
0018-9162/98/$10.00 © 1998 IEEE May 1998 23

Experimental
Models for
Validating
Technology
Experimentation helps determine the effectiveness of proposed theories and

methods. But computer science has not developed a concise taxonomy of

methods for demonstrating the validity of new techniques.

E
ffective software can mean software that
is low cost, reliable, rapidly developed,
safe, or has some other relevant attribute.
To determine whether a particular tech-
nique is effective, we need a way to mea-

sure it. Merely saying that a technique is effective
conveys no real information. Instead, we need mea-
surements applied to each software attribute so we can
say one technique is more or less effective than another.

For some techniques, mapping from an effective
attribute to a measurement scale is fairly straightfor-
ward. If “effective” means “low cost,” then cost of
development would be such a measurement. For other
attributes—such as reliability, safety, and security—
measurements are not so easily taken. Measurements
like the number of failures per day, errors found dur-
ing development, or MTBF (mean time between fail-
ures) indicate reliability in hardware domains. For
software, however, a count of the number of errors
found during testing does not by itself indicate whether
there are errors remaining to be found. Only refined
experimentation can help determine that.

Experimentation is a crucial part of attribute eval-
uation and can help determine whether methods used
in accordance with some theory during product devel-
opment will result in software being as effective as nec-

Co
m

pu
tin

g
Pr

ac
tic

es

Marvin V.
Zelkowitz
University of
Maryland

Dolores R.
Wallace
National
Institute of
Standards and
Technology

essary. Should we modify the underlying theory upon
which the technique is based? What predictions can
we make about future developments based upon using
these techniques?

Experimentation is one of those terms that is frequently
used incorrectly in the computer science community.
Researchers write papers that explain some new tech-
nology; then they perform “experiments” to show how
effective the technology is. In most cases, the creator of the
technology both implements the technology and shows
that it works. Very rarely does such experimentation
involve any collection of data to show that the technol-
ogy adheres to some underlying model or theory of soft-
ware development or that the software is effective.

Without a confirming experiment, why should
industry select a new method or tool? On what basis
should researchers enhance a language (or extend a
method) and develop supporting tools? In a scientific
discipline, we need to do more than simply say, “I tried
it, and I like it.”

HOW DO WE EXPERIMENT?
When we think of an experiment, we often think of

a roomful of subjects, each being asked to perform some
task. The task is usually followed by data collection and
then analysis. This is certainly one type of experimen-

.

.

24 Computer

tation. But there are other approaches as well, each of
which can be grouped into four general categories:1

• Scientific method. Scientists develop a theory to
explain a phenomenon; they propose a hypothe-
sis and then test alternative variations of the
hypothesis. As they do so, they collect data to ver-
ify or refute the claims of the hypothesis.

• Engineering method. Engineers develop and test
a solution to a hypothesis. Based upon the results
of the test, they improve the solution until it
requires no further improvement.

• Empirical method. A statistical method is pro-
posed as a means to validate a given hypothesis.
Unlike the scientific method, there may not be a
formal model or theory describing the hypothe-
sis. Data is collected to verify the hypothesis.

• Analytical method. A formal theory is developed,
and results derived from that theory can be com-
pared with empirical observations.

The common theme of these methods is the collec-
tion of data on either the development process or the
product itself. When we do an experiment using the
scientific method, we are interested in the effect that
a method or tool, called a factor, has on an attribute
of interest. Running an experiment with a specific
assignment of an effect the factor should achieve is
called a treatment. Each agent that we study and col-
lect data on—such as programmer, team, or source
program module—is called a subject or an experi-
mental unit. The goal of an experiment is to collect
enough data from a sufficient number of subjects, all
adhering to the same treatment, in order to obtain a
statistically significant result on the attribute of con-
cern, compared to some other treatment.

In developing an experiment to collect data on an
attribute, we have to be concerned with several aspects
of data collection:2

• Replication. We must be able to replicate the
results of an experiment to permit other re-
searchers to reproduce the findings. We must not
confound two effects. We must make sure that
unanticipated variables are not affecting our
results. If we cannot get a homogeneous sample
of subjects for all treatments, we counteract this
confounding effect by randomizing the factors
that we are not concerned about.

• Local control. Local control refers to the degree
to which we can modify the treatment applied to
each subject. For example, we usually have little
control over the treatment in a case study. Local
control is a major problem in computer science
research, since many of the treatments incur sig-
nificant costs or expenditures of time. In a block-
ing experiment, we assume each subject of a
treatment group comes from a homogeneous
population. If we randomly select subjects from
a population of students, we say that we have a
blocked experiment of students. In a factorial
design, we apply every possible treatment for
each factor. Thus, if there are three factors to eval-
uate, and each has three possible values, then we
need to run nine experiments with subjects ran-
domly chosen from among the blocked factors.

With software development, there are two addi-
tional aspects to consider:

• Influence. In developing experiments involving
large, complex, and expensive methods, such as

Table 1. Summary of software engineering validation models.

Validation method Category Description Weakness
Project monitoring Observational Collect development data No specific goals
Case study Observational Monitor project in depth Poor controls for later replication
Assertion Observational Use ad hoc validation techniques Insufficient validation
Field study Observational Monitor multiple projects Treatments differ across projects
Literature search Historical Examine previously published studies Selection bias; treatments differ
Legacy Historical Examine data from completed projects Cannot constrain factors; data limited
Lessons learned Historical Examine qualitative data from completed projects No quantitative data; cannot constrain factors
Static analysis Historical Examine structure of developed product Not related to development method
Replicated Controlled Develop multiple versions of product Very expensive; Hawthorne effect
Synthetic Controlled Replicate one factor in laboratory setting Scaling up; interactions among multiple factors
Dynamic analysis Controlled Execute developed product for performance Not related to development method
Simulation Controlled Execute product with artificial data Data may not represent reality;

not related to development method

.

software development, we need to know the
impact—that is, the influence—that a given
experimental design has on the results of an
experiment. We classify the various methods as
passive (viewing the artifacts of study as inor-
ganic objects that can be studied with no effects
on the objects themselves) or active (interacting
with the artifacts under study, often affecting the
behavior of the objects, as in the case of the
Hawthorne effect defined).

• Temporal properties. Data collection may be his-
torical (for example, archaeological) or current
(for example, monitoring a current project).
Historical data will certainly be passive, but may
be missing just the information we need to come
to a conclusion.

These categories and aspects of experimentation
apply to science in general, but for effective experi-
mentation in software engineering, we need to imple-
ment approaches specific to the characteristics of
software. In the remainder of this article, we describe
several such approaches and the results of a study
examining how these approaches have been used.

VALIDATION MODELS
By looking at multiple examples of technology val-

idation, we developed a taxonomy for software engi-
neering experimentation that describes 12 different
experimental approaches. We are not claiming that
this list of 12 is the ultimate list, but we have not seen
any such list that effectively categorizes multiple
instances of experimental designs that are appropri-
ate for our community. This list is a good place to start
for such an understanding of software engineering
experimentation. Table 1 summarizes these 12 models,

and the following sections describe them in greater
detail.

The various data collection methods shown in Table
1 can be grouped into three broad categories:

• observational,
• historical, and
• controlled.

An observational method collects relevant data as
a project develops. There is relatively little control over
the development process other than through using the
new technology that is being studied. A historical
method collects data from projects that have already
been completed. The data already exist; it is only nec-
essary to analyze what has already been collected. A
controlled method provides for multiple instances of
an observation for statistical validity of the results.
This method is the classical method of experimental
design in other scientific disciplines.

Observational methods
An observational method generally collects relevant

data as a project develops. There are four types: pro-
ject monitoring, case study, assertion, and field study.

Project monitoring. Project monitoring represents
the lowest level of experimentation and measurement.
It is the collection and storage of data that occurs dur-
ing project development. It is a passive model, since
the available data will be whatever the project gener-
ates; the researchers do not attempt to influence or
redirect the development process or methods being
used. Researchers assume the data will be used for
some immediate analysis. If an experimental design is
constructed after the project is finished, then we call
this a historical lessons-learned study.

A problem with project monitoring is the difficulty
in retrieving information later. A 1982 survey3 found
that although researchers often collected project infor-
mation, such information is owned by the project
manager and might not be available for future pro-
jects. The solution to this problem requires some min-
imal coordination among the various development
activities in an organization. While this method lacks
any experimental goals or consistency in the collected
data, collecting this information enables researchers
to establish a baseline, such as Victor Basili’s Quality
Improvement Paradigm (QIP).4

Case study. In a case study, researchers monitor a
project and collect data over time. With a relatively
minimal addition to project costs, valuable informa-
tion can be obtained on the various attributes char-
acterizing its development. Unlike the project
monitoring method, data collection for a case study
is derived from a specific goal for the project.
Researchers monitor a certain attribute—such as reli-

May 1998 25

Strength
Provides baseline for future; Inexpensive
Can constrain one factor at low cost
Serves as a basis for future experiments
Inexpensive form of replication
Large available database; Inexpensive
Combines multiple studies; Inexpensive
Determine trends; Inexpensive
Can be automated; Applies to tools
Can control factors for all treatments
Can control individual factors; moderate cost
Can be automated; Applies to tools
Can be automated; Applies to tools;
Evaluation in safe environment

26 Computer

ability or cost—and collect data to measure that
attribute. Researchers often collect similar data
from a class of projects to build a baseline; then
they use the baseline to represent the organiza-
tion’s standard process for software develop-
ment.

A case study is an active method because of
the influence humans may have on the develop-
ment process itself. The very nature of filling out
a form—with details like hours worked or errors
found—might not by itself be intrusive, but it
may have the side effect of having the staff think
about and react to certain issues that emerge in
the study.

The strength of this method is that the devel-
opment is going to happen regardless of the
needs to collect experimental data, so the only

additional cost is the cost of monitoring the develop-
ment and collecting this data. If an organization is
attuned to the needs of experimentation and data col-
lection, researchers can amass data from many pro-
jects over a short period of time.

The weakness of this method is that each develop-
ment is relatively unique, so it is not always possible
to compare one development profile with another.
Determining trends and statistical validity is often dif-
ficult. Furthermore, because case studies are often
large commercial developments, the needs of today’s
customer often dominate over the desire to learn how
to improve the process later. The practicality of com-
pleting a project on time—within budget and with
appropriate reliability—may mean that experimental
goals must be sacrificed. Experimentation may be a
risk that management is not willing to undertake.

Assertion. There are many examples of developers
being both experimenters and subjects of study.
Sometimes this happens during a preliminary test
before a more formal validation of the technology’s
effectiveness. But all too often the experiment is a
weak example favoring the proposed technology over
alternatives. As skeptical scientists, we would have to
view these experiments as potentially biased, since the
goal is not to understand the difference between two
treatments, but to show that one particular treatment
(the newly developed technology) is superior. We call
such experiments assertions.

However, if the developer is using a new technol-
ogy on some larger industrial project, we classify it as
a case study, since the developer of the technology does
not have the same degree of control over experimen-
tal conditions.

Field study. A field study may examine data col-
lected from several projects (or subjects) simultane-
ously. The field study is less intrusive than the case
study; otherwise, this method is a form of the repli-
cated experiment we describe later. Since a primary

goal is often not to perturb the subject under study, it
is often impossible to collect all relevant data in a field
study.

Typically, data are collected from each activity in
order to determine an activity’s effectiveness. Often
an outside group will monitor the actions of each sub-
ject group. In the case study model, the subjects them-
selves often perform the data collection activities.

This model best represents an organization that
wishes to measure its development practices without
changing its processes. An outside group will moni-
tor the subject groups to collect the relevant informa-
tion. The method also works best for products that
are already complete. For example, field study teams
can monitor project groups that use a new tool (and
ones that do not) in order to determine differences in
the effectiveness of what they produce.

Historical methods
A historical method collects data from projects that

have already been completed using existing data.
There are four such methods: literature search, legacy
data, lessons learned, and static analysis.

Literature search. The literature search represents
the least invasive and most passive form of data col-
lection. It requires the investigator to analyze the
results of papers and other documents that are pub-
licly available. This method can be useful to confirm
an existing hypothesis or to enhance the data collected
on one project with data that has been previously pub-
lished on similar projects, using a technique called
meta-analysis.5

The literature search method places no demands on
a given project and provides information across a
broad range of domains. However, a major weakness
with a literature search is selection bias, which can be
characterized as the tendency of researchers, authors,
and journal editors to publish positive results.
Contradictory results often are not reported, so a
meta-analysis of previously published data may indi-
cate an effect that might not be present if the full set
of observable data were to be presented.

Quantitative data is often lacking in a literature
search because of the proprietary nature of much of
this information. Understanding the environment of
the published experiment is crucial for interpreting the
results.

Legacy data. We often want to understand a previ-
ously completed project in order to apply that infor-
mation to a new project under development. In this
method, researchers consider the available data,
including all artifacts involved in the product. These
artifacts can include the source program, specifica-
tion, design, and testing documentation, as well as
data collected in the program’s development stages.
There is often a fair amount of quantitative data avail-

All too often the
experiment is a
weak example
favoring the

proposed technology
over alternatives.

Skeptical scientists
would have to view
these experiments

as potentially
biased.

.

able for analysis. When we do not have such quanti-
tative data, we call the analysis a lessons learned study
(which we describe later).

Study of legacy data can be called a form of soft-
ware archaeology, as researchers examine existing files
trying to determine trends. Data mining is another
term often used for parts of this work as researchers
try to determine relationships buried in the collected
data. Here researchers are not encumbered by an
ongoing project, so costs, schedules, and the need for
project delivery are not involved in this activity. All
interaction with the project artifacts is passive and is
not bound by the real-time pressures of delivering a
finished product according to some contractual sched-
ule. Much like a case study, each experiment is unique;
it is difficult to compare one project with another
because of the great variability of the collected infor-
mation’s availability.

Lessons learned. Researchers often produce lessons
learned documents after completing a large industrial
project. A study of these documents often reveals qual-
itative aspects that can be used to improve future
developments. If project personnel are still available,
it is possible to interview them to understand the
effects of methods used.

Such data, however, are severely limited. This form
of project may indicate various trends, but cannot
be used for statistically validating the results.
Unfortunately, lessons learned documents are often
“write only”; the same comments about what should
have been done are repeated in each successive docu-
ment. We never seem to learn from our previous mis-
takes.

Static analysis. In the static analysis method,
researchers can often obtain needed information by
looking at a completed product. This method is simi-
lar to studying legacy data, except that we centralize
our concerns on the product developed, whereas study-
ing legacy data includes measuring the development
process. In these cases, researchers analyze the structure
of the product to determine its characteristics.

Software complexity and dataflow research both
rely on this model of analysis. For example, since
researchers do not fully understand what the effective
measurements are, they assume that products with a
lower complexity or simple dataflow will be more
effective. They examine the product to learn if its com-
plexity value is lower because of the development
method used.

This method is generally a favorite in the academic
world, but it is difficult to show that a model’s quan-
titative definition relates directly to the attribute of
interest. Program size, for example, is often used as a
measure of program complexity, yet numerous stud-
ies have shown that the number of lines of code is only
marginally related to such complexity.

Controlled methods
A controlled method provides for multiple

instances of an observation in order to provide
for statistical validity of the results. The con-
trolled method is the classical method of exper-
imental design used in other scientific dis-
ciplines. There are four types of controlled
methods: replicated, synthetic environment,
dynamic analysis, and simulation.

Replicated experiment. In a replicated experi-
ment, several projects (or subjects) are staffed to
perform a task in multiple ways. Researchers set
control variables, such as duration, staff level, and
methods used. By using such a method, researchers can
establish statistical validity more easily than by relying
on case studies.

In a replicated experiment, researchers replace a
given task with another task. They might replace Ada
with C++, eliminate walkthroughs, or add indepen-
dent verification and validation. Researchers form sev-
eral treatments that implement products using either
the old or new task. Then they collect data on both
approaches and compare the results. This method rep-
resents the classical scientific experiment. If there are
enough replications—perhaps 20 to 40—researchers
can establish the statistical validity of the method
under consideration.

The cost of this form of experimentation limits its
usefulness. Industrial programmers are expensive;
even a small experiment may represent six months to
a year of staff time. Because of the enormous cost of
replications, these experiments are often limited to a
few replications, which greatly increases the risk that
the results cannot be duplicated elsewhere.

The effects of performing a replicated experiment
among human subjects—such as the development
team—disrupt the experiment. Since the various groups
know that they are part of a replicated experiment, they
may not take their task as seriously as if they were devel-
oping a product that would be delivered to a customer.
This could have an adverse impact on their care and
diligence in performing their tasks, which of course
would have an impact on the observed results.

We could avoid this problem by having each repli-
cation represent a slightly different product, each one
required by a different customer. However, this
method then becomes a variation of the case study
method described earlier.

Synthetic environment experiments. In software
development, projects are usually large and prohibi-
tively expensive. For this reason, most researchers per-
form software engineering replications in a smaller
artificial setting that only approximates the environ-
ment of the larger projects. We call these synthetic
environment experiments.

Such experiments often appear as a human factors

May 1998 27

Experimentation
is one of those
terms that is

frequently used
incorrectly in the
computer science

community.

.

.

28 Computer

study that seeks to investigate some aspect in system
design or use. Typically, a large group of individuals—
students or programmers, for example—work at some
task for several hours. Researchers identify a relatively
small objective and fix all variables except for the con-
trol method being modified. Researchers often ran-
domize personnel from a homogeneous pool of
subjects, fix the duration of the experiment, and mon-
itor as many variables as possible.

A task involving a large group of 20 or 30 people
cannot be effectively tested in an experimental setting
involving only two or three programmers. The prob-
lem of transferring a result covering only a few sub-
jects may not apply to large group studies. Often,
researchers conduct such experiments because they
are easy to conduct and potentially lead to statistical
validity. But we often lose sight of the fact that the
experiment itself has little value, since it doesn’t relate
to problems actually encountered in an industrial set-
ting.

Dynamic analysis. The controlled methods we have
so far discussed generally evaluate the development
process. We can also look at dynamic analysis meth-
ods that analyze the product itself. Many instruments
can test a product by adding debugging or testing code
so that a product’s features can be demonstrated and
evaluated when it executes.

For example, a tool that counts the instances of cer-
tain features in the source program (such as number
of “if” statements) would be performing static analy-
sis. But a tool that executed the program to test its exe-
cution time would be performing dynamic analysis.

The major advantage of dynamic analysis is that
scripts can be used to compare different products that
have similar functionality. The dynamic behavior of
a product can be determined often without the need
to understand the design of the product itself.
Benchmarking suites are examples of such dynamic

analysis techniques. Researchers use benchmarking to
collect representative execution behavior across a
broad set of similar products.

There are two major weaknesses with dynamic
analysis. One is the obvious problem that if we instru-
ment the product by adding source statements, we may
be perturbing its behavior in unpredictable ways. Also,
executing a program shows its behavior for that spe-
cific data set, which cannot often be generalized to other
data sets. Tailoring performance benchmarks to favor
one vendor’s product over another’s is a classic exam-
ple of the problems with this method of data collection.

Simulation. Related to dynamic analysis is the sim-
ulation method. Researchers can evaluate a technol-
ogy by executing the product using a model of the real
environment. They can then hypothesize how the real
environment will react to the new technology. If
researchers can model the behavior of the environment
for certain variables, they can often ignore other
harder-to-obtain variables and glean results more read-
ily using a simulated environment rather than real data.

By ignoring extraneous variables, simulation is often
easier, faster, and less expensive to run than the full prod-
uct in the real environment. Researchers can often test a
technology without the risk of failure on an important
project. But the real weakness in the simulation method
is not knowing how well the synthetic environment mod-
els reality. Although we can easily obtain quantitative
answers, we are never quite certain how relevant these
values are to the problem we are trying to solve.

Which model to use
When we design an experiment, we can collect data

that conform to several of our data collection mod-
els. The sidebar called “Data Collection Example”
shows how we can collect data in evaluating a tool
that fits into each of our collection models. In fact, for
just about any technology, we can devise a data col-

Table 2. Classification of 612 evaluated papers.

1985 1990 1995
IEEE IEEE IEEE

Method ICSE Software TSE ICSE Software TSE ICSE Software TSE Total
Not applicable 6 6 3 4 16 2 5 7 1 50
No experimentation 16 11 56 8 8 41 10 3 14 167
Replicated 1 0 0 0 0 1 1 0 3 6
Synthetic 3 1 1 0 1 4 0 0 2 12
Dynamic analysis 0 0 0 0 0 3 0 0 4 7
Simulation 2 0 10 0 0 11 1 1 6 31
Project monitoring 0 0 0 0 1 0 0 0 0 1
Case study 5 2 12 7 6 6 4 6 10 58
Assertion 12 13 54 12 19 42 4 14 22 192
Field study 1 0 1 0 0 1 1 1 2 7
Literature search 1 1 3 1 5 1 0 3 2 17
Legacy data 1 1 2 2 0 2 1 1 1 11
Lessons learned 7 5 4 1 4 8 5 7 8 49
Static analysis 1 0 1 0 0 0 0 0 2 4
Yearly totals 56 40 147 35 60 122 32 43 77 612

.

lection method that conforms to any one of the 12
given data collection methods.

Our 12 methods are not the only ways to classify
data collection, although we believe they are the most
comprehensive. For example, Victor Basili6 calls an
experiment in vivo when it is run at a development loca-
tion and in vitro when it is run in an isolated, controlled
setting. According to Basili, a project may involve one
team of developers or multiple teams, and an experi-
ment may involve one project or multiple projects. This
variability permits eight different experiment classifi-
cations. On the other hand, Barbara Kitchenham7 con-
siders nine classifications of experiments divided into
three general categories: a quantitative experiment to
identify measurable benefits of using a method or tool,
a qualitative experiment to assess the features provided
by a method or tool, and a benchmarking experiment
to determine performance.

MODEL VALIDATION
To test whether the classification presented here

reflects the software engineering community’s idea of
experimental design and data collection, we examined
software engineering publications covering three dif-
ferent years: 1985, 1990, and 1995. We looked at each
issue of IEEE Transactions on Software Engineering (a
research journal), IEEE Software (a magazine that dis-
cusses current practices in software engineering), and
the proceedings from that year’s International Confer-
ence on Software Engineering (ICSE). We classified each
paper according to the data collection method used to

validate the claims in the paper. For completeness we
added the following two classifications:

1. Not applicable. Some papers did not address some
new technology, so the concept of data collection does
not apply. For example, a paper summarizing a recent
conference or workshop wouldn’t be applicable.

2. No experiment. Some papers describing a new
technology contained no experimental validations.

In our survey, we were interested in the data col-
lection methods employed by the authors of the papers
in order to determine our classification scheme’s com-
prehensiveness. We tried to distinguish between data
used as a demonstration of concept (which may
involve some measurements as a “proof of concept,”
but not a full validation of the method) and a true
attempt at validation of their results.

As in the study by Walter Tichy,8 we considered a
demonstration of technology via example as part of
the analytical phase. The paper had to go beyond that
demonstration to show that there were some conclu-
sions about the effectiveness of the technology before
we considered that the paper had an evaluative phase.

The raw data for the complete study—presented in
Table 2—involved classifying 612 papers published in
1985, 1990, and 1995.

Quantitative observations
Figure 1 graphically presents the classifications of

the 562 papers that we examined. (We assessed 612

May 1998 29

Static analysis

Lessons learned

Legacy data

Literature search

Field study

Assertion

Project monitoring

Case study

Simulation

Dynamic analysis

Synthetic

Replicated

No experimentation

V
al

id
at

io
n

 m
et

h
o

d

0 5 10 15 20

Percentage of papers

25 30 35 40

1995 (152 papers)
1990 (217 papers)
1985 (243 papers)

Figure 1. Use of
validation methods
in 612 published
papers.

.

30 Computer

papers and judged 50 to be “not applicable.”) The
most prevalent validation models appear to be lessons
learned and case studies, each at a level of close to 10
percent. Nearly a third of the papers relied on the
assertion method. About 5 percent relied on the sim-
ulation method, while the remaining techniques were
each used in about 1 to 3 percent of the papers. About
a third of the papers had no experimental validation;
however, the percentages dropped from 36 percent in
1985 to 29 percent in 1990 to only 19 percent in 1995,
which seems to indicate improvement.

Tichy classified all papers into formal theory, design
and modeling, empirical work, hypothesis testing, and
other. His major observation was that about half of
the design and modeling papers did not include exper-
imental validation, whereas only 10 to 15 percent of
papers in other engineering disciplines had no such
validation.

Many empirical work papers really are the result of
an experiment to test a theoretical hypothesis, so it
may not be fair to exclude those papers from the set
of design and modeling papers. If we assume the 25
empirical work papers in Tichy’s study all have eval-
uations in them, then the percentage of design and
modeling papers with no validation drops from 50 to
about 40 percent in Tichy’s study. These numbers are
approximate, since we don’t have the details of his
raw data, but they are consistent with our results.

We have started to investigate how these numbers
compare to other disciplines and have looked at var-
ious papers in physics, economics, and the behavioral
sciences.9 What we are finding, however, is that papers
in archival research journals (such as Transactions)
do not differ materially from those in other archival
journals in the so-called hard sciences.

Qualitative observations
Here are the qualitative observations we made

about the 612 papers:

• Authors often fail to state their goals clearly or
to point to the value that their method or tool
adds to the experimentation process.

• Authors often fail to state how they validate their
hypotheses. We had to inspect each paper care-
fully to determine, as best we could, what the
authors were intending to show in the various
sections called “validation” or “experimental
results.” Often such a section couldn’t be found,
so we had to determine if the presented data
could be called a validation.

• Authors often use terms very loosely. Authors
would use the term “case study” informally and
would even use terms like “controlled experi-
ment” or “lessons learned” indiscriminately. We
attempted to classify each paper by what the
authors actually did, not by what they called their
work. We hope that this article can have some
effect on formalizing these terms.

There is one major caveat, however, for under-
standing the data we present. The papers that appear
in a publication are influenced greatly by the publica-
tion’s editor or, in the case of a conference, by the pro-
gram committee. In our study, the editors and program
committees from 1985, 1990, and 1995 were all dif-
ferent. This difference is a factor that may have affected
our outcome. While our goal is to understand how
research in software engineering is validated, the only
way to discover such research is via the publications
on software engineering, which leads to this dilemma.

Data Collection Example

Several evaluation methods can be used
to test a new tool:

• Project monitoring. Use the new tool
in a project and collect the usual
accounting data from the project.

• Case study. Use the tool as part of
new development. Collect data to
determine whether the developed
product is easier to produce than
similar projects in the past.

• Assertion. Use the tool to test a sim-
ple 100-line program to show that it
can find all errors.

• Field study. Distribute the tool across

several projects. Collect data on the
tool’s impact.

• Literature search. Find other pub-
lished studies that analyze the behav-
ior of similar tools.

• Legacy data. Find a previously com-
pleted project that collected data on
using the tool. Analyze this data to
see if tool was effective.

• Lessons learned. Find a completed
project that used this tool and inter-
view participants to see if tool had
an impact on the project.

• Static analysis. Use a control flow
analysis tool to see if one design
method results in fewer logic errors
than another design method.

• Replicated experiment. Develop
multiple instances of a module using
and not using the tool. Measure the
differences.

• Synthetic. Have 20 programmers
spend two hours trying to debug a
module, half of them using the tool and
half of them using other techniques.

• Dynamic analysis. Execute a pro-
gram with a new algorithm and
compare its performance with the
earlier version of the program.

• Simulation. Generate a set of data
points randomly and then execute
the tool alongside another tool to
determine effectiveness in finding
errors in a given module.

.

In 1992, the US National Research Council panel
recommended “…that authors and journal edi-
tors attempt to raise the level of quantitative

explicitness in the reporting of research findings, by
publishing summaries of appropriate quantitative
measures on which the research conclusions are
based…”5 Such problems are well known in the soft-
ware engineering world. Surveys such as Tichy’s and
our own tend to validate the conclusion that the soft-
ware engineering community can do a better job in
reporting its results.

On the other hand, we need to collect accurate data
and avoid British economist Josiah Stamp’s lament:
“The government is very keen on amassing statistics—
they collect them, add them, raise them to the nth
power, take the cube root and prepare wonderful dia-
grams. But what you must never forget is that every
one of those figures comes in the first instance from
the village watchman, who just puts down what he
damn pleases.”

Through our analysis of some 600 published papers
we observed that

• too many papers have no experimental valida-
tion at all;

• too many papers use an informal (assertion) form
of validation;

• researchers use lessons learned and case studies
about 10 percent of the time, with the other tech-
niques being used only a small percent of the time
at most; and

• experimentation terminology is sloppy.

While the number of papers with no experimental
validation seems to be dropping, clearly more work
needs to be done. We want to characterize experi-
mental models according to the types of data they can
produce and the types of data industry needs in order
to select new technology effectively. Ultimately, we
want to enhance researchers’ ability to report on soft-
ware engineering experimentation so that research can
better assist industry in selecting new technology. ❖

Acknowledgments
We thank Dale Walters, who helped classify the 600

papers used to validate the models described in this
article.

References
1. W.R. Adrion, “Research Methodology in Software Engi-

neering: Summary of the Dagstuhl Workshop on Future
Directions in Software Engineering,” SIGSoft Software
Eng. Notes, Vol. 18, No. 1, ACM Press, New York,
1993, pp. 36-37.

2. S.L. Pfleeger, “Experimental Design and Analysis in Soft-
ware Engineering,” Annals of Software Eng. 1, Baltzer
Science Publishers, The Netherlands, 1995, pp. 219-253.

3. M.V. Zelkowitz et al., “Software Engineering Practices
in the United States and Japan,” Computer, June 1984,
pp. 57-66.

4. V.R. Basili and H.D. Rombach, “The TAME Project:
Towards Improvement-Oriented Software Environ-
ments,” IEEE Trans. Software Eng., 1988, pp. 758-773.

5. Combining Information: Statistical Issues and Oppor-
tunities for Research, Panel on Statistical Issues and
Opportunities for Research in the Combination of Infor-
mation, National Academy Press, Washington D.C.,
1992.

6. V.R. Basili, “The Role of Experimentation: Past, Present,
Future,” (keynote presentation), Proc. Int’l Conf. Soft-
ware Eng., IEEE CS Press, Los Alamitos, Calif., 1996.

7. B.A. Kitchenham, “Evaluating Software Engineering
Methods and Tools,” SIGSoft Software Eng. Notes,
ACM Press, New York, 1996, pp. 11-15.

8. W.F. Tichy et al., “Experimental Evaluation in Computer
Science: A Quantitative Study,” J. Systems and Software,
1995, pp. 9-18.

9. M.V. Zelkowitz and D. Wallace, “Experimental Valida-
tion in Software Engineering,” Information and Soft-
ware Technology, Vol. 39, 1997, pp. 735-743.

Marvin V. Zelkowitz is a professor of computer sci-
ence at the University of Maryland, codirector of the
Fraunhofer Center Maryland, and, until recently, a
faculty researcher at the National Institute of Stan-
dards and Technology. He is also one of the directors
of the NASA Goddard Space Flight Center Software
Engineering Laboratory, which has been studying the
effects of software engineering technologies in prac-
tice since 1976. His research interests include envi-
ronment design, empirical studies, and measurement.
Zelkowitz received an MS and a PhD in computer sci-
ence from Cornell University. Contact him at
mvz@cs.umd.edu.

Dolores R. Wallace is a computer scientist in the soft-
ware quality group at the National Institute of Stan-
dards and Technology and leads the Reference Data:
Software Error, Fault, Failure, Data Collection, and
Analysis Repository Project, which provides metrol-
ogy and reference data for software assurance. Her
research interests include methods and tools, espe-
cially for verification and validation, to improve soft-
ware quality and correctness. Wallace received an MS
in mathematics from Case Western Reserve Univer-
sity. Contact her at dwallace@nist.gov.

May 1998 31

