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ABSTRACT

An optical microscope has been adapted for 3-D inspection of small capillaries in thread
spinnerets by placing a diffraction grating between the microscope objective and the
specimen. We show how a grating was specified using a quantitative analysis of groove
spacing and geometry. An illumination system was specified based on incident angle and
light wavelength. Specimens are placed on a robotic stage for positioning, and repositioning
affords multiple perspective views of the target depending upon the diffraction order visible
to the objective.
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1. HOLE METROLOGY

We have previously demonstrated the diffraction range finding technique for depth
measurements on convex or moderately concave surfaces 1-10. An extreme case of concave
geometry are cavities with parallel walls, i.e., holes. While commonplace in manufactured
products, there are no ubiquitous optical instruments for their inspection.

A key parameter in designing a hole metrology system is occlusion immunity, that is, the
capability of the system to overcome shadowing effect caused by the hole walls. Occlusion
particularly affects triangulation systems, because their readings are based on the baseline
separation between a transmitter and a receiver. Decreasing a triangulation baseline will
improve the system's occlusion immunity but at the expense of range resolution. We
compare a triangulation set-up with our diffraction method in Figure 1 on the following page.
The occlusion liability is inscribed as angle ß, and can be determined for a triangulation
system by measurement of the hole diameter dh and the hole length L .In a practical device,
we may wish to use a value of 1/2 dh, in (1) to allow acquisition of range data from the hole
floor. As illustrated in Figure 1a, where a section of the floor is blacked out, the entire floor
can only be seen by a triangulation scanner if the hole is rotated to bring the occluded section
into view. Hence, for the configuration in Figure 1a, we write:

β = arctan
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(a) Triangulation (b) Co-axial Diffraction (c) Off-axis Diffraction

Figure 1. Comparison of triangulation (a) with diffraction (b & c) hole metrology.

In order to study occlusion liability in the diffraction range finding method, we invoke the
Grating Equation:

sin i + sin r = λ n

p
(2)

where n = diffraction order, an integer
λ = wave length of illumination
p = grating pitch
i = angle of diffracted ray subtended from target onto the grating
r = angle of diffraction image at the receiver

Since the angle of incidence upon the grating, i, will be limited to a maximum equal to the
occlusion liability angle β, for any receiving angle there exists a minimum grating pitch:

p = nλ
sin(r) + sin(β)

(3)

We will show at the end of the next section how this expression can be used to specify
diffraction grating pitch in specific cases.



2. ASPEX SPINTRAK

The reduction-to-practice of diffraction hole metrology that guided our project involved the
Aspex SpinTrak™ [536 Broadway, New York, NY 10012]. The market version of this unit
performs automated 2-D inspection of thread spinnerets. A schematic diagram of the
apparatus appears as Figure 2 below.
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Figure 2. Schematic representation of the Aspex SpinTrak Automatic inspection CMM.

Each spinneret has dozens to thousands of tiny holes called capillaries which eject threads as
part of an extrusion manufacturing process. The Aspex SpinTrak product currently on the
market can detect blockages and breaches in the capillaries but cannot measure capillary
depth, an important evaluation parameter requested by many users of the device. For this
reason Aspex entertained our proposal to develop a 3-D metrology capability for their
product.

Triangulation can be used to make measurements of capillary depth using the configuration
illustrated in Figure 1(a), and as part of this research we experimented with a triangulation
set-up using the Aspex microscope11. The experimental bench unit is illustrated in Figure 3
on the following page along with examples of an acquired image, shown in Figure 4.
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Figure 3. Experimental triangulation set-up

Figure 4. Triangulation view of hole. Right view diagrams method for depth measurement.



Referring to Figure 3, ß is measured at 12˚. This is the rotation of the microscope which was
used to capture the image shown in Figure 4. An overlay is used in the Figure 4 right hand
image to indicate how hole depth could be measured. While the bottom of the hole can be
distinguished clearly, short depth-of-field in the microscope obscures the lip of the hole, and
this must be estimated. The hole depth is proportional to the distance indicated by the arrow.

The Aspex SpinTrak does not enjoy the option of rotating the microscope, since its 2-D
metrology depends on a precise vertical alignment of the microscope. This alignment is so
precise that the microscope is rigidly fixed to a bridge, and the spinnerets are moved below it
on an XY table. A photograph of a typical SpinTrak unit is shown in Figure 5 below.

 XY Table 

 Spinneret

 Microscope

 CCD camera

 Z-Axis Stage

Figure 5. Aspex SpinTrak 2000

The diffraction method provides the SpinTrak with the equivalent of a rotation of the optical
axis while maintaining true vertical alignment of the microscope. Moreover, the multiple
spectra of diffraction in their plus and minus orders provide a plethora of views at different
positions and powers of magnification.

A series of experiments were conducted using the test bed previously used for triangulation
studies. However, the microscope was positioned perpendicular to the plane of the test
spinneret. A grating with a pitch of 5.55 µm was placed on a glass slide above the spinneret.
For rear illumination, a fiber optic ring, normally used as a front illuminator, was placed
under the spinneret. This method of illumination, which was also used to produce Figure 4,
provided a moderately focused beam inside the spinneret cavity leading to the capillary.
Figure 6 on the next page shows the distal end of the fiber optic array.



Figure 6. Fiber optic illumination bundle distal end.

The multi-spectral illumination radiating from the fiber optic light source resulted in a blurred
diffraction image seen below in Figure 7

Figure 7. Diffraction image in white light illumination.

Anticipating this problem, we had obtained a laser diode with monochromatic spectral
energy, nominally at 670 nm. This was used in place of the white light illumination source
for the fiber optic bundle. However, the laser illumination was coherent and created a
characteristic speckle pattern when imaged through the microscope as illustrated below.

Figure 8. Laser illumination speckle. This is a zero-order image of a capillary hole.

A viable solution to the illumination problem was found by filtering the white light source
with an interference filter. A 632.8 nm bandpass filter was obtained from a HeNe laser
imaging lens. This was mounted inside the fiber optic illuminator housing in a line with the
fiber optic bundle. The resultant image is shown on the following page as Figure 9.
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Figure 9. Diffraction image of target hole under filtered illumination.

Figure 9 shows an on-axis illumination view made with a configuration like that shown in
Figure 1(b). This set-up permitted the simultaneous acquisition of four parallax views. The
second order images provide greater parallax. Negative order images provide views of the
hole from the opposite side of the positive orders. This is a useful feature when compared
with triangulation which typically provides only a single parallax view. With diffraction, the
work piece does not need to be rotated to be seen from both sides. Grating groove shape
specifications can determine the selection of multiple orders – either a single higher order or
many higher orders. Moreover, in addition to symmetrical plus and minus higher-order
views, opposed parallax views can be generated using a cross-hatch grating, that is, a grating
with orthogonally opposed rulings. An example is shown below in Figure 10.

Figure 10. Two-dimensional parallax views made using a cross-hatch grating.
In order to resolve fine detail within a higher-order diffraction image, the receiver must be
moved off the illumination axis. Such a configuration is illustrated in Figure 1(c). Once off
the illumination axis, a diffraction image can be formed in the center of the field-of-view of



the receiver, and the receiver lens can be moved in the z-axis toward the target, allowing
magnification. An example is given below in Figures 11 and 12.

2nd - Order 1st - Order

Figure 11. Magnification made possible by off-axis illumination configuration

2nd - Order 1st - Order
Figure 12. Determination of hole depth using detailed diffraction image



The XY translation and Z-axis zoom required to acquire the perspective views exampled in
Figures 11 & 12 are completely compatible with the Aspex SpinTrak in its current form. A
threaded collar that is supplied with the microscope itself can be used to hold the grating.
Fiber optic illumination similar to the current modules supplied with the unit can be
upgraded to accommodate the color bandpass and focus requirements specific to the
diffraction method. A schematic of a prototype instrument is illustrated in Figure 13 below.

Figure 13. Diffraction range finder fitted to SpinTrak CMM

Specification of a grating pitch for the SpinTrak was guided by Equation (3). Typical
spinnerets have a hole lengths L from 0.01" to 0.1" and diameters dh from 0.01" to 0.05".
Length to diameter ratios vary from 2:1 to 10:1. The microscope objective receiving angle r
varies from 4˚ to 7˚ depending on magnification. We compare occlusion liability angles in
Figure 14 below. Using Equation (3) with r set at 4˚ we can specify suitable grating pitches
for these occlusion conditions, as is illustrated in the matching graph.

Figure 14.    Left graph: Ratio of length to diameter dictates occlusion liability β.
Right graph:  β can be used to specify an appropriate diffraction grating pitch p.
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Grating groove geometry determines the number of visible orders and their efficiency. Our
experiments were conducted using embossed plastic "Spectrasheen" gratings (pitch of
approximately 5 µm) available from SpectraTek of Los Angeles. These gratings produce up
to three visible higher-order images. We anticipate grating fabrication by binary methods to
obtain groove geometries that produce multiple orders, and we have obtained a 2.94 µm
sample grating from Lasiris intended for 5 point structured illumination projection but which
seems to work perfectly well as a receiver in our range finder. As our research progresses,
we also expect to model the depth resolution of diffraction images as a function of the
number of rulings in the active region of the grating structure. This analog to spectral
resolution used to characterize spectrometers is quite important in microscopy because of the
small dimensions of the gratings we use.

3. OTHER EMBODIMENTS

In addition to the configuration shown in Figure 13, we have investigated refinements for
microscopic examination of cavities by the diffraction method exploiting gratings which have
a frequency greater than the incident illumination. This technique requires both an offset of
the source illumination and a rotation of the grating.

cylindrical 
lens

camera

laser

grating

capillary

Figure 15. Possible Configuration

The possibility exists to place the illumination on the
same side of the hole as the grating. The illustration,
Figure 15 on the left, shows this type of geometric
relationship. While this arrangement is not possible
with the SpinTrak microscope, which must remain
strictly vertical, we anticipated achieving equivalent
geometries using relay assemblies fashioned from
reflective surfaces. In this setup high frequency
gratings have a potential for range magnification,
and we examined them as part of our research.

Our inquiry confirmed the magnification effect we
had anticipated. Using a test fixture modeled on Figure 14 we illuminated a 0.25 inch hole at
various depths up to 1 inch and recorded images with a variety of macro lenses. These
produced images shown on the following page in Figure 16.

The oval shaped hole lip, best seen in Figure 16 (7&8) made by "flood" illuminating a large
portion of the hole lip with a defocused laser, indicates the manner by which a high
frequency grating can generate increased depth resolution. Since the depth measurement is
made by determining the displacement between the lip and bottom of the hole, the elongation
of the lip stretches the horizontal dimension, thereby effectively increasing depth resolution
of the range finder. This phenomenon, well known with anamorphic lenses and analogous to
prisms 12, has not been exploited as a range finding feature and has promising potential in
microscopy. However, an artifact of internal reflection within the transmission gratings used
in our experiments created a series of ambiguous multiple images  This is noticeable in the
broadening of the laser stripe in Figure 16 (4, 5 & 6) where the stripe appears to be striated in
the horizontal dimension.
A close examination of the inner reflection phenomenon is shown in Figure 17. To produce
this image, the target was illuminated with a point source rather than a stripe, and the camera
recorded image was enlarged. The obvious solution to the inner reflection problem with high
frequency gratings is to use a reflection grating. However, the restrictions in orientation and
size made this a difficult design problem not within the resources of our project.



Figure 16. Examples of high frequency grating images. Negative on left; Positive on right.
Top pair (7&8) illuminated by "flood" lighting. Other images illuminated by a laser stripe.
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Figure 17. Inner reflections within a transmission grating. Negative and positive versions.



4. CONCLUSION

We have investigated a diffraction-based method for measuring depth inside of holes. We
developed geometric models for occlusion immunity. Using these models and our previously
published models for diffraction, we have examined a variety of configurations for
diffraction range finders which are specifically optimized for metrology in occluded spaces,
and we have conducted a series of experiments to corroborate predictions drawn from these
models. Finally, we have attempted to adapt the diffraction method to an extant coordinate
measurement machine built by Aspex, Inc.
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