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We present a novel interactive edge detection algorithm that combines A* search with
low-level adaptive image processing. The algorithm models the semantically driven in-
terpretation that we hypothesize to occur between the mind and visual cortex in the
human brain. The basic idea is that oriented Gabor sub-bands are used to model grating
cells in the mammalian visual system. These sub-bands are used during the search for
a path to a marker in an image. A domain expert uses image markers to select edges of
interest.

We demonstrate the system in several image domains. Examples are shown in the
areas of photo-interpretation, medical imaging, path planning and general edge finding.
The A* search finds a suboptimal result, but executes in a time that is typically 10 to
1,000 times faster than the dynamic programming approach currently used for this type
of edge detection.
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1. Introduction

There are many edge detectors that are formulated based on the change in pixel

intensity power. These edge detectors can locate the so-called strong edges with

ease. However, it is often the case that the strong edge is the wrong edge. Figure 1

shows an image that was subjected to a Gabor filter and a threshold. It is clear,

in Fig. 1, that the shadow cast by the edges of the window provides a good edge

for the Gabor edge detector. It is also clear that this is not a good edge from the

architect’s point of view. The architect is interested in the edges of the structure,

and not the edge represented by a shadow. How do we represent this knowledge

to an edge detector without making a domain specific edge detector (i.e. one that

only works on buildings?). The experts seem to know a good edge when they see it.

We present an algorithm that enables domain experts to describe, to the computer,

where the edge of interest is. Then we use A* to locate the interesting edges.

A contribution described in this paper is to apply the techniques of Mortensen23

to Martelli’s algorithm in order to obtain a speed-up. The Mortensen and Barett

algorithm runs in over a minute. The algorithm presented in this paper can run
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a shadow edge is not 
a structural edge

 

Fig. 1. Strong edges are often wrong edges.

in a few seconds or in as little as a small fraction of a second. Mortensen and

Barett’s dynamic programming approach has the run-time of Dijkstra’s algorithm

for finding the shortest path from a start node to all other nodes. Our experiments

show execution times for the algorithm to be between 10 and 100 times faster than

the Mortensen and Barett algorithm.

A further contribution of this paper is to use steerable, phase modulation, multi-

scale Gabor filters to further inform the heuristic function used for search. A com-

parison is made between our edge detection algorithm and three others.

1.1. Problem statement

We are given an image and an expert in that image domain. The algorithm tunes a

bank of filters to enhance the edges in the image. The expert identifies the pixels on

an edge of interest by laying down markers on the edge. We wish to find a good edge

that connects those markers. We are subjected to the constraint that the algorithm

run in interactive time.

The edge represents a series of pixels (some of which may be disconnected), but

we want the search to be able to jump gaps during the linking stage. Once tuning

of the filter is complete, the search is able to run quickly.

In a color picture containing inhomogeneous (i.e. textured) objects, an edge is

the boundary between two regions whose differences are not always easy to quantify

(i.e. it is not just a different color). For example, if we look for step edges we will

be unlikely to find them. Edges are typically degraded with noise, blurring and

suface irregularities. Thus, we assume that the edges of interest are not ideal edges.

We also assume that the nature of the differences between different regions is not

known a priori. If these differences are known then the presented algorithm is

unsuitable, as there are provably optimal (and faster) edge detectors for such cases.6

In summary, the goal is to find long, continuous edges, that are deemed impor-

tant by a human operator.
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1.2. Motivation

We are motivated to solve this class of problems because experts are facile at defi-

ning good edges. Thus, it is logical to involve them in the use of the edge detector.

We also find that special training of humans is needed before they are considered

experts. For example, photo reconnaissance, medical imaging and inspection give

rise to applications where an expert is useful. Representing expert knowledge in

an edge detector is not easy. We now have a means to represent knowledge about

an image domain, edge detector performance, and the location of edges considered

to be important to a domain expert. In fact, the quality of the edges produced by

the algorithm is considered high only if the edges found agree with the edges the

domain expert considered important.

Long, continuous edges, important to a human operator, can segment an image

for a special task (i.e. for an anatomical study or surgical planning).10 In fact this

approach has already been shown to be useful in medical image segmentation.39

We have seen excellent results from the dynamic programming approach to find-

ing edges, but we find that the speed of the search is an impediment to interactivity.

In fact, Mortensen and Barett showed that their computations can often take more

than a minute on a complex search.23 We are interested in looking for an algorithm

that can run at a more interactive speed (i.e. less than a few seconds).

1.3. Approach

Our approach to solving this problem is to tune a filter-bank so that it is able to

resonate on edges. Once this is tuned, we direct the expert to mark those pixels

that lie on an interesting edge. We use these markers, and the filter-bank, to help

in formulating a heuristic cost function that enables a graph search for a low-cost

path between markers.

The sub-bands and markers better inform the heuristic function. The sub-bands

in the filters are low-level edge detectors that the heuristic function interacts with,

dynamically selecting from the sub-bands in a manner that we think may be con-

sistent with what the visual mind does using low-level geniculate and cortical cells

to build a saliency map.

The modeling of orientation cells in the brain is not new.24 Neibur, Itti and

Koch described the filtering of images to produce feature maps for color, intensity

and orientation at different scales. Linear combinations of these scales are used as

input into the salancy map. High-level processing uses a winner take-all network

built out of neurons that have later inhibition.

The model is developed in accordance with the known anatomy and physiology

of the visual system of the macaque monkey. It comprises two interacting stages: a

fast and parallel preattentive extraction of visual features across eight spatial scales

using the Laplacian of Gaussian filter. A Winner-Take-All approach is then used to

select the scale for each point that offers the highest energy.
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The Winner-Take-All approach is inspired by the current thinking in saliency

models for selecting the most conspicuous image location, and an inhibition-of-

return mechanism to generate attention shifts. It has long been known that the

primate visual system selects visual information by saccadic eye movement and

mechanisms of visual attention. Exactly how the primate visual system decides on

where to look is still an open question.28

Normally, a saliency map integrates low-level inputs and codes for the conspicu-

ity of various parts of the visual field. The winner-take all array selects for the

correct scale, but only locally. The salancy map describes where objects are, but

not what they are.24 Eye movement is overt evidence of visual attention. Studies

show that fixation locations are affected by complex scenes. Thus, the role of the

salancy map is to guide attention based on visual stimulus.28 The center surround

pattern activity is evidenced, physically, in the brain by Local Field Potential (LFP)

measured directly in synapses by Usher, Stemmler and Niebut.41

Thus, the salancy map is a trainable system that does both task dependent and

task independent processing. This has given rise to a feature integration theory that

makes use of Gabor pyramids that use a scale range from 0..8 (sigma), an approach

based on the work of Itti.12

Gabor filters have been shown to have optimal localization properties in the

spatial and frequency domain. They also approximate visual cortical cells in mam-

mals. A 2D Gabor filter is a sinusoidal plane of given frequency and orientation

modulated by a Gaussian envelope.13

We have experimented with a 45◦ orientation filter and found the angle changes

to be too coarse. We then show results with a 10◦ increment between sub-bands

in a Gabor filter and find the results improved. Since the human fovea has been

shown to be sensitive to better than 1/6 of a degree in the change of the angle of a

line,44 we compute the orientation by measuring the arctangent of the ratio of the

energy between the vertical and horizontal directions.

We also allow the domain expert to tune the performance of the heuristic func-

tion. The basic trade-off is one of time versus depth of the search. Typically an

increased depth is needed when there is increased noise in the image. This takes

the algorithm more time in which to compute a good edge. We hypothesize that

this may be what the brain does when the mind tries to follow an edge of inte-

rest that spans various grating cells in the visual cortex. Eye tracking studies show

that saccadic search is performed and this is evidence that there is an interaction

between higher brain functions and low-level processing.38

The heuristic search selects a minimal-cost path using a merit-ordering function

to decide which unexamined node to examine next. We obtain the merit-ordering

function from the domain expert who optimizes the function for a class of images,

as described in Ref. 16.

The approach of taking an A* search is typically faster than the approach of

dynamic programming, and our experiments bear this out.



May 31, 2004 15:51 WSPC/115-IJPRAI 00338

On the Use of a Visual Cortical Sub-band Model 587

In summary, we assume that the user is a domain expert. We represent know-

ledge using the experts’ ability to locate a good edge and assist with filter-bank

tuning, if necessary.

In the following section we shall present related work. Section 3 describes the

implementation of the algorithm, the heuristic formulation, the grating cells, bar

cells and their modeling, using the Gabor function. Section 4 describes results

obtained using the new algorithm. Section 5 discloses a comparison with other

edge detection techniques.

2. Related Work

Alberto Martelli first disclosed the heuristic search of a state-space to find an edge

in 1972.18,19 Mortenson and Barett used dynamic programming and human-entered

markers to guide the search in 1995.23

Rianto, Kodo and Kim used a Canny filter and a Hough transform in order to

find long straight lines. Their application is in the area of detecting roads (but only

straight roads). They make use of eight-direction filters, parallel-edge extraction

and their knowledge about roads in order to make their edge detector very domain

specific. In comparison, our edge detection algorithm can be tuned to work in several

domains.34

Weldon and Higgins have done work in the area of oriented Gabor filter design

for the segmentation of textures. Their work is designed to model the low-level image

processing that occurs in the visual cortex and we make use of their computational

model to help formulate the cost function.43 In fact, the local and oriented nature

of the V1 simple cell receptive field has been known since the early 1960s.11 The

resolution of the human fovea has been sensitive to a change of 1/6 of a degree in

the angle of a line.44 Miller and Zucker have done an excellent survey of the low-

level image processing that occurs in the brain, but the measured connection to

heuristic search remains elusive, in the literature.22

The use of a steerable-scalable kernel for edge detection is not new.30 Field

suggested neurons with line and edge selectivity form a representation of a scene.

Barlow indicated that an unsupervised learning algorithm is used in the brain

to extract visual features.2,8 Some have combined steerable filters with geometric

properties of the image structure when searching for an edge.9,30 Such edge detectors

can yield excellent results, at the cost of requiring ad hoc implementations for

various edge junctions.

Mehrotra, Manuduri and Ranganathan have done work in the area of optimizing

the orientation of the Gabor filter for a specific edge orientation.20 We use their

preprocessing ideas to create sub-bands and speed cost function computation.

Olshausen and Field indicated that Gabor-like filters are used for the line and

edge selectivity.27 Our use of the Gabor-like filters as input to a supervised A*

search is new. Our results show that computationally strong, but irrelevant edges,

can be ignored by such a search.
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Fig. 2. A multichannel scheme for computing a cost function.

3. Implementation

The A* algorithm searches a graph representation of the image using a heuristic

function that returns a scalar value for each position in the graph. The following

sections describe the heuristic formulation, grating cells in the visual cortex of the

brain and how the heuristic automatically uses the Gabor sub-bands.

Figure 2 depicts the multichannel sub-band scheme for the computation of the

heuristic cost function. Sub-bands, the experts’ markers and the state of the A*

search, are all used to help compute the cost function. Search parameters include

the termination criteria, ply of the search, and greediness (i.e. distance to a marker).

Using the Laplacian of Gaussian formula, we are able to provide an estimation for

sigma for each pixel. The Winner-Takes-All strategy gives rise to the last image

(called Max), depicted in Fig. 3. These sub-bands are computed using 19 × 19

convolution matrices.

Laplacian of the Gaussian (LoG) is given by
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Figure 4 shows a plot of (1) in the range of −4 . . .4 for x and y and with σ = 1.

This is often called the Mexican hat (or LoG) kernel. The maximum of (1) occurs

at x = 0, y = 0 and is given by
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Thus, by precomputing the scale, we can use a locally greedy way to obtain a

filter with a highest energy output for each pixel. Section 3.3 shows how to make

use of the scale in the design of a Gabor filter bank.

3.1. Heuristic formulation

Heuristic formulation of a search can factor in the ply (i.e. depth of the search), the

greed (i.e. distance to the goal), and the termination criteria. Termination criteria

can include limits to consumed resources (such as CPU time, or memory) as well

as the reaching of a goal state.
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Fig. 3. LoG filters at eight scales. The Max image is shown last.
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Fig. 3-5. The Mexican Hat kernel 

Thus, by pre-computing the scale, we can use a locally greedy way to obtain a filter with a highest 

energy output for each pixel. Section 3.3 shows how to make use of the scale in the design of a Gabor filter 

bank. 

3.1 Heuristic Formulation 

Heuristic formulation of a search can factor in the ply (i.e., depth of the search), the greed (i.e., distance 

to the goal), and the termination criteria. Termination criteria can include limits to consumed resources 

(such as CPU time, or memory) as well as the reaching of a goal state. 

When searching for a good edge, we use an expert’s marker as a start-point or an end-point (i.e., goal 

state).  The computation of our distance to the marker is used to weight the heuristic function (i.e., make the 

function more greedy). Greedy heuristic functions make a search go faster, but also yield a less optimal 

result. 

The brain makes use of low-level texture detectors that are sensitive to textures of specific orientation. 

These texture detectors are called grating cells and have been found in locations V1 and V2 of the visual 

Fig. 4. The Mexican hat kernel.
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When searching for a good edge, we use an expert’s marker as a start-point or

an end-point (i.e. goal state). The computation of our distance to the marker is

used to weigh the heuristic function (i.e. make the function more greedy). Greedy

heuristic functions make the search faster, but also yield a less optimal result.

The brain makes use of low-level texture detectors that are sensitive to textures

of specific orientation. These texture detectors are called grating cells and have

been found in locations V1 and V2 of the visual cortex in monkeys.20 The brain

brings to the table a massively parallel system, with 100 million brain cells in V1,

4 million of which are classified as grating cells. An additional 1.6% of V2’s brain

cells are dedicated for grating recognition. Grating cells are not very sensitive to

single bars (i.e. a single edge). They are much more sensitive to multiple, parallel

edges with a single orientation. Thus, the grating cell model for edge detection is

most suitable when an image has textures.31 The following section describes the

use of low-level grating and bar cells to help inform the heuristic function.

3.2. Grating and bar cells

Gabor signals are Gaussian modulated sinusoids that are used to create convo-

lution kernels for making Gabor filters. Gabor filters are nonorthogonal but they

are complete for the representation of visual information. Empirical studies of two-

dimensional receptive field profiles have shown that Gabor filters closely resemble

the profile of receptor cells in the mammalian visual system.14

Oriented cells are used in the brains’ visual cortex to provide a response that

is tuned to textures with a specific orientation. These cells are modeled using a

Gabor filter that has a specific orientation, center frequency, bandwidth and phase.

A series of kernels are computed from these parameters.

The precomputed sub-bands are selected using a Winner-Take-All strategy and

assigned to each pixel.

Fig. 5. Robinson 3 × 3 mask at 45◦ increments.

Using the technique of filtering the input image by a bank of 2D filters tuned

to eight compass directions, orientation suffers from low-orientation accuracy. This

is due to an overly simplified model of the low-level visual processing in the brain.
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Simple cells in the visual cortex have orientation and spatial frequency selectivity

for single bars. The research community has focused on the difference between edge

detection and local frequency analysis in the cortex. If we use only the bar cells, we

can get results that ignore the local frequency analysis that occurs in the cortex.

Plate 1. The edges are too straight using Robinson sub-bands.

Plate 1 shows the result of using a low-orientation accuracy filter for the edge

following done by the A* search. Also, we would like the ability to use tex-

ture information in order to improve our edge detection. As a result, we model

the grating cells in the cortex using Gabor functions.

3.3. Gabor-based heuristics

The goal of our heuristic formulation is to create a weighting function that is general

enough to be domain independent. In order to achieve this generality, we provide

a method for adjusting several input parameters. This enables the heuristic to be

tuned by the domain expert for a specific class of images.

The input parameters are:

(1) The markers that are placed by the expert into the image.

(2) The sensitivity to the ply of the search.

(3) The greediness of the search.

(4) The sensitivity to the sub-band.

The input parameters are adjusted during a three phase set-up procedure. In

phase one, the algorithm adjusts the filter bank to maximize energy output.

In phase 2 of the set-up, markers are placed on the image. The markers lie on

the edge of interest. The markers can be used by the heuristic function, both as a

goal state and as a means of sub-band selection. Thus, the search interacts with

the low-level image processing in order to improve the search. The quality of the

search can be measured as the speed of execution and the subjective quality of the

edges that it produces.
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In phase 3, the expert can adjust search quality by altering the greediness of

the search, the sensitivity to the ply and the sub-band values.

Greediness can produce edges that can find a low-cost path, even if there is a

noticeable gap in the image.

The 2D Gabor filters model the simple cells in the primary visual cortex of

primates. The response is obtained by convolving the input image with a kernel

whose equation is given by

g(x, y) = exp

(

−
U2 + γ2V 2

2σ2

)

cos(2πU/λ + φ) (3)

where

U = (x − u) cos θ − (y − v) sin θ

V = (x − u) sin θ + (y − v) cos θ

(u, v) ∈ Ω

(x, y) ∈ Ω

Ω = visual field domain

θ = orientation ∈ [O, π]

φ = phase offset ∈ (−π, π]

σ = standard deviation (size of receptive field)

γ = spatial aspect ratio = 0.5, by experiment

λ = wavelength of receptive field function.

λ = σ/0.56, according to Ref. 15,

g(x, y) = exp

(

−
U2 + 0.25V 2

2σ2

)

cos(0.56 ∗ 2πU/σ + φ) . (4)

Substituting θ = π/2 and φ = 0 into (4), we obtain a kernel that detects edges

oriented along the x-axis:

gθ=π/2(x, y) = exp

(

−
(v − y)2 + 0.25(x − u)2

2σ2

)

cos(0.56 ∗ 2π(v − y)/σ) . (5)

Similarly, we substitute θ = 0 and φ = 0 into (4) to obtain a kernel that detects

edges along the y-axis:

gθ=0(x, y) = exp

(

−
(x − u)2 + 0.25(y − v)2

2σ2

)

cos(0.56 ∗ 2π(x − u)/σ) . (6)

Once the measurements of (5) and (6) are computed, we use the results to find

the orientation of the edge via:

θ = arctan

(

gθ=π/2(x, y)

gθ=0(x, y)

)

. (7)

Now that we have the scale and orientation for the Gabor filter we compute the

phase of the filtered image using:

φ(x, y) = arctan [go(x, y)/ge(x, y)] (8)
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where

ge(x, y) = exp

(

−
U2 + 0.25V 2

2σ2

)

cos(0.56 ∗ 2πU/σ)

go(x, y) = exp

(

−
U2 + 0.25V 2

2σ2

)

sin(0.56 ∗ 2πU/σ)

(9)

(Ref. 17). Substituting (9) into (8) yields:

φ(x, y) = arctan







exp(−
U2 + 0.25V 2

2σ2
) sin(0.56 ∗ 2πU/σ)

exp(−
U2 + 0.25V 2

2σ2
) cos(0.56 ∗ 2πU/σ)






. (10)

Simplifying, yields:

φ(x, y) = 0.56 ∗ 2πU/σ (11)

which expands to:

φ(x, y) =
0.56 ∗ 2π

σ
[(x − u) cos θ − (y − v) sin θ] (12)

as the expression for phase at any angle and scale. The computation of the Gabor

parameters is repeated, for each point on the image and this is computationally

intense. As an alternative, we can fix the phase at zero and search precomputed

sub-band for maximal output, as we did in the scale space. But this will not allow

us the same phase resolution as the direct computation used in (12).

Figure 6 shows 18 Gabor sub-bands at 10◦ increments and their application

to the 64 × 64 camera-man image. These sub-bands are precomputed from 7 × 7

convolution matrices. Computing these sub-bands with the accuracy of the human

Fig. 6. Gabor sub-bands at 10◦ increments.
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2

Fig. 7. A* parameter control panel.

visual system (1/6 of a degree) using a range between 0 and 180◦ would require 1,080

orientation sub-bands for each scale (for 8 scales this is 8,640 sub-bands). Thus, a

direct computation of the Gabor parameters saves in the storage of thousands of

sub-bands. Only a single filtered output image need to be stored once all the Gabor

parameters are known for each pixel.

The cost function is computed by adding the distance of the current point to the

next marker (i.e. greed), the depth of the search (i.e. ply) and the pixel value of the

Gabor filtered image to favor a min-cost path. The weight for the ply, greed and

sub-band contribution are adjusted until a satisfactory balance is achieved between

computational performance and quality of result. The adjustment is performed with

the GUI shown in Fig. 7.

4. Results

Plate 2 shows a trace that follows a rivers’ edge. The edge follows a rough coastline

(passing through the experts’ markers).

Plate 3 shows an edge selected by a domain expert in an echocardiogram. Areas

that are seen as important to a domain expert are often subtle.

Figure 8 shows the echo cardiogram being edge detected with a multiscale Gabor

function, without the help of a domain expert. There are many edges shown in

Plate 4, none of which corresponds to the experts’ edge in Fig. 8.

Figure 9 shows the books after histogram equalization and thresholding.

Figure 10 shows the books after erosion connects the regions too small to provide

a passage for the car.

Figure 11 shows the books after the skeletonization step. Using a cooperative

target on the car, we are able to locate the car with an overhead vision system. This

enables the placement of markers showing a path for the car, as seen in Plate 5.
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Plate 2. Photointerpretation.

Plate 3. An echocardiogram with experts trace.

Plate 4. A path planning solution.



May 31, 2004 15:51 WSPC/115-IJPRAI 00338

596 D. A. Lyon

Fig. 8. Multiscale Gabor edge detection.

Fig. 9. Histogram equalized and threshold.

Fig. 10. Erosion.

Fig. 11. Skeletonization.
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Plate 5. Path computed using A* search.

Plate 6. The path superimposed on the car scene.

Plate 7. Using Gabor-driven heuristics.

Plate 6 shows the path superimposed on the car scene after low-level image

processing and A* search.

Plate 7 shows the result of using the hybrid Robinson–Gabor driven heuristics

to derive the edge of interest. The mix ratio between the Robinson and the Gabor

costs is 1:1. The question of how to determine the mix ratio is open.

The A* search for Plate 7 ran in 0.07 seconds on a 400 Mhz G4, in Java. In

comparison, dynamic programming takes several minutes.23
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Fig. 12. 18 Gabor sub-bands and the building image.

5. Comparison with Other Edge Detection Techniques

This section discloses an experimental evaluation of the Canny algorithm, the Marr

and Hildreth algorithm and the Mehrotra and Zhang algorithm. The rest of this

section summarizes the algorithms and their performance on the building test image.

We will show that the various edge detectors explored will detect edges, but these

are not the edges of interest. Specifically, the edge detectors are attracted to shadows

because they represent a step edge transition. Our results show that the supervised

(i.e. interactive) edge detector has an unfair advantage over the unsupervised edge

detector. Unsupervised edge detectors miss true edges and detect false ones (given

that a shadow is not a true edge).

Canny’s algorithm has combined the goals of accurate edge detection and spatial

localization into a single functional. He points out that we can obtain arbitrarily

good localization at the expense of detection. He also shows that we can obtain

arbitrarily good detection at the expense of localization. The Canny performance

criterion for an edge detector requires good detection, good localization and a mini-

mized number of responses to a single edge. Good detection means a low probability

of failing to mark a real edge and a high probability of marking a correct edge. Good

localization means that the marked edge should be close to the real edge. The Gaus-

sian PDF is also called the Gaussian density, normal probability density function

or just the normal density. In 2D, the Gaussian PDF is given by

Gaussian (x, y, xc, yc, σ) =
1

2πσ2
e−

((x−xc)−(y−yc)2)

2σ2 (13)
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Fig. 13. A Gaussian density.

where σ is the standard deviation. The maximum value of (13) occurs at x = xc,

y = yc and is given by:

gmax =
1

2πσ2
. (14)

Figure 13 shows (13) with xc = yc = 0 and σ = 0.

Formulation and solution of the optimization criterion in two dimensions is

a complex problem.21 Canny used a criterion of optimality that shows that the

Gaussian operator is sub-optimal. But then Canny goes on to use the Gaussian

operator because it can be computed with “much less effort”.4 When the criterion

of optimality is to arrive at a smoothing filter, with both small variance and limited

bandwidth, the optimal solution is the Gaussian distribution. To put it another way,

the Gaussian is the only function to minimize the bandwidth-frequency product.

Figure 14 shows the Canny algorithm applied to the building image. We used

a 15 × 15 Gaussian preprocessing window with σ ranging from 1 to 8. The Canny

algorithm identifies the shadow edge as the strongest edge for most scales. At the

lowest of the scales (σ ranging from 1 to 2), the structural edge and the shadow

edge are left connected. At higher scales (σ ranging from 3 to 8), the structural

edge is seen to be disconnected. In other words, the computationally strongest edge

ignores what the domain expert knows about structures. The scale of the Gaussian

determines the amount of noise reduction, however, the larger the scale of the

Gaussian the less accurate the edge localization.

For our next edge detector comparison we consider the Marr and Hildreth al-

gorithm, based on the Laplacian of the Gaussian filters (LoG). We are motivated

to explore the LoG filter because a single convolution can be used to both low-pass

filter and edge detect the image. Also, the filter is symmetric, so the only sub-

bands that we need to consider are those that deal with the scale of the filter. This
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σ

σ

σ

Fig. 14. Canny results.

is sometimes called the Mexican hat function. The proposed algorithm uses the zero

crossings of the LoG contours using isotropic derivatives (which reduces the signal

to noise ratio of the detector). The symmetric nature of the filter gives no indication

of direction (something we use in our algorithm for higher-level processing). The

Laplacian of the Gaussian (LoG) is given by (1), (2) and Fig. 15.

We follow the LoG filter with a 3 × 3 Sobel convolution, given by:






−1 −1 −1

−1 8 −1

−1 −1 −1






. (15)

Figure 15 shows the LoG filter + Sobel edge detector applied to the building

image. We used a 15 × 15 Gaussian preprocessing window with σ ranging from 2

to 9. With σ ranging from 4 to 9, the shadow edge held is much stronger than the

structural edge of interest. For σ values at 2 or 3, an examination of the region of

interest, as shown in Fig. 16, reveals that the tree limbs in front of the structure

make for a strong edge.

While the LoG + Sobel edge detector does give very strong results on the best

edges, the criteria for the selection of the best edge is uninfluenced by the human

operator. As a result, spurious edges (i.e. tree limbs) are seen as important as

structural edges by the LoG + Sobel edge detector.

In 1996, Mehrotra and Zhang presented an optimal approach to the isotropic

zero-crossing based edge detection.21 Like the LoG detector, the rotational inva-

riance provides no information to the high-level detection algorithms, however, it

is provably optimal for the detection of 2D step edges.
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 
 

σ

Fig. 15. LoG + Sobel edge detection.

4

Fig. 16. Structural edges are as strong as tree edges.

The Mehrotra and Zhang detector is interesting because it is optimal, despite its

isotropic nature. Anisotropic edge detectors, like Canny’s, smear the zero-crossing

contours. The detector is given by:

Ψ(x, y) = −
100

9h2

(

1 −

[

x2 + y2

h2

]3/2

+ 7.5

[

x2 + y2

h2

]3/2

ln

√

x2 + y2

h2

)

(16)

for x2 + y2 ≤ h2 and zero otherwise. Figure 17 shows (16) applied with a threshold

and the Sobel operator, given in (15). A 15 × 15 kernel is created from (16) and

h is allowed to range from 1 to 8. The results clearly show that the shadow edge
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Ψ = − −
+ 
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 
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 

+ ≤

Fig. 17. Optimal 2D edge detector.

is stronger than the structural edge in the building image. Thus, even the optimal

edge detector is not able to identify the edge favored by the human operator without

some assistance.

Our experiments investigated the use of directional operators only in the Canny

algorithm. At increased scales the various algorithms round junctions and reduce

noise and the accuracy of the localization of the edge.

In comparison, our algorithm uses a single scale (selected by the operator) and

a set of directional sub-bands (selected by the algorithm) to help guide the higher-

level search for a best edge. Further, we allow the operator to input points that lie

on the important edge and thus create a better informed heuristic function.

6. Summary

We present an attended search technique that uses a cortical model to derive a

sub-band driven cost function for heuristic edge detection. The edges produced are

good, but at the cost of operator intervention and nondeterministic run-time.

Low-noise, high-contrast images are easier for the algorithm than high-noise,

low-contrast images. The more time given to the search, the better the edges.

Without tuning, the algorithm performance can be poor.

The users who guide such a search for a good edge are generally good at iden-

tifying an important edge. This type of interaction affords an area of flexibility

not typically seen in the unattended search techniques. Further, the more the user
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helps to guide the search, the faster the search can be. This can help keep the search

engine from finding local-minima based solutions.

The A* search uses a search space that is exponential in path length. If we

eliminate the summation of the parent node into the cost, we have a heuristic

depth-first search. This is locally minimal in the evaluation function. The heuristic

depth-first search is a much faster search than A* and is excellent for finding obvious

paths in low-noise images.32

We have used experimental evaluation of edge detectors to distinguish detectors

based on an evaluation criteria. Our informal (and subjective) criteria allows hu-

mans to judge what edges are important, based on their experience with the context

(i.e. the scene) and the perceived edges. This vague citeria is used to establish the

failure of unsupervised edge detectors to correctly identify the perceived edges. A

more objective evaluation is desirable. Pratt has established a figure of merit which

combines the factors of nondetection of true edges, detection of false edges and edge

delocalization.33 The unsupervised edge detector will not detect the true edge, and

detect shadows (i.e. false edges), thus the unsupervised edge detectors fail on at

least the first two of the three objective criteria in the figure of merit.

In the future, the two-dimensional edge detection should be extended to output

edges across a sequence of images. This requires a reformulation of the heuristic,

and is a topic for future research.

The heuristic cost function also requires further study. In fact, all formulations

for heuristics considered, to date, have been ad hoc. There is no theory, that we

know of, for the design of optimal heuristics. The question of what the mix ratio is

between the bar cells and the grating cells in the cortex remains open.

Several implementation issues should also be addressed. The examples shown

in this paper do not run in minimal time. The heuristic search looks for an open

node with a minimal cost. The search for a minimal-cost node runs in a time that is

O(N). One way to speed up the search for a minimal cost node is to use a priority

queue. Such a system can delete the minimum node in O(log N) time. Thus, a

reimplementation of the search using a priority queue should provide a large speed-

up.40 This suggestion is similar to the speed-up Ashkar–Modestino algorithm first

suggested for this type of problem by Sankar36 and Ashkar.1

Another topic for future research is vectorization. Since the search algorithm

naturally generates connected components, the vectors that arise from following the

good edges represent the linear features in the image. These basic graphic primitives

can help in image segmentation.7 Since the vectors are ordered, they can reduce

the pen-up time when they are plotted using a pen plotter. This is important for

vector output devices that have a very limited number of vectors that can be drawn

before flicker is perceived (i.e. laser displays). Ordering the vectors to minimize the

pen-up time is a problem that is known to be NP-complete and is called the Chinese

Postman Problem.35

A more efficient technique for computing the Gabor functions was disclosed in

Ref. 42. It would be interesting to try implementing this in order to examine the
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performance difference.

Full source code (in Java) is available for the code described in this paper at

<http://www.docjava.com>.
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