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1. Introduction 

This section contains four subsections that describe the problem statement, the 

motivation for solving this problem, the approach taken and a discussion of the engineering 

ethics involved. These subsections will set the foundation for this thesis which will be expanded 

upon in later sections. 

1.1 Problem Statement 

In order to locate a person requiring rescue we seek to design and implement a system 

that makes use of mesh networking with multiple unmanned aerial vehicles equipped with 

image sensors to locate the person. 

1.2 Approach 

Object detection through computer vision and the use of mesh networks are 

technologies with a rich history of research and development. Thus, the first step was to perform 

a historical review (2) to leverage previous work relating to the problem. This informed the 

development of a system level design (3.1), which was further refined with review, comparison 

and selection of hardware (3.2). Software integration (3.3) of selected components followed, 

and a prototype system was built and tested against the parameters outlined in section 1.2.1. 

The results of the prototype test are discussed in section 4.  

1.2.1 Testing and Evaluation  

In order to validate the system design, experimentation was used to test and quantify the 

system’s effectiveness. System performance was measured by successful identification of a 



person in the given search area and the time it takes the system to identify a person within the 

sensor’s vision. For the test, the device will be placed in an area where it can view an open 

scene free of obstructions. The system will be run for a set amount of time (30 min) and all 

stored images will be reviewed after the test. The scene should include the sparse distribution of 

people which when present should register a detection by the system. These instances should 

be monitored and any noted failures recorded. When the system detects a person in a captured 

image, a number of previously captured images are reviewed post-test. The reviewed images 

will be used to determine how many images the person was in before the system responded. 

This image count and the number of images per second of the system are used to calculate the 

time to detection. The recorded data of the system’s response to targets in frame is used to 

calculate success rate.  

1.2.2 Alternate Approaches 

Additional methods for testing and evaluation will be built full scale. Issues for power 

plant and robustness of the vehicle will need to be solved. A full scale build will also run the risk 

of losing drones over water or to bad weather, but the results should be improved.  

1.3 Motivation 

This section is divided into four subsections. 1.3.1 talks to the novelty of the solution and 1.3.2 

concerns the contribution of the thesis to the field. Section 1.3.3 discusses the impact of this 

problem on society, and 1.3.4 details the monetization potential. 



1.3.1 Novelty of the Solution 

Identifying a person in distress over a large area offers many challenges for image processing. 

Today this task is performed by a low number of manned aircraft with expensive high resolution 

infrared sensors. With the high cost of the infrared sensors, it is unlikely that a lower cost drone 

could be used as a platform. The approach of this thesis is to use a lower cost infrared sensors 

used on multiple drones with sensor fusion for overall performance enhancement. Alone, the 

resolution of lower cost sensors cannot match the range and precision of the higher cost units. 

The drones are spread out over the search area and communicate over a network.Sensor 

fusion with many low-cost sensors perform better than a few high-cost sensors without any 

fusion. 

1.3.2 Contribution 

The contribution to the field of sensor fusion includes a method of image processing of data 

from IR sensors on device nodes and communicating results over a mesh network in order to 

locate people at reduced cost compared to current techniques. 

 

1.3.3 Societal Impact 

Through government spending, society funds groups which will perform lifesaving operations 

such as firefighting, emergency medical response or search and rescue. This research looks to 

have a positive impact on the search and rescue groups by decreasing cost of their tools while 

maintaining efficiency. The Bureau of Transportation Statistics [32] lists the number of lives 

saved by the US Coast Guard at an average of 5,879 per year for 1985 to 2013 and 842 lives 

lost at sea 



1.3.4 Total Addressable Market 

To estimate the total addressable market we will review groups which could utilize this 

technology and what their current costs are. For search and rescue (SAR) occurrences over 

water there is a small number of groups with a small amount of aircraft. A typical customer 

would be a government entity or in some cases a private company such as the case with the 

Bristow Group which have a contract to provide SAR for the UK. According to The World 

Factbook [10] there are 107 countries with coastlines greater than 350 km and of those 

countries 74 have military aircraft. The Bristow Group uses S-92’s which cost $27 million each 

with upkeep at $900 k per year. Cost in this sector would be $2 billion in assets and $66.6 

million spent each year on upkeep.  

 

1.4 Ethics 

While developing new or novel systems aspects of ethics need to be assessed in order to have 

a positive impact on society. Sections will be dedicated to the review of Virtue (1.4.1) and Utility 

Ethics (1.4.3) as well as reviewing IEEE code of ethics in section 1.4.2. 

 

1.4.1. Virtue Ethics 

The basis of this thesis has a positive and ethical proposed application, but the algorithm may 

have some application for a weapon or military use. These other applications need to be 

assessed ethically if proposals for these implementations arise. 



 

1.4.2. IEEE Code 

IEEE Code of Ethics 3 [31] states that when creating a system it is important to be honest, 

critical and thorough with the testing process and reporting of the test results. Since the 

proposed application of this system will be to detect persons in distress if the system does not 

perform as stated and the user puts absolute trust in the detection a failed detection may result 

in loss of life. 

According to IEEE Code of Ethics 7 [31] with this work building on the advances and problem 

discovery of others and building the knowledge base of the author through readings and 

discussion, it is important to properly cite and give credit where it is owed. 

 

1.4.3. Utility Ethics 

The proposed application of the thesis is a good utilization of its capabilities, but other 

utilizations may create additional opportunities to maximize its utility for the greater good. The 

author and users should be willing to embrace additional implementations, but be mindful of 

uses which may conflict with virtue ethics. 

 

2 Historical Review 

This section will review the existing works of research and development in the field of 

computer vision and drones as they relate to this thesis. Section 2.1 looks into the 

guidance systems for aircraft by use of visual sensors. Section 2.2 reviews works 



relating to multiple drone system and specialized drones. While Section 2.3 deals with 

research in visual sensor technology. 

2.1 Visual Guided Systems 

“Vision Systems for Autonomous Aircraft Guidance”[1] goes in depth in adapting autonomous 

drone technology to mimic aspects of observed biological solutions in the animal kingdom. A 

large focus of this cited thesis is the control of a UAV through inputs from a stereo visual sensor 

system which would replace or augment typical UAV sensors such as GPS or radar. A smaller 

portion of the cited thesis is more relevant to the problem statement of this thesis which goes 

into target detection and tracking from an aerial vehicle. The problem of how to identify and 

track ground based targets from a moving aerial platform remains open. The cited thesis’ 

proposed solution is significant as it is successful in identifying targets based on common colors 

on the target and the color differences between the target and the background and through on 

aircraft processing continuously track targets frame-to-frame by predicting target and aircraft 

movements and the expected change in target position from input sensors. After the cited 

thesis’ experiment was completed, R. J. D. Moore observed system limitations. It was noted that 

the resolution of the system’s sensors limited the system’s ability to track targets at longer 

ranges and were negatively impacted by visual imparities due to environmental factors such as 

weather. Ultimately the proposed solution was an acceptable and computationally-efficient 

solution. Article is cited by two other works. [1]  

2.2 Fleet Composition Networked Drones 

With the emergence of drones to the commercial market resources have been dedicated 

towards researching different applications for them. In 2014 a competition was held in the 



Netherlands for a drone search and rescue scenario. Cui et al. [15] outlined their winning 

methodology. The scenario was an urban environment used to portray a town after a disaster. 

Utilizing multiple drones, they stitched many images together to output a map of the town, 

navigated and mapped the interior of a previously unknown building, land on a rooftop and 

decipher a digital number displayed on a building. Their application of image stitching and 

multiple drone utilization brings an interesting approach to search and rescue. Opportunities 

may exist for applications of a drone fleet for ocean search and rescue. Cui et al. [15] however 

bring up the downside of drone search and rescues limits. Computational power available on 

board, as a result of this they reduced the output quality of their stitched images eliminating 

certain post processing to reduce overall time to completion. In the applications described for 

this thesis accurate outputs in real time are required, so the computational power of a drone 

may not be sufficient enough. Also the communication range of drones would be called into 

question. 

Similar to the previous competition, Lee et al. [16] are investigating the application of 

drones in disaster relief efforts. They are utilizing the drones LIDAR and IR cameras to detect 

victims within buildings. For their initial application the drone was not autonomous, instead a 

pilot navigated the interior. Their experimental results show effective use of the sensor fusion in 

different lighting conditions. However the sensors chosen are specialized in short-range 

detection. For ocean applications range is a priority. The 10m range of the sensors used in this 

experiment are unusable for this thesis’ applications. 

Lee et al. [18] present their ground control station (GCS) drone network. Their design 

assumes that high connection uptime to the network by a drone is required for drone control, but 

that the dynamic nature of the drones motion will often hinder this and the network will need to 

adapt to the movements of the drones. With the GCS controlling the movements of the drones, 



they theorize that the changes to network routing and be predicted by the GCS before a 

disconnect occurs offering faster recovery time. During network type selection for this thesis, 

uptime of the connection would need to be compared against the autonomous nature of the 

drones would need to be accounted for.  

In additional works Lee et al [18] cite the popular method of ad hoc networks for UAVs. 

Specifically the works of Lin et al [19]. Similar to Lee et al [18] problem statements regarding 

UAV mobility and its effect on the network performance. The standard network routing example 

showed the capability of a given network routing path to not be optimal for number of node 

jumps nor geographic distance. The result was an impact on network performance. To resolve 

this their ad hoc network relies on Mobility Prediction based Geographic Routing (MPGR), which 

attempts to predict the UAVs movement and properly set up the network to increase overall 

performance. 

For a drone fleet a top level system is required to ensure separation to avoid collision 

and master flight / search plan is required. S. Yoo et al.[24] describes such a system. They 

utilize drone networks, gps, IR and acoustic sensors to avoid collisions. The reasoning for using 

so many sensors is their system must work indoors and outdoors. Certain sensors such as GPS 

has shortcomings indoors and other sensors must compensate. Additionally the precision of off 

the shelf GPS does not meet their requirements. The system described in this thesis will only 

operate outdoors and the ideal situation would have drones at max range from each other to 

cover the most area as possible for the search. This distance would be much larger than the 

GPS resolution. For this thesis a higher-level system controlling the flight areas and maintaining 

drone distances utilizing standard GPS will sufficient for future works. 

 



2.2.1 Specialized Drones 

Stating inherent issues with drones being short range and overburdened with sensors, 

Alex and Vijaychandra [17] start to address some of these problems. In their approach, they 

split the roles of the drones into 3 categories; pathfinders which map the location in 3 

dimensions and pass the information to other drones on the network, human detection drones 

which utilize IR cameras to identify victims and cargo drones which are heavier lifting and carry 

supplies. Although the mapping and cargo drones aren't really necessary for this thesis, the 

concept of different takes allocated to specialized drones to improve range and duration of 

missions is promising as well as the application of a LAN to pass information between drones. 

With the given range of a search and rescue field each drone would be encumbered by weight 

of higher power transmitters and range reduced by the power required to transmit. The task 

might be better suited for a heavier lift drone which reduces weight and power consumption by 

not be burdened with actual person detection. Alternatively if a well dispersed search pattern is 

used, information could be passed drone to drone in shorter distances, but may consume 

similar power consumption for the overall fleet. Alex and Vijaychandra [17] didn’t conduct 

physical experiments to validate their theories, but instead opted for simulation. They state the 

use of Gazebo software to simulate all activity.  

2.2.2 Target Sharing and Confirmation 

In a networked sensor system with a large number of sensors, transmission time and 

power resources can be stretched thin. E. Masazade and A. Kose [21] propose a proportional 

time allocation algorithm to determine the amount of transmission time a sensor will get. The 

algorithm will favor those sensors which are near the desired targets. With reducing the amount 



of sensors transmitting the unconstructive bandwidth on a given frequency is reduced and so 

would error rates due to crosstalk. E. Masazade and A. Kose [21] also discuss limiting 

bandwidth to subsets of sensors based on proximity to target. In this thesis we are using 

multiple drones, with limited power resources communication between drones could be limited 

to minimal information and follow-up information on potential target spotting. Once a target is 

spotted and communicated drones without confirmation of target, outside of range, could limit 

their communication to only self-confirmed targets.  

2.3 Visual Sensor 

2.3.1 Target Detecting and Tracking 

"Applied Techniques in Tracking Moving Targets in Marine Using Image Processing,"[2] 

samples different target tracking methods and how they apply to a marine environment. The 

problem addressed in this article is what are the different methods available and what are the 

positives and negatives for the different methods. Similar areas of improvement and existing 

problems are listed for this article also include environmental variables such as weather and 

time of day with reduced light. Although this article has not been cited by others, it does provide 

a good foundation to direct further investigations in which tracking methodologies would be best 

suited for my problem statement [2]. 

From J. Han et al [12] cited work we further look into attention shifting with L. Itti et al [13] 

look at mapping a scene based on saliency topology, ranking pixels based on the features that 

stand out against the scene. Three major feature categories were assessed; colors intensity and 

orientations. Each major feature is mapped by multiple subcategories. For example intensity 

feature category contains six unique maps. Four maps are based on the color intensities of red, 

blue, green and yellow; two additional maps are created for color intensity contrasts of 



neighboring pixels between opposite colors visually observed in biological vision of mammals, 

such as red/green and yellow/blue. Although L. Itti et al [13] takes note of color opponency from 

mammals, utilization of manufactured/fabricated opponency within the IR spectrum based on 

animals with some visual range in the IR spectrum may have some benefit towards this thesis. 

36 other maps are combined after a map normalization operator is applied. This operator 

enables the system to suppress maps with multiple points of interest in favor of maps with low 

numbers. Theory behind this normalization is that there may be unique features identified by 

few maps which if not normalized would get washed out by maps with a large number of points 

of interest. In testing the pattern analysis showed promise, but L. Itti et al [13] acknowledge 

shortcomings of the analysis if the object features are not properly represented in the feature 

maps. With the foreknowledge of the object we wish to detect for this thesis, the simple 

approach shown may be able to be modified to have multiple maps that would be assessing 

multiple unique features of the given object.  

 

2.3.2 Camera GPS Fusion Target Localization 

G B Chatterji et al. [22] used sensor fusion to aid in aircraft landing. These sensors 

include cameras, altimeter and GPS to estimate the aircraft's position. Their calculated 

approach to estimating the aircraft’s location based on identifying lighting features with the 

camera and processing it with known parameters of the camera and mounting location on the 

physical aircraft and comparing it to a predicted light image based on a known light model. Their 

calculations and approach can be repurposed for target tracking and identification for this thesis. 

For future works expanding on this thesis these approaches could be leveraged. With multiple 

drone if a target is acquired the reverse process of G B Chatterji et al. [22] can be used to 



estimate the IR target's location. This location can then be transmitted to other drones. If 

receiving drone’s position and camera range allow, they can estimate target's location on their 

image and confirm its presence.  

 

3. System Design 

This section will discuss the design process and prototype system developed. The first section 

(3.1) will outline the devices which make up the system, the function of each, and the physical 

characteristics. The second section (3.2) will discuss the hardware selection process and the 

final selections. The software (3.3) utilized in this thesis is discussed in the final section. 

 

 



 

3.1 System Devices 

The system developed for this project consists of two types of devices, each acting as a node in 

a mesh network. The first and primary device is for image capturing (3.1.1). The system is 

expandable and is intended to have multiple image capturing devices, each being an additional 

node on the network. The second device is a ground station (3.1.2). This device is optional, but 

improves the ease of setting up the image capturing devices and accessing information on the 

ground either prior to or after a search. 

3.1.1 Image Capturing Device 

The image capturing device is intended to be mounted to an unmanned aerial vehicle and 

transported across a search area at altitude. This device is capable of capturing infrared images 

and processing them to detect infrared emitting objects in the water. In the event that an object 

is detected an alert will be sent through the mesh network. This alert message will include the 

devices unique serial number and the image file name. The image file itself is stored in onboard 



memory for later extraction at the ground station.  Each image capturing device will monitor the 

network and record any transmitted messages regarding object detection. This will allow for 

each drone to have a full list of objects detected by the system, as well as information regarding 

which device detected them so that the images can be pulled from the select devices. If a 

device is lost, this information can be used to determine if the device’s search area contained 

any items of interest. If there were items of interest other devices could be reallocated to that 

search area. 

3.1.1.1 Enclosure Design 

The enclosure is a 3D printed box with a lid held on by bolts. An isometric view of the design is 

shown in A8 with photographs of the build in A9. The FLIR Lepton sensor is mounted to the lid 

to give room for the header wires to be routed to the pins on the Raspberry Pi. With the location 

of the USB and power ports on the Raspberry Pi, 90 degree cords and a low profile adapter 

needed to be used in order to fit in a smaller enclosure. The routing of the cables in this way 

allowed for space for the XBee ZigBee to be mounted on one of the box walls. Finally, the 

Raspberry Pi was stack mounted with the battery pack as intended by the manufacturer. 

Improvements that could be made to this box design would be access ports for turning on and 

off the battery pack and recharging. Currently, the enclosure needs to be opened and the 

Raspberry Pi removed to access these ports. 

 

3.1.1.2 Thermal Concerns 

The initial design of the enclosure did not offer anything in the way of thermal management. 

None of the boards or chips had any heat sinks and, as the box was completely enclosed 

except for a penetration for the FLIR lens, there would be little to no air movement across these 



chips. Without knowing the exact thermal properties of the components and materials used to 

construct the device, a test was devised to measure the reactions of the system under load. The 

enclosure was sealed and placed in a scene where it would regularly witness objects it would be 

expected to report. A software process (A1) was created for this test. This process would 

sample the Raspberry Pi's processor temperature through integrated sensors and write the data 

to storage. This process along with the standard OS (Operating System) was run for  the first 24 

minutes of the test. At that point all processes described in the software section were run and 

left running on battery power until the 1 hour mark. The chart in Figure 3.1-1 was generated 

from this data. The temperature during the first part of the test was stable around 43C. The 

spike at the 24 minute mark is attributed to the increased processor load of the additional 

programs running. This thermal spike stabilized around 50C for the remainder of the test. During 

this test approximately 2000 images were captured, processed and stored. The conclusion 

drawn from this test is that the boards and chips selected will not put off enough heat during the 

processes that we intend to run to justify the need for an improved thermal management design. 

For future designs if the components are consolidated onto single PCBs thermal management 

would need to be readdressed. 

 



Figure 3.1-1 

3.1.2 Ground Station 

The ground station in this project provides two key processes for this system. First, it acts as an 

additional node in the mesh network system similar to any other node, with the exception that it 

does not capture or process images. It will only monitor the network for reported objects and 

record the sightings and serial number of the detection device. Secondly it allows for interaction 

with each of the system devices when they are within the enclosures. The ground station cannot 

power up the devices as there is a hardware switch. The ground station can access the 

operating system’s interface without removing the device from the enclosure or needing to 

directly connect peripherals such as a monitor, keyboard and mouse. From this interface all the 

functionality is accessible. Programs and processes can be executed or modified, and live feeds 

from the infrared camera can be accessed. The file storage on the device can be accessed and 

all records and saved images can be transferred to the ground station. Programs used for this 

interface are outlined in the Program UI Section (3.3). 

 

3.2 Hardware 

This section will discuss the hardware selection process and the final outcome of those 

selections in developing the system. 

3.2.1 Computer / Processor 

For this project the Raspberry Pi with Rasbian OS [38] was selected. Although a bit bulky, the 

Raspberry Pi offers decent processing capabilities while being flexible with connected devices 



and having a wide range of available libraries and resources. During project execution the 

Raspberry Pi was able to be adapted to work with various camera types without much 

modification aside from locating the appropriate libraries for that communication scheme. 

Alternative selections would have been an Arduino or other commonly available ARM Cortex 

based microcontrollers, but, as previously stated, the libraries and processing capabilities 

steered the decision to use the Raspberry Pi. Additionally, the communication scheme library 

used by the  FLIR Lepton was available [37] and the supplier of the board included 

documentation specifically for Raspberry Pi project setup [36]. 

3.2.2 Mesh Network Adapter 

Communication between devices within the system requiring a main router / hub would have 

been cumbersome. Mesh networks would not require a router and offered the benefit of being 

dynamic. If they are put in an environment where nodes may disconnect or be added, the 

network would adapt. Digikey offered a very good kit [42] which offered an assortment of XBee 

Zigbee [41] chipsets. The standard and pro were tested and, due to the increased range 

capabilities of the Zigbee pro, it was included in the system as the mesh network adapter. No 

special libraries were required other than the base Raspbian libraries for serial. Described 

further in software mesh network section 3.3.2, it required very little in terms of software, but has 

ranges upwards of 2 miles with line of sight. 

3.2.3 Infrared Camera 

A large portion of this project relied on the selection of an appropriate camera. A few 

inexpensive near-infrared cameras were tested along with a mid-infrared camera. Ultimately, 

due to the drawbacks of near-infrared described in section 3.2.3.1, the selection of the 



mid-infrared FLIR Lepton [36] was made. This camera offered a simple setup with readily 

available libraries for communication as well an appropriate infrared spectrum for this systems 

application. Although the FLIR Lepton does have a less desirable resolution of 80x60 [36], it 

captures near to mid range images well. Other drawbacks of detecting far objects with low 

resolution imaging are discussed in section 3.2.3.3. It should be noted that since the final 

hardware selection for this project was completed, there have been improvements with the 

commercially available sensors. Some of these sensors have been tested and observations 

made in section 3.2.3.2 (FLIR One and Seek Thermal Observations). 

3.2.3.1 Near versus Mid-Infrared Camera 

Most common and cheap infrared sensors on the market for low light imaging or night vision 

with high resolution are near infrared. This band, despite its shared name, is not related to the 

frequencies emitted due to temperature. This range of EMR, just outside the band of visible 

light, shares many of the same characteristics of visible light spectrum, such as relying on a 

source to illuminate objects. However, since the illumination source is beyond the human visual 

spectrum it would still be considered night vision. The image in Figure 3.2.3.1-1 was taken at 75' 

with a mid-infrared. A similar image was captured with near-infrared, but despite the relatively 

close range the near infrared camera with its standard illumination source was not able to 

discern any objects in the scene. The resulting image was a uniform low level across all pixels. 

  



 

 

Theoretically, a high powered illumination source could be used to illuminate targets at further 

ranges. This poses two issues: first, this illumination source would have similar power 

requirements to using the visual spectrum and normal cameras, so it would offer no benefit for 

search and rescue. The only unique feature is the illumination would be undetectable to the 

human eye. However, this is also the second downside. The human pupil does not respond to 

infrared and in the dark would be fully enlarged to take in the most light and give the best visibly. 

This would leave the eye vulnerable to damage as the power of the illumination would not be 

mitigated and the person may not react and gaze away like they would for a similar high 

powered spotlight. 

 

Chart 3.2.3.1-1 shows the spectrum usage of various cameras researched for this project. It 

should be noted that the military grade FLIR has closer spectrum coverage to the sensor 



chosen for this thesis, the major difference being resolution and optics. Surprisingly the military 

FLIR Star SAFIRE III does not have an extreme resolution with only 640x512 [43] but instead 

relies on specially designed high quality magnification optics with a 71x zoom ratio [43]. 

Although similar optics for photography may not seem out of the ordinary, the unique 

characteristics of the infrared spectrum drive up the costs of similar quality infrared optics. 

 

3.2.3.2 FLIR One and Seek Thermal Observations 

Since the original build of this project, FLIR has released a new version of their infrared camera. 

Additionally they have a product which integrates their camera to be used as a smartphone 

attachment. This product, along with third party product Seek Thermal, were purchased and 

tested since both products have the higher resolution camera. One interesting feature of the 

FLIR One is the existence and fusion of two sensors with their proprietary FLIR MSX 

(Multi-Spectral Dynamic Imaging). The product has both a visual spectrum camera and the 

mid-infrared sensor. Reviewing the captured images, the visual spectrum camera has object 



edge detection which is then overlaid on the thermal output. Although the software does not 

have object detection and reporting, the overlaid edges allow for the user, or more specifically 

the user’s brain, to make associations between the displayed edges and objects in their 

environment. This works very well in well lit and close range scenes, but without illumination the 

visual spectrum camera offers no impact on the product’s displayed image output.  

3.2.3.3 Issues observed with the use of infrared imaging 

By far, the biggest hindrance to this project has been the unique characteristics of the infrared 

spectrum compared to normal visible light. The largest challenge was the IR spectrum’s inability 

to penetrate certain objects and materials. Water, for example, absorbs a very large percentage 

of the EMR spectrum belonging to infrared. As seen in Figure 3.2.3.2-1 ,although the water 

blocks very little of the visual spectrum, the hand submerged in water is nearly invisible to the 

infrared imaging sensor. Even when removed from the water the dampness on the skin reduces 

the magnitude of the detected IR. Both of these issues hinder detecting people in water greatly. 

People were approximated to be 2x1 pixels for an average sized person at 100’ given the 

resolution of the IR sensor. Given the attributes of water, however, if the target is swimming the 

detectable surface is reduced from the entire body to just the head. Additionally, if the head is 

damp it would reduce the heat signature further. From a distance of 100’ the visible surface of a 

head emitting infrared would be less than the size of a pixel, thus, the magnitude of the signal 

would be averaged with its surroundings to get the value of the individual pixel.  

 

Similar to water there are other materials which IR does not penetrate, but may be commonly 

transparent in the visual spectrum. Glass, for example, typically blocks all infrared. The Figure 

3.2.3.2-1 shows the blocking of IR by a glass bowl. The first image shows a hand in the bowl 



from the side through the glass and then the top down view shows a hand partially submerged 

in water. 

 

 

Consumer photography lens are another commonly transparent material that blocks IR. With the 

low resolution of IR cameras on the market magnification would greatly benefit target detection. 

This can also be seen in the price of high end FLIR products which contain multiplication optics 



as they not only need to be high quality, but also need to be specially made to not block the 

infrared spectrum. 

 

3.2.4 Power Storage 

For this project, the power source required mobility, so battery power storage was considered. 

To simplify the design tasks, an off the self-expansion board battery pack for the Raspberry Pi 

was looked into. Ultimately, the MarkerFocus Raspberry Pi Battery Pack was selected. 

According to the MarkerFocus spec sheet [35] this 3.7V 3800mAH lithium battery pack can 

provide the 5.1V, 2.5A power source required [34]. Based on Figure 3.2.4-1 a fully charged 

battery with max power draw will last for over one hour. However, independent benchmarking 

from Raspberry Pi Dramble [33] offers a better understanding of the power consumption of a 

Raspberry Pi 3B with a max power consumption on an overloaded CPU at 3.7W, which would 

have the battery lasting for 3.8 hours. 

ours     .1 Hours H = Source Watts
Battery WattHours =  V olts (5.1)  Amps (2.5)*

V olts(3.7)  AmpHours (3.8)* = 1  

Figure 3.2.4-1 

 

 

3.3 Software 

3.3.1 Computer Vision 

In this section we will review all the code associated with image capturing and processing. Code 

described in this section is intended to be run on the Raspberry Pi Image capturing device. 



3.3.1.1 Image Capture 

Image capture primarily relies on the ‘pylepton_capture’ [37] library import. This is a third party 

program recommended by the FLIR Lepton supplier in their setup guide [36]. The main function 

in Appendix A.4 will call this function in the main loop once every second and stores the newly 

captured image in a temporary file until it is processed. 

3.3.1.2 Image Processing 

The main process outlined in A.4 also handles the task of processing all images. It carries a 

value pixelmap_base[ ] which is to represent the expected baseline scene. Each image builds 

on this baseline scene. After every new image a new baseline scene is calculated using a 

weighted average of 90% the previous scene and 10% of the new image. Prior to calculating a 

new baseline, the captured image is compared to the current baseline. The process looks for 

the pixel in the captured image that has the largest difference over the baseline scene as 

calculated from equation 3.3-1.  

 

ixel Dif ference  (Baseline P ixel) P = (Captured P ixel)[x,y] −  [x,y]  

Equation 3.3-1 

 

It should be noted that this is not the largest absolute change, because sudden low value pixels, 

representing low thermal energy, in the captured image would not be of interest. Once this pixel 

is found the difference is compared to a set threshold. Currently in appendix A4 the threshold is 

set to '20' which is based on a scale of each pixel having a value from 0 to 255. The scale of the 

FLIR Lepton is from -10C to 140C [44], so a difference of 20 from the pixel’s value is 

approximately +-11.75C. All images containing a pixel which pass this threshold are stored 



locally with unique names. These files can be accessed at a later time by the ground station, 

outlined in section 3.1.2, through the use of the Remote Access (3.4.1) 

3.3.2 Mesh Network 

When a new image is processed in the main process A.4 and a potential object is detected in 

that scene, an alert is sent out over the mesh network. The message which is to be sent will 

include the device’s CPU serial number which is unique to each Raspberry Pi and the image file 

name stored to that device. Subroutine XBee_Send.py A.2 was created to handle transmissions 

send to the network and XBee_Receive.py A.5 handles transmissions received from network. 

XBee is connected via USB and communicates over it via standard serial communications. To 

handle collecting the serial number information for the device, the getserial.py function accesses 

the cpuinfo file and returns the serial number value. 

 

3.4 Ground Station 

The ground station is an optional device within the system outlined in section 3.1.2 which is 

capable of remote access to the image capturing devices by the process described in 3.4.1. 

This will allow the ground station to display the user interfaces of processes of 3.4.2. 

3.4.1 Remote Access 

For remote access of the image capturing devices from the ground station we used the LAN 

based remote access program VNC. This install is included in the base Rasbian operating 

system. When your ground station and image capturing devices are connected to the same 

LAN, the image capturing device can be access via VNC Viewer. The peripherals of the ground 



station will then work for the image capturing device. Processes can be started, ended, and files 

transferred. 

 

3.4.2 Program UI 

During normal operation of the image capturing device there are no peripherals connected for a 

user interface to be displayed, but when the ground station is connected to a device the 

interfaced shown in Figure 3.3.1-1 can be utilized. 

 

The main process A.4 also has a user interface. Shown in Figure 3.3.2-1 the interface displays 

the baseline scene as described in the software image processing section (3.3.2.1). Additionally 

the last captured image with an object detected is also displayed. This image has a 5x5 red box 

drawn around the object. The pixel which the box is centered around is that which has the 

largest difference from the baseline scene as outlined in Section 3.3.1.2 and Equation 3.3-1. 

Additionally there are console outputs from the main process A.4 these include: when an image 

is stored and when there is a received transmission from the network (A5). 



 

 

Instead of running the main process (A.4) two other processes can be run to provide direct 

outputs on command from the IR camera. A.6 when run has an interface which is shown in 



Figure 3.3.2-2. The 'snap' button will execute the subroutine described in the previous section 

for image capture. The captured image will then be displayed in the interface. Alternatively the 

FLIR Lepton capture software from [37] contains a program which provides a live video feed 

from the IR camera (Figure 3.3.2-3). 

 

 



 

3.5 Cost 

When compared to the cost of current search and rescue vehicles outlined in the Total 

Addressable Market (1.3.4) the components of our system are much lower cost. Table 3.5-1 lists 

the price of the selected components for a single image capturing device which totals $603.52. 

The system as described in Section 3 would require multiple image capturing devices along with 

drones capable of lifting a device (~$1500 ea). Additionally the optional ground station can be 

run from any windows operating computer (~$800). For the cost of a single month of upkeep on 

an S-92 search and rescue helicopter ($75,000), a system of 35 prototypes devices including 

drones and ground station could be built.  

  



 

Raspberry Pi $36.95 

FLIR - Lepton Chip $259.00 

FLIR - Lepton Board $39.99 

XBee Zigbee Pro Chip $39.45 

XBee Zigbee Board $13.99 

Battery $14.99 

Enclosure $179.15 

Misc Parts (Wire, fasteners) $20.00 

Total $603.52 
Table 3.5-1 

4. Prototype Testing 

A prototype system was constructed by the specifications outlined in Section 3. Of the devices 

listed in Section 3.1 two devices were constructed; one image capturing device (3.1.1)  and one 

ground station (3.1.2). 

The prototype was tested by having the image capturing device placed in a third story 

window facing a courtyard and street. A model of the scene is shown in Figure 3.4-3, distance 

from the device to the street is ~115’ and to the courtyard is ~60’. The ground station was setup 

to receive messages over the mesh network as well as access the program’s UI as it ran. The 

system ran for 30 min and five staged instances of people walking into the scene were 

performed. The system was able to detect all five staged instances of people walking (100% 

from sample). An example output from a staged event is shown in Figure 3.4-1. The images 

prior to the detection of each of the five staged instances were reviewed post-test. Four of the 



instances detected the person on the first available image. The fifth instance was detected on 

the second image as the first image was a partial capture where the person was not fully in 

frame. Given an image capture rate (code in appendix A.4) of 1 second and assuming objects 

entered the image frame in a uniform distribution over time the test averaged .6 seconds to 

detect a person.  There were some noted anomalies. The system erroneously detected heat 

fluctuations near the chimney of the building Figure 3.4-2. In addition, the system would detect 

the occasional passing car’s exhaust. These situations were noted, but not included in the 

results as failures as they technically meet the criteria of items of interest, but they were moving 

significantly faster and are hotter than the intended targets.  During the test 140 detection flags 

were raised out of 2000 processed images. The post test image review noted 21 of the 140 

(15%) flags were erroneous. 

 



 

 



5. Conclusion 

The mid-infrared range is an excellent spectrum in which to detect people. In medium ranges 

and controlled conditions the system was shown during experimentation in Section 4 to be able 

to detect people with acceptable success rates. This along with the greatly reduced costs 

compared to existing systems outlined in Section 3.5 shows that the commercially available 

sensors are capable of similar forms of people detection. However, the low resolution of 

cameras available commercially today hinder using them at greater distances >100’.  These 

ranges don’t support typical operating altitudes of aerial vehicles which, in order  to cover larger 

areas, will typically fly higher than 100’. With the uniqueness of lens for infrared it is unlikely that 

the current commercially available products could be used to develop a realistic system without 

first solving some of the issues described and undertake improvements listed in section 6. 

6. Future Designs 

6.1 Device Design 

There is room for device design improvement. Development boards were used for each of the 

individual components of the prototype design. This led to certain redundancies in design and 

inefficient use of physical space. If the design process were to proceed after testing the 

development board designs could be dropped and the system redesigned onto a single printed 

circuit board. This would reduce redundancy of things like the XBee Zigbee and the on board 

Raspberry Pi WiFi chip performing similar tasks. Although the Raspberry Pi is very versatile for 

a developer there are numerous features which are unused for this project. Two examples are 



the Ethernet port and the USB ports. If the design were to go to a PCB the USB ports, or at 

least the physical jacks, would be able to be eliminated.  

 

6.2 Infrared Camera 

As described in Section 3.2.3.2 (FLIR One and Seek Thermal Observations) there are already 

new cameras available on the market with higher resolution than the one used in this project. 

However the resolution increase is still not high enough for consistent detection of people at 

range. To further increase image clarity the operating altitude could be reduced and a non-fixed 

camera could be utilized. This would get the camera closer to the objects without reducing the 

breadth of each search path. 

6.3 Software & GPS 

With improved sensors and larger objects in scene more advanced image processing 

techniques could be used. The main disadvantage of the current software was the inputs 

available. There would also be benefits to adding additional sensors such as GPS. This data 

could be used to harness such techniques as stereo target localization as described in Section 

2.1. 

6.4 Additional System Usage 

While the resolution criteria of current consumer grade sensors may not be able to detect small 

targets such as people from significant altitude, that is not to say that a larger target may not be 

able to be detected with the current available sensors. There is currently an ongoing issue of 

wildfires in the US West. They have adapted many emerging technologies into their firefighting 



methods including many early warning systems to detect fires. They typically react to a wild fire 

via containment method in which they create or use existing fire breaks. These fire breaks are 

areas which have had combustible materials removed to prevent the fires progression. However 

embers can ride winds and thermal rises from the fire and start smaller fires past these breaks. 

Although firefighters are constantly on the lookout for these jumps in order to put them out when 

they are small, manpower and sheer size of risk areas limit their capabilities. If an automated 

system similar to the one described in this thesis could be adapted to navigate a set path and 

detect these small fires it could provide benefit to the firefighting operations. Additionally with 

fires being such a large target the drones could follow the edge of the fire and report the 

information back to a central hub to provide live updates on the current status of the fire.  

 

 

 



As you can see in the Figure 4.3-1 images fire under an infrared sensor has a very extreme 

signal and is easily detectable due to the large temperature difference between it and it's 

surroundings. Even at the beginning and ending stages the thermal difference is great as shown 

in Figure 4.3-2 after the fire had died down the embers were still emitting a great amount of IR. 
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Appendix A 

A.1  Temp_Monitor.py 

import os 

import time 

 

def measure_temp(): 

        temp = os.popen("vcgencmd measure_temp").readline() 

        return (temp.replace("temp=","")) 

 

  

  

while True: 

        file = open('/home/pi/Thesis/Output/temp_history.txt','a+') 

        print(measure_temp()) 

        file.write(measure_temp()) 

        file.close() 

        time.sleep(10) 



 

A.2 XBee_Send.py 

import serial 

  

def XBee_Send(xbee_out): 

    ser = serial.Serial('/dev/ttyUSB0', 9600,timeout=.5) 

    string=xbee_out 

    ser.write(string.encode()) 

 

A.3 getserial.py [45] 
def getserial(): 

    #Extract serial from cpuinfo file 

    #credit stackexchange Raspberry Spy 

  

    cpuserial = "0000000000000000" 

    try: 

        f=open('/proc/cpuinfo','r') 

        for line in f: 

            if line[0:6]=='Serial': 

                cpuserial = line[10:26] 

        f.close() 

    except: 

        cpuserial = "ERROR000000000" 

  

    return cpuserial 

 

A.4 Test_Image_Rolling_Average_w_Capture.py 
from PIL import Image, ImageTk, ImageOps, ImageDraw 

import tkinter as tk 

import subprocess,time 

from XBee_Send import XBee_Send 

from getserial import getserial 

 

root = tk.Tk() 

root.title("Base with Subtraction") 

 

im_base = Image.open("/home/pi/Thesis/OutputWorkspace/Latest.png") 

pixelmap_base = im_base.load() 

 

photo1 = 

ImageTk.PhotoImage(im_base.resize((im_base.size[0]*5,im_base.size[1]*5))) 

l1 = tk.Label(root, image = photo1) 



l1.pack() 

l1.photo = photo1 

#root.mainloop() 

 

photo2 = 

ImageTk.PhotoImage(im_base.resize((im_base.size[0]*5,im_base.size[1]*5))) 

l2 = tk.Label(root, image = photo2) 

l2.pack() 

l2.photo = photo2 

print("Main Loop Start") 

for a in range(0,10000): 

    print("Loop ",a) 

    output_file = "OutputWorkspace/Latest.png" 

    subprocess.run(["pylepton_capture", output_file]) 

  

    image_path = "/home/pi/Thesis/OutputWorkspace/Latest.png" 

    im = Image.open(image_path) 

    pixelmap = im.load() 

 

    max_pix = (0,0,0) 

 

    for x in range(0,80): 

        for y in range(0,60): 

            if(pixelmap[x,y]-pixelmap_base[x,y] >0): 

                if(pixelmap[x,y]-pixelmap_base[x,y]>max_pix[0]): 

                    max_pix = (pixelmap[x,y]-pixelmap_base[x,y],x,y) 

            pixelmap_base[x,y] = int(pixelmap_base[x,y]*.75 + 

pixelmap[x,y]*.25) 

                #pixelmap[x,y]=(pixelmap[x,y]-pixelmap_base[x,y])*2 

            #else: 

                #pixelmap[x,y]=0 

 

    #print(max_pix) 

    if(max_pix[0]>20 and a>10): 

        print("Item Found in: /OutputWorkspace/",str(a),".png") 

        XBee_Send(getserial()+" " + str(a) +".png\n") 

  

        im = im.convert('RGB') 

        draw = ImageDraw.Draw(im) 

        draw.rectangle(((max_pix[1]-2, max_pix[2]-2), (max_pix[1]+2, 

max_pix[2]+2)), outline="red") 

        im.save("/home/pi/Thesis/OutputWorkspace/"+str(a)+".png") 

  

        photo1 = 

ImageTk.PhotoImage(im_base.resize((im.size[0]*5,im.size[1]*5))) 

        l1.config(image = photo1) 

        #l1.pack() 

        l1.photo = photo1 

  

        photo2 = 



ImageTk.PhotoImage(im.resize((im.size[0]*5,im.size[1]*5))) 

        l2.config(image = photo2) 

        #l2.pack() 

        l2.photo = photo2 

  

        root.update() 

  

  

    time.sleep(1) 

 

A.5 XBee_Receive.py  

import serial 

  

ser = serial.Serial('/dev/ttyUSB0', 9600,timeout=.5) 

 

while True: 

    incoming=ser.readline() 

    print(incoming) 

    file = open('/home/pi/Thesis/Output/XBee_Record.txt','a+') 

    file.write(incoming) 

    file.close() 

 

A.6 Service_Test.py 

import FLIR_Snap 

from PIL import Image, ImageTk 

import tkinter as tk 

 

def snapbutton_press(root,photolabel): 

    FLIR_Snap.Snap() 

    im = Image.open("/home/pi/Thesis/Output/Latest.png") 

    photo1 = ImageTk.PhotoImage(im.resize((im.size[0]*5,im.size[1]*5))) 

    photolabel.config(image = photo1) 

    photolabel.photo = photo1 

    root.update() 

 

 

 

root = tk.Tk() 

root.title("UI Demo") 

 

frame = tk.Frame(root) 

frame.pack() 

 



im = Image.open("/home/pi/Thesis/Output/Latest.png") 

photo1 = ImageTk.PhotoImage(im.resize((im.size[0]*1,im.size[1]*1))) 

photolabel = tk.Label(frame, image = photo1) 

photolabel.pack(side=tk.TOP) 

photolabel.photo = photo1 

 

snapbutton = tk.Button(frame,  

                   text="Snap",  

                   fg="green", 

                   command=lambda: snapbutton_press(root,photolabel)) 

snapbutton.pack(side=tk.BOTTOM) 

 

qbutton = tk.Button(frame,  

                   text="QUIT",  

                   fg="red", 

                   command=root.destroy) 

qbutton.pack(side=tk.BOTTOM) 

 

root.mainloop() 

 

A.7 FLIR_Snap.py 

import subprocess, time 

from PIL import Image, ImageTk 

from datetime import date 

 

def Snap(): 

    output_file = "Output/" + date.today().isoformat()+ " " + 

str(time.time())+ ".png" 

    print(output_file," created.") 

    subprocess.run(["pylepton_capture", output_file]) 

    subprocess.run(["pylepton_capture", "Output/Latest.png"]) 

 

    #im = Image.open(output_file) 

    #im.show() 

 

Snap() 

 



A.8 Enclosure isometric view 

 



A.9 Enclosure Photos 

 

 


