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THE FORK-JOIN QUEUE AND RELATED SYSTEMS WITH 
SYNCHRONIZATION CONSTRAINTS: STOCHASTIC 
ORDERING AND COMPUTABLE BOUNDS 

FRANCOIS BACCELLI,* INRIA 
ARMAND M. MAKOWSKI,** University of Maryland 
ADAM SHWARTZ,*** Technion-lsrael Institute of Technology 

Abstract 

A simple queueing system, known as the fork-join queue, is considered with basic 
performance measure defined as the delay between the fork and join dates. Simple 
lower and upper bounds are derived for some of the statistics of this quantity. They 
are obtained, in both transient and steady-state regimes, by stochastically comparing 
the original system to other queueing systems with a structure simpler than the 
original system, yet with identical stability characteristics. In steady-state, under 
renewal assumptions, the computation reduces to standard GI/GI/1 calculations and 
the bounds constitute a first sizing-up of system performance. These bounds can also 
be used to show that for homogeneous fork-join queue system under assumptions, 
the moments of the system response time grow logarithmically in the number of 
parallel processors provided the service time distribution has rational Laplace- 
Stieltjes transform. The bounding arguments combine ideas from the theory of 
stochastic ordering with the notion of associated random variables, and are of 
independent interest to study various other queueing systems with synchronization 
constraints. The paper is an abridged version of a more complete report on the 
matter [6]. 
STOCHASTIC BOUNDS; INCREASING CONVEX ORDERING; ASSOCIATED RANDOM 
VARIABLES 

1. Introduction 
A K-dimensional fork-join (FJ) queue is a queueing system operated by K 

parallel servers with synchronized arrival and departure streams. Each server is 
attended by a buffer of infinite capacity and individually operates according to the 
FIFO discipline. Customers arrive into the system in batches of size not larger than 
K and are processed according to the following discipline. 
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Upon arrival, a batch of size S - K, bringing customers to S of the K servers, is 
immediately split so that each one of its S customers is allocated to exactly one 
server (the so-called fork primitive). 

As soon as all the S customers constituting a batch have been serviced, the batch 
is immediately recomposed (the so-called join primitive) and leaves the system at 
once. This second synchronization constraint is achieved by parking already serviced 
customers in an auxiliary buffer of infinite capacity, where they await being reunited 
to serviced customers of the same batch whose service has not been completed yet. 

Such queueing models arise in many application areas, including flexible 
manufacturing and parallel processing, with a wide variety of interpretations. In the 
context of production systems, a batch customer can be interpreted as a customer's 
order with several components, each component or suborder being attended by a 
separate production device. An example very similar to this one is obtained by 
considering the production of multipart items. In computer systems with parallel 
architecture, a batch customer can be viewed as a program composed of several 
subroutines, each one to be executed on a different processor (e.g. the cobegin and 
coend structures in concurrent languages like Concurrent Pascal, CSP, etc). 

For this type of application, the determination of batch response time (defined as 
the delay between the fork and the join dates) is of crucial importance in quantifying 
system performance. In two dimensions and for constant batch sizes, i.e., K = S = 2, 
the stationary joint distribution of the number of customers in the two queues was 
determined by Flatto and Hahn [11] under Markovian assumptions. A somewhat 
more general problem with Poisson arrivals and general service times was also 
analyzed by Baccelli in [1]. However, in more dimensions (i.e., K > 2) and/or for 
more general interarrival distributions, the problem still remains open. The difficulty 
stems from the statistical dependence between the individual response times of 
different queues, which is due to the common arrival process. 

In this paper, simple lower and upper bounds are derived for various statistics of 
this response time, including its moments. The bounds are obtained by a direct 
stochastic comparison of the queueing system to several other systems with K 
parallel servers, for which the statistics of interest can be computed explicitly. 
Moreover, the stability conditions for these 'bounding' systems are identical to those 
for the original system. Transient as well as steady-state bounds are obtained. 

In order to carry out this program, it is convenient (and natural) to consider a 
somewhat larger class of queueing systems with K parallel servers operating under 
synchronization constraints. This enlarged class is obtained by removing the 
synchronization constraint on the arrival streams and by allowing more general 
loading patterns. This class of models includes the simplest FJ queue studied earlier 

by the authors [2], [5], and is described in detail in Section 2 where the performance 
measures of interest are defined. 

Two basic bounding methodologies are developed and used throughout this work. 
The first approach relies on the convex increasing order for probability distributions 
[18], [21], [22] and is found most useful for establishing ordering results on the 
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waiting times which are generated through Lindley's equation. In Section 3 a basic 
bounding result is obtained for such a recursion by comparing the waiting times 
when Lindley's recursion is driven by different arrival, service and/or loading 
processes. The ideas are then applied in Section 4 to the queueing system of 
interest, to obtain several simpler queueing systems whose performance bounds that 
of the original system. Preliminary versions of the results discussed here can be 
found in the conference papers [2], [5] for the FJ queue under renewal type 
assumptions. 

The second methodology makes use of the notion of associated random variables 
[4], [9] and is especially useful in establishing comparison results for the maximum 
of positively correlated random variables. The necessary steps are developed in 
Section 5, where increasing the number of independent components (by taking 
independent versions of some of the arrival and loading processes) is shown to 
stochastically increase the system response time. The resulting bounds are given in 
terms of the waiting times and other performance measures of (partially) decoupled 
queueing systems. This technique was already used by Nelson and Tantawi [16] 
who obtained only first-moment information in the special case of Poisson arrivals 
and exponential servers. 

In Section 6, these bounds are specialized to the FJ queue with synchronized 
arrivals under a set of renewal assumptions. The discussion emphasizes the 
computability of the steady-state bounds, in the sense that their evaluation reduces 
to analyzing the statistics of K independent GI/GI/1 queueing systems, in contrast 
with the initial problem which is also K-dimensional but with strongly coupled 
components. The calculations are carried out for the case of exponentially 
distributed service times, and simple explicit expressions are given for homogeneous 
FJ queues, i.e., when the loading patterns and service requirements are identical for 
all processors. The reader is referred to the conference papers [2], [5] for simulation 
results on the quality of some of the bounds obtained here. 

A further use of these bounds is discussed in Section 7 where homogeneous FJ 
queues are considered. Asymptotics on the system response time statistics are 
obtained as the number K of servers grows large. It is shown under standard 
renewal assumptions that the moments of the system response time grow 
logarithmically in the number of parallel servers, provided the Laplace-Stieltjes 
transform of the service time distribution is rational. This result generalizes a similar 
result obtained by Nelson and Tantawi [16] for the special case of Poisson arrivals 
and exponential servers. The asymptotics are developed by making use of a result of 
Lai and Robbins [14] on the maximum of identically distributed random variables. 
The derivation provides for an explicit estimate of the tightness of the asymptotic 
bounds. 

2. The model 

The queueing model of interest in this paper is now presented, together with the 
notation and some of the basic assumptions enforced throughout. Although the 
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proposed queueing model is more general than the synchronized FJ queue model 
which motivated the work reported here- [2], [5], its usefulness will soon become 
apparent to the reader in the forthcoming sections. 

2.1. The basic random variables. Emphasis is put on sample path representations 
for the quantities of interest, and as further developments will demonstrate, this 
approach is quite fruitful in establishing bounds. To that end, an underlying 
probability triple (Q, F, P) is postulated on which all the random variables (RV) 
mentioned in this paper are defined. A positive integer K is given and held fixed 
hereafter. As a convention, the kth component RV of any R K-valued RV is denoted 
by the same symbol as this RV but superscripted by k; a similar convention is 
adopted to denote the components of any vector in R K. This probability triple 
(9, F, P) is assumed to simultaneously carry the sequences 

{r,}l, {O,}o 
and 

{u,}• of R K-valued RV's, together with an R K-valued RV W. 
The queueing system generated by the constituting sequence 

(2.1) (W, On, Un, Tn+1, n = 0, 1, - - -) 

is defined as a queueing system composed of K parallel servers with the following 
features: each one of these servers has its own buffer of infinite capacity and 
operates according to the FIFO discipline. The RVs { kr} model the interarrival 
times as experienced by the kth server, so that arrivals to its queue are taking place 
along the time sequence {A }o defined by 

n-1 

(2.2) Ak= Tk+, n = 1, 2, 
-. m=O 

with Ak = 0. The customers arriving at the kth queue at such times are called type k 
customers hereafter. The nth customer of type k brings an amount of processing 
time 

ou 
to be executed by the kth server, whereas the RV u represents a loading 

factor in that the actual work to be processed by the kth server due to the nth 
arrival of type k is u.k n. 

A customer is assumed to arrive at time t = 0, at which 
time an initial load is already awaiting service in the various buffer areas, and the 
RV Wk thus represents the amount of time required by the kth server to clear this 
initial load from its buffer. In the discussion, it will be convenient to aggregate the 
nth customers of all types into a single entity referred to as the nth composite 
customer. 

Two particular cases are especially relevant for what follows. 

(C.1) The RVs {un)} take their vaues in {0, 1}K, in which case, each RV u, 
determines a (random) subset I, of (1, 2, - - - , K} given by 

(2.3) I,:= {k, 1 k < K:u= =1}, n=0, 1, 

and the system is one fed by K arrival streams where the nth composite customer 
brings work only to the servers with index in I,, possibly not all at the same time. 
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(C2) The RVs 
{u,}• 

are synchronized in the sense that 

(2.4) u= u=... u = v, n = 0, 1, 

In this system, the amounts of actual work brought by the nth customers to the K 
parallel queues are positively correlated through a common scaling factor v,. Such a 
correlation seems quite natural in all the practical interpretations discussed earlier 
(e.g., the sizes of parallel subprograms in a program). 

2.2. The performance measures. In order to define reasonable performance 
measures, consider the sequence of R+!-valued RVs {W,}o generated com- 
ponentwise by the Lindley recursions 

(2.5) W 1= [n-.o- 
t1n+l1], 

1 5 k !5 K, n = 0, 1, -- 

with Wo = W, and the standard notation x+ = max (x, 0) is used for all x in R. The 
RV Wk represents the waiting time of the nth customer of type k, whereas the 
quantities Rk and Sk, akin to response times in the queueing system attended by the 
kth server, are defined by 

(2.6) R : = u . (Wk + o 15), 1 k K, n = 0, 1,... 

and 

(2.7) Sk:= Wk + uk. oun, 1 5 k 5 K, n = 0,1,. 

respectively. For reasons that will become clear later on, two quantities can be 
naturally defined as the system response time for the nth composite customer. These 
are denoted T1 and T2, and are given by 

(2.8) T1:= max Rk= max u. (Wk + ), n =0, , - 
l--kK 1Kk!K 

and 

(2.9) T2:= max Sk = max Wk+ u.k o, n = 0, 1, -. 
1-k;K 1--k<K 

respectively. 
The definitions (2.8)-(2.9) attempt to provide meaningful measures of system 

performance for as large a class of models as possible. To get a better feel for the 
meaning of these definitions, consider the situation where the arrivals are 
synchronized in the sense that 

(2.10) r+,1 = T . . = 
+ 

2K+1, n = 0,1, - 

This corresponds to the situation where the nth customers of all types arrive into the 
system at the same time, in which case the arrival stream common to all K queues is 
still denoted by {t,+1}$. In the particular case (C.1), T1 now reads 

(2.11) Tr = max Rk, n = 0, 1, --. k eln 
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with I, given by (2.2), and is exactly the time that elapses between the fork and join 
dates of the nth composite customer. On the other hand, when the loading sequence 
has the form (2.4) as in (C.2), it is more natural to define the system response time 
of the nth composite customer by (2.9). 

The system response times defined through (2.8) and (2.9) coincide when the 
loading sequence has the simplified form 

(2.12) ul:= =u = 1, n =0, 1, 

as in the simplest FJ queue system studied earlier by the authors [2], [5]. The 
difficulty in analyzing these queueing systems with synchronization constraints is 
already apparent in the simple situation defined by (2.10) and (2.12), say under 
standard renewal assumptions [2], [5]. Indeed, in such a case, the single-server 
queueing system associated with each server embedded in the FJ queue operates 
like a standard GIIGII1 queueing system. However, these K parallel GIIGI/1 
systems are not independent in general since they have identical inputs owing to 
(2.10). It is precisely the presence of this correlation between the input streams to 
the various queues that makes the computation of the statistics of the RVs { 

T'•}, i = 1, 2, hard. In view of these difficulties, it seems relevant to seek ways of 
generating bounds and approximations to the various statistics of { T, i = 1, 2. 
The results on stochastic ordering presented in this paper readily lead to the 
derivation of simple computable bounds to these statistics in the context of the FJ 
queue as well as for the more general queueing systems described earlier in this 
section. The comparison results discussed in this paper are derived through direct 
bounding arguments that explicitly exploit the sample path nature of the recursions 
(2.5). The basic idea consists in directly constructing from the RVs that define the 
original system, a new queueing system of the same type but with different 
constituting sequence (2.1). 

2.3. Notation. Although more general situations will be covered during the 
discussion, the results will often be specialized to various models of interest. In 
particular, it will be convenient to consider the system under the assumption of 
independence (I) (respectively (Ib)) if the conditions below are satisfied, namely 

(I) The RI -valued RVs {W, on, u, rn l, n = 0, 1, 
? ? 

} are mutually indepen- 
dent; and 

(Ib) The 
R+,-valued 

RVs {Wk, oU, r+1, 1 k K, n =0, 1, ... } are 

mutually independent. 

This section closes with a word on the notation used throughout the paper. The 
Laplace-Stieltjes transform of the probability distribution function F(-) is denoted 
by F*(-). The conditional expectation of any R -valued RV X with respect to any 
sub-a-field 9 of 9 is often denoted by X", with 

(2.13) X := E[X [ 9], 
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whenever meaningful. The notation 
ou' 

n, Wk ', Rk,, S'k, 
and T'V, is thus used 

with this meaning for all n = 0, 1, -- , 1 ? k _ K, and i = 1, 2. 

3. Bounds in the convex increasing ordering 

The first bounding methodology is based on a simple result that provides for a 
direct stochastic comparison between different queueing systems of the type 
described earlier. This elementary result uses in an essential way the structure of the 
Lindley's recursions (2.5), and allows for a unified treatment of many of the bounds 
presented here. The discussion that follows finds its origin in a folk theorem of 
queueing theory stating that determinism minimizes waiting (or response) times in 
many queueing systems. For G/G/1 systems, such results have been established 
under a variety of assumptions by a number of authors, including Hajek [12], 
Humblet [13], Rogozin [17] and Whitt [22] to name a few. 

3.1. A basic bounding methodology. To set the stage for the discussion, consider 
a sequence {O,)} of R-valued RVs and an 

R+-valued 
RV V defined on the 

probability triple (9, F, P). These RVs are assumed to satisfy the finite mean 
condition 

(3.1) E[V]<oo and E[O,]<oo, n = 1, 2, * 

For any o-field 
9 of events contained in 9, the R-valued RVs {O1}T are defined as 

(any one version of) the conditional expectations 

(3.2) Of := E[O, I], n = 1, 2, -- 
in agreement with the convention (2.13). The main result of this section is then the 
following. 

Theorem 3.1. Let {V,}o and {V,(.)}o be the sequences of R+-valued RVs defined 
through the recursions 

(3.3) Vn+1 = [1Vn + On+l]+, n = 0, 1, -- 

and 

(3.4) V,+1(-) = [V,n(9) + O +1]+, n = 0, 1, 
-- 

with Vo = Vo(!) = V. Under the assumptions made, whenever the RV V is 9- 
measurable, the inequalities 

(3.5) 
V,(9)_-5E[V, 

1 .] a.s., n = 0, 
1,-- 

hold. 

Proof. The proof proceeds by induction. Since the RV V is @-measurable, (3.5) 
trivially holds for n = 0 since Vo = Vo(Q) = V. 
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Take as induction hypothesis that (3.5) holds true for some n = m ?0. For such 
m, Jensen's inequality gives 

(3.6) E[Vm+,I ] 
- 

[E[V, m ] + E[Om+l ]+ 
since the function R ---> R x - x + is convex monotone non-decreasing. Substitution 
of (3.2) into (3.6) and use of the induction hypothesis lead to almost sure relations 

(3.7) E[Vm+i I !] > [Vm() + O+1]+ = Vm+1( ), 

where the equality follows from (3.4). This shows that (3.5) holds for n = m + 1 and 
since it holds for n = 0, it holds by induction for all n = 0, 1, 

--.- 
The following corollary is an easy consequence of Theorem 3.1, and its proof is 

available in [6]. 

Corollary 3.2. If !1@ and %2 are two a-fields of events such that 

(3.8) (1 c 92 C J, 

then, with the notation of Theorem 3.1, almost sure inequalities 

(3.9) V,( 1) 
- 

E[V,(2) I 1 1] - E[V, I 
1] 

n = 0, 1,- 

hold provided Vo = Vo(~1) = Vo(.2) = V and V is @l-measurable. 

3.2. Transient analysis. The basic results of the previous section are now applied 
to the K-server queueing system generated by the constituting sequence 

(3.10) (W, on, Un, Tn+l, 
n = 0, 1, - - -) 

as described in Section 2. The discussion is given under the assumptions (A.1)- 
(A.2), where 

(A.1) For 1 = k 
= 

K and n = 0, 1, ---, the RVs ok, un and rt+l all have finite 
means. 

(A.2) There exists a sub a-field of events . of 9 with the property that W is 
i-measurable and for each n =0, 1, --, the RV u, is conditionally 
independent of the o-field ',f given ., with 

(3.11) •i := o{W, on,} v o{m,, ur, m,,,+, 0 --m 
< n}, n = 0, 1, - 

Note that (A.2) is automatically satisfied for any o-field 9 when the constituting 
loading sequence has the simple form (2.12) as in [2], [5]. 

Let 9 be any a-field of events contained in 9. With a notation consistent with 
that introduced in Theorem 3.1, let the RVs {W, 

(9)}o, {R(n()}o, 
{S,(9)1} and 

{T'(9)}g, i= 1, 2, be defined through (2.5)-(2.9), but for the K-server queueing 
system generated by the constituting sequence 

(3.12) (W, 
u 
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Theorem 3.3. Under the assumptions (A.1)-(A.2), for all 15 k -K, the almost 
sure inequalities 

(3.13) wn(n) 
-- 

Wk,~, n = 0, 1, 
.-- 

and 

(3.14) R !) Rn, k(@) .S'•n,n n = 0, 1,-- 

hold, whence 

(3. 15) T() 0 
- 
T b , i = 1, 2, n = 0, 1, 

Proof. For all n = 0, 1, - - -, the RV Wn is Wn-measurable, and by assumption 
(A.2), the RV un is thus conditionally independent of the RVs {on, Wj given the 

o-field @, whence 

(3.16a) E[uk. o ] u 
k, a.S. n = 0, 1, 

and 

(3.16b) E[uk. Wk(I]= Uk,? 

W.k, 
a.s. n = 0, 1, ... 

for all 1 : k - K. 
With the R K-valued RVs {O,,)1} defined componentwise by 

(3.17) O k . ak = u+1 n = 0, 1, . 

for all 1 5 k 5 K, it is plain from (3.16a) that 

(3.18) o011 = 

unc. ? 

CO -_ 

nl 

n = 0, 1, 

for all 1 5 k K. The inequality (3.13) now follows readily from Theorem 3.1 
applied to the recursions (2.5)-(2.9), whereas (3.14) are direct consequences of 
(3.13) and (3.16). It is also plain that 

(3.19) E[TI• 19] max E[RkI ] ? max Rk( ) a.s., n = 0, 1, 
1-5k--K 1_Sk!:K 

where (3.14) was used in the last inequality, and the validity of (3.15) for the case 
i = 1 is now established. The proof for the case i = 2 is similar and is therefore 
omitted. 

The following corollary is an easy by-product of Theorem 3.3. 

Corollary 3.4. Under the assumptions (A.1)-(A.2), the inequalities 

(3.20) E[T'(g)] - E[T' ], i = 1, 2, n = 0, 1, - 
hold; more generally, for all convex monotone non-decreasing functions : R -* 

R, 
(3.21) E[4(T~(i))] 

_ 
E[p(T )], i = 1, 2, n = 0, 1, 

? 
provided both expectations exist. 
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Proof. It suffices to establish (3.21) since (3.20) follows from it by taking q(x) = x 
for all x in R. Theorem 3.3 yields 

(3.22) T'(f,) - E[T' 1 ], i = 1, 2, n = 0, 1, - 

and Jensen's inequality thus implies the inequalities 

(3.23) (Ti(9)) 
- 

E[4(T') qj], i = 1, 2, n = 0, 1, - 

The conclusion (3.21) is now immediate from (3.23) upon taking the mathematical 
expectation on both sides of these inequalities. 

The comparison results of Theorem 3.3 and of its Corollary 3.4 are really 
statements on the convex increasing ordering between waiting times and response 
times in two different queueing systems, as understood by Ross [18], Stoyan [21] and 
many other authors. More precisely, let X and Y be any two R K-valued RVs. The 
(distribution of the) RV X is said to be greater than the (distribution of the) RV Y in 
the (stochastic) convex increasing order if and only if E[4(Y)] 

- 
E[q4(X)] for all 

convex monotone non-increasing mapping [ RK --- R for which the expectations 
exist; this is denoted in short by 

X-icx 
Y. 

With this notation, Corollary 3.3 can be restated simply as saying that 

(3.24) 
T'i(q)--icx 

T', i = 1, 2, n = 0, 1, 

In fact, an argument identical to the one made in Corollary 3.4, when applied to the 
inequalities (3.13)-(3.14), yields the following stronger stochastic ordering in vector 
form. 

Corollary 3.5. Under the assumptions (A.1)-(A.2), the inequalities 

(3.25) W,(9) 
-icx 

Wn, n = 0, 1, .. 

and 

(3.26) Rn(!) 
--icx 

Ri, Sn(!) -icx Sn, n = 0, 
1,-- 

hold. 

It is plain that the inequalities (3.24) are immediate consequences of (3.26) since 
the mapping RK ---R X+ --maxlkSKxk is convex monotone increasing. The next 
corollary parallels Corollary 3.2 to the present set-up and shows how some of the 
bounds could possibly be improved. 

Corollary 3.6. Let i1 and 92 be two a-fields such that 1 g 2 g 9, which both 

satisfy (A.2). Under the finite mean assumption (A.1), the chains of inequalities 

(3.27) 
Wn(!l) -icx 

Wn(!2) -icx Wn, n = 0, 1,- 

and 

(3.28) S,(tu) eicx Sn(.2) icx Sn, n = 0, 
1,. 

hold true. 
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Sketch of the proof. Details of the proof can be found in [6]. The right-hand 
inequalities are already contained in Corollary 3.5 (with 2 = 22). To prove the 
left-hand ones, fix n = 0, 1, - - . and consider any integrable R -valued RV Y which is 
conditionally independent of the RV un given each one of the o-fields .1 and 4. 
This condition implies 

(3.29) E[u. Y I = E[u, ] . E[Y J], i = 1, 2, n = 0, 1, ... 

for all 1 5 k < K. Any integrable Cg-measurable RV is such an RV by virtue of the 
enforced condition (A.2) on the o-fields 1i and %, where 

CW• 
is the o-field entering 

(A.2). The inclusion 21 
c_ 2 

now implies 

(3.30) (ut. Y) 1= ((ut. Y)12)11 = (u ' . Y-2) 1, n = 0, 1, .- 

by the smoothing for conditional expectations, and therefore 

(3.31) E[uk I 11]. E[Y I 21]= (uk,'. Y 2)1l, n = 0, 1, - 

upon comparing (3.30) to (3.29) (with i = 1). This last relation can be used exactly 
as (3.16a) was used in the proof of Theorem 3.3 to derive the leftmost inequalities. 
Indeed, observe that in the proof of Theorem 3.3, only the consequences (3.16a) of 
the assumption (A.2) enforced on the o-field 9 are needed to carry out the 
arguments in order to get (3.13). 

3.3. Steady-state analysis. The bounds obtained thus far are transient in nature 
but extend readily to statistical (or steady-state) equilibrium when appropriate. To 
that end, consider the additional conditions (A.3) and (A.3b) on the constituting 
sequences (3.10) and (3.12) (for some a-field 2). 

(A.3) The RVs {(on, u,,, rn,,)} form a stationary ergodic sequence. 

(A.3b) The RVs {(uo, u-, 
rZ+1)}o 

form a stationary ergodic sequence. 

The next proposition is obtained through a vector version of the increasing 
scheme technique of Loynes [15]. 

Theorem 3.7. Under the assumptions (A.1) and (A.3), (or (A.1) and (A.3b), 
respectively), the condition 

(3.32) E[un_. e] < E[ kn 15:], 
l-k<-K, 

n = 0, 1,-- 

(3.33) (or E[uk,•". on'-] < E[tk'-1], 
1 5 k 5 K, n = 0, 1,---) 

guarantees the weak convergence of the sequence of waiting times {W,}~ (or 
{Wn(-)}1, respectively) to some non-defective probability distribution function on 

Proof. The proof proceeds in two steps which are specified through the value of 
the initial workload W. To indicate the dependence on this initial workload, denote 
by {WW,}$ the sequence of waiting times which are defined componentwise through 
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the recursions (2.5) when the initial workload is W, i.e., for all 1 5 k 
_ K, 

(3.34) n 
+= ["Wk + u 

• 
. n o - 

nTn+1] 
, n = 0, 1, - - - 

with WWo = W. 
The first step assumes the initial workload W to be 0, in which case iterating 

(3.34) yields the well-known representation 

(3.35) OW = max {0, O, O + O , , O + + Ok}, n = 1, 2, -... 

with the RVs {Ok}' as defined in (3.17). 
Following Loynes [15], it is convenient to embed the sequence 

{O,}l 
into a 

bi-infinite stationary ergodic sequence, say {On}0+. Such an extension is possible 
owing to the enforced assumption (A.3). The R iK-valued RVs 

{Vn}$ are now defined 
componentwise by 

(3.36) 
Vk'=max{,Ok1O-, 

O 

+....+O} 

n=12, (3.36) Vf::= max {0, 011, Okl + Ok2, 
" " 

* 
Ok l + 

- * * 
+ Ok ,}, n = 1, 2, 

- - * 

with Vo = 0, and equivalence in law being denoted by =st, it is clear that 

(3.37) Wn =st Vn n = 0, 1, -. 
The ergodicity assumption now entails 

1 
n (3.38) lim- Oki E[Ok]<0 a.s 

n ni=1 
where the last inequality follows from the stability condition (3.32). Consequently, 
the convergence 

(3.39) lim • O, =-oo a.s. 
n i=1 

takes place for all 1 < k < K, and implies the existence of an almost surely finite 
integer Nk with the property that for all n > Nk, 

(3.40) Oki< 0 a.s. 
i= 1 

The reader will easily check from the defining relation (3.36) that the sequence of 
RVs 

{V,n} 
is componentwise monotone non-decreasing, i.e., 0 5 Vk 

Vk+l 
for all 

1_ k- K and n =0, 1, --, and the RV V. whose kth component is given by 
V = limn Vk, 1 k 

_K, 
is thus well defined. Owing to (3.40), this RV Vk is 

readily interpreted as the maximum of an almost surely finite number of RVs, 
whence it is almost surely finite, and the sequence of RI K-valued RVs 

{V,n} 
converges almost surely to the almost surely finite RV V1. Consequently, owing to 
(3.37), the RI4-valued RVs 

{oW,,}o 
necessarily converge weakly to an almost surely 

finite R -valued RV, say Wo, which is identical in law with the non-defective RV 

Vm. 
For an arbitrary initial workload 

W_ 
0, an easy induction argument shows that 

WWk 
= 

OWi, for all n = 0, 1, -- - . In addition, as pointed by Loynes [15], the RV Vk 
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given by 

(3.41) vk:= inf {n 0 O: "WW = 0}, 

is almost surely finite under the stability condition (3.32). Therefore, WW = OW=k 
0, and WWW = OWk necessarily for all n i Vk by virtue of (3.34). The RV v given by 

(3.42) v= max Vk 

is thus almost surely finite and has the property that WW, = OW, for all n _ v. 
The first part of the proof now implies that the sequence of RK -valued RVs 

{WWn}" converges weakly to the almost surely finite (and thus non-defective) RV 
W,, i.e., the theorem is indeed obtained for the sequence {Wn}o. It is clear from the 
discussion that the limiting distribution is independent of the initial workload 
distribution. The corresponding result for the sequence of RKr-valued RVs 
{Wn,(!)}) is obtained by similar arguments which are omitted for the sake of 
brevity. 

The reader will readily check from (3.16a) that under the assumptions (A.1)- 
(A.3b), the queueing systems generated by the constituting sequences (3.10) and 
(3.12) exhibit the same stability condition, to wit (3.32). In what follows, the 

R+ -valued RV W. (or W.(!)) will be any RV on (Q,, , P) distributed according to 
the limiting distribution of 

{W,}• 
(or 

{W,(,()}o), 
whose existence is guaranteed by 

Theorem 3.7 under the stability condition (3.32). Similar interpretations are given 
for R. (or R (b)), S. (or S.(.')) and T' (or Ti( ), respectively), i = 1, 2. This 
section concludes with the following steady-state version of Corollaries 3.5 and 3.6. 

Theorem 3.8. Under the assumptions (A.1)-(A.3b), whenever the stability condi- 
tion (3.32) is satisfied, the inequalities 

(3.43) W (!@) 
-i•cx 

Wo 

(3.44) Rg(!) --icx Ro, SO(!) 
-!icx 

So 

and 

(3.45) T'() cx T', i = 1, 2 

hold true. 

Proof. Let 4 be any convex non-decreasing function q 
:RRK--R+ 

with the 
property 

(3.46) E[4(W.)]<oo and E[O(Wo(1))]<oo. 

The RVs 
{V,}o 

defined by the pathwise scheme (3.36) satisfy the inequalities 
V 

VI++ I Vo 
for all 1 5 k 5 K and n = 0, 1, --. The monotone convergence 

theorem thus yields 

E[4(?W,)] = E[4(V,)] 
(3.47) (7 lim E[4(V,)] = E[4(V4)] = E[4(W4)], n = 0, 1, .-. 

nl 
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upon making use of some of the facts noted in the proof of Theorem 3.7. A similar 
conclusion is obtained for the sequence {OWn(0)} . 

Using obvious notation, the RVs qp(Vn) and (V,(9)) are thus integrable as a 
result of (3.46). Furthermore, Corollary 3.5 and (3.37) yield the relation 

(3.48) E[ (Vn(())] 
5 

E[p(Vn)], n = 0, 1, - 

The proof of (3.43) is now completed by letting n go to infinity in (3.48) and by 
making use of (3.47) (for both {0Wn} and {oWn(.)})). The inequalities (3.44)- 
(3.45) are now immediate under the enforced assumptions. 

4. The first family of bounds 

Consider the K-dimensional FJ queue described in Section 2 under the synchroni- 
zation condition (2.10) on the arrivals, with assumption (A.1) enforced throughout. 
The discussion given in Section 3 clearly indicates how bounds can be obtained on 
the statistics of the RVs 

{Wn}l, 
{Rn} 

({Sn}0 
and {T'} , i= 1, 2. This is done by 

appropriately selecting several sub o-fields ! of F, with a view towards giving a 
different system interpretation in each case. The material of this section being 
illustrative of the methodology of Section 3, no attempts are made to give the 
strongest possible results. 

4.1. The FJ queue with deterministic arrival and loading patterns. Consider the 
sub o-algebra %1 of J given by 

(4.1) ! = o{W, on, n =0, 1,- } 
under the conditions (A.2) and (A.4). 

(A.4) The a-field @1 is independent of the a-field a{un, rn+l, n = 0, 1, -}. 

This set of conditions will be satisfied for instance if the independence assumption 
(I) holds. Moreover, note also that under (A.4), condition (A.2) for !1 is equivalent 
to the RV un being independent of the RVs (Uk, Tk+1, 0- 

k <n} for all n= 

0,1, .- . 
With the RVs {On+l}O defined by (3.17), condition (A.4) implies 

(4.2) Ok,9 = E[ul] . oa•- E[rn+,], 
n = 0, 1, -- 

for all 1- k 
_ K. A direct application of Theorem 3.3 then shows that the FJ queue 

with both deterministic arrivals and loading patterns constitutes a lower bound 

system to the original one (in the convex increasing order sense). Interest in this FJ 

queueing system with deterministic components becomes apparent whenever the 
families of component RVs {Wk, , n = 0, 1, ... -}, 1 k K, are mutually 
independent, so that the families of RVs {R (~1)} , 1 

_ 
k 

_ 
K, turn out to be 

mutually independent. A similar statement holds for the quantities 
{Si(@l)}O, 

1_k -K. 
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This lower bound system receives a different interpretation depending on the 
situation. In case (C.1), it is clear that 

(4.3) E[uk] = P[k E I,], n = 0, 1, 
. 

for all 1 
_ 

k 
_ K, while in case (C.2), E[uk] represents the mean value of a common 

scaling factor, namely. 

(4.4) E[u1] 
=. 

E[uf] 
= 

E[vn], 
n = 0, 1, 

. . 
4.2. The FJ queue with deterministic service times. Consider the a-field 

z 
defined 

by 

(4.5)= aI{W, 
nn+l, 

n = 0, 1,---} 

under the conditions (A.2) and (A.5). 

(A.5) The a-field %2 is independent of the a-field a{an, u,, n = 0, 1, 
. }. 

Here again, this set of conditions will be satisfied under assumption (I), whereas 
under (A.5), the condition (A.2) for @2 is equivalent to the RV u, being 
independent of the RVs an and {uk, ak, 0 k < n} for all n= 0, 1, -- . Under the 
assumptions (A.1)-(A.2) and (A.5), it is clear that 

(4.6) O2 = E[uk] . E[ak] 
- 

1, 
n = 01, 

and Theorem 3.3 shows that the FJ queue with both deterministic service times and 
loading factors also constitutes a lower bound system to the original system. If the 
system is initially empty (i.e., W = 0) and the homogeneity condition 

(4.7) E[uk]. E[ = k, = 0, 1, -- 

holds for all 1 5 k 5 K, then the system response times { 
T2(!2)}O 

can be expressed 
as the response times in a G/D/1 system with interarrival stream 

{Tn+1}o 
and 

constant service requirements 
max1_kK, 

Sk. 
4.3. The FJ queue with divisible statistics. Assume the synchronization condition 

(2.10) to hold, and the interarrival times 
{Tn+1}O 

to be K-divisible in the sense that 
the following conditions (D.1)-(D.3) are satisfied. 

(D.1) There exists a sequence 
{Jtn+l} 

of mutually independent RDK-valued RVs 
such that 

(4.8) n+ = n+, n = 0, 1, ? ? . 
Kk=1l 

(D.2) For all n = 0, 1,, - - - the R --valued RVs { . , 
•1n*l- 

} are 

exchangeable. 

(D.3) The families of RVs {tn+l}• and {W, a,, 
un, 

n =0, 1, --- } are mutually 
independent. 
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In the renewal case discussed in Section 6, the conditions (D.1)-(D.3) reduce to 
the condition that the common distribution function of the RVs {T 

+l}O 
be 

K-divisible in the classical sense. Moreover, if the a-field 3 is defined by 
3-:= o{T+i, n = 0, 1, - - -, then it is easy to check from (D.1) and (D.2) that 

(4.9) E[ j1 3-]= 
- - = E[iK1 11= 

'n+l, 
n = 0, 1, 

? ? - 
with the last equation following from (4.8). 

Consider now the non-synchronized queueing system generated by the constitut- 
ing sequence 

(4.10) (W, on, U,, wn+1, n = 0, 1, ), 

and observe that under the assumptions (D.1)-(D.3), the a-field 3 defined by 

(4.11) !3:= aU{W, an, ua , ,n+1, n = 0, 1, * *-} 

trivially satisfies the assumption (A.2) with respect to (4.10). In complete analogy 
with (3.17), if the RVs 

{O1+1}o 
are defined componentwise by 

(4.12) n+1 = U. n- n+, n = 0, 1, .. 

for all 1 _ k 5 K, then the equality (4.9) and the independence assumption (D.3) 
readily yield 

(4.13) ~2 = u1 . - 
+, 

n = 
0,1,- 

for all 1 _ k _ K. 
From the results of Section 3, the system generated by (4.10) thus provides an 

upper bound to the original system. Interest in the system generated by such a 
divisible input stream becomes clear when the families of component RVs 
{ Wk, ok, u , ,, n = 0, 1,...}, 1 5 k K, are mutually independent, since in that 
case the system (4.10) provides a decoupled upper bound system to the original FJ 
queue in the sense defined in Section 3. The interested reader is invited to consult 

[2], [5] for a specific example under renewal assumptions. 
Several further extensions and refinements can be obtained from this bounding 

technique, but will not be discussed here for the sake of brevity; the interested reader 
is referred to [6] for a detailed discussion on the matter. 

The upper bounds obtained in this section can be improved by the method 
discussed in Section 5. There, statements will be obtained in a stochastic sense 
stronger than the convex increasing ordering used here, but only for the statistics of 
the system response times T{ ', i = 1, 2. As pointed out by the authors in [4], 
bounding systems such as (4.10) are the only ones for which the strong vector 
ordering statement of Corollary 3.5 holds. 

4.4. A counterexample. At this point in the discussion, the reader may entertain 
other possible extensions to the previous results. A natural idea consists in making 
deterministic only some of the K arrival streams, say L (1 < L 

- 
K) of them, while 
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keeping the remaining K - L streams unchanged. Under standard independence 
and renewal assumptions, such an approach would lead to a partially decoupled 
system composed of an FJ queue of smaller dimension fed by the initial arrival 
process and of an independent FJ system with deterministic arrivals (and thus 
composed of independent channels). The exact solution being available for 
two-dimensional FJ queues (at least in some particular cases [1], [11]), the system 
response time statistics would also be computable for such a composite system when 
L = K - 2. The reader might hope at first that such a partially decoupled system still 
provides a lower bound for the initial system since its constituting sequence is less 
variable. 

Although the simulation results of [5] might lend credence to such a conjecture, 
this is unfortunately not true as shown by the following counterexample. Consider a 
two-queue FJ system with deterministic loading and service sequences satisfying 
a= = , u= u= 1 and with non-deterministic synchronized interarrival times t 2 1= t+i for all n = 0, 1, - - - . Let 

{Wn} 
be the sequence of waiting times 

in this system where Wo = W = 0 and let { 
•W}o 

be the corresponding sequence when 
the arrival sequences { 

~l+,}o 
are given by Itr+ = E[tr+1] and ,T+i 

= 

rn+l 

for all 
n = 0, 1, . 

With an obvious notation, the system response time for the first incoming 
customer is given by T1 = a + (a - rl)+ and T" = a + (a - min (rl, E[rl]))+, 
respectively. Hence 

T- 
? T1 and the event [I > T1] has positive probability thus 

proving that T1, 
•, 

T1 (where -st denotes the strong order on distribution functions 
[18], [21] as defined in Section 5), so that the ordering T' 

icx T1 holds, i.e., the new 
system is not a lower bound to the original system. 

4.5. Steady-state analysis. Assume the constituting sequence of the original FJ 
queue to satisfy the condition (A.3). For sub a-fields considered in Sections 4.1, 4.2 
and 4.4, condition (A.3b) is an immediate consequence of condition (A.3), and, 
owing to Theorem 3.8, all the transient bounds derived there can be given a 
steady-state version provided the initial constituting sequence fulfills the stability 
condition of Theorem 3.7. For the FJ queue with divisible statistics, additional 
conditions typically need to be imposed on the initial constituting sequence for 
validating the passage to steady-state. 

4.6. Ross's conjecture. It was conjectured by Ross and proved in [4], [19] [20] 
under various statistical assumptions that the response times in a G/G/1 queue with 
a server speed modulated by an independent stochastic process are always larger for 
the convex ordering than the corresponding response times in a G/G/1 queue where 
the environment is averaged out. This result can also be established for the 
generalized response times considered here. A proof of such a result can be 
obtained by combining the results of Section 4 to the methods of [4]; the proof is 
omitted for the sake of brevity. 
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5. A family of upper bounds 

A second bounding methodology is developed in this section. Its application leads 
very naturally to the definition of a family of queueing systems that provide upper 
bounds on the performance measures of interest. 

5.1. Associated RVs. This second bounding methodology is based in an essential 
way on the notion of associated RVs [9]. The R -valued RVs {X1, 

- - 
-., XK} are 

associated if and only if, with the notation X := (X, - - - , XK), the inequality 

(5.1) E[f (X)g(X)] 
- 

E[f (X)]E[g(X)] 

holds for all pairs of monotone non-decreasing mappings f, g : RK 
-_ R for which the 

expectations E[f(X)], E[g(X)] and E[f(X)g(X)] exist. 
In order to explain the usefulness of this concept in the present context, it will be 

convenient to say that the R -valued RVs {X1, " 
-, X}K form independent versions 

of the RVs {X1, 
- - -, XK if 

(i) the RVs {X1, - - - , XK} are mutually independent; 
(ii) for every 1 5 k K, the RVs Xk and Xk have the same probability 

distribution. 
The following proposition [10] is an easy consequence of the definition (5.1). 

Theorem 5.1. If the RVs {X1, " 
, XK) are associated, then the inequality 

(5.2) P max Xk] x max Xk< 
X 

L ks<K L 1k!K J 

holds true for all x in R. 

This result can be viewed as a statement on the stochastic ordering between the 
maximum of the RVs {X, - - - , XK} and the corresponding quantity for the 

independent version. More precisely, if X and Y are two R-valued RVs, then the 

(distribution of the) RV X is said to be greater than the (distribution of the) RV Y in 
the stochastic order if and only if 

(5.3) P[Y > t] -5 P[X > t] 

for all t in R; this is denoted in short by Y 
st 

X. As well known [18], [21], (5.3) is 

equivalent to the statement that 

(5.4) E[0(Y)] _ E[?(X)] 

for all monotone non-decreasing mappings 4 
"R -- 

for which the expectations 
exist. With this notion, Theorem 5.1 can be restated simply as saying that 

(5.5) max 
Xk<-st 

max Xk* 
lkK lk-K 
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The elements of a 'calculus' for associated RVs are provided in [10], pp. 29-31. 
Some of these facts, which are often used in the discussion, have been collected in 
the next lemma for easy reference. 

Lemma 5.2. 

(i) Independent RVs are associated. 

(ii) The union of independent collections of associated RVs forms a set of 
associated RVs. 

(iii) Any subset of a family of associated RVs forms a set of associated RVs. 

(iv) Any monotone non-decreasing function of associated RVs generates a set of 
associated RVs. 

The basic bounding result is given in the next proposition. Let {X1, - 
-, 

, XK} be 
independent versions of some R -valued RVs {X1, - - - , XK}. For any subset I of the 
index set {1, 1- , K}, define the IRK-valued RV X' by posing 

(5.6) XI,k=Xk 
if kel; 

Xk if kOL 
Note that X' = X when I = 0 and that X' = X when I = {1, * 

? 
, K}. The next result 

constitutes a strengthening of Theorem 5.1. Its proof can be found in [6]. 
Theorem 5.3. Assume the RVs {X1, -- , XK} and their independent versions 

{X1, - , XK} 
to be mutually independent. If the RVs {X1, , XK} are associated, 

then 

(5.7) max X',k =t max XJ,k 
l__k_5K 15kK 

for any pair I and J of subsets of {1, * , K} such that I c J. 

5.2. The upper bound systems. The results of Section 5.1, especially Theorem 
5.3, suggest ways of obtaining upper bounds on the response time statistics for the 
queueing system generated by the constituting system 

(5.8) (W, an, u,, ,n+il, n = 0, 1, * e *) 

provided certain independence assumptions hold. This is done by introducing a 
family of queueing systems parametrized by the subsets of the index set {1, - * - , K}. 
Let W 0, {• , {in} 

and 
{•n+l}j 

be sequences of R KV-valued RVs defined on the 
probability triple (Q, , P) under the following assumptions (A.6)-(A.8). 

(A.6) The collections of RVs {W, (an, Un, 'rn+1), n =0, 1, - - } and 

{IW, (.9 , iin, in+1), n = 0, 1, . -} are mutually independent. 

(A.7) The sequences of RVs {k, , k+1), n = 0, 1, }, 1k K, are 
mutually independent; and 

(A.8) For each 1 k K, the sequence of RVs {k, -k k- +1), n = 

0, 1, -. } is statistically indistinguishable from the original sequence 
(Wk, (uk, 

Un, i7+l), 
n = 0, 1, -- }. 
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With the notation introduced in (5.6), for any subset I of the index set 
{1, - - , K}, consider the K-server queueing system generated by the constituting 
sequence 

(5.9) (W', o/n, uI, 
rn+, 

n =0, 1,---). 
All the quantities of interest for this system have an index I. In particular, the 
corresponding waiting times and response times form sequences of RK+-valued RVs 
{WI}1, {RI}J and {S 

}o; 
the former is generated componentwise by the recursive 

scheme 

(5.10) WI,k = [WI'k +[ U 
nk 

_ T kl]+, 1 _5 k K, n = 0, 1, ? 
with W, = W', whereas the latter are defined by 

(5.11) RI•k UIk. (Wk+ k) and Sk = WIk k u k, n = 0, 1, 

for all 1 5 k 5 K. The system response times { T',I}, i = 1, 2, are then given 
simply by 

(5.12) TI"= max 
Rgk 

and T2,= max Sk, n = 0, 1, ... 
15kK 15k_5K 

This system clearly reduces to the original system (with constituting system (5.8)) 
when I= 0. 

The definitions (5.10)-(5.11) of the RVs WI, 
Rn 

and SI are consistent with the 
definition (5.6) where the RVs Wn, Rn and S, are defined through (5.10)-(5.11) with 

1= (1, -- , K}. More specifically, the RVs 
{IWn}o 

are generated componentwise by 
the recursive scheme 

Wn+l[= 

k 

..Ck.k 

_ (5.13) - nkk nW n n-- n+l]+ 1 k 5 K, n = 0, 1, 

with Wo= FW, whereas the RVs {R(n} and 
{Sn}o 

are defined by 
(5.14) 1?k= akn.(Wk+&k) and S k k +k r , n= 0, 1,- 

for all 1 5 k 5 K. 

5.3. The main result in the stochastic ordering 
-st. 

The material of the Sections 
5.1 and 5.2 is now combined to obtain the following basic result for the systems of 
interest here. 

Theorem 5.4. Assume both sets of RVs {R, - - , 
Rn} 

and {S, ..., Sn} 
to form 

sets of associated RVs for all n = 0, 1, . Under the assumptions (A.6)-(A.8), for 
any two subsets I and J of the index set (1, - - , K} such that I c J, the inequalities 

(5.15) T/ 
-st T't•st 

T", i = 1, 2, n = 0, 1,-- 
hold. 

Proof. Only the rightmost inequalities in (5.15) need to be established since the 
leftmost ones follow immediately from them upon taking I and J to be 0 and I, 



The fork-join queue and related systems with synchronization constraints 649 

respectively. As a result of the assumptions (A.6)-(A.8), for each n = 0, 1, -- , the 
RVs {(•R1, 

" 
, Rf}) and { 91, 

. 
, if} constitute independent versions for the RVs 

{(R, * *, R } and {S1, --, S}), respectively. Moreover, by virtue of (A.6), the 
RVs {R, - -, Rf)} and {R1, --, R•}f) are independent, and so are {SI, S- , S~) 
and {S I, , S• ). The hypotheses of Theorem 5.3 are thus satisfied and the result 

(5.15) follows upon immediate identification. 
Sufficient conditions are now given to ensure that the collections of RVs 

{R1, 
* 

, RF} and {S, -- , S}K) form sets of associated RVs for all n = 0, 1, -- 
- To that end, consider the assumptions (A.9)-(A.10). 

(A.9) The RVs {W, (oa, u,, rn+1), n = 0, 1, ---) are mutually independent. 

(A.10) Each one of the collections of RVs {W1, --*, WK) 
and {oa.,un, 

1 
K 

K 
n 

-n+1, 
"", 

u, u, , - ri+,}, n = 0, 1, ---, form a set of associated RVs. 

Theorem 5.5. Under the assumptions (A.9)-(A.10), for all n = 0, 1, - - - , each one 

of the three collections of RVs {W', 
. 

, W}, {R. , ... , R}K) and {S, ,..., S}K) 

forms a set of associated RVs. 

Proof. Take as induction hypothesis that the RVs {W1, - , W~) are associated 
for some n = m -0. By virtue of (A.9), the RV W,, is independent of the RV 

(a,,, u,,,, - ,,+1), and therefore the induction hypothesis and (A.10) imply that the 

RVs {W1, --, WM, a,, u, -_,+1, 
? ? ", 

af, u,. -1},,) are associated, upon ap- 
plying Lemma 5.2(ii). Part (iv) of Lemma 5.2 now gives the conclusion that the sets 
of RVs {W+1, , 

W" 
}, 

{RM+l, 
R , R+1} and {S+1, * ,S } are three 

sets of associated RVs. In passing, this shows that the induction hypothesis holds for 
n = m + 1, and since it holds for n = 0, by virtue of assumption (A.10), it holds for 
all n = 0, 1, 

? ? 
. 

The main result of this section is now obtained upon combining Theorems 5.4 
and 5.5. 

Theorem 5.6. Under the assumptions (A.6)-(A.10), for any pair of subsets I and J 
of the index sets {1, - - - , K} such that I - -J, the inequalities 

(5.16) T st 
stT 

i = 1, 2, n = 0, 1, 

hold true. 

The following corollary follows by a simple application of (5.4) and (5.16) with 
4(x)=x for all x in R. 

Corollary 5.7. Under the assumptions (A.6)-(A.10), the inequalities 

(5.17) E[T,]J E[T~';J E[T;], i = 1, 2, n = 0, 1,--- 

hold true. 
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Theorem 5.5 was already obtained by Nelson and Tantawi [16] under more 
restrictive assumptions and only for the case I= 0. Their proof, used here, is an 
inductive one and is applicable to the more general situation with minor modifica- 
tions. In the case u, = - 

. . 
= u, = 1 for all n = 0, 1, -- , Nelson and Tantawi [16] 

gave (5.17) with I = J = 1, ---, K}. Theorem 5.6 and its Corollary 5.7 thus provide 
a strengthened version of these earlier results. 

5.4. A special case. Consider the FJ queue system of Section 2 with synchronized 
arrivals (2.10) and synchronized loading factors (2.3) of model (C.2), and assume 
the constituting sequence (5.8) to satisfy the strong independence assumption (Ib). 
Conditions (A.9)-(A.10) are then both satisfied, the latter as a result of Lemma 
5.2(i), and the FJ queue system with, constituting sequence (5.9) and I = {1, - - , K} 
is constituted by K independent components, each one having the same statistics as 
the corresponding component in the original system. By Theorem 5.5, this fully 
decoupled system provides a computable upper bound to the initial system, in the 
sense that 

(5.18) T2 sst 
T '1' K), n = 0, 1, -- 

a relation obtained by specializing the leftmost inequality of (5.16) to the case 
I= {1, --0, K}. 

Theorems 5.4 and 5.5 can also be used to generate better upper bounds on the 
performance measures of interest, which are still computable. To see this, assume 
the response time distribution to be computable for the synchronized model under 
consideration in L dimensions for some 2 - L _ K. Then for any subset I of 
{1, - - - , K} with cardinality K - L, (5.16) gives the bound 

(5.19) T2 
-st 

T2' 
-st 

T2' {1,- 
, K}, n = 0, 

1,-.- 
which improves on (5.18). The statistics of the response times {T-,}) are 
computable since the corresponding system has L + 1 independent components, 
namely, an L-dimensional synchronized FJ system and K-L independent un- 

synchronized single server queues. 
Theorem 5.4 can also be used directly to generate yet better upper bounds as 

follows. Let 
{II,'",}Ip} 

be a partition of {1,-- ,K}, i.e., 
IjnII=0o 

for 
1 j < l p and LUJ=i = {1, -., K}, such that lIj 1 L for 1 _5 

j p. Define the 
Rl-valued RVs 

{Xl}o, 
1 5j 5 p, by 

(5.20) X: := max S, n = 0, 1, - - 

for all 1 _5j _5p. 
For each n = 0, 1, ---, the RVs {Sf, 

-- 
. , S,} are associated by Theorem 5.5 and 

so are the RVs {X1, - - , Xp} by virtue of Lemma 5.2(iv), whence 

(5.21) T2 = max 
X'•st 

max X', n = 0, 1,-- 
1Sj<p 

1-j<p 
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where the RVs {X,-, Xp} form independent versions of {X, -, XP}. With 
this notation, it is also clear that 

(5.22) X• '-st max S k, n = 0, 1, -- 
kEli 

for all 1 _ j _ p, by a direct application of Theorem 5.6 to the FJ queue system made 
up of servers whose indices are in I/. If the RVs 

{Oe••''' ',} are now given by 

(5.23) E ' ,'P:= max , n = 0, 1, * - 

then the inequalities 

(5.24) T2 
-st 

O 
/ "' ' 

-Ist 
T2,(1, , 

K}, n = 0, 1, . 
are obtained by combining (5.21) and (5.22). The system with response times 

{O . "'"}E thus provides a refinement on the upper bound (5.18). It is also 

computable since it is composed of p independent FJ systems, all of dimension no 
greater than L. 

A similar discussion can be carried out in the context of model (C.1) under the 
independence assumption (I) provided the independent RVs a,, u, and 

-n,+1 
have 

associated components for all n = 0, 1, -- - 
5.5. Steady-state analysis. Assume the constituting RVs (5.8) that define the 

original system to satisfy both the conditions (A.3) and (A.9), in which case the RVs 
{(a,, Un, 

Tnl1)}O 
form a sequence of i.i.d. R3K-valued RVs. It is now easy to see 

under conditions (A.6)-(A.8) that the constituting sequence (5.9) also satisfies 
(A.3) for every subset I of the index set {1, - - -, K}, i.e., both (5.8) and (5.9) 
satisfy the stability condition (3.32) at the same time. Therefore, if the stability 
condition (3.32) is enforced, Theorem 3.7 ensures that the sequence of RVs {W')' 
(for each subset I of {1, --, K}) converges weakly to some non-defective 
distribution function on R K. Again, generic RVs which are distributed according to 
the limiting distribution functions of {W }$, {RI}', 

{S'}o 
and {T'i'}J, i = 1, 2, are 

denoted simply by W0, Ri, S' and Ti', respectively. From the stability of the 
stochastic ordering -st under weak limits ([21], Proposition 1.2.3, p. 6), the 
transient bounds of Theorem 5.6 also hold in statistical equilibrium. 

Theorem 5.8. Under the assumptions (A.3) and (A.6)-(A.10), whenever the 
stability condition (3.32) holds, the inequalities 

(5.25) T/ "st Ti0 -st 
T"', i = 1, 2 

hold for every pair of subsets I and J of the index set {1, . , K} such that I 
_ 

J. 

6. The renewal case--computable bounds 

This section is devoted to explicit calculations for some of the bounds obtained so 
far. More specifically, the discussion is carried out when the arrivals are 
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synchronized in the sense of (2.10), under the following set of renewal assumptions 
(R-1)-(R-6), 

(R.1) The RV W and the sequences of RVs 
{o,}o, 

{u,}o and 
{(T+l}0 

are 
mutually independent. 

(R.2) The RVs 
({-r.}o 

form a renewal sequence with common probability 
distribution function A(-). 

(R.3) The sequences ({a}, 1 5 k - K, are mutually independent. 

(R.4) For each 1 5 k < K, the RVs 
{ou}0 

form a renewal sequence with common 
probability distribution function Bk(*). 

(R.5) The RVs {u,X} are mutually independent. 

(R.6) For each 1?5- k5K, the RVs {u)}" form a sequence of i.i.d. RVs with 
common probability distribution function Hk (). 

Under these assumptions, the RVs {ul, --, uf} are not necessarily independent. 
Moreover, it should also be clear that the assumptions (R.1)-(R.6) imply the 
independence assumption (I). To fix the notation, set 

(6.1) E[uk]:= k, n = , 1,... 
for all 1 -k _ K, and as usual, define the arrival and service rates through the 
relations 

(6.2) := 
E[r,,ll== 

tdA(t), n = 0, 1, .. 

and 

(6.3) :=1 E[o]l= 
tdBk(t), 

n O, 1, 

for all 1 k - K, respectively. 
It will be convenient to refer to the homogeneous situation as the one where the 

probability distribution functions {Bk(')}f and {Hk(.))} all coincide with some 

probability distribution functions B(-) and H(-), respectively, in which case, set 
l = = IPK=:p and vl= .. 

= VK =: . 

6.1. Computable bounds. As indicated in earlier sections, computable bounds are 
obtained whenever statistical decoupling takes place between the various com- 

ponents of the corresponding bounding systems. For the first moments, this follows 
from well-known elementary facts, namely that for any set of independent 
R -valued RVs {X1, 

- - -, XK}, 

(6.4) E max Xk = 1- P[Xk 
=x 

dx. 
1-k<-K k=l 

The first example is obtained from the results on convex ordering given in Section 
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4.1. Under the assumptions (R.1)-(R.5), the a-field 01 defined by (4.1) satisfies 
both assumptions (A.2) and (A.4). Here, the definition (4.2) of the RVs {(1O,}' 
reduces to 

(6.5) Ofk, =k. n = 0, , - -1 

for all 1 - k - K. The RVs {SI(), 
- - , SK(91)} are mutually independent, and the 

remark (6.4) thus yields the expression 

(6.6) E[T( fI)] 
= 1 ( - P[S (I) x) dx, n = 0, 1,.... 0 k=1 

Note that for every 
1- 

k : K, the RVs 
{Sk(.1)}o 

are the successive response times 
in a standard GI/GI/1 queue with deterministic arrival times {n•A}' and service 
requirements {vk. o })o'. Similar comments can be made concerning the computation 
of the statistics of the system response times { 

Tl(!1)}0. Consider now the upper bounds derived in Section 5. Take I = {1, - -, K} and 
assume the RVs 

{u~,.-, 
uK) to be associated. It is easy to check that the 

assumptions (A.9)-(A.10) are satisfied. By construction, the bounding system with 
constituting sequence (5.9) described by (5.13)-(5.14) exhibits independent 
components, and therefore 

(6.7) E[T{1 K} 1- [u (W]d =, 1, 

Here the RVs 
{W,}0 

are defined for the original FJ queueing system through (2.5), 
and correspond to the successive waiting times in a GI/GI/1 system with interarrival 
stream {,,r+1} and service requirements {uk. or}'. This last expression (6.7) 
simplifies somewhat when each loading sequence {u~k} is a {O, 1}-valued Bernoulli 
sequence, since then 

(6.8) p[uk (W+a)x] - =k. P[W+ x]+(1-k), n=0, 1,... 

for all x -0, with the notation 

(6.9) xrk = P[uk = 1], n = 0, 1, 
. 

for all 1 - k K. 
Note that the bounding systems discussed above all exhibit the same stability 

condition, namely A. Vk 
(6.10) max < 1. 

15k:K M4k 

Under this condition, the formulas (6.6) and (6.7) readily extend to statistical 
equilibrium, with n replaced everywhere by .oo 

Under the renewal and independence assumptions stated above, more explicit 
expressions can be obtained for the steady-state versions of these bounds when the 
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service time distributions Bk(*), 1 
-k -K, 

are all exponential. In the next two 
sections, the calculations are carried out for this special case, with (6.6) and (6.7) as 
point of departure for the lower and upper bounds, respectively. 

6.2. Lower bounds---exponential servers. As pointed out in the remark following 
(6.6), the evaluation of E[T2(@,)] amounts to computing the equilibrium response 
time distribution for K independent single-server systems; the kth such system is a 
DIM/1 queue with arrival times 

{nIA}o 
and exponential service times with 

parameter Yk = 
•kyVk, 

1: -k - K. It is well known that the response time in such a 
DIM/1 system is exponentially distributed. More precisely, for all 1 

- 
k : K, 

(6.11) P[Sk(1) >] = exp (- 6k), x 40 

with 

(6.12) 6k: = 
Yk. (1 fk) =k. (1 - fk), Vk 

where fk is the smallest positive solution to the equation 

(6.13) = exp(- yk(1 l)) p o0. 

The expression (6.6) in statistical equilibrium now becomes 

(6.14) E[T2(~1)] = f 1 - (1 - exp (-6k)) dx. ( Kk=1 

Elementary calculations show that 
K K 

(6.15) 1i- f 
(1--exp(-6kx))= 

(1)k+ 
1 

exp (- 6kx , x>O 
k=1 k=1 TEIk kce 

where the simplifying notation 

(6.16) Jk := I c 
_ 

1, 
" " 

, K}: lI = k}, l1-k-:K 
is used. For any non-empty subset I of {1, ... , K}, it is plain that 

(6.17) fexp (- Z6kx dx = 
6k 

and direct substitution of (6.15)-(6.17) into (6.14) readily yields 

(6.18) E[T2((I)] = (-1)k+l k 
k=1 I-eSkkl 

In the homogeneous case, 6k = 6 for all 1? k _ K and the easy identity 
K 

(1)k+1 k 
K 

(6.19) 
k1 

=k1l 
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allows a rewriting of (6.18) in the following simpler form 

1 K 
(6.20) E[TT(!,)] = 6 k=lk 

since IkI=(K)= for all 
1_l-k 

_5K. 

6.3. Upper bounds--exponential servers. Under the foregoing assumptions, the 
computation of (6.9) in equilibrium passes through the calculation of the equilibrium 
time distribution for K independent GI/GI/1 systems. When the service times are 
exponential and the loading sequences are Bernoulli, explicit expressions are 
available for the distribution of the stationary waiting times for this bounding system 
of independent queues [7], and will be used below in deriving the explicit upper 
bounds (6.29). The relevant expressions are summarized in the next proposition, 
where the notation 

7rk. A*(S)) (6.21) A (s) = 1 - (1 k) A*(s)' 0 1-(1 - ;k) . A*(s) 

is used for all 1 - k - K. 

Lemma 6.1. Under the foregoing assumptions (R.1)-(R.6), the stability condition 
(6.10) reads rk' < Mk, 1 5 k "- K, in which case the sequence of waiting times {Wi,,} 
converges weakly to some non-defective distribution F(.) on R . This limiting 
distribution F(.) is independent of the initial waiting time distribution and is of the 
form F(x) = F(Xk) for all x = (x, , K) in , with 

(6.22) Fk(Xk) = 1 
-- 

k exp (- Okxk), xk 0 

where ak is the smallest positive solution to the equation 

(6.23a) x =A (k(l - X)), XO 0 
and 

(6.23b) Ok =lk( - ak) 

The corresponding Laplace-Stieltjes transform F(*.) is then given by 

Ok (6.24) FZ(s) = (1 - ak) + k , S 0 kOk +S 
and by elementary calculations, it follows that 

(6.25) E[exp 
(-sWk)]B*(s)= 

[ , 
S] 

as expected. It is now plain from (6.8) and (6.25) that in statistical equilibrium, the 
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expression (6.7) becomes 

(6.26) 
E[T? 

1', -K 
- 

f0( 
i } . - k dx. (6K26 '1 [-1-7rk. (1 - exp (-Okx)) + (1 - 70) 

0 k=1 

In the homogeneous case, Ok = 6 and rk = ;r for all 1 - k - K, and (6.26) reduces 
to 

(6.27) E[T~i•"1, K)l= f (1 - (1 - ; exp (-x))K) dx, 

whence 
1 K (k) ,rk 

(6.28) E[T{1, ', K}] _. ()k+l Ky 
0 k=1 \ k 

by elementary calculations and (6.17). From this last expression and from the fact 
that f xk-l dx = yck/k for all 1 k 

= 
K, the reader can readily check that 

(6.29) 
E[T'1," • 

=1kK 
0k=1 k 

upon making use of elementary properties of geometric series. 

7. Asymptotic analysis for homogeneous FJ queues 

The derivation of asymptotics is now considered for a class of homogeneous FJ 
queues as the number of servers, K, grows large. For sake of simplicity, the 
discussion is carried in statistical equilibrium, under the renewal assumptions 
(R.1)-(R.6) and the additional assumptions (R.7)-(R.8), where 

(R.7) The RVs ({ c, 1 - k - K, n = 0, 1, - - -} form a collection of i.i.d. RVs 
whose common distribution B(-) has a rational Laplace-Stieltjes transform. 

(R.8) The loading RVs {u,)} are given by 

(7.1) u= UK = 1, n =0, 1,--. 

7.1. Asymptotics for GIIGII1 systems. Consider a stable GI/GI/1 queueing 
system where A(-) and B(-) denote the probability distribution functions of the 
interarrival and service times, respectively. The Laplace-Stieltjes transform B*(-) is 
assumed rational so that the function s 

--f(s) 
which is initially defined for RY(s)= 0 

by 

(7.2) f (s) = A*(s)B*(-s), 

can be continued in the region $(s) 
_ 

0. Define ? as 

(7.3) +':= inf {s IE RI + :f(s) < oo}. 

It is plain under the enforced assumptions that ? > 0 and 
f(# ?) = oo. Consequently, 

the queueing system being stable, f'(0)<0 and convexity of f(-) implies the 
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existence of a unique real number q in (0, M+) such that 

(7.4) f(q ) = 1. 

Let W, R and I be generic RVs which are distributed respectively according to the 
stationary waiting time, response time and idle period distributions of the GI/GI/1 
queue under consideration. The following result is available in the monograph by 
Borovkov ([10], Theorem 11, p. 129) and is given here in appropriate form for 
handy reference. 

Lemma 7.1. The Laplace-Stieltjes transform of W is given by the expression 

1 - P[W > 0] 
(7.5) E[e ] = 1 - P[W >0] 1- (s) 
where q5(.) is a completely monotone function which is analytic in the region 
{s : (s) > -(q + E)} for some e > 0 and which satisfies the conditions 

f'(q) (7.6) 1(-q)=l and '(-q) = (q) 
E[e-ql] - 1 

The Laplace-Stieltjes transform of the response time R is thus given by 

(7.7) E[e-"R] = B*(s)E[e-sW] 
and the function x -* P[R > x], the so-called complementary distribution function of 

R, has Laplace transform given by 
00 

1 1 - P[W > 0] (7.8) fP[R > x]e-X dx = 1 - B*() P[W s 1 - (s) " 

This transform function is analytic in the region Y(s)> -(q + E) for E >0 
sufficiently small but for a pole of order 1 at s = -q, owing to the fact that q < Pu. 
The residue C associated to this pole is therefore given by 

B*(-q)(1 - 
E[e-q'l) (7.9) C = (1 - P[W > 0]) 

qf'(q) 

and classical results on the first left singularity of Laplace transforms then yield the 
following estimate. 

Lemma 7.2. Under the foregoing assumptions, 

(7.10) P[R > x] = Ce-qx(1 + o(1)) 

when x goes to infinity, with q and C given by (7.4) and (7.9), respectively. 

7.2. Maximum of identically distributed RVs. The derivation of asymptotic 
bounds relies on the stochastic ordering theorems of the preceding sections and on 
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results of Lai and Robbins [14] on the asymptotic behavior of the maximum of i.i.d 
RVs. Let {Yk}) be a family of i.i.d. 

R+-valued 
RVs with common probability 

distribution function G(-), and introduce the RVs {MK}) defined by 

(7.11) MK:=max ({Y, , YK}, K= 1, 2,--- 

Also, for ease of notation, define the R+-valued sequence {mK}) by 

(7.12) 
mK:"= 

inf x 

2"0:1- 
G(x)-}, 

K= 1, 

2,... The following result is a simplified version of Theorem 5(ii) given by Lai and 
Robbins ([14], p. 103) adapted to the present set-up. 

Theorem 7.3. Let 
{Yk}l 

be a family of i.i.d 
R+-valued 

RVs whose common 
distribution function G () satisfies the conditions 

(7.13a) G(x) < 1 for all x > 0 
and 

1 - G(cx) 
(7.13b) lim = 0 for all c > 1. 

x--+w 1 - G(x) 
Under these conditions, the convergence 

(7.14) lim E MK-11]=0 
K--o mK 

takes place and the asymptotics 

(7.15) E[MK] = mK(1 + o(1)), K = 1, 2, -- 

hold true with K going to infinity. 

In view of Lemma 7.2, it is now natural to consider probability distribution 
functions G(-) with tail behavior 

(7.16) P[Y1 > x] = 1 - G(x) = Ce-qx(1 + o(1)), x 
_ 

0 

for some q >0 and C >0. The next proposition summarizes the asymptotic 
properties associated with this tail behavior (7.16). To simplify the exposition, for 
every r2 1, denote by G,(-) the probability distribution function of the rth power of 
any RD+-valued RV distributed according to G(-), and in complete analogy with 
(7.12), define the real numbers {mK,r}, by 

(7.17) mK,r = inf{x0:1 -Gr(x)}1 
K=1,2,9 

It is plain that 

(7.18) 
P[IYlIr 

>x] = 1 - G,(x) = C exp (-qxl/r)(1 + o(1)), x >0 
with the identifications G,() = G(.) and mK,r = mK taking place for r = 1. The main 
result of this section can now be given. 
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Theorem 7.4. Let {Yk}1 be a family of i.i.d 
IR+-valued 

RVs whose common 
distribution function G(.) exhibits the tail behavior (7.16). In that case, for all r 

- 
1, 

(i) the probability distribution Gr,() satisfies the conditions (7.13); 
(ii) the asymptotic equivalence 

(7.19) lim mK,r. [ i=1 
K--+ [og K 

holds true; 
(iii) the asymptotics 

(7.20) E[IMKIr] = logK. (1 + o(1)), K = 1,2, -- 

hold true with K going to infinity. 

Proof. Part (i) is readily checked by direct calculations which are omitted for sake 
of brevity. To show the equivalence (7.19), fix r 

_ 
1 and observe from (7.18) that for 

every 0 < E < 1, there exists x*(E) > 0 with the property that 

(7.21) 1- GE(x) 5 1 - Gr(x) 1 - G+E(x) 
for all x > x*(E), with 

(7.22) G'(x) := 1 - C exp (-qxl/r)(1 E), x 0. 

If the sequences {m}K,r are defined through (7.17) but with G,•E(-) instead of Gr(-), 
then simple computations show that 

(7.23) m = [log (K - C(1 E))]r 

(7.23)mK,-, =q, K = 1, 2, 
... 

and the inequalities 

E log (K. C) 
r 

+E 

(7.24) 
m_- r[log(KC, 

K= 

1,2,rm 
are obtained. It also follows from (7.21) that for K _ KK with some integer K., 
(7.E25) !- M +E 
(7.25)r mK, r K,r 

and upon combining (7.24)-(7.25), the asymptotic equivalence (7.19) is obtained 
since obviously 

(7.26) lim m K 

K--O 
Lm r]K, 1. 

The asymptotics (7.15) of Theorem 7.3 and (7.19), when combined with the 
obvious relation 

(7.27) IMKIr = max (I, .. , IYKIr}, 

readily yield (7.20). 
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