integer to a list of characte
s */

asserta (current_num(Foot,1)) .

integer_name (Int,List) :-
integer_name (Int, [1,List).
integer_name (I,Sofar, [ClSofarl) :-
I < 10,1,
Cis I+ 176.
integer_name (I,Sofar,List) :-
Tophalf is I / 10,
RBothalf is I mod 10,
C is Bothalf + 48,
integer_name (Tophalf, [ClSofarl,List) .

/* concetenate will concatenate to lists */

26

Rppendix B: Code

concatenate ([1,L,1) .
concatenate ([EIR], L2, [EiL]) :-
concatenate (R, L2,L) .

/* reverse (lhi,there,mr,potato,headl, [head, potato,mr,
there,hil).
reverse([1,[1).
reverse([EIRI,L) :-
reverse (R, R1),
concatenate (R1, [El,L).

/* get_till n */
/* Pickup the first n members of a list.*/
/* get_till_n(la,b,c,d,e,£f,ql,la,b,c,d],L,4)./*
get_till n(I1,01,_,_).
get_till n([XIL1,[XIP],C,N) :-
(var(C) , C =1 ; true),
C =< N,
Cl is C + 1,
get_till n(L,P,Cl,N).
get_till n(_,(),_,_).

unlist ([11,I).
list(z,[ID).

car([HIT],T).
car([HIT],H) .

/* stack */
/* This is a logic program which keeps a list in the
/* for of a stack.
/* push([hil),push(1) ,push(a).
/* pop(X),pop(¥Y) ,pop(2), z = [hil, vy =1, x = a
push(X) :-

asserta ((stack(¥Y) - Y = X)).

pop(X) :-
stack (X},

retract ((stack(Y) := Y = X)).

press(X) :-

assertz ((stack (¥) := Y = X)).

/* this defines the subtraction relation between two
lists.

for example: */
/* subtract(la,b,[a,b,cl,la,a,cl). */
subtract (L, [1,L) := !.
subtract ([HI'T],L,U0) :-

27

Appendix B: Code

member(4,L) ,!,

subtract (T, L,U0) .
subtract ([HIT],L, [BIU]) =~ I,

subtract (T,L,U) .
subtract (_,_,[1).

translate (X) :-

implout (X,%1), /* implications removed */

negin(x1,x2), /* negation moved inward */

skolem(X2,X3,I1), /* Skolem constants introdu
ced */

univeut (X3,X4) , /* universal guantifiers mo
ved out */

conjn(¥4,X5), /* & distrio. ‘ s

crint (clauses passed to clausify are),

ni,

write (Clauses),

ni,

clausify (¥5,Clauses, [1),
print (clausify returneds:),
print (Clauses),

nl,

pclauses (Clauses) ,
printclauses (Clauses),
make_prolog (Clauses) .

implout (P <> Q,(P1 & Q1) # ~ P1 & ~ Q1) :- !,
implout (P, P1),
implout (Q,01) .

implout (P -> Q,~ P1 # Q1) :- !,
implout (P,P1),
implout (Q,Q1) .

implout (all (X,P) ,all (X,P1)) :- !,
implout (P, P1).

implout (exists (X, P) ,exists(X,Pl)) :- 1!,
implout (P,P1) .

implout (P & ¢,P1 & Q1) :- 1!,
implout (P, P1),
implout (C,0L1).

impiout (P # Q,P1L # Q1) :- !,
implout (P, P1),
implout (Q,01) .

implout (™ P,~ Pl) :- !,
implout (P, P1) .

implout (P,P).

negin(™ p,Pl) :- !,
neg (P, Fl).
negin(all(X,P),all(¥%,Pl)) :~ I,
negin(P,Pl).
negin(exists (X, P) ,exists (X,P1)) :- ¢,

28

Appendix B: Code

negin(p,Pl).

negin(P & Q,P1 & Q1) :~ !,
negin(®,Pl),
negin(Q,Ql).

negin(P # Q,P1 # QL) :- I,
negin(pP,Pl),
negin(¢,01) .

negin(p,P).

neg(™ pP,P1) :- !,
negin(pP,P1).

neg(all (X,P) ,exists(X,P1)) :~ !,
neqg(P,Pl).

neg (exists (X, P) ,all(¥X,P1)) :- !,
neg(P,Pl).

neg(P & Q,P1 # Q1) :~ 1,
neg (P,P1),
neg (Q,01) .

neg(P # Q,P1L & Ql) :- !,
neg(pP,P1),
neg(Q,01) .

neg(P,” P).

skolem(all (X,P),all(%,Pl) ,vVars) :- !,
skolem(P,Pl,[XIVarsl).

skolem(exists (X,P),P2,Vars) :~ !,
gensym(g,F),
makesk (F,vars, sk),
subst (X, Sk, P, P1),
skolem(Pl,P2,Vars).

skolem(P # Q,P1 # Ql,vars) :- !,
skolem(P,Pl,Vars),
skolem((Q,Q1,vVars).

skolem(P & Q,P1 & Ql,Vars) :- !,
skolem(P,Pl,Vars),
skolem(G,Q1,Vars).

skolem(P,P,_).

makesk (F,Vars,8k) :-
(Vars = [1 , 8k = F ; Sk =.. [Flvarsl).

univout (all(X,P),Pl) :- 1!,
univout (P, Pl) .
univout (P & Q,P1 & Q1) :- !,
univout (P, P1),
univout (g,0Q1) .
univout (P # Q,P1 # Q1) :~ !,
univout (P, P1),
uniivout (Q,Q1) .
univout (P, P).

29

Appendix B: Code

conjn(P # Q,R) :~ !,
conjn(P,Pl),
conjn(Q,01),
conjnl(Pl # Q1,R).
conjn(P & Q,P1 & Q1) :- !,
conjn(P,Pl),
conjn{Q,Ql).
conjn(P,P).

conjnl((P & Q) # R,P1 & Q1) :~ !,
conjn(pP # Q,P1),
conjn(Q # R,0L).
conjnl(P # Q0 & R,P1 & Q1) :—- !,
conjn(P # ¢,P1),
conjn(P # R,0L).
conjnl(p,P).

clavsify (P & (,C1,C2) :~ !,
clausify(p,C1,C3),
clausify(g,C3,C2).

clausify (P, [cl(A,B) ICs],Cs) :-
inclause (P,A, [1,B,[1),1!.

clausify(_,C,C).

inclause(P # Q,A,nl1,B,Bl) :- I,
inclause (P,A2,21,B2,R1),
inclause (Q,A,A2,8,B2).

inclause (™ P,A,A,B1,B) :- I,
notin(P,A),
putin(P,B,Bl) .

inclause (P,Al,A,B,B) :-
notin(P,B),
putin(P,A,Al) .

notin(X, [Xi_1) := 1!,
fail.

notin({X,[_iL]) :~ !,
notin(X,L).

notin(X,[1).

putin(X, {1,[X]) = 1.

putin(X, [XIL1,L) :- !.

putin(X, [YIL], [YIL1]) :-
putin{(¥,L,L11).

pclauses ([]) := f,
ni,
nl.
pclauses ([cl(a,B) ICs]) :-
pclause (A, B),
nl,

30

Appendix B: Code

pclauses (Cs) .

pclause (L, [1) :~ 1!,
pdisj(L),
write(.).

pclause([]1,L) :- 1!,
Write(:-)’
pconj (L),
write(.).

pclause(Ll,12) :-
pdisj(Ll),
write(:-),
pconj (L2) ,
write(.).

pdisj (IL]) := ¢,
write(L).

pdisj(ILILsl) :-
write (L),
write(;),
pdisj (Ls).

pconj ([L}l) := I,
write(L).

pconj ([LILsl) :=
write(L),
write(,),
peconj (Ls) .

printclauses([1).

printclauses(Clauses) :=-
print (Clauses are :),
print (Clauses).

make_prolog (1) .

make_prolog(Clauses) :-
reverse (Clauses, Reversed_clauses),
get_till n(Reversed_clauses,First_clause,l,1),
print (the equivalent Prolog program is :),
ni,!,
print_clause_ 1 (First_clause),
cdr (Reversed_clauses, Rest_clauses), !,
print_rest_clauses(Rest_clauses).

print_clause_1(X) :-
unlist (¥,QC),
arg(l,C,H),
unlist (H,H1),
arg(2,C,T),
unlist (7,T1),
write(Hl,1),

31

Appendix B: Code

write(- ,1),
write(T1,1).

print_rest_clauses([]) :-
write(.,1),
ni(l).
print_rest_clauses ([HIT]) :-
write(, 1),
arg(i,H,H1),
arg(2,H,H2),
unlist (#1,H10),
write (H10,1),
write(, ,1),
uril ist (H2,H3),
write (H3,1),
print_rest_clauses(T).

/* This is the main loop */
go{) :-

repeat,

write (enter a sentence :),

read_in(s),

print (has the same meaning as :),

nl,

sentence (S, F,Pc),

print (Pc),

ni,!,

translate(Pc), !,

ni,

ni,

go.

32

Vita

Douglas Lyon is the Chief Scientist for Raytal 1Inc., a
company involved with laser imaging in real time. He is
also Chief Engineer for WRPI a college run 10000 watt radio
station. Born in New York City in 1960 Doug has published
in Kim one user's note, and assorted hobbiest journels.
Doug posseses a B.S. from RPI and is working towards an

M.E. 1in Computer and Systems Engineering.

33

