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Abstract

Multi-core processors naturally exploit thread-level par-

allelism (TLP). However, extracting instruction-level paral-

lelism (ILP) from individual applications or threads is still

a challenge as application mixes in this environment are

nonuniform. Thus, multi-core processors should be flexi-

ble enough to provide high throughput for uniform paral-

lel applications as well as high performance for more gen-

eral workloads. Heterogeneous architectures are a first step

in this direction, but partitioning remains static and only

roughly fits application requirements.

This paper proposes the Flexible Heterogeneous Mul-

tiCore processor (FMC), the first dynamic heterogeneous

multi-core architecture capable of reconfiguring itself to fit

application requirements without programmer intervention.

The basic building block of this microarchitecture is a scal-

able, variable-size window microarchitecture that exploits

the concept of Execution Locality to provide large-window

capabilities. This allows to overcome the memory wall

for applications with high memory-level parallelism (MLP).

The microarchitecture contains a set of small and fast cache

processors that execute high locality code and a network of

small in-order memory engines that together exploit low lo-

cality code. Single-threaded applications can use the entire

network of cores while multi-threaded applications can effi-

ciently share the resources. The sizing of critical structures

remains small enough to handle current power envelopes.

In single-threaded mode this processor is able to out-

perform previous state-of-the-art high-performance proces-

sor research by 12% on SpecFP. We show how in a quad-

threaded/quad-core environment the processor outperforms

a statically allocated configuration in both throughput and

harmonic mean, two commonly used metrics to evaluate

SMT performance, by around 2-4%. This is achieved while

using a very simple sharing algorithm.

1 Introduction

Recent years have seen a new trend in the design of

high performance microprocessors. Rather than continu-

ing to improve performance through exploiting instruction-

level parallelism (ILP), processors have begun to improve

performance through thread-level parallelism (TLP). The

shift in focus is driven by three factors limiting ILP-alone

designs: the wide disparity between processor speeds and

memory speeds (i.e. the memory wall [32]), and the increas-

ing power budgets and design complexity of large mono-

lithic designs. By contrast, multi-core processors take ad-

vantage of increasing transistor budget and can achieve high

performance by running multiple threads simultaneously.

For thread-parallel applications, the advantages of multi-

core are obvious. However, by focusing on TLP, multi-

core processors sacrifice performance for applications with

a large sequential component. Despite the best efforts of the

programming languages community, exploiting large num-

bers of threads for high performance is still a complex re-

source that most programmers do not know how to handle

correctly.

We propose a microarchitecture capable of running a sin-

gle thread or many threads with high performance and fair-

ness. The architecture is based on a novel processor mi-

croarchitecture that allows the instruction window size to

be changed at runtime. This is achieved by distributing the

work among multiple small cores that can be reallocated
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to different threads. These processing elements are allo-

cated to threads based on execution locality, i.e. the ten-

dency of groups of instructions to have either high or low la-

tency due to pending main memory accesses. Our microar-

chitecture exploits ILP by having an effective instruction

window of thousands of instructions spread across the pro-

cessing elements, largely overcoming the negative effects

of long-latency memory operations. Our microarchitecture

also exploits TLP for parallel workloads by allowing mul-

tiple threads to automatically allocate the processing ele-

ments it needs to achieve the best performance, rather than

giving each thread the same kind of core regardless of its

needs. As an additional benefit, all of these advantages are

obtained without changes to the ISA, compiler or operating

system.

Our variable window processor is based on a recent ap-

proach that has been proposed to build large instruction

window processors [23]. It consists in using two proces-

sors to handle the instruction stream. A first processor, the

cache processor, focuses on instructions whose inputs are

available from registers or caches. A second, much simpler

processor, the memory processor, focuses on main mem-

ory dependent instructions. The instruction window can

be large, but the issue windows are small since both ex-

ecution loops handle a relatively small amount of instruc-

tions. However, the design has several shortcomings. For

instance, the intermediate buffer, being in-order, serializes

all memory-dependent instructions regardless of their effec-

tive wakeup time. As will be shown, the penalty due to this

serialization is significant, resulting in about a 10% perfor-

mance loss. In addition, this design features only two exe-

cution modes, small window or full window, instead of of-

fering a scalable performance range. This makes it undesir-

able as a building block for our flexible chip multiprocessor.

In this research, we borrow the decoupled nature of this

approach but overcome its limitations and allow it to scale

to many cores and many threads. The result is a processor

with a variable window/issue size using a simple scalabil-

ity mechanism. This variable-size window processor uses

multiple small cores, called memory engines, linked by a

network, to compute memory dependent instructions. The

network introduces latency, but this additional latency has

little impact on instructions already waiting hundreds of cy-

cles due to a cache miss. The memory engine network can

then be shared among threads to build a reconfigurable het-

erogeneous multi-core architecture.

The three main contributions of this paper are as follows:

1. We propose a new microarchitecture that significantly

improves performance by overcoming memory laten-

cies while keeping complexity within reasonable lim-

its.

2. We propose a scalable microarchitecture with

a variable window size that can be tuned by

adding/removing memory engines.

3. We propose a multi-threaded implementation of the

microarchitecture that can reconfigure itself resulting

in the first heterogeneous multi-core architecture that

adapts dynamically to the requirements of the threads.

Most notable, reconfiguration happens dynamically

without intervention of the operating system nor the

programmer.

Through the rest of the paper we will describe the mi-

croarchitecture of our multi-core approach. This paper is

organized as follows: Section 2 gives related work, Sec-

tion 3 describes our proposal for a variable window single-

threaded processor and Section 4 introduces an extension

to run multiple threads efficiently on our microarchitecture.

We conclude with Section 5.

2 Related Work

Much research has focused on designing processors ca-

pable of overcoming the memory wall [32]. Processor be-

havior in the event of L2 cache misses has been studied in

detail [13]. Karkhanis et al. showed that many indepen-

dent instructions can be fetched and executed in the shadow

of a cache miss. This observation has fueled the proposal

of microarchitectures supporting thousands of in-flight in-

structions.

One way to increase the number of instructions in flight

is to scale existing processor structures. Work in this field

has concentrated on the reorder buffer [7, 1], the instruc-

tion queues [7, 16, 30], on handling registers [19, 6] and

on the load/store queue. Load queue resource requirements

can be greatly reduced by using techniques for early release

of load instructions [8, 18]. For the store queue, several

recent proposals for dealing with scalability problems exist

including two–level queue proposals [1, 21] or filtering pro-

posals based on address hashing [26]. Another approach is

to combine aggressive load optimizations with re-execution

of load instructions at commit, using re-execution to verify

the correctness of the optimizations [4, 24].

Other approaches to address the memory wall look ahead

to find independent cache misses and thus provide an accu-

rate prefetch stream. Assisted threads [29, 5, 25] rely on

pre–executing future parts of the program, selected at com-

pile time or generated dynamically at run time. Runahead

Execution [9, 20] pre–executes future instructions while an

L2 cache miss blocks the ROB. Dual Core Execution [33]

is a technique that resembles runahead in that it can execute

in advance to prefetch and improve branch prediction. It

uses two cores: one that performs a runahead and another

that is conservative. Because of the use of two cores, it does

not suffer from refetching. However, it cannot achieve the
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performance of a large window because it doesn’t exploit

distant parallelism. All instructions in the first core are pro-

cessed again by the second core.

A different way to improve performance is to partition

programs into tasks that can be executed in parallel. Mul-

tiScalar performs such a partitioning of the program and

then executes the tasks speculatively on a set of process-

ing units [28]. Our FMC architecture might seem similar

to MultiScalar externally, but it performs the partitioning

dynamically (based on execution locality) instead of being

generated by the compiler. In MultiScalar, speed-ups are

obtained by the parallel execution of tasks. Instead, in FMC,

speed-ups are obtained by executing distant parallelism and

by looking ahead in the program to execute loads early.

Recently multi-core architectures have become popular.

In this paper we study a hybrid of a large window proces-

sor and multi-core architectures. Integrating multiple cores

on a die presents some important issues such as how to in-

terconnect multiple cores. The implications of doing this

when using shared buses as interconnect have been studied

in [15].

The popularity of multi-cores raises the problem of how

to partition programs among cores. Traditional multicore

approaches are homogeneous, i.e., all the cores look the

same, while some proposals advocate using heterogeneous

cores [14]. Both scenarios have difficulty accommodat-

ing many sorts of workloads. A recent proposal [11] ad-

dresses this problem by joining multiple 2-wide processors

into clustered processors of widths 4, 6 and 8. This pro-

posal differs from ours in two basic ways: First, it widens

the processor width instead of the instruction window and,

second, reconfiguration is triggered by a system call to the

operating system whereas FMC performs this transparently

to the programmer.

3 The multi-scan ILP processor

This section discusses current issues in ILP processor re-

search, describes the baseline ILP processor, and then intro-

duces our new proposed microarchitecture.

3.1 Recent Trends in ILP Processors

Out-of-order (OoO) execution [27] helps mitigate the

effects of long-latency instructions and first-level cache

misses but is less effective with today’s high memory la-

tencies. Figure 1 shows the performance loss in percentage

from the fetch bandwidth for a set of 4-way fetch/commit

OoO processor configurations ranging from perfect caches

to real memory subsystems with hundreds of cycles of la-

tency running SPEC CPU 2000 FP. Scaling processor re-

sources to provide a larger instruction window can theoret-

ically overcome this limitation. However, this scaling is in-

feasible in practice due to technology constraints.
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Figure 1. Performance Loss in Spec2KFP as a function

of memory subsystem and instruction window size

Recent research has identified two key factors in the de-

sign of processors capable of overcoming the memory wall:

Execution Locality: This is the tendency of instruc-

tion slices to execute in bursts separated by memory ac-

cesses. Instructions linked only through register/cache ac-

cesses are said to have high execution locality. Otherwise

they have low execution locality. This observation enables

the construction of large-window processors requiring only

moderately-sized structures by focusing only on the execu-

tion of high locality code [7, 16, 30, 23].

Non-Blocking Front-End: Running ahead and executing

loads while avoiding ROB stalls increases Memory-Level

Parallelism (MLP) [10], minimizing the impact of any sin-

gle high-latency memory access and thus increasing overall

throughput in memory-limited applications [30, 23, 20].

Execution Locality is a concept that describes a prop-

erty of instruction execution. We can divide the execution

of a program into dynamic instructions that are classified as

either short or long latency. Short latency instructions are

executed quickly e.g. within tens of cycles. They depend

only on the results from other short latency instructions and

loads hitting in the cache. Long latency instructions de-

pend on loads that access main memory. Clusters of instruc-

tions with short latencies are joined to one another by long

latency instructions. Within a cluster, we say instructions

have high execution locality.

The key observation of execution locality is that, since

instruction clusters suffer penalties no larger than L2 cache

accesses, they can be executed using only moderately sized
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structures. Processor design can be approached as a combi-

nation of a processor with idealized cache and some support

structures to hide main memory access latencies.

3.2 Our Baseline: The D-KIP

The Decoupled KILO-Instruction Processor (D-KIP)

[23] design will be our starting point for building a context

for this research. It is typical of state of the art proposals

for exploiting ILP through a large effective instruction win-

dow. In the D-KIP, two cores cooperate to execute an ap-

plication. The first core, the Cache Processor (CP), is small

and fast, and executes all code depending only on cache ac-

cesses (high locality code). The CP runs forward as fast as

possible, launching all loads with known addresses. Code

that depends on memory accesses (i.e., low locality code)

is processed by a secondary core, the Memory Processor

(MP), which is proposed as a small in-order processor. It

executes low-locality code fetched from an in-order Low

Locality Instruction Buffer (LLIB) that has previously been

filled in program order by the CP. Processor recovery is en-

sured by using checkpoints that are created dynamically at

the reorder buffer (ROB) output of the CP. Figure 2 shows

a simplified overview of the D-KIP processor. The key in-

sight is that the LLIB is capable of representing a large in-

struction window but is implemented as a simple RAM, not

a CAM, thus avoiding the problems of latency and power

inherent in a naive scaling of an out-of-order processor.

Figure 2. Microarchitecture of the D-KIP Processor

The D-KIP does not handle well the case when the LLIB

contains a code mix with different localities, i.e. if there are

pending cache misses yet to execute in the LLIB code. The

LLIB, being in-order, prevents data-flow execution of these

different locality instruction clusters, limiting performance.

In addition, the implementation of a centralized checkpoint-

ing stack raises some concerns regarding design complexity

and movement of register values around the chip.

3.3 Approximating Dataflow in the Mem-
ory Processor

The problems of in-order execution in the Memory Pro-

cessor can be solved by introducing a relaxed form of out-

of-order execution that we term Multi-Scan Execution, ex-

plained next. Full out-of-order capabilities are not neces-

sary since small latencies are easily hidden compared to the

latencies resulting from cache misses.

The Memory Processor has an interesting property that

enables a different execution paradigm. Contrary to what

happens in a classic processor, the memory processor does

not perform fetch nor path discovery. Instead, instructions

are provided by an external entity (the Cache Processor)

which injects the instructions into the Memory Processor.

When the long-latency load that triggered the MP finally re-

turns from memory, the MP is in a situation where hundreds

of pre-decoded instructions are possibly buffered awaiting

execution. At this point, the instructions in the low-locality

instruction buffer are long latency instructions that have

not yet executed. The ordering of these instructions is the

program ordering. All higher locality instructions in be-

tween are already executed. Thus, available inputs need to

be recorded together with the pending instructions in the

buffer. If we also insert executed loads and stores into the

LLIB, the result is a compressed program image that does

not include the higher locality instructions. The problem

then is how to efficiently execute these instructions. The in-

clusion of all loads and stores is not necessary in principle

for correction, but it will simplify the implementation of our

architecture, as will be seen later.

The method that we devise for efficient coarse-grained

dataflow execution is based on the concept of execution lo-

cality presented earlier. The idea is to take the LLIB and

perform multiple runs through the buffer, each one focus-

ing on a deeper execution locality level. In the first pass,

instructions depending directly or indirectly on one cache

miss are executed. In the second, the instructions depend-

ing on two chained cache misses are executed. In the third,

those depending on three chained cache misses. This pro-

cedure continues until no more instructions need to be ex-

ecuted. At this point, the whole group of instructions can

be committed. This includes sending all stores to the data

cache. This is one of the reasons to include all stores

(including executed stores) in the low-locality instruction

stream.

The new Memory Processor is a considerable depar-

ture from the D-KIP. However, the concepts on which it is

built are more straightforward. In addition to the instruc-

tion buffer, which we now call the Completion Buffer, the

processor includes integer and FP functional units, a store

buffer and a pair of register files associated to the head and

tail of the Completion Buffer to keep the precise state. Fur-

thermore, it keeps a small local register file to keep the par-

tial register state necessary to process the instructions. Con-

trary to the D-KIP, this scheme does not require the exis-

tence of a checkpointing stack. We call this small processor

a memory engine since it processes instructions that depend

on memory accesses. Multi-Scan execution vaguely resem-
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bles Flea-Flicker Multipass Pipelining [3]. However, while

flea-flicker is a technique specifically targeted at overcom-

ing L1 cache misses in an in-order processor, multi-scan ex-

ecution is a way to achieve coarse grain dataflow execution

in a set of high-latency instructions.

A diagram of the internal architecture of the memory en-

gine can be seen in figure 4 (a). The output register file will

initially be empty. After each scan new output registers will

have been computed. The memory engine then proceeds to

update these registers in the output RF. The input RF has al-

ways all registers, since it represents the register view when

the first long-latency load is detected. At this point instruc-

tions start being inserted into the instruction buffer. Until

now the commit register file of the Cache Processor had a

precise view of the register set. This precise view is then

copied into the Memory Engine.

The main problem with this scheme is that completing

a scan requires the memory engine to be filled completely.

The memory engine cannot start processing instructions of a

lower locality earlier because newer instructions of a higher

locality may still be inserted. In addition, to allow effective

lookahead this scheme will require a very large completion

buffer. But the larger this buffer, the worse the dataflow

approximation, as memory access latencies are not uniform.

An effective scheme should be able to handle lower locality

instructions earlier.

3.4 Obtaining a Resizable Window with a
Set of Memory Engines

The aforementioned problem is a direct consequence of

having a single buffer. A simple solution to this problem

is to partition the buffer into multiple sequential smaller

buffers and provide each one with its own set of functional

units. The buffers are then allocated round-robin to the

Cache Processor as they are needed. In this scheme, in-

stead of having a single memory engine we have a Memory

Processor consisting of a set of Memory Engines. Each of

these memory engines is a replica of the multi-scan engine

handling a subset of the compressed instruction window.

Registers are passed between the engines using the input

and output register files. After each scan the engine checks

the output register file for newly generated registers (live-

outs). These registers are then sent over a network to the

input register file of the next logical memory engine. The

input register files also provide the points where the proces-

sor can perform precise recovery. If an exception occurs,

e.g. a branch misprediction, only engines handling younger

instructions are squashed and the contents of the input RF

of the engine where the exception happened are then copied

to the Cache Processor register file so that execution can re-

sume. Uncomputed registers are marked as long-latency so

that depending instructions still travel to the Memory Pro-

cessor. A diagram comparing the instruction windows of

several architectures can be seen in Figure 3.

Figure 3. A comparison of Instruction Windows of the

R10000, the D-KIP, and a single- and multiple-ME design

with multi-scan execution

There are many parameters to tune in this microarchitec-

ture. After a design space exploration we have settled on a

memory engine design with in-order instruction queues and

which scans two instructions per cycle. Each Memory En-

gine can handle up to 128 execution-pending instructions

and up to 128 loads and stores. Reducing the issue width to

one reduced IPC in 2.3% while implementing out-of-order

instruction queues increased performance in about 0.1%.

In-order performs well since each scan only processes high-

locality instructions for which out-of-order execution is not

necessary.

The interconnection of the memory engines is another

critical issue. The memory engines require a path to all

other engines. Communication itself happens only between

conceptually adjacent engines. However, the previous and

next engine could be located anywhere. To provide this all-

to-all communication some sort of network needs to be pro-

vided. We will analyze the trade-offs of such a network

later. A diagram of the complete architecture, showing the

MEs connected with a mesh network, can be seen in Fig-

ure 4(b). The figure also highlights the different paths that

are necessary for communication: memory access, register

transfer and instruction insertion.

3.4.1 Memory Management

Memory management is a critical component in high-

performance architectures. Much research is going on at

this moment in order to build a scalable low-complexity

load/store queue. A great deal of this effort can be reused

for the multi-scan design. One option is to combine a hi-

erarchical store queue [1] and a non-associative load queue
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(a) (b)

Figure 4. (a) Architecture of a single Memory Engine and (b) Generalized Processor with ME Network

using re-execution [24, 4] to handle loads and stores. As can

be seen in Figure 4 (b), access the LSQ is still centralized in

the Cache Processor. Our scheme is thus compatible with

traditional memory consistency models for multiprocessors.

The architecture presented so far will be the basic build-

ing block for our goal of building a chip multiprocessor

that can dynamically reconfigure itself to support various

degrees of heterogeneity. Before proceeding with the de-

scription of the CMP architecture we evaluate the proposed

architecture in single-threaded mode.

3.5 Evaluation of the multiscan processor

The microarchitecture presented so far has been eval-

uated using an execution-driven simulator with the Alpha

ISA. We used the SPEC CPU 2000 benchmark suite with

selected simulation points of 100 million instructions using

a methodology based on SimPoint [22].

We will determine the equivalent window size of the

FMC processor and compare its performance with other

proposals. We will also analyze the important topic of mem-

ory bandwidth which will be one of the major bottlenecks

in future CMP processors.

In the following we list the evaluated microarchitectures:

R10-64: A 4-way R10k-like processor with out-of-order

scheduling logic and a 64-entry ROB. The integer and FP

instruction queues have 40 entries. Other resources are ide-

alized. R10-64-PREF is the same architecture extended

with an aggressive stream prefetcher that can hold up to 256

streams of 256 bytes, totaling 64KB of prefetched data.

R10-256: Like the previous, but with a 256-entry ROB.

The instruction queues can hold up to 160 instructions each.

This model is much more aggressive than current microar-

chitectures. R10-256-PREF is the same processor but in-

cluding the aforementioned stream prefetcher.

RA-64, RA-256: Two runahead processors [20] with

64/256-entry ROBs. RA-64-PREF, RA-256-PREF are the

same models but including the stream prefetcher. These

models include an unrestricted fully associative runahead

cache which allows them to take full advantage of data for-

warding during runahead.

DKIP: This is the D-KIP model as presented in [23].

The size of each LLIB is 2048 entries. When using the

prefetcher we call this processor DKIP-PREF.

FMC: This is the proposed microarchitecture. It includes

16 memory engines. All transfers to, from and within the

MP suffer an additional delay of 4 cycles representing net-

work latency. The Cache Processor is equivalent to R10-64

in terms of structure sizes. FMC-PREF includes the stream

prefetcher. FMC stands for Flexible Multi-Core Architec-

ture and is the name we will use to refer to the proposed

microarchitecture.

The Load/Store Queue has been idealized for all models.

The memory model is modeled after an idealized pipelined

memory that is capable of transferring 8 bytes every 4 pro-

cessor cycles. Table 1 lists parameters that are equal for

all configurations. Note how the FMC architecture is built

completely out of small-sized structures.

Fetch/Decode Bandwidth 4

Branch Predictor Perceptron [12]

Store/Load ports 2 shared ports

L1 Cache Size, Associativity & Access Latency 32 KB / direct mapped / 1 cycle

L2 Cache Size, Associativity & Access Latency 2 MB / 4-way set assoc / 10 cycles

Memory Latency 400 cycles

Cache Processor & R10k: IQ/FPQ/ROB/RegFile 40/40/64/96

Cache Processor & R10k: Scheduler Out-of-Order

Memory Processor: IQ/FPQ/RegFile 20/20/32

Memory Processor: Scheduler In-Order

Table 1. Common Parameters for all Microarchitectures

Figure 5 shows the IPC for selected microarchitectures

side-by-side. The FMC performance gets close to the limit

shown in Figure 1. Using 16 Memory Engines the IPC for

SPEC FP reaches 2.97 using no prefetcher. There is a con-

siderable speed-up of 12% compared to the D-KIP archi-

tecture, which reaches 2.66, and a 31% speed-up compared

to RA-256. When prefetchers are in use, the speed-ups
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are 5% compared to the DKIP and 18% compared to runa-

head. FMC outperforms runahead because it does not need

to refetch instructions executed under the shadow of a cache

miss and therefore obtains a stronger memory lookahead ef-

fect.

On FP codes, the FMC architecture achieves speed-ups

of 53% and 90% over the R10K-256 and R10K-64 (not

shown) microarchitectures, respectively. These microarchi-

tectures are severely limited by the sizes of their ROBs and

cannot overcome memory stalls.

The speed-up achieved with integer codes is not as large:

up to 13% for R10K-64-PREF. The FMC sees a speed-up

of 9% compared to the more aggressive R10-256 model.

There are no notable differences with runahead and the D-

KIP models. All these techniques hit a wall due to the fre-

quent recoveries caused by branch mispredictions and the

lack of memory level parallelism in many integer appli-

cations. In addition, the large second level cache is large

enough to capture the locality of most SPEC INT bench-

marks. Thus, trying to overcome the memory wall with

special techniques is unlikely to give major speed-ups un-

less the other problems are attacked first.

Figure 5 also shows the percent increase in the off-chip

memory traffic that the prefetcher is generating. Although

the prefetching approaches provide good speed-ups, they do

this at the cost of considerable traffic increase. In the case

of FMC, the addition of the prefetcher does not improve

performance for FP codes. The reason is that the window

size achieved by FMC is large enough to make it insensitive

to parallelizable memory accesses. The fact that FMC does

not require a prefetcher at all has important benefits. In ad-

dition to the reduction of memory traffic the FMC benefits

from less area, complexity and power.

3.5.1 Allocation and Efficiency of the Memory Engines

The evaluation so far has been conducted using a FMC pro-

cessor with 16 memory engines allowing us to emulate a

core with a window of around 1500 instructions (see fig-

ure 1). This is enough for a 400-cycle latency in most

benchmarks. To analyze the effective requirements we have

evaluated the average performance of the FMC processor

using different numbers of memory engines, ranging from

0 to 16. The resulting IPC curve for both SPEC INT and

SPEC FP can be seen in Figure 6.

The figure shows the progression of IPC starting from 0

memory engines, which is equivalent to the R10K-64 pro-

cessor, up to 16 memory engines. The IPC value at this

point differs in less than 1% from the value achieved with

30 MEs. Using 8 memory engines is still enough to achieve

95.7% of the maximum IPC for SPEC FP. The curve for

SPEC INT saturates earlier, reaching 96.8% of the final IPC

with only 4 memory engines. The architecture of the FMC
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Figure 6. SPEC CPU 2000 IPC for varying number of

Memory Engines. The case of zero engines is equivalent to

R10k-64

is therefore well suited for power-performance trade-offs.

If we want to reduce power consumption, we can deactivate

memory engines and make the architecture smaller.

To characterize the behavior of the applications we mea-

sure two parameters:

• the average allocation of memory engines when run

with 16 memory engines; and

• the minimum number of memory engines required to

reach 95% of the performance of a FMC with 16 mem-

ory engines.

The results for SPEC INT and SPEC FP are listed in

Table 2. These numbers allow establishing a classification

of applications depending on the speed-up they experience

when they can use memory engines and the average number

of engines that they allocate:

High Average Allocation, High Speed-Up (Type A):

This includes applications that experiment large speed-ups

when additional MEs are given to them. The additional

MEs allow these applications to extract more MLP and ex-

ecute more distant parallelism. The benchmarks in this cat-

egory are: ammp, applu, apsi, art, equake, fma3d, lucas,

mcf, sixtrack, vortex and wupwise.

High Average Allocation, Low Speed-Up (Type B):

This includes applications that consume many MEs but do

not noticeably improve IPC in the process. The reason is

that these applications have not enough MLP to exploit and

instead perform sequential memory accesses. The bench-

marks in this category are: bzip2, facerec, gcc, parser and

perlbmk.
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Benchmark Average Allocation MEs for 95% IPC Benchmark Average Allocation MEs for 95% IPC

bzip2 6.19 0 ammp 4.72 8

crafty 0.28 2 applu 9.83 6

eon 0.02 0 apsi 6.51 8

gap 2.08 4 art 8.77 6

gcc 4.32 2 equake 9.32 12

gzip 0.61 0 facerec 7.51 4

mcf 5.41 8 fma3d 14.16 10

parser 8.78 2 galgel 0.72 2

perlbmk 4.79 2 lucas 7.65 8

twolf 0.30 0 mesa 0.91 2

vortex 6.24 8 mgrid 3.47 4

vpr 3.0 4 sixtrack 1.94 6

swim 3.29 4

wupwise 3.13 6

Table 2. Behavior of SPEC INT (left) and SPEC FP (right) applications

Low Average Allocation (Type C): This includes the

remaining apps that do not allocate many MEs to reach

their maximum speed-ups. The reason is that the working

set of these benchmarks fits nicely within a 2MB L2 cache.

The benchmarks in this category are: crafty, eon, galgel,

gap, gzip, mesa, mgrid, swim, twolf and vpr.

3.5.2 Latency tolerance of the ME Network

Given that we use a network to connect the memory engines

we cannot assume that operations requiring the use of the

network will be able to complete in a single cycle. The

impact of these delays needs to be evaluated in detail. There

are three cases in which data needs to be passed through the

ME network: insertion of instructions, register transfer and

load execution (cache access).

Instead of modeling a specific type of network we have

opted to add a fixed penalty to transfers over the network.

The mesh shown in figure 4 (b) is only one example of a

network that could be used. There is nothing that precludes

the use of a bus, a token ring or a different type of network.

Using a fixed delay makes our evaluation independent of

the network architecture and enables an easier comparison

with other architectures. A fixed delay can be considered

an average latency, but it is also what one would find in a

butterfly/Clos network. Figure 7 shows the impact of the

network delays in the performance of the system both for

SPEC INT and SPEC FP.

Results show that even with an 4-cycle additional one-

way latency (8-cycle round trip for cache accesses), perfor-

mance is still around 1% of the maximum for both SPEC

FP and and SPEC INT. The main contribution of this per-

formance drop is the delay suffered by loads. Evaluating

only register transfer and instruction insertion delays results

in no appreciable performance penalty at all.

The 4-cycle extra latency implies a 8-cycle delay in both

directions (from ME to LSQ and back) giving total access

latencies of 9 cycles for L1 and 18 cycles for L2. For a

8-cycle access latency (16 cycles round-trip) performance
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performance

degrades about 2%. The tolerance of the Memory Proces-

sor to additional latencies is what allows these large delays

to result in relatively small performance overheads. For the

rest of this paper we are going to continue using an addi-

tional network latency of 4 cycles.

4 A flexible heterogeneous multi-core archi-

tecture

The fundamental property of the FMC is its ability to

change the instruction window size at runtime. It can do so

by dynamically adding or removing memory engines from

the system. This property allows the processor to adapt to

the requirements of the application and activate only those

memory engines that are predicted to lead to improved per-

formance.

We propose to use the network of Memory Engines to

construct a dynamically adapting multi-core architecture

that can provide high throughput to sets of threads with low

requirements, mixes of applications with different resource

requirements and mixes of identical high-performance pro-

grams, particularly in the case that less threads than CPs are

running.

Our proposed flexible multi-core architecture consists of

a set of Cache Processors, each one with a static partition

of memory engines, and a pool of memory engines that can

be dynamically assigned to the different threads. Figure 8

shows a general view of this microarchitecture.

The microarchitecture has good potential to adapt to ap-

plication mixes as threads that do not require Memory En-

gines can relinquish their engines and give them to threads

that require more memory engines. Moreover, when there

are fewer threads than Cache Processors, those threads that

Figure 8. The microarchitecture of the flexible multi-core

microarchitecture, including a set of Cache Processors, 2

statically assigned ME per thread, and a dynamic pool of

memory engines

are running can access the dynamic pool of memory engines

without competition.

4.1 Assigning Memory Engines

For the flexible multi-core architecture we developed an

algorithm for assigning Memory Engines with the goals

of simplicity and reasonable performance. The algorithm

works as follows: Every fixed number of cycles (we arbi-

trarily choose 256 cycles) a piece of logic, called the ar-

biter, collects information from the Cache Processors re-

garding the number of dynamic memory engines that a

thread has allocated but is not using. The arbiter adds all

unused engines to a common pool and reassigns the free en-

gines to the cache processors, one at a time, using a round-

robin policy starting with the thread that currently has the

smallest number of MEs allocated. At all times each engine

is allocated to some thread, although the engine might be in

a power-saving mode. It is the responsibility of the CP to

activate an engine when the application is going to use it.

4.2 Multi-core Simulation Infrastructure

The multi-core implementation that we have proposed so

far is highly decoupled. There are only three elements that

are shared: the dynamic pool of MEs, the system bus and

the main memory. Everything else is local to the thread.

This includes the two levels of cache, TLBs and functional

units. This partitioning has been implemented on some

commercial processors such as the Intel Montecito, Intel

PentiumD or AMD AthlonX2 processors. The sharing of

the memory engines has been modeled by implementing a
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server process acting as the arbiter. The cache processors

are clients to this process. Every 256 cycles they send a

packet with the number of free engines to the server and re-

ceive a new allocation as an answer. Sharing of the system

bus has been modeled by implementing a virtual memory

system that statically partitions the bus bandwidth among

the threads. In our model, each thread gets the same band-

width. This assumption is pessimistic as a memory con-

troller could perform a much better bus cycle assignation

between the threads.

Evaluating multi-core/multi-threaded architectures re-

quires the generation of workload mixes for the simulations.

We evaluate a multi-core architecture with 4 Cache Proces-

sors. To generate the workload mixes we use the application

classification provided at the end of Section 3.5. In con-

structing the workloads, we order the benchmarks alpha-

betically and choose them using a round robin algorithm1.

Table 3 shows the generated workload mixes for the archi-

tecture with 4 Cache Processors. In Table 3, ’r’ means re-

peated, i.e. the same application is run multiple times in

parallel, a frequent scenario in scientific/engineering com-

putations and also usual in server workloads.

Running multi-threaded simulations has special require-

ments as we cannot simply run 100 million instructions and

stop. Different benchmarks take different amounts of time

to execute and stopping in the middle of a simpoint distorts

the results. To avoid this situation we use the methodology

proposed in [31]. The idea behind this methodology is to

re-execute the benchmarks in a workload as many times as

needed until the measurements obtained (IPC in our case)

are representative. In this paper we used a Maximum Al-

lowable IPC Variance (MAIV) of 5%. The number of mem-

ory engines has been fixed to a total of 20. This number

includes statically allocated engines and the dynamic pool.

4.3 Evaluation of a 4-way Multi-Core Ar-
chitecture

The goal of this study is to check the effect of dynam-

ically sharing the MEs. To this end, we compare a con-

figuration in which each thread has 5 statically assigned

MEs and no dynamic sharing (S5D0) versus a configura-

tion where each thread has 2 statically assigned engines and

there is a pool of 12 ME to share (S2D12). The S5D0 con-

figuration models a symmetric CMP. Such a model focuses

on throughput with a special emphasis on fairness. We

are interested in analyzing if the dynamically reconfigur-

ing S2D12 is capable of exceeding the homogeneous S5D0

both in throughput and fairness. Note that we do not eval-

uate an asymmetric CMP configuration. For an analysis of

1That is, we have chosen the mixture of benchmarks using a fixed pro-

cedure before performing the experiments and without regard to the results

achieved with a particular mixture.

asymmetric architectures we refer the reader to [2].

The throughput results for the 4-way Multi-Core are

shown in Figure 9. The model of the FMC architecture that

was used does not include a prefetcher. The workload iden-

tifiers have been abbreviated for spatial reasons. AA work-

loads refer to {A,A,A,A}, AB workloads to {A,A,B,B}
and AC workloads refer to {A,A,C,C}. Finally, workloads

where a benchmark is run multiple times in parallel are

identified as benchmark × y. In this case y identifies the

number of parallel occurrences of the benchmark. Because

each benchmark advances at the same speed, these repeti-

tion workloads have been simulated with different fast for-

wards. The fast forwards differ in 10 million instructions

and they average to the same fast forward used in the sin-

gle thread evaluations in this paper. While running applica-

tions with a difference of 10 million instructions may not al-

low testing the assignation algorithm for different program

phases, it will allow to see how the algorithm behaves due to

small variations resulting from operating system scheduler

decisions.

While using more memory engines improves IPC con-

siderably for class-A applications, there is always a point

of saturation independent of the benchmark. Many applica-

tions will try to go past their saturation point and consume

more memory engines than necessary. To handle this par-

ticular case of unfair behavior we have limited the maxi-

mum amount of dynamic memory engines that the arbiter

will assign to a single thread to eight engines. This number

represents two thirds of the size of the dynamic pool and is

applied to all applications, irrespective of their type. Note

that this limitation is only enforced when 4 threads are run-

ning. For the cases of two threads and one thread it is not

meaningful.

The {A,A,A,A}, {A,A,B,B} and {A,A,C,C} mixes

show promising results when run with a shared pool

of memory engines. For this particular configuration

{A,A,A,A} workloads experienced a 1.9% speed-up in

throughput, AB workloads experienced a 0.4% speed-up

and {A,A,C,C} saw a 3.9% improvement when running on

the S2D12 configuration. We also measured the harmonic

mean of workloads and found that the dynamic assigna-

tion algorithm improves its value between 2-4%. We used

the harmonic mean defined as the mathematical harmonic

mean of the relative IPCs compared to the case when the

thread is running alone, i.e. when there is no competition

from other threads [17]. Thus our technique not only im-

proves throughput, but it also provides a fair execution of

all threads in a workload.

When running repeated workloads the situation im-

proves even more, particularly when fewer threads than the

number of Cache Processors are running. For example, if

only a single copy of applu is running, the throughput of

this benchmark is 12.5% higher on the the S2D12 configu-
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Class Mix Benchmark Combinations

{A,A,A,A} {ammp, applu, apsi, art} {equake, facerec, fma3d, lucas}
{A,A,B,B} {mcf, vpr, bzip2, gcc} {ammp, applu, parser, perlbmk}
{A,A,C,C} {apsi, art, crafty, eon} {equake, facerec, galgel, gap} {fma3d, lucas, gzip, swim} {mcf, vpr, mesa, mgrid}
{A,r,r,r} {ammp, ammp, ammp, ammp} {applu, applu, applu, applu} {apsi, apsi, apsi, apsi} {art, art, art, art}
{A,r,-,-} {ammp, ammp, -, -} {applu, applu, -, -} {apsi, apsi, -, -} {art, art, -, -}
{A,-,-,-} {ammp, -, -, -} {applu, -, -, -} {apsi, -, -, -} {art, -, -, -}

Table 3. Workload mixes for 4-way Multi-Core
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Figure 9. Throughput of the Mixed Workloads (left) and the Repetition Workloads (right) in the 4-Core

Implementation

ration compared to the S5D0 configuration. This is because

under these circumstances the arbiter can assign up to 14

memory engines to a single application without having to

compete for resources with other threads. This is far bet-

ter than what can be obtained using a homogeneous multi-

core or even a heterogeneous multi-core, as none of these

architectures are able to reassign all hardware resources, a

limitation from which the FMC architecture does not suf-

fer. Only the small subset of statically assigned engines is

wasted in the FMC. In addition, the FMC architecture per-

forms all these reconfigurations dynamically and can thus

adapt to variations in program behavior.

5 Conclusions

We have presented a flexible multi-core microarchitec-

ture capable of running one or many threads with high per-

formance. Each core is very simple, thus our approach

scales to a large number of cores, allowing for an efficient

and simple design.

For floating point applications, we have shown that

our design improves performance by 53% over a next-

generation superscalar processor and 12% over recent previ-

ous work in large instruction window designs. With integer

applications there is a more modest but still quite signifi-

cant speed-up of 9% over the out-of-order processor with

a 256-entry instruction window. Moreover, our design al-

lows multiple threads to use as many or as few resources

as they need from a pool of available cores, rather than al-

locating a single thread per core as in previous multi-core

designs. In a 4-core environment we find that our approach

improves throughput and fairness on average around 2-4%.

This result is encouraging given the simplicity of the arbiter

scheme that was implemented. We believe this design is

the right path to provide best performance for workloads

consisting of a wide variety of applications, both single and

multi-threaded.
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