Computer Controlled Car Proiject
Final Report

Luke Tranlong
743 N. First Avenue
Hillsboro, OR 97124
(503) 648-3546

Fall 1991
Senior Design Project (Course # 35498)
Advisor: Professor George Nagy

Rensselaer Polytechnic Institute

Abstract

The purpose of this research project was to integrate some
prebuilt logic to an M68HC1l1EVB board which would then control
the movements of 1/10 scale model car. The functions that were
to be manipulated were forward and reverse movement, steering,
distance travelled, and range finding through the use of an
ultrasonic sensor. A software program was written which would
provide the signals necessary to operate the control logic and
handle the feedback. Although most of the goals have been
accomplished, the ultrasonic sensor is still nonfunctional and
needs further work.

Table of Contents

Introduction ¢ 4 i i e e e e e e e e e s e e e e 1
Background+ « + 4 e e e e e e e e e e e e e e e e 2
Ooverview of Project . . . « « « ¢ « ¢« o « ¢ « o o e . . . 4

Motor Control Board . . .« « « o o« « « o « o o o o 4

Ultrasonic Control Board . . . « « « « « « o« « « « = 6

Software Program . . .« .« « « o« o o « o o o o o o = . s 8
Discussion . . . ¢ ¢ i i 0t e e e e e e e e e e e e e e 11
RESULES . v ¢« & ¢ v v o o o o o 2 o o s s e e e e e e s e 14
Conclusion 0 4 it e e e e e e e e e e e e e e 18
ReferenNCesS . . v v ¢ o o o s o o o o o o & o o« o o o . e . 19
Appendix A - Motor Control Board Schematic 20
Appendix B - Ultrasonic Control Board Schematic 25
Appendix C - Pseudocode for Servos < + .« . . 29
Appendix D - Listing of Software Program 30

Appendix E - Helpful Hints and Suggestions 33

Introduction

The purpose of my senior design project was to assemble a
1/10 scale model car and integrate it with various control logic
that had already been designed. An M68HC11EVB single-board
computer was then used to control the external logic. Finally, I
wrote the software which accepts inputs as to the direction and
distance the car is to travel and then give feedback regarding
the car’s position in its environment.

To do accomplish the goals, it was necessary to test and
debug the various components before integrating them onto the
car. This was where the majority of my time was spent. As a
result, the criteria by which the project can be judged on is

whether or not the subsystems actually function. Furthermore,

the software program can also be used to evaluate my performance
on the project.

In this report, I will focus on what the subsystems are and
how they function. Then, a discussion on the problems that were
encountered and the steps that were taken to try and remedy them
will be presented. Finally, the control program will be

explained in detail.

Background

There were two main reasons why this project was initially
undertaken. First, a Ph.D. candidate working on an automated
parallel parking algorithm required a platform on which his
theories could be tested. Second, this project gave seniors an
opportunity to put their classroom experience towards a design
application. I fell into this latter group.

When I started the project, I was under the impression that
the various components such as the DC motor and ultrasonic sensor
control logic were fully functional. However, as will be
discussed, a variety of problems were discovered which led to the
project not being completed to the specifications stated in the
project proposal.

The functional components of the system can be divided into
three subgroups. The first of these is the drive train and
steering mechanism. It consists of a DC motor, the servo
control, and an optical sensor (odometer). The DC motor is
operated by applying -5V to +5V at its input terminals. For the
odometer, counters are used to detect the number of gear teeth
that pass through the sensor beam. Since there are 44 gear teeth
on the gear mounted on the axle of the 6 cm diameter wheel, the
travelled distance can be determined. Finally, the direction of
the front wheels and orientation of the transducers are
controlled by two separate servos. These servos are operated by

a pulse train with a period of 20 msec. By varying the duty

cycle of the constant period signal, the servos can be made to
turn and stabilize.

The second subgroup is the ultrasonic sensor-control board.
Theoretically, the operation of this component is very simple.
The user should only need to tell the computer to emit an
ultrasonic pulse and, some time later, be able to read in the
distance an object is away from the transducer. Furthermore, by
using two sensors, it should be possible to detect even the angle
of orientation of the object in relation to the car, since the
distance between the two transducers would be fixed. The
hardware that controls the transducers is a combination of logic
built by previous students and a prefabricated control board
purchased from Polaroid. As of this writing, I have not been
able to get this part of the project to function correctly.

The last subgroup of the project is the software program.
Through a series of instruction sequences, it was possible to
make the car’s hardware components function simultaneously. By
specifying the direction, distance, and angle of the two servos,
the car can be made to move. As already mentioned, feedback can
be obtained from the odometer. The program has been designed so
that once the ultrasonic ranging system works, it can be easily

integrated in the software.

Overview of Project

Below is a more in-depth look at the three subsystems.
Information not described below concerning the motor and
ultrasonic control boards can be found in Mark Kordon’s and Vivek
Shrivastava’s final reports. Any modifications to their designs

will be noted.

Motor Control Board

The motor control board uses Ports B ($1004) and C ($1003)
of the EVB. Port B is used for the control lines while Port C is
used as a read/write data bus. To engage the DC motor, the DAC
(U4)! must have valid data at its input terminals. Placing onto
Port C a value between $00-$70 means the motor will turn in
reverse while values between $90-$FF is for forward movement.
This is assuming, of course, that the wires from P3 are hooked up
with the correct polarity to the motor. Finally, latching of
this data into Ul is required. The latching is accomplished by
sending $01 to Port B. Note that values between $70 and $90 will
cause the DC motor’s input voltage to be 0, effectively
disengaging the motor. An alternate way of stopping the motor is
by sending $02 to Port B. Module U2, which has $82 hardwired as

its output, then becomes the data input for the DAC. The DAC

'For all references to specific IC’s in the description of the
motor control board, please refer to Appendix A.

4

then controls which transistor (Tl or T2) will be turned on which
thus engages the DC motor in the proper direction.

For the steering and ultrasonic servos, a pulse train of 50
Hz with a varying duty-cycle is required to change the servos’
orientation. To accomplish this, a MC6840 timer chip (U4) is
used.? This chip consists of three independent timers which can
be programmed for different kinds of outputs. Timer 3 is clocked
by the E clock from the EVB. This drives timers 1 and 2 which
are set for one-shot output signals of a predetermined duration.
This time parameter can be varied, thus changing duty cycle.

The last part on the motor control board is the optical
sensor which functions as an odometer for the car. To operate
the sensor correctly, counters U9, Ul2, and Ul3 must first be
Cleared by sending $03 to port B. After the motor has been
engaged, the counters will count how many gear teeth have passed
through the optical sensor. To read the count, bit 0 of address
$1002° must first be cleared. Then, Port C must be set to read
status by writing $00 to memory location $1007 (DDRC) . Finally,
the values from the counters can be read in one byte at a time by
placing $04 for the low byte and $05 for the high byte onto Port
B. Note that it is necessary to re-assert bit 0 of address $1002

for correct operation of the rest of the circuit.

Note that the values required to program this chip are
different than in Mark Kordon’s report.

This important step was not addressed in Mark Kordon’s report
which caused considerable frustration and loss of time.

5

Ultrasonic Control Board

The logic for the operation of the ultrasonic sensor
actually consists of two boards. One was pre-fabricated by
Polaroid and purchased for this project. The second board was
designed and built by previous students and will henceforth be
known as the ultrasonic control board. The Polaroid board works
as follows: VSW is a control signal which initiates the board to
emit a square wave of 56 cycles labelled XLG. XIG is then routed
through the control board so that it can then be passed back to
the Polaroid board as XLG’, either unmodified or decreased to
just 4 cycles. This is done so that shorter distances can be
measured without interference between the emitted and received
signals. XLG’ then drives the transducer through the analog
circuitry on the Polaroid board. Finally, when an echo is
received, MFLOG, which is normally high, is cleared.

The ultrasonic control board determines the input of the
pre-fabricated Polaroid board and processes the output signals.
In theory, the operation of the board is quite simple. When the
user requires a distance measurement to be made, the counters U4,
U5, U6, and U7‘ should first be cleared. This is done by
sending $43 to Port B. Then, a signal to start the sonar is sent
by placing $44 onto Port B. This should cause transistor Tl to
turn on which effectively pulls VSW high. There is a delay

between when VSW goes high and when XLG actually starts

‘For all references to specific IC’s in the description of the
ultrasonic control board, please refer to Appendix B.

6

pulsating. Since the exact time delay is critical when we are
dealing with such short time intervals, XLG is actually used to
enable the counters rather than the start signal from the EVB.

As mentioned above, XLG can be stepped down from 56 cycles
to 4 cycles depending on the distance measurement required.
Cutting down the number of cycles is done by toggling Ul17 which
in turn controls whether or not all 56 cycles will be passed back
to the Polaroid board. Once MFLOG is recéived, the counters are
disabled and thus, the distance from an object can be determined.
Note that the counters are driven by a clock pulse of 1.33 MHz
which is important in the distance calculations. For further
reference on this subject, see Vivek Shrivastava’s report, pages
15-17. Finally, the low and high bytes of the counters can be
read from Port C ($1003) by placing $08 and $04 onto port D

($1008) respectively.

Software Prodgram

All of the data requirements presented above are
incorporated into a BASIC (BASIC1ll1l V1.55) program that can
actually make the car move in a predetermined path. The program

flow of execution is as follows:

1. Get next set of data points

2. If distance desired=0, exit program

3. Convert data points from user units to machine units
4. Turn steering wheel and sonar mount

5. Clear odometer counter

6. Engage motor in proper direction

7. Send ultrasonic pulse/Read distance from object’®

8. Check odometer

9. If distance travelled is less than desired, repeat 6/7
10. Go to 1

A listing of the program is included in Appendix D. The program
basically follows the algorithm set forth above. Therefore, only
the unusual lines of code will be explained in greater detail.

The data that is expected from the program is as follows:
distance to travel (-744 to +744 mm, negative being backwards),
degrees to turn the steering wheel (-30° to +30°, negative being
to the left with respect to the car), and degrees to turn the
ultrasonic sensor mount (-90° to +90°).

In converting from user units (mm, degrees) into machine
units (geaf teeth, timer counts), several important factors must
be considered. These problems are mainly due to the limitations

of the 6811 BASIC chip which comes with the EVB. Since only

As of this report dated December 9, 1991, the ultrasonic
control board does not function correctly. However, inclusion of
this into the program logic is meant for future reference.

8

integer division is allowed and the range of variable values must
also be between -32768 and 32767, the order and grouping of
operations becomes very important. Thus, in line 35, the
conversion from millimeters to gear teeth requires multiplying
(mm) by 44 before dividing by 188. Otherwise, the result will
always be zero.

Secondly, in lines 400-460, the conversion from degrees to
actual counter values must be grouped in specific order of
operations or extraneous errors will result. The equation to
linearly map from a value X in domain [A,B] to another value Y in

domain [C,D] is:

D-C
B-A

Y=(X-A4) +C

For example, for the steering servo, X might be 0° representing
straight ahead. Domain [A,B] is then [-45°,45°]. Using the
values of $0BB8 (3000) and $076C (1900) for D and C
respectively®, the equation would then make Y equal to $0992
(2450) . The result is to be expected as Y is in the middle of
the two extremes, D and C.

However, implementing this directly in 6811 BASIC would
cause errant results. Thus, for example, dividing the term ‘B-A’
into sub-parts prevents the variables CV and DV from overflowing.

This is what is done in lines 405 and 430 of the program.

°See Appendix C for the values of C and D.

9

In lines 55-80, the odometer counters are first cleared.
Then, the data to spin the wheels in reverse is sent to Port C.
However, the direction of travel is then checked to determine if
reverse movement is actually what is desired. If forward
movement is actually the case, line 70 is executed which resets
Port C correctly. Note that the value used is $E6 rather than
the maximum of $FF. This is because $E6 represents the same
rotational speed as $00 does in reverse. Finally, the motor is
engaged with a $01 to Port B.

As mentioned earlier, reading in the optical sensor counter
(odometer) value requires modification of memory location $1002.
Thus, lines 801-802 and 855-860 accomplish just that. Note that
it is necessary to modify just bit 0 of $1002. Otherwise the DC
motor and possibly even the servos will behave unexpectedly.

A listing of the variables used in the program is also

included in Appendix D.

10

Discussion

This project was both interesting and frustrating because it
was in the area in that I wanted to concentrate on. However, at
various points during the semester, I felt no progress was being
made. Furthermore, when I first started the project, I was under
the impression that all the subsystems worked, especially the
ultrasonic control board. I later realized that this was not
true and in fact, the ultrasonic control board was what gave me
the most trouble. The following is a list of the major problems
I encountered.

At first, I was unsure as to whether the DC motor was strong
enough to move the car. Upon further inspection, I found that
the motor was adequate as long as the resistance from the various
cables necessary (power, terminal interface) for operation was
minimized. However, making the car totally self-contained with
its own power source is not possible presently. I believe that
for the car to be a separate unit, a stronger motor will have to
be found.

Secondly, it was necessary to use the data books to figure
out how to program the MC6840 chip as the timers were not
functional at the beginning of the project. Programming the chip
took a considerable amount of time since I had to do it by trial
and error. Also, the servo for the transducer mount needed to be
replaced since its internal wiring was malfunctioning. 1In

replacing the servo, I realized that a potentiometer reading from

11

the servos for analyzing their orientation was not necessary.
This is because the servos have their own closed-loop feedback
system for maintaining their direction. Thus, since the program
will know precisely what angle the wheel and sensor mount are
turned to because the program is the one that sent the commands,
additional feedback will not provide any further information.

Since the other subsystems now function correctly, I will
concentrate on discussing the ultrasonic control board and what I
further understand of its operation. First, since the ultrasonic
board was not working when I started the project, I decided to
bypass the toggling between the two transducers as described in
Vivek Shrivastava’s report. I proceeded by wiring the VSW, XILG,
XLG’, and MFLOG lines directly to P2 thus avoiding the diagram on
page 10 of his report. By skipping the added control logic, the
question of whether the switching circuitry is to blame for the
nonfunctioning ultrasonic sensors can be readily determined. I
found, however, that doing the above procedure had no effect on
the operation of the sensors. Note that the control board is
currently still wired in this state and not as presented in
Vivek’s report.

I then examined the inputs and outputs to the Polaroid board
to see if they were faulty. I found that the VSW signal was not
switching high when a "start sonar signal" was initiated. The
VSW’s failure to change states was remedied by going through the
logic schematic and tracing the circuit. By looking at the

diagrams in the Polaroid manual, I also found that the wiring to

12

the Polaroid boards were in error which contributed to the
problem.

Since the board now seemed to be hooked up correctly, I
attempted to examine whether or not the XLG signal, which should
contain the 56 pulse cycles, was being generated correctly. An
oscilloscope triggered by the VSW signal was used to investigate
the problem. However, nothing substantial could be seen. As a
result, I tried hooking up the Polaroid directly to a power
source and not going through the control logic. From this, I was
able to hear a "chirp" as described in the manual. However, I
still could not see the 56 cycles on the oscilloscope. After
trying three other Polaroid boards, I was still unable to get any
signals to be generated from the boards. Therefore, I am at a

loss as to what to try next.

13

Results

As stated in the project proposal, the goals of the project
were to integrate some hardware control logic onto a 1/10 scale
model car. Furthermore, the project required that all the
subsystems function simultaneously. Finally, a control program
was to be written which would handle the operations of the
various devices given input parameters and would provide feedback
as to the car’s position in its environment.

The results that I obtained from work on the project
achieved most of these goals. The car does move forward and
backward, turn its steering wheel in the specified degree
amounts, and turn the transducer mount. Feedback through the
odometer is obtainable and is used in the software control

program.

Table I - Distance w/out Applying Reverse Voltage
‘00—

Forward Forward Reverse Reverse
20 ¢cm 40 ¢cm 20 cm 40 ¢cm
34 55 29 53
37 59 32 53
35 61 32 55
35 61 32 55
36 62 30 54

Average
35 60 31 54

Average Error
15 20 11 14

{5000

14

The first experiment that was performed was to move the car
forwards and backwards for distances of 20 and 40 centimeters.
The results are shown in Table I. The data seems to suggest that
the car moves in a consistent amount each time although errors
exist between what is desired and obtained. Furthermore,
increasing the desired distance from 20 cm to 40 cm does not
increase the average error by a significant amount which leads me
to believe that the errors are due to the momentum of the car
which keeps it moving a constant amount even after a stop command
has been issued.

One way of making the car perform better is by applying a
voltage to make the car move in the reverse direction as soon as
the required distance has been travelled. Table II summarizes

the data from doing just that.

Table II - Distance with Applying Reverse Voltage
—

Forward Forward Reverse Reverse
20 cm 40 cm 20 cm 40 ¢cm
27 53 27 51
28 52 28 52
28 51 26 51
26 53 27 53
27 52 27 51

Average
27 52 27 52

Average Error
7 12 7 12

—

15

The results from Table II are in much closer agreement to the

desired values. Also note that the errors in forward and reverse
movement are in better agreement than in Table I. I believe this
occurs because the DC motor inherently has more friction spinning
in the reverse direction than in the forward direction. As a
result, forward movement will generally have a higher error
value. By applying a voltage in the opposite direction of
travel, the friction has now been equalized in both paths. The
error that is left could be due to conversion error in line 35 of
the program or even a miscount by the optical sensor.

The last experiment performed was to make the car move in an
S-like pattern. Automated parallel parking would require such a
maneuver. Figure 1 shows the desired path of the right rear

wheel of the car.

C—o.\cv\o.v\'\an U‘C DL{lf;A_ Pa“n\’s

Corver oF Q’A"T*O 0 *w\.&\ O_c err
/ ‘\ tumn tad s r 2 em

\//’

"30°
d= m‘/‘taﬂao = ASam
o.r;\zng-\-\f\ Aasireds 20 e
e reum feverce * AT A &%30”_

A ~F ¢1<%-g— 360 = 16 A°
L

AX : AS-AS coo A5 =z Adem
bé'. Agwls: \'-'\c.m—
S A= (6,0) .
Bz (Rax, lAtiB‘ (-%_g) 3%,
cz(Asy, 05 = U 0D

Figure 1 - Desired Path of Right Rear Wheel

16

The car would start from point A, travel to point B, and
then go on to point C. Then, the car would repeat the path but
in the opposite direction to get back to the starting point. The
program listing in Appendix D performs the necessary series of
instructions. Using some trigonometry, point B is roughly at
location (-8.5, 38)7 while point C is at location (=17, 0).
However, experimental values resulted in values of (-18, 29) and
(=30, 4) for B and C respectively. 1In repeating the path, the
car went to location (3, -1) instead of (0, 0) as desired.

One source of error could be that a rear wheel was used to
obtain measurements rather than a front one. Since the rear
wheel doesn’t actually turn at an angle of 30° relative to the
axis of the car, the value used in calculating the desired
location value would be in error. Furthermore, these results are
hard to interpret as the odometer is actually on the left rear

wheel which slips depending on the direction the car is turning.

’All values are in centimeters.

17

Conclusion

In conclusion, I am pleased with the results that T
obtained. Obviously, it would have been much better if the
ultrasonic control board had worked. Evidently, then, more work
is required before the car can be used as a test bed for the
automated parallel parking algorithm.

Another item that needs to be addressed is the location of
the odometer. According to Doug Lyon, the Ph.D. candidate
developing the above mentioned algorithm, the optical sensor
needs to be moved to one of front wheels since the path travelled
by the front of the car is considerably different than that of
the rear axle. Thus, the algorithm would not function correctly.

Furthermore, I have found that the braking method used to
stop the car requires additional work. At present, the voltage
applied to the DC motor is simply set to OV when a stop command
is issued. However, this method will not always yield correct
results since the momentum of the car can force it to travel a
greater distance than specified. As a result, overshoot will
occur, which then will cause considerable errors. One way of
fixing this is applying a reverse voltage as I have explained.
Another would be to switch the motor to a resistor when braking
is desired. These are just a few of the design options which are

available for other students to pursue.

18

References

Ciaria, S. "Home on the Range!", Byte Magazine, November
1980. Byte Publications Inc.

Kordon, Mark, 6811 Computer Car Final Report, Spring 1991.

Motorola, M68HC11EVB Evaluation Board User’s Manual,
Motorola Distribution; P.O. Box 20912, Phoenix, AZ 85036.

Motorola, BASICl1l Reference Manual.

Polaroid, Ultrasonic Ranging System, Polaroid Corporation,

Commercial/Battery Division, 575 Technology Square - 3,
Cambridge, MA 02139.

Shrivastava, Vivek, Final Report on the Car Sensor Circuitry
and Orientation, Summer 1991.

19

Appendix A - Motor Control Board Schematic

Note: These pages were photocopied from Mark Kordon’s
report pp. 16-19. Some values were changed to match
the actual design.

20

_Imnmﬁmmmuammn

to to to to
+YIR) +RESEY C Hotor MOC7S5TH
sl 4] 1] 2
g 3 gl &l
{PE= =1 H = HE
AEER A B E
04
Jr——
o7 T
o1 c1- o U12] »e g'
) 33
=2 T2
»n —
B¢
z1
LRS- R1
11
U13]
— [O18
oS
Ul4
U3 Us Us o11
PS5
3 | s e | e
et z o e l0
L) - ol 1K
AEHEE HdEHEH
(=] oy ~
al |8 al I8
- o - o
e | oy L]
& ! ~
wle 5?3 b EEE
9 4
to ™ from to ™ froa
steering steering SORar sonar
servo servo servo servo o)

mote: T1 is SK3896 and T2 is SK3897.
Both bave the configuration shown.

I

Motor Control Board:
page 1 of 3

+5v

P1

4 -
BR324
cC 373
IT—~ oc
ué6 6D 60 15
¢ 4°<3 igllll:lﬁ 12
/ U8 s -
61 Y7 p=- 2 20
S 1Y 5
L |38Y4 C“
c vy2pi
B ¥Yi Du?
g li A yopl®
¢
cC 373
oc
8D 8Q 19
Ri1 70 Zg 16
6D
270Q 13 50111050 12
;’, 4D 4Q
13 -~ n g gg
10 1Q _
MOC75T1
W e e - - - ———-@m
t rToIIIIIIIIs 3
-1+ - — — - - - - - - - IO
1 t —————————— 331
_____ o - - - o
' b RS R RESET
L Ly ! P

Hotor Control Board:

1Q

page 2 of 3
+5Y -12y
BHC1408 P1
1 2 A8 —ZF 10 10
A7 29 20
R 7
- D
lSpr 1] Ue A4S . ﬁ 79
3] pac M i 30 02 048
2 :g ﬁ’ 16 % % 17
A Al 19 80 ap 18
oc pb—
373 ¢ <
+SYy
R6 | R
xQ
1Q 10
3 20 0p
.
12
15 % 1 3 1
16 Cedr
19 'Q 18
+12¥ -12¥ 89 8D)
T T 373 %GR
SK3896 SK3897
I_KTI T2 14%
%0
Rr3
e gm YWA—t P1
K K %0
us |oeepe =
-F ¢4 10 10k '
g U7 — 8 2 -
P3 21 %
<3 ———m 29

Hotor Control Board:

page 3of 3
P4
@ STIIRING SIGHNAL
-T-_ NHC6840
ULTRASONIC 1 28
P5 SIXvoroTOR 1 M 1oy
SIGHAL 3*62 01 26 P1
<z} 102 *G1 (£5 R
—{#c2 DO
a6z D1 }34
503 p2 &2
P1 Hicz U14 D3l
07>] FRESET D4 >
W;gg 82 19
11 D7 18
12 ggé £ 1?7
13 cs 15
< Uﬁ‘ R/ *Y¥
[)

4 16
! L% 3 s
+5V

Appendix B - Ultrasonic Control Board Schematic

Note: These pages were photocopied from Mark Kordon’s

report pp. 23-25. Some values were changed to match
the actual design.

25

Ultrasonic Booard Layout:

to
ultrasonic

ranging
board

black - XLG'
white - XLS
een ~ mfl
orange & yellow - P¥R
red - YS¥
brown - GND

a

/

plastic connector (not to scale)

()
3 g
el
P 3:3-*
Sgﬂzos
ABEEEE

R 1 —
R2 T T2
) &)
U4 Us e RS |
c1 14
UI ;“- L“d
o] mj U1
02
- (U1 013 U16
03 o7 Uil U114l urﬁ
™ S
note: T1 is a 2M4401 T2 ic a MHPU29S r=._.,7
i
I3C

Ultrasonic Sensor Board:

page 20of 2
+5Y
A
L
N
Ve
N
017 'CLRPE an
o 1okl
13 73 5B
e
N
—<
e
<
U15 1CLRP:
tPREP
2d 10 rouf +3v
— 1Q 741

N

' c Pl
Ultrasonic Sensor Board; 23
page 1 of 2

+5v

P1 U9

36 373
BT .
o 79

U2 9

oB888¥8838 8

AR
>
3
03888

5
5
8
E

F

L*)
-
>

v &

—
(73

=]

NN

Cc
A 373
¢ REFAFTTUS 8D 8Q
P TOGGLY TARGE [70
< &D 6Q
¢ START 30HAR g %

1.25 Mtz

o » 29
P11 1D 10

Appendix C - Pseudocode for Servos

Location Value Comments

$1007 SFF set DDRC to output

$1003 $00 -initialize port ¢

$1004 $09 allow write to control reg. 3

$1003 S4E set up square wave of 20 msec

$1004 SOE write to MSB latch of timer 3

$1003 $20 continue data for 20 msec wave

$1004 SOF write to LSB latch of timer 3

$1003 $82 set timer 3 to continuous mode

$1004 $08 write to CR3

$1003 $OA" MSB data for timer 2

$1004 SOA write to MSB latch of timer 2

$1003 SF8” LSB data for timer 2

$1004 SOD write to LSB latch of timer 2

$1003 SA3 set timer 2 to single shot mode

$1004 $09 write to CR2

$1003 $09* MSB data for timer 1

$1004 $S0A write to MSB latch of timer 1

$1003 $92° LSB data for timer 1

$1004 SOB write to LSB latch of timer 1

$1003 SA2 set timer 1 to single shot mode

$1004 $08 write to CR1 and let timers run
Data values for control of the steering and sonar values
are:

:L Left ;LMiddle]‘#Riqht
Steering ' SOB B8 | $09 92 | $07 6C
Sonar , $10 FO , $SOA F8 | $05 00

The values between the left and right positions seem to
follow a linear relationship which suggests that reading the
potentiometer in the servo to get the servo direction would
be unnecessary. By varying the values marked with an *
above, the direction of the servo can be changed. Note that
timer 2 is for the transducer mount servo and timer 1 is for
the steering servo.

29

Appendix D - Listing of Software Program

This is a listing of the variables that are used in the program
listed on the next page. It was necessary to use such short
variable names since BASIC11 can only represent variables by two

characters.

Variable Description

B Distance to travel in millimeters

C Degrees to turn steering wheels

D Degrees to turn transducer mount

BV Distance to travel in gear teeth (absolute)

E Distance travelled so far in gear teeth (absolute)
cv Counter value to set duty cycle for steering servo
CH High byte of CV

CL Low byte of CV

DV Counter value to set duty cycle for trans. servo
DH High byte of DV

DL Low byte of DV

Y Temporary value of memory location $1002

30

RERD B = _ _ .
(F (B=0) THEN 900
D¢o

REA

BU=ABS{B)*44/180

GOSUE 400

6OSUB 500

POE ¢ §1
(%]
/0)

POKE (31
t

GOSUB S00 ‘

Lia IR E<BU THEN Qn

115 PRINT CHR$(?)

120 G0T0 10

300 REN CONERT FRON GEGREES T0 ACTURL OATA HUNBERS

103 CU=(((C+3074((5000-19001/5)/12)+1900

410 CH=CY/25

320 ot -cuEivase

O=-0
430 DU=(((D+90)*((4336-1280)/30))/6)+1280
440 DH=DU/256
450 DL=DH-[IH*256
460 RETURH
200 REH TUHH STEE

501 POKE

910 POKE 1004,
520

930 1003

i3 WHEEL AND ULTRASOUND SEHSOR SERUOS

[we]
.&

q

R

W‘WW‘\—M\-:

- -

QOO0

—
~—

QO OQOOOOOTOOO0O0

F
g
H
%

- v m wm wm W o~

N P S

r“GIOI‘OI“ L"_"IC\O)CDI\)CD-A:\CD"F\:D

5]

—
-

-

I
F
0
(19
E
E
2
)
)
)
)
i

OO T OO0 I0O0O
- - - - -

e B)
e et

09
A)
G
c

DISTARCE TRRUELLED IN GEAR COUNWT
ND.1))

REH_MCA
Y=PEEK/

-
— it o t s e G2)

’

0
0 A
gl

!
1
1
]

Q-C
[mn)

=
o

O - - RN

Lad P Q) e = -0 WOMC'IM}D%QMWW

QOO ~d—INT NN
DN = OO0 OO -JONN
OOCUNMUu—O OO OOC

Jor o

m

—

=

x

Lo

AN e S
= N
-~

[

0
o \
< 7 M k ?
™
[Y s e o g R o e Do e e

R.1Y)

OO -L0O L =IO I (.\)-b(..)-&(.u—ku)-hu-b(..)-hu-h.u)

Lo e Nl R = S R 8 2
— = % TN
O~ + AW T OO —

0
E
0
0
0
RENM END OF GRAN

POKE ($1004,302
10 END
1000 REM DATA TO BE READ IN

iy
'4FF)
PROGR

)

250,30,0

250,-30,0
-250,30.0
-250.-30,0
250,-30,0
25030, 0

-250,-30,0
a250.30.6

Appendix E - Helpful Hints and Suggestions

Listed below are some helpful hints and suggestions which
might help the next student in continuing this design project.

Hardware

The main connections from the EVB to the motor control board
should not pose any problem. However, make sure that the red and
red-black terminals of the DC motor go to the yellow and green
terminals of the control board respectively. This will enable
the DC motor to turn in the proper direction.

The optical sensor wires seem to be too short for what is
needed. Sometimes, they could come off the sensor completely.

As a result, no feedback is sent to the EVB and the program will
have no way of sensing how far the car has gone.

Currently, both Ports B and D are required to control the
ultrasonic control board. However, a conflict on the data line
(Port C) might occur if data is being sent out on the line by
either the EVB or motor control board while the outputs of
modules Ul and U2 of the ultrasonic control board are enabled.

To remedy this situation, make sure that Ul and U2 are disabled
if their outputs are not required. A better way to do this is to
rewire the circuit as shown in Mark Kordon’s report thus
automatically disabling Ul and U2 when communication to the motor
control board is desired.

The user can talk to the EVB through either a dumb terminal
or through the Macintosh using the Milford cable. If using a
dumb terminal, connect one end of an RS-232 cable to the P2 port
of the EVB and the other to the EIA port of the terminal. If
using the Milford cable, connect one end to the Macintosh’s
communications port and the other to P2 of the EVB. An extension
cable is supplied with the project. This cable converts the 25
pin connector to the 15 pin connector mounted on the car. Using
this cable allows the car to move a greater distance.

Software

Communicating to the car is done using a terminal program
called Versaterm-Pro V3.0.1l. This program is copyrighted and
should be used exclusively for this project only. A disk with
this program and the BASIC listing is included with this final
report. The user simply needs to double-click on the Versaterm
icon after inserting the disk.

Sending the program to the EVB is done through the "Send
Stream" option under the File command. Editing of the program
can be done through the "Edit Text" option under the "Edit"
command. More extensive help can be found through the online
help that is available in the program.

33

