
Abstract
Increasing the number of instruction queue (IQ) entries

in a dynamically scheduled processor exposes more
instruction-level parallelism, leading to higher perfor-
mance. However, increasing a conventional IQ’s physical
size leads to larger latencies and slower clock speeds. We
introduce a new IQ design that divides a large queue into
small segments, which can be clocked at high frequencies.
We use dynamic dependence-based scheduling to promote
instructions from segment to segment until they reach a
small issue buffer. Our segmented IQ is designed specifi-
cally to accommodate variable-latency instructions such as
loads. Despite its roughly similar circuit complexity, simu-
lation results indicate that our segmented instruction queue
with 512 entries and 128 chains improves performance by
up to 69% over a 32-entry conventional instruction queue
for SpecINT 2000 benchmarks, and up to 398% for SpecFP
2000 benchmarks. The segmented IQ achieves from 55% to
98% of the performance of a monolithic 512-entry queue
while providing the potential for much higher clock speeds.

1 Introduction
To stay on the microprocessor industry’s historical per-

formance growth curve, future generations of processors
must schedule and issue larger numbers of instructions per
cycle, selected from ever larger windows of program execu-
tion [18]. In a conventional dynamically scheduled
microarchitecture, the execution window size is determined
primarily by the capacity of the processor’s instruction
queue (IQ), which holds decoded instructions until their
operands and an appropriate function unit are available.
Unfortunately, processor cycle time constrains the size of
this physical structure severely. The latency of wakeup
logic—which marks queued instructions as ready to exe-
cute when their input dependences are satisfied—increases
quadratically with both issue width and instruction queue
size [17]. Both wakeup and the following selection phase—
which chooses a subset of the ready instructions for execu-
tion—generally occur within a single cycle, forming a criti-
cal path. Advances in semiconductor technology will not
provide a solution: although the number of available tran-
sistors will continue to increase exponentially, the number
of gates reachable in a single cycle will at best stay con-
stant, and possibly decrease [22, 1, 12].

The poor scalability of conventional wakeup logic
results from its broadcast nature. To identify the instruc-
tions that become ready as a result of newly available val-
ues, the identities of these values (i.e., register tags) are
broadcast to all queued instructions. The quadratic depen-
dence of latency on IQ size is a direct result of the wire
delay involved in driving these tags across the entire queue
[17]. However, only a small fraction of the queued instruc-
tions become ready in any given cycle; in fact, a significant
number of queued instructions cannot possibly become
ready, as they depend on other instructions that have not yet
been issued.

Dependence-based instruction queue designs [17, 5, 15,
6] seek to address this inefficiency. These modified queues
order buffered instructions based on dependence informa-
tion, with the goal that an instruction is not considered for
issue (and thus need not be searched by wakeup or selection
logic) until after the instructions on which it depends have
issued. However, designs proposed to date have the poten-
tial to introduce dispatch or issue dependences that do not
reflect actual data dependences (We use dispatch to refer to
the process of sending decoded instructions to the instruc-
tion queue, and issue to refer to the process of sending
instructions from the instruction queue to function units).
These artificial dependences limit the ability of the dynamic
scheduling mechanism to tolerate unpredictable, long-
latency operations such as cache misses.

This paper presents a novel dependence-based instruc-
tion queue design that uses only true dependences to con-
strain instruction flow, allowing flexible dynamic
scheduling in the face of unpredictable latencies. We break
the IQ into segments, forming a pipeline. Instructions are
issued to function units from only the final segment. The
flow of instructions from segment to segment is governed
by a combination of data dependences and predicted opera-
tion latencies. Ideally, instructions reach the final segment
only when their inputs are, or will soon be, available.

Our design dynamically constructs subtrees of the data
dependence graph as instructions are inserted into the IQ.
These subtrees, referred to as chains, typically begin with a
variable-latency instruction. The edges of the graph are
annotated with the expected latency of the value-producing

A Scalable Instruction Queue Design Using Dependence Chains

Steven E. Raasch, Nathan L. Binkert, and Steven K. Reinhardt

Electrical Engineering and Computer Science Dept.
University of Michigan

1301 Beal Ave.
Ann Arbor, MI 48109-2122

{sraasch,binkertn,stever}@eecs.umich.edu

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

operation from the time it issues; these edge weights are
used to schedule instruction issue within a chain.

Because instruction wakeup and selection logic operate
independently on each queue segment, the latency of this
critical path is determined by the size of each segment, not
the overall queue size. Our design can be scaled across
varying window sizes and clock frequencies by varying the
number of segments and the number of instruction slots per
segment.

Our simulations of this design with thirty-two–instruc-
tion segments show that our design can achieve from 55%
to 98% of the performance of an idealized, monolithic
instruction queue. Average performance is 85% of an ideal
queue for a 256-element queue, and 81% of an ideal queue
for a 512-element queue.

The remainder of this paper begins with a discussion of
related work. Sections 3 and 4 describe our basic design
and a set of critical enhancements, respectively. Sections 5
and 6 describe our experimental methodology and results.
Section 7 discusses future directions for this research, and
Section 8 concludes.

2 Related work
Palacharla et al. [17] performed the initial analysis of

complexity-induced circuit delay on superscalar processor
clock rates, identified the wakeup/select path as a critical
bottleneck, and proposed the first dependence-based
instruction queue organization. Their design uses a set of
FIFOs for the instruction queue. Only the FIFO heads are
considered for issue, meaning that the wakeup/select
latency scales with the number of FIFOs rather than the
number of instruction slots. Dispatch logic attempts to
place each instruction in a FIFO immediately behind a pre-
ceding instruction that produces one of its operands. If an
instruction’s operands are available, or if the single FIFO
position that immediately succeeds the producer is occu-
pied, the instruction is placed at the head of an empty FIFO.
If there are no empty FIFOs, dispatch stalls until one
becomes available.

A second form of dependence-based IQ design was pro-
posed independently by Canal and González [5, 6] and by
Michaud and Seznec [15]. The common idea among these
schemes is to use predicted operation latencies to build
what we term a “quasi-static” schedule at dispatch time.
The IQ contains a scheduling array, a two-dimensional
array of instruction slots. The rows of the array correspond
to future issue cycles; the instructions within a given row
are predicted to become ready in the same cycle, after
instructions in preceding rows and before instructions in
later rows. Because the schedule is determined at dispatch
time, it is more dynamic and adaptive than a static, com-
piler-generated schedule. However, operand availability is
not perfectly predictable even at dispatch time due to cache
misses and resource conflicts. The various proposals deal

with these unpredictable latencies by augmenting the static
scheduling array with a small fully associative buffer simi-
lar to a conventional IQ, though they differ in how this
buffer is used.

Canal and González’s initial “distance” scheme [5]
places the fully associative buffer before the scheduling
array. Instructions whose ready time cannot be accurately
predicted (e.g., due to dependence on an outstanding load)
are held in this buffer until their ready time is known.
Instructions are thus guaranteed to be ready when they
reach the oldest row of scheduling array.

Michaud and Seznec’s “prescheduling” approach [15]
and Canal and González’s “deterministic latency” scheme
[6] place the fully associative buffer after the scheduling
array. In Michaud and Seznec’s model, the fully associative
“issue buffer” is located between the scheduling array and
the issue stage; instructions from the oldest row of the
scheduling array are written into the issue buffer, and
instructions are issued out of the issue buffer only. Canal
and González’s scheme differs only in that instructions may
be issued directly from the oldest row of the scheduling
array, and are copied to their equivalent of the “issue
buffer” only if a mispredicted latency causes them to reach
the oldest row before becoming ready.

There are several complementary approaches to decou-
pling IQ size from latency which could be used in conjunc-
tion with a dependence-based IQ design. Most clustered
architectures [13, 14, 17, 19, 8] divide the instruction queue
among execution clusters, effectively dividing the IQ into
“vertical” slices along the width of the machine, rather than
the “horizontal” slices provided by our segmented design.
Stark et al. [21] propose speculative wakeup based on the
availability of “grandparent” values (i.e., the operands of an
instruction’s producers) to allow pipelining of the wakeup/
select operation over two cycles. Brown et al. [3] propose a
technique which moves selection logic off the critical path,
allowing the wakeup logic to consume a full cycle. Multi-
scalar architectures [20] expand the instruction window by
fetching from multiple points within a logically single-
threaded program.

Limiting the number of instructions that can wake up
when a single value becomes available allows the use of
direct-mapped or low-associativity queue structures [24,
16, 5, 6]. Goshima et al. [10] discuss an alternative wakeup
circuit which avoids associative search for small windows.

3 The segmented instruction queue
The goal of our design is to exploit dependence informa-

tion and predictable execution latencies—as do the depen-
dence-based schedulers discussed in Section 2—while
maintaining scheduling flexibility to deal with the unpre-
dictable effects of cache misses and resource contention.

As in [15], our scheme issues instructions only from a
small “issue buffer”, structured like a conventional IQ, and

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

attempts to maximize the efficiency of this small buffer by
inserting instructions only when they are expected to be
ready to issue. The remainder of the IQ structure is dedi-
cated to staging instructions in such a way that they are
available to be inserted in the issue buffer at the time they
are predicted to be ready.

The novel aspect of our design is that this staging area is
also scheduled dynamically, allowing the IQ to tolerate
latencies that are not predictable at dispatch time. Of
course, using a large, monolithic, conventional IQ structure
as a staging area does not address wakeup/select complex-
ity in a scalable fashion. Instead, we construct the staging
area from a pipeline of small, identical queue structures.
Each of these structures, or segments, is managed using
logic similar to the wakeup and select logic of a conven-
tional IQ. However, the individual segments can be sized to
meet cycle-time requirements. The overall IQ size—and
thus the size of the machine’s window for extracting ILP—
is determined by the product of the individual segment size
and the number of segments. Because each segment is a
random-access element, the structure of our segmented IQ
does not create inherent scheduling dependences, in con-
trast to previously proposed FIFO structures.

For the sake of discussion, we present our segmented IQ
as a vertical pipeline, with dispatch at the top and issue at
the bottom. Instructions are dispatched into the top segment
and are promoted downward from segment to segment until
they reach the bottom segment, which is the same as the
“issue buffer” discussed above. For convenience, we occa-
sionally refer to segments numerically, with segment 0
being the bottom segment and segment the top in an
n-segment IQ. Our design controls the promotion process
such that instructions are distributed among the segments
according to when they are likely to become ready, with
ready instructions in the bottom segment and those furthest
from being ready in the upper segments.

Section 3.1 describes our basic scheduling model.
Section 3.2 describes how we use dependence chains to
efficiently maintain an adaptive schedule. Sections 3.3 and
3.4 provide further details on IQ implementation issues and
the chain creation policy.

3.1 Scheduling model
To distribute instructions across the queue segments, we

assign each instruction a delay value, which indicates the
expected number of cycles until it is ready to issue. We then
allow an instruction to promote only when its delay value is
less than the segment threshold of the destination segment.
Initial delay values are assigned by the dispatch stage based
on predicted ready times; our process for updating these
values as the execution progresses is described in the fol-
lowing sections.

Instructions with a zero delay value are expected to be
ready to issue, and are allowed into the bottom segment. To
enable back-to-back issue of single-cycle dependent
instructions, we also allow instructions with a delay value
of one into the bottom segment. We set the threshold of the
bottom segment at two, excluding all other instructions, to
avoid clogging this segment with instructions which will
not soon be ready to issue.

We set the thresholds for subsequent segments using uni-
form increments of two cycles (resulting in thresholds of 4,
6, 8, etc.) to simplify the promotion logic described in the
following section. Instructions may be dispatched into the
top segment regardless of their delay value. As a result, a
long chain of dependent instructions may fill the top seg-
ment; Section 4.1 describes an enhancement which miti-
gates this behavior.

Figure 1 presents a short example, including a code
sequence, a snapshot of the delay values at a particular
point in execution, and the desired positions of the instruc-
tions in a three-segment queue at that point. For this exam-

n 1–

Instruction Latency
Delay
Value

i0: add *,* -> r1 1 0

i1: mul *,* -> r2 2 0

i2: add r2,* -> r4 1 2

i3: mul r4,* -> r6 2 3

i4: mul r6,* -> r8 2 5

i5: add r1,* -> r3 1 1

i6: add r3,* -> r5 1 2

i7: add r5,* -> r7 1 3

i8: add r6,r7 -> r9 1 5

Segment 2
i8: add r6,r7 -> r9 5

i4: mul r6,* -> r8 5

Segment 1
threshold = 4

i7: add r5,* -> r7 3 i3: mul r4,* -> r6 3

i6: add r3,* -> r5 2 i2: add r2,* -> r4 2

Segment 0
threshold = 2

i5: add r1,* -> r3 1

i0: add *,* -> r1 0 i1: mul *,* -> r2 0

Figure 1. (a) Example code sequence with delay values. Operands denoted by ‘*’ are available. (b) Desired position of
instructions within instruction queue after all instructions are dispatched. Numbers to the right of instructions in (b) are the
delay values from (a). The column layout shown in part (b) is for illustrative purposes only.

(a) (b)

Dispatch Stage

Function Units

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

ple, we assume function unit latencies of one cycle for
ADD and two cycles for MUL instructions. Instructions i0
and i1 are ready to issue, and so are placed in the bottom
segment. Instruction i5 resides there also, so that it can be
issued immediately after i0. The remaining instructions are
further from being ready to issue, and so are placed in
higher segments.

Once the delay value of an instruction in segment k
becomes smaller than the threshold of segment k–1, the
instruction becomes eligible for promotion. The instruction
queue entry signals its eligibility to the segment promotion
logic, which selects some or all of the eligible instructions
for promotion in the following cycle, in a manner very sim-
ilar to the select logic of a conventional IQ. The number of
instructions promoted is limited by the inter-segment band-
width and by the number of available entries in the destina-
tion segment. In this paper, we assume the inter-segment
bandwidth matches the issue width of the machine. The
number of available instruction slots cannot be calculated
and propagated through the entire instruction queue in a
single cycle, so we assume that each segment’s selection
logic promotes based on the number of destination slots
available in the previous cycle.

After an instruction reaches the bottom segment, it is
scheduled for issue based on the actual readiness of its
operands, as in a conventional IQ. Thus the delay values of
instructions in the bottom segment need not be maintained.

3.2 Updating delay values using instruction chains
The key to providing flexible scheduling in our seg-

mented IQ lies in maintaining appropriate delay values for
each instruction. Simply decrementing each delay value on
every cycle does not allow deviation from the predicted
latency calculated at dispatch, and would be equivalent to
the quasi-static schemes of Section 2. Instead, we would
like the delay values to adapt dynamically to post-dispatch
variations in the execution schedule.

Ideally, the delay value for each instruction should be
continuously recalculated based on the latest delay values
of the instructions which produce its operands. To achieve
this effect, an instruction must communicate with its depen-
dents every time its delay value is updated. Because every
instruction in the IQ could update its delay value in any
given cycle, and because the update must be broadcast to
any IQ entry that may hold a dependent instruction, the cost
of such communication is prohibitive.

We avoid this cost by managing instructions in groups
called chains. A chain is made up of a head instruction and
other instructions which depend directly or indirectly on the
head, i.e., a subtree of the data dependence graph rooted at
the head. Each instruction maintains its delay value as a
fixed latency behind its chain head. This latency is com-
puted at dispatch as the sum of the predicted latencies along
the execution path from the head to the target instruction.

Each chain-head instruction is itself a non-head member of
another chain, and calculates its delay value based on the
predicted latency from its respective chain head.

Delay values are thus maintained by broadcasting status-
change updates for chain-head instructions only. In our
design, a chain head signals the other chain members only
when it is promoted between segments. Because each seg-
ment corresponds to a two-cycle latency increment, chain
members decrement their delay values by two when noti-
fied that their head has promoted.

Once a chain head reaches the bottom segment and
issues to an execution unit, the remaining instructions in the
chain enter self-timed mode, in which each instruction dec-
rements its delay value on each clock cycle. In effect, the
instructions do not see the head promote beyond the bottom
segment, but their notion of their appropriate distance
behind the head is reduced cycle by cycle until they reach
the bottom segment themselves.

Figure 1(b) divides the example instructions into two
columns to illustrate one possible assignment of these
instructions to two chains: Instruction i0 is a chain head and
i5, i6, and i7 belong to its chain. Similarly, i1 is a chain head
and i2, i3, i4, and i8 belong to this chain. If instruction i0
issues, then i5, i6, and i7 will enter self-timed mode, gradu-
ally promote into segment 0, and then issue. Meanwhile, if
i1 does not issue, then i2, i3, i4, and i8 will remain in place.

Within a chain, then, instructions are scheduled quasi-
statically, much like in previous dependence-based IQ
designs [15, 6]. However, between chains, our segmented
IQ provides fully dynamic scheduling. When a chain head
reaches the bottom segment, the entire chain will cease
advancing until the head issues. If the head is delayed, the
remainder of the chain will not promote into the bottom
segment, and valuable issue slots will not be consumed pre-
maturely by these instructions.

Note that some instructions, such as i8 in the example,
may depend indirectly on multiple chain heads. Our most
general model allows such instructions to belong to two
chains, one for each operand. In this case, the instruction
maintains two separate delay values, and dynamically
chooses the larger value (indicating the later-arriving oper-
and) to control its segment promotion. Section 4.3
describes the use of operand prediction to choose only one
chain for such instructions, as illustrated in Figure 1(b).

3.3 Implementation details
In our proposed design, chain-head promotion and issue

information is propagated on a set of chain wires using a
one-hot encoding (i.e., one wire per chain). When a chain
head is selected for promotion or issue, it asserts the wire
assigned to its chain. The non-head instructions in the chain
monitor this wire to decrement their delay values. Because
chain members cannot pass the chain head, promotion sig-
nals need to propagate only unidirectionally from the chain

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

head location toward the top of the queue. To minimize
wire delay, the chain wires are pipelined from segment to
segment. That is, the chain wires asserted in segment k in a
given cycle are the union of the set of wires asserted by
chain heads promoting from k to k–1 in that cycle and the
set of wires asserted in segment k–1 in the previous cycle.

A register information table in the dispatch stage is used
to assign chains and delay values to instructions as they are
dispatched. This table is indexed by architected register
number and contains four fields: the chain ID of the instruc-
tion which will produce the register value, the expected
latency of this register value relative to when the chain head
will issue, the chain head location (segment number), and a
flag to indicate if this chain’s instructions are currently in
self-timed mode. The status of an instruction’s source oper-
ands in this table determines the chain or chains to which
the instruction is assigned and the initial delay value(s).
Once the instruction’s chain assignment is complete, the
table entry for the destination register is updated.

The register information table monitors the chain wires
to keep its entries up to date, much as the instruction queue
slots do. When the table notes that a chain head has issued
and the chain has entered self-timed mode, the latency field
decrements once each cycle to indicate more accurately the
number of cycles until the register value is ready. Once the
delay value reaches zero, we assume that the value is avail-
able for scheduling purposes.

Each instruction queue entry maintains four fields for
each chain to which the instruction belongs: the chain ID,
the delay value, the chain head location (segment number),
and the self-timed mode flag. The delay value is initialized
in dispatch to , where SH is the chain-head
segment number and DH is the relative delay of this instruc-
tion from the chain head. Whenever the entry observes a
chain-wire assertion for the specified chain, the delay value
is decremented by two and the chain-head location is decre-
mented by one. When a chain-wire assertion occurs and the
chain-head location is zero, the instruction enters self-timed
mode on that chain. The IQ entry also carries a flag to indi-
cate whether the instruction is a chain head, and the ID of
the chain it heads (if any).

3.4 Chain creation
Determining which instructions should become the

heads of new chains is a key policy issue in our design. Cre-
ating too few chains reduces the IQ’s dynamic scheduling
ability, increasing the impact of dispatch-stage latency
mispredictions on performance. However, chain wires are a
critical resource, as will be seen in Section 6. If no free
chain wires are available for a new chain head, the dispatch
stage must stall; these stalls will be aggravated by an overly
aggressive chain creation policy.

In this paper, we focus on latency variations induced by
cache misses, so our base design creates a new chain on

each load instruction. Section 4.4 describes the use of a hit/
miss predictor to further conserve chain resources by start-
ing chains only on loads that are likely to be cache misses.

For the most general variant of our design, which allows
an instruction to belong to two chains, all such two-chain
instructions must themselves be chain heads. Marking each
two-chain instruction as a chain head prevents later instruc-
tions from needing to follow more than two chains to cap-
ture their operand data dependences.

For the design described thus far, it is most appropriate
to mark as a chain head every instruction that depends on a
variable-latency instruction. The chain heads will reach the
bottom segment according to the producer’s predicted
latency, but their dependents will not advance until the pro-
ducer completes and the chain heads issue. Unfortunately,
this strategy requires the creation of multiple chains to tol-
erate a single variable-latency instruction, consuming many
chains when the fan-out is large. Instead, we make the vari-
able-latency instruction itself the head of a chain. When this
instruction issues, the chain members begin to self-time.
However, when it becomes apparent that the chain head
will not complete within the predicted latency—e.g., when
a cache miss is detected for a load—an additional signal is
sent up the chain wire, causing the chain members to sus-
pend self-timing. Once the chain head completes, a final
chain-wire signal resumes self-timed mode.

4 Design enhancements
The description in the previous section provides a nearly

complete picture of a functional segmented IQ with chain-
based promotion. This section details a number of design
enhancements which improve the performance and/or feasi-
bility of the basic design.

4.1 Improving utilization via instruction
pushdown

A potential problem with static thresholds is that they
are unlikely to result in uniform segment utilization. In par-
ticular, instructions at the end of long dependence chains
may reside in the top segment for many cycles before they
are eligible for promotion. The top segment then fills up
and stalls the dispatch stage, even when many lower seg-
ments are empty. Adaptive thresholds could improve utili-
zation, but would be complex to implement.

Instead, we address this problem by allowing a full seg-
ment to “push down” otherwise ineligible instructions into
the next lower segment if entries are available. Specifically,
if a segment has less than IW free entries (where IW is the
issue width) and the segment below it has more than

 free entries, the upper segment will consider up
to IW of its oldest non-eligible instructions as eligible for
promotion. In situations where many instructions have large
delay values, this policy forces some instructions down into
the lower segments to make room for more newly dis-

2 SH DH+×

1.5 IW×

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

patched instructions. The pushdown mechanism is designed
to augment the promotion mechanism: an instruction made
eligible by pushdown will never take the place of an
instruction promoting as a result of the normal chain-pro-
motion process.

4.2 Reducing pipeline depth penalties via
segment bypassing

A key shortcoming of an n-segment IQ as described thus
far is that it adds at least n–1 stages to the pipeline before
execution, increasing the branch misprediction penalty by
n–1 or more cycles. With this penalty, a large segmented IQ
has a severe negative impact on a number of integer bench-
marks (e.g., gcc). To alleviate these effects of the extended
pipeline, we allow instructions to bypass empty queue seg-
ments at dispatch time. We observed the best performance
when the dispatch stage bypasses all empty queue seg-
ments, regardless of segment thresholds and the delay val-
ues of the dispatched instructions.

The bypass wires that allow the dispatch stage to direct
newly dispatched instructions into any segment are the only
wires in our IQ design that span more than one segment.
For this reason, we designed the bypass scheme carefully to
minimize its impact on cycle time. The bypass wires are
driven unidirectionally from the dispatch stage, so large
drivers and repeaters can be used to optimize signal propa-
gation. The number of loads on these wires is equal to the
number of segments, not the number of IQ entries, so the
load grows slowly with IQ size. Finally, because only the
first sequence of empty segments is bypassed, a segment
will receive instructions on a given cycle either from the
dispatch stage (if it is the highest non-empty segment) or
from the segment above it (if any higher segments are non-
empty)—never some from each—resulting in a simple two-
input mux structure at each segment whose select signal
should be available well in advance of the instruction data.

4.3 Reducing IQ complexity and chain count via
operand prediction

The design we have describes thus far assumes that each
instruction may belong to one or two chains. Our baseline
design reveals that about 35% of all instructions have two
unmet dependencies produced in different chains. Dynami-
cally following two chains provides the best scheduling,
guaranteeing that an instruction does not occupy a precious
slot in segment 0 before both its operands are expected to
be ready. Unfortunately, providing logic in every IQ entry
to track two chains, and to decide dynamically which chain
should be used to determine the appropriate segment, is a
potentially significant overhead. Additionally, each instruc-
tion following two chains requires the allocation of a new
chain, as described in Section 3.4.

If we can accurately predict which of the two operands
will be available later, we can assign the instruction to that
chain alone, and simplify the IQ design by having at most
one chain per processor. In Section 6, we study the impact
of using a table of two-bit counters, indexed by program
counter, to predict which operand (“left” or “right”) will be
the critical path. A similar predictor was previously pro-
posed by Stark et al. [21]. In addition to simplifying the IQ
design, our left/right predictor reduces demand for chain
wires. We will see in Section 6 that reducing the number of
chains created is critical for maximizing performance with
a fixed number of chain wires.

4.4 Reducing chain count using hit/miss prediction
Load instructions exhibit highly variable latencies

depending on the level in the memory hierarchy that they
access. Due to this variability, loads are prime candidates
for chain heads; in fact, they are the primary source of chain
heads considered in this paper, and account for an average
of 65% of the chains in our base design. In most programs,
however, most loads are cache hits, and can be scheduled
with a known latency. We explore the use of a dynamic
cache hit/miss predictor (HMP) [14, 25] to reduce the num-
ber of chains. We use the HMP to identify loads which have
a high probability of hitting in the primary cache, and use
this information to not start chains for these instructions.

In our scheme, predicting a hit reference as a miss incurs
the small cost of an unnecessary chain head. On the other
hand, predicting a miss reference as a hit, and not creating a
new chain, will cause a potentially large number of instruc-
tions dependent on the load value to flood segment 0 well in
advance of becoming ready. If segment 0 fills with non-
ready instructions, performance degrades severely. As a
result, we would like to predict a hit only when we have
very high confidence in our prediction. We use a table of
four-bit saturating counters, indexed by program counter.
We increment a counter on a hit, clear it to zero on a miss,
and predict a hit only if the counter is greater than 13. We
show in Section 6 that this predictor achieves over 98%
accuracy for hit predictions while achieving very good cov-
erage of hits on most benchmarks.

Dependence-based prescheduling schemes that rely on
accurate prediction of latencies could also benefit from a
hit/miss predictor. Predicted hits that miss will have dire
consequences similar to our scheme, but predicted misses
that hit may still effectively suffer most or all of the miss
latency if the scheduling of their dependents is delayed
accordingly. Thus these schemes require high accuracy for
all predictions, both hit and miss. In addition, these
schemes must predict a specific latency—i.e., they must
predict at which level in the memory hierarchy an access
will hit, and cannot directly tolerate variable timing due to
memory-system contention.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

4.5 Deadlock recovery
The explicit scheduling dependences introduced by our

segmented IQ reflect true data dependences, and thus can-
not lead to scheduler deadlock. However, the resource
dependence between segments—i.e., the fact that an
instruction can be promoted only if the next segment has
available entries—can, in rare circumstances, lead to a
deadlock situation. This possibility arises because chains
reflect only a subset of the dependence-graph edges. If the
dispatch stage assigns a two-input instruction to the
“wrong” chain—that is, the chain of the operand that
becomes available earlier—then that instruction may be
promoted beyond the instruction that produces its other
operand. Additional instructions that depend on the incor-
rectly assigned instruction and are assigned to the same
chain may also pass this producer; if a sufficient number do
so, they may occupy all the entries of a segment below the
producer. At this point the producer cannot be promoted,
and deadlock occurs.

This situation is extremely rare, occurring during only
0.05% of the cycles that we simulate in Section 6. Fortu-
nately, it is also straightforward to detect and resolve. We
detect IQ deadlock when the IQ is not empty and no
progress is being made; i.e., no instructions are issued or
promoted from any segment, and no instructions are in exe-
cution. In this situation, we are guaranteed two things. First,
there is at least one ready instruction (the oldest) that is eli-
gible to promote to the bottom segment. Second, that
instruction is not being promoted because of a lower seg-
ment that is full of instructions, none of which are eligible
for promotion.

Our recovery scheme is very simple: for one cycle, we
force every full segment to choose one of its ineligible
instructions and promote it. This step guarantees a free
entry in every segment to receive a promoted instruction.
Segments with eligible instructions will promote one of
those candidates. If the bottom segment is full of non-ready
instructions, we recycle an instruction back to the top seg-
ment. After this cycle, we are guaranteed to have at least
one eligible instruction closer to the bottom segment. Usu-
ally a single such cycle is sufficient to clear the deadlock
condition; if not, the detection/recovery cycle will remain
active until the deadlock is cleared. As long as eligible
instructions are always promoted in preference to ineligible
instructions, the oldest ready instruction is guaranteed to
reach the bottom segment and issue eventually, generating
forward progress.

5 Evaluation methodology
We evaluated our scheme by developing an execution-

driven simulator based on the SimpleScalar toolkit [4].
Although our simulator was derived originally from Sim-
pleScalar’s sim-outorder, it has been largely rewritten to
model a simultaneous multithreaded processor with sepa-

rate instruction queue, reorder buffer, and physical register
resources; a realistic pipeline depth; and a detailed event-
driven memory hierarchy. The simulator executes Compaq
Alpha binaries.

As in sim-outorder, memory reference instructions are
split into an effective-address calculation, which is routed
to the IQ, and a memory access, which is stored in a sepa-
rate load/store queue (LSQ). The IQ schedules the effec-
tive-address calculation as an ordinary integer operation.
On completion, its result is forwarded to the LSQ. The LSQ
marks a memory access eligible for issue when its effective
address is available and is known not to conflict with any
pending memory access that precedes it in program order.
Although the IQ designs modeled in this paper rely on the
LSQ to enforce memory dependences, Michaud and Seznec
[15] illustrate how a similar scheme can be augmented to
enforce predicted memory dependences using store sets [7].

Processor parameters are listed in Table 1. Because we
focus in this paper on the execution variability introduced
by caches, we use a generous supply of function units to
reduce variability due to resource constraints. For the same
reason, we configure the ROB to be three times the size of
the IQ. To account for added complexity, we add an extra
cycle to the dispatch stage for both the segmented and pre-
scheduling IQs.

Table 1: Processor parameters

Parameter Value

Front-end pipeline
depth

10 cycles fetch-to-decode, 5 cycles decode-
to-dispatch

Fetch bandwidth Up to 8 instructions per cycle;
max 3 branches per cycle

Branch predictor Hybrid local/global (a la 21264);
global: 13-bit history reg, 8K-entry PHT
local: 2K 11-bit history regs, 2K-entry PHT
choice: 13-bit global history reg, 8K-entry
PHT

Branch target buffer 4K entries, 4-way set associative

Dispatch/issue/
commit bandwidth

Up to 8 instructions per cycle

Function units 8 each: integer ALU, integer mul, FP add/sub,
FP mul/div/sqrt, data-cache rd/wr port

Latencies integer: mul 3, div 20, all others 1
FP: add/sub 2, mul 4, div 12, sqrt 24
all operations fully pipelined except divide &
sqrt

L1 split I/D caches Both: 64 KB, 2-way set associative, 64-byte
lines
Inst: 1-cycle latency (to simplify fetch unit)
Data: 3-cycle latency, up to 32 outstanding
misses

L2 unified cache 1 MB, 4-way set associative, 64-byte lines,
10-cycle latency, up to 32 outstanding misses,
64 bytes/cycle bandwidth to/from L1 caches

Main memory 100-cycle latency, 8 bytes/CPU cycle band-
width

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

We use a subset of the SPEC CPU2000 benchmarks for
our study. In all our studies, we start from a checkpoint 20
billion instructions into the benchmark’s execution and sim-
ulate a sample of 100 million instructions. We compiled all
of the CPU2000 benchmarks using Compaq’s GEM com-
piler with full optimizations and simulated them using a
range of IQ sizes. We then selected the two integer bench-
marks (twolf and vortex) and five floating point bench-
marks (ammp, applu, equake, mgrid, and swim) that show
the greatest performance improvement as IQ size is
increased. The FP benchmarks show the largest speedups:
L2 cache misses limit their performance, and a large IQ
(coupled with high branch-prediction accuracies) allows
them to overlap large numbers of main-memory accesses.
We also simulate gcc, which does not benefit from a larger
IQ, to calibrate the impact of our design on applications
with a high misspeculation rate and low ILP. The behavior
of other benchmarks that do not benefit from a large
instruction queue is similar to that of gcc.

6 Experimental results
We begin by comparing the performance of a 512-entry

segmented IQ composed of sixteen 32-entry segments with
that of an ideal, monolithic, single-cycle 512-entry conven-
tional IQ. Section 6.1 discusses the segmented IQ’s perfor-
mance using an unlimited number of chains, and examines
the impact of adding a hit/miss predictor (HMP) and a left/
right operand predictor (LRP) on performance and chain

count. Section 6.2 repeats this analysis using realistic seg-
mented IQs with finite chain resources. Finally, Section 6.3
examines the performance of realistic segmented IQs across
a variety of IQ sizes, and compares their performance with
our implementation of Michaud and Seznec’s preschedul-
ing scheme [15].

6.1 Segmented IQ with unlimited chains
Figure 2 plots the performance of several benchmarks

using a 512-entry segmented IQ relative to their perfor-
mance with an ideal single-cycle IQ of the same size. For
space reasons, we omit gcc, whose behavior in this portion
of the study is uninteresting (much like vortex). In this sec-
tion, we focus on the first cluster of four bars for each
benchmark, which indicate performance assuming an
unlimited number of chain wires. The bars within the group
correspond to four configurations. The first, labeled base,
creates a new chain on every load and on every instruction
with two outstanding input operands. The latter instructions
are dynamically associated with two chains.

Examining the average results for the base configura-
tion, we see that the segmented IQ’s performance is within
16% of the ideal IQ. This performance gap is due to the
segmented IQ’s additional pipeline stages and its inability
to issue instructions from all slots in the queue. Mgrid
achieves the best relative performance, at 99.4% of the
ideal. Our chain-based scheduling is very effective for
mgrid: on average, the 32 entries in segment zero hold 16

20%

30%

40%

50%

60%

70%

80%

90%

100%

mgrid vortex twolf applu

R
el

at
iv

e
P

er
fo

rm
an

ce

unlimited 128 chains 64 chains unlimited 128 chains 64 chains unlimited 128 chains 64 chainsunlimited 128 chains 64 chains

20%

30%

40%

50%

60%

70%

80%

90%

100%

ammp swim equake average

R
el

at
iv

e
P

er
fo

rm
an

ce

base hmp lrp comb

unlimited 128 chains 64 chains unlimited 128 chains 128 chainsunlimited unlimited 128 chains128 chains64 chains 64 chains 64 chains

Figure 2. Performance of 512-entry segmented IQ configurations relative to ideal 512-entry IQ. Labels below the bars indi-
cate the maximum number of chains available. “Comb” indicates a configuration using both the hit/miss predictor (HMP) and
left/right predictor (LRP).

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

ready instructions, representing more than 25% of all the
ready instructions in the entire IQ.

Vortex and twolf also perform well because they actively
use only a small fraction of the queue (no more than 136 out
of 512 entries). The bypass mechanism moves the majority
of their instructions past the top 8 queue segments, drasti-
cally reducing the impact of the pipeline delay. The lower
IQ occupancy also means that a smaller fraction of all
instructions wait in the upper queue segments; for both
benchmarks, more than 33% of ready instructions reside in
segment zero.

Unfortunately, most benchmarks require an excessive
number of chains to achieve this performance. The first two
columns of Table 2 show the measured average and peak
chain counts for this unlimited-chains model. The peak
chain usage numbers can be larger than the IQ size because
we do not deallocate chains until the chain head instruction
has written its result back to the register file.

For the segmented queue to be viable, we must reduce
the required number of chains significantly. A hit/miss-pre-
dictor (HMP) avoids creating new chains for loads which
are predicted to be L1 cache hits, as discussed in
Section 4.4. A left/right operand predictor (LRP), discussed
in Section 4.3, avoids creating chains on instructions with
two outsting operands, and also simplifies the IQ by
restricting each instruction to a maximum of one chain.

The second bar for each benchmark in Figure 2 shows
the relative performance of the segmented IQ with the hit/
miss predictor (HMP). Our predictor has a prediction accu-
racy of over 98%, predicting over 83% of all cache hits.
Referring to Table 2, we see that the HMP reduces the aver-
age number of chains by 33%. The maximum savings is
limited by the cache hit rate; swim sees only a negligible
decrease in chains because over 90% of its loads miss in the
L1 cache. (Only 20% of these misses cause L2 accesses; the
remainder are “delayed hits”, where a load references a
block which is in the process of being fetched.) Figure 2
shows that the HMP actually improves performance

slightly. We believe this effect occurs because the delay
counter values assigned by the dispatch stage do not com-
pensate for the latencies of pipelining the chain promotion
wires; thus giving a chain a small head start by using the hit
latency for a delayed-hit access may allow some dependent
instructions to issue sooner.

The LRP eliminates all multiple-chain instructions,
reducing the number of chains and simplifying the IQ
implementation. As with the HMP, however, an LRP
misprediction will cause the mispredicted instruction, and
its dependents on the same chain, to enter segment zero
before all its operands are ready. In fact, an instruction may
enter segment zero before the producer of its second oper-
and, leading to potential deadlock as discussed in
Section 4.5. Even if deadlock does not occur, the additional
unissuable instructions in segment zero can block ready
instructions from entering. Again referring to Table 2, we
see that use of the LRP reduces the average number of
chains required by 58%. Figure 2 shows that, unlike the
HMP, LRP mispredictions do cause noticeable performance
losses in several benchmarks, particularly ammp and applu.

Since the HMP and LRP address different sources of
chain creation, their combination produces an even greater
reduction in chain count: an average of 67% fewer than the
base configuration. The performance effects are also mostly
additive; performance with both predictors is at or slightly
above the performance of LRP alone.

6.2 Evaluation of realistic queues
Of course, a real-world segmented IQ must be con-

structed using a finite number of chains. An eight-wide pro-
cessor with a conventional 512-entry IQ using CAM-based
wakeup logic would require tag lines.
To keep the wiring area comparable, we constrain the num-
ber of chain wires in our segmented IQ to a similar range.
Specifically, we examine configurations of 64 and 128
chain wires. In these configurations, the dispatch stage will
stall when it tries to dispatch a chain-head instruction but no

8 5122log× 72=

Table 2: Chain usage for 512-entry segmented IQ with unlimited chains

Benchmark
Baseline HMP LRP Combined

Average Peak Average Peak Average Peak Average Peak

AMMP 143 453 82 352 64 221 49 214

APPLU 294 661 202 646 119 360 99 358

EQUAKE 414 620 313 568 177 342 129 329

GCC 22 379 20 367 18 253 17 248

MGRID 389 577 139 577 102 246 52 246

SWIM 305 522 292 526 150 268 148 272

TWOLF 47 357 37 327 33 279 27 276

VORTEX 64 293 36 262 47 212 33 150

Average 210 483 140 453 89 273 69 261

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

free chains are available. Table 2 indicates that these values
should cover the average, though not the peak, chain
demand when both an HMP and an LRP are used.

The second and third groups of bars in Figure 2 indicate
the performance of a segmented IQ as the number of chains
is fixed at 128 and 64, respectively. The first bar in each
group, representing the performance without HMP or LRP,
shows the importance of having a sufficient number of
chains. On average, the 128-chain queues posted an addi-
tional 17% performance reduction over the unlimited-
chains queue model (29% lower performance than the ideal
queue), and the 64-chain queues posted a 27% reduction
compared to the unlimited-chains model (39% lower than
the ideal queue). Among the benchmarks, those requiring
the fewest chains (vortex and twolf) suffered less than those
requiring more chains (mgrid, equake and swim).

Adding the HMP reduces the chains required for loads,
providing a significant performance improvement: an aver-
age 9% for 128 chains and 10% for 64 chains. As in the pre-
vious section, benchmarks with large cache miss rates (e.g.,
swim) do not benefit much from the HMP. Those with low
chain usage (vortex and twolf) do not often run out of
chains thus do not benefit much either. Mgrid and ammp,

which have fairly high chain usage and queue occupancy
rates, but low cache-miss rates, benefit the most.

Using the LRP to reduce chain usage generally works
well also. With the exception of ammp and twolf, the per-
formance decreases seen in the unlimited-chains configura-
tion are more than compensated for by the reduction in
dispatch stalls due to lower chain usage.

As in the previous section, using the HMP and the LRP
together generally provides additive benefits. The key
exceptions are ammp and twolf, where HMP cannot
address the performance loss due to LRP mispredictions.

6.3 Performance across multiple IQ sizes
In this section, we examine the benefits of our seg-

mented IQ structure across a range of IQ sizes. Figure 3
presents performance results for IQs with 32 to 512 entries.
The top line in each graph shows the performance of an
ideal, single-cycle instruction queue at that size. We also
plot the performance of our segmented IQ using both the
HMP and LRP with 64 and 128 chains, assuming 32-entry
segments. At an IQ size of 32 entries, our scheme degener-
ates to a single segment, and is thus equivalent to the con-
ventional IQ. As IQ size increases, all three IQs show

Figure 3. Performance of all benchmarks for varying queue sizes and configurations. The datapoints for the Prescheduled
curves represent queue structures totaling 128, 320, 704, and 1472 instructions.

EQUAKE

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

32 64 128 256 512
IQ Size

IP
C

APPLU

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

32 64 128 256 512
IQ Size

IP
C

SWIM

0.5

1.5

2.5

3.5

4.5

5.5

32 64 128 256 512
IQ Size

IP
C

MGRID

1.0

2.0

3.0

4.0

5.0

6.0

32 64 128 256 512
IQ Size

IP
C

VORTEX

2.5

3.0

3.5

4.0

4.5

5.0

5.5

32 64 128 256 512
IQ Size

IP
C

TWOLF

0.9

1.0

1.1

1.2

1.3

1.4

1.5

32 64 128 256 512
IQ Size

IP
C

AMMP

1.0
1.4
1.8
2.2
2.6
3.0
3.4
3.8
4.2

32 64 128 256 512
IQ Size

IP
C

GCC

1.35

1.40

1.45

1.50

1.55

1.60

1.65

32 64 128 256 512
IQ Size

IP
C

2 .5

7 .5

I Q S i ze

Ideal

Comb-128chains

Comb-64chains
Prescheduled

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

improved performance. The benefit tapers off quickly for
gcc, and to some extent for twolf, due to branch mispredic-
tions. The remaining benchmarks exhibit significant perfor-
mance gains out to 512 entries.

Although the segmented queues generally show contin-
ued performance improvements for larger queues, the rate
of improvement is less than that of the ideal queue. Gcc
shows a 0.05 IPC drop in performance between 32 and 64
entries, due largely to the benchmark’s sensitivity to pipe-
line depth and the fact that very little useful scheduling can
be done in just two queue segments. Both swim and twolf
show some reduction in performance when going from 256
to 512 entries. Neither of these benchmarks can make much
use out of the additional queue slots, yet they suffer from
the increased pipeline depth and reduced predictor accura-
cies that result. Equake, swim, and applu also suffer at
larger queue sizes from the limited number of chains in the
64-chain IQ.

However, since the cycle time of our segmented IQ
design is determined by the complexity of the individual
32-entry segments, we expect cycle times to be fairly con-
stant across the range of sizes. In contrast, the cycle time of
the ideal queue would be expected to grow quadratically
with its size [17]. In fact, the complexity of a 32-entry seg-
ment zero is similar to that of a 32-entry conventional IQ;
thus the performance gains of the segmented IQ over the
ideal 32-entry queue can be viewed as the improvement
made possible by adding queue segments.

We also compare our segmented queue design to
Michaud and Seznec’s prescheduling scheme [15].
Michaud and Seznec indicate that their prescheduling
scheme outperforms Palacharla et al.’s FIFOs [15], while
Canal and González indicate that their deterministic-latency
scheme outperforms their distance scheme [6]. We believe
that the performance of the prescheduling and distance
schemes would be similar due to their structural similarity.

We implemented a similar prescheduling IQ in our simu-
lator framework to provide a direct comparison with our
segmented IQ. Unlike Michaud and Seznec’s design, we
continue to use a separate LSQ to manage memory depen-
dences. Our prescheduling IQ is configured as suggested by
the authors for best performance. It uses a 32-entry issue
buffer (similar to our segment zero) and twelve instructions
per line in the prescheduling array. Because the entries in
the prescheduling array are much simpler than our IQ seg-
ment entries, we allot roughly three prescheduling-array
entries for each additional segmented IQ entry; thus the
four data points for the prescheduling scheme correspond to
a 32-entry issue buffer plus 8, 24, 56, or 120 lines of 12
instructions (totaling 128, 320, 704, or 1472 total instruc-
tion slots).

For all benchmarks, the 128-entry prescheduling scheme
performs better than the 64-entry segmented IQ. However,
vortex is the only benchmark which shows any appreciable

improvement as the size of the prescheduling array is
increased. Our 128-entry segmented IQ outperforms any
prescheduling-array size for every other benchmark. For
vortex, our 256-entry IQ outperforms all prescheduling
configurations. In general, the performance gap widens as
IQ size is increased.

7 Future work
Power consumption is a significant concern in modern

architectures; instruction-queue power consumption is par-
ticularly significant, as it already constitutes a sizable frac-
tion of the power budget in high-performance processors
[11]. Copying an instruction from segment to segment con-
sumes more dynamic power than keeping the instruction in
a single storage location between dispatch and issue;
whether the performance benefit of the segmented IQ justi-
fies this power consumption will depend on the detailed
design and the target market. In any case, the segmented
structure lends itself naturally to dynamic resizing by gating
clocks and/or power on a segment granularity, based on
power constraints or power/performance trade-offs [2, 9].
Individual segments are also amenable to power optimiza-
tions proposed for conventional IQ structures [9].

Another area of future work involves investigating the
performance of segmented IQs under simultaneous multi-
threading (SMT) [23]. By scheduling across multiple
threads, an SMT processor may obtain even larger benefits
out of increased IQ sizes. Unlike other prescheduling
schemes, the dynamic inter-chain scheduling of our seg-
mented IQ should allow chains from independent threads to
exploit thread-level parallelism effectively.

Finally, as mentioned in Section 2, we believe that future
large IQs will employ both vertical segmentation, as we
have proposed, and horizontal clustering, as in the Alpha
21264 [14]. There may be exploitable synergies between
our chain-based scheme and a clustered approach. For
example, chains seem to form a natural unit for assignment
to function-unit clusters, and such an assignment may allow
a more distributed our hierarchical broadcast of chain head
promotion signals.

8 Conclusions
Two key paths to higher performance—larger instruction

windows and lower cycle times—conflict directly in con-
ventional instruction-queue designs. An associative search
of a large structure to identify issuable instructions results
in an inherently large cycle time. Previous work has shown
that this trade-off may be overcome by constraining the
search for issuable instructions to a likely subset of the
instruction window, identified using data dependence infor-
mation. Unfortunately, opportunities for instruction-level
parallelism can easily be lost in the process of constraining
this search. In particular, the use of predicted latencies for
data-dependence scheduling can hamper the processor’s

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

ability to tolerate unpredictable latencies—one of the key
benefits of dynamic scheduling.

This paper presents a novel instruction queue design that
provides both quasi-static data-dependence scheduling to
limit the scope of wakeup logic and flexible dynamic
scheduling in the face of unpredictable latencies. We
accomplish this combination by grouping instructions into
chains representing subtrees of the dynamic data depen-
dence graph. Instructions within a chain are scheduled
quasi-statically based on predicted latencies; however,
scheduling across chains is fully dynamic and can tolerate
unpredictable latencies. We use these chains to manage the
flow of instructions in a segmented instruction queue, effec-
tively a pipeline of small structures similar to a conven-
tional IQ. The cycle time of the segmented IQ is determined
by the size of each segment, not the overall queue size. Our
design can be scaled across varying window sizes and clock
frequencies by varying the number of segments and the
number of instruction slots per segment.

We also identify and evaluate a number of enhancements
to the segmented IQ design, including a bypassing mecha-
nism to reduce the pipeline depth penalty, and hit/miss and
left/right operand predictors to reduce the number of chain
wires needed and the complexity of IQ entries.

Despite its roughly similar circuit complexity, simula-
tion results indicate that our segmented instruction queue
with 512 entries and 128 chains improves performance by
up to 69% over a 32-entry conventional instruction queue
for SpecINT 2000 benchmarks, and up to 398% for SpecFP
2000 benchmarks. The segmented IQ achieves from 55% to
98% of the performance of a monolithic 512-entry queue
while providing the potential for much higher clock speeds.

References
[1] Vikas Agarwal, M. S. Hrishikesh, Stephen W. Keckler, and

Doug Burger. Clock rate vs. IPC: The end of the road for con-
ventional microarchitectures. In Proc. 27th Int’l Symp. on
Computer Architecture, pp. 248–259, June 2000.

[2] David H. Albonesi. Dynamic IPC/clock rate optimization. In
Proc. 25th Int’l Symp. on Computer Architecture, pp. 282–
292, June 1998.

[3] Mary D. Brown, Jared Stark, and Yale N. Patt. Select-free
instruction logic. In 34th Int’l Symp. on Microarchitecture,
pp. 204–213, December 2001.

[4] Doug Burger, Todd M. Austin, and Steve Bennett. Evaluating
future microprocessors: the SimpleScalar tool set. Technical
Report 1308, Computer Sciences Department, University of
Wisconsin–Madison, July 1996.

[5] Ramon Canal and Antonio González. A low-complexity
issue logic. In Proc. 2000 Int’l Conf. on Supercomputing,
pp. 327–335, May 2000.

[6] Ramon Canal and Antonio González. Reducing the complex-
ity of the issue logic. In Proc. 2001 Int’l Conf. on Supercom-
puting, June 2001.

[7] George Z. Chrysos and Joel S. Emer. Memory dependence
prediction using store sets. In Proc. 25th Int’l Symp. on Com-
puter Architecture, pp. 142–153, June 1998.

[8] Keith I. Farkas, Paul Chow, Norman P. Jouppi, and Zvonko
Vranesic. The multicluster architecture: Reducing cycle time
through partitioning. In 30th Int’l Symp. on Microarchitec-
ture, pp. 149–159, December 1997.

[9] Daniele Folegnani and Antonio González. Energy-effective
issue logic. In Proc. 28th Int’l Symp. on Computer Architec-
ture, July 2001.

[10] M. Goshima, K. Nishino, Y. Nakashima, S. Mori,
T. Kitamura, and S. Tomita. A high-speed dynamic instruc-
tion scheduling scheme for superscalar processors. In 34th
Int’l Symp. on Microarchitecture, pp. 225–236, December
2001.

[11] Michael K. Gowan, Larry L. Biro, and Daniel B. Jackson.
Power considerations in the design of the alpha 21264 micro-
processor. In Proc. 35th Design Automation Conf., pp. 726–
731, June 1998.

[12] Ron Ho, Kenneth W. Mai, and Mark A. Horowitz. The future
of wires. Proc. IEEE, 89(4):490–504, April 2001.

[13] Gregory A. Kemp and Manoj Franklin. PEWs: A decentral-
ized dynamic scheduler for ILP processing. In Proc. 1996
Int’l Conf. on Parallel Processing (Vol. I), pp. 239–246,
1996.

[14] R. E. Kessler. The Alpha 21264 microprocesor. IEEE Micro,
19(2):24–36, March/April 1999.

[15] Pierre Michaud and André Seznec. Data-flow prescheduling
for large instruction windows in out-of-order processors. In
Proc. 7th Int’l Symp. on High-Performance Computer Archi-
tecture (HPCA), pp. 27–36, January 2001.

[16] Soner Önder and Rajiv Gupta. Superscalar execution with
dynamic data forwarding. In Proc. 1998 Conf. on Parallel
Architectures and Compilation Techniques, pp. 130–135,
October 1998.

[17] Subbarao Palacharla, Norman P. Jouppi, and J. E. Smith.
Complexity-effective superscalar processors. In Proc. 24th
Int’l Symp. on Computer Architecture, pp. 206–218, June
1997.

[18] Yale N. Patt, Sanjay J. Patel, Marius Evers, Daniel H.
Friendly, and Jared Stark. One billion transistors, one unipro-
cessor, one chip. IEEE Computer, 30(9):51–57, September
1997.

[19] Eric Rotenberg, Quinn Jacobson, Yiannakis Sazeides, and
Jim Smith. Trace processors. In 30th Int’l Symp. on Microar-
chitecture, pp. 138–148, December 1997.

[20] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar.
Multiscalar processors. In Proc. 22nd Int’l Symp. on Com-
puter Architecture, pp. 414–425, June 1995.

[21] Jared Stark, Mary D. Brown, and Yale N. Patt. On pipelining
dynamic instruction scheduling logic. In 33rd Int’l Symp. on
Microarchitecture, pp. 57–66, December 2000.

[22] Dennis Sylvester and Kurt Keutzer. Rethinking deep-submi-
cron circuit design. IEEE Computer, 32(11):25–33, Novem-
ber 1999.

[23] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy.
Simultaneous multithreading: Maximizing on-chip parallel-
ism. In Proc. 22nd Int’l Symp. on Computer Architecture,
pp. 392–403, June 1995.

[24] Shlomo Weiss and James E. Smith. Instruction issue logic in
pipelined supercomputers. IEEE Trans. Computers, C-
33(11):1013–1022, November 1984.

[25] Adi Yoaz, Mattan Erez, Ronny Ronen, and Stephan Jourdan.
Speculation techniques for improving load related schedul-
ing. In Proc. 26th Int’l Symp. on Computer Architecture,
pp. 42–53, May 1999.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

