Sept. 23, 1958 R. R. JOHNSON 2,853,238

BINARY-CODED FLIP-FLOP COUNTERS
Filed Dec. 20, 1952

V0

OUNT
gos, TRAINSFORMATION M 7oK
PULSES ,
/J‘}/ JJ P _,V{l/v
/ . / /
l:, ‘ 8 P, N Frs- L.
Z/p}
L Ay —1.4 —le ;
<

3
\%‘7

r
3
g}t A\
N

Oy

oo Fz5-3,
L]
< 4 _J . i 20 J
L) 7/ | . / ‘5 3 / é’ —-4- / ﬂ
Nl 7 iI r—:D,,a U e 6‘ Yo
ae 7 o 40 Bz
4 A 2 c S _Ja
/ / -l . / d B . 7/ 6' ) / Y D / £ £
:l}.a ] *—:D——d é 0—:13_,0 2
z F
ot |
go . INVENTOR.
' NPBLRT ROVEE T2ANSON,
Flzs= 5. BY
sl A Al

ATTORNEY.



United States ?atent Office

2,853,238
Patented Sept. 23, 1958

i

2,853,238
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Application December 20, 1952, Serial Ne, 327,131
12 Claims, (CL 235—92)

This invention relates to binary-coded flip-flop counters
and, more particularly, to binary-coded flip-flop counters
mechanized in accordance -with a set of transformation
functions requiring-a minimum of gating circuits.and pro-
viding an evenly-distributed load for the flip-flops.

The present.invention extends the basic principles of
the-flip-flop counters shown in two copending U. S.-pat-
ent-applications. The  first copending. U. S. patent ap-

- plication, Serial No. 245,860, entitled “High-speed Flip-
Flop Counter,”. by Eldred C. Nelson, filed September 10,
1951, discloses a binary counter wherein all flip-flops are
triggered simultaneously in response to count pulses ap-

_plied in.parallel to a plurality of “and” circuits, one for
-each flip-flop. - Each of -the “and” circuits-is controlled

- by voltage-state signals-derived from the conduction states
of each of the preceding flip-flops in the counter chain.
:Application Serial No.:245,860 has been assigned of rec-
ord to the assignee of this application.

The counter:.described:in-the first copending -applica-
tion may: be distinguished from.prior-art binary counters
in that the flip-flops are not connected in “cascade.” The
term cascade is. utilized to indicate that .each flip-flop in
the counter chain is triggered by a. carry pulse produced
by the preceding flip-flop, as it is triggered from a 1-rep-

. resenting state to a O-representating state. In the cas-

"caded type of flip-flop counter the count pulses are ap-

. plied to the first flip-flop in the chain and carry pulses
are then propagated through the counter. A “settling”
time must be allowed between the count pulses to per-
mit the counter to assume a count-representing stable
state before the next pulse is applied. This settling time
is equal to N times the time of pulse propagation be-
jtiween two flip-flops, where N is the total number of flip-

ops.

One of the features of the counter shown in the first
application, then, is ‘that it may be operated at approxi-
mately N times-the speed of the corresponding prior-art
counter; N again being ‘the number of flip-flops. .

The second copending U. S. patent application, Serial
No. 327,567, now Patent No. 2,816,223, entitled “Binary-
Coded, Flip-Flop Counters,” by Elred C. Nelson, filed
December 23, 1952, extends the principles. taught in the
first copending application to all binary-coded flip-flop
counters, with the introduction of a novel transformation
theory. Copending application Serial No. 327,567, now
Patent No. 2,816,223 has also been assigned of record
to the assignee of this application. According to this
transformation theory, there are three basic types of

- transformation functions ‘which may be utilized to de-
fine the sequence of stable states of a flip-flop. - The first
type of transformation function is referred to as a setting
transformation function and defines the conditions for
setting the flip-flop to be controlled to a 1-representing
state or to a O-representing state. - The second type of
transformation function is referred to as a changing trans-
formation function and defines the conditions for chang-
ing the flip-flop to:its: opposite representing state i. e, from
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a 1-or-0 representing state to a 0-or-1 representing state.
The third type of transformation function is referred to
as a partial-changing transformation function and defines
either the conditions for changing the associated flip-flop
from a 1 to a O stable state, or the conditions for chang-
ing the.associated flip-flop from a 0 to a 1-representing
siate. Two partial-changing transformations are required
to completely define the chamging transformations of a
flip-flop; one defining the O-to-1 change and the other the
1-to-0 change. The logical sum of two partial-changing
transformations is equal to the complete changing trans-
formation. )

For example, a partial-changing equation for triggering
a flip-flop to the true state may be written as

1F=F.G. where

1F=a signal for triggering the F flip-flop from the false
state to the true state of the flip-flop;

“F==the false state of operation of the F flip-flop;

G==a first signal from a source external to the F flip-
flop; and the dot (.) between F and G represents an “and”
proposition in which F and G have to be true in order
for a 1F triggering signal to be produced.

Similarly, a partial-changing equation for triggering
the F flip-flop to its false state may be written as

OF=F.H, where

‘0F =a signal for triggering the F flip-flop from the true
state to the false state of the flip-flop;

H=a second signal from a source external to the F

- flip-flop.

The partial-changing functions set forth above may
now ‘be -combined into one function completely listing
the changing transformations for the F flip-flop. This
changing transformation may be written as

.sz'—F.G, +FH, where

Cf=a signal for changing the F flip-flop from the false
state to the true state of the flip-flop or for changing the
F flip-flop from the true state of.the false state of the flip-
flop.

In addition to the three basic types of transformations,
a fourth type of transformation is described in the second
copending -application; the fourth type being. referred
to as a simplified partial-changing transformation, since
it is derived from a partial-changing transformation by
The four
types of transformations are re-infroduced in the pres-
ent specification and explained briefly, reference being
made to the second copending application for further de-
tails.

In both of the copending applications the particular
counting code and cycle which is desired is first deter-
mined, and then the transformation functions defining
this code and cycle are derived. While for each counter
thus defined, there is a set of transformation functions
which provides the simplest gating circuits and allows
minimization cf power, there is no assurance that the par-
ticular code which has already been selected is the sim-
plest to mechanize, or that the flip-fiops providing volt-
age-state signals for controiling the gating circuits are
evenly loaded. In binary flip-flop counters of the type
described in the first copending application, for example,
the “and” gating circuit controlling the Nth flip-flop
{where N is any integer) has N—1 input terminals, neces-
sitating a corresponding number of diodes, where diode
“and” circuits are utilized, or a corresponding number of
control grids, where vacuum-tube “and” circuits are uti-
lized. - In addition to the complexity of the gating circuits
in the binary counter, the flip-flop load distribution is
unbalanced since one of -the flip-flops produces a voltage-
state signal which is utilized to control N—1 gating cir-
cuits, whereas another has no load whatsoever,
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According to the present invention, the transformation
functions are derived first according to principles which
insure that the gating circuits will be simple and that
the flip-flop load will be evenly distributed. The even
distribution of the load results from the fact that each
flip-flop has its output voltages introduced to substan-
tially the same number of input terminals in the counter
as the output voltages of the other flip-flops. Another
way in which the load can be considered to be evenly
distributed is that each input terminal in the counter
generally has introduced to it only the output voltage
from one of the flip-flops in the counter. Having thus
defined a simple, balanced-load, flip-flop counter; the
code and counting cycle are determined. A counter
having any cycle desired may be defined in this manner,
the code being, in effect, predetermined by the trans-

formation functions, which define a set of simple gating "

circuits and place a balanced load on the flip-flops. By
code is meant the interrelationship between the different
flip-flops in the counter to obtain the desired count.
This interrelationship can be set forth by logical equa-
tions for each counter included in the invention, as will
become more apparent subsequently.

The basic embodiment of the present invention com-
prises: a plurality of flip-flops producing voltage-state
signals corresponding to their stable states, respectively;
and a transformation matrix responsive to the voltage-
state signals and to applied counting pulses for produc-
ing control signals which control the sequence of stable
states of the flip-flops. The transformation matrix is
mechanized according to a set of transformation func-
tions, one for each flip-flop in the counter. These func-
tions are derived according to principles which insure
that the gating circuits in the transformation matrix will
be simple and that the load placed upon the flip-flops
will be evenly distributed.

Accordingly, it is an object of the present invention
to provide a binary-coded flip-flop counter mechanized
according to a set of transformation functions defining
simple gating circuits and providing a balanced load for
the flip-flops in the counter.

Another object of the present invention is to provide
a high-speed counter in which pulses to be counted are
applied to each of a plurality of flip-flops through a
single gating matrix; the counter including a minimum
of gating circuits.

A further object of the invention is to provide a binary-
coded flip-flop counter wherein a transformation matrix
is utilized to produce control signals determining the
sequence of the counter, the transformation matrix being
responsive to voltage-state signals produced by the flip-
flops and to the applied counting pulses and being mech-
anized in such a manner as to provide a balanced load
for the flip-flops. By sequence of the counter is meant
the pattern of the different flip-flops in the counter to
represent different numbers. For example, the flip-flops
in the counter may have a first pattern of operation to
represent a first number such as “1” and may have a
second pattern of operation to represent a second num-
ber such as “2”. The changes in the pattern of opera-
tion of the flip-flops in the counter from each number
to the next may be considered as the sequence of the
counter, .

The novel features which are believed to be character-
istic of the invention, both as to its organization and
method of operation, together with further objects and
advantages thereof, will be better understood from the
following description: considered in connection with the
accompanying drawings, in which several embodiments
of the invention are illustrated by way of examples.
It is to be expressly understood, however, that the draw-
ings are for the purpose of illustration and description
only, and are not intended as a definition of the limits
of the ‘invention.
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Fig. 1 is a block diagram of the basic embodiment-
of the present invention;

Fig. 2 is a schematic diagram of a scale-of-10 binary- -
coded counter, employing a scale-of-5 binary-coded:
counter;

Fig. 3 is a-schematic diagram of a scale-of-8 counter;"

Fig. 4 is a schematic diagram of a scale-of-16 counter;
and

Fig. 5 is a schematic diagram of a scale-of-32 counter.

Referring now to Fig. 1, there is shown one embodi-
ment of a binary-coded counter according to the present
invention in which pulses Cp to be counted are applied
to a transformation matrix 100 which produces control
signals for actuating a plurality of flip-flop stages A,
B, . .. and N, where N is utilized to indicate that any
number of stages may be included.

Before proceeding to consider - specific counters which
are mechanized according to the present invention, it is
necessary to consider the novel principles which make it
possible to select a set of transformation functions that
define a minimum amount of gating circuits and provide
balanced loading for the flip-flops.

The notation which is utilized in the explanation which
follows is consistent with that utilized in the second co-
pending application. The changing transformations
which are considered below are represented by “C” fol-
lowed by the letters @, b, . . . or n indicating the par-
ticular flip-flop which is controlled. The partial-chang-.
ing transformations are represented in the same manner
as the corresponding changing transformation with the
addition of the number 1 or 0 indicating whether the
flip-flop is changed to 1 or changed to 0. Thus, the
partial-changing transformation Cbh0 indicates the con-
ditions under which flip-flop B is changed from a stable-
state representing binary 1 to a stable-state representing
0. The setting transformations are designated by the
symbol S plus the letters @, b, . . . n and either 1 or 0
indicating whether the flip-flop is set to 1 or set to 0.

Tt should be appreciated that the operations of flip-
flops may be controlled by setting functions as well as
changing functions. ¥or example, the flip-flop F is trig-
gered to its true state for the condition 1F=F.G only

when F and G are simultancously true. A changing
function indicates. therefore, when a triggering signal is
introduced to a flip-flop. On the other hand, a setting
function indicates when a flip-flop remains in its pres-
ent state of operation. For example, for a condition
Sal=B, the A flip-flop remains in its true state as long
as B remains true. When B becomes false, the A flip-
flop becomes triggered to its false state.

In the second copending application it is established
that a 0-to-1 partial-changing transformation in the form:
Cf1=F.0(4, . . . N) may be reduced to the simplified
partial-changing transformation: 1F=Q(4, ... N),
where F is the complementary signal produced by any
of the flip-flops A through N and Q(A, . . . N) is any
function of the other flip-flop signals, where (4, . .. N)
identifies flip-flops and Q refers to flip-flop output. In a
similar manner it is established that the 1-to-0 partial-
changing transformation in the form:

CfO=F.Q(4, . . . N}

may be reduced to the simplified partial-changing trans-
formation: 0OF=Q(4, . . . N).

It is also pointed out in the second copending applica-
tion that each changing transformation is the logical sum
of the corresponding partial-changing transformations.
Thus, Cf=Cf14-Cf0. It follows, then, that a changing
transformation in the form:

Ci=F.QUA, . ., N)+F.Q*4, .. . N)
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fnay. be reduced to. the simplified . partial-changing trans-
formations:

1F=0(4, ... N)

0F=0%(4, ... N)

~'The: simplest. gating circuit is-one: which is-utilized to
-apply: count pulse €p. directly to the -associated flip-fiop.
“For example,.-the’A: flip-flop: may-be triggered from' its
«false: state -touits-true state-or from -its true state: to- its
‘-falsei-state~ upon- the introduction:.of - each clock :pulse.
This :may. be:represented: as

Ca=Cp, where
"Ca==a changing function to indicate.a triggering of the
"Aflip-flop from one state. of operation to.the other;
.Cp=aclock signal.
+If: the.A-flip:flop::and:-the: B* flip:flop- were - included in
-a:counter: having - only ~two.: flip-flops, - Ca=Cp. might
represent: a;;simplified form-of

Ca=(A4:B+A-B+4-B-+A4:B)Cp

As will be seen, the proposition 4-B-+A-B+4-B+A-B
is always ‘true-since ‘it represents the only possible com-
binations for operation of the A and B flip-flops.  From
this, it can be seen that .

Ca=(4'B+A-B+4-B-:4-B)Cp=Cp
Even when more than-one flip-flop is included in a

counter, the maximum count of the counter is only a
decimal value of “2” when. each flip-flop is triggered
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directly by the clock pulse and'the count is initiated from .

a value of “1.” For example;.the.flip-flops A and B may
be included in a counter such that each flip-flop is triggered
by the clock pulse from:one state of operation to the

other. Thus, Ca=Cp and .Ch=Cp. By this arrange-.

ment, the A and B flip-flops are effectively in parallel so
that only one of the:flip-flops is.instrumental in providing
a count. As is well known, a single flip-flop can only
provide two different indications corresponding to “1”
or “2.”
In order to obtain a count higher than “2,” certain of
the flip-flops in the counter must be triggered upon the
» occurrencesof particular;output voltages from: at Ieast one
other flip-flop in the counter. In other:words; cerfain

of the flip-flops must be responsive to signals representing.

the voltage states of at least ome other flip-flop in the
counter.

As will be:seen more clearly subsequently, certain flip-
flops in each -counter -may be triggered by each clock

pulse so as to:be responsive to the voltage states of none-

of the other flip-flops in the .counter. FEach of the other
flip-flops in the counter is generally responsive to the
voltage state of only one other flip-flop in the counter.
In this way, counters having balanced loads on the dif-
ferent' flip-flops in the counter are obtained.

It will be -established that any- gating circuit-responsive
to-only-one flip-flcp signal may be defined by a changing
function in the form: Cf=(F.G4F.H).Cp, where G
and H are.voltage-state signals which may be produced
by the same section of a flip-flop, by different. sections
of the same flip-flop, or by different flip-flops.

If G and H are produced by the same section of a
flip-flop, that is. G=H, it is apparent that the function Cf
may be reduced to one in the form: Cf=G.Cp. If H is
produced by.the complementiry section of flip-flop G,
_Cf -becomes: Cf=(F.G+F.G).Cp; which, it -will: be
;ishown; :may.:be replaced- by. the setting function:

5f1=Sf0=G.Cp

By “complementary section” of a flip-flop is intenided to
-mean the -other 'of the two states-of operation of the
fliv-flop. * For example, if-the first section of the G flip-
flop is considered as. G (or. true), the complementary

s-section :of :the flip-flop. would:.be the G (or false) state

6

. of operation. If G is .produced by. the. complementaty
..section of flip-flop. H,  Cf is then 'in ‘the form:

. (F:H+F.H):Cp

+ which ‘may’ be" replaced" by ‘the " setting -function:

Sf=8f0=H.Cp
Finally, if ‘G and H are signals producéd by different

flip-fiops, then.function.Cf may be reduced to.the simplified
-partial-changing functions: . 1F=G.Cp; 0F=H.Cp;. this

case being considered. as providing.a “mixéd”. function,
since the control of the. flip-flop-F.is dependent upon.the
signals of two different flip-flops.

After flip-flop™F .is’ operated ~upon according to a
changing function Cf,-its. output signal F becomes the
signal F’ defined by the function: F’=F.Cf-+F.Cf, indi-
cating that F’ is the complement of ‘previous:signal F
after flip-flop F is triggered-as required by the condition:
Cf=1; and that F’ is equal to previous signal F when Cf
is equal to 0 (Cf=1) and.{flip-flop.F . is not triggered.
Substituting for Cf-and Cf, F’ - becomes:
F'<F.(F.G+F.H)+F.(F+G).(F+H)

=F.G+F.(F.H+G.F+G:H)

=F.G.+-F.H.(1+G)
w=F.G+FH
wheré‘signal Cp- is ‘oriuitted since’F’ -represents a voltage-
state signal. = . ‘

When G and H are the samie varigble, F’ is in the form:

F'=F.G—|—F.5. When G=and H are complementary

- - variables;: F/. becomes .equal.to"G,: when H is.replaced. by
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G, or equal to H when G is*(rﬁplacedz-biﬁﬁ;,.thus‘estabf
lishing the fact that the changing function:

Ci=(F.G+F.G).Cp
may be replaced:with the setting function:
Sf1=8f0=GCp

and that the changing function: in=(T7.§+F.H).Cp
may be replaced by the setting function: Sfl=5f0=H.Cp.

Once the _basic transformation functions defining
minimum gating circuits have been established, the code
and cycle of the.corresponding-counter may be deter-

mined from a stable, -wherein.a set of reference counts
are transformed into a second set of counts according

-tothe transformation:: functions. -For: convenience: the

reference counts may be ‘in: a;conventional: binary-code,
although any code may.be_used. In Table I below,
columns A and B represent conventional binary variables
and columns- A’ .and B’ represent the. transformation of
these variables..according to the functions:

.Ca=(4.B+A.B).Cp
"Cb=A.Cp

Table 1

P

_A’: B’ | Sequence

OO
-1t~}
OrmmO
aoam

OO

Referring now to Table I, it will be noted neither
A nor B is changed after the reference count 00 rep-
resented by the condition: A.B=1, and consequently the
counter “locks” - at 00; thus, the letter “L” is placed
opposite to count 00. -

Flip-flop A is triggered. after the count: 01 (A4.B=1),
transforming the-count 01 :to the count 11 which may
be considered as the first transition in a cycle of 3. Flip-

-flop B.is. triggered after. the count 11, since A is equal
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“to 1; and thus, the second count in the scale-of-3 sequence
is 10. Finally, both flip-flops A and B are triggered after

the count 10, since A.B is equal to 1, causing a count
pulse to trigger flip-flop A; and A is equal to 1, causing
a count pulse to trigger flip-flop B. "Thus, a cycle of 3 is
completed, as the counter returns to the stable state 01
which was assumed to be the first count in the sequence
of 3.

It will be noted that several other similar counters may
be derived from the functions given above. For example,
by permutating or interchanging the signals of flip-flops
A and B, there is provided the functions:

Cb=(B.A+B.4).Cp

Ca=B.Cp
represented in Table II.

) Table II
A B | A’ B’ | Sequence
0.0 00 L
0.1 10 1
10 11 3
11 01 3

Similarly, complementing the signals of either of flip-flops
A or B, or both A and B; provides the functions:

Ca=(A4.B+A4.B).Cp
Cb=A4.Cp

where signals A  and A are complemented, the counting
cycle being shown in Table III:

Table 11
A B A’ B’ | Bequence
00 11 1
01 00 3
10 1-0 L
11 01 2

Ca=(4A.B+A4.B).Cp
Cb=A.Cp

‘where sigﬁals B and B are complemented, the counting
cycle being shown in Table 1V:

Table IV

A B A’ B’ | Sequence
00 1.0 1
01 0-1° L
10, 11 2
11 00 3

Ca=(A.B+A.B).Cp
Cb=A4.Cp

where both ﬁip-ﬂbp A and B signals are complemented,
the counting cycle being shown in Table V:

Table V
A B A’ B’ | Sequence
00 01 1
01 10 2
10 | 00 3
11 11 L

"There are four other sets of functions and corresponding
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8

sequence tables which are obtained by complementing the
signals in the permutated set above.

As will be seen, a considerable number of sets of
transformations may be obtained for each counter even
when only two flip-flops are in the counter. It may be
shown from what has been considered that each set
of transformations may be considered to represent N’ x 2N,
similar sets that may be derived therefrom by permutating
or complementing certain flip-flop signals where N equals
the number of flip-flops in the counter represented by the
set of transformations. For example, by formula N’ X 2N,
it will be seen that eight different sets of transformations
may be obtained for a counter having N==2 flip-flops.
Four sets of transformations have been set forth above.
It is believed that a person skilled in the art would be
able to derive the other four sets of transformations from
the above discussions and from the four sets of trans-
formations already set forth in the specification. Elim-
inating all of the sets of functions which may be obtained
by permutating or complementing the variables in the
basic functions, the following are the basic functions
for two flip-flop counters, according to the present in-
vention:

1)

Ca=(4.B+4.B).Cp
Chb=A.Cp
(2
Ca=(4.B+A4.B).Cp
Cb=(A4.B+A4.B).Cp
3)
Ca=(A4.B+A4.B).Cp
Cb=(A.B+A4.B).Cp
4)
Ca=B.Cp
Cb=A.Cp

The count sequences for these functions are tabulated in
Table VI, below:

Table VI
AB |l mw|®@®|® e
00 L 1 L 1-3-3
01 1 2 1 1
10 3 4 2 1
11 2 3 | L 2-2

The operation of the A and B flip-flops in accordance
with the logical equations of set 1 may be seen from the
following discussion. Assume that the A flip-flop is
initially false and the B flip-flop is true. This corresponds
to a value of “1”, as may be seen from vertical column
1 in Table 6. Since only one of the A and B flip-flops is
true, the A flip-flop becomes triggered upon the introduc-
tion of the first clock signal Cp. This causes the A
flip-flop to change from a false state to a true state.
However, the B flip-flop dies not become triggered since
it can be triggered only when the A flip-flop is in its true
state before the introduction of the clock pulse Cp.
Because of this, the A and B flip-flops are both in their
true state after the introduction of the first clock signal
Cp. This corresponds to a decimal value of “2” in ver-
tical column 1 of Table VI.

Since both A and B are true, the operation of the A
flip-flop cannot be changed upon the introduction of the
next clock signal Cp. However, the operation of the
B flip-flop changes from a true state to a false state since
the A flip-flop is true. The respective operations of the
A and B flip-flops in their true and false states correspond
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to a decimal value of “3" -in vertical column (1) of
Table VI.

Upon the introduction of the next clock signal Cp, the
A flip-flop changes from'its true state to.its false state.
The reason for this is that only one of-the two flip-flops
is true before'the introduction of the ‘clock signal. At
the same time, the B flip-flop changes from a false state
to a true state since the A flip-flop is true before the in-
troduction of the clock pulse Cp.’ When the A flip-flop
becomes false and the B:flip-flop -becomes true, the flip-
flops are in a state of operation corresponding to a decimal
value of “1”. In this way, the A-and B flip-flops return
to their.initial state for the commencement of a new
count. "By such an arrangement, a cyclic-count between
“1”and “3”, inclusive, is obtained upon ‘the introduction

*of successive clock: pulses,

It ‘may sometimes' happen-that both A and B are in
their false ‘states of operation. When this occurs, the
operation of the A flip-flop cannot become changed be-
cause of the requirement that one of the flip-flops must
be in its true state in order for the A flip-flop to be
triggered. The B flip-flop also. cannot be triggered since
it can be triggered only when the A flip-flop is true.
For this reason, the A and B flip-flops remain locked in
their present states of operation. This is designated by
the symbol “L” in vertical column 1 of Table VI.

Consider now the second set of logical equations.
These may be repeated as

Ca=(A.B+A.B)Cp
Cb=(4.B+A4.B)Cp

‘The A and B flip-flops. may be considered to be in their

false state for a decimal value of “1”, as.shown in vertical
column 2 of Table VI. With the A and B flip-flops in
their false states:-of operation, the B flip-flop becomes
triggered to its true state upon the occurrence of the first

. Cp signal but the A flip-flop remains false. ~This cor-

responds to a.decimal value.of *2” in vertical column
2 of Table VI.
Since only the B flip-flop is true, the second clock signal

-causes A to become triggered true and the B flip-flop to

remain true. This corresponds to a décimal value of
“3” in vertical column 2 of Table VI. Because of the
true states of both the A and B flip-flops, A remains. true
and B becomes triggered to its false state when the third
clock signal Cp occurs. This represents a decimal value
of “4” in vertical column 2 of Table VI. The A and B
flip-flops return to a decimal value of “1” upon the oc-
currence of the next clock signal so as to initiate a new
count.
The third set of equations is as follows:

Ca=(4.B+A.B).Cp
Cbh=(A.B+A4.B)Cp

As will be seen, the' A and B flip-flops cannot be triggered
when they are both true or both false. This is indicated
by the letters “L”in vertical column 3 of Table VL
‘When A is false and B is true, A becomes true and B be-
comes false upon the introduction of the first Cp signal.
A returns to its false state and B returns to its true state
upon the introduction of the next clock signal. In this
way, the A and B flip-flops can count only the values of
‘ll” and “2”.
.- In the fourth-set of equations,

Ca=B.Cp

Cb=A.Cp.

Various sequences of operation are possible when the A
and B flip-flops are connected in accordance with the
fourth set of logical equations. ‘For example, the A
and B flip-flops may both be initially false, This would
prevent either of the A or B flip-flops from being triggered
to the true state. This is represented by the symbol “L”
in vertical column 4 of Table VI

10

The. A ﬂip-ﬂo;; may: also be. initially false and the B

" flip-flop initially true, as represented. by the symbol “1” in
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‘represent a:decimal value of “2”.
2" in wertical :column 4 of Table VI.

the vertical column 4 of Tab's VL. Upon the occurrence
of the first Cp signal, the B flip-flop remains true and the
A flip-flop: becomes triggered true to represent a decimal
value of “2” in vertical column 4 of Table VI. The next
clock signal Cp causes both A and B to become false to
represent a decimal value. of “3” in vertical column 4 of
Table VI. When both A and B become false, the flip-
flops become locked as described above. In this way,
the flip-flops count from “1” to “3” and then cannot re-
turn to a value of “1” for the initiation of a new count.

A decimal value of “1” may also be represented by a
true state of operation of the A flip-flop and a false state
of operation of the B flip-flop. This is indicated by the
symbeol “1’” in vertical column 4 of Table VI to distin-
guish the count from the other counts in the column.
Upon the introducticn of the first Cp signal, the A flip-
flop remains true and the B flip-flop becomes true to
This ‘is-indicated at
Both of the A

> and- B flip-flops then become false when the next Cp
~ signal occurs. " This is indicated at “3”in vertical column

25

4 of! Table. VI,
vlocked in their false states of operation, as described in
nidetail previously.

The A and B {flip-flops then become

‘In-many cases where there -are ‘several counting cycles

: defined by a-set of. transformation functions, it is possible
~to obtain a'set-of simplified functions that define only one
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of thercycles, the: other cycle. being eliminated. - Thus,

function:set 1 defining the-three counter may be simpli-
fied by eliminating the cycle of 1, or locking count. The

simplification is performed by adding the term A.B to both
Ca and Cb, allowing the counter to change after 00 to 11,
rather than to lock at 00 as shown in Table I, above.
The functions then may be simplified as follows:

(1) ~ Ca=(A:B+AB+AB).Co=(A+E).Cp
Cb=(A+A4.B).Cp=(A-+B).Cp
'%;he simplified functions then define the cycle of Table
1I:

Table VII
A B | A’ B’ |- Sequence
0.0 11 .
01 11 1
10 01 3
11 10 2

It will be noted that the counter no longer locks at 00,
but rather enters into the cycle of 3 by passing through 00
and 11,

. The*:changing' transformations, above, ‘may now be

- placed into their minimum- gating-circuit forms:

14=Cp 1B=Cp
€Y) ;

04=3B.Cp 0B=A.Cp
(2) Sal=B.Cp; Sb1=A.Cp

(3) Sa1=B.Cp; Sbl=A.Cp -

4 Ca=B.Cp; Cb=A.Cp

Whenever two counters have cycles having no com-
mon factor, they may be operated simultaneously to pro-
vide a cycle equal to the product of the separate cycles.
Thus, the 3 and 4 stable state counters described above
may be operated simultaneously to provide a 12 counter,

" and the 3 counter may be operated simultaneously with

75

a 2 counter (provided by a flip-flop which is continually
triggered)- to provide a 6 counter. The simplified func-
tions and a cycle table for a scale-0f-6 counter using the
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simplified 3 counter described above and a third flip-
flop C are shown below: :

14=Cp 1B=Cp

; ; Ce=Cp
04=B.Cp 0B=A.Cp
Table VIII
ABC A’B’ C’ | Sequence
000 1 1 1 § ...
001 1 1 0 | s
010 11 1 6
011 1 1. ¢ 3
100 0 1 1 2
101 0 1 0 5
110 1 0 1 4
111 1 0 0 1

The simplified set of transformation functions defining
the scale-of-6 counters may be converted directly to an-
other, equivalent set, by complementing the signals of
either or both of flip-flops A and B, and then interchang-
ing the 1 and O input functions of the corresponding flip-
flop. It should be appreciated that this complementation
can be performed mentally and not by any physical struc-
ture since it is merely for the purpose of obtaining a new
set of transformation functions. Thus, when signals of
flip-flop A are complemented and the 1-and-0 input func-
tions for flip-flop A are interchanged, a first set of com-
plemented functions may be expressed as follows:

1A=B.Cp 1B=Cp
i _ +Ce=Cp
04A=Cp 0B=ACp

A second set of complemented functions is obtained by
interchanging the 1-and-0 input functions for flip-flop B
in the original set and complementing the output signals
of flip-flop B. This provides the functions:

14=Cp 1B=A.Cp
; ; Ce=Cp
04=B.Cp 0B=Cp

Finally, a third set of complemented functions is ob-
tained by interchanging the 1-and-0 input functions for
both flip-flops A and B in the original set and then com-
plementing all voltage-state signals. This provides the
set:

1A=B.Cp 1B=ACp
s ;s Ce=Cp
0A=Cp 0B=Cp

The flip-flop signals may, of course, be complemented
in the basic changing functions. Thus, the third com-
plemented set above may be obtained by complementing
the signals of flip-flops A and B in the basic changing
functions for the original set:

Ca=(A+B).Cp; Cb=(A+B).Cp; Cc=Cp

and then simplifying.

It is interesting to compare the counting sequence pro-
vided by the third complemented set of functions with
that obtained from the original set. The original set
can be repeated as

14=0Cp 1B=Cp
04=B.Cp 0B=A.Cp

Ce=Cp

The third complemented set can be repeated as

14=B.Cp 1B=A.Cp Cc=Cp
04A=Cp 0B=Cp

The counting sequence of the third complemented set
is shown in Table IX:
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- of “1” in the third complemented set.

Table 1X
ABC A’B’ C’ | SBequence
600 0 1 1 1
001 0 1 0 4
010 1 0 1 5
011 1 0 0 2
100 0 0 1 3
101 0 0 0 [
110 0 0 1 | oo
111 0 0 0 | coveeann

If the cycles of the scale-of-6 counters defined by the
original set and the third complemented set are compared
in sequence order, the sequence being started from counts
of 111 and 000, respectively, it is noted that the counts
are complementary. This is shown in Table X:

Table X
Original set | Third Com-
plemented set
Sequence

ABC ABC

111 000

100 011

011 100

110 001

101 010

0610 101

The counts of the two sequences bear a complementary
relationship because the signals of flip-flops A and B
have been complemented to provide the conversion from
the first set to the third complemented set, and because
flip-flop C is complemented, in effect, by the shift in
the starting count.

Flip-flop C is effectively complemented since it has
a true indication for a decimal value of “1” in the
original set and a false indication for a decimal value
It should be ap-
preciated that the initial values of the A, B and C flip-
flops for each set are purely arbitrary since the flip-flops
operate on a closed loop basis. In a closed loop, the
flip-flops count to a maximum value and then return
to an initial value at the next clock pulse Cp for the
commencement of a new counting cycle. On this basis,
the A, B and C flip-flops can all be in their true state
for a decimal value of “1” in the original set of trans-
formations and can all be in their false state for a
decimal value of “1” in the third complemented set
of transformations. These values are chosen since the
A, B and C flip-flops are in complementary states of
operation for each value in the original and third com-
plemented set.

While there are many three flip-flop counters which
may be mechanized according to the present inventions,
for simplicity, only five basic types are considered below,
illustrating counters having major cycles of four, five,
six, seven, and eight, respectively. It should be under-
stood, however, that for each of the five counters de-
scribed, there are 3’23 others which have the same
cycle; and that not all of the basic types of three flip-
flop counters are shown. The counters having cycles
of four, five, six, seven, and eight counts are mechanized,
respectively, according to the function sets 1, 2, 3, 4, and
5, shown below:

14=B.Cp 1B=4A.Cp 1C=A.Cp

1) ; ;
04=C.Cp 0B=C.Cp 0C=B.Cp
1A=B.Cp 1B=A.Cp

2) ; _ ; Ce=B.Cp
04=C.Cp 0B=A.Cp




2,853,238

13

1A=B.Cp 1B=A.Cp

3) ; ~_ 3Cc=B.Cp
0A=C.Cp. 0B=A.Cp
1B=A.Cp
4) Ce=C.Cp; ; Ce=B.Cp
0B=A.Cp
14=B.Cp. 1B=4.Cp
5) ; ; Cce=B.Cp
04=C.Cp 0B=A.Cp
The sequences of‘these counters-are shown in Table XI:
Table! XI
A'BC M| @6 | @ ®
000 1 1L | 1 1
00 1 1712 | L | 8 4
0.1 0 2 (1|12 5
0 1'1 fo2f|i4r|i3 3 2
1.0 0 3/ 27| & | L |7
101 4/ 57| 2 5 8
110 3| L1l s 4 6
111 4 3/ 8 7 3
It will be noted that set 1' defines a counter having two
separate cycles of four counts each; the sequence of
one cycle being represented by primed numbers. If
the counting sequence is initiated at a count of 000,
the counter cycles according to omne code; and if at a
count of 001, it cycles according to a second code. The
manner in which the sequence of the counters defined
by function sets: 1, 2, 3, 4, and 5 are obtained from
the corresponding” functions should be apparent from
the examples already ‘considered, and further' discussion,
therefore, is considered unnecessary.
The five counter defined by function set 2, above, -
may: be simplified by eliminating the: cycle of 2. If
counts 000 and 001 -are converted to 111 and 110, re-

spectively, a count pulse :signal may' be- continuously
applied to the 1-vinput circuits of flip-flops' A and B.
The simplified functions and corresponding transformed
counts then are:

1A=Cp 1B=Cp
04=CiCp 0B=A.Cp
Table XII

b
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A second, simplified five counter which is very similar
- to that just described is defined by the functions:

14=Cp "~ 1B=Cp 10=Cp

3 ’
04==C.Cp 0B=4.Cp 0C=B.Cp
. This counter. places. a somewhat less load on flip-flop
B,:since. signal: B, .controls the gating of count pulses
to only the 0 input circuit of flip-flop C, rather than to
both the 1 and 0 input circuits.

A ten-stable-state counter, utilizing the second, sim-
plified five counter and a scale-of-2 counter operated
simultaneously, is shown in Fig. 2. "Flip-flop ‘D, shown
in Fig. 2, provides the scale-of-2 counter and is trig-
gered continuously by directly applied -count pulses, Cp.

14

- Count pulses Cp are also applied directly to the 1 input
sicircuits of flip-flops: A,:B; and C.

Each:of the “and” functions in the -defining:set of
transformation’ functions’ is. provided by :an ‘*and” cir-
cuit; ‘the functions ‘€.Cp, A.Cpo, and B.Cp being pro-
vided by “and” circuits 219, 220, and 230, respectively.

" Count pulses Cp are applied to one input terminal of
- each of the “and” circuits, -since “the- varigble Cp is

in -each of the corresponding “and” functions. - Signals
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,ccandn
. “andn

C, A, and B are applied to second input terminals of
circuits” 210, 220," and 230, respectively. " Each
circuit . produces an ‘output pulse  when a  count
pulse is applied and the controlling voltage-state ‘signal
is a high-level signal. Thus, when signal Cis a high-
level signal representing binary 1, “and” circuit 210 re-
sponds to an applied -count' pulse Cp and produces a

pulse which is ‘applied to the 0 input circuit of flip-flop A.

In a similar manner, “and™ circuits 220 and 239 pro-
vide. pulses -corresponding - to the. functions: A.Cp.and
B.Cp, respectively. : )
.The logical equations -controlling the operation .of the
counter .shown in Figure 2 may be written as. follows:

14=Cp 1B=(Cp 1C=Cp - “Cd=Cp
04=C.Cp " 0B=A.Cp "0C=B.Cp

The table representing. the patterns. -of operation of the
A, B, C.and D flip-flops. for.the. different. decimal values

..may:be written as.follows:

40
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.of “1” may be considered as

" Table XII(A4)
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:'Sequence
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XII(A), a decimal value
being represented by true
states of -operation of the A and C flip-flops and false

As will be seen in Table

. states of operation of the B and D flip-flops. In accord-
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ance with the logical equations set forth above and

-the connectionsshown - in Figure 2, the B and D flip-

flops are triggered to their true state upon the intro-
duction of the first clock signal. . The- A flip-flop is
triggered to its false state at the same time since the C
flip-flop was initially. true, .“The B flip-flop remains true
since it is triggered false only when A is false before
the- introduction: of the clock- signal. - The operation
of 'the A flip-flop in its false state and the B, C and D

- flip-flops in.their true states represents a decimal value

of “2”. This may be seen in Table XII(A).

In like manner,-the A, B:and C flip-flops become trig-
gered to different patterns of operation to represent the
decimal values: of “3”, “4*-and “5”. - As'will be :seen,
the A, B and C flip-flops are in different- combinations
of true and false states for each value between “1” and
“5”, inclusive. When the A, B and C flip-flops are in
states of operation ‘indicative of a decimal value of
“5”, they return to a pattern of operation correspond-
ing to a decimal value .of “1” upon the introduction of
the next clock signal. In this way, the A, B and C
flip-flops - operate . on a recycling basis every time that
five clock signals. Cp are.introduced to the counter.

The D flip-flop operates to provide a distinction be-
tween the first cycle of operation of the A, B and C
flip-flops and the second cycle of operation of the A, B
and C- flip-flops. "For example, the A, B and C flip-
flops have the same pattern of operation for-the -decimal
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value of “1” as for the decimal value of “6”. However,
the D flip-flop has a false state of operation for the
decimal value of “1” and a true state. of operation for
the decimal value of “6”. Because of this, the D flip-
flop operates to provide a distinction between values of
“1” and “69’.

It will be seen from the above discussion that the
A, B and C counter operates to indicate a decimal scale
of “5” and the D counter operates to indicate a decimal
scale of “2”. By combining the two counters, a com-
posite counter having a decimal scale of “10” is ob-
tained. Each decimal value in the scale-of-10 counter
can be distinguished from every other value in the counter
by connecting different output terminals in the A, B, C
and D flip-flops to an “and” network. For example, for
a decimal value of “8”, an “and” mnetwork can receive
output voltages from the terminals representing the true
states of operation of the A and D flip-flops and the
terminals representing the false states of operation of
the B and C flip-flops. Since the “and” network can
pass a signal only upon the  simultaneous introduction
of “high” voltages to all of its input terminals, a signal
can pass through the “and” network only for a decimal
value of “8”.

“And” circuits for providing the above-described oper-
ation are well known in the computer art; suitable cir-
cuits, for example, being shown on pages 37 to 45 of
High-Speed Computing Devices by Engineering Research
Associates, published in 1950 by McGraw-Hill Com-
pany, Inc., New York and London, and in an article
entitled “Diode coincidence and mixing circuits in digital
computers” by Tung Chang Chen in vol. 38 of the
Proceedings of the Inmstitute of Radio Engineers, May
1950, on pgs. 511 through 514,

The scale-0f-8 counter defined by function set 5, above,
is shown in Fig. 3. The manner in which the “and” cir-

cuits shown in Fig. 3 provide the “and” functions: B.Cp, -

C.Cp, A.Cp, A.Cp, and B.C» should be avparent from
the discussion above. It will be noted that the “and”
circuii providing the changing transformation function:
Cc=B.Cp is coupled to both the 1 and 0 input circuits
of flip-flop C, so that the pulse produced, when B is
equal to 1 and a count pulse is applied, is effective to
trigger flip-flop C to its opposite representing state.

Before proceeding to consider the transformation func-
tions defining representative types of 4-flip-flop counters,
and the associated sequence tables, it is convenient to
develop a simpler approach for obtaining a sequence
table directly from a set of simplified transformation
“functions. It has been shown that the changing trans-
formation function:

Cf=(F.G+F.H).Cp
“defines a transformation of flip-flop F such that its signal
F’, produced after transformation, is related to the sig-
nals' F- and F, produced before the transformation by
the function:
F'=F .G-+F. H

and that the changing function Cf may be simplified to
the functions:

OF=H.Cp
Whenever flip-flop F is in a O-representing state, where-

in signals F and F are 1 and 0, respectively, the function
for F’ may be reduced to: F’=G; indicating that the
transformation function causes flip-flop F to assume a
stable state corresponding to the previous state of signal
G. In a similar manner, whenever flip-flop F is in a

1-representing state wherein signals F and F have values
1 and 0, respectively, the function for F’ may be reduced

to: F'=H; indicating that whenever flip-flop F was pre-
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viously set to 1, it is transformed to the complement of
signal H.

As an example of an application of the simplified ap-
proach discussed above, consider - the transformations
shown in Table XIII, where flip-flop F is transformed
according to the functions:

1F=G.Cp
0F=H.Cp
Table XIII
F ¢ H| F | Row
0 0 0 0 1
100 1 2
01 0 1 3
110 1 4

It will be noted that signal F is 0, in rows 1 and 3, and
that in these rows F’ is equal to the corresponding signal
G. Thus, in row 1: F=0, and F'=G=0. F is equal
to 1 in rows 2 and 4 and, in these rows, F’ is equal to
the corresponding complement of signal H. Thus, in
row 2, Fisequal to 1, and F'=H=1.

Consider now the sequence table for a 4-flip-flop,
scale-of-9 counter defined by the transformation function
set:

1A=C.Cp 1B=A.Cp 1C=B.Cp

K ; ;s Cd=C.Cp
04=D.Cp 0B=A.Cp 0C=DB.Cp
Table X1V
ABCD A’ B O D Sequence
0000 01 0 1 b
0001 0.1 0 0 1
0010 1 1 0 0 7
0011 1 1 0 1 5
0100 0 1 1 1 2
0101 0 1 1 0 2
011090 11 10 3
0111 1 1 1 1 .3
1000 1 0 0.1 6
1001 00 0 ¢ 7
1010 1 0 0 O 14
1011 0 0 0 1 9
1100 1 0 1 1 8
1101 0 0 1 0 8
1110 1 0 1 0 4
1111 ¢ 0 1 1 4

It will be noted that whenever A is 0 it is transformed
to the corresponding C signal and that whenever A is 1
it is transformed to the complement of the corresponding
D signal. The transformation of signals B and C should
be apparent from the discussion above. While the trans-
formation function for flip-flop D has been left in its
changing transformation form, indicating the mechaniza-
tion required, it may also be written as:

1D=C.Cp

indicating that whenever D is 0 it is transformed to C,
and that when D is 1, it is transformed to C.

Although there are a considerable number of 4-flip-
flop counters according to the present invention, for
simplicity, only a few of the basic types are considered.
The counters considered have cycles of 8, 10, 11, 13, 15,
and 16 and are mechanized, respectively, according to
the transformation sets:

1)

1A=C.Cp 1B=A.Cp o
; _ Cc=B.Cp; Cd=B.Cp

04=D.Cp 0B=A.Cp
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© condition, indicating that D is always complemented
when C is equal to 0, except when A is 0 and B is 1
14=C. C’p 1B=A. C’p 1C=B.Cp Thus, the function Cd=C. Cp becomes.
; Cd=="C.Cp
04= DC’p 0B= AC’p 00= BCp L - - e
Cd=C.(4B).Cp=C.(4+4-B).Cp
@) In a similar manner, set 6 is obtained by interchanging
1A=C.Cp 1B=A.Cp 10=B.Cp 10 transformed counts 1 (0010) and 1’ (0011), defined by
; ; ; 0d=C.Cp set 1. The interchanging of these counts adds two change
04=D.Cp 0B=A.Cp 0C=E.Cp conditions to the function: Cd==B.Cp; one change being’
: %ided Ca‘fitebr each of the reference counts 0000, and 0001.
us, ecomes:
@ 15 S
14=C.Cp 1B=A.Cp 1C=B.Cp Cd=(B-+4.B.C.D.+4.B.C.D).Cp
; Cd=T.(A+B).Cp =(B+-4.B.C).Cp=(B+4.C).Cp
04 = DCp 0B= ACp 0C= BCp
20 The scale-of-16 counter shown in Fig. 4 is mechanized
) according to set 6 in a manner very similar to the mech-
_ anization of scale-of-10 and the scale-of-8 counters shown
1A=C'Cp lB=A.Cp 1C=B.Cp - Ca=C.Cp ;in Flngs 2 and 3, except for the circuit controlling flip-
op
04=D. Cp 0B=A4. Cp 0C=E. Cp g5 . Referring now to Fig. 4, it will be noted that a signal
correspondmg to the input function for flip-flop D,
) Cd=(B+A4. C) Cp is produced by “and” circuit 410,
having count pulse signals Cp applied to one input termi-
14=C -CP 1B==A.Cp nal and a signal corresponding to B
g to +A C applied to the
; Cc=B.Cp; Cd=(B+2A.C).Cp 80 other mput terminal.  The signal corresponding to
0A=D. C'p 0B="4. C'P B+A4.C is produced by “or” circuit 420 which responds
The counting sequences defined by these transformatlon to signals B and A.C applied to separate input terminals.
sets are shown in Table XV: “Or” circuit 420 produces a high-level output signal
Table XV
ABOD | Set (1) Set (2) Set %)) Set (4) Set (5) Set (6)
ABCD | Seq. | ABCD | Seq. | ABCD | Seq. | ABCD | Beq. | ABCD | Beq. | ABCD | Seq.

0000 0010 1 {0001 1 |ooo00]| L [0001 T 10100 1 (o011 1

0001 |o0o011 ¥ 0000 2 {0001 L 10000 2 [o101| 11 o010 9

0010 [1000 2 11000 1 {1001 1 (1000 1 1101 5 | 1000 | 10

0011 [1001 2 1001 111000 4 1001 | .11 (1100 7 | 1001 2

0100 |[0001 8 | 0011 3 |o010f{ 11 {0010 18 |0110 2 | 0001 8

0101 | 0000 g8 |0010| 10 | 0011 3 |o0011] 10 Jo111| 12 |o0000 | 16

0110 [1011 6 [1010 4 1011 9 |1010 4 {1111 3 |1011| 14

0111 [to010 ¢ 11011 g8 {1010 1 {1011 8 |1110| 13 [1010 4

1000 | 1110 3 1101 2 | 1100 5 | 1101 2 |1000] L (1110 11

1001 |0111 3 | 0100 27 10101 2 |0100| 12 {0001 | 10 {0111 3

1010 |1100 5 | 1100 5 {1101 2 | 1100 5 | 1001 9 | 1100 5

1011 |o0101 7 0101 9 |0100} 10 (0101 9 |0000| 15 |0101] 15

1100 [1101 g | 1111 6 {1110 6 |1111 6 | 1010 8 {1101 6

1101 (0100 7 10110 3 |0111 ¥ 0110 3 |oo011 6 (0100 7

1110 [1111 4 {1110 L 1111 7 11110} L J1011| 14 [1111]| 12

1111 [0110 5 {0111 7 o110 8 [0111 7 | 0010 4 |0110| 13

The manner in ngChlﬁJe sequenceSffor Set; 1,2, v3,14, _whenever either or both of signals B and A.C are high-
and 6 are obtained should be apparent from the examples level sienals. Finall
already considered. The scale-of-13 counter is obtained Zfd”Slc%?:uft 43(1)na1 v the function AC.is provided by
by combining the cycles of 3 and 10 defined by set 2; “Or” circuits suitable for providing the above-de-
and the scale-of-16 counter is obtained by combining the 80 g iiped operation are described in the above-mentioned
two cycles of 8 defined by set 1. . publications referred to as showing “and” circuits.

The cycles of 3 and 10, defined by set 2 are combined It should be apparent from the foregoing description
by interchanging two transformed counts, one from each that the present invention may be utilized to provide
cycle. In the particular case defined by set 5, count 3" counters having any cycle desired within the capacity of
of the 3 cycle is interchanged yv1th count 10 gf the 10 65 the number of flip-flops included. It should be under-
cycle. Transformed count 3 is 0011 (returning the 3 stood, then, that the 5-flip-flop transformation sets and
cycle to 1”) and transformed count 10 is 0010 (returning sequence table shown below are included only by way of
the 10 cylcle to 1) so that ’the interchange of 3," and 10 interest and are not intended to limit the scope of the
gusesf(iﬁ y :Lcha‘nge n ?tj Thg ghaggg H,’[hlg f;emt?gg? "0 invention. Sets 1, 2, 3, and 4 shown below define.count-

0 ol the changlng conditions delined by netion: ers including cycles of 17, 29, 31, and 32, respectively.
Cd=C.Cp, since D is no longer changed after the ref- The scale-of-32 counter is obtained by combining the 29
erence counts 0100, or 0101.- The change after ﬂlese and 3 cycles, defined by set 2, by interchanging trans-
counts may be eliminated from the function: Cd=C.Cp formed counts 11000 and 11001, thus changing the func-
by adding the algebraic restriction: A.B, as an “and” 75 tion: Ce=D.Cp to Cc= (D+A.§.E).Cp. ‘
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1)

14=D.Cp 1B=4A.Cp 1C=B.Cp ID=CCp  _
; ; _ s ; Ce=D

04A=E.Cp 0B=A.Cp 0C=B.Cp 0D=C.Cp

2)

14A=D.Cp 1B=4A.Cp 1C=B.Cp 1D=C.Cp _
; ; s _ sCe=D

04=E.Cp 0B=A.Cp; 0C=B.Cp 0D=C.Cp

6))

14=D.Cp 1B=4A.Cp 1C=B.Cp 1D=C.Cp
; ; ; ; Ce=D

’ 2 ’ —_—
04=E.Cp 0B=A.Cp 0C=B.Cp 0D=C.Cp

@
14=D.Cp 1B=4.Cp 1C=B.Cp 1D=C.Cp

0A=E.Cp 0B=A.Cp 0C=E.Cp 0D=C.Cp

2,858,238
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; Ce= ('5+Z.'1—3.-C-').Cp

Table XVI

ABCDE 1) @ (&) (CY]

ABCDE | Seq. | ABCDE | Seq. | ABCDE | Seq. | ABCDE | Seq.
00000 01011 v 01001 1 01000 1 01001 1
00001 {01010 1 01000 [21 01001 |19 01000 24
0001011010 [ 11000 {11 11001 |25 11001 15
00011{11011 |11 11001 |12 11000 | 14 11000 12
00100101001 4 01011 |14 01010 8 01011 17
00101 01000 4! 01010 8 01011 |27 0101¢0 8
00110 11000 (15 11010 |17 11011 6 11010 20
00111 11001 |13 11011 6 11010 |11 11011 6
01000 (01111 5 01101 {22 01100 2 01101 25
0100101110 9 01100 2 01101 {20 01100 2
01010 11110 2 11100 9 11101 g9 11100 9
01011 11111 2 11101 |15 11100 {28 11101 18
01100 | 01101 i 01111 3 01110 3 01111 3
01101 01100 2" 01110 |23 1111121 01110 26
01110 11100 |10 11110 {24 11111 4 11110 27
01111 11101 6 11111 4 11110 |22 11111 4
10000 | 10011 9 10001 (28 10000 L 10001 31
10001100010 5 00000 |29 00001 |18 00000 32
10010 10010 L 10000 |27 10001 |17 10000 30
1001100011 |10 00001 |20 00000 |31 00001 23
1010010001 4 10011 |19 10010 |16 10011 22
10101 00000 |12/ 00010 3! 00011 |13 00010 14
1011010000 8 10010 (26 10011 |30 10010 29
10111 (00001 |17 00011 (11 00010 |24 00011 11
11000 10111 (16 10101 2 10100 {15 10100 13
11001 00110 |14 00100 |13 00101 |26 00100 16
110104710110 7 10100 |18 10101 |12 10100 21
11011 00111 |12 00101 7 00100 7 00101 7
11100 10101 |1¥ 10111 (10 10110 |29 10111 10
11101 {00100 7 00110 |16 00111 |10 00110 19
11110(10100 3 10110 (25 10111 |23 101160 28
1111100101 3 00111 5. 00110 5 00111 5

The scale-of-32 counter shown in Fig. 5 is mechanized
according to transformation set 4, above. Since the
mechanizations of several counters according to trans-
formation functions have already been considered, it is
believed that a detailed description of the circuit shown
in Fig. 5 is unnecessary and is therefore omitted.

It has been explained above that many counting cycles
may be obtained from a few basic counters according to
the present invention by combining a first counter hav-
ing a first counting cycle and a second counter having
the first counting cycle or a second counting cycle. The
second counting cycle may have no relationship to the
first counting cycle. For example, a scale-of-10 counter
is shown in Figure 2. As previously described, this scale-
of-10 counter is obtained by combining a counter having
a counting cycle of “5” and a counter having a count-
ing cycle of “2.” Another technique for obtaining a
variety of cycles from a few counters of the type de-
scribed above is to connect the counters into a chain or
into “cascade.” In this type of circuit each counter may
be considered to be similar to the scale-of-2 counter in a

80
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binary chain. Whenever the counter is caused to com-
plete its cycle and return to its initial stable state it pro-
duces a “carry” signal which is applied to the next
counter in the chain.

If the counter which is to be connected in cascade in-
cludes a flip-flop which is only changed twice during its
cycle the carry signals may be derived from one section
of this flip-flop in the same manner as carry signals are
derived in prior-art binary, “cascaded” counters. Thus,
when the scale-of-3 and scale-of-5 counters described
above are utilized in cascaded counter chains, carry sig-
nals may be derived from a single flip-flop of each
counter, the particular flip-flop undergoing only two
changes during a cycle. The counters utilized in chains
must, of course, be preset so that the carry signals occur
at the ends of the respective counting cycles.

The disadvantage of cascading counters due to the de-
lay in propagating carry signals is considerably reduced
when high-speed counters of the type described in this
application and the copending applications are utilized.
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since the desired counting cycle may be obtained by
cascading only a few counters.

)
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pending application and set 2 being defined accordmg to
the present invention:

Ca=Cp; Cb=A.Cp; Cc=A.B.Cp; Cd=A.B.C.Cp; Ce=A,B.C.D.Cp

@
1A=D.Cp

’
04=E.Cp

It is apparent, then, that with a few basic types of
counters it is possible to obtain a great number of cycles,
by combining cycles, simultaneously operating counters,
or by connecting counters into cascade. With five flip-
flops, for example, it is possible to obtain any of the
cycles 16 through 32; cycles of 19 and 23 being obtained
by combining other cycles such as 17 and 2 for 19,
cycles including odd and even factors having no common
factor being obtained by simultaneously operating the
corresponding counters, and cycles including two odd or
two even factors being obtained by cascading the cor-
responding counters.

From the foregoing discussion, it should now be under-
stood that counters having minimum gating circuits, may
be mechanized according to the transformation func-
tion: Cf=}7—.G+F.H, which may also be considered as
defining the relationship: F'=F.G.--F.H. Where it is
also desired that function Cf define a minimum load for
the flip-flops in the counter, the only restriction which is
added is that signals G and H must be different for each
of the transformation functions in the defining set. This
means that no flip-flop signal is used more than once, or
that some flip-flop signals may not be utilized at all.

The scale-of-10 counter shown in Fig. 2 of this speci-
cification is one which includes all minimum gating cir-
cuits and provides a minimum loading for the flip-flops.
It is interesting to compare the flip-flop loading of this
counter with the scale-of-10 counter shown in the second
copending application. The 10 counter of the copending
application is defined by the functions:

1D=A.B.C.Cp
=A.B.Cp;

0D=A.Cp
and the 10 counter of the present invention is defined by
the functions:

14=Cp

Ca=Cp; Cb=A4.D.Cp; Cc

1B=Cp 1C=Cp
; ; ; Cd=Cp
04=C.Cp 0B=A.Cp 0C=B.Cp

It will be noted that in the transformation functions de-
fining the 10 counter of the copending application, signal
A is utilized four times and signals B and C are utilized
twice; whereas in the transformation functions defining

the 10 counter of the present invention signals A, B, and
C are utilized only once. The section of flip-flop A in the
10 counter of the copending application, then, must sup-
port four times the load that is required for any of the
sections of the flip-flops in the 10 counter of the present
invention.

According to the definition of minimum gating circuits
and minimum flip-flop loading adopted above, a counter
which is obtained by combining two cycles in the above-
described manner cannot have all minimum gating cir-
cuits and cannot have minimum flip-flop loading, since
at least one gating circuit is responsive to more than one
signal and at least one flip-flop signal is used twice.
However, such a counter may provide much simpler gat-
ing and flip-flop loading than a similar counter of the
type described in either the first or second copending ap-
plication. For example, compare the scale-of-32 counters
defined by function sets 1 and 2 below; set 1 being de-
fined according to the principles set forth in the first co-

1B=A4.Cp 1C=B.Cp 1D=C.Cp

0B=A.Cp 0C=B.Cp 0D=C.Cp

[
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Ce=(D+AB.0).Cp

In set 1 signal A is utilized four times; whereas in set 2
no signal is used more than twice, signals A, B, D, D, and
E being used only once.

While the principal object of the present invention is
to provide minimum gating -circuit flip-flop counters
wherein the flip-flop load is well balanced and in some
cases a minimum load; it is apparent that the invention is.
generic to all counters which may be obtained from the
basic counters by combining cycles, simultaneously op-
erating counters, or cascading counting stages

Although only a relatively few species. of the present
invention have been shown in the figures and- described
throughout the specification, it is apparent that the prin-
ciples herein developed may be extended to counters
utilizing any number of flip-flops, for obtalmng any cycle
desired.

What is claimed is:

1. An N-stage electronic counter for producing count-
representing signals corresponding to the number of pre-
viously-applied count pulses Cp the stages in the counter
having different combinations of operation to represent
different values and having a number of combinations of
operation greater than the number of stages in the count-
er, said electronic counter comprising: flip-flop des-
ignated as A, B .. . . and N, each including a 1 and a
0 input circuit and producing complementary voltage-
state signals designated as A, A and B, B ... and

N, N, respectively; and transformation matrix means
coupled to said input circuits and responsive to said volt-
age-state signals and to count pulses Cp for producing
control signals for actuating said flip-flops to change said
complementary voltage-state signals according to a pre-
determined sequence, said transformation matrix means
being connected to produce control signals for actuating
the different flip-flops in accordance with transformation
functions at least two of which are definable as

Cf=(F.G-+-F.H)Cp

Where F and F respectively represent true and false
states of operation of one of the flip-flops in the counter
and designated as the F flip-flop, where G and H rep-
resent voltages from flip-flops in the counter other than
the F flip-flop, where Cf represents a signal for triggering
the F flip-flop from the true state of operation to the false
state of operation or from the false state of operation to
the true state of operation, where Cp represents the clock
signals, where the dot (.) represents an “and” relation-
ship, and where the plus () sign represents an “or”
relationship.

2. In an electronic counter for counting the number
of applied count pulses designated as Cp and indicating
the count in the form of a binary-coded number, the com-
bination comprising: flip-flops designated as A, B . . .
and N, each including a 1 and a 0 input.circuit and pro-
ducing complementary voltage-state signals designated as
A/Aand B,B... and N, N, respectively; and trans-
formation matrix means coupled to said input circuits
and responsive to said voltage-state signals and to said
count pulses Cp for producing pairs of control signals
for introduction to the input circuits of the different flip-
flops, the transformation matrix means being coupled to
at least two pairs of said input circuits in accordance with
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the following functions for one of the pairs of input
circuits :
1F=G.Cp
0F=H.Cp

where 1F and OF respectivély represent the introduction
of input signals to the 1 and 0 input circuits of a flip-flop
designated as the F flip-flop, where Cp represents the
pulses to be counted, where G and H respectively rep-
resent voltage-state output signals from flip-flops in the
counter other than the F flip-flop, and where the dot (.)
represents an “and” relationship.

3. In a flip-flop counter for counting the number of
applied count pulses Cp, the combination comprising: N
flip-flops, each including a 1 and a 0 input circuit and
producing a pair of complementary output signals; and
transformation matrix means coupled to said input cir-
cuits and responsive to said output signals and to said
count pulses Cp for producing pairs of control signals
for actuating said flip-flops to change said output signals
according to a predetermined sequence, said transforma-
tion matrix means including N pairs of gating circuits
coupled to the input circuits of said N flip-flops, respec-
tively, said gating circuits producing pairs of said con-
trol signals according to one of a plurality of transforma-
tion functions at least two of which are representable as

Cf=(F.G-F.H)Cp

where F and F represent the complementary output sig-
nals produced by one of the flip-flops to be controlled
and designated as the F flip-flop, where each of G and
H represents the output signals. from only one flip-flop in
the counter other than the F flip-flop, where Cf rep-
resents the introduction of a control signal to the gating
circuits of the F flip-flop, where Cp represents the pulses
to be counted, where the dot (.) represents an “and”
relationship, and where the plus () sign represents an
“or” relationship.

4. A multistage binary-coded counter for counting the
number of applied count pulses Cp the stages in the
counter having different combinations of operation to
represent different values and having a number of com-
binations of operation greater than the number of stages
in the counter, comprising; a plurality of flip-flops, each
including a pair of input circuits and producing a pair
of complementary voltage-state signals; and matrix means
coupled to said input circuits and responsive to said
voltage-state signals and to said count pulses Cp for pro-
ducing pairs of control signals, one pair for each flip-fiop,
for actuating said flip-flops to change said complemen-
tary voltage-state signals according to a predetermined
sequence, said matrix means including a plurality of pairs
of gating circuits coupled to the input circuits of said
flip-flops, respectively, each of said gating circuits apply-
ing a control signal to one input circuit of the associated
flip-flop and being mechanized for control by a maximum
of only one of the voltage-state signals other than the
flip-flop receiving the signals from the gating circuit.

5. In an electronic counter for counting the number of
applied count pulses designated as Cp and indicating the
count in the form of a binary-coded number, the com-
bination comprising: a plurality of flip-flops designated
as A, B, . . . and N, each including a 1 and a O input
circuit and producing complementary voltage-stati sig-
nals designated as A, A and B, B, . . . and N, N, re-
spectively;. and transformation matrix means coupled to
said input circuits and responsive to said voltage-state
signals and to said count pulses Cp for producing con-
trol signals for application to each flip-flop in accordance
with the changing transformation function

Cf=(F.G+F.H)Cp

where. F and F represent the complementary voltage-state
signals produced by one of the flip-flops in the counter
desigmated as the F flip-flop, where G and H represent
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voltage-state signals produced by ofher flip-flops in the
counter than the F flip-flop, . . . where Cf represents
signals passing through the transformation matrix means
to the input circuits of the F flip-flop, where Cp repre-
sents the pulses to be counted, where the dot (.) represents
an “and” relationship, and where the plus (--) sign repre-
sents an “or” relationship.

6. A binary-coded, scale-of-10 counter comprising: four
flip-flops, each including a 1 and a O input circuit and
producing a pair of complementary output signals; and
transformation matrix means coupled to said input cir-
cuits and responsive to said output signals and to applied
count pulses for producing control signals for actuating
said flip-flops to produce distinctive patterns of operation
of the flip-flops for an individual count of the pulses be-
tween “1” and “10”, said transformation matrix means
including eight gating circuits coupled to said input cir-
cuits, respectively, each of said gating circuits applying
a control signal to the associated flip-flop input circuit
in accordance with an output voltage from a different one
of the flip-flops in the counter other than the associated
flip-flop for the application of each ocutput voltage from
the different flip-flops to at most only one of the gating
circuits.

7. The binary-coded, scale-of-10 counter defined in
claim 6, in which five gating circuits apply signals to the
associated flip-flop input circuits upon only the occur-
rence of count pulses and the other three gating circuits
are “and” networks each receiving the count pulses and
the output signals from one of the flip-flops other than
the flip-flop associated with the gating circuit.

8. The binary-coded, scale-of-10 counted defined in
claim 6 wherein the four flip-flops are designated as A,
B, C and D; wherein the pairs of complementary output
signals from the A, B, C and D flip-flops are respectively
designated as A and A, B and B, C and C and D and D;
and wherein the eight gating circuits are mechanized as

14=Cp 1B=Cp 1C=Cp 1D=Cp

0A=C.Cp 0B=A.Cp 0C=B.Cp 0D=Cp

where 1A, 1B, 1C and 1D respectively represent the
introduction of control signals to the 1 input circuits of
the A, B, C and D flip-fiops, where 0A, 0B, 0C and 0D
respectively represent the introduction of control signals
to the 0 input circuits of the A, B, C and D flip-flops,
where Cp represents the pulses to be counted, and where
the dot (.) represents an “and” relationship.

9. A binary-coded, scale-of-8 counter comprising: three
flip-flops A, B, and C, producing pairs of complementary
output signals A, A; B, B; and C, G respectively, each
flip-flop including a 1 and a O input circuit; and trans-
formation matrix means coupled to said input circuits and
responsive to said output signals and to applied count
pulses Cp for producing three corresponding pairs of
control signals for actuating said flip-flops to change said
output signals according to a scale-of-8 sequence, one
pair of said control signals being applied to the 1 and 0
input circuits, respectively, of each of flip-flops A, B, and
C, said pairs of control signals being defined, respectively,
by the transformation functions:

1A=B.Cp 1B=A.Cp
5 ; Ce=B.Cp
04=C.Cp 0B=A.Cp
where 1A and 1B respectively represent the introduction
of control signals to the 1 input circuits of the A and B
flip-flops, where OA and OB respectively represent the
introduction of control signals to the O input circuits of
the A and B flip-flops, where Cc represents signals intro-
duced to flip-flop C and where the dot (.) represents an
“and” relationship.
10. A binary-coded, scale-of-5 counter comprising:

three flip-flops designated as A, B, and C, producing pairs
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of complementary output signals designated as A, A;
B, B; and C, C; respectively, each flip-flop including a
1 and a 0 input circuit; and transformation matrix means
coupled to said input circuits and responsive to said out-
put signals and to applied count pulses designated as Cp
for producing three pairs of control signals for actuating
said flip-flops to produce distinctive patterns of operation
of the flip-flops for an individual count of the count pulses
between “1” and “5” in accordance with the transforma-
tion functions:

1A=Cp

1B=Cp 10=Cp

0A=C.Cp 0B=A.Cp 0C=B.Cp

where 1A, 1B and 1C respectively represent the introduc-
tion of control signals to the 1 input circuits of the A, B
and C flip-flops, where 0A, 0B and 0C respectively repre-
sent the introduction of control signals to the 0 input

14=D.Cp 1B=4A.Cp 1C=B.Cp 1D=C.Cp

’ b4 J —
04=E.Cp 0B=A.Cp 0C=B.Cp 0D=TC.Cp

circuits of the A, B and C flip-flops, and where the dot (. )
represents an “and” relationship.

11. A binary-coded, scale-of-16 counter comprising:
four flip-flops A, B, C, and D, producing pairs of com-
plementary cutput signals A, A; B, B; C, C; and D, D;
respectively, each flip-flop including a 1 and a 0 input
circuit; and transformation matrix means coupled to said
input circuits and responsive to said output signals and
to applied count pulses Cp for producing four correspond-
ing pairs of control signals for actuating said flip-flops to
change said output signals according to a scale-of-16 se-
quence, one pair of said control signals being applied to
the 1 and 0 input circuits, respectively, of each of flip-
flops A, B, C, and D, said pairs of control signals being
defined, respectively, by the transformation functions:

14= C Cp 1B=A.Cp
; Ce=B.Cp; Cd=(B+4.0).Cp
04 = D Cp 0B= A Cp

where 1A and 1B respectively represent control signals

introduced to the 1 input circuits of the A and B flip- 45

flops, where 0A and 0B respectively represent control
signals introduced to the O input circuits of the A and B
flip-flops, where Cc represents signals introduced to the
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input circuits of the C flip-flop, where Cd represents sig-
nals introduced to the input circuits of the D flip-flop,
where the dot (.) represents an “and” relationship, and
where the plus () sign represents an “or” relationship.
5 12. A binary-coded, scale-of-32 counter comprlslng
five flip-flops A, B, C, D, and E, producmg paxrs of

complementary output signals A, A B, B C, C D, D and

E, E, respectively, each flip-flop including a 1 and a 0
input circuvit; and transformation matrix means coupled
to said input circuits and responsive to said output signals
and to applied count pulses Cp for producing five corre-
sponding pairs of control signals for actuating said flip-
flops to change said ocutput signals according to a scale- "
15 of-32 sequence, one pair of said control signals being
applied to the 1 and 0 input circuits, respectively, of each
of flip-flops A, B, C, D, and E, said pairs of control
signals being defined, respectively, by the transformation
functions:

10

; Ce=(D+4.B.0).Cp

where 1A, 1B, 1C and 1D respectively represent signals
5 introduced to the 1 input circuits of the A, B, C and D
flip-flops, where 0A, 0B, 0C and 0D respectively repre-
sent signals intreduced to the 0 input circuits of the A, B,
C and D flip-flops, where Ce represents signals introduced
to the input circuits of the E flip-flop, where the dot (.)

39 represents an “and” relationship, and where the plus (+)
sign represents an “or” relationship.
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