
(CN) 1. (CT) Java and Its Promise... 1
(A-heading) What is Java and where did it come from?.................................... 2
(A-heading) The Big Idea, WEBOS .. 4
(A-heading) Java: The Good, the Bad, and the Ugly ... 7

(B-heading) The Good ... 7
(C-heading) Java is a strongly-typed language 8
(C-heading) Java is small .. 8
(C-heading) Java is portable .. 8
(C-heading) Java is object-oriented... 10
(C-heading) Java has no pointers .. 10
(C-heading) Java has no multiple inheritance 11
(C-heading) Java has no gotos... 13
(C-heading) Java has no global variables .. 13
(C-heading) Java has no macros.. 13
(C-heading) Java has only object oriented structures........................ 14
(C-heading) Java has garbage collection ... 14
(C-heading) Java has standard class libraries 14
(C-heading) Java has boolean types .. 15
(C-heading) Java has security.. 16
(C-heading) Java has exceptions ... 17
(C-heading) Java has threading ... 18
(C-heading) Java has a uniform floating point specification 18
(C-heading) The compilers are getting fast 18
(C-heading) Strings are first-class objects... 19
(C-heading) Identifiers have unlimited length 19

(B-heading) The Bad.. 20
(C-heading) Sometimes garbage collection is a rotten business 20
(C-heading) Java is not a pure object-oriented language 21
(C-heading) We want our overloaded operators! 22
(C-heading) The API is missing a lot of stuff 23
(C-heading) No native method support for C++ 23

(B-heading) The Ugly .. 23
(C-heading) Arrays can be allocated with two styles 24
(C-heading) Java has fragile base classes.. 24
(C-heading) “Appletcations” are confusing everybody 25
(C-heading) File name class name matching 30
(C-heading) No validation system... 30

(A-heading) The HTML Model vs. the Java Model .. 31
(B-heading) The HTML Model ... 32
(B-heading) The Java Model.. 34

(A-heading) The Java Developer Environments.. 35
(B-heading) Getting Started on the Mac with CodeWarrior 36
(B-heading) Getting Started on Windows 95/NT with Metrowerks
CodeWarrior... 38
(B-heading) Getting Started on Windows 95 with J++............................ 39
(B-heading) Getting Started on the Mac with JDK1.02........................... 41
(B-heading) Getting Started on the Mac with Symantec Café................. 43

(A-heading) Summary.. 44
(CN) 2. .. (CT) Java programming–the basics
.. 49
(A-heading) MBNF Notation ... 51
(A-heading) Simple Syntax.. 59

(B-heading) Comments .. 59
(B-heading) Identifiers ... 61

(B-heading) Operators.. 62
(B-heading) Flow of Control.. 66

(C-heading) Expressions ... 67
(C-heading) If .. 68
(C-heading) While and do statements ... 72
(C-heading) Switch.. 73
(C-heading) For ... 77
(C-heading) Continue .. 78
(C-heading) Break ... 80
(C-heading) Return .. 81

(A-heading) Data Types ... 82
(B-heading) Primitive Types.. 82
(B-heading) Named Constants ... 86
(B-heading) Classes ... 87

(C-heading) Overloaded Methods ... 92
(C-heading) Static Methods... 94
(C-heading) Null.. 97
(C-heading) Casting .. 98
(C-heading) Subclassing.. 98
(C-heading) Abstract Classes and Methods 102
(C-heading) Final Classes and Methods.. 103
(C-heading) Packages .. 105
(C-heading) Imports .. 107
(C-heading) Visibility.. 108
(C-heading) Interfaces ... 112

(B-heading) Wrapper classes ... 116
(C-heading) Boolean ... 117
(C-heading) Character ... 118
(C-heading) The numeric wrapper classes 121

(B-heading) Strings .. 123
(B-heading) Arrays .. 127
(B-heading) Vectors ... 128
(B-heading) Exceptions.. 130

(A-heading) Threads .. 132
(B-heading) Thread Groups ... 140
(B-heading) The Thread Manager.. 141

(A-heading) Summary... 147
(CN) 3. .. (CT) The Graphic User Interface
.. 148
(A-heading) The Color Class ... 148

(B-heading) Class Summary .. 149
(B-heading) Class Usage.. 150

(A-heading) The Graphics Class .. 154
(B-heading) Class Summary .. 154
(B-heading) Class Usage.. 156
(B-heading) How to draw a grid .. 162

(A-heading) The FontMetrics Class... 163
(B-heading) Class Summary .. 164
(B-heading) Class Usage.. 165
(B-heading) How to Draw a String with a Background......................... 167
(B-heading) How to Draw a Vertical String .. 168

(A-heading) The MenuItem Class.. 168
(B-Heading) Class Summary ... 169
(B-heading) Class Usage.. 169

(A-heading) The Event Class ... 170
(B-heading) Class Summary .. 171
(B-heading) Class Usage.. 174
(B-heading) Event Handling .. 176
(B-heading) The Keyboard .. 176
(B-heading) The Target.. 177
(B-heading) The Evt Class ... 179
(B-heading) The Mouse ... 182

(A-heading) The Component Class.. 184
(B-heading) Class Summary .. 185
(B-heading) Class Usage.. 188

(A-heading) The Container Class .. 197
(B-heading) Class Summary .. 197
(B-heading) Class Usage.. 199

(A-heading) The Frame Class .. 203
(B-heading) Class Summary .. 203
(B-heading) Class Usage.. 204
(B-heading) The ClosableFrame Class .. 206

(A-heading) The Panel Class ... 209
(B-heading) Class Summary .. 209
(B-heading) Class Usage.. 209
(B-heading) Building a Panel... 210

(A-heading) The Checkbox Class .. 211
(B-heading) Class Summary .. 211
(B-heading) Class Usage.. 212
(B-heading) Adding Checkboxes to Frames .. 213

(A-heading) The Scrollbar Class.. 215
(B-heading) Class Summary .. 215
(B-heading) Class Usage.. 216
(B-heading) Adding Four Border Scrollbars ... 218

(A-heading) The Label Class ... 222
(B-heading) Class Summary .. 222
(B-heading) Class Usage.. 223
(B-heading) Adding Labels to Frames ... 224

(A-heading) The Choice Class ... 224
(B-heading) Class Summary .. 225
(B-heading) Class Usage.. 225
(B-heading) Adding Choices to a Frame ... 226

(A-heading) Summary... 231
(CN) 4. Futil ... 232
(A-heading) The Dialog Class .. 233

(B-heading) Class Summary .. 233
(B-heading) Class Usage.. 234

(A-heading) The FileDialog Class ... 235
(B-heading) Class Summary .. 235
(B-heading) Class Usage.. 236
(B-heading) Futil.getReadFileName .. 237
(B-heading) Futil.getWriteFileName ... 238

(A-heading) The File Class .. 239
(B-heading) Class Summary .. 239
(B-heading) Class Usage.. 241
(B-heading) Ls.getDirName... 244
(B-heading) Ls.deleteFile... 244
(B-heading) Futil.getReadFile ... 245

(A-heading) The FilenameFilter interface ... 246
(B-heading) Class Summary .. 246
(B-heading) Class Usage.. 246
(B-heading) DirFilter ... 247
(B-heading) The FileFilter Class.. 247
(B-heading) The WildFilter Class .. 248
(B-heading) Ls.getWildNames .. 248
(B-heading) Ls.wildToConsole.. 249
(B-heading) Ls.deleteWildFile... 249
(B-heading) Ls.WordPrintMerge ... 250
(B-Heading) Ls.lowerFileNames ... 251

(A-heading) The FileOutputStream Class.. 252
(B-heading) Class Summary .. 252
(B-heading) Class Usage.. 253
(B-heading) Futil.getFileOutputStream ... 254
(B-heading) Futil.closeOutputStream .. 255

(A-heading) The PrintStream Class ... 256
(B-heading) Class Summary .. 256
(B-heading) Class Usage.. 257
(B-heading) Futil.makeTocHtml.. 260

(A-heading) The FileInputStream Class .. 262
(B-heading) Class Summary .. 262
(B-heading) Class Usage.. 263
(B-heading) Futil.getFileInputStream .. 264
(B-heading) Futil.available .. 265
(B-heading) The futils.DirList class... 266

(A-heading) The DataInputStream Class ... 270
(B-heading) Class Summary .. 270
(B-heading) Class Usage.. 271
(B-heading) Cat.fileToStream.. 274

(A-heading) The DataOutputStream Class .. 275
(B-heading) Class Summary .. 276
(B-heading) Class Usage.. 277

(B-heading) Java, C, C++ -> HTML ... 279
(A-heading) StreamTokenizer.. 282

(B-heading) Class Summary .. 283
(B-heading) Class Usage.. 284
(B-heading) Futil. readDataFile ... 286
(B-heading) Futil.Print ... 289
(B-heading) Futil.writeFilteredHrefFile... 291

(A heading) Exercises .. 294
(A-heading) Summary.. 295
(CN) 5 Digital Audio ... 296
(A-heading) What is Digital Signal Processing ... 296
(A-heading) Why do we need digital signal processing? 297
(A-heading) What is the spectrum ... 298
(A-Heading) What does sampling.. 302
(A-heading) Audio Files .. 304
(A-heading) The sun.audio .. 304
(A-heading) The AudioStream... 305

(B-heading) Class Summary .. 306
(B-heading) Class Usage.. 306

(A-heading) The AudioData Class... 307
(B-heading) Class Summary .. 308

(B-heading) Class Usage.. 308
(A-heading) The AudioDataStream Class ... 308

(B-heading) Class Summary .. 309
(B-heading) Class Usage.. 309
(B-heading) Reading and Playing an AU File 309

(A-heading) The AudioStreamSequence ... 311
(B-heading) Class Summary .. 311
(B-heading) Class Usage.. 312

(A-heading) The AudioPlayer Class .. 313
(B-heading) Class Summary .. 313
(B-heading) Class Usage.. 313

(A-heading) The µ -law CODEC... 314
(A-heading) The UlawCodec Class ... 319

(B-heading) Class Summary .. 319
(B-heading) Class Usage.. 320
(B-heading) Reading and writing µ -law ... 322

(A-heading) The Oscillator Class .. 323
(B-heading) Class Summary .. 323
(B-heading) Class Usage.. 324
(B-heading) Class Examples .. 326
(B-heading) Class Implementation .. 328
(B-heading) Building the WaveTable .. 330

(A-heading) The DoubleDataProducer Interface ... 333
(A-heading) The OscopeFrame Class .. 333

(B-heading) Class Summary .. 335
(B-heading) Class Usage.. 336
(B-heading) Modifying the OscopeFrame ... 338
(B-heading) How does the OscopeFrame do the scaling labels............. 339

(A-heading) The DoubleGraph Class .. 343
(B-heading) Class Summary .. 343
(B-heading) Class Usage.. 343

(A-heading) Summary.. 344
(CN) 6 Digital Audio Transform Recipes .. 345
(A-heading) The Discrete Fourier Transform .. 346

(B-heading) Bit Computations and a Log Review................................. 351
(A-heading) The futils.Timer Class ... 353

(B-heading) Class Summary .. 354
(B-heading) Class Usage.. 354
(B-heading) BenchMarking the DFT ... 355

(A-heading) The Inverse DFT.. 356
(A-heading) Numeric Check of the DFT and IDFT 359
(A-heading) The FFT ... 361
(A-heading) The FFT Class ... 368

(B-heading) Class Summary .. 368
(B-heading) Class Usage.. 370
(B-heading) Testing the FFT and IFFT.. 373
(B-heading) Implementing the FFT.testFFT.. 375

(A-heading) PSD Computations .. 378
(B-heading) Implementation of the Transforms in the AudioFrame 380
(B-heading) A Noise filter using the FFT .. 387

(A-heading) Spectral Leakage of the DFT... 390
(A-heading) The Hi-pass filter ... 397
(A-heading) Frequency shifting using the FFT.. 400

(A-heading) Resampling .. 402
(A-Heading) Centering the FFT... 403
(A-heading) Summary.. 405
(CN) 7. An Introduction to Image Processing ... 406

(B-heading) Video.. 407
(A-heading) The Observer Interface .. 410

(B-heading) Interface Summary... 411
(A-heading) The Observable Class .. 411

(B-heading) Class Summary .. 412
(B-heading) The NamedObservable .. 412
(B-heading) The ObservableDouble .. 413
(B-Heading) DoubleDialog .. 415
(B-heading) Dialogs in the ImageFrame.. 420

(A-heading) The Image Class .. 421
(B-heading) Class Summary .. 421
(B-heading) Class Usage.. 422

(A-heading) The ImageObserver ... 424
(B-heading) Summary .. 424
(B-heading) Image Instancing.. 425

(A-heading) The PixelPlane Class ... 426
(B-heading) Class Summary .. 427
(B-heading) Class Usage.. 429

(A-heading) The ProcessPlane Class ... 432
(B-heading) Class Summary .. 432
(B-heading) Class Usage.. 433
(B-heading) Class Implementation, The negate method........................ 436
(B-heading) Class Implementation, The Shadow method 437
(B-heading) Class Implementation, The edge method........................... 438

(CN) 9. Image Processing in Java .. 484
(A-heading) The Histogram ... 485
(A-Heading) The 2D DFT.. 487
(A Heading) The FFTPlane Class .. 492

(B heading) Class Summary .. 492
(B heading) Class Usage .. 493
(B heading) The ProcessPlane ... 494
(B heading) DiffCAD and the Example 2D FFT 496

(A Heading) Raster to Vector Conversion ... 500
(B Heading) A raster to vector algorithm .. 503
(B heading) The Slope class... 506
(B heading) The Points class.. 508

(A Heading) Color Models .. 510
(B Heading) The HLS System .. 513
(B Heading) The IYQ .. 515

(A Heading) The FloatImage class .. 517
(B heading) Class Summary .. 517
(B heading) Class Usage .. 518

(A Heading) The ColorConverter class ... 521
(b heading) Class Summary ... 521
(b heading) Class Usage... 522

(A Heading) The Mat3 Class ... 525
(B heading) Class Summary .. 525
(B heading) Class Usage .. 526
(B heading) Maple ... 527

(A heading) Image Geometry .. 531

(B heading) 2D translation ... 531
(B heading) 2D scaling .. 532
(B heading) 2D rotation ... 533
(B heading) Applications of affine transforms 546

(A Heading) Summary ... 551

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 1 Chapter 9: Image Processing in Java

(CN) 1. (CT) Java and Its Promise

In this chapter we introduce the reader to Java’s good points, its bad points and its really
ugly points. The overview we provide for Java must discuss the Java language
specification and the Java language programming environment. The language and
environment are, collectively called Java technology. The Java technology can include
hardware, as well as software.
This chapter is divided up into 5 main sections.
The first section, “What is Java and where did it come from”, introduces the Java
technology. We show that the term Java has come to mean both the Java programming
language and the technology needed to support that language.
The second section, “The Big Idea, WEBOS” describes the current state of the art in Java.
An overview is given of the picoJava technology, the core of the Java chips which Sun
intends to release soon. We also describe what the effect may be when inexpensive Java
appliances become embedded in our society.
In the third section, “Java: the good, the bad, and the ugly”, we tell it like it really is. Java
has some really good points, but it also has problems. This section outlines both. Please
keep in mind that we really like Java (No, REALLY!). Still, we do not pull punches here.
Every programming language has problems, and Java is no different. You, the reader,
should put your best foot forward when stepping into Java, but watch where you are
putting it!
The forth section, “The HTML Model vs. the Java Model” describes the HTML model
which has formed the basis of the world wide web and the current problems with the
diverse nature of data representations. We also speak about the big idea behind the Java
model and how it may help to reduce the decoding problems that our web browsers
currently face.
(CD-ROM icon) The fifth section, “The Java Developer Environments” gives a summary
of how the reader can get started using the book’s software. (END CD-ROM icon) A few
software products are reviewed and some are actually useful. There are several products
which are only just out and appear to consume more time and money than they are worth.
The reader is advised to select a programming tool with care. Often this means budgeting
for more than one compiler, and testing it yourself!

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 2 Chapter 9: Image Processing in Java

(A-heading) What is Java and where did it come from?

Java is a name which represents both a language and a technology for the support of the
language. When we speak of the Java programming language we are talking about an
object-oriented language developed by Sun Microsystems. This language has syntactic
similarities with several other languages. It has the braces ‘{‘ of C, C++ and Objective C.
It has the exception model of ZetaLisp, a flavors-based Lisp that ran on Lisp Machines.
This is the same exception handling that has been proposed by Bjarne Stroustrup for use
with the ANSI C++ standard [Spuler].
When we speak of the Java technology, we are talking about the Java programming
language and its support systems. These systems include a large library of classes, called
the Java class libraries. Java technology also includes a specification on run-time
behavior, achieved using a Java machine specification. The Java technology provides that
the Java machine may be implemented in any combination of software or hardware.
When the Java machine is implemented in software it is called the Java virtual machine.
Java started life as a language called Oak. It was designed to incorporate the best features
of past languages into a single new language. Just as important, the design of the Java
programming language would leave out features which were thought to make the
language less reliable. In the balance between speed and reliability, the Java designers
chose reliability. This is a design criterion that is inherently different from C++, for
example, with C++, features were added to the language, without any features being
removed. Further, it was an important design feature that C++ run as fast as C
[Stroustrup].
A design objective of Java is that it be useful for distributed computing. In the distributed
computing model, code can be downloaded for execution on demand in a secure fashion.
Security became an important issue in the design criterion. If the code source was not
trusted, the code itself had to be treated as potentially harmful to both the user’s data and
the computer hardware. The danger to the users’ data could include access to and
distribution of sensitive information, like credit card numbers, bank account numbers,
and other proprietary data.
The Java machine specification is a Java language support technology that has become an
integral part of the language. The tight integration of the Java language with the Java
machine specification is probably one of the main contributions of Java to the computer
science community. The Java virtual machine achieves a layer of isolation between the
running Java program and the underlying hardware. This isolation provides security and
portability. The Java virtual machine provides security by optionally creating a security
manager. The security manager can keep a program from performing those tasks
considered a security risk. The Java virtual machine provides portability in that the virtual
machine itself can run on several hardware platforms.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 3 Chapter 9: Image Processing in Java

(A-heading) The Big Idea, WEBOS

If we consider all the web servers on the internet as being part of a large computer
system, then the web is the largest operating system in the world. In fact, the web’s
programming language is Java and so, from this point of view, Java is an operating
systems programming language. Sun is planning to release Java machines which are not
virtual. This means that the Java machines will be implemented in hardware. The
operating system for these machines will be written in Java. No longer will people have
to write cryptic C code to modify the kernal of an operating system, they will be able to
write in Java. Java will truly become an operating systems programming language. When
this happens Java will probably spread into embedded system design until every
appliance on the planet supports Java, even our toasters!
Consider, if you will, the telephone. When unplugged from the network, the telephone is
a useless piece of plastic, not worth the $20 it costs to buy. The value added by the
telephone is the network into which it is plugged. The same may be said of embedded
systems on the internet. A toaster on the net can download operational parameters (when
to turn on, for how long, etc.) and can use the network to communicate issues regarding
its state (sorry to interrupt your net surfing, but the toast is done!).
Java chips are going to greatly reduce the price of an embedded Java controller.
Dedicated chips will give embedded controllers speed and price advantages over their
non-specialized hardware counter-parts. Sun is targeting the consumer market with mass
sales of cheap chips.
Some devices targeted include TV set-top boxes, cellular telephones, pagers, digital TVs,
smart VCR’s, PDAs, printers, copiers, etc. In short, anywhere we find an embedded
computer, Sun wants that computer to run Java. These chips will run byte code natively
hence there will be no need for a just-in-time compiler. Such devices may not have a
display, much memory or no connection to a network. As a result, the API targeted for
such embedded controllers is stripped down to a bare minimum. This minimal API is
called the Java Embedded API. As of this writing, there has been no published standard
for the Java Embedded API.
Sun Microelectronics, the Sun semiconductor division, calls its first chip architecture
Java One. Sun plans to release two families of chips; microJava and ultraJava. MicroJava
is a low-cost (<$25) chip intended to target the embedded controller market. UltraJava is
a higher-cost (<$100) chip intended to target the workstation market. At the heart of the
technology is a super-scalar stack-based RISC machine called picoJava. PicoJava is
super-scalar because it implements a 4-stage pipeline which enables different parts of the
processor to work on 4 different tasks at once. It is RISC (Reduced Instruction Set
Computer) because it executes most instructions in a single clock cycle.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 4 Chapter 9: Image Processing in Java

Computing in a super-scalar pipe-line is like using an assembly line. Data is passed from
one worker to the next, and a process is applied to it. Figure 1.1 shows a sketch of the
pipeline which, when filled, will permit picoJava to fetch, decode, execute & cache and
then write-back its results [Varhol].

Figure 1.1. Four-stage picoJava pipeline
During the fetch operation, picoJava will load a 4 byte cache line into its processing
stack. The stack consists of 64 32-bit registers implemented on-chip. After the on-chip
storage is exceeded, RAM is used to implement the stack.
In addition to using ultraJava to target the workstation market, Sun will attempt to use
ultraJava to penetrate the network computer market. The network computer is a stand-
alone computer connected to an enterprise's network infrastructure. The primary market
consists of companies that want to centralize administration by maintaining a few servers.
This simplifies the deployment of applications, by permitting them to be automatically
downloaded over a network [Madany].
The proposed picoJava system shortens the path between the Java programs and the
hardware, by implementing the Java machine in hardware. This cuts out the adapter layer
and uses a special operating system that is designed for the picoJava machine, called
Kona. This is shown in Figure 1.2.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 5 Chapter 9: Image Processing in Java

Figure 1.2. The picoJava Kona system
The reader should keep in mind that picoJava is still in development. No silicon has been
built yet and so there have been no benchmarks run.
(A-heading) Java: The Good, the Bad, and the Ugly

Java is spreading through the computer science and engineering community like wildfire;
yet, there is cause for caution. People are asking hard questions. Is Java suitable for
engineering? Is Java suitable as a first programming language? Can Java be used
throughout the computer science and engineering curriculum? Is Java suitable for writing
large programs? What are the drawbacks in being an early adopter of the Java
technology?
There is great hype in the media today, as result objective answers to these questions are
not easy to come by. In fact, Java may not be suitable for writing large programs and
there may not be enough textbooks to use Java across the curriculum. Beta software is
enough of a drawback to make any early adopter of a technology cringe. Being a beta
tester of a compiler is not everyone’s idea of a good time!
In this chapter, we attempt to balance our view of the language with a list of Java’s good
points, its bad points, and yes, its really ugly points. We owe it to you, the reader, to say
that being an early adopter of this technology comes at a cost.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 6 Chapter 9: Image Processing in Java

This cost comes from the time spent reading many Java books, writing custom libraries,
buying new software, using beta compilers and being the first (and sometimes only) Java
programmer on the block. For us the cost has well been worth it, but you, the reader, must
make your own decision. Use your judgment!
(B-heading) The Good
In this section we describe the good points about Java. Sometimes a good point about a
language is also a bad point! For example, we cite garbage collection as both a good point
and a bad point about the language. It is good because it permits the programmer to forget
about memory management during the programming task. Garbage collection simplifies
design and eliminates a source of errors. The garbage collection is bad because it takes
system resources and could make Java unsuitable for low-level embedded control, a task
for which it was intended.
(C-heading) Java is a strongly-typed language
Java is a strongly-typed language. All class names are treated as types and used to check
any reference to a class when passed as an argument to a method. Most modern languages
have this feature although the old style of C avoids it.
(C-heading) Java is small
 Java is based on a small byte code interpreter. Including the self-contained microkernal,
the byte code interpreter plus supporting classes is 215k bytes. This is a remarkable
achievement. It means that byte code interpreters can reside on small ROMs and provide
micro-controllers a means of running Java programs.
(C-heading) Java is portable
 Java is a multi-platform language. In Java, the model is that you “Write Once, Run
Anywhere”™. Because there is only one virtual machine specification Java can provide a
standard, uniform programming interface to applets and applications on any hardware.
The Java Platform is therefore ideal for the Internet, where one program should be
capable of running on any computer in the world. When you compile Java source, you
obtain byte codes. Byte codes are output by the Java compiler and form instructions to a
Java virtual machine. Java is said to be a portable language in that it can run on any
hardware on which the Java virtual machine can run. Byte codes are stored into class
files. Class files are downloaded to a Java virtual machine that contains a byte code
interpreter. Thus Java is a “Write Once, Run Anywhere”™ type language. This is like the
Pascal P-code concept of 20 years ago (which required a P-machine to execute the P-
code) [Bowles]. So, when we speak of Java as a multi-platform language, we mean that it
will run wherever there is

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 7 Chapter 9: Image Processing in Java

an implementation of a Java virtual machine. A sketch of the relationship between the
Java program and the hardware is shown in Figure 1.3.

Figure 1.3 A Sketch of the Java Model
The multi-platform nature of Java is one of its strongest selling points. This can have a
profound impact on how we judge our computing resources. For the first time, we can
bench-mark precompiled code on a wide variety of platforms. This enables us to ignore
compiler optimization for a specific machine. If we have a Java virtual machine that is
optimized for the hardware on which it runs, we should have a good measure of the
machine’s relative speed when running Java. Optimizing a Java virtual machine for
specific hardware is not an easy task, however. At present, for example, there are no Java
virtual machines optimized for multi-processor systems [Oaks et al.]. Thus a threaded
Java program cannot take advantage of the existence of more than one CPU. When this
changes, Java will be a portable concurrent programming language.
(C-heading) Java is object-oriented
 Java is an object-oriented programming language. In an object-oriented paradigm, an
instance of an object contains both data and the algorithms needed to manipulate the data.
This is held in contrast to the programming languages that pass data as arguments to
procedures. There are no functions in Java, unlike Pascal, C, FORTRAN or C++. In Java
all methods must reside in classes. C++ is a language with object-oriented extensions.
This means that non-object oriented programs can still be written in C++. This is
generally not true in Java.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 8 Chapter 9: Image Processing in Java

(C-heading) Java has no pointers
Java is a more crash-proof language than C, C++, and Pascal. This is a very good feature,
indeed! One reason why is that Java does not provide a mechanism for directly
manipulating pointers. Thus there is no way for the programmer to obtain a memory
address. Further, there is no pointer arithmetic and there are no pointer operations. Java
eliminates the possibility of overwriting memory and corrupting data.
In C or C++ you may dereference a NULL point using

*ptr
When ptr is NULL, this causes a “segmentation fault” error on UNIX, or an immediate
crash, on some other machines. Some times pointers in C or C++ are pointing to illegal
locations in memory. When these locations are accessed, this too can cause a crash. This
type of error is called a dangling reference. Another type of error is called a memory leak.
This is created when data that has been discarded is not reclaimed. This can create an out
of memory error which will crash the program (or computer) if it is not tested for
[Spuler].
There are many ways in which incorrect pointer use can crash a computer or program.
There is simply not enough space to list them all. We can be thankful that Java has no
pointers.
(C-heading) Java has no multiple inheritance
Multiple inheritance, as it was known in C++, has been eliminated in Java. Multiple
inheritance is the ability to have two or more direct base classes. In 1966, multiple
inheritance was rejected as a feature in Simula by Ole-Johan Dahl. The rationale for the
rejection is that it would complicate the garbage collection. Also Smalltalk does not
support multiple inheritance [Stroustrup 94].
The problem with multiple-inheritance is that duplicate class variables and method names
must override each other, according to some policy. This policy becomes a part of the
language, and can often be forgotten by the programmer. Elimination of multiple
inheritance reduces the possibility of programmers getting confused about which method
is in effect. It also limits the kinds of inheritance which can be performed. Java will only
permit an A-Kind-Of (AKO) type taxonomy of class inheritance. Figure 1.4 shows a
sample of an AKO class inheritance.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 9 Chapter 9: Image Processing in Java

Figure 1.4. Example of an AKO inheritance
In Java, an animal class may be extended to create a mammal sub-class, thereby
indicating that a mammal is a kind of animal. Since a student and a professor are both
humans they also inherit traits from mammals. In most other object-oriented languages,
two or more AKO inheritance chains may be mixed. Figure 1.5 shows an example of
multiple inheritance.

Figure 1.5. An Example of Multiple Inheritance.
With multiple inheritance, the attributes associated with the stream class, may be
inherited by both the input-stream and the output-stream. When these two classes are
joined by a third class, the input-output-stream we have multiple inheritance. Multiple
inheritance is a language feature which enables the programmer to reuse the data-
structures and methods from two parent classes.
The multiple inheritance controversy is a language feature discussion that appears to lack
practical evidence. There is no doubt that method name ambiguity must be resolved,
either at compile-time or at run-time. Also, since Java must load libraries dynamically, it
seems that the ambiguity would have to be resolved by the class loader. Thus we suggest
that one reason Java eliminated multiple inheritance was not because of the language
feature controversy, but because of implementation simplicity.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 10 Chapter 9: Image Processing in Java

The removal of multiple inheritance is a design trade-off. The decision to remove
multiple inheritance probably helped the code become more reliable, simplified garbage
collection and simplified the class loader. Multiple inheritance is probably missed by all
who are used to having it.
(C-heading) Java has no gotos
There are no goto’s in Java. It is possible, however, to perform a multi-loop break using
the break <label> feature. This is a good thing because it will probably lead to more
structured code and eliminate a fruitful source of bugs.
(C-heading) Java has no global variables
There are no global variables in Java. Instead, there is access control to classes that have
variables and methods . Access control enables the programmer to create policy about
visibility. Visibility restrictions permit public access. When access control is applied to a
class that has a static class variable, it could be argued that the variable is global to all
other classes through the class name. The variable is accessed by
className.variableName. For example Math.PI is a global reference to a class variable.
(C-heading) Java has no macros
There is no preprocessor in Java, no macro language (like in RatFOR, C and C++). There
are no compiler directives. It is not possible, as in C to create language extensions, for
example:

#define { Begin
is likely to confuse editors and allow people to create an ALGOL or Pascal like style for
code blocks. This is not permitted in Java.
C/C++ macro facilities permit confusing function calls errors. For example:

#define cube(x) x * x * x
x = cube(x+1);

expands into
x = x + 1 * x + 1 * x + 1;

Thus x becomes 3*x +1 and not x*x*x.
(C-heading) Java has only object oriented structures
There are no structures or union operations in Java. All of the types are implemented as
classes. This is probably a good thing, since the data manipulation methods can be built
into the data structures.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 11 Chapter 9: Image Processing in Java

(C-heading) Java has garbage collection
Java has automatic storage operations, these include a garbage collection mechanism.
Garbage collection enables the Java virtual machine to reclaim storage used by discarded
instances. The garbage collector may be explicitly invoked by using the gc method of the
System class. The Java virtual machine will perform garbage collection without explicitly
invoking System.gc(). The garbage collector is the only mechanism available to free
storage in Java. To get an instance to be reclaimed by the garbage collector, you must
remove all references to the object, then, either invoke the System.gc() or wait for the
garbage collector to come and reclaim the storage. The existence of the garbage
collection mechanism in the Java virtual machine means that the programmer will never
have to worry about keeping track of storage.
(C-heading) Java has standard class libraries
Java has standard libraries that include an Abstract Window Toolkit (AWT). The AWT
enables object-oriented Graphic User Interface (GUI) based programs to be portable.
Others have tried this in the past, but have not had much commercial success [Watson].
The class libraries have eight major packages, and this number is growing. There is an
input-output package, java.io, that enables a user to perform input and output stream
manipulations. The intention is that this makes file and network data I/O manipulations
into stream manipulations. Further, that these stream manipulations work without direct
involvement with the source of the stream. This provides a layer of abstraction which
makes I/O programming much easier to perform in a more general manner.
There is a network package, java.net, that enables socket and Universal Resource Locator
(URL) manipulations. The network package provides a standard, built-in method for
turning sources and sinks of network data into streams. Once this occurs, the I/O package
can be used to manipulate the streams.
There is a utilities package, java.util, that contains several features held standard in
operating systems. Features like getting the date, time, random numbers, etc.
These packages are a starting point upon which, Java programmers may build portable
programs. Any packages that build upon these core Java packages will be portable. Also,
the core Java packages are typically built into the systems that support Java. As a result,
the core packages do not have to be downloaded every time a Java program needs
something in a package. This makes the Java programs faster to download and it makes
the byte code files more compact.
(C-heading) Java has boolean types
Java uses a conditional statement that takes a boolean as an argument, whereas languages
like C or C++, permit an integer to be used as an argument to a conditional.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 12 Chapter 9: Image Processing in Java

For example, in C, or C++ it is possible to write:
if (1) {fprintf(stderr, “1 is not a boolean”)};

In Java the argument to a conditional must be of boolean type. Using an integer as an
argument can create confusion between assignments and tests for equality. For example:

if (a = 0) {fprintf(stderr, “this will never be printed”)};
is a bug, since a will be assigned to the value 0. In fact the ‘==‘ operator is needed so
that:

if (a == 0) {fprintf(stderr, “this might be printed”)};
With the use of Java, the assignment-test confusion becomes a bug of the past.
(C-heading) Java has security
There is a class of programs called "applet viewers". Applet viewers have their own Java
virtual machines. Java enabled browsers have built in applet viewers.
Secure viewers protect the system by making an instance of the security manager. Most
Java-enabled browsers make an instance of the security manager.
Some applet viewers will typically permit the running of Java programs without making
an instance of the security manager. Thus applets and applications are subject to the same
security procedures.
The security manager can disable operations that are considered dangerous (e.g., file i/o,
creating consoles, or running native methods).
A Java program that makes an instance of a frame when an instance of the security
manager is in-place will get an “untrusted Java Applet” label on the windows. This alerts
the user not to type sensitive data into the applet.
(C-heading) Java has exceptions
Java has a form of control structuring known as exception handling. Exception handling
is a provision for handling those abnormal circumstances which can prevent execution
from successfully continuing. For example, subscript boundary violation, division by
zero, overflow, I/O errors (from unavailable files, or insufficient disk space) etc. Java’s
exception handling mechanism can prevent a program from terminating abnormally.
Exception handling is not a new idea and has been widely available in some languages
(i.e., Ada, COBOL, C++, Delphi (http://www.borland.com), PL/I, and ZetaLisp) but not
in others (i.e., Basic, FORTRAN, Pascal, C) [Goodenough]. The Java exception handling
is closer to ZetaLisp than to any other language. Exceptions are subclassed in Java and so
are treated in an object-oriented fashion (as opposed to Ada, COBOL or PL/I).

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 13 Chapter 9: Image Processing in Java

The Java language specification identifies compile-time and run-time errors. For
example, accessing an array index out of bounds is a run-time error, according to the Java
Specification [Gosling et al.]. In C, the effect is dependent on the operating system. For
example, in Solaris (the Sun operating system) this causes a segmentation fault, and a
core file is dumped. On the Windows 3.x/95 or MacOS the computer crashes. Windows
NT may handle the error with a little more grace. But Java emits the following message:

java.lang.ArrayIndexOutOfBoundsException: 10
at TrivialApplet.test(TrivialApplet.java:18)
at TrivialApplet.main(TrivialApplet.java:12)

This is really pretty civilized, compared with crashing the computer.
(C-heading) Java has threading
Threading is a built-in feature of Java. A thread is a low-overhead context switch which
enables a processor to change from one task to another very quickly. All the threads in
Java could execute in parallel, if the Java virtual machine existed which could take
advantage of multiple processors. This is not the case, however, and so only one thread
can run at a given time. Threading is a high-level concurrent programming facility.
Besides Java, several other languages provide a high-level concurrent programming
facility. Examples include Concurrent C, Concurrent C++, Concurrent Pascal, Concurrent
Euclid, Modula-2 and Ada [Gehani].
In the past multiple threads were programmed using support from the operating system.
Java abstracts this relationship with the operating system by specifying how the virtual
machine will behave when threading. There is nothing in the Java threads API that
requires any operating-system involvement. In fact, the thread library of Solaris, on the
Sun workstation, is unused in Java 1.0.
(C-heading) Java has a uniform floating point specification
Java uses the IEEE 754-1985 floating point specification as a part of its language
definition. Thus round-off errors can be predicted in a platform independent manner.
(C-heading) The compilers are getting fast
The compiler technology is improving for Java. For example, there are now “Just-in-
Time” compilers which permit the compile once-run anywhere model of Java to be just as
fast as compiled native code. The just-in-time compilers take the Java byte codes and
compile them to native machine language. Our benchmark indicated an 18x speed-up
over interpreted byte codes!

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 14 Chapter 9: Image Processing in Java

This comes at a cost, however. There may be longer start-up time, though we could not
verify this. Also, the JIT compiler is supposed to take more RAM, though we could not
verify this, either. The overall 18x speed up more than made up for any initial start-up
costs on the DiffCAD program. Our benchmark was performed with a Metrowerks
compiler running under MacOS. JIT compilers are not available on all platforms. If they
were they would probably replace the interpreter model.
(C-heading) Strings are first-class objects
Strings are not character arrays, they are instances of the String class. Thus, you must
access them via method invocation and not like the array of characters in Pascal, C or
C++. This is a much cleaner way to manipulate strings and leads to better code.
(C-heading) Identifiers have unlimited length
According to the Java language specification, identifiers may have an unlimited length.
We have verified this for some very large values, at least. For example:

 int
ThisIsAVeryLongNameInJavaWithMoreCharactersThanOneWouldTypi
callyUseYouMayUseNumbers1234567890ButNoOperators=0;

int
ThisIsAVeryLongNameInJavaWithMoreCharactersThanOneWouldTypi
callyUseYouMayUseNumbers1234567890ButNoOperatorsAndTheyAreU
nique=1;

System.out.println(ThisIsAVeryLongNameInJavaWithMoreCharact
ersThanOneWouldTypicallyUseYouMayUseNumbers1234567890ButNoO
perators+

ThisIsAVeryLongNameInJavaWithMoreCharactersThanOneWouldTypi
callyUseYouMayUseNumbers1234567890ButNoOperatorsAndTheyAreU
nique
);

The unlimited identifier length should apply, in theory, to class names. Some
development systems require that public classes be stored into files that have names that
match the class name. For these systems, it is not possible to have a public class identifier
that exceeds file-name length limitations. These are implementation dependencies and not
limitations imposed by the Java language specification.
(B-heading) The Bad
Sometimes the best features of Java are some of the bad features of Java. For example,
garbage collection has both good points (hence its listing in the previous section) and its
bad points (see below).

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 15 Chapter 9: Image Processing in Java

(C-heading) Sometimes garbage collection is a rotten business
The draw-backs of garbage collection are:

• The garbage collector can lead to non-deterministic program run times.
• For large systems, garbage collection can use a significant amount of CPU time.

For example, during a time-critical interrupt, the Java virtual machine could sense that it
is time for garbage collection. This could result in the loss of data, property or even life!
As far as we know, there is no way to turn off the garbage collection from within the Java
program. Some Java interpreters (like the Metrowerks javai) have flags which disable
asynchronous garbage collection. For example:

javai -noasyncgc
Keep in mind, however, that just because asynchronous garbage collection is turned off,
doesn’t mean you can stop worrying about it. In fact, quite the opposite is true. Turning
off garbage collection means you must invoke it yourself (or running out of memory).
As anyone who has some experience in programming large garbage-collection based
systems (like Lisp Machines) knows, finding garbage is no easy task! The Lisp Machine
had a gc-immediate() function. When run, gc-immediate() started the garbage collection
(just like Javas’ System.gc()).
Garbage collection in virtual memory typically causes a condition known as thrashing.
Thrashing occurs when virtual memory is accessed in a non-sequential fashion. Thrashing
causes different parts of the memory to be continually swapped in and out of the disk.
Keep in mind, RAM access time (measured in nanoseconds) is six orders of magnitude
faster than disk access time (measured in milliseconds) so that thrashing can cripple even
the fastest of machines.
(C-heading) Java is not a pure object-oriented language
Java is not a pure object oriented language. You cannot make an instance of any basic
data type. The basic data types in Java are boolean, int, long, float, double, char and byte.
Compare this situation with Smalltalk, in which even the basic data types are classes.
(C-heading) We want our overloaded operators!
Java does not permit the creation of overloaded operators. Contrast this with C++, which
allows a programmer to give operators a context dependent

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 16 Chapter 9: Image Processing in Java

meaning. For example, in C++, the ‘*’ operator can take two arrays as arguments and
then multiply the arrays together. The Java designers did not appear to trust programmers
to use the overloaded operator feature without writing cryptic code. (WARNING) To add
insult to injury, the Java language designers felt it would be OK for them to overload
operators as a part of the language. In Java, the ‘+’ operator is overloaded to concatenate
strings. For example:

int x = 2; int y=3; String z = "4";
System.out.println(x+z+y);

will treat x, y, and z as string objects and output
243

But
int x = 2; int y=3; String z = "4";
System.out.println(x+y+z);

will treat x and y as numeric objects, add them, then convert the result to a string,
concatenate the string with z, then output

54
Thus, the overloaded operators have become argument dependent and have permitted the
kind of cryptic code the Java designers’ wanted to avoid. (END WARNING)
(C-heading) The API is missing a lot of stuff
Java is missing key features from its supporting API (Application Programmer Interface).
For example, you cannot write to a serial port (despite the fact that nearly every computer
has one). You cannot (as of this writing) output to a printer from within a Java program.
This is due to the newness of the Java language. Since features are missing from the API,
Java may not be easy to use for some applications.
(C-heading) No native method support for C++
You may like to extend the features of the API by programming in another language.
Unfortunately the choice of language is currently limited to C.
There is no way, at present, to link between Java and C++. This is due, in part, to the
problem of name-space mangling. In C++, the function identifier in source is mapped
into a different function name for the linker. This mapping is called name-space
mangling. Functions are typically mangled

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 17 Chapter 9: Image Processing in Java

according to their argument type. Different compilers may have different mangling
schemes. Since Java has no way to know how functions will be mangled, the functions
cannot be invoked.
The Java native language interface is not complete (as of this writing) but that is likely to
change soon. When it is done, circumstances are likely to get better.
(B-heading) The Ugly
No language is perfect, but Java does have its design flaws. In this section we cover the
design flaws of Java that probably will not go away. Some are just harmless and ugly.
Others, like the fragile base class problem, could cripple Java for large software system
development.
(C-heading) Arrays can be allocated with two styles
Java supports the “C” and “Java” style of array allocation. In fact, the two styles of array
allocation are supported within the same statement. Thus,

int [][] i = new int[3][3];
int j[][] = new int[3][3];

// and now we put the Ug in Ugly!
int [] k [] = new int[3][3];

are three, syntactically acceptable ways of specifying a two-dimensional array of ints.
(C-heading) Java has fragile base classes
Java suffers from the fragile base class and interface problem. In Java, an interface can be
used to store constants and to permit class and method specifications. For example, in the
DiffCAD program (used as a central example in this book) there is an interface called
Constants that contains a list of commonly held constants. One line in Constants is:

final double Pi_on_2 = Math.PI/2;
Suppose another line were added, say

final double Pi_on_4 = Math.PI/4;
This requires that every source code file that refers to Constants, (in DiffCAD’s case, 7
files) to be recompiled. Including the linking phase, the recompilation takes 56 seconds
on the authors’ machine, a PowerMac 8100/100 Mhz with a PowerPC 601 and 72 MB
RAM. As another example, there is

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 18 Chapter 9: Image Processing in Java

an abstract base class called Computation. When Computation is altered, 5 files require
recompilation and, including the linking phase, 70 seconds elapse before the program
begins to run. Thus, when programs become large, the fragile base class and fragile
interface can cripple the programmers’ productivity [Lewis].
(C-heading) “Appletcations” are confusing everybody
The Java language has led to a source of continuous confusion regarding the difference
between an Applet and an Application. There is a package of classes in the core Java API
called the java.applet package. This is a very unfortunate naming convention. Within the
java.applet package, there is a class called the Applet class. The Applet class is extended
to create subclasses. Instances of Applet subclasses are called Applets.
Definition 1.1: An applet instance is an instance of a class that extends the Applet class.
Definition 1.2: An application instance is an instance of a class that contains a main().
Lemma 1.1: To run a Java application it is necessary and sufficient to both have a main()
and invoke the main().
Corollary 1.1: Having a main() in a Java program is a necessary, but not sufficient
condition for running a Java application.
Lemma 1.2: To run a Java applet it is necessary and sufficient to extend the Applet class,
implement the init() and invoke the init().
Corollary 1.2: Subclassing the Applet class in a Java program is a necessary, but not
sufficient condition for running a Java applet.
Note that Corollary 1.1 follows directly from its parent, Lemma 1.1. Similarly, Corollary
1.2 follows from its parent, Lemma 1.2. Definitions do not follow the construction of the
lemmata, Pronounce the ‘a’ in lemmata short, like “what’s a-madda?”.
In common use, the term applet has come to mean “a small Java application run from
within a browser”. We class such definitions as strictly

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 19 Chapter 9: Image Processing in Java

incorrect. The reader will see in the following code, a segment of a large application,
called DiffCAD, which dispatches a large number of different applets from within a Java
application.

if (arg.equals("benchmark")) {
AppletFrame w = new

AppletFrame("BenchmarkApplet");
String title ="BenchmarkApplet";
String args[] ={""};
w.startApplet("BenchmarkApplet",title,args);

}

if (arg.equals("surface")) {
AppletFrame w = new AppletFrame("surface");
String title ="surface";
String args[] ={""};
w.startApplet("surface",title,args);

}

if (arg.equals("search yahoo")) {
AppletFrame w = new AppletFrame("Wa hoo!");
w.startApplet("SearchYahoo",title,args);

In fact, the applet is just a kind of Frame. It runs in its own thread and has its own applet
context. The point is that a large program can run many applets. A Java application is
typically a program which contains a main. For example:

public class TrivialApplication {

public static void main(String args[]) {
System.out.println("Hello World!");

}

}
is an application. An applet is an instance of an Applet subclass. For example:

import java.awt.*;
import java.applet.Applet;

public class TrivialApplet extends Applet
{

public void init() {
repaint();

}

public void paint(Graphics g) {
g.drawString("I am an Applet", 30, 30);

}

}

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 20 Chapter 9: Image Processing in Java

One popular Java reference states that a class becomes an applet by subclassing the
Applet class and, that an applet is an “embeddable window” [Chan and Lee]. No wonder
even seasoned Java programmers misuse the applet term!
To top off the example, we present the Application-Applet that is both an extension of the
Applet class AND contains a main! This is shown in the following listing

import java.awt.*;
import java.applet.Applet;

public class TrivialApplet extends Applet
{

public void init() {
repaint();

}

public static void main(String args[]) {
System.out.println("An Appletcation");

}

public void paint(Graphics g) {
g.drawString("Hello World!", 30, 30);

}

}
This code may be called as an applet or as an application. When called as an applet, the
init() method will be invoked and the “Hello World” will be drawn. When called as an
application, TrivialApplet class is loaded, the main will be invoked and

An Appletcation
will be emitted to the screen. TrivialApplet is a subclass of an Applet class, but may be
used as an applet or an application, depending on context! This permits the formulation of
lemma 1.3 and corollaries 1.3a and 1.3b.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 21 Chapter 9: Image Processing in Java

Lemma 1.3: Applets are run by invoking init(), applications are run by invoking main().
Corollary 1.3a: The difference between an applet and an application is the invocation
and not necessarily the content.
Corollary 1.3b: Applets do not automatically run their main's. Applications do not
automatically run their init's.

(C-heading) File name class name matching
Some compilers, like JDK, J++ and the Symantec products, require that the file name of
the Java source code matches that of the public class name contained in the file. This is
not a part of the language specification [Gosling et al.]. It is a restriction imposed by the
compiler implementation. This restriction is not uniformly imposed. For example, the
Metrowerks CodeWarrior IDE for MacOS and Windows 95/NT does not impose this file
name - class name conformance.
The non-uniform restrictions make the porting of source code from one compiler to
another a time consuming task. Anything that prevents Java from being ported is a very
bad feature indeed. Thankfully, this bug is an artifact of the implementation of the
compiler products and not of the language specification. It is unfortunate that the bug has
become so widespread in the compiler community as to become an accepted limitation of
the language. It is our hope that Sun will correct this bug in their own compiler soon.
It is much easier to distribute one file with several small classes. The alternative is to
make several small source files.
(C-heading) No validation system
At present, there is no validation system for a Java compiler, or supporting Java
technology. This is a critical need, since there are so many products which appear to
violate the compile-time and run-time specifications as laid out by Sun.
A validation system would include series of test programs that would generate known
compiler errors and known run-time errors. Such programs should elicit specific kinds of
behavior from the Java Class Libraries. This has not been done, as far as we know. For
example, the return of the date and time on J++ includes a mention of daylight savings
time. This is not the case with any other Java environment that we know of. A run-time
validation suit should detect such an error.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 22 Chapter 9: Image Processing in Java

Bugs in the J++ compiler, which are described in the “Getting Started in Windows 95
with J++” section, could have been caught and corrected, had a compiler validation suite
been applied. This must be a top-priority item, if the quality of the Java tools available is
to be maintained.
(A-heading) The HTML Model vs. the Java Model

The HTML (HyperText Markup Language) model is one which permits a document to
make references to files in other formats. The responsibility of a browser is to read the
references to the HTML files and dispatch them to a decoding program. For example, if
the file is compressed, a decompression program may automatically be started by the
browser.
The fatal flaw in this model is that browsers (and their supporting applications, known as
helper apps) can grow without bound. One browser, called Netscape, for example,
recommends 16 MB of RAM. As the applications become large and bloated, they also
tend to slow down, even for simple tasks.
In this section we compare the HTML model with the Java model. In the Java model,
code is compiled into class files and then downloaded, over the net, into an applet viewer.
The applet viewer is used to decode the data stream which follows. The theory is that
Java will become the language for decoding a wide range of data and that all a browser
will have to do is support an applet viewer. For this model to work, the data must point to
Java decoders that can be downloaded on demand.
(B-heading) The HTML Model
On the internet, there are computers that run programs called Hyper-Text Transfer
Protocol (HTTP) servers. HTTP servers typically send data in response to a web browser
request. Generally, the data can be in any format, the HTTP server typically does not
decode the data. As a result, HTTP servers of the internet provide a wide variety of
interesting and wonderful data formats to various browser-based clients. New formats
appear all the time. Browsers typically understand some variant of HTML and this has
led to the HTML model.
In the HTML model, raw data is embedded in the HTML document by a hypertext
reference (known as the href tag). In order to assist the browser with the decoding of the
wide and growing number of data formats, browsers use helper applications. In order to
map the data to the correct helper application, browsers have a protocol that looks at the
Multipurpose Internet Mail Extension (MIME) that the HTTP server transmits with the
data. Based on the MIME extension, a lookup table determines how to decode and
present the data. Figure 1.6 shows a screen capture of a presentation of one such table,
known as the helper window (Netscape 3.01).

Figure 1.6. The Netscape Helper Window

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 23 Chapter 9: Image Processing in Java

For each data type supplied by the HTTP server, there is a corresponding helper
application or plugin. When this application is not present, the browser will typically ask
if the user wants to save the file format. One of the authors has over 77 items listed in the
Netscape helper applications window. Naturally, these do not represent all the possible
data formats which a browser can handle. A browser can be customized to handle any
data format, by launching a helper application. Thus, there are no limits to the number of
data formats which may be present on the web or handled by a browser.
The same content will often be presented to the user in a variety of electronic forms, a
veritable electronic tower of Babel. Suppose, for example, a Microsoft Word document is
to be supplied via the WEB. One could supply it as a word document, but Word 5 on a
Mac cannot read Word 6 or 7 documents. So we could supply it as an RTF (Rich Text
Format) file, so that Word 5 will understand most of it. The drawbacks in distributing
Word documents using RTF to a variety of Word versions are that some formatting will
be lost, and some people will not have Word available as a viewer.
Word documents are often converted to HTML. HTML can be viewed by browsers the
world over. Unfortunately, current versions of HTML can only represent equations and
vector graphics as GIF images (a popular raster file format). Further more, HTML does
not maintain the page layout of the original document. We could use PostScript, which
will enable users to download and print the document. Unfortunately users may not be
able to edit the document and not all PostScript will print to all printers. Adobe has
stepped in with Portable Document Format (PDF). At least with PDF, you can view the
document on the screen and print it to all printers (as long as you have Adobe Acrobat).
The problem however is that the user may still not be able to edit the PDF document.
The above example is designed to show the rationale for a wide variety of different
formats being present on the web server. Having to have a different helper application for
decoding each of these formats is cumbersome. Further, having to have so many copies
of the same content in different formats is wasteful.
(B-heading) The Java Model
The Java model is able to fix some of the problems with the HTML model. The Java
model has yet to gain full acceptance.
In Java, compiled byte-codes are stored in class files. Class files are files with a .class
suffix. The class files are downloaded to the client’s class loader. After a verification
phase, the Java Virtual Machine (JVM) will interpret the byte codes. The role of the Java
compiler is shown in Figure 1.7.
Any browser with a JVM is able to load data decoders on demand. Imagine that you have
a new image sequence compression scheme based on head-and-shoulders video. Nobody
has your algorithm for decoding this new image format.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 24 Chapter 9: Image Processing in Java

Figure 1.7 The role of the Java Compiler
With Java, an algorithm for decoding a new data format may be downloaded on-demand.
This means that the web has become object oriented in the sense that both the data and
the program needed to manipulate the data may be joined. The Java model is a vast
improvement over the current state-of-affairs, which requires that we have a wide variety
of decoders on our hard-drives. The role of the Java model on the network is shown in
Figure 1.8.

Figure 1.8. The role of Java on the network.
(A-heading) The Java Developer Environments

As of this writing, there are several alternatives available for the development of Java.
These include Sun products (Java Workshop, Java Developers Kit (JDK)), Metrowerks
CodeWarrior, Symantec products (Visual Café, Visual Café Pro, Café), Natural
Intelligence Roaster, Microsoft J++, Asymetrix SuperCede and others.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 25 Chapter 9: Image Processing in Java

See http://www.javasoft.com/products/JDK/, ftp://ftp.metrowerks.com/pub/,
http://www.metrowerks.com/, http://www.symantec.com,
http://www.roaster.com/roaster/ and http://www.microsoft.com/java/ for more details.
 These products vary in quality, price, platform and availability. For example, J++ is
available only for Windows 95/NT. Workshop is available only for Solaris and Windows
95/NT. Roaster is available only for MacOS. Symantec products and CodeWarrior are
available for MacOS and Windows 95/NT. The SuperCede product is available only for
Windows 95/NT. JDK is one of the few products available on all platforms (MacOS,
Windows 95/NT and Solaris). We will cover a few of these products in the following
sections.
Feedback from students, and the authors’ personal experience, has led to the conclusion
that a good compiler is a very worthwhile investment. Free tools (like JDK) are good to
have around too, no question about it! Some of the more expensive products are,
however, much better than the JDK (being both easier to use and faster to run). Also, plan
to purchase more than one compiler. Many compilers out today still have several bugs
(e.g., the J++ compiler).
Some programmers have code which they would like to use that has been written in C. As
far as we know, the only compiler which supports linking to C is Metrowerks’
CodeWarrior. Also, CodeWarrior comes with C, C++, Pascal and Java. CodeWarrior is
the only IDE we know of that directly supports native method programming.
(B-heading) Getting Started on the Mac with CodeWarrior
(CD-ROM) The CD-ROM which comes with this book has several example tools. The
reader is encouraged to try them out. The software of the book is called DiffCAD.
DiffCAD is a Java application which resides in several files. Upon opening the CD, the
Mac user should look into the Mac folder to find a self-extracting archive, like the one
shown in Figure 1.9. (END CD-ROM)

Figure 1.9. The DiffCAD self extracting archive
When you double-click on the DiffCAD.sea icon, you will be prompted with a standard-
file-save dialog box. This is shown in Figure 1.10.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 26 Chapter 9: Image Processing in Java

Figure 1.10. The Standard File Dialog Box
Once the self-extracting archive is expanded into the DiffCAD folder, you should double-
click on the DiffCAD folder and find the CodeWarrior folder, shown in Figure 1.11.

Figure 1.11. The CodeWarrior Folder
Within the CodeWarrior folder is a project, prebuilt with CodeWarrior 11 (the current
version). If you double-click on the CodeWarrior folder, you will find a project file called
CW.11, shown in Figure 1.12.

Figure 1.12. The CodeWarrior Project.
Double-click on the CW.11 project file and you will start the CodeWarrior IDE
(Integrated Development Environment). Upon launch, you will be presented with a
project window, shown in Figure 1.13

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 27 Chapter 9: Image Processing in Java

Figure 1.13. The Project Window
After the project window is displayed, you should be able to type moth-r (on the Apple
keyboard, the moth key has an logo, as well as an icon which looks like a moth). After
the project begins to run, you will be presented with a display which looks like the one
shown in Figure 1.14.

Figure 1.14. Screen Shot of the DiffCAD program.
The DiffCAD is a custom program upon which the book is based. DiffCAD is a Java
program which has been used by industry to help design diffraction rangefinders.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 28 Chapter 9: Image Processing in Java

(B-heading) Getting Started on Windows 95/NT with Metrowerks CodeWarrior
As of this writing, Metrowerks has DR1 (Developer Release 1) of an IDE for the
Windows 95/NT environment. It comes with Pascal, C, C++ and Java. This first release
required a patch to work. After the patch is applied, we found that the “batch” files
created by the IDE were defective. The Metrowerks technical support is “aware” of the
problem. They indicated that the batch files could be modified by hand to permit the IDE
to begin working. After the modifications, we found the tool was able to compile the
DiffCAD program.
(CD-ROM) The project on the CD is in a file called CW-WIN.ZIP. When uncompressed,
the file will place the DiffCAD folder on your hard drive. Double click on the DiffCAD
CodeWarrior project file, DiffCAD.cwp, and the project window should appear. This is
shown in Figure 1.15. (END CD-ROM)

Figure 1.15. Metrowerks CodeWarrior DiffCAD Project on Windows 95.
There are three points which work the CodeWarrior IDE’s favor:

1. CodeWarrior is the only IDE for Window 95/NT that is also able to compile
Pascal, C, C++ and Java.

2. CodeWarrior IDE for Windows 95/NThas the same look and feel as the MacOS
version.

3. Metrowerks states that they intend to release a version of CodeWarrior for
Solaris, the Sun Unix operating system.

If the Metrowerks plan is completed, the CodeWarrior IDE would work on the Solaris,
MacOS and Windows 95/NT platforms. Our endorsement for CodeWarrior running under
Windows 95/NT comes with the condition that the release be later than the DR1 release.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 29 Chapter 9: Image Processing in Java

This is primarily due to the operational bugs in the program (which we were able to work
around). The DR2 release is due in April of 1997, and this is well after the book is out, so
it is unlikely that the reader will be using a DR1 release.
(B-heading) Getting Started on Windows 95 with J++
In this section we give instructions on compiling the DiffCAD project on a Intel 486DX2
- 66MHz computer, running Windows NT 4.0 OS, and Microsoft Visual J++ Professional
Edition.
(CD-ROM) Using an application called WinZip, we open and uncompress the
DIFFCAD.ZIP file on the CD-ROM. This is shown in Figure 1.16. (END CD-ROM)

Figure 1.16. WinZip 6.2 Showing a list of files within DIFFCAD.ZIP.
WinZip was used to expand the files into the D:\work\DiffCAD directory. J++ provides a
means to insert files into a project. All of the files in the DiffCAD folder must be inserted
into the J++ project.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 30 Chapter 9: Image Processing in Java

Figure 1.17. Creating a new project workspace in J++
Create a new project workspace of type “Java Workspace” in the DiffCAD directory.
This is shown in Figure 1.17. From the Insert menu, select “Files into Project...” and add
all of the files in the DiffCAD directory to the project. This is shown in Figure 1.18.

Figure 1.18. Inserting the files in the util package into the project
This must be done in several passes as there are too many files to add in one pass (a
limitation of this version of Developer Studio). Add the source files in the Raytracer, and
util directories to the project.
From the Build ... Settings menu selection, select the “Java” tab and set the warning level
to none. Build and execute the project.
There are two subprojects assigned to the main DiffCAD project : util and Raytrace.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 31 Chapter 9: Image Processing in Java

Figure 1.19. Starting the jview.exe on the MAIN class.
Figure 1.19 shows the jview.exe being invoked automatically by the J++ project manager.
There were some problems with J++ version 1.0, and this is to be expected with a 1.0
product. We found that local scoping of variables within a method did not work properly.
This is a language feature that is a part of the Java language specification and we had to
rewrite our code to work around this bug. This indicates that the compiler is not fully
compliant with the language specification, a problem we hold as serious.
(B-heading) Getting Started on the Mac with JDK1.02
(CD-ROM) In this section we describe the use of the Java Developers Kit, JDK 1.02,
located on the CD-ROM. The reader is cautioned to try a different product, as this is
freeware and is missing key features of some of the commercial products. (END CD-
ROM)
First double-click on the JDK.sea icon and expand it to your hard drive. You will create a
folder which looks like the one shown in Figure 1.20.

Figure 1.20. The expanded JDK on disk.
Inside the JDK folder you will find the Java Compiler, along with the 4 other items
shown in Figure 1.21.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 32 Chapter 9: Image Processing in Java

Figure 1.21. The contents of the JDK folder
Make an alias to the Java compiler and place it on your desktop (this will make it easier
to use). The Java compiler has a drag-and-drop interface, having an alias will be of direct
assistance in its use. Figure 1.22 shows how to find the alias command on the Mac.

Figure 1.22. Finding the alias command on the Mac.
Once the Java compiler is on the desk-top, Uncompress the DiffCAD directory. An image
of the DiffCAD self extracting archive is shown in Figure 1.9.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 33 Chapter 9: Image Processing in Java

 Your first step is to compile the packages in the DiffCAD directory. There is no support
for a UNIX-like Makefile in the JDK version of the MAC-OS, and so this must be done
by hand. Find the two folders in the DiffCAD directory, Raytracer and util. These are
shown in Figure 1.23.

Figure 1.23. The two folders in the DiffCAD directory.
Double-click on the Raytracer folder and drag the Java source code to the Javac Compiler
alias. Package compilation will create a Raytracer class folder near the Raytracer.java
file, shown in Figure 1.24.

Figure 1.24. The Raytracer class folder.
Move the class files from the Raytracer class folder into the parent folder (also called
Raytracer). Repeat this for the util package. Then, from the DiffCAD folder, select all the
source files and drag them to the Java Compiler alias. You may find that you run out of
memory during the compile. This is normal. Just view the files by name and drag the files
with no corresponding class file, a few at a time, onto the Javac Compiler alias. This is
time consuming and error prone. If you miss a file, your program will fail to load (a
compelling reason not to use JDK on MacOS!). After all the files are loaded, launch the
Applet Viewer in the JDK 1.0.2/Applets directory. The icon for the Applet Viewer is
shown in Figure 1.25.

Figure 1.25. The icon of the Applet Viewer

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 34 Chapter 9: Image Processing in Java

Select the file:properties in the Applet Viewer and set the class access to unrestricted, as
shown in Figure 1.26.

Figure 1.26. Class access must be unrestricted
The unrestricted setting will enable DiffCAD to perform otherwise forbidden operations,
like opening a file and saving changes. The default class access is restricted and this will
cause a security manager exception to be thrown during normal DiffCAD usage. As of
this writing, JDK 1.0.2 cannot turn off its restrictions on class access. This means that
files cannot be opened with the MacOS version of the JDK and so the version 1.0.2 of the
JDK is not recommended for MacOS. It is our hope that this will change in future version
of the JDK.
(B-heading) Getting Started on the Mac with Symantec Café
In this section we describe a product called Symantec Café 1.5 for the PowerPC/MacOS
(current release). The Integrated Development Environment (IDE) consistently emitted an

Error: java.lang.OutOfMemoryError
condition. This error occurs, despite the allocation of 26 MB to the IDE. The IDE
supports the Sun Java compiler as well as the Symantec compiler. Switching to the Sun
Java compiler within the Symantec Café caused the program to hang.
As a result we cannot recommend Symantec Café for this books software (which
currently resides in over 100 Java source files).
(A-heading) Summary

In this chapter we compared Javas’ good points with its bad points. Java is probably a
successful technology because it specifies a Virtual Machine. The Java

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 35 Chapter 9: Image Processing in Java

language depends upon a tightly integrated Virtual Machine, and probably could not exist
without it. Once the Java language and Virtual Machine were specified, flexibility
depended on the Java class libraries. As soon as we transgress the boundary of the class
libraries and virtual machine, Java becomes unsafe and non-portable. Java’s growth
depends on a growing set of portable class libraries. For those elements which are not
portable (like serial port support) the programming community must depend on Sun for
API growth. This is quite a drawback!
This chapter also looked into the Java model as a means of creating decoders for web
browsers. Again, the Java class libraries lacked the richness needed to support a wide
variety of formats. Further, Sun was cited for not advertising the API needed to
manipulate an audio data stream. The Java language has so many demands, Sun cannot
possibly support them all!
In this chapter we reviewed a few tools for developing the software in this book. It seems
that some products represent immature technology, as of this writing. The reader is
cautioned to try these products before buying them (if possible). Some tools, like
Metrowerks on the Mac, were a pleasure to use, but only on the Mac. On the Window
95/NT systems, we were able to review the J++, CodeWarrior and JDK. The DR1 of
CodeWarrior had problems, but we were able to work around them. As of this writing we
favor CodeWarrior on both the Mac and the Window 95/NT platforms. The J++ version
1.0 from Microsoft seems to work OK on the Windows 95/NT platforms, but there are
bugs in the compiler that we consider serious.
(WARNING)All software manufacturers appear to have a phone jail system. This can
leave you on hold for long periods of time. Thus, we prefer e-mail technical support. Sun,
Natural Intelligence, Symantec and Microsoft did not respond to our e-mail requests.
They may yet respond, but it has been a month. (END WARNING)
(NOTE) Metrowerks is the hands-down winner. Metrowerks has also said that it will be
developing an IDE for the Sun workstation. If this occurs, and if Metrowerks can iron out
its Windows problems, it may rise as a premier development tool for all the major
languages. On a final note, the Metrowerks technical support is first-rate. They have
helped us with some tricky requests and generally respond within 24 hours to e-mail.
(END NOTE)
This chapter showed the basic attributes of Java; that Java has no header files, macros,
pointers, multiple inheritance, integer arguments to conditionals, structures, union, or
operator overloading. The language is portable, provides built-in garbage collection, a
GUI library, array index checking, security features, threading, exception handling and
relies on the IEEE 754-1985 floating point specification.
(SHORTCUT) One of the big early drawbacks, that the byte-code interpreter is slow, is
currently being addressed. The JIT compilers blow away the byte-code interpreters. It
may be the case that byte-code interpreters are better for embedded systems, due to a
smaller RAM foot print. Even so, on desktop development systems, the JIT compiler
technology is a break through. (END SHORTCUT)
The language has applet/application confusion, mixed mode array declaration, confusing
operator overloading for strings, fragile base classes, an inability to call C++, an
impoverished API and is not a pure object-oriented language. The API is generally
improving, but the other drawbacks may be hard to fix.
No hype, and no hyperbole; Java is a tool, and like any tool, it is really only useful for
some applications.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 36 Chapter 9: Image Processing in Java

Is Java suitable as a first programming language? As a teaching tool, we could say that
Java is better than C or C++, but that would damn Java with faint praise! Many first
courses in programming are taught with C or C++ and this is almost certainly because of
industrial demands. Now that industry appears willing to accept Java, introductory
courses are switching to Java in mass.
As a tool for delivering cross-platform software, Java dominates any other technology
that we have seen. When we attempted to write portable programs in the past, we
attempted to use only the features supported by ANSI standards. Even under these
circumstances, the porting of GUI based code was

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 37 Chapter 9: Image Processing in Java

tricky, at best. DiffCAD, a program with 155 class files, ported to Java virtual machines
running under MacOS, Solaris and Windows 95/NT, without recompilation.
Is Java suitable for engineering? That really depends on the application. At this writing
(March 1997) there is no support for serial ports. If the application involves data
acquisition and processing via unsupported hardware (like the serial ports, or the video
digitization cards) then the answer could be no. Writing drivers for these devices, with
interfaces to Java programs is not easy. Perhaps after native methods become easier to
write, this will change.
Can Java be used throughout the computer science and engineering curriculum? Probably
not yet. There are few college-level textbooks for Java able to target specific courses in
the computer science and engineering curricula. We see a market for new books here.
Is Java suitable for writing large programs? The problem is the fragile base class
problem. Imagine if an include file, like <stdio.h> had to be changed. Makefiles across
the UNIX operating system would have to recompile a large percentage of the code.
Perhaps if developed libraries can be held stable during the course of development, then
yes, the writing of large programs can occur. Their maintenance, however, may prove
impractical.
What are the drawbacks in being an early adopter of the Java technology? How can we
begin on a trek into a new technological frontier without being willing to invest blood,
sweat and code? Programming is a humbling process. We have been writing code for
many years. Programming in Java has meant recoding any of our previous work that we
wanted to use. It also meant having to deal with buggy beta compilers and many long and
frustrating hours trying to get the answers to simple questions. It meant being the first on
the block programming in a new language. In some sense, this may isolate workers from
each other. We have seen some in industry take our Java courses and attempt to transfer
the technology back to the company. Management can be slow on its feet, and some
people are resistant to change. Perhaps the greatest drawback of being an early adopter of
Java is the drawback of being a boat-rocker. Go ahead and rock away!
In this chapter we saw coverage of the Java model vs. the HTML model. The basic
question is: “which will win?”. As of this writing, the jury is out. Few, if any decoders
exist in pure Java. There are several reasons for this. Foremost is that the Java API is
impoverished. It is able to read only one audio format (monophonic, 8 KHz, 8-bit, Sun
AU files). This is a voice grade audio file with about 48 dB of signal-to-noise ratio (SNR)
and a maximum frequency response of 4 KHz. Compact disc recordings (CDs) are
typically stereo 44.1 KHz with 16 bit samples (22.05 KHz cutoff with 96 dB SNR). The
Java API does not have a method for saving AU files. Further, Sun does not advertise an
API for manipulating

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 38 Chapter 9: Image Processing in Java

 the data stream that results from reading the AU files (something which this book
addresses).
The Java API, as it currently stands, cannot process image sequences. The Sun API does
not have a method for saving image files, something else which this book addresses.
In fact, Sun has stated that there will be a multimedia API in the future, but has not said,
as of this writing, when. We have had to write a great deal of support code to make up for
the areas where the API is currently lacking.
In this chapter we reviewed a few tools and their use for the purpose of developing the
software in this book. Some tools, like Metrowerks were a pleasure to use. On the
Window 95/NT systems, we were able to review the J++, CodeWarrior and JDK. The
J++ version 1.0 from Microsoft seems to be buggy. The JDK interface appears to be
command line based, and was judged to be generally poor for general development work.
CodeWarrior IDE is the hands-down winner. It is the only IDE that permits Windows and
MacOS development using several languages. Metrowerks has also said that it will be
developing an IDE for the Sun workstation. If this occurs CodeWarrior may rise as a
premier development tool for all the major languages. The latest version of this tool
summary is at http://lyon.bridgeport.edu/

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 39 Chapter 9: Image Processing in Java

(CN) 2. (CT) Java programming–the basics

“I don’t know what the programming language of the year 2000 will look like,
but I know that it will be named FORTRAN” – Tony Hoare, 1984

This chapter introduces the reader to Java. We assume that the reader is a strong
programmer, in some structured language (like C or Pascal) or that the reader has had
some background in object-oriented programming. We divide the subject of the Java
language into two parts, the syntax and the semantics. The material presentation of Java
takes a different path from that presented in the Java specification. The Java specification
presents the material organized by package. We present the material organized by
concept. Thus, we place the wrapper classes (Boolean, Character, Integer, Long, Float
and Double) into a single wrapper class subsection that resides in the data-types
subsection. We have found that the package, java.lang, does not present functions for
maximum clarity of organization. For example, we prefer not to present threads and
integers in the same subsection, as these are basically unrelated topics, though they reside
in the same package.
This chapter is divided up into four main sections.
The first section, describes the MBNF notation. To assist us with the presentation of the
syntax of the Java language, we have devised a language for describing grammar. The
grammar language is a language for describing languages and so is called a meta-
language. We base our meta-language on a Backus Naur Form, with some modifications.
Therefore we refer to our version of the Backus Naur Form as Modified Backus Naur
Form (MBNF).
The semantics of the Java language are discussed after the MBNF is presented. Semantics
are shown by example. Often we will present several incarnations of in-context Java
usage. These incarnations are taken from working programs.
The second section, covers the simple syntax of Java. Simple syntax includes those
structures that are already familiar to the C or C++ programmer. You may feel
comfortable skipping or skimming this section.
In the third section, we detail the data types in Java. The coverage includes both the
object oriented and the non-object oriented data types of Java.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 40 Chapter 9: Image Processing in Java

The fourth section covers threads and provides several examples of multi-threaded Java
programs.
(A-heading) MBNF Notation

In this book we use MBNF (Modified Backus Naur Form) to describe the syntax of Java.
We use the translate functor of Prolog, ‘->‘, as the digraphic symbol meaning, “can be
written as” [Clocksin]. People who study formal languages will refer to the ‘->‘ symbol
as a production. Java does not use the ‘->‘ symbol, since it has no pointers. We have
found that the standard notation, as used in the Java Specification, to be hard to match on
the blackboard during lectures. We wanted a compact notation that would have a typeset
appearance that does not deviate significantly from the hand-written appearance. This
meant no bold or italic font could be used in the syntax definition.
The meta-symbols of BNF are:

Meta-Symbol Meaning
-> can be written as
(X|Y) grouping alternatively, X or Y
< > syntactic construct, non-terminal symbol meta identifier
[X] 0 or 1 instance of X
{X} 0 or more instances of X
““ terminal
. end of production

As an example, we show MBNF in MBNF:
syntax -> { production }.
production -> identifier "->" expression “.” .
expression -> term { "|" term } .
term -> factor { factor } .
factor -> identifier |
 quotedSymbol |
 "(" expression ")" |

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 41 Chapter 9: Image Processing in Java

"[" expression "]" |
 "{" expression "}" .
identifier -> letter { letter | digit } .
quotedSymbol -> """ { anyCharacter } """ .

The syntax of a language will permit the formulation of a statement that compiles.
However, the syntax does not describe the meaning of the statement, nor does it describe
the common usage. For this, we use examples and prose.
The MBNF rules of Java follow. These are used in the following sections and chapters.
They will, when used, always refer back to their numbers. Sometimes the MBNF will be
refined beyond the basic MBNF given here. When this occurs, it will not be preceded by
the numeration.
 compilationUnit ->

[packageStatement] < importStatement > < typeDeclaration > .
 packageStatement ->

"package" packageName ";" .
 importStatement ->

"import" ((packageName "." "*" ";") |
(className | interfaceName)) ";" .

 typeDeclaration ->
[docComment] (classDeclaration | interfaceDeclaration) ";" .

 docComment ->
"/**" "... text ..." "*/" .

 classDeclaration ->
< modifier > "class" identifier ["extends" className] ["implements"
interfaceName < "," interfaceName >] "{" < fieldDeclaration > "}" .

 interfaceDeclaration ->
< modifier > "interface" identifier ["extends" interfaceName < ","
interfaceName >] "{" < fieldDeclaration > "}" .

 fieldDeclaration ->
([docComment] (methodDeclaration | constructorDeclaration |
variableDeclaration)) | staticInitializer | ";" .

 method_declaration ->
< modifier > type identifier "(" [parameterList] ")" < "[" "]" > (
statementBlock | ";") .

 constructorDeclaration ->
< modifier > identifier "(" [parameterList] ")" statementBlock .

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 42 Chapter 9: Image Processing in Java

 statementBlock ->
"{" < statement > "}" .

 variableDeclaration ->
< modifier > type variableDeclarator < "," variableDeclarator > ";" .

 variableDeclarator ->
identifier < "[" "]" > ["=" variableInitializer] .

 variableInitializer ->
expression | ("{" [variableInitializer < "," variableInitializer > [","]]
"}") .

 staticInitializer ->
"static" statementBlock .

 parameterList ->
parameter < "," parameter > .

 parameter ->
type identifier < "[" "]" > .

 statement ->
variableDeclaration | (expression ";") | (statementBlock) | (
ifStatement) | (doStatement) | (whileStatement) | (for_statement) |
(tryStatement) | (switchStatement) | ("synchronized" "(" expression
")" statement) | ("return" [expression] ";") | ("throw" expression ";"
) | (identifier ":" statement) | ("break" [identifier] ";") | (
"continue" [identifier] ";") | (";") .

 ifStatement ->
"if" "(" expression ")" statement ["else" statement] .

 doStatement ->
"do" statement "while" "(" expression ")" ";" .

 whileStatement ->
"while" "(" expression ")" statement .

 forStatement ->
"for" "(" (variableDeclaration | (expression ";") | ";") [expression]
";" [expression] ";" ")" statement .

 tryStatement ->
"try" statement < "catch" "(" parameter ")" statement > ["finally"
statement] .

 switchStatement ->

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 43 Chapter 9: Image Processing in Java

"switch" "(" expression ")" "{" < ("case" expression ":") | ("default"
":") | statement > "}" .

 expression ->
numericExpression | testingExpression |
logicalExpression | stringExpression | bitExpression | castingExpression |
creatingExpression |
literalExpression | "null" | "super" | "this" | identifier | ("("
expression ")") | (expression (("(" [arglist] ")") | ("[" expression
"]") | ("." expression) | ("," expression) | ("instanceof" (
className | interfaceName)))) .

 numericExpression ->
(("-" | "++" | "--") expression) |
(expression ("++" | "--")) |
(expression ("+" | "+=" | "-"
| "-=" | "*" | "*=" | "/" | "/=" | "%" | "%=") expression) .

 testingExpression ->
(expression (">" | "<" | ">=" | "<=" | "==" | "!=") expression) .

 logicalExpression ->
("!" expression) | (expression ("&" | "&=" | "|" | "|=" | "^" |
"^=" | ("&&") | "||=" | "%" | "%=") expression) | (expression
"?" expression ":" expression) | "true" | "false" .

 stringExpression = (expression ("+" | "+=") expression) .
 bitExpression ->

("~" expression) | (expression (">>=" | "<<" | ">>" | ">>>")
expression) .

 castingExpression ->
"(" type ")" expression .

 creatingExpression ->
"new" ((className "(" [arglist] ")") | (type_specifier ["[" expression
"]"] < "[" "]" >) | ("(" expression ")")) .

 literalExpression ->
integerLiteral | floatLiteral | string | character .

 arglist ->
expression < "," expression > .

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 44 Chapter 9: Image Processing in Java

 type ->
typeSpecifier < "[" "]" > .

 typeSpecifier ->
"boolean" | "byte" | "char" | "short" | "int" | "float" | "long" |
"double" | className | interfaceName .

 modifier ->
"public" | "private" | "protected" | "static" | "final" | "native" |
"synchronized" | "abstract" | "threadsafe" | "transient" .

 packageName ->
identifier | (packageName "." identifier) .

 className ->
identifier | (packageName "." identifier) .

 interfaceName ->
identifier | (packageName "." identifier) .

 integerLiteral ->
(("1..9" < "0..9" >) | < "0..7" > |
("0" "x" "0..9a..f" < "0..9a..f" >)) ["l"] .

 floatLiteral ->
(decimalDigits "." [decimalDigits] [exponentPart] [floatTypeSuffix]) |
("." decimalDigits [exponentPart] [floatTypeSuffix]) | (decimalDigits
[exponentPart] [floatTypeSuffix]) .

 decimalDigits ->
"0..9" < "0..9" > .

 exponentPart ->
"e" ["+" | "-"] decimalDigits .

 floatTypeSuffix ->
"f" | "d" .

 character ->
"based on the unicode character set" .

 string ->
"''" < character > "''" .

 identifier ->
"a..z,$,_" < "a..z,$,_,0..9,unicode character over 00C0" > .

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 45 Chapter 9: Image Processing in Java

 (A-heading) Simple Syntax

This section covers the aspect of Java that should be trivial to an experienced
programmer. In all probability, the experienced C/C++ programmer will be tempted to
skim or skip it. For the C/C++ programmer, the differences are small: documentation
comments, and an extension to the for loop. You will probably do fine if you just read
these two sections, then skip to data types. (NOTE) The MBNF of the last section will be
reintroduced, and sometimes extended, on a gradual basis, as new syntactic features are
covered.
(END NOTE)
(B-heading) Comments
There are three types of comments in Java:

1. C style comments that begin with /* and end with */,
2. C++ style comments that begin with // and end at the end of a line and
3. javadoc style comments that start with /** and end with */ .

Comments in Java are just like those of C++. For example:
// This is a comment
/* and so is

this
*/

There are good rules of style to be followed when using comments. For example, use C
style comments when you have multiple lines because C++ style comments require the
“//” in front of every line. For example:

/* This is a multi
line comment
it is easier to type
because you don't need a
// in front
of every line.

*/

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 46 Chapter 9: Image Processing in Java

The C++ style comment is excellent for writing quick comments, since the end of the line
denotes the end of the comment, you don’t have to worry about the terminating */.
Javadoc comments start with a /** and end with a */. The MBNF for the doc comment is

docComment -> "/**" "... text ..." "*/" .
(CD-ROM icon) The JDK javadoc tool reads Java source code and scans for the javadoc
comments. When they are encountered, javadoc emits HTML. These documentation
comments are typically included before a class declaration, class member or constructor.
Code will work without them, but it is good practice to include them. They are not
supported by all development tools and, more specifically, are not supported by
Metrowerks CodeWarrior. As a result we do not make use of the javadoc comments in
this book. We have, as an alternative, built a custom documentation generator that comes
on the CD-ROM that comes with this book. (end CD-ROM icon)
(B-heading) Identifiers
An identifier starts with a letter and then contains letters or digits. It may not contain a
keyword. Identifiers in Java may be of unlimited length! Recall rule 47:
 identifier ->

"a..z,$,_" < "a..z,$,_,0..9,unicode character over 00C0" > .
The MBNF for the keyword follows:
keyword -> “abstract” | “default” | “if” | “private” | “throw” | “boolean” | “do” |

“implements” | “protected” | “throws” | “break” | “double” | “import” |
“public” | “transient” | “byte” | “else” | “instanceof” | “return” | “try” | “case” |
“extends” | “int” | “short” | “void” | “catch” | “final” | “interface” | “static” |
“volatile” | “char” | “finally” | “long” | “super” | “while” | “class” | “float” |
“native” | “switch” | “const” | “for” | “new” | “synchronized” | “continue” |
“goto” | “package” | “this”.

We were quite impressed when

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 47 Chapter 9: Image Processing in Java

int
theUnlimitedLengthConstraintOfThe_Java_Identifiers_can_brin
g_1234Interesting_Variables_into_your_code = 90;

compiled and ran!
We were also surprised when goto was listed as one of the keywords. Java does not
support goto, but reserves the goto keyword so that it may not be used as an identifier.
(Begin Note)
Operators are not permitted as a part of the identifier. Operators are discussed in the
following section. Identifiers are used in several places in Java, as discussed in the
following sections.
(End Note)
(B-heading) Operators
In Java there are assignment operators that are just like those of most other languages.
There are also the shortcut operators of C and C++. A typical assignment operator with
the shortcut version, common in C, C++ and Java follow:

i = i + 1;
i++;

Both versions have the same effect. The “+” operator is a binary operator, since it takes
two arguments. The “++” operator is a unary operator, since it takes only one argument.
Unary_operators -> “+”| “-” | “++” | “--” | “~” | “!” .
unary operators group right-to-left, so that:

-!i
means the same as:

-(!i).
The MBNF for the Java operators follows:
Operator -> “=“ | “>“ | “<“ | “!” | “~” | “?” | “:” | “==“ | “<=“ | “>=“ | “!=“ | “&&” | “||” |

“++” | “--” | “+” | “-” | “*” | “/” | “&” | “|” | “^” | “%” | “<<“ | “>>“ | “>>>“ |
“+=“ | “-=“ | “*=“ | “/=“ | “&=“ | “|=“ | “^=“ | “%=“ | “<<=“.

In Java, you may have either prefix unary operators:

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 48 Chapter 9: Image Processing in Java

++i;
or postfix unary operators:

i++;
Unary operators work just like their C counter-parts. The order of precedence is listed
below, along with the MBNF.
postfix_operators->

“[]” | “.” | “(“ <parameters> “)” | “++” | “--” .
unary_operators ->

 “+”| “-” | “++” | “--” | “~” | “!” .
creation_operators->

 "new" | “(“ <type> “)” .
multiplicative_operators->

 "*" | “/” | “%”.
additive_operators ->

 "+" | “-”.
shift_operators ->

 "<<" | “>>“ | “>>>“.
relational_operators ->

 "<" | ">" | ">=" | " <=" | "instanceof" .
equality_operators ->

 "==" | "!=" .
bitwise_AND_operator ->

 "&" .
bitwise_XOR ->

 "^" .
bitwise_OR ->

 "|" .
logical_AND ->

 "&&" .
logical_OR ->

 "||" .
conditional_operator ->

 "?:" .
assignment_operators ->

 "=" | "+=" | " -=" | "*=" | "/=" | "%=" | ">>=" | "<<=" | ">>>=" | "&=" | "^=" |
"|=".

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 49 Chapter 9: Image Processing in Java

It is a part of the C idiom that assignment operators be augmented with other operators.
We shall give some examples of the augmented operators, "+=" , " -=" , "*=" , "/=" ,
"%=" , ">>=" , "<<=" , ">>>=" , "&=" , "^=" and "|=", as well as the condition operator,
as these are the most commonly misused by our students.
For example:

if (theCowsComeHome) {System.out.println("moo");}
else System.out.println("no milk for you!");

is the same as
System.out.println(

theCowsComeHome ? "moo" : "no milk for you!");
So the conditional_operator requires a boolean type expression followed by an expression
to return if true with a ":", and then an expression to return if false.
Some examples of the augmented operators, with their non-augmented counterparts,
follow:

i *= 10; // is the same as:
i = i * 10;
i += 10; // is the same as:
i = i + 10;
i /= 10; // is the same as:
i = i / 10;
i >>= 3; // is the same as:
i = i >> 3; // a right shift with sign in the extension
i >>>= 9; // is the same as:
i = i >>> 9; // a right shift with zeros in the extension

The following code example will reverse the bits in an int. Bit reversal code is used to
perform transforms such as the Fast Hartley Transform (FHT) and the Fast Fourier
Transform (FFT):

 int bitr(int j) {
 int ans = 0;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 50 Chapter 9: Image Processing in Java

 for (int i = 0; i< nu; i++) {
 ans = (ans <<1) + (j&1);
 j = j>>1;
 }
 return ans;
 }

The variable nu is declared as an int and is equal to the number of bits to be processed. It
is common to replace bit shifting code above with look-up tables that group the bits into 8
or 16 bit groups. This will be discussed when FFT algorithms are introduced.
(B-heading) Flow of Control
This section describes Java’s features for altering the flow of control. We note that Java is
strongly typed and so if , for, and while statements require boolean expressions as
arguments. In fact, all flow of control statements require boolean expressions, with the
single exception of the switch statement, which permits an integer type expression.
(C-heading) Expressions
Central to the use of the flow of control is the notion of a boolean type expression. Java
will not accept an expression that is of integer type, like C and C++ languages do. The
following MBNF defines the expression statement in Java, along with the testing
expression and the logical expression:
 expression ->

numericExpression | testingExpression |
logicalExpression | stringExpression | bitExpression | castingExpression |
creatingExpression |
literalExpression | "null" | "super" | "this" | identifier | ("("
expression ")") | (expression (("(" [arglist] ")") | ("[" expression
"]") | ("." expression) | ("," expression) | ("instanceof" (
className | interfaceName)))) .

 numericExpression ->

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 51 Chapter 9: Image Processing in Java

(("-" | "++" | "--") expression) |
(expression ("++" | "--")) |
(expression ("+" | "+=" | "-"
| "-=" | "*" | "*=" | "/" | "/=" | "%" | "%=") expression) .

 testingExpression ->
(expression (">" | "<" | ">=" | "<=" | "==" | "!=") expression) .

 logicalExpression ->
("!" expression) | (expression ("ampersand" | "ampersand=" | "|" |
"|=" | "^" | "^=" | ("ampersand" "ampersand") | "||=" | "%" |
"%=") expression) | (expression "?" expression ":" expression) |
"true" | "false" .

 stringExpression = (expression ("+" | "+=") expression) .
 bitExpression ->

("~" expression) | (expression (">>=" | "<<" | ">>" | ">>>")
expression) .

 In the following sections we give examples of expressions being used to alter the flow of
control.
(C-heading) If
The if statement in Java requires a boolean type expression
 ifStatement ->

"if" "(" expression ")" statement ["else" statement] .
if (type.compareTo("ConstantValue") == 0) {
if (i >= out.length) {
if (e.target == saveSound_mi) {
if (e.target == graphSound_mi) {

The then part of the if may take the shape of any valid statement, no ‘{}’ are required:
if (Math.abs(return_val) < 0.99)

return return_val;
else return 0;

An extended clause is often indented to indicate when the clause has ended. Sometimes it
is good style to indicate the end of the clause with a comment. For example:

 if (interfaces == null) dos.writeShort(0);
 else {
 dos.writeShort(interfaces.length);

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 52 Chapter 9: Image Processing in Java

 for (int i = 0; i < interfaces.length; i++)
 dos.writeShort(
 ConstantPoolInfo.indexOf(
 interfaces[i], constantPool));

 } // end else

This is particularly good to do when the beginning of a clause is off the programmers’
screen. Poor use of indentation and comments can make code hard to read. Consider the
following example:

 if(x1 < datarect.x) x1 = datarect.x;
 else
 if(x1 > datarect.x + datarect.width)
 x1 = datarect.x + datarect.width;

 if(y1 < datarect.y) y1 = datarect.y;
 else
 if(y1 > datarect.y + datarect.height)
 y1 = datarect.y + datarect.height;

Now compare the above code with the code below:
 if (x1 < datarect.x) x1 = datarect.x;
 else if (x1 > datarect.x + datarect.width)
 x1 = datarect.x + datarect.width;

 if (y1 < datarect.y) y1 = datarect.y;
 else if (y1 > datarect.y + datarect.height)
 y1 = datarect.y + datarect.height;

(BEGIN NOTE)
Else-if is used as a word pair. This significantly cleans up and shortens the code.
(END NOTE)
Here is another example, a long if-else chain:

if(xminText.equals(e.target)) {
 xmaxText.requestFocus();
 return true;
 } else
 if(xmaxText.equals(e.target)) {
 yminText.requestFocus();
 return true;
 } else
 if(yminText.equals(e.target)) {
 ymaxText.requestFocus();
 return true;
 } else
 if(ymaxText.equals(e.target)) {
 xminText.requestFocus();
 return true;
 }

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 53 Chapter 9: Image Processing in Java

Now converted into the else-if style:
if(xminText.equals(e.target)) {

xmaxText.requestFocus();
return true;

} else if(xmaxText.equals(e.target)) {
yminText.requestFocus();
return true;

} else if(yminText.equals(e.target)) {
ymaxText.requestFocus();
return true;

} else if(ymaxText.equals(e.target)) {
xminText.requestFocus();
return true;

}
Such long dispatches are common in Java.
(C-heading) While and do statements
The syntax of the while statement is given by the following MBNF:
 whileStatement ->

"while" "(" expression ")" statement .
The while statement must have a boolean type expression, just like the if statement. Also,
the expression and following statement will be evaluated as long as the boolean
expression returns true. If the expression returns false, the statement will not be executed.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 54 Chapter 9: Image Processing in Java

 If the statement throws an exception, the while statement will throw one too. The while
statement always evaluates the expression first, before evaluating the statement. To
change this order use the ‘do’ statement. The MBNF for the ‘do’ statement is:
 doStatement ->

"do" statement "while" "(" expression ")" ";" .
The do statement will always evaluate the statement at least once, before evaluating the
while statement. The do-while structure of Java is just like the repeat-until structure of
Pascal. It is a compile-time error to pass a non-boolean type expression to the do-while.
To make an infinite loop, just make the boolean expression a constant true, as in:

while (true) {
draw();
try {Thread.sleep(1000);}
catch (InterruptedException e) {}

}
It is common to embed assignments in the boolean expression given as an argument to
the while statement. For example:

while ((next = tokens.nextToken()) != tokens.TT_EOF) {
Note the required use of the parentheses, a compilation error would result if

while (next = tokens.nextToken() != tokens.TT_EOF) { //BUG!
were written instead. This is due to the assignment operator taking lowest precedence.
The "tokens.nextToken()" sets the next int to a value and, checks the value against the
tokens.TT_EOF class variable, an action that returns a boolean.
(C-heading) Switch
The switch statement transfers control to one of several statements depending on the
value of an expression. It is a compile-time error if the expression is not constant or one

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 55 Chapter 9: Image Processing in Java

of char, byte, short, or int. The following is the MBNF for the switch statement:
 switchStatement ->

"switch" "(" expression ")" "{" < ("case" expression ":") | ("default"
":") | statement > "}" .

The use of the switch statement generally involves a Break.. For example:
switch (expression) {

case const_1:
statement1;
break;

case const_2:
statement2;
break;

default:
statement3;
break;

}
If you leave out the break any remaining branches are executed. There may only be one
default branch in the switch statement. It is typical in Java to have long switch statements
when dispatching keyboard events. For example:

public boolean keyDown(Event e, int key) {
switch (key) {

 case 'o':
 openAudioStream();
 return true;
 case 'v':

saveAs();
 return true;
 case 'p':
 play();
 return true;
 case 'n':
 normalize();
 return true;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 56 Chapter 9: Image Processing in Java

 case 'm':
 am();
 return true;
 case 'f':
 fm();
 return true;
 case '^':
 sawWave();
 return true;
 case 'e':
 ulawData=Audio.encodeUlaw(doubleData);
 return true;
 case '1':
 fft();
 return true;
 case '2':
 ifft();
 return true;
 case '3':
 dft();
 return true;
 case 't':
 timeDelay();
 return true;
 case 'g':
 graphSound();
 return true;
 case 'd':
 doubleData = Audio.decodeUlaw(ulawData);
 return true;
 case 's':
 sineWave();
 return true;
 case '[':
 squareWave();
 return true;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 57 Chapter 9: Image Processing in Java

 case 'T':
 triangleWave();
 return true;
 case 'r':
 ulawData = Audio.reverse(ulawData);
 return true;
 case 'u':
 graphUlaw();
 return true;
 }

Keyboard shortcuts are very popular with the more experienced users of an interface. It is
unfortunate that the switch statement can only take scalar values. The same test is
typically performed for menu-item instances, with lengthy code as the result.
(C-heading) For
The for statement is 10 times more common than the while statement in the DiffCAD
program. The MBNF for the for statement follows:
forStatement ->

"for" "(" (variableDeclaration | (expression ";") | ";") [expression]
";" [expression] ";" ")" statement .

 variableDeclaration ->
< modifier > type variableDeclarator < "," variableDeclarator > ";" .

 variableDeclarator ->
identifier < "[" "]" > ["=" variableInitializer] .

 variableInitializer ->
expression | ("{" [variableInitializer < "," variableInitializer > [","]]
"}") .

Typically the for statement takes the form:
for (initialization; test; update) statement.

The test must be a boolean type expression, or a compile-time error results. If the test is
not satisfied, the statement will not execute. The statement does not have to execute, even
once. Some examples of the for statement follow:

for (i=1; i < 99; i++) {
}; // null statement

for (;;) { // an infinite loop
if (expression) { break}

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 58 Chapter 9: Image Processing in Java

// more junk here
}
for (int i = 99; i < 50; i++)

System.out.println("I never printed");
The “,” is permitted in the initialization and increment section of the for loop. For
example:

for (i=0, j=10; i < 100; i++, j +=2) {
//more stuff here
}

If the initializations or update parts of the for loop throw an exception, then the for loop
will throw an exception. The for loop is the only statement in Java that uses the comma as
a separator.
(C-heading) Continue
The continue statement in Java aborts out of an iteration. It is a compile-time error to
have a continue in something other than a while, do, or for statement. A continue
statement with no label identifier proceeds to the next enclosing iteration. A continue
statement with a label identifier proceeds to the next enclosing labeled statement. The
MBNF for the continue statement follows:
continue_statement ->

 "continue" [identifier] ";"
For example:

foo: for (int i = 1; i < 5; i ++) {
for (int j=1; j < 5; j++) {

if (i % j == 2) {
System.out.println("continue");
continue foo;

}
System.out.print(i*j + " ");

 }
System.out.println();

}

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 59 Chapter 9: Image Processing in Java

The above code will output:
1 2 3 4
2 4 continue
3 6 9 12
4 8 12 16

A more typical usage is shown below
 for (int i = 1; i < constantPool.length; i++) {

 if (constantPool[i] == null)
 continue;
// more stuff follows

}
Here continue will proceed to the next i without finishing the rest of the loop.
The labeled continue appears to be less popular than the unlabeled continue. In DiffCAD
there is not a single use of the labeled continue.
(C-heading) Break
The break statement appears much more often in the DiffCAD program than the continue
statement (345 times vs. 15 times). The MBNF for the break statement is given by:
break_statement ->

"break" [identifier] ";"
It is a compile-time error not to enclose break within a break target. Valid break targets
are labels, switch, while, do or for statements. Break may be used with or without an
identifier label. Break causes control to pass to the innermost enclosing break target. The
break target completes normally. Compare this to a continue statement in a loop.
Continue will continue with the loop, break will break out of it.
The following example permits the for-loop to terminate normally for two reasons. The
first is the for-loop expression, n < 2*Math.PI, that is only tested at the top of the loop,
the second is the (i >= out.length) expression, that is tested at the bottom of the loop.

done: for (double n = 0; n < 2*Math.PI; n = n + step) {

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 60 Chapter 9: Image Processing in Java

out[i] = in[i]* Math.sin(n);
i++;
if (i >= out.length) { break done;}

}
In the following case, the break is removed by adding a more complex test in the for-
statement.

 for (double n = 0;
(n < 2*Math.PI) && (i < out.length);
n += step, i++) {
out[i] = in[i]* Math.sin(n);

}
Sometimes the break statement is essential, like in a switch statement.
(C-heading) Return
The return statement in Java takes an optional expression. It transfers control to the
invoker. The MBNF for the return statement follows:
return_statement ->

"return" [expression] ";"
When the expression is omitted, void is returned.
(A-heading) Data Types

Data types in Java are divided into two basic categories, the reference types and the
primitive types. The reference types consist of 3 sub-types, class types, interface types
and array types. We defer discussion of interface types and array types until later. The
following two subsections describe the primitive types and the class types.
(B-heading) Primitive Types
Java has several primitive types. Primitive types can store primitive values, each of which
needs a specific number of bits of storage and has a specific precision.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 61 Chapter 9: Image Processing in Java

The primitive data types of Java are sometimes also called scalar types. There are two
kinds of scalar types, boolean and numeric. Boolean types may have two predefined
values, true or false. Numeric types may be sub-classed into two sub-types, integer or
floating point. There are five kinds of integer types and two kinds of floating point types.
Figure 2.1 shows the taxonomy of the primitive types in Java.

Figure 2.1 Taxonomy of primitive types in Java.
Each of the primitive data types is assigned a specific amount of storage. Its value and
range are shown in Figure 2.2.

Figure 2.2 Values and ranges for primitive data types.
All variables in Java are held as undefined until set.
For example, in the following code:

public class TrivialApplication {

public static void main(String args[]) {

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 62 Chapter 9: Image Processing in Java

int x;
System.out.println(x);

}

}
a variable, x , was declared, but not initialized before being accessed. This is a compile-
time error in Java and the compiler emits:

Error : Variable x may not have been initialized.
TrivialApplication.java line 7 System.out.println(x);

All integer data types (byte, short, int and long) are signed. All characters in Java are
Unicode. Unicode is an international standard [Unicode]. The character type is defined as
a 16-bit unsigned unique code values. For example:

char c = ‘a’;
It is possible to assign a numeric literal to a character-typed variable and a character
literal to an integer variable:

char theChar = 48;
integer theValue = ‘a’;

All reals are stored as single precision floating point numbers, called floats, or double
precision floating point numbers, called doubles. Java reals use the IEEE 754-1985
format [IEEE]. The smallest and largest positive non zero values for floats range from
1.40239846e-45 to 3.40282347e+38 (Float.MIN_VALUE and Float.MAX_VALUE).
The smallest and largest positive non zero values for doubles range from
4.94065645841246544e-324 to 1.79769313486231570e+308 (Double.MIN_VALUE and
Double.MAX_VALUE).
Now for a reality check. Using the Metrowerks CodeWarrior we discover the floating
bugs in the Java floating point libraries:

class fp_error {
public static void main(String argv[]) {

float fmin = Float.MIN_VALUE;
float fmax = Float.MAX_VALUE;
double dmin = Double.MIN_VALUE;
double dmax = Double.MAX_VALUE;
String b = " ";

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 63 Chapter 9: Image Processing in Java

// bug in FP
System.out.println(fmin + b + fmax +

b + dmin + b + dmax);
}

}

The above outputs:
1.4013e-45 3.40282e+38 2.22507e-308 1.79769e+308

Please note that round(1.40239846e-45) = 1.4024e-45 not 1.4013e-45, as CodeWarrior
indicated. It has output:

3.40282e+38 instead of 3.40282347e+38
2.22507e-308 instead of 4.94065645841246544e-324
1.79769e+308 instead of 1.79769313486231570e+308

Note that the 2.22507e-308 is off from 4.94065645841246544e-324 by 16 orders of
magnitude! The problem with the output from println is also documented in the language
specification (20.10.15). In short, it says that “it renders finite values in the same form as
the %g format of the printf function in the C programming language, which can loose
information because it produces at most six digits after the decimal point.” In fact, our
search of the println source code shows the implementation depends upon a call to a
String class conversion method called toString. This explains why the error exists in the
toString method as well as in the System.out.println.
Finally, the wrong value for the MIN_VALUE variable is actually Sun's fault. If you look
at the source for Double.java (for the Mac and Windows versions of the 1.0.2 API), it
declares MIN_VALUE as 2.225..e-308 instead of 4.94..e-324:

 public static final double MIN_VALUE =
2.2250738585072014E-308;

We have verified this with cross platform testing (Solaris, Windows 95/NT and MacOS).
The HTML docs, however, show the correct value (as do all books we have seen on
Java)! The 1.1 sources should correct this problem.
The following program shows how to code the escape sequences into Java:

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 64 Chapter 9: Image Processing in Java

package stringUtilities;

public interface Char {

char backspace = '\b';
char horizontalTab = '\t';
char newLine = '\n';
char formFeed = '\f';
char carrageReturn = '\r';
char doubleQuote ='\"';
char singleQuote ='\'';
char backSlash = '\\';
char maxOctal = '\377';
char minOctal = '\000';
char maxUnicode = '\uFFFF';
char minUnicode = '\u0000';

}

(B-heading) Named Constants
Constants are values that remain unchanged during their life. For example

static final double PI = 3.14159265358979323846;
The term, static is known as a modifier. It indicates that there is to be only one
incarnation of the field; PI. Final indicates that PI cannot change during the life of the PI
variable. Assignment of a final field is a compile-time error. You may, if you like, restrict
the visibility of the static final field by using a modifier prefix. You may perform
computations with knowns on the right-hand side of the equals sign. For example:

private final double pi_2 = Math.PI * 2;
Here we see that the field, pi_2 has a private visibility. This means that the pi_2 name is
not visible outside of the class (a discussion which we defer until later). Any valid type
specifier may follow the final modifier. The MBNF for this is:
typeSpecifier ->

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 65 Chapter 9: Image Processing in Java

"boolean" | "byte" | "char" | "short" | "int" | "float" | "long" |
"double" | className | interfaceName .

The following are examples of the final modifier:
static final int HORIZONTAL = 0;
static final String version = "1.0";
public static final int ACC_PUBLIC = 0x1;
static final float twoPI = (float) (2*Math.PI);
public static final char NOT_CODE = (char)12;
private static final long UNIT = 1000;

Note the use of the "0x1". This is used to denote hexadecimal code. Also note the use of
the cast operators "(float)" and "(char)". Casting is run-time type conversion. Casting is
discussed in more detail later in the chapter.
(B-heading) Classes
This section introduces a reference type known as a class. A class is a combination of
code (methods) and data (variables) joined together into a single entity. A class is
essentially a description of how to make an instance of an object. This is what makes Java
object oriented. Every instance has a class which is used to determine how to create the
instance, what variables the instance will contain, and what messages the instance will
respond to. Instances of classes are of reference type. In Java a reference is just like a
pointer, only no pointer arithmetic is permitted.
The following is a summary of the MBNF needed to declare a class:
classDeclaration ->

< modifier > "class" identifier ["extends" className] ["implements"
interfaceName < "," interfaceName >] "{" < fieldDeclaration > "}" .

modifier ->
"public" | "private" | "protected" | "static" | "final" | "native" |
"synchronized" | "abstract" | "threadsafe" | "transient" .

identifier ->
"a..z,$,_" < "a..z,$,_,0..9,unicode character over 00C0" > .

className ->
identifier | (packageName "." identifier) .

interfaceName ->
identifier | (packageName "." identifier) .

fieldDeclaration ->
([docComment] (methodDeclaration | constructorDeclaration |
variableDeclaration)) | staticInitializer | ";" .

In Java a class is an entity that is able to define both the data structure and the algorithm
for manipulating the data structure. The class name consists of an identifier (which may
be of any length), and the class may extend another class. In Java, classes are able to form
an AKO (A-Kind-Of) taxonomy, as described in Chapter 1.

public class AppletFrame extends Frame {}
An instance of a class has a type. The new operator is used to make an instance of a class.
For example:

class point {
public double x,y;

}

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 66 Chapter 9: Image Processing in Java

point p1 = new point();
p1.x = 10;
p1.y = 11;

In order to gain access to the Java class libraries, the programmer must import them. This
is done with an import statement. For example:

import java.awt.*;
import java.applet.Applet;

Import is described in more detail later in this chapter. To build on the methods and data
structures of a parent class, a subclass is constructed that extends the parent class. For
example:

public class AppletFrame extends Frame {
In this case, the AppletFrame class extends the Frame class. This means that the
AppletFrame is a kind of Frame. Sometimes we would like to have a class that can never
be instanced, only extended. When this occurs, we would declare the class as abstract.
For example:

abstract class AppletUtil {
AppletUtil is an abstract class. A reason we might like to keep AppletUtil abstract is that
it contains some combination of methods and fields that are to be inherited or overridden
by a subclass. For example:

import java.applet.*;
import java.awt.*;

abstract class AppletUtil {
static Frame appletFrame = new Frame();

 static void run (Applet applet) {

 appletFrame.addNotify();
 appletFrame.add("Center",applet);

 appletFrame.resize(400,400);

 applet.init();
 appletFrame.show();
 applet.start();

 }

}
In this case, we can never make an instance of the AppletUtil class, because it is abstract.
However, we can access the appletFrame variable and we can even invoke the run
method, without ever making an instance. For example,

AppletUtil.run(a);
will run an instance of the Applet class, called a. This has introduced the basic concept of
a method. Classes in Java have two possible members, fields and methods. For example:

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 67 Chapter 9: Image Processing in Java

public class IHateHelloWorldExamples {
public static void main(String args[]) {

System.out.println("hello world");
}

}

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 68 Chapter 9: Image Processing in Java

Above we see a class called IHateHelloWorldExamples . A Java application,
IHateHelloWorldExamples contains a main method that is invoked at run-time. This
causes the "hello world" string to be printed on the console. The following, more
elaborate example shows several numbered lines. The line numbers are for reference
only. Lines 1 and 2 are used to import the Java class libraries.

1. import java.util.*;
2. import java.awt.*;

Line 3 shows one class subclassing (also known as extending) another. Line 4 shows a
class method with no return, not even void. This class method has the same name as the
class and is called the constructor. The constructor returns an instance of the class when
new is invoked.

3. class Camera_grating_line extends Shape {
4. Camera_grating_line() {
5. color =
6. Color.blue;
7. }...

The Camera_grating_line class is a kind of Shape. It contains one method and no fields.
The color field is stored in the Shape base class.

(C-heading) Overloaded Methods
As mentioned before, in Java there are no functions, only methods. Methods provide the
algorithm for manipulating data that is stored in the class member variables. The
constructor is a method. If no constructor is specified then a default constructor is
provided. The default constructor takes null as an argument. The default constructor is
overridden when another constructor is specified. For example:

class Lamp {
boolean on;
int Wattage;
Lamp (int w) {

Wattage = w;
}
Lamp () {
Wattage = 100;
}

}

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 69 Chapter 9: Image Processing in Java

The Lamp constructor has been over loaded with two versions. The first version will
support:

Lamp dim = new Lamp(40);
While the second version supports the constructor invocation:

Lamp bright = new Lamp();
Java requires that the methods have difference signatures. The signature of the method is
determined by the number of arguments and their compile-time types.
(C-heading) Static Methods
Classes that contain static fields have only one copy (or instance) of the static member
variable. The static member variable is therefore global to all instances of the class. For
example:

import java.awt.*;
import java.applet.Applet;
class apple {

static int numberOfApples = 0;
apple() { numberOfApples++ ;}

}
Every time a new apple instance is made, the numberOfApples member will be
incremented. Further, all instances of the apple class will be able to access the same
numberOfApples field. Thus, the numberOfApples int is stored in only a single place in
memory.
Static members are instantiated when the class is initialized. They may not throw an
exception without creating a compile-time error. Also, they may not refer to variables that
have not been defined. So, for example:

public class Lamp {
 static int wattage = voltage*current;
 static int voltage = 110;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 70 Chapter 9: Image Processing in Java

 static int current = 1;

}
Results in a compile-time error:

Error : Can't make forward reference to voltage in class
Lamp.
Lamp.java line 2 static int wattage = voltage*current;

On the other hand, if power is computed by a method, then no such check is performed,
but perhaps it should be. For example:

public class Lamp {
 static int wattage = power();
 static int voltage = 110;
 static int current = 1;

 static int power() {
 return voltage * current;
 }
 public static void main(String argv[]) {
 Lamp i = new Lamp();
 System.out.println("The power is "+ i.wattage);
 }

}
Will print:

The power is 0
Why should the power be zero? Power is current times voltage. Both are set to non-zero
values. Yes, it does compile and run. So what gives? The answer is the order of
dependency. The power method is invoked first. The values for voltage and current are
unset (and default to zero). Thus power is set to the proper 110 watt answer, only if both
current and voltage are defined first. For example:

public class Lamp {

 static int voltage = 110;
 static int current = 1;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 71 Chapter 9: Image Processing in Java

 static int wattage = power();

 static int power() {
 return voltage * current;
 }
 public static void main(String argv[]) {
 Lamp i = new Lamp();
 System.out.println("The power is "+ i.wattage);
 }

}
Will print:

The power is 110
So there are two points we learned from this example; 1. static variables must be defined
in the order of independent first, dependent second, 2. static methods cannot be used to
avoid constraint 1.

(C-heading) Null
One of the literals of Java is null. Null is what you get when nothing has been created.
For example:

if (some_object != null) {
System.out.println(“Object Exists!”);

}
Null has a null type and is the default value for any type that has not been created. For
example:

class test {
int i[99];

}
test foo = new test();

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 72 Chapter 9: Image Processing in Java

At this point, foo.i is equal to null. It is not until the memory is allocated for the array
contained in the foo instance of the test class, will the i field be non-null. For example:

foo.i = new i[99];
Will set the i array, and i will no longer be null in value.
(C-heading) Casting
Type conversion in Java is called casting. When casting is performed, it is a run-time
operation. Casting is able to convert only between compatible types and always results in
a value, not a variable.
Sometimes the only way to know for sure when types are compatible is to run the
program. If a ClassCastException is thrown at run-time, then the type conversion failed.
It is always correct to cast an instance from a subclass to its super class. For example:

1. for (int i=0; i < v.size(); i++) {
2. s = (Shape) v.elementAt(i);
3. s.print();
4. }

In line 1, an instance of a Vector, v is accessed for size. The elements in the vector are
accessed using line 2. Note that each element in the vector is a class that extends the
Shape class. It is always correct to cast the subclass of the Shape class back into the
super-class. This enables print() method invocation on each shape in the vector instance.
(C-heading) Subclassing and Super
One feature of the Java class is that it can intrinsically represent taxonomic structures
(like those described in Chapter 1). The taxonomic structures are formed by Java classes
when a sub-class extends a super class. This type of extension is called direct inheritance.
Thus, in terms of knowledge representation, Java classes can represent the AKO (a-kind-
of) relationship. In addition, Java classes can represent the has-a relationship using the
class member variables. For example, we can represent the statement: “A student is a-
kind-of human” by creating a student class that extends the human class. We can also

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 73 Chapter 9: Image Processing in Java

represent the statement: “The student has-a pencil” by placing a class member variable of
pencil class type into the student class construct. In the following section we present the
syntax of Java and its relationship to the semantics of Java.
A class may be used to provide a container for an instance variable of any primitive type.
For example:

class Lamp {
boolean on;

}
...
Lamp l = new Lamp ();
l.on = true;

A Java class may be used to store a reference to named constants:
class Constants {

static final double PIon2 = Math.PI / 2;
}

Notice that these class examples have no methods. When one class extends another, we
are sub-classing a super class. The sub-class will inherit the member-variables, and
methods, of the super-class. In the case of a name conflict, the sub-class implementation
always over-rides the super-class implementation. For example:

class Lamp extends Constants {
double power = 100 / PIon2; // watts
boolean on = true;
}

(BEGIN NOTE)
The power in the Lamp class is set using a PIon2 constant that is inherited from the
Constants class. In this case, it is not strictly correct to say that the Lamp is a-kind-of
Constants and thus the extends is being used as a programming convenience, not a means
for knowledge representation.
(END NOTE)
On the other hand:

class Student extends Human {
Pencil p;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 74 Chapter 9: Image Processing in Java

}
class Human {

boolean bald = false;
}

Now we represent the statement that “Doug is a bald student with a pencil”:
Student doug = new Student();
doug.p = new Pencil();
doug.bald = true;

Super is a keyword that permits a subclass to call-upon the instance variable or method of
the super class. For example:

1. public class ClosableFrame extends Frame {

2. // constructor needed to pass window title to class
Frame
3. public ClosableFrame(String name) {
4. // call java.awt.Frame(String) constructor
5. super(name);
6. }

7. // needed to allow window close
8. public boolean handleEvent(Event e) {
9. // Window Destroy event
10. if (e.id == Event.WINDOW_DESTROY) {
11. dispose();
12. return true;
13. }

14. // it's good form to let the super class look at
any unhandled events
15. return super.handleEvent(e);

16. } // end handleEvent()

17. } // end class ClosableFrame
Line 15 of class ClosableFrame invokes super.handleEvent because the event that was
passed, e, may not have been a Event.WINDOW_DESTROY event. In that case, it may
be that the super class is able to decode and handle the event properly. A frame that
extends the ClosableFrame will inherit the ability to handle the

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 75 Chapter 9: Image Processing in Java

Event.WINDOW_DESTROY events by invoking super.handleEvent(e).
(C-heading) Abstract Classes and Methods
An abstract class is a class that can never be instanced. It is a compile-time error to
attempt to instantiate an abstract class. An abstract class must be extended before it can
be instantiated. A class may become abstract in several ways. One way is to declare the
class as abstract. Another way is to declare a method within the class as abstract. Yet
another way is to extend an interface or abstract class without providing an
implementation for the abstract methods in the interface or superclass.
(BEGIN NOTE)
A class should be declared abstract only if the intent is that subclasses can be created to
complete the implementation.
(END NOTE)
Abstract classes are used to create super classes that have to be extended. This situation
typically involves the implementation of some, but not all methods. Methods without an
implementation are declared abstract. Abstract methods must be implemented by a
subclass before the subclass may be instanced. If a subclass does not implement the
abstract methods, then the subclass is also an abstract class, even if it is not explicitly
declared as abstract. Java supports polymorphism by casting instances into their common
super classes. The super classes will typically have abstract methods that are
implemented by the subclasses. For example, in DiffCAD there is an abstract class called
shape:

 abstract class Shape extends computation {
...
 abstract void draw(Graphics g);
...

There are many different kinds of Shapes in the DiffCAD program. They are all stored in
a vector instance called drawnShapes. Polymorphism is performed when the shape
subclass instances are accessed in the drawnShapes vector, cast into their Shape super
class and then used as the target of the draw method. For example:

 Shape s;
 for (int i = 0; i < drawnShapes.size(); i++) {

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 76 Chapter 9: Image Processing in Java

 s = (Shape)drawnShapes.elementAt(i);
 s.draw(g);
 }

Shape polymorphism is possible for any of the methods (even the non-abstract ones) in
the Shape class.
(C-heading) Final Classes and Methods
In contrast with abstract classing, which requires that a class be subclassed to be
extended, there is final classing. A class that is declared as final may not be extended. It
may be instanced, however. Fields in a class that are declared as final become constant
throughout the life of the class. (BEGIN NOTE) To prevent a final class from being
instanced, declare a single private constructor and never instance the class internally.
(END NOTE) For example:

public final class Audio {

// Prevent instantiation
private Audio() {}

The final modifier will prevent the Audio class from being extended. The private
modifier will prevent the constructor from being visible. Further, the existance of a
constructor will override the default constructor. Thus, if no method within the Audio
class instantiates the Audio class, the Audio class cannot be instantiated.
Final may also be used as a method modifier. This prevents the method from being
overridden. For example:

public final boolean keyDown(Event e, int key) {
...

May lead to a compiler optimization, as well as prevent any subclass from over-riding the
keyDown implementation.
When final is used on a class, type checking can occur at compile time.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 77 Chapter 9: Image Processing in Java

(C-heading) Packages
The package statement is used by the programmer to isolate the class and interface name
space so that only public classes and interfaces will be used by non-package
programmers. This restricts default access of classes and interfaces to package
programmers.
The MBNF for packages follows:
packageStatement ->

"package" packageName ";" .
packageName ->

identifier | (packageName "." identifier) .
In order to build a large program, it is often to your advantage to divide it into
subsections, each of which reside in a package. Import classes that are declared as public
and have public constructors. For example, DiffCAD has an HTML generator. HTML
stands for HyperText Markup Language and is a common file format that is read by
browsers on the world wide web (WWW). The DiffCAD HTML generator reads in C,
C++ or Java and outputs a colorized version of the source in HTML. The generator,
which consists of 15 difference source files, has a single public class with a single public
constructor. Anything that is not declared public in the package (i.e., that has private or
default visibility) will not be visible, even after the import statement is issued. The error:

Error : No constructor matching
HtmlGenerator(java.lang.String) found in class
htmlconverter.HtmlGenerator.
process_menuitem.java line 21 new HtmlGenerator("The
HTML Generator");

is emitted when
HtmlGenerator hg =

new HtmlGenerator("The HTML Generator");
hg.main(null);

is processed by the compiler, because the default visibility is not sufficient for the
package. Only by providing the public accessor for the constructor:

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 78 Chapter 9: Image Processing in Java

public HtmlGenerator(String title) {
can the HtmlGenerator class be instanced.
(BEGIN NOTE)
A package permits a grouping of multiple classes and interfaces into a unit that can be
developed and deployed separately.
(END NOTE)
The declaration of public from within a class is an explicit advertisement to those who
would import your package. It, in effect, says “you need this to use my package”.
When classes are written into a source file with no package declaration, they become a
part of the unnamed package. Code that resides in packages should not use code in an
unnamed package. Java has a compilation unit design goal. Packages are the mechanism
that Java provides for creating separate compilation units.
Every class must reside in a compilation unit. An unnamed package is, in effect, an
unnamed compilation unit. It is probably a Java design flaw to permit unnamed
compilation units to compile.
Packaging is essential for writing large programs. Once upon a time, in a fit of quick
prototyping frenzy, a programmer decided to write many classes without placing them in
a package. Of course the sophisticated reader will NEVER do this! Everything worked
just fine, the days were sunny and programmer was productive. Then, one day, the
program got so big and intertwined that even the programmer had trouble sorting out the
interdependencies. “If only packaging had been enforced, then I could have done it all
along”, he thought. The sun began to set as the well-intentioned efforts to introduce
packages into a large system began to fail. The programmer is still trying to grapple with
this massive code block, even today. The programmer’s productivity has fallen. The sun
no longer shines. He has taken to drinking lots of java. His blood pressure shot up as he
became a Javaholic. This led to no-good and he soon began writing books on Java.
Moral of story: Package small, package often!

(C-heading) Imports
Import is a reserved keyword in Java that permits packages to be brought into the name
space. Packages are like libraries in C. Packages are used to organize Java program
libraries and to control type access. For example, a class or interface type is only visible
outside of a package if it is declared as public. The required Java packages are java.lang,
java.util and java.io. The MBNF for the import statement follows:
 importStatement ->

"import" ((packageName "." "*" ";") |
(className | interfaceName)) ";" .

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 79 Chapter 9: Image Processing in Java

Extra imports are discarded, but can make compilation take longer. For example:
import java.io.*;
import java.util.*;

Import all the public classes and interfaces in the java.io and java.util packages. It is
possible to import a single class or interface from a package. This may prevent a name
space conflict. For example:

import java.io.FilenameFilter;
import java.io.File;

Are generally the only two classes needed to build a FilenameFilter. You can build up a
package by the use of the package statement.
(C-heading) Visibility
Visibility is the aspect of an identifier that permits access to the name space that contains
the identifier. If an identifier is visible, it may collide with another identifier. This is
called name-space contention. Further, if a method is not visible, it may not be invoked.
The MBNF for the modifier is:
 modifier ->

"public" | "private" | "protected" | "static" | "final" | "native" |
"synchronized" | "abstract" | "threadsafe" | "transient" .

The visibility modifier is a subset of the consisting of
visibility_modifier ->

"public" | "private" | "protected" .
1. public – gives the world access to your class, method or field variable. It is required for

those types you wish to advertise for use outside of your package. The public
modifier applies to classes, methods and variables.

2. protected – gives access to the class, subclass and package. It may only be applied to
methods and variables.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 80 Chapter 9: Image Processing in Java

3. default – gives package access. Classes that import the package will not be able to
access types that have default access. To give such access, the type must be
declared as public.

4. private protected - class/subclass access. It may only be applied to methods and
variables. Private protected prevents package access. Private protected is to
be removed with JDK 1.1.

5. private – accessible only within this class. Private access prevents inheritance. It may
only be applied to methods and variables.

It is idiomatic of Java to have a collection of public static methods contained in a public
final class with a private constructor that is never invoked. The Math package is like this.
So is the file utility package in DiffCAD, called futil. For example:

public final class futil {
 /**
 * Don't let anyone instantiate this class.
 */
 private futil() {}

Access by
non-
subclass
from
same
package

Access to
subclass
from
same
package

Access to
non-
subclass
from
different
package

Access to
subclass
from
different
package

Inherited
by
subclass
in asame
package

Inherited
by
subclass
in
different
package w=

private 0 0 0 0 0 0 0
private
protected 0 0 0 0 1 1 2
default 1 1 0 0 1 0 3
protected 1 1 0 0 1 1 4
public 1 1 1 1 1 1 6

Table 2.1. Visibility Matrix

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 81 Chapter 9: Image Processing in Java

Table 2.1 shows the visibility matrix for Java. A ‘1’ in the visibility matrix indicates a
true condition, a 0 indicates a false condition. The row is summed to obtain a “weight”
for the visibility vector. The weight is shown in the ‘w’ column. For example, private
gives no access outside of the class, so the weight is zero. Public gives you complete
access so the weight is 6. An example of both the use, and abuse, of the visibility
modifiers follows:

public class visible {
public String publicString = "publicString";
String defaultString ="defaultString";
protected String protectedString = "protectedString";
private protected String privateProtectedString =

"privateProtectedString";
private String privateString = "privateString";
// What follows is not in the Spec...it just worked

here.
private public String privatePublicString =

"privatePublic"; //gosh!
public private String publicPrivateString =

"publicPrivate"; //a stranger in a stranger land...
protected public String protectedPublicString =

"protectedPublic"; //can you stand it?
public protected String publicProtectedString =

"publicProtected"; //art is what you get away with.
public protected private String

publicProtectedPrivateString = "publicProtectedPrivate";
}

public class invisible extends visible {
String iGetPublicStrings = publicString;
String iGetDefaultStrings = defaultString;
String iGetProtectedStrings = protectedString;
String iGetPrivateProtectedStrings =

privateProtectedString;
 // String iDontGetPrivateStrings = privateString;
 String iGetPrivatePublicStrings = privatePublicString;
 String iGetpublicPrivateStrings = publicPrivateString;
 String iGetProtectedPublicStrings =

protectedPublicString;
 String iGetPublicProtectedStrings =

publicProtectedString;
 String iGetPublicProtectedPrivateStrings =

publicProtectedPrivateString;
}

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 82 Chapter 9: Image Processing in Java

(BEGIN NOTE) The public modifier appears to override private, no matter what the
order. (END NOTE) This is not a part of the specification for Java. It just appears to
work. It is probably within the vendors right to declare a private public declaration a
semantic error.
(C-heading) Interfaces
An interface is like an abstract class with only abstract methods and constant fields. The
interface can hold no method implementations and is defined just like a class except that
it uses the keyword interface rather than class. What follows is the MBNF for the
interface declaration:
 interfaceDeclaration ->

< modifier > "interface" identifier ["extends" interfaceName < ","
interfaceName >] "{" < fieldDeclaration > "}" .

 fieldDeclaration ->
([docComment] (methodDeclaration | constructorDeclaration |
variableDeclaration)) | staticInitializer | ";" .

 interfaceName ->
identifier | (packageName "." identifier) .

Note that an interface declaration can extend multiple interfaces. The interface can serve
as another reference type, but can never be instanced. Thus classes that implement an
interface can always be cast back to the interface type.
 Class identifiers and interface identifiers are always global to the package in which they
reside. Therefore classes and interfaces in the same package must have different
identifiers. It is redundant to declare an interface as abstract as interfaces are implicitly
abstract. It is redundant to declare the field declarations as public static and final as they
are implicitly public static and final. All fields must be initialized. There is no primordial
interface (like the Object class is a primordial class). It is a compile-time error to have
ambiguous inherited fields in an interface. For example:

public interface real_dumb {
double PI = 4;

}
public interface dum_constants {

double PI = 3;
}

public interface mixed_up_constants extends dum_constants,
real_dumb

{double foo=PI;}
Error : Reference to PI is ambiguous. It is defined in
interface real_dumb and interface dum_constants.
constants.java line 17 {double foo=PI;}

The following are some correct uses of interfaces. For the first example we show how
interfaces may be used to group constants together:

public interface constants {
 double Pi_on_180 = Math.PI / 180;
 double PI = Math.PI;
 double Pi_on_2 = Math.PI/2;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 83 Chapter 9: Image Processing in Java

 double Pi_on_4 = Math.PI/4;
}

Here is one where there is a large array of symbols being stored:
public interface CplusplusText {

public static String cplusplusReservedWords[] = {
"asm",
"auto",
"break",
"case",
"catch",
"char",
"class",
"const",
"continue",
"default",
"delete",
"do",
"double",
"else",
"enum",
"extern",

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 84 Chapter 9: Image Processing in Java

"float",
"friend",
"for",
"goto",
"if",
"inline",
"int",
"long",
"new",
"operator",
"private",
"protected",
"public",
"register",
"return",
"short",
"signed",
"sizeof",
"static",
"struct",
"switch",
"this",
"throw",
"try",
"typedef",
"union",
"unsigned",
"virtual",
"void",
"volatile",
"while"

};
In the 125 files that make up our DiffCAD program, the interface was never used to
extend multiple interfaces. We find assertions in other books, that the interface gives Java
a kind of multiple inheritance, to be groundless. Java has no multiple inheritance for
implementations. Java has multiple inheritance of prototypes via interfaces. A good use
for multiple inheritance

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 85 Chapter 9: Image Processing in Java

of prototypes is as a work-around for Java’s strong typing. Strong typing constrains
method invocation. We will see examples of this in the following chapter.
(B-heading) Wrapper classes
The wrapper classes are used to promote a primitive data type into a reference data type.
After this promotion is accomplished, the reference type permits a series of operations on
the primitive data type that were not otherwise possible. There are somethings that can
only be done with an instance, such as the adding of an element to a vector. Primitive
values cannot be the target of method invocations. All of the wrapper types support a
method invocation that converts them to a string representation. All may be constructed
from a string. All support an

 public boolean equals(Object obj)
to check an object for equality of value. Keep in mind that the value of a wrapper object
is stored in a private class field. When comparing two strings, use equals and never ==.
For example:

if (arg.equals(“this is right”) {...
will check the value of the string in arg against the value of “this is right”. The following
example checks the value of the arg reference with the compile-time constant string
reference. This is probably not what the programmer wants:

if (arg == “this is wrong”) {...
(WARNING)
Always use the equals method to check value when comparing wrapper instances.
(END WARNING)
(C-heading) Boolean
The Boolean class promotes the primitive boolean type to a reference type. Construction
is overloaded to handle both the primitive boolean type and a string. The string must be
equal to the word “true”, ignoring case, before the Boolean instance will be true. For
example:

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 86 Chapter 9: Image Processing in Java

Boolean b = Boolean(“true”);
Boolean b = Boolean(“True”);
Boolean b = Boolean(“TRuE”);

will all lead to b representing true. There are two static conversion methods available for
use in the Boolean class:

public static Boolean valueOf(String s) – returns a Boolean
instance.
Boolean b = Boolean.valueOf(“true”); // sets b to true
Boolean b = Boolean.valueOf(“yes”); // sets b to false

(NOTE)
This different from getBoolean, which has as its’ return, a primitive boolean type. Note
that sections 20.4.9 and 20.4.10 of the Java Specification appear to show both of these
functions returning the primitive boolean, which is an error in the specification.
(END NOTE)

public static boolean getBoolean(String name)
boolean b = Boolean.getBoolean(“yes”); // sets b to false

(C-heading) Character
The Character class is a wrapper class for the primitive Java char data type. When
embedded in the Java code, the ‘a’ character is surrounded by single quotes, whereas
strings use double quotes. Any Unicode character is permitted as an argument for the
construction of a Character instance. In addition, there are methods for converting to and
from Character and char. For example:

Character aCharacter = new Character(‘π’);
char aChar = ‘©’;
a = new Character(aChar);
aChar = aCharacter.charValue();

Neither an array of char nor an array of Character constitute a String. The Character class
supports several public static methods that are useful for testing and processing char’s.
All chars are Unicode and so all comparisons are written for Unicode. For example:

 public static boolean isDigit(char ch)

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 87 Chapter 9: Image Processing in Java

return true if ch is a Unicode digit
Java version 1.0.1 supports ISO-LATIN-1('0'through'9'), Arabic-Indic, ExtendedArabic-
Indic, Devanagari, Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu, Kannada,
Malayalam, Thai, and Lao digits.
The Character has a series of public static Char test facilities that return a boolean. For
example:

boolean aBoolean;
char aChar = 'a';

aBoolean = Character.isDefined(aChar);
aBoolean = Character.isLowerCase(aChar);
aBoolean = Character.isUpperCase(aChar);
aBoolean = Character.isTitleCase(aChar);
aBoolean = Character.isDigit(aChar);
aBoolean = Character.isLetter(aChar);
aBoolean = Character.isLetterOrDigit(aChar);
aBoolean = Character.isJavaLetter(aChar);
aBoolean = Character.isJavaLetterOrDigit(aChar);)
aBoolean = Character.isSpace(aChar);

The Character class also support a series of char conversions that are public and static.
These may be accessed without ever making a Character instance. For example:

aChar = Character.toLowerCase(aChar);
aChar = Character.toUpperCase(aChar);
aChar = Character.toTitleCase(aChar);

// returns an 'A', hex representation of 10.
aChar = Character.forDigit(10, 16);

// returns 10, the hex value of 'A'
int digit = Character.digit(aChar, 16);
int i = Character.MIN_RADIX // i = 2;
int i = Character.MAX_RADIX // i = 36;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 88 Chapter 9: Image Processing in Java

char aChar = Character.MIN_VALUE // aChar = '\u0000';
char aChar = Character.MAX_VALUE // aChar = '\uffff';

About the only thing you can do with a Character instance is
Character aCharacter = new Character(‘π’);
String aString = aCharacter.toString();
aBoolean = aCharacter.equals(aCharacter);
int anInt = aCharacter.hashCode();

(C-heading) The numeric wrapper classes
Each of the numeric primitive types has an associated wrapper class. In the following
examples let:

int i = 0;
long l = 0;
float f = 0;
double d = 0;

The name of the primitive numeric type, followed by its constructor wrapper class, is
given below:

Integer I = new Integer(i);
Long L = new Long(l);
Float F = new Float(f);
Double D = new Double(d);

Each of the numeric wrapper classes supports a conversion to a string:
String SI = I.toString();
String SL = L.toString();
String SF = F.toString();
String SD = D.toString();

Each of the numeric wrapper classes supports a conversion from a string to a reference
type:

Integer I = new Integer(SI);

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 89 Chapter 9: Image Processing in Java

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 90 Chapter 9: Image Processing in Java

Long L = new Long(SL);
Float F = new Float(SF);
Double D = new Double(SD);

(NOTE) Any string to numeric conversion can throw a NumberFormat Exception. If you
read a string (from a user’s input or file) you are strongly advised to check the input.
(END NOTE)
Each of the numeric wrapper classes supports a conversion from a string to a primitive
type using a static method invocation:

I = Integer.valueOf(SI);
L = Long.valueOf(SL);
F = Float.valueOf(SF);
D = Double.valueOf(SD);

An example of the use of the static valueOf method follows:
 try {value = Float.valueOf(getText()).floatValue();}
 catch(NumberFormatException e) {
 value = 0;
 }

The scalar numeric wrappers (Integer and Long) support an overloaded valueOf and
toString method. The toString method will yield a string in any radix between 2 and 36,
inclusive. For example

SI = Integer.toString(i, 2); // yields a binary string
SL = Long.toString(l, 16); // yields a hex string
I = Integer.valueOf(SI,2); // converts from binary string
L = Long.valueOf(SL,16); // converts from hex string

To perform string conversions to primitive types, there are a static methods called
parseInt and parseLong:

i = Integer.parseInt(SI); // converts from decimal string
i = Integer.parseInt(SI,2); // converts from binary string

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 91 Chapter 9: Image Processing in Java

l = Long.parseLong(SL,16); // converts from hex string
(B-heading) Strings
In Java’s java.lang package there is a class known as String. String instances in Java
cannot be changed once they are created. The reason for this is that once created, a string
instance is added to an internal string pool. The pool is a private a HashTable instance
that speeds string lookup operations. There is no public or private method (that we could
find) for removal of a String instance from the internal hash table. Thus, once created
strings remain unchanged for the life of the virtual machine.
The String class supports a series of public static methods that may be accessed without
ever making an instance of the string class. Suppose the following constants are pre-
defined:

boolean aBoolean;
char achar;
int anInt;
long aLong;
float aFloat;
double aDouble;
Object anObject;
String aString;
char[] aCharArray;
int arrayOffset, numberOfElementsToConvert;
int endIndex; // last position in array - 1;
StringBuffer aStringBuffer = new StringBuffer(100);
Byte [] ASCIIByteArray;
int hiByte;

The following examples show how to use the String class, given the above, pre-defined
contents:

aString = String.valueOf(anObject);
aString = String.valueOf(aCharArray);
aString = String.valueOf(aCharArray, arrayOffset,

numberOfElementsToConvert);
aString = String.valueOf(aBoolean);
aString = String.valueOf(aChar);

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 92 Chapter 9: Image Processing in Java

aString = String.valueOf(anInt);
aString = String.valueOf(aLong);
aString = String.valueOf(aFloat);
aString = String.valueOf(aDouble);

The String class constructor is overloaded so that:
aString = new String();
aString = new String(anotherString);
aString = new String(aStringBuffer);
aString = new String(aCharArray);
aString = new String(aCharArray, arrayOffset,
numberOfElementsToConvert);

The following examples show how to build aString with hiByte in most significant 8 bits,
and ASCIIByteArray elements in least significant 8 bits (the hiByte is typically 0):

aString = new String(ASCIIByteArray, hiByte);
aString = new String(ASCIIByteArray, hiByte,

arrayOffset,numberOfElementsToConvert);
The String class has a series of methods that use a string instance as a target. These
method typically involve extraction or conversion. For example:

aString = aString.toString();
aString = aString.substring(arrayOffset);
aString = aString.substring(arrayOffset, endIndex);
aString = aString.concat(anotherString)
//replace oldChar with aChar in aString
aString = aString.replace(oldChar, aChar);
aString = aString.toLowerCase();
aString = aString.toUpperCase();
// Trims leading and trailing whitespace
aString = aString.trim();
// intern returns a string from the private internal
// hash table set that will pass the
// aString == anotherString test

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 93 Chapter 9: Image Processing in Java

aString = anotherString.intern();

aBoolean = aString.equals(anObject);
anInt = aString.hashCode();
andInt = aString.length();
aChar = astring.charAt(anInt);
// get charArray from aString
aString.getChars(beginIndex,endIndex,

charArray, arrayOffset);
aString.getBytes(beginIndex,endIndex,

byteArray, arrayOffset)
charArray = aString.toCharArray();
aBoolean = aString.equalsIgnoreCase(anotherString);

CompareTo is a method that returns -1, +1 or 0. The string comparison is performed
using the underlying Unicode characters.

anInt = aString.compareTo(anotherString)
aBoolean = aString.regionMatches(beginIndex,anotherString,

arrayOffset, numberOfElementsToConvert)
aBoolean = aString.regionMatches(

boolean ignoreCase, arrayOffset,
anotherString, arrayOffset, numberOfElementsToConvert)

aBoolean = aString.startsWith(aString)
aBoolean = aString.startsWith(aString, arrayOffset)
aBoolean = aString.endsWith(aString)

There are some string search functions in the String class. When they fail they return -1.
// first location of aChar in aString
anInt = aString.indexOf(aChar);
// first location of aChar in aString starting from anInt
anInt = aString.indexOf(aChar, anInt);
// first location of aString in anotherString
anInt = anotherString.indexOf(aString);
// first location of aString in
// anotherString starting from anInt
anInt = anotherString.indexOf(aString, anInt);

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 94 Chapter 9: Image Processing in Java

// Find the last occurrence of a string or char in a string
// starting from anInt
anInt = aString.lastIndexOf(aChar);
anInt = aString.lastIndexOf(aChar, anInt);
anInt = aString.lastIndexOf(aString)
anInt = aString.lastIndexOf(aString, anInt);

(B-heading) Arrays
 An instance of an array is a reference-type instance. There is a variable that may be
accessed, but not set, called length. The length indicates the number of elements in the
array. Array elements start at element number zero and end at element number length - 1.
Any access beyond the end of the length of an array results in the
ArrayIndexOutOfBoundsException being thrown. The method, arraycopy will copy
values between arrays of the same type.
An array may hold any data type, but every element in the array must hold the same data
type. Arrays have fixed length and may be dynamically allocated. It is possible to make
deep arrays. For example:

 int deep_array[] [] [] [] [] [] [] [] [] [] = new
int [2] [2] [2] [2] [2] [2] [2] [2] [2] [2] ;
 int sum = 0;
 for (int i=0; i<2; i++) {
 deep_array[i] [i] [i] [i] [i] [i] [i] [i] [i]
[i] = 1;
 sum += deep_array[i] [i] [i] [i] [i] [i] [i]
[i] [i] [i];
 System.out.println("sum =" + sum);
 }
sum =1
sum =2

As long as there is enough memory. As pointed out in chapter 1, there both Java style
arrays and C/C++ style arrays.
(B-heading) Vectors
The Vector is a container class that resides in the java.util package. An instance of the
Vector class may be expanded dynamically. A container class is one that is designed to
store reference data types. Vectors are an excellent choice for implementing data
structures of variable length. The Vector class resides in the java.util package. It must be
imported before using. Vectors can hold any combination of objects. For example:

Vector v = new Vector();
Rectangle a = new Rectangle(10,20);
v.addElement(A);

Vectors cannot hold int, float, char, byte or any of the non-reference data types. The
following example shows a series of different data types all being added to the a Vector
instance:

 static public void add_elements(Vector v) {
 for (int i=0; i < number_of_rays.getValue(); i++) {

 v.addElement(grating_target_line[i]);
 v.addElement(camera_grating_line[i]);

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 95 Chapter 9: Image Processing in Java

 }
 v.addElement(camera);
 v.addElement(grating);
 v.addElement(wedge);
 v.addElement(laser);
 v.addElement(laser_wedge_line);
 } // add_elements

Having a collection of different instances in a Vector instance is a good way to
implement polymorphism. With polymorphism, you can cast all the instances stored in
the Vector instance into a common super-class that supports a common method. In the
example below, drawShapes is a Vector that contains several different instances. All are
subclasses of the Shape class. Thus, all can be cast into the Shape type. Also, the Shape
class has an abstract draw method. Thus, the draw method may be invoked on any
subclass of the Shape class, provided it has been properly cast. For example:

 for (int i = 0; i < drawnShapes.size(); i++) {
 s = (Shape)drawnShapes.elementAt(i);
 s.draw(g);
 }

(B-heading) Exceptions
The grammar of a language allows the formulation of code that will compile. However,
after compile-time, comes run-time. The Java language specification covers both the
syntax (compile-time) and the semantics (run-time) behavior of the Java environment.
Thus, the specification goes beyond the compiler and describes the behavior of the Java
machine. The Java machine will throw an exception under special run-time conditions.
This throw is a non-local transfer of the flow of control from the area that generated the
exception to a place that can catch the exception.
The MBNF of the try statement follows:
22. tryStatement ->

"try" statement < "catch" "(" parameter ")" statement > ["finally"
statement] .

Typically, a statement that can possibly fail is surrounded with the try and catch
keywords. This enables failure in the statement following the try to be intercepted and
handled. For example:

try {
// create an instance of your applet class
a = (Applet)

Class.forName(className).newInstance();
} catch (ClassNotFoundException e) {

System.out.println("ClassNotFoundException in
AppletFrame");

return;
} catch (InstantiationException e) {

System.out.println("InstantiationException in
AppletFrame");

return;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 96 Chapter 9: Image Processing in Java

} catch (IllegalAccessException e) {
System.out.println("IllegalAccessException in

AppletFrame");
return;

}
Sometimes no error is to be generated at all, we simply want the program to continue
running. For example:

 try {
 out.write(buffer);
 } catch(Exception e) { }

The programmer can make up exception names at will, just by extending the exception
class. For example:

class FileFormatException extends Exception {
 public FileFormatException(String s) {
 super(s);
 }

An overview of the java.lang exception classes is shown in Figure 2.3.
Figure 2.3. An overview of the java.lang exception classes

A zoom in of the java.lang.RuntimeException class hierarchy is shown in Figure 2.4.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 97 Chapter 9: Image Processing in Java

Figure 2.4. An overview of the java.lang.RuntimeException classes
(A-heading) Threads

Threads enable parallelism with a program. Threading provides a low-overhead context
switch. In the DiffCAD program, we use threads to display a digital clock in the lower
left-hand corner of the screen. This is shown in figure 2.5.

Figure 2.5. The Digital Clock
The Java specification says that threads use a shared memory paradigm to perform inter-
thread communication. This is the typical usage, however threads can use any number of
techniques to perform communication. For example, simulation of a distributed
computation scheme could be performed using threads and another communication
technique, perhaps involving the socket API. The Java language specification also says
that “Threads may be supported by having many hardware processors”. In fact this is not
yet implemented on any virtual machine that we know of, though we expect this situation
to change. Java makes use of the synchronized statement to make sure that a method
contained within a thread is executed atomically. Atomic operations appear to happen all
at once. Thus, synchronized methods cannot be interrupted by other threads. To put it
another way, synchronized methods prevent

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 98 Chapter 9: Image Processing in Java

other threads from running. If the synchronized method takes longer than the time
provided for sleeping, the method may not be updated frequently enough. The thread
class hierarchy is shown in Figure 2.6.

Figure 2.6 The Thread class hierarchy
Synchronized methods allow only one thread to access data at a time. This can prevent
data corruption. Synchronized methods can also prevent race conditions. The idea is that
different threads may have access to the same variable in an instance. If both threads
access the instance variable at the same time, then it is a race to see which thread will
effect the change first, hence the term, race condition. The solution is to create
synchronized accessor methods for every variable in an instance. Then, any change made
through the synchronized accessor methods will be atomic. If there is a mix between
synchronized accessor methods and asynchronous accessor methods, then the alterations
to the instance variables’ value are not atomic and the race condition may still exist.
Threads are run with a round-robin priority-queue driven scheduler. This can be over-
ridden with custom schedulers (whose composition are beyond the scope of this text).
Further if the Java virtual machine is written that does take advantage of multiple CPU’s,
task completion on multiple threads will not be predictable.
To make a new thread, subclass the Thread class and implement the run() method.
Instance the thread sub-class and then invoke the start() method on the instance to begin
thread execution.
Another way to make a thread is to use the Runnable interface. Any class that implements
the Runnable interface must implement the run method. The run method is invoked when
the thread is started. The thread is started when an instance of the runnable class is passed
to the Thread constructor and start is invoked.
The following is a simple thread example called RaceThread. (NOTE) The RaceThread

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 99 Chapter 9: Image Processing in Java

class extends the Thread class. To run an instance of the RaceThread, you must make an
instance of the RaceThread and use this instance as the target of a run() invocation. (END
NOTE)

1. class RaceThread extends Thread {

2. public void run() {
3. while (true) {
4. System.out.println("Priority=\t" +
getPriority());
5.

System.out.println("toString=\t"+toString());
6. System.out.println("getName=\t"+
getName());
7.

System.out.println("isDaemon=\t"+isDaemon());
8.

System.out.println("isAlive=\t"+isAlive());
9. try {Thread.sleep(10000);}
10. catch (InterruptedException e) {}
11. }
12. }
13. }

Now, take a good look at the run method. The run method is at the heart of any threads
activity. Classes that extend the thread class must implement the run method or they will
not run (they compile ok, but upon launch, nothing happens!). Next, have a look at the
while statement on line 3. It is an infinite loop! It will run until terminated. This makes
line 9 and 10 real important. Line 9 will put the thread to sleep for 10000 milliseconds
(10 seconds). The argument to Thread.sleep has to be a long integer. This makes sense
when you consider that there are 2log2 1000*60*60*24() = 226 milliseconds in a day. Put it
another way, a signed 32 bit integer will overflow in 231 −1 milliseconds, which is just

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 100 Chapter 9: Image Processing in Java

over 3.5 weeks. The 64 bit integer will overflow in 292.4 billion years. At this point we
will probably not be using 64 bit integers (or even FORTRAN). To put this in
perspective, the Suns’ corona will have engulfed the Earth by then. Thus this book will
almost certainly be out of print. To run the RaceThread example, use the following code:

 RaceThread r = new RaceThread();
 r.start();

The following will be printed every 10 seconds at the console:
Priority= 5
toString= Thread[Thread-2,5,main]
getName= Thread-2
isDaemon= false
isAlive= true

Java makes threading a part of the java.lang package. This means that you can expect
threading to be implemented, even on an embedded picoJava controller. Having threading
described in the Java specification means that multi-threaded Java programs are as
portable as Java.
 The following code creates the digital clock in DiffCAD:

1. import java.util.*;
2. import java.awt.*;
3. import java.applet.Applet;

Lines 1, 2 and 3 import the packages that DiffCAD needs in the DigitalThread class.

4. // DigitalThread must extend applet to getFontMetrics.
5. public class DigitalThreads extends Applet implements
Runnable {

A class that implements Runnable must provide an implementation for the run method.
Note that the Thread class has a specific type:

6. Thread runner;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 101 Chapter 9: Image Processing in Java

The Java machine will execute threads until they die. A thread is dead when its run()
method returns, or when the stop() method is called.

7. Graphics g;
8. Frame f;

9. public void start() {
10. if (runner == null) {

11. runner = new Thread(this);
12. runner.start();
13. }
14. }

The stop method allows you to invoke the stop method of a thread that has already been
stopped. Stopping a thread may be needed in order to avoid a race condition or to make
sure that system resources are made available for other threads. After the stop() method is
invoked, it may be that the thread should be restarted. Hence the reason for lines 9-14.
They enable you to start a thread that has been stopped. You may invoke start on a
method that is already started.

15. public void stop() {
16. if (runner != null) {
17. runner.stop();
18. runner = null;
19. }
20. }

In line 21, note the use of the synchronized keyword. This makes the draw method
atomic. Draw is one method we do not want to interrupt, particularly with another draw
method. Should this occur, draw could leave the screen in an inconsistent state. The
frame field, f is set by the calling program. On line 25 we see that the date is being
accessed from the java.util API.

21. synchronized private void draw() {
22. Dimension dim = f.size();
23. int height = dim.height - 60;
24. int width = dim.width;
25. Date theDate = new Date();
26. String date_string = theDate.toString();

A particularly notable problem with the theDate.toString() method is that it is going to
yield different returns on different platforms! For example, on Microsoft’s’ J++ compiler,
running under Windows 95/NT we found that the Eastern Daylight Time or Standard
Time (EDT, ST) initials are present. For this graphics routine to work, we must therefore

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 102 Chapter 9: Image Processing in Java

query the graphics context for the font metrics, in order to size a background fill rectangle
properly.

27. int xloc = 10;
28. int yloc = dim.height - 60;

The upper left-hand corner of the screen is the origin in Java. Thus, dim.width,
dim.height are the coordinates of the lower-right hand corner.

29. // g.setFont(f);
30. // get the string width in pixels.
31. int string_width = getFontMetrics(
32. g.getFont()).stringWidth(date_string);
33. int string_height = getFontMetrics(
34. g.getFont()).getHeight();

Line 32 makes use of the graphics context, g. This is set using the calling program. Thus
both the graphics context and the frame for the clock must be given before this program
will have a draw target. Line 35 draws a filled clear rectangle under the string so that the
string can be seen clearly, even if there is clutter on the screen.

35.
g.clearRect(xloc,yloc,string_width,string_height);

36. g.drawString(date_string,
xloc,height+xloc);
37. }

On line 38 we see the run method. This is required of classes that implement the run
method. Note that the only synchronized method, draw, is invoked on line 40. This gives
us a return within a second, which is the sleep time for this thread, as see on line 41.

38. public void run() {
39. while (true) {
40. draw();
41. try {Thread.sleep(1000);}
42. catch (InterruptedException e) {}
43. }
44. }
45. }

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 103 Chapter 9: Image Processing in Java

Start the DigitalThreads class by making an instance, setting the frame and graphics
variables, then invoking the run method. This is shown in the code below:

1. public static DigitalThreads
2. clock_thread = new DigitalThreads();
3. void start_clock() {
4. clock_thread.g = getGraphics();
5. clock_thread.f = main_frame;
6. clock_thread.start();

7. }
Note how in line 4 the graphics context was obtained from the local graphics context.
This is assuming that the graphics context for the instance of the class exists. Further note
how a main_frame variable was available for use in line 5. In fact the clock could be
place on any frame and graphics context. Notice that the clock will update the main
frame, even if it becomes hidden by other frames. The clock thread does not check when
its frame is hidden.
(B-heading) Thread Groups
One of the issues facing the programmer who wants to create many threads is that of
limited system resources. CPU time is a limited resource and the programmer would like
to keep an eye on the CPU usage and space requirements of the started threads. This is
critical information, that is needed by both the program designer and by the program
itself. The designer requires this information in order to engineer a program that reacts
well to the changing load on a system.
Every thread belongs to a thread group. The Thread groups are arranged in a thread
group hierarchy. At the root of this hierarchy is the System Thread Group. The System
Thread Group consists of 4 threads : the GarbageCollector, clock handler, idle thread and
finalizer thread. The main group is a child of the system thread group. The main group
has the default thread that starts at the main() method. When windows are started, new
threads are added to the main group. These threads include, but are not limited to, the
AWT-Input thread, AWT-Toolkit thread and the ScreenUpdater thread.
(B-heading) The Thread Manager

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 104 Chapter 9: Image Processing in Java

In this section shows how to write a program that will enable the display of the various
running threads on a system. At the heart of the thread management concept is the idea
that we need to access the System Thread Group (i.e., root thread) and then list all of the
children. The procedure is to create a thread and then traverse up the parent groups until
reaching the root group. The root group is identified by its null parentage.

Thread.currentThread()
Will return a reference to the current thread. and

Thread.currentThread().getThreadGroup()
returns a reference to the group that the current thread belongs to. The reference is of
ThreadGroup type. Once we have an instance of the current thread group, we can obtain
the parent of the current thread group, which is also a thread group. We continue this
traversal until the parent of the current thread group is null.
The following routine returns the SystemThreadGroup:

public ThreadGroup getSystemThreadGroup() {

ThreadGroup systemThreadGroup;
ThreadGroup parentThreadGroup;

systemThreadGroup =
Thread.currentThread().getThreadGroup();

while ((parentThreadGroup =
systemThreadGroup.getParent()) != null)

systemThreadGroup = parentThreadGroup;

return systemThreadGroup;
}

The following code returns the groups of the system in an array of groups. We note that
the number of groups is increase by 1 so that the root group may be added onto the end of
the array:

1. public ThreadGroup[] getThreadGroupsArray() {

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 105 Chapter 9: Image Processing in Java

2. ThreadGroup systemThreadGroup =
getSystemThreadGroup();

3. int numberOfGroups =
systemThreadGroup.activeGroupCount() +1;

4. ThreadGroup threadGroupsArray[] = new
5. ThreadGroup[numberOfGroups];

6. systemThreadGroup.enumerate(threadGroupsArray);

7. threadGroupsArray[numberOfGroups] =
systemThreadGroup;

8. return threadGroupsArray;
9. }

When group_instance.enumerate(ThreadGroup list[]) is called, all the thread group
instances and their descendants are place into the list. It does not include the
group_instance, itself, however. This is why it is added to the end of the array on line 7.
Another form of enumerate is associated with a thread instance,
group_instance.enumerate(Thread list{}) returns an array of threads in this thread group
and all descendant thread groups.

java.lang.ThreadGroup[name=system,maxpri=10]
 Thread[Finalizer thread,1,system]
 Thread[Idle thread,1,system]
 java.lang.ThreadGroup[name=main,maxpri=10]
 Thread[main,5,main]
 Thread[Thread-2,5,main]
 Thread[AWT-macos,5,main]
 Thread[Thread-3,5,main]
 Thread[Image Fetcher 0,8,main]
 Thread[Image Fetcher 1,8,main]
 Thread[Image Fetcher 2,8,main]
 Thread[Image Fetcher 3,8,main]
 Thread[Screen Updater,4,main]
 Thread[Audio Player,10,main]

The entire thread, called RaceThread (the new and improved version) appears below:
class RaceThread extends Thread {

 public void run() {
 while (true) {

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 106 Chapter 9: Image Processing in Java

printThreadGroups();
try {Thread.sleep(10000);}
catch (InterruptedException e) {}

}
}

public ThreadGroup getSystemThreadGroup() {

ThreadGroup systemThreadGroup;
ThreadGroup parentThreadGroup;

systemThreadGroup =
Thread.currentThread().getThreadGroup();

while ((parentThreadGroup =
systemThreadGroup.getParent()) != null)

systemThreadGroup = parentThreadGroup;

return systemThreadGroup;
}

public ThreadGroup[] getThreadGroupsArray() {

ThreadGroup systemThreadGroup =
getSystemThreadGroup();

int numberOfGroups =
systemThreadGroup.activeGroupCount() +1;

ThreadGroup threadGroupsArray[] = new
ThreadGroup[numberOfGroups];

systemThreadGroup.enumerate(threadGroupsArray);

threadGroupsArray[numberOfGroups] =
systemThreadGroup;

return threadGroupsArray;
}

public Thread [] getThreadsArray() {

ThreadGroup systemThreadGroup =
getSystemThreadGroup();

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 107 Chapter 9: Image Processing in Java

Thread threadsArray[]= new
Thread[systemThreadGroup.activeCount()];
 systemThreadGroup.enumerate(threadsArray);

return threadsArray ;
}

public void printThreadGroups() {
getSystemThreadGroup().list();

}

public void printThreads() {
Thread [] threadsArray = getThreadsArray();
for (int i = 0; i < threadsArray.length; i++)

System.out.println(threadsArray[i]);
}

public void printThreadsAndGroups() {
System.out.println("The threads are:");
printThreads();
System.out.println("The groups are:");
printThreadGroups();

}

}
(A-heading) Summary

This chapter introduced some of the Java programming basics. A great deal of Java was
not covered. The Java API was hardly touched and generally fills a large reference book.
It is the case that several excellent reference books on Java already exist, and we
wholeheartedly suggest that the reader obtain a few of them.

Roasting Your Own Java
Yield: 1/4 LB of the finest French Roast I ever had.

Place 113 GMs (about 1/4 LB) of Kenya AA green coffee
into a Presto PopCornNow™ Plus Air Popper.

For a French Roast, roast for 5 minutes.
(WARNING)

Never leave roaster unattended.
Always roast outdoors as roasting makes a heavy blue smoke.

Replace the plastic hood with a
 7.6 cm (3 inch) diameter by 20.3 cm (8 inch)

long metal stove pipe to prevent melting and discoloration of the hood.
Stove pipes are available in Home Centers.

Roasting with a hot-air popper violates the warranty
and makes popcorn taste funny.

(END WARNING)

(CN) 3. (CT) The Graphic User Interface

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 108 Chapter 9: Image Processing in Java

This chapter provides an overview of the GUI (Graphic User Interface) in Java. Central to
the look and feel of the Java GUI is the AWT (Abstract Window Toolkit). The AWT
consists of a collection of classes, some of which are extended 6 levels deep or more. For
example, a programmer who extends an Applet class inherits the methods and instance
variables from Object, Component, Container and Panel super classes. This means that
for complete coverage of the Applet class, we would have to describe the four base
classes, in addition to the applet class. Thorough coverage can lead to a dry presentation,
and is better left to references like [Chan and Lee]. Our approach is to cover the material
that is essential to understanding how to write digital signal processing programs. The
AWT is rich with many GUI options and widgets. We shall cover only those that are
essential to the task of digital signal processing. Many of the finer points of the AWT are
better left to book dedicated to the task, like [Geary and McClellan].
The first section is the Color class. We then lead directly into the graphics class. For the
purpose of digital signal processing we need to learn how to draw a line, draw a disk,
draw a string and draw an image. We also want to learn how to set colors and set fonts.
The Graphics class is deep and we do not attempt to give complete coverage of it.
(A-heading) The Color Class

The Color class is a public final class that is based on an RGB color model. The Color
class has several public final static colors that are predefined. An instance of the Color
class may be specified using two variants of the additive color synthesis system, RGB
(red, green and blue) or HSB (hue, saturation or brightness). The additive color synthesis
system is based on the premise that black is the absence of color and that white is the
combinations of all colors. For example, when red green and blue are combined in equal
amounts, the resulting color is white. This is consistent with electronic displays that emit
light. The subtractive synthesis color system, is based on the premise that black is the
combination of all colors and that white is the absence of all colors. This is a result of
light absorbing pigments that are applied to a white background. The subtractive
synthesis color primaries are CMY (cyan, magenta and yellow). The AWT does not
support subtractive synthesis.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 109 Chapter 9: Image Processing in Java

(B-heading) Class Summary
public final class Color {
public final static Color white
public final static Color lightGray
public final static Color gray
public final static Color darkGray
public final static Color black
public final static Color red
public final static Color pink
public final static Color orange
public final static Color yellow
public final static Color green
public final static Color magenta
public final static Color cyan
public final static Color blue
public Color(int r, int g, int b)
public Color(int rgb)
public Color(float r, float g, float b)
public int getRed()
public int getGreen()
public int getBlue()
public int getRGB()
public Color brighter()
public Color darker()
public int hashCode()
public boolean equals(Object obj)
public String toString()
public static Color getColor(String nm)
public static Color getColor(String nm, Color v)
public static Color getColor(String nm, int v)
public static int HSBtoRGB(float hue, float saturation,
float brightness)
public static float[] RGBtoHSB(int r, int g, int b, float[]
hsbvals)
public static Color getHSBColor(float h, float s, float b)
}

(B-heading) Class Usage
Suppose that the following variables are defined:

Color c,c1;
int r, g, b;
float rf, gf, bf;
int anInt;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 110 Chapter 9: Image Processing in Java

Then to access the built-in color names use:
c = Color.white;
c = Color.gray;
c = Color.lightGray;
c = Color.darkGray;
c = Color.black;
c = Color.red;
c = Color.pink;
c = Color.orange;
c = Color.yellow;
c = Color.green;
c = Color.magneta;
c = Color.cyan;
c = Color.blue;

To construct a new color use:
c = new Color(r, g, b);

The AWT assumes that the r, g, and b quantities range from 0..255. Truncation results if
the range assumption is violated. In fact, the color is typically a packed int consisting of a
blue component in bits 0-7, a green component in bits 8-15, and a red component in bits
16-23. To instantiate a new color from an existing instance:

c1 = new Color(c);
To instantiate a new color from red, green and blue components in the range from 0..1,
inclusive use:

c = new Color(rf, gf, bf);
To get the components of a color use:

r = c.getRed();
r = c.getGreen();
r = c.getBlue();

To get a 24 bit RGB color packed into an int and typed as an int:
anInt = c.getRGB();

To brighten or darken a color:
c.brighter();
c.darker();

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 111 Chapter 9: Image Processing in Java

To obtain the color hashCode (implemented as getRGB()):
anInt = c.hashCode();

To compare color values:
aBoolean = c.equals(c2);

To convert to string:
str = c.toString();

If nm is a valid color property name, the Integer class can use the getInteger method to
map the property name into a color. This is done with the following static methods:

c1 = Color.getColor(nm);
To return a color if the property name is undefined:

c1 = Color.getColor(nm, aColor);
To return a color based on a 24 bit RGB color int, if name is undefined:

c1 = Color.getColor(nm, anInt);
(BEGIN NOTE)
Color properties must be set by the Java application, they are not predefined.
(END NOTE)
To convert a floating point description of hue, saturation and brightness to the RGB
model (with a 24 bit int) use:

// ranging from 0..1 inclusive
float hue, satuation, brightness;
anInt = Color.HSBtoRGB(hue, saturation, brightness);

To convert from RBG to HSB, there are two methods to choose from:
float hsbvals[];
int r, g, b; // r, g and b range from 0..255
hsbvals = Color.RGBtoHSB(r, g, b, null);
Color.RGBtoHSB(r, g, b, hsbvals);

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 112 Chapter 9: Image Processing in Java

Both return 3 values in the hsbvals array.
To make an instance of a color from an HSB floating point triplet use:

Color aColor = Color.HSBtoRGB(h, s, b);
 (A-heading) The Graphics Class

The graphics class is used to draw lines, shapes, images and characters. The Graphics
class resides in the java.awt package and is an abstract base class. Since the Graphics
class is abstract, it may never be created by the invocation of new. Instead, it is created by
an instance of a Component. The graphics class has a default coordinate system, as
shown in Figure 3.1.

Figure 3.1 The Default Coordinate System of the Graphics Class
(B-heading) Class Summary

public abstract class Graphics {
public abstract Graphics create()
public Graphics create(int x, int y, int width, int height)
public abstract void translate(int x, int y)
public abstract Color getColor()
public abstract void setColor(Color c)
public abstract void setPaintMode()
public abstract void setXORMode(Color c1)
public abstract Font getFont()
public abstract void setFont(Font font)

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 113 Chapter 9: Image Processing in Java

public FontMetrics getFontMetrics()
public abstract FontMetrics getFontMetrics(Font f)
public abstract Rectangle getClipRect()
public abstract void clipRect(int x, int y, int width, int
height)
public abstract void copyArea(int x, int y, int width, int
height, int dx, int dy)
public abstract void drawLine(int x1, int y1, int x2, int
y2)
public abstract void fillRect(int x, int y, int width, int
height)
public void drawRect(int x, int y, int width, int height)
public abstract void clearRect(int x, int y, int width, int
height)
public abstract void drawRoundRect(int x, int y, int width,
int height, int arcWidth, int arcHeight)
public abstract void fillRoundRect(int x, int y, int width,
int height, int arcWidth, int arcHeight)
public void draw3DRect(int x, int y, int width, int height,
boolean raised)
public void fill3DRect(int x, int y, int width, int height,
boolean raised)
public abstract void drawOval(int x, int y, int width, int
height)
public abstract void fillOval(int x, int y, int width, int
height)
public abstract void drawArc(int x, int y, int width, int
height,int startAngle, int arcAngle)
public abstract void fillArc(int x, int y, int width, int
height,int startAngle, int arcAngle)
public abstract void drawPolygon(int xPoints[], int
yPoints[], int nPoints)
public void drawPolygon(Polygon p)
public abstract void fillPolygon(int xPoints[], int
yPoints[], int nPoints)
public void fillPolygon(Polygon p)
public abstract void drawString(String str, int x, int y)
public void drawChars(char data[], int offset, int length,
int x, int y)
public void drawBytes(byte data[], int offset, int length,
int x, int y)
public abstract boolean drawImage(Image img, int x, int y,
ImageObserver observer)
public abstract boolean drawImage(Image img, int x, int y,
int width, int height, ImageObserver observer)
public abstract boolean drawImage(Image img, int x, int y,
Color bgcolor, ImageObserver observer)

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 114 Chapter 9: Image Processing in Java

public abstract boolean drawImage(Image img, int x, int y,
int width, int height, Color bgcolor, ImageObserver
observer)
public abstract void dispose()
public void finalize()
public String toString()
}

(B-heading) Class Usage
The Graphics class supports a simple raster graphics package. Suppose the following
constants are predefined:

Color aColor;
Graphics g;
Rectangle aRectangle;
int x, y, x1, y1, x2, y2;
Boolean raised;
int height, width, arcHeight, arcWidth, nPoint;
int xArray[], yArray[];
char charArray[];
int numberOfItemToDraw, offsetIntoArray;
byte byteArray[];
Image img;
ImageObserver anImageObserver;

To create a graphics instance use:
Graphics g1 = g.create(x, y, width, height);

There are color methods for getting and setting the foreground color of the graphics
instance:

aColor = g.getColor();
g.setColor(aColor);

There are paint methods for setting the graphics instance to overwrite in xor paint mode:
g.setPaintMode();
g.setXORMode(aColor);

There are clipping methods for shrinking and for getting the clipping rectangle:
aRectangle = g.getClipRect();
g.clipRect(x, y, width, height);

The Graphics class supports a method for painting a rectangle with the background color:
clearRect(int x, int y, int width, int height);

To translate the coordinates of the Graphics instance use:
g.translate(x, y);

To get and set the fonts of the Graphics instance:
aFont = g.getFont();
g.setFont(aFont);

To get the font metrics for a graphics instance or for a font:
theFontMetrics = g.getFontMetrics();
theFontMetrics = g.getFontMetrics(aFont);

To get the clipping rectangle:
aRectangle = g.getClipRect();

To shrink the clipping rectangle:
g.clipRect(x, y, width, height);

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 115 Chapter 9: Image Processing in Java

To copy and translate a rectangular area of the screen by dx, dy:
g.copyArea(x, y, width, height, dx, dy);

To draw a line between x1, y1 and x2, y2:
g.drawLine(x1, y1, x2, y2);

To fill a rectangle with the current color:
g.fillRect(x, y, width, height);

To draw a rectangle outline with with the current color:
g.drawRect(x, y, width, height);

The drawRect method is currently implemented with a series of four draw-lines.
Hopefully this will change as the AWT becomes more optimized.
To clear a rectangular area of the screen, the Graphics class draws a rectangle with the
current background color:

g.clearRect(x, y, width, height);
The Graphics class provides rounded shape drawing. When a rounded shape is drawn, the
arcWidth and arcHeight are used. The arcWidth and arcHeight are the width and height
of an ellipse used to draw the rounded corners. To draw the outline of a rectangle with

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 116 Chapter 9: Image Processing in Java

rounded corners, using the current color:
g.drawRoundRect(x, y, width, height, arcWidth, arcHeight);

To draw a filled rectangle with rounded corners, using the current color:
g.fillRoundRect(x, y, width, height, arcWidth, arcHeight);

To draw a highlighted 3-D rectangle using two colors:
g.draw3DRect(x, y, width, height, raised);

If raised is true, the rectantle appears raised. This is currently implemented using darker
and brighter colors to create hi-lights. The same rectangle may also be drawn filled:

g.fill3DRect(x, y, width, height, raised);
To draw an oval outline or a filled oval use:

g.drawOval(x, y, width, height);
g.fillOval(x, y, width, height);

To draw an arc inscribed in a rectangle, starting at a startAngle and ending at
startAngle+arcAngle, use:

g.drawArc(x, y, width, height, startAngle, arcAngle);
Angles are in degrees. Zero degrees is parallel to the X-axis and positive angles are
measured in a counter-clockwise direction. For the filled form of the arc:

g.fillArc(x, y, width, height, startAngle, arcAngle);
To draw a polygon using an array of (x,y) coordinates:

g.drawPolygon(xArray, yArray, nPoints);
To draw a polygon using an instance of the Polygon class:

g.drawPolygon(aPolygon);
The drawPolygon method is implemented with a call to

drawPolygon(aPolygon.xpoints, aPolygon.ypoints,
aPolygon.npoints);

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 117 Chapter 9: Image Processing in Java

To fill the polygon with the current color
g.fillPolygon(xArray, yArray, nPoints);

There must be more than 3 points or the polygon call is ignored. Further, if the polygon
has overlapping parts the even-odd fill rule is used. The even-odd fill rule is typically
implemented using a scanline that is drawn from left to right. If the scanline crosses the
edge of the polygon an odd number of times, the pixels are inside the polygon and will
be filled, otherwise they fall outside of the polygon. This is a typical approach to filling
concave polygons.

g.fillPolygon(aPolygon);
To draw a string starting at (x,y), using the current font and color:

String str = "Java is fun";
g.drawString(str,x,y);

To draw a character or byte array starting at (x,y), using the current font and color:
g.drawChars(charArray, offsetIntoArray, numberOfItemToDraw,
x, y);
g.drawBytes(byteArray, offsetIntoArray,
numberOfCharactersToDraw, x, y);

The drawBytes method assumes that the bytes represent the least significant 8 bits of the
Unicode characters. To draw an image at x,y and notify anImageObserver:

aBoolean = g.drawImage(img, x, y, anImageObserver);
To draw an image inside a rectangle (with optional scaling):

aBoolean = g.drawImage(img, x, y, width, height,
anImageObserver);

To draw an image with a background color:
aBoolean = g.drawImage(img, x, y, aColor,
anImageObserver);

To draw an image with a background color and in a rectangle:
aBoolean = g.drawImage(img, x, y, width, height, aColor,
anImageObserver);

To dispose of the graphics context (before the garbage collector does):
g.dispose();

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 118 Chapter 9: Image Processing in Java

The Graphics class overrides Object.finalize() with a dispose call:
g.finalize();

To convert the Graphics instance into a string:
g.toString();

The following sections give practical examples for the use of the methods in the Graphic
class.
(B-heading) How to draw a grid
In this section you will learn how to write a class that can draw a grid into a Graphics
instance. Consider the following code for drawing a grid:

1. import java.applet.*;
2. import java.util.*;
3. import java.awt.*;

Lines 1-3 are used to import packages into your program. Line 4 declares the class as a
final class. This prevents other programmers from subclassing the draw class.

4. final public class draw {
5. // prevent instantiation
6. private draw() {}

Line 6 declares the constructor for the draw class to be private. This prevents the draw
class from being instanced by programmers who develop outside of the draw class. Line
7 is the grid method. The grid method takes an instance of a Graphics class. The
dimensions of the clip rectangle are extracted from a Rectangle instance using the width
and height members of the rectangle class. The width and height are stored as integers
and in units of pixels.

7. static void grid(Graphics g) {
8. Rectangle r = g.getClipRect();

The Geometry class is a custom class used by the DiffCAD program to store global
instances. Grid_spacing is an int that has units of pixels.

9. int grid_spacing = Geometry.grid_width.getValue();
10. int w = r.width;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 119 Chapter 9: Image Processing in Java

11. int h = r.height;
12. for (int x = 0; x < w; x = x + grid_spacing)
13. {g.drawLine(x,0,x,h);}
14. for (int y = 0; y < h; y = y + grid_spacing)
15. {g.drawLine(0,y,w,y);}
16. }
17. }

(A-heading) The FontMetrics Class

The FontMetrics class is a public abstract class in the java.awt package. Font metrics are
based on dimensions that are special to fonts. Font dimensions include the baseline,
ascent, descent, leading and height. Distances are generally given in pixels (when they are
returned by the FontMetrics attribute methods). The font metrics Dimensions are shown
in Figure 3.2

Figure 3.2 Font Metrics Dimensions
The leading is the space between lines. The name comes from the lead strips that were
inserted between slugs by a compositor. A slug is a line of cast type that is assembled by
a compositor. A compositor may be manual or automatic. An automatic compositor is
called a typesetting machine. The first practical typesetting machine, the Linotype
machine, was first used in 1886 by the New York Tribune [Mertle]. Nomenclature has
passed down from this era, essentially unchanged. Typical font metrics are in units of
points (at 72 points per inch). The raster orientation of the java.awt describes all the font
metrics in units of pixels. The number of pixels per inch is called the display's pitch.
Thus, there is no display independent way to automatically relate the font metrics of the
AWT to the font metrics of traditional typesetting. An automatic means would have to
have the ability to detect the pitch of the display before the traditional fontmetrics could
be computed.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 120 Chapter 9: Image Processing in Java

(B-heading) Class Summary
package java.awt;
public abstract class FontMetrics {
 public Font getFont()
 public int getLeading()
 public int getAscent()
 public int getDescent()
 public int getHeight()
 public int getMaxAscent()
 public int getMaxDescent()
 public int getMaxDecent()
 public int getMaxAdvance()
 public int charWidth(int ch)
 public int charWidth(char ch)
 public int stringWidth(String str)
 public int charsWidth(char data[], int off, int len)
 public int bytesWidth(byte data[], int off, int len)
 public int[] getWidths()
 public String toString()
}

(B-heading) Class Usage
Suppose that the following constants are defined:

Graphics g;
FontMetrics theFontMetrics = g.getFontMetrics();
Font aFont;
int distanceInPixels;
char ch;
char charArray[];
byte byteArray[];
int offset, length

To get the instance of the Font class upon which theFontMetrics are based:
afont = theFontMetrics.getFont();

To get the standard leading (line spacing between descent and ascent):
distanceInPixels = theFontMetrics.getLeading();

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 121 Chapter 9: Image Processing in Java

To get the ascent, descent and height:
distanceInPixels = theFontMetrics.getAscent();
distanceInPixels = theFontMetrics.getDescent();
distanceInPixels = theFontMetrics.getHeight();

To get the maximum ascent, and descent for a font:
distanceInPixels = theFontMetrics.getMaxAscent();
distanceInPixels = theFontMetrics.getMaxDescent();

To get the maximum height for a font, add the maximum descent and ascent. To get the
width of a character in the font:

distanceInPixels = theFontMetrics.charWidth(ch);
To get the width of a string in the font:

distanceInPixels = theFontMetrics.stringWidth(str);
To get the width of an array of characters in the font, starting at the offset and proceeding
for length characters:

distanceInPixels = theFontMetrics.charsWidth(charArray,
offset, length);

To get the width of an array of bytes in the font, starting at the offset and proceeding for
length characters (characters come in as bytes and are converted to 16 bit characters):

distanceInPixels = theFontMetrics.bytesWidth(byteArray,
offset, length);

To get the width of the first 256 characters in the font:
distanceInPixels = theFontMetrics.getWidths();

To get the string representation of the FontMetrics:
str = theFontMetrics.toString();

(B-heading) How to Draw a String with a Background
Often the user will wish to draw a string that has a background imposed. This is
important if the string is to be changed dynamically. In the

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 122 Chapter 9: Image Processing in Java

following example we show how to draw the date and time. The clearRect call will erase
a part of the display so that the string does not over-write itself. An example of the string,
with filled background in place, is shown in Figure 3.3.

Figure 3.3 String With Filled Background
synchronized private void draw() {
Dimension dim = f.size();
int height = dim.height - 60;
int width = dim.width;
Date theDate = new Date();
String date_string = theDate.toString();
int xloc = 10;
int yloc = dim.height - 60;
int string_width = getFontMetrics(

g.getFont()).stringWidth(date_string);
int string_height = getFontMetrics(

g.getFont()).getHeight();
g.clearRect(xloc,yloc,string_width,string_height);
g.drawString(date_string, xloc,height+xloc);
}

(B-heading) How to Draw a Vertical String
The following method takes a string and draws it vertically (something the AWT does not
normally do):

public void drawVerticalString(Graphics g,String str,int
x,int y) {
int str_height = g.getFontMetrics().getHeight();
(str_height*str.length())/2;
for (int i = 0; i<str.length(); i++) {

int char_width =
g.getFontMetrics().stringWidth(str.substring(i,i+1));

g.drawString(str.substring(i,i+1),x-char_width/2,y);
y+=str_height;

} // end for
} // end drawVerticalString

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 123 Chapter 9: Image Processing in Java

An example of the use of the vertical string is shown in Figure 3.4
Figure 3.4 An example of the Vertical String, The Histogram

(A-heading) The MenuItem Class

An instance of the MenuItem class is typically added to a Menu instance. When an event
in posted by a component, an instance of the MenuItem class may be passed in the target
member of the Event instance. Thus, it is typical to write handleEvent methods that will
compare targets with MenuItem instances, to see what the user has selected. The event
handler routines are discussed in more detail later in this chapter.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 124 Chapter 9: Image Processing in Java

(B-Heading) Class Summary
public class MenuItem extends java.awt.MenuComponent {
/* Instance Variables */
 boolean enabled;
 String label;
/* Methods */
 public void MenuItem(String label);
 public synchronized void addNotify();
 public String getLabel();
 public void setLabel(String label);
 public boolean isEnabled();
 public void enable();
 public void enable(boolean on);
 public void disable();
 public String paramString();
}

(B-heading) Class Usage
The MenuItem class is a subclass of the MenuComponent and is used to store a string
item that represents a menu choice. Assume that the following variables are predefined:

MenuItem ifft_mi = new MenuItem("[2] IFFT");
String label;
boolean on;

To get and set the string contained in the MenuItem instance, use:
str = ifft_mi.getLabel();
ifft_mi.setLabel(label);

To get and set the enabling on the MenuItem instance:
on = ifft_mi.isEnabled();
ifft_mi.enable(); // always enables
ifft_mi.enable(on); // conditionally enables
ifft_mi.disable(); // always disables

To obtain "label=" + ifft_mi.getLabel() use:
label = ifft_mi.paramString();

(BEGIN NOTE)

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 125 Chapter 9: Image Processing in Java

The MenuItem class has a special “-” label that is used has a separator. An example of the
separator’s appearance in the menu is shown in Figure 3.5
(END NOTE)

Figure 3.5 The Separator is shown between SendMail and ls.
(A-heading) The Event Class

The Event class is a reference data type that is a direct descendent of the java.lang.Object
class. The handleEvent method is invoked with an instance of the Event class whenever
user input is detected. Components are said to post events.
(B-heading) Class Summary

public class Event {
 public static final int SHIFT_MASK
 public static final int CTRL_MASK
 public static final int META_MASK
 public static final int ALT_MASK
 public static final int HOME
 public static final int END
 public static final int PGUP
 public static final int PGDN
 public static final int UP
 public static final int DOWN
 public static final int LEFT
 public static final int RIGHT
 public static final int F1
 public static final int F2
 public static final int F3
 public static final int F4
 public static final int F5
 public static final int F6
 public static final int F7
 public static final int F8
 public static final int F9
 public static final int F10
 public static final int F11
 public static final int F12
 public static final int WINDOW_DESTROY
 public static final int WINDOW_EXPOSE
 public static final int WINDOW_ICONIFY
 public static final int WINDOW_DEICONIFY
 public static final int WINDOW_MOVED
 public static final int KEY_PRESS
 public static final int KEY_RELEASE
 public static final int KEY_ACTION
 public static final int KEY_ACTION_RELEASE
 public static final int MOUSE_DOWN
 public static final int MOUSE_UP
 public static final int MOUSE_MOVE

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 126 Chapter 9: Image Processing in Java

 public static final int MOUSE_ENTER
 public static final int MOUSE_EXIT
 public static final int MOUSE_DRAG
 public static final int SCROLL_LINE_UP
 public static final int SCROLL_LINE_DOWN
 public static final int SCROLL_PAGE_UP
 public static final int SCROLL_PAGE_DOWN
 public static final int SCROLL_ABSOLUTE
 public static final int LIST_SELECT
 public static final int LIST_DESELECT
 public static final int ACTION_EVENT
 public static final int LOAD_FILE
 public static final int SAVE_FILE
 public static final int GOT_FOCUS
 public static final int LOST_FOCUS
 public Object target;
 public long when;
 public int id;
 public int x;
 public int y;
 public int key;
 public int modifiers;
 public int clickCount;
 public Object arg;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 127 Chapter 9: Image Processing in Java

 public Event evt;
/* Methods */
 public Event(Object target, long when, int id, int x,
int y, int key,int modifiers, Object arg)
 public Event(Object target, long when, int id, int x,
int y, int key, int modifiers)
 public Event(Object target, int id, Object arg)
 public void translate(int x, int y)
 public boolean shiftDown()
 public boolean controlDown()
 public boolean metaDown()
 protected String paramString()
 public String toString()
}

(B-heading) Class Usage
Suppose the following constants are pre-defined:

Object target;
long when; // a creation time stamp
int id; // the event type
int x, y; // event location
int key;
int modifiers;
Object arg;

The target is the instance of the Component class that posted the event. The when
member holds a creation time stamp, measured in milliseconds. The id permits decoding
of the event type with the use of a switch statement. The location of the event is
contained in (x,y). The state of the modifier keys is encoded into the modifiers parameter.
Arg is the instance of the class that is to be associated with the event. The Event class
constructor is overloaded so that we can write:

Event evt = new Event(target, id, arg);
Event evt = new Event(target, when, id, x, y, key,

modifiers);
Event evt = new Event(target, when, id, x, y, key,

modifiers, arg);
Typically, it is the users’ job to write code to decode the events. Unfortunately the
services provided by the AWT lead to an ad-hoc approach for event handling that causes
poor software engineering. As a preview, we will see that the AWT assumes that
keyboard events and menu choice events should be handled in different parts of the
source code. Often keyboard short-cuts are a means for speeding menu selections. Thus,
having menu selections processed in a different part of the source code from that of the
keyboard event leads to duplication of code. Further, it requires additional development
effort to add keyboard short cuts. A remedy for this design flaw in the AWT is discussed
in the following section.
There are several public variables associated with the Event class. Some of the public
variables are key-masks designed to help with decoding. An example of this is shown in
the Component section:

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 128 Chapter 9: Image Processing in Java

KEY_EVENT, SHIFT_MASK, CTRL_MASK,META_MASK, ALT_MASK, HOME,
END, PGUP, PGDN,KEY_PRESS, KEY_RELEASE, KEY_ACTION,
KEY_ACTION_RELEASE

The arrow keys are decoded with:
UP, DOWN, LEFT, RIGHT

The function keys are decoded with:
F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12

The window events are decoded with:
WINDOW_EVENT, WINDOW_DESTROY, WINDOW_EXPOSE,
WINDOW_ICONIFY, WINDOW_DEICONIFY, WINDOW_MOVED,
WINDOW_EVENT

The mouse events are decoded with:
MOUSE_EVENT, MOUSE_DOWN, MOUSE_UP, MOUSE_MOVE, MOUSE_ENTER,
MOUSE_EXIT, MOUSE_DRAG

The scrolling events are decoded with:
SCROLL_EVENT, SCROLL_LINE_UP, SCROLL_LINE_DOWN,
SCROLL_PAGE_UP, SCROLL_PAGE_DOWN, SCROLL_ABSOLUTE

The list events are decoded with:
LIST_EVENT, LIST_SELECT, LIST_DESELECT

There are a series of events that are classified as miscellaneous events:
MISC_EVENT, ACTION_EVENT,LOAD_FILE, SAVE_FILE, GOT_FOCUS,
LOST_FOCUS

The processing of Event instances is discussed in the following section.
(B-heading) Event Handling
The AWT model for handling events can lead to poor software engineering. This is due,
in part, to the event modularization policy that has been adopted by the AWT designers.
The designers sought to map mouse events, keyboard events and menu selection events
using a preprocessing

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 129 Chapter 9: Image Processing in Java

 facility built into the component class. This is based on the assumption that the
relationship between event production and code invocation is isomorphic. This is a
fallacious assumption because multple events can often be used to trigger a single task.
Often there will be a menu choice that has a keyboard short so that both a menu event and
a keypress event can trigger the same processing.
(B-heading) The Keyboard
To handle keyboard events in the AWT, a class that extends the Component class will
typically have its keyDown method invoked. In the following code fragment, the
AudioFrame class extends the Frame class (which is two generations removed from the
Component super class):

...
public class AudioFrame extends Frame {
...
public boolean keyDown(Event e, int key) {

switch (key) {
 case '2':
 ifft();
 return true;
 }
 System.out.println("Unknown key function:"+ key);
 return true;
}

(B-heading) The Target
To handle the passing of an instance, the Event class supports a target member that is of
Object type. To process this event a method must be written called handleEvent:

...
public class AudioFrame extends Frame {
...
Menu m = new Menu("Audio Menu");
...
MenuItem ifft_mi = addItem("[2] IFFT");

public MenuItem addItem(String itemName) {
MenuItem mi = new MenuItem(itemName);
m.add(mi);
return(mi);

}
public void init_menu() {

// my menu items
MenuBar menuBar = new MenuBar();

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 130 Chapter 9: Image Processing in Java

// Initialize the menu bar
setMenuBar(menuBar);

 menuBar.add(m);
...
public boolean handleEvent(Event e) {
...

if (e.target == ifft_mi) {

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 131 Chapter 9: Image Processing in Java

ifft();
return true;

}
...

One observation that the astute reader may have made is that the keyboard event called
the same code as the handleEvent. This is because the MenuItem instance (which appears
in the main menu bar) has a keyboard shortcut. Keyboard shortcuts are typically provided
as a convenience to the user. The duplication of keyboard and menu event processing is
typical of AWT event processing code. It is also unsound software engineering. The
reason is that parallel maintenance must be performed in both the keyboard and menu
event processing code. A more sound software engineering practice appears in the
following section.
(B-heading) The Evt Class
The Evt class is a public static class that contains a series of methods that address the
software engineering problem cited in the previous section. The basic assumption is that
several different event combinations can cause a single result, the example being a
keypress event or a menu item event. The solution involves the creation of an overloaded
match method:

class Evt {
...

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 132 Chapter 9: Image Processing in Java

 public static boolean matchKey(Event e, int key) {
 return ((e.id == Event.KEY_PRESS) && (e.key==key));
 }
 public static boolean match(Event e, int key, String
str) {
 return (matchKey(e,key) || e.arg.equals(str));
 }

 public static boolean match(Event e, int key, Object
target) {
 return (matchKey(e,key) || e.target.equals(target));
 }
...

The Evt class gives the immediate benefit of giving a two-way match between keyboard
and menuItem events. In the AudioFrame class, the keyDown method is eliminated and
replaced with the more powerful:

public boolean handleEvent(Event e) {
...

if (Evt.match(e,'2',ifft_mi)) {
ifft();
return true;

}
...

This single convention eliminates 60 lines of code in the AudioFrame keyDown event
handler. In order to add another level of automation to the event processing, we make the
assumption that the keyboard short cut will be encoded into the string representation of
the menuItem, as it appears in the main menu bar. Figure 3.6 shows a sample main menu
bar from the AudioFrame in the DiffCAD program:

Figure 3.6 Sample AudioFrame Main Menu Bar Pop-Up Menu
One feature of the AudioFrame keyboard short-cuts is that they conform to a convention.
The convention states: if a keyboard short-cut exists, it is encoded by a ‘[‘ followed by a
single character. Tognazzini reports that $50 million dollars of research led to the
conclusion that 1. users say keyboard shortcuts are faster and 2. the stopwatch shows that
mouse choices are faster. Tognazzini produced a guildline that states that visual interface
construction should not have its resources sapped by the keyboard interface [Tog]. As a
result of this suggestion (common sense?) we have combined the following check into a
single method called match:

 public static boolean match(Event e, Object target) {
 int c = getKeyboardShortCut(e, target);
 return match(e, c, target);
 }

In the following code, getKeyboardShortCut assumes that, if a keyboard short cut is
embedded in the target that: 1. the target will be an instance of a MenuItem, 2. that the
first character of the label will be a ‘[‘ and 3. that the second character of the label will be
the keyboard shortcut character.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 133 Chapter 9: Image Processing in Java

 public static int getKeyboardShortCut(Event e, Object
target) {
 if (target instanceof MenuItem) {
 MenuItem mi = (MenuItem) target;
 String str = mi.getLabel();
 int index = str.indexOf('[');
 if (index == 0) { return str.charAt(1);}
 }
 return -1;
 }

This leads to a more consistent interface (keyboard shortcuts are always encoded visually
and consistently), an easier to use API (only one call, instead of two) and better software
engineering (centralization of interface changes with fewer lines of code). Keyboard and
menu item events are now handled as follows:

...
public boolean handleEvent(Event e) {
...

if (Evt.match(e,ifft_mi)) {
ifft();
return true;

}
...

It takes no more effort to encode and process a keyboard short cut:
MenuItem ifft_mi = addItem("[2] IFFT");

than to process and set-up a visual interface, hence fufilling Tognazzini’s basic guideline.
(B-heading) The Mouse
Any pick device may generate mouse events (i.e., track-ball, pen-light, touch-pad, tablet,
etc.). The Java AWT only supports a single pick device and, no matter what the pick
device is, it is said to generate mouse events. To handle the mouse events, the AWT
Component class provides a suite of call back methods.
When mouse button is depressed:

public boolean mouseDown(Event evt, int x, int y)
When mouse button is depressed and mouse is moved:

public boolean mouseDrag(Event evt, int x, int y)
When mouse button is released:

public boolean mouseUp(Event evt, int x, int y)
When mouse is moved:

public boolean mouseMove(Event evt, int x, int y)
When mouse is over a component:

public boolean mouseEnter(Event evt, int x, int y)
When mouse leaves the component:

public boolean mouseExit(Event evt, int x, int y)
For the programmer to implement a mouse event requires that either the above events are
over-ridden or that a switch statement be used to process the Event.id. The choice
between switch statement and method is a question of preference, policy and good
software engineering practice. The switch statement is more flexible and permits more
“combination” events (like a shift-click for extending a selection). (BEGIN CD-ROM)

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 134 Chapter 9: Image Processing in Java

In the following code fragment taken from GUI.java, a handleEvent method is
implemented with a switch statement. (END CDROM)

1. public boolean handleEvent(Event e) {
2. switch (e.id) {

On line 3, the Event.MOUSE_UP indicates that the mouse button was released. When
this occurs, the processMouseUp method is invoked. This causes an object to change its
appearance.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 135 Chapter 9: Image Processing in Java

3. case Event.MOUSE_UP: {
4. String objectName = mouse_choice.getSelectedItem();
5. processMouseUp(objectName, e.x, e.y);
6. repaint();
7. }

On line 8, the Event.MOUSE_DOWN triggers a recording of the location of the mouse
cursor. The anchor point is used to provide relative mouse motion.

8. case Event.MOUSE_DOWN:
9. anchor = new point(e.x, e.y);

10. } // switch
(A-heading) The Component Class

The component class is an abstract class. Subclasses of components are used to make
instances that are able to be displayed on the screen. Examples of such component
subclasses include the Button, Canvas, Checkbox, Choice, Container, Label, List,
Scrollbar and TextComponent. Figure 3.7 shows the component hierarchy

Figure 3.7 Component Hierarchy
The Component class resides in the java.awt package. It implements the ImageObserver
interface. A component instance supports services that includes drawing support, event
handling, font control, color control, image handling, size and position control. These
services are provided by a series of methods and instance variables.
A suite of methods are available that support event handling. They are handleEvent,
mouseEnter, mouseExit, mouseMove, mouseDown, mouseDrag, mouseUp, keyDown and
action.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 136 Chapter 9: Image Processing in Java

The Component class provides a mechanism for invoking the specialized event handlers.
This mechanism is based on a switch statement that calls methods that are to be
implemented by subclasses. The methods are implemented in the Component.java class
by returning false. A return of false signals that the event was not processed.
(BEGIN NOTE)
Some components are used for input, some for output and some function as both input
and output. In a later section we will see an example of a Button Component which is
used only as an input. We will also see an example of a Label Component, which serves
only as an output. Later will will also see the Scrollbar Component. This can serve as
both an input and an output Component.
(END NOTE)
(B-heading) Class Summary

public abstract class Component implements ImageObserver {
public Container getParent()
public ComponentPeer getPeer()
public Toolkit getToolkit()
public boolean isValid()
public boolean isVisible()
public boolean isShowing()
public boolean isEnabled()
public Point location()
public Dimension size()
public Rectangle bounds()
public synchronized void enable()
public void enable(boolean cond)
public synchronized void disable()
public synchronized void show()
public void show(boolean cond)
public synchronized void hide()
public Color getForeground()
public synchronized void setForeground(Color c)
public Color getBackground()
public synchronized void setBackground(Color c)
public Font getFont()
public synchronized void setFont(Font f)
public synchronized ColorModel getColorModel()
public void move(int x, int y)
public void resize(int width, int height)
public void resize(Dimension d)

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 137 Chapter 9: Image Processing in Java

public synchronized void reshape(int x, int y, int width,
int height)
public Dimension preferredSize()
public Dimension minimumSize()
public void layout()
public void validate()
public void invalidate()
public Graphics getGraphics()
public FontMetrics getFontMetrics(Font font)
public void paint(Graphics g)
public void update(Graphics g)
public void paintAll(Graphics g)
public void repaint()
public void repaint(long tm)
public void repaint(int x, int y, int width, int height)
public void repaint(long tm, int x, int y, int width, int
height)
public void print(Graphics g)
public void printAll(Graphics g)
public boolean imageUpdate(Image img, int flags,int x, int
y, int w, int h)
public Image createImage(ImageProducer producer)
public Image createImage(int width, int height)
public boolean prepareImage(Image image, ImageObserver
observer)
public boolean prepareImage(Image image, int width, int
height, ImageObserver observer)
public int checkImage(Image image, ImageObserver observer)
public int checkImage(Image image, int width, int
height,ImageObserver observer)
public synchronized boolean inside(int x, int y)
public Component locate(int x, int y)
public void deliverEvent(Event e)
public boolean postEvent(Event e)
public boolean handleEvent(Event evt)
public boolean mouseDown(Event evt, int x, int y)
public boolean mouseDrag(Event evt, int x, int y)
public boolean mouseUp(Event evt, int x, int y)
public boolean mouseMove(Event evt, int x, int y)
public boolean mouseEnter(Event evt, int x, int y)
public boolean mouseExit(Event evt, int x, int y)
public boolean keyDown(Event evt, int key)
public boolean keyUp(Event evt, int key)
public boolean action(Event evt, Object what)
public void addNotify()
public synchronized void removeNotify()
public boolean gotFocus(Event evt, Object what)
public boolean lostFocus(Event evt, Object what)

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 138 Chapter 9: Image Processing in Java

public void requestFocus()
public void nextFocus()
public String toString()
public void list()
public void list(PrintStream out)
public void list(PrintStream out, int indent)

}
(B-heading) Class Usage
In the following we use the term "peer" to indicate the parallel that exists in the native
implementation of the component. For example, FileDialog class is a subclass of a
Component that has a different implementation on every platform. Java provides an API
that looks the same on all platforms. This is accomplished by the creation of a peer class
that provides the services needed to allow the API to function properly. This means that
the open dialog box created on a Mac is the standard file open dialog box that is supplied
by the operating system. Also, that the open dialog box on a windows system is the load
file dialog box that is native to windows. Peers are the mechanism by which Java
achieves a portable operating system interface.
Suppose the following variables are defined:

Boolean aBoolean;
int flags, indent;
ImageProducer anImageProducer;
To get the parent of the component:

parent = component.getParent();
To get the peer of the component:

componentPeer = component.getPeer();
To get the tool kit used by the component (see the toolkit class):
toolKit = component.getToolkit();
To see if the peer is known to the component and if the component is properly laid out:

valid = component.isValid();
To see if the Component is visible (the hide method can make this return false):

visible = component.isVisible();
Visible components may not be showing,

visible = component.isShowing();
Enabled components can generate events:

aBoolean = isEnabled();
To unconditionally enable a component:

component.enable();
To conditionally enable a component:

component.enable(cond);
To disable a component:

component.disable();
To get the location of the component relative to the parents’ coordinates system:

aPoint = component.location();
To get the dimensions and bounds of the component:

aDimension = component.size();
aRectangle = component.bounds();

To show the component:

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 139 Chapter 9: Image Processing in Java

component.show();
To conditionally show the component:

component.show(cond);
To hide the component:

component.hide();
To get the components foreground color (or that of its parent):

aColor = component.getForeground();
To set the components foreground color:

component.setForeground(aColor);
To get the components background color (or that of its parent):

aColor = component.getBackground();
To set the components background color:

component.setBackground(aColor);
To get the font from a component, or that of its parent if the component does not have
one set:

font = component.getFont();
To set the font of a component:

component.setFont(font);
To get the ColorModel used for display:

colorModel = component.getColorModel();
To move the Component using the parents’ coordinate system:

component.move(x, y);
To resize the Component:

component.resize(width, height);
component.resize(aDimension);

To reshape (resize and move) a component, in the parents coordinates:
component.reshape(x, y, width, height);

To get the preferred or minimum dimensions for the component:
aDimension = component.preferredSize();
aDimension = component.minimumSize();

To layout the component (typically, validate is used):
component.layout();

To layout the component and make the component valid:
component.validate();

To invalidate a component and its parents (marking for layout):
component.invalidate();

To get a Graphics context for the component (and to return null is there is no peer):
component.getGraphics();

To get the font metrics for the components peer, if available, otherwise returning the
fontmetrics for the component:

component.getFontMetrics(font);
To paint the component:

component.paint(graphics);
To update the component (typically called by repaint):

component.update(graphics);
To paint the component and the subcomponents:

component.paintAll(graphics);
To schedule a call to update:

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 140 Chapter 9: Image Processing in Java

component.repaint();
To schedule a call to update for a specific interval:

component.repaint(milliseconds);
component.repaint(x, y, width, height);

To schedule a call to update for a part of the component in a specific time:
component.repaint(milliseconds, x, y, width, height);

To paint the component on the graphics context (typically overridden):
component.print(graphics);

To invoke print on the component and subcomponents:
component.printAll(graphics);

To repaint the component after the image has been delivered, typically called by an image
observer, returns false if image has no changed:

aBoolean = component.imageUpdate(anImage, flags, x, y,
width, height);

Creates an image from the image producer see ImageProducer for more information:
anImage = component.createImage(anImageProducer);

To create an off-screen image for double buffering:
anImage = component.createImage(width, height);

To prepare an image for for display on the component. This starts a thread see the
ImageObserver:

component.prepareImage(anImage, anImageObservser);
To prepare the image with a particular width and height:

component.prepareImage(anImage, width, height,
anImageObservser);

To obtain the status of the screen representation of an image:
statusInt = component.checkImage(anImage, anImageObserver);

See ImageObserver to decode statusInt. To get the status for an image to be scaled:
statusInt = component.checkImage(anImage, width, height,
anImageObserver);

To see if a location is inside a components borders, relative to the coordinate system of
the component:

aBoolean = component.inside(x,y);
To get the component containing a location:

component = locate(x, y);
To post an event:

component.deliverEvent(anEvent); // the same as
postEvent(anEvent)

To call handleEvent with an event on a component (or, if the component does not handle
it, the parent of the component):

component.postEvent(anEvent);
See the event class of the previous section for a description of the events and how to
handle them. The component provides call back methods:

 public boolean mouseDown(Event evt, int x, int y)
 public boolean mouseDrag(Event evt, int x, int y)
 public boolean mouseUp(Event evt, int x, int y)
 public boolean mouseMove(Event evt, int x, int y)
 public boolean mouseEnter(Event evt, int x, int y)
 public boolean mouseExit(Event evt, int x, int y)

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 141 Chapter 9: Image Processing in Java

 public boolean keyDown(Event evt, int key)
 public boolean keyUp(Event evt, int key)
 public boolean action(Event evt, Object what)
 public boolean gotFocus(Event evt, Object what)
 public boolean lostFocus(Event evt, Object what)

An invocation of show or pack will call addNotify (the programmer typically does not).
AddNotify will make the component invalid and will cause a peer to be created:

component.addNotify();
To dispose a components peer:

component.removeNotify();
To get the keyboards focus (i.e., key strokes stream into your component):

component.requestFocus();
To advance the keyboard focus to the next component:

component.nextFocus();
To make a string representation of the component:

component.toString();
To invoke the list method on System.out:

component.list();
To invoke the list method on a PrintStream:

component.list(aPrintStream);
To call toString and print on the component and all its, with indentation: children:

component.list(aPrintStream, indent);
(A-heading) The Container Class

The Container class is an extension of the Component class that can hold Component
instances. The instances that are added to an instance of the Container classes are called
children. The Container class that holds the children is called the Parent. Since a
Container may hold other Containers, there is a possibility of a long line of descendents.
A parent is able to arrange the appearance of the children using a layout manager. Each
child has its own layout manager. If a container (or its children) are not properly laid out,
the layout is said to be invalid. A parent will layout the children and all their descendents
during the layout process. Containers that are valid will not be laid out needlessly.
From a knowledge representation point of view, the class structure is that of an AKO (A-
Kind-Of) taxonomy. This is different from the Container hierarchy. With the Container
hierarchy there is a has-a relationship. For example, a Frame has-a Panel that has-a
Checkbox. Both a Frame and a Panel are kinds-of Containers. Containers always have an
add method that provides the implementation for adding either components, or other
containers to the has-a hierarchy. A Container instance may handle events with its own
handleEvent implementation. Recall that getParent is inherited by any sub-class of
Component (i.e., the Container class).
(B-heading) Class Summary

 public abstract class Container extends Component
 public int countComponents()
 public synchronized Component getComponent(int n)
 public synchronized Component[] getComponents()
 public Insets insets()
 public Component add(Component comp)

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 142 Chapter 9: Image Processing in Java

 public synchronized Component add(Component comp, int
pos)
 public synchronized Component add(String name,
Component comp)
 public synchronized void remove(Component comp)
 public synchronized void removeAll()
 public LayoutManager getLayout()
 public void setLayout(LayoutManager mgr)
 public synchronized void layout()
 public synchronized void validate()
 public synchronized Dimension preferredSize()
 public synchronized Dimension minimumSize()
 public void paintComponents(Graphics g)
 public void printComponents(Graphics g)
 public void deliverEvent(Event e)
 public Component locate(int x, int y)
 public synchronized void addNotify()
 public synchronized void removeNotify()
 public void list(PrintStream out, int indent)
}

(B-heading) Class Usage
Suppose that the following variables are already defined:

Component comp, compArray[];
Container cont;
Insets insets;
int ncomponents, i;
String layoutName; // the name of a layout manager.
LayoutManager layMan;
Graphics gc;
int x,y;
PrintStream printStream;
int indent;

To get the number of components:
ncomponents = comp.countComponents();

To get the nth component:
comp = cont.getComponent(i);

To get all the components:
compArray = cont.getComponents();

To get the insets (rectangular dimensions, in pixels from the edges):
insets = cont.insets();
i = insets.bottom;
i = insets.top;
i = insets.left;
i = insets.right;

To add a Component to a Container:
cont.add(comp);

To add a Component to a Container in a given order (-1 means end of list):
cont.add(comp, i);

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 143 Chapter 9: Image Processing in Java

To add a Component to a Container using a layout manager:
cont.add(layoutName, i);

To remove a Component from a Container:
cont.remove(comp);

To delete all Components:
cont.removeAll();

To get and set the layout manager:
layMan = cont.getLayout();

cont.setLayout(layMan);
To perform layout on the Container but not the descendents:

cont.layout();
To perform layout on the Container and all descendents:

cont.validate();
To get the preferred and minimum dimensions:

Dimension dim = cont.preferredSize();
dim cont.minimumSize();

To paint or print the Components onto a Graphics instance:
cont.paintComponents(gc);
cont.printComponents(gc);

From within a Container (like a Frame) one may write:
printComponents(getGraphics());
paintComponents(getGraphics());

To post an Event to a Component, located at (e.x, e.y):
Event e;
cont.deliverEvent(e);

To locate a component at (x, y):
comp = cont.locate(x, y); // null returned if compoent
unfound

To send the addNotify message to all descendents and the super class:
cont.addNotify(); // this creates peer descendents

To send the removeNotify message to all descendents and the super class:
cont.removeNotify(); // this deletes peer descendents

To print out a list of the descendent:
cont.list(printStream, indent);

The indent is the indentation used during generation traversal. For example, (BEGIN
CDROM) in AudioFrame.java, a MenuItem event is handled by:

if (Evt.match(e,print_mi)) {
validate();
list(System.out,5);
return true;

}
This emits a component list, including 4 scrollbars, a Panel, a Label and an IntLabel:

lyon.AudioFrame[0,0,550x385,layout=java.awt.BorderLayout,ti
tle=/hd/current/Java%20book/code/au/ah.au]
java.awt.Scrollbar[0,0,550x16,val=14,vis=true,min=0,max=24,
horz]
java.awt.Scrollbar[0,354,550x16,val=0,vis=true,min=0,max=34
69,horz]

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 144 Chapter 9: Image Processing in Java

java.awt.Scrollbar[0,23,16x331,val=0,vis=true,min=-
300,max=300,vert]
java.awt.Scrollbar[534,23,16x331,val=8,vis=true,min=0,max=1
1,vert]
java.awt.Panel[0,0,550x23,layout=java.awt.FlowLayout]
java.awt.Label[206,5,101x13,align=left,label=Number of
Samples:]
lyon.IntLabel[312,5,32x13,align=left,label=3469]

This can be useful for debugging purposes. The Frame instance may be seen in Figure
3.8, the Digital Oscilliscope.
(A-heading) The Frame Class

The Frame class is descendent of the Window class (which in-turn descends from the
Container and Component classes). As an extension of the Window class, it add the
features of a title bar, menu bar, border, cursor and an icon image. The Frame implements
the MenuContainer and so a Frame may contain MenuComponents.
(B-heading) Class Summary

package java.awt;
public class Frame extends Window implements MenuContainer
 public static final int DEFAULT_CURSOR
 public static final int CROSSHAIR_CURSOR
 public static final int TEXT_CURSOR
 public static final int WAIT_CURSOR
 public static final int SW_RESIZE_CURSOR
 public static final int SE_RESIZE_CURSOR
 public static final int NW_RESIZE_CURSOR
 public static final int NE_RESIZE_CURSOR
 public static final int N_RESIZE_CURSOR
 public static final int S_RESIZE_CURSOR
 public static final int W_RESIZE_CURSOR
 public static final int E_RESIZE_CURSOR
 public static final int HAND_CURSOR
 public static final int MOVE_CURSOR
 public Frame()
 public Frame(String title)
 public synchronized void addNotify()
 public String getTitle()
 public void setTitle(String title)
 public Image getIconImage()
 public void setIconImage(Image image)
 public MenuBar getMenuBar()
 public synchronized void setMenuBar(MenuBar mb)
 public synchronized void remove(MenuComponent m)
 public synchronized void dispose()
 public boolean isResizable()
 public void setResizable(boolean resizable)
 public void setCursor(int cursorType)
 public int getCursorType()

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 145 Chapter 9: Image Processing in Java

}
(B-heading) Class Usage
Suppose that

Frame f = new Frame("Title of Frame");
is predefined. The Frame constructor is overloaded. You may either pass a string (which
becomes the title of the frame) or you may leave the frame untitled:

Frame foo = new Frame();
Frame titledFrame = new Frame("Here is a title");

Frame instances always start life as being invisible and with a layout called
BorderLayout. To get and set the title of a frame use:

String title = f.getTitle();
f.setTitle("My title");

To get and set the frames icon image:
Image icon = f.getIconImage();
f.setIconImage(icon);

To get and set the frames menu bar:
MenuBar mb = f.getMenuBar();
f.setMenuBar(mb);

The getMenuBar method returns null if no menu bar was set.
To remove the menu bar:

f.remove(m);
To dispose of the frame:

f.dispose;
To see if the frame is resizable:

aBoolean = f.isResizable();
To set the resizablilty:

f.setResizable(aBoolean);
The cursor is set using constants that are end with _CURSOR. To set the cursor to one of
the preset cursors, use one of:

f.setCursor(DEFAULT_CURSOR);
f.setCursor(CROSSHAIR_CURSOR);
f.setCursor(TEXT_CURSOR);
f.setCursor(WAIT_CURSOR);
f.setCursor(SW_RESIZE_CURSOR);
f.setCursor(SE_RESIZE_CURSOR);
f.setCursor(NW_RESIZE_CURSOR);
f.setCursor(NE_RESIZE_CURSOR);
f.setCursor(N_RESIZE_CURSOR);
f.setCursor(S_RESIZE_CURSOR);
f.setCursor(W_RESIZE_CURSOR);
f.setCursor(E_RESIZE_CURSOR);
f.setCursor(HAND_CURSOR);
f.setCursor(MOVE_CURSOR);

To get the cursor:
anInt = f.getCursorType();

It is typical for event handling to be performed within a frame. It is also typical for
speciality frames to exist that are able to handle specific events. As an example, we show
the ClosableFrame.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 146 Chapter 9: Image Processing in Java

(B-heading) The ClosableFrame Class
The ClosableFrame is an extension of the Frame class that handles the close window
event. We have found that it is often desirable to have windows that respond to the close
event and that this event is typically handled with the following code fragment:

if(e.id == e.WINDOW_DESTROY) {
hide();
return true;

}
Rather than repeat the same code in every event handler of every Frame instance, we
have devised the ClosableFrame class. The ClosableFrame is given in the following code:

package lyon.gui;
import java.awt.*;
public class ClosableFrame extends Frame {

// constructor needed to pass window title to class
Frame

public ClosableFrame(String name) {
// call java.awt.Frame(String) constructor
super(name);

}
// needed to allow window close
public boolean handleEvent(Event e) {

// Window Destroy event
if (e.id == Event.WINDOW_DESTROY) {

dispose();
return true;

}

// it's good form to let the super class look at
any unhandled events

return super.handleEvent(e);
} // end handleEvent()

} // end class ClosableFrame
Any Frame that extends the ClosableFrame will inherit the ability to handle the
WINDOW_DESTROY event, provided the subclass returns super.handleEvent.
To take advantage of the ClosableFrame we extend the ClosableFrame as Follows:

...
public class AudioFrame extends ClosableFrame {
...
public AudioFrame(String name) {

super(name);
...

(BEGIN NOTE)
The constructor of the super class is called with the invocation of super(name). This is so
the call to the java.awt.Frame(String) will eventually be made.
(END NOTE)

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 147 Chapter 9: Image Processing in Java

(A-heading) The Panel Class

The Panel class is a generic extension of the Container class. It is often used to orgainize
the layout of components into structured sub-parts. For example, in Figure 3.10, we see
an example of the HTML Generator Panel. The Panel instance has several components,
including buttons, pop-up menus and labels. These components are arranged to give the
user a functional presentation of the input and output components. The Panel Class
represents a low-overhead Container with its own layout manager instance. Further, a
Panel can contain its own event handler. This permits a more object oriented approach to
the event handling.

(B-heading) Class Summary
 public class Panel extends Container {

 public Panel()
 public synchronized void addNotify()
}

(B-heading) Class Usage
The default LayoutManager for the panel is the FlowLayout. Suppose the following
variable is predefined:

Panel p = new Panel();
To create a peer for the Panel use:

p.addNotify();
Beyond the addNotify and constructor (with default layout), the Panel inherits all of its
methods and properties from the Container Class.
(B-heading) Building a Panel
In the following code we see several components (some of which will be discussed later)
being added to a panel. (BEGIN CDROM) These are in the TargetControlPanel.java file,
a part of the HTML Generator interface: (END CDROM)

package htmlconverter;
import java.awt.*;
public class TargetControlPanel extends Panel {

Choice c;
TargetControlPanel() {

c = new Choice();
c.addItem("Java");
c.addItem("C");
c.addItem("C++");
c.select("Java");
setLayout(new GridLayout(1, 3, 10, 10));
add(new Label("Target:", Label.LEFT));
add(c);

}
}

(A-heading) The Checkbox Class

The Checkbox class extends the Component class. As such, it is one of the many
interface widgets that may be added to any Container subclass. Typically, a Checkbox

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 148 Chapter 9: Image Processing in Java

instance is added to a Panel or a Frame. The state of the Checkbox instance becomes true
if it is checked, otherwise it is false. The nice thing about a Checkbox instance is, you do
not have to handle the Checkbox event. Checkbox instances may be incorporated directly
into Java programs.
Checkbox instances may be grouped into another instance called a CheckboxGroup. The
common name for a CheckboxGroup is a radio button. Radio buttons are a paradigm of
the push-button favorite station selection feature available on some car radios. The
favorite stations were typically assigned to the buttons. The user would select one station
with the push of the button. The basic rule of the radio button interface is that you may
select only one button out of the many. Another feature is that the act of selecting one
button, deselects the others. Further, there is always one button selected.
(B-heading) Class Summary

public class Checkbox extends Component {
 public Checkbox()
 public Checkbox(String label)
 public Checkbox(String label, CheckboxGroup group, boolean
state)
 public synchronized void addNotify()
 public String getLabel()
 public void setLabel(String label)
 public boolean getState()
 public void setState(boolean state)
 public CheckboxGroup getCheckboxGroup()
 public void setCheckboxGroup(CheckboxGroup g)
}

(B-heading) Class Usage
Suppose the following variables are predefined:

String label;
CheckboxGroup group;
boolean state;
Checkbox cb;

To make an instance of an unchecked Checkbox without a label, group:
cb = new Checkbox();

To make an instance of an unchecked Checkbox with a label and no group:
cb = new Checkbox(label);

To make an instance of a Checkbox with a label, group and known state:
cb = new Checkbox(label, group, state);

To make the peer of a Checkbox:
cb.addNotify();

To get and set the label of a Checkbox:
label = cb.getLabel();
cb.setLabel(label);

To get and set the state of the Checkbox:
state = cb.getState();
cb.setState(state);

To get and set the group of the Checkbox:
group = cb.getCheckboxGroup();
cb.setCheckboxGroup(group);

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 149 Chapter 9: Image Processing in Java

(B-heading) Adding Checkboxes to Frames
(BEGIN CDROM) In GUI.java, the checkboxes for the DiffCAD Frame are placed into
an array of checkboxes. The array is used to manipulate the checkboxes with fewer lines
of code. The checkboxes may be see in Figure 3.9, The DiffCAD MainFrame.
(END CDROM)

1. ...
2. Checkbox ap_cb = new Checkbox("Auto-pan",null,true);
3. Checkbox order_cb = new Checkbox("-order",null,true);
4. Checkbox i3_cb = new Checkbox("-i3");
5. Checkbox r3_cb = new Checkbox("-r3",null,true);
6. Checkbox x3_cb = new Checkbox("-x3",null,false);

(BEGIN NOTE) To use a Checkbox with a known state and no Checkbox group, you
must place a null, as a place holder, into the group parameter. (END NOTE)

7. Checkbox checkboxes[] = {
8. ap_cb,
9. order_cb,
10. i3_cb,
11. r3_cb,
12. x3_cb};

To add the checkboxes to a frame, we use a method called addCheckBoxes:
 public void addCheckBoxes(Checkbox checkboxes[]) {
 for (int i=0; i < checkboxes.length; i++) {
 add(checkboxes[i]);
 }
 }

To perform computation with a Checkbox, you need only get its state. For example:
if (x3_cb.getState()) {

 p.x_data[i] = p.x_data[i] * -1;
 }

It is possible to make the Checkbox event trigger computation. In some cases, this may be
the preferred mode; however, if computation is going to lag behind the users input rate,
then feedback to the user will be required and the program may seem sluggish [Tog].
Since there are several checkboxes, the approach taken by the DiffCAD program is only
to update the screen with a recomputation during a repaint. This policy permits the
embedding of Checkbox states directly into equations.
(A-heading) The Scrollbar Class

The Scrollbar class is a component subclass. It is generally added to a Container class
instance and is used to obtain a numeric quantity from the user. The scrollbar excels at
permitting a user to scroll data, such as an image or a graph, in a window of limited size.
In the digital oscilloscope example (see Figure 3.8) there are 4 scrollbars, top, bottom,
left and right. Their functions will be described in the Class Usage section. The box that
slides along the scrollbar is typically called the elevator. Taking the elevator up is the
same as clicking and holding on the box while dragging the pointing devices’ cursor to
the top of the scrollbar.
(B-heading) Class Summary

public class Scrollbar extends Component {
public static final int HORIZONTAL

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 150 Chapter 9: Image Processing in Java

public static final int VERTICAL
public Scrollbar()
public Scrollbar(int orientation)
public Scrollbar(int orientation, int value, int visible,
int minimum, int maximum)
public synchronized void addNotify()
public int getOrientation()
public int getValue()
public void setValue(int value)
public int getMinimum()
public int getMaximum()
public int getVisible()
public void setLineIncrement(int l)
public int getLineIncrement()
public void setPageIncrement(int l)
public int getPageIncrement()
public void setValues(int value, int visible, int minimum,
int maximum)
}

(B-heading) Class Usage
Suppose that the following variables are predefined:

int orientation;
int visible;
int minimum, maximum;
int value;

To construct a Scrollbar instance, you
Scrollbar sb;
The constructor defaults to a vertical scrollbar:

sb = new Scrollbar();
int orientation;

The orientation, one of: Scrollbar.HORIZONTAL or Scrollbar.VERTICAL.
sb = new Scrollbar(orientation);
int value;
int pageSize, minimum, maximum;

To make a Scrollbar instance with given orientation, value, visibility, minimum and
maximum range:

sb = new Scrollbar(orientation, value, visible, minimum,
maximum);

To make a peer for the Scrollbar instance:
sb.addNotify();

To get the orientation of the Scrollbar:
orientation = sb.getOrientation();

To get and set the value:
value = sb.getValue();
sb.setValue(value);

Value is clipped to Maximum or Minimum if it is not between them.
To get the minimum and maximum of the scrollbar:

value = sb.getMinimum();

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 151 Chapter 9: Image Processing in Java

value = sb.getMaximum();
To get the amount visible, in pixels:

value = sb.getVisible();
To set and get the elevator increment for an arrow click:

sb.setLineIncrement(l);
l = sb.getLineIncrement);

To set and get the elevator increment for a page click:
sb.setPageIncrement(l);
l = sb.getPageIncrement();

To set the values (value is clipped if it exceeds the valid range):
sb.setValues(value, visible, minimum, maximum);
 }

(B-heading) Adding Four Border Scrollbars
In this section we show how to construct the four border scrollbars shown in Figure 3.8,
The Digital Oscilloscope generator. An oscilloscope is a test instrument used to graph
wave forms. The digital oscilloscope is intended to have some of the features of the
traditional instrument (which can typically be purchased at significant cost). The
following code illustrates how to add scrollbars to the AudioFrame (which is used to
display the digital oscilloscope):

1. public class AudioFrame extends ClosableFrame {
2. ...

In lines 3-6 we create the horizontal and vertical scroll bars both (bottom, top) and (left,
right).

3. Scrollbar sbHorzBottom = new
Scrollbar(Scrollbar.HORIZONTAL);
4. Scrollbar sbHorzTop = new
Scrollbar(Scrollbar.HORIZONTAL);
5. Scrollbar sbVertLeft = new
Scrollbar(Scrollbar.VERTICAL);
6. Scrollbar sbVertRight = new
Scrollbar(Scrollbar.VERTICAL);

For our digital oscilloscope, we want sbVertLeft to translate the wave form vertically.
The scrollbar, sbVertRight, will scale the wave form in height. The scale factors for the
wave form are given in millivolts per division. We want divisions in millivolts to reflect
the steps of the physical instrument (from 5 volts to 1 millivolts). These steps become our
y-scale factors. We also want the x-scale factors to alter the number of seconds used per
division. To reflect the physical instrument we proceed in steps from 0.05 microseconds
per division to 5 seconds per division. This models the steps and range of a circa 1969
dual-trace 150 Mhz bandwidth Tektronix model 7704 portable oscilloscope. The 7704
weighs over 50 lbs and is portable by virtue of having two handles.

7. private int dx = 0;
8. private int oldDx = 0;
9. private int dy = 0;
10. private int oldDy = 0;
11. private final double xScaleFactors[] = {50000, 25000,
10000, 5000, 2500, 1000,
12. 250, 100, 50, 25, 10,
13. 2.5, 1, .5, .25, .1,

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 152 Chapter 9: Image Processing in Java

14. .025, .01, .005, .0025, .001,
15. .0005};
16. private final String xSFLabels[] = {"0.05 u", "0.1 u",
"0.25 u",
17. "0.5 u", "1 u", "2.5 u",
18. "5 u", "10 u", "25 u",
19. "50 u", "100 u", "250 u",
20. "500 u", "1 m", "2.5 m",
21. "5 m", "10 m", "25 m",
22. "50 m", "100 m", "250 m",
23. "500 m", "1 ", "2.5 ", "5 "};
24. private final int xsfStartIndex = 14;
25. private double xScaleFactor =
xScaleFactors[xsfStartIndex];
26. private double oldXScaleFactor =
xScaleFactors[xsfStartIndex];
27. private String xSFLabel = new
String(xSFLabels[xsfStartIndex]);

28. private final double yScaleFactors[] = {500, 200, 100,
50, 20, 10,
29. 2, 1, .5, .2, .1};

30. private final String ySFLabels[] = {"1 m", "2.5 m", "5
m", "10 m", "25 m", "50 m",
31. "100 m", "250 m", "500 m", "1 ", "2.5 ", "5 "};

32. private final int ysfStartIndex = 8;
33. private double yScaleFactor = 1;
34. private double oldYScaleFactor = 1;
35. private String ySFLabel = new
String(ySFLabels[ysfStartIndex]);
36. ...

37. public boolean handleEvent(Event e) {
38. ...

During the handling of the event, we may check to see if the event target contains the
same reference as one of the components. This is done in line 39.

39. if(e.target == sbHorzTop) {
40. int i = sbHorzTop.getValue();
41. xScaleFactor = xScaleFactors[i];

For line 42, we check to see if the scale factor has changed, if it has not we do not call
repaint. Repaint is computationally expensive.

42. if (xScaleFactor != oldXScaleFactor) {
43. xSFLabel = xSFLabels[i];
44. repaint();
45. oldXScaleFactor = xScaleFactor;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 153 Chapter 9: Image Processing in Java

46. }
47. return true;
48. }

In order to make the scrollbars border the AudioFrame, we use a layout manager called
BorderLayout:

1. public AudioFrame(String name) {
2. ...
3. setLayout(new BorderLayout());
4. add("North", sbHorzTop);
5. add("South", sbHorzBottom);
6. add("West", sbVertLeft);
7. add("East", sbVertRight);

8. // openAudioStream will set the fileName
9. // and audioStream variables.
10. openAudioStream();
11. // Set top scrollbar characteristics
12. sbHorzTop.setValues(xsfStartIndex, 0, 0, 24);
13. ...

(A-heading) The Label Class

The Label is a subclass of the Component class, and as such is generally added to a
container. Labels are typically not generators of useful events. A label may be updated
dynamically to reflect the state of an underlying variable. For example, in the (BEGIN
CDROM) DiffCAD program in the GUI.java file there are both static labels and dynamic
labels. Dynamic labels are discussed in a later section. (END CDROM)
(B-heading) Class Summary

public class Label extends Component {
 public static final int LEFT
 public static final int CENTER
 public static final int RIGHT
 public Label()
 public Label(String label)
 public Label(String label, int alignment)
 public synchronized void addNotify()
 public int getAlignment()
 public void setAlignment(int alignment)
 public String getText()
 public void setText(String label)
}

(B-heading) Class Usage
Suppose the following variables are predefined:

Label l;
String name;
int alignment;

Alignment is set to one of:
Label.LEFT, Label.RIGHT, Label.CENTER.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 154 Chapter 9: Image Processing in Java

public class Label extends Component {
To construct an empty Label:

l = new Label();
To construct a named label:

l = new Label(name);
To construct a named label with known alignment:

l = new Label(name, alignment);
To make the label peer

l.addNotify();
To get and set alignment:

alignment = l.getAlignment();
l.setAlignment(alignment);

To get and set the string that the labels contains:
name = l.getText();
l.setText(name);
}

(B-heading) Adding Labels to Frames
To add labels to a Frame, you need only invoke:

add(new Label("Grid:"));
No event handler code is required. Also, any extension of the Container class can add
components. For example
(A-heading) The Choice Class

The Choice Component class provides a pop-up menu of string choices. The currently
selected string becomes the title of the string menu. In many ways, the Choice
Component is like a main menu bar selection that continue to read out its last selection.
Pop-up menu examples may be seen in Figure 3.9, The DiffCAD Main Frame and Figure
3.10, The HTML Generator Panel.
(B-heading) Class Summary

public class Choice extends Component {
 public Choice()
 public synchronized void addNotify()
 public int countItems()
 public String getItem(int index)
 public synchronized void addItem(String item)
 public String getSelectedItem()
 public int getSelectedIndex()
 public synchronized void select(int pos)
 public void select(String str)
}

(B-heading) Class Usage
There is only a single constructor for the Choice Component. Suppose the following
variables are predefined:

Choice choice = new Choice();
int i;
String str;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 155 Chapter 9: Image Processing in Java

To create the peer:
choice.addNotify();

To find the number of strings in choice:
i = choice.countItems();

To get the String at location i:
str = choice.getItem(i);

To add a String:
choice.addItem(str);

To get the selected String:
str = choice.getSelectedItem();

To get the location of the String in the list:
i = choice.getSelectedIndex();

To select a String, by position or name, thereby making it visible:
choice.select(i);
choice.select(str);

}
(B-heading) Adding Choices to a Frame
In this example, we show how to add a Choice menu to a Frame. (BEGIN CDROM) The
code is excerpted from the DiffCAD program in GUI.java.(END CDROM) The basic
idea is that a graph object may be selected by choosing it from the Choice instance.

public class GUI extends Applet implements constants {
 Choice mouseChoice;
 String objectPropertiesStr = new String("Object
Properties");
 String cameraStr = new String("camera");
 String laserStr = new String("laser");
 String laserAngleStr = new String("laser angle");
 String gratingStr = new String("grating");
 String graphPvsXStr = new String("graph p vs x");
 String graphDLvsXStr = new String("graph DL vs x");
 String allStr = new String("all");

 String mouseChoiceItems[] = {
 objectPropertiesStr,
 cameraStr, laserStr, laserAngleStr, gratingStr,
 graphPvsXStr, graphDLvsXStr, allStr
 };

To assist in the creation of Choice menus, there is graphics utilities class that is in the
called Guitils:

 public class Guitils {
 static public Choice addChoiceMenu(String items[],
Container cont) {
 Choice choice = new Choice();
 for (int i = 0; i < items.length; i++) {
 choice.addItem(items[i]);
 }
 cont.add(choice);
 return choice;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 156 Chapter 9: Image Processing in Java

 } ...
GUI.java makes use of the Guitils.addChoiceMenu method in create_gui:

 public void create_gui() {
 setBackground(Color.white);

Guitils.addCheckBoxes(checkboxes, this);
mouseChoice = Guitils.addChoiceMenu(mouseChoiceItems,

this);
Since the Frame class is a subclass of the Container class, the usage of this simple passes
the Frame, with automatic type casting, into the Guitils.addCheckBoxes method. The
Guitils.addCheckBoxes method did not keep a reference to the Choice instance, choice,
because the Container instance will store it.
To handle the choice, we have adopted the policy of waiting for the mouse to be released.
Once this occurs, we can process the choice:

1. public boolean handleEvent(Event e) {
2. switch (e.id) {
3. case Event.MOUSE_UP: {
4. String objectName =
mouseChoice.getSelectedItem();
5. processMouseUp(objectName, e.x, e.y);
6. repaint();
7. }
8. case Event.MOUSE_DOWN:
9. anchor = new point(e.x, e.y);

In line 9, we store the mouse down event so that we can compute the relative mouse
motion when the mouse is released.

10. return super.handleEvent(e);
11. } // switch

The invocation of the processMouseUp method causes a sequence of if-then-else methods
to be fired:

1. public void processMouseUp(String object_name, int x,
int y) {

The rmove point instance in line 2 is used to compute the relative mouse motion. The
upside down nature of the coordinate system, imposed by the AWT designers, requires
that we negate the (y - anchor.y) displacement. The use of an upside-down coordinate
system was probably an unfortunate design choice.

2. point rmove = new point(x-anchor.x, anchor.y - y);
3. // rmove is the relative motion of the mouse.

It is much faster to compare strings using a check between references. This is safe,
because the strings were added to the Choice instance by reference. It is NOT safe to use:

// if (object_name == “camera”) // <--- this is NOT safe
Also, it is bad software engineering pratice to embed string literals thoughout the code,
since typos can result in hard-to-find bugs:

// if (object_name.equals(“camera”) // <--- this is bad
engineering!

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 157 Chapter 9: Image Processing in Java

The best way is to allow the compiler a chance to check for type correctness. This way, if
there is a typo, the compiler will emit a syntax error, rather than require run-time
debugging. Further, the reference comparison, using == is very fast.

4. if (object_name== cameraStr) {
5. Camera c = (Camera) Geometry.camera;
6. c.auto_pan = ap_cb.getState();
7. c.change_config(rmove);

8. Geometry.compute_rays();

9. } else if (object_name== laserStr) {
10. Laser l = (Laser) Geometry.laser;
11. l.change_config(rmove);
12. Geometry.compute_rays();
13. } else if (object_name == gratingStr) {
14. Grating g = (Grating) Geometry.grating;
15. g.change_config(rmove);
16. Geometry.compute_rays();
17. } else if (object_name == graphDLvsXStr)
18. make_graph_dl();
19. else if (object_name == graphPvsXStr)
20. make_graph_p();
21. else if (object_name == laserAngleStr) {
22. Wedge w = (Wedge) Geometry.wedge;
23. w.change_config(rmove);
24. Geometry.compute_rays();
25. return;
26. } else if (object_name == allStr) {
27. Xform.rmove(rmove);
28. return;
29. }

(A-heading) Summary

This chapter introduced some of the basic classes in Java needed to perform basic AWT
programming. In the following chapters we will present a series of subclass that extend
the component class. (BEGIN CDROM) On the CDROM we have a program, called
DiffCAD, that allows us to present several types of components in various
configurations. In later chapters we will address the creation of some of these interfaces.
As a sample, we show an image of a digital oscilloscope (shown in Figure 3.8), an optical
raytracer for designing diffraction rangefinders (shown in Figure 3.9), an HTML , able to
read batches of Java, C and C++ files, transforming them into HTML (shown in Figure
3.10).
(END CDROM)

Figure 3.8 The Digital Oscilloscope
Figure 3.9 The DiffCAD Main Frame

Figure 3.10 The HTML Generator Panel

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 158 Chapter 9: Image Processing in Java

(CN) 4. Futil Recipes for Feudal Times

From cooking meals for hungry hired men
 And washing dishes after them

 -Robert Frost
Resistance is Futile

- Borg
(BEGIN ON CDROM) This book comes with a package called futils. (END ON
CDROM) The futils package is a collection of file utilities that simplify the writing of
user-friendly GUI-based code. The java.io package is responsible for enabling all input-
output (I/O) operations from Java. Due, in part, to the number and variety of operations
that java.io is responsible for, java.io has grown to 31 different class files. Eventually, the
programmer will want to learn them all. However, even a seasoned programmer will want
to develop a set of useful tools that are less general and are therefore easier to use. The
premise is that simplicity is inversely related to generality and that “simplicity ” is a
feature! Thus, the futil package presents an elementary set of simple tools pragmatically
designed to be both easy to use and to make compact code that is easy read.
File utilities are, by their very nature, considered to be “unsafe”. File utilties can rename,
copy, list and even delete files! This is all the more reason why there should be a
centralized package of well-tested and well-understood classes for file manipulation.
Futher, due to security manager restrictions, classes in the futil package will generally not
run within a browser.
The futil package has several public final classes, each of which has several static
methods. To gain access to these methods, type:

import futils.*;
at the head of your Java source.
The Futil class is a public final class that resides in the futils package. The Futil class
contains a single private constructor that is used to prevent instantiation of the class. The
Futil class is dependent on the java.io package.
(A-heading) The Dialog Class

An instance of a Dialog class is like a low-overhead Frame instance. A Dialog instance
may be resizable. A Dialog instance has a title, a border and a layout.
A Dialog instance has a modal property. If a Dialog instance is modal, then the user is
forced to interact with it. If a Dialog instance is non-model, then the user may choose
other Window instances (like Frame instances). The default layout is BorderLayout.
(B-heading) Class Summary

public class Dialog extends Window {
 public Dialog(Frame parent, boolean modal)
 public Dialog(Frame parent, String title, boolean
modal)
 public synchronized void addNotify()
 public boolean isModal()
 public String getTitle()
 public void setTitle(String title)
 public boolean isResizable()
 public void setResizable(boolean resizable)
}

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 159 Chapter 9: Image Processing in Java

(B-heading) Class Usage
Suppose the following variables are predefined:

String title;
boolean resizable, modal;
Dialog dialog;
Frame parent;

To make an (initially invisible) instance of a Dialog:
dialog = new Dialog(parent, modal);

To make an (initially invisible) instance of a Dialog with a title:
dialog = new Dialog(parent, title, modal);

To create a peer:
dialog.addNotify();

To see if a Dialog instance is modal:
modal = dialog.isModal();

To get and set the title:
title = dialog.getTitle();
dialog.setTitle(title);

To get and set the resizable property:
resizable = dialog.isResizable();
dialog.setResizable(resizable);

(A-heading) The FileDialog Class

The FileDialog class is a subclass of the Dialog class. Instances of the FileDialog class
are used by the futils package to obtain file and directory information from the user. An
instance of the FileDialog class will block the invoking thread when shown. The
FileDialog class is always modal.
(B-heading) Class Summary

public class FileDialog extends Dialog
 public static final int LOAD
 public static final int SAVE
 public FileDialog(Frame parent, String title)
 public FileDialog(Frame parent, String title, int mode)
 public synchronized void addNotify()
 public int getMode()
 public String getDirectory()
 public void setDirectory(String dir)
 public String getFile()
 public void setFile(String file)
 public FilenameFilter getFilenameFilter()
 public void setFilenameFilter(FilenameFilter filter)
}

(B-heading) Class Usage
Suppose the following variables are predefined:

FileDialog fileDialog;
Frame parent;
String title, path;
int mode;
FileNameFilter filter;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 160 Chapter 9: Image Processing in Java

Mode must be one of FileDialog.LOAD or FileDialog.SAVE
To create a FileDialog instance for reading a file:

fileDialog = new FileDialog(parent, title);
To specify a mode during instantiation:
fileDialog = new FileDialog(parent, title, mode);
To get the mode:

mode = fileDialog.getMode();
To get and set the directory:

path = fileDialog.getDirectory();
fileDialog.setDirectory(path);

To get the file name:
path = fileDialog.getFile();

To set the default file name before the dialog is shown:
fileDialog.setFile(path);

To get and set the FilenameFilter:
filter = fileDialog.getFilenameFilter();
fileDialog.setFilenameFilter(filter);

(B-heading) Futil.getReadFileName
The Futil.getReadFileName is a static method that creates a file open dialog box. The
dialog box is used by the user to select a file. Once the file is selected, the
Futil.getReadFileName returns an absolute path name to the file as a String instance. An
example of the standard file open dialog box is shown in Figure 4.1.

 Figure 4.1. The Standard File Open Dialog Box
The appearence of the file open dialog box will be platform dependent.

public static String getReadFileName() {
FileDialog dialog = new FileDialog(new Frame(), "select
file");
dialog.show();
String file_name = dialog.getFile();
String path_name = dialog.getDirectory();
String file_string = path_name + file_name;
System.out.println("Opening file: "+file_string);
dialog.dispose();
return file_string;

}
(BEGIN NOTE)The parent field of the dialog is set to new Frame() so that the user does
not need to pass a Frame instance into the getReadFileName parameter list. This
simplifies the getReadFileName call at the expense of efficiency. The path name for the
file is explicitly concatenated into the file_string before the return. (END NOTE)
Typically a programmer would prompt the user to select a file by using:

String inputFileName = Futil.getReadFileName();
(B-heading) Futil.getWriteFileName
To get a file name for write, the mode of the FileDialog must be set to FileDialog.SAVE.
A sample of the save file dialog box is shown in Figure 4.2.

Figure 4.2. Save File Dialog Box

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 161 Chapter 9: Image Processing in Java

This is done in the following code:
 public static String getWriteFileName() {
 FileDialog dialog = new FileDialog(new Frame(), "Enter
file name",FileDialog.SAVE);
 dialog.show();
 String fs = dialog.getDirectory() + dialog.getFile();
 System.out.println("Opening file: "+fs);
 dialog.dispose();
 return fs;
 }

To ask the user for a file string, with a fully qualified path name, use:
String writeFile = Futil.getWriteFileName();

(A-heading) The File Class

The File class resides in the java.io package. An instance of the File class keeps track of
several file related properties, including: a path to the file, information on whether the
path is relative or absolute and a series of static constants that indicate the path separator.
It is unfortunate that on some systems (i.e., DOS, Windows, etc.) the path name separator
is represented by a back-slash ('\'), whereas on other systems (i.e., Macintosh and Unix
variants) the path name separator is represented by a forward-slash ('/').
The File class makes use of FilenameFilter instance. These are introduced in the
following section on FilenameFilters.
(B-heading) Class Summary

public class File {
 public static final String separator
 public static final char separatorChar
 public static final String pathSeparator
 public static final char pathSeparatorChar
 public File(String path)
 public File(String path, String name)
 public File(File dir, String name)
 public String getName()
 public String getPath()
 public String getAbsolutePath()
 public String getParent()
 public boolean exists()
 public boolean canWrite()
 public boolean canRead()
 public boolean isFile()
 public boolean isDirectory()
 public native boolean isAbsolute();
 public long lastModified()
 public long length()
 public boolean mkdir()
 public boolean renameTo(File dest)
 public boolean mkdirs()
 public String[] list()
 public String[] list(FilenameFilter filter)

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 162 Chapter 9: Image Processing in Java

 public boolean delete()
 public int hashCode()
 public boolean equals(Object obj)
 public String toString()
}

(B-heading) Class Usage
Suppose the following variables are predefined:

String absPath = Futil.getReadFileName();
// The fileName is relative and
// does not include absPath
String fileName;
String dirName; // absolute path to directory
File dirFile; // dir File instance
File destFile; // a destination file
boolean aboolean, successful;
int i;
long timeInMilliseconds; // relative time.
long bytes; // size of the file
String path; // relative or absolute
String fileNames[];
FileNameFilter filter;

To make an instance of the File class:
file = new File(absPath);
file = new File(dirName,fileName);
file = new File(dirFile,fileName);
fileName = file.getName();

To get the path to the file:
path = file.getPath();

To get the absolute path to the file:
absPath = file.getAbsolutePath();

To get the name of the parent directory:
dirName = file.getParent();

To see if a file exists:
aboolean = file.exists();

To see if a file is writable:
aboolean = file.canWrite();

To see if a file is readable:
aboolean = file.canRead();

To see if a File instance is a file or a directory:
aboolean = file.isFile();
aboolean = file.isDirectory();

To see if getPath is relative:
aboolean = file.isAbsolute();

To get the relative time since modification:
timeInMilliseconds = file.lastModified();

To get the size of the file in bytes:
bytes = file.length();

To invoke mkdir and return true if successful:

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 163 Chapter 9: Image Processing in Java

successful = file.mkdir();
To rename to a destination file:

successful = file.renameTo(destFile);
To make all directories in this path:

successful = file.mkdirs();
To list the files in a directory:

fileNames = file.list();
To use a filter to list the files in a directory:

fileNames = file.list(filter);
To delete a file:

success = file.delete();
To compute a hashcode:

i = file.hashCode();
To see if two files are equal:

aboolean = file.equals(destFile);
To get the path string:

path = file.toString();
(B-heading) Ls.getDirName
In Unix type operating systems there is a command called ls. We have modeled the ls
command in the futils package using a class called Ls. The Ls class has static methods in
it and is declared as public and final. Ls.getDirName will open a standard file dialog box
and ask the user to select a file (there is no way to select a directory, as far as we know).
Once the file is selected, a directory name is returned (it is the directory that contains the
file)

 static public String getDirName() {
 FileDialog fileDialog =
 new FileDialog(new Frame(), "select
file");
 fileDialog.show();
 String dirName = fileDialog.getDirectory();
 dialog.dispose();
 return dirName;
 }

(B-heading) Ls.deleteFile
The Ls.deleteFile method takes an absolute path name (a string) converts it to a File
instance and then deletes the file, with error reporting to the console.

static public void deleteFile(String absPath) {
File fileToDelete = new File(absPath);
System.out.print("deleting file " + absPath);
if (fileToDelete.exists()) {

 System.out.println(" deleted!");
 fileToDelete.delete();
 }
 else
 System.out.println(" does not exist");
 }

(B-heading) Futil.getReadFile Futil.getWriteFile and Futil.getDirFile

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 164 Chapter 9: Image Processing in Java

The static method, Futil.getReadFile() opens a dialog box for the user and returns a File
instance, whereas Futil.getDirFile works by getting a file based on the Ls.getDirName
method:

public static File getReadFile() {
 return new File(getReadFileName());
 }
public static File getWriteFile() {
 return File(getWriteFileName(fs));
 }
 public static File getDirFile() {
 return new File(Ls.getDirName());
 }

(A-heading) The FilenameFilter interface

The FilenameFilter is an interface reference data type that requires that an accept method
be implemented. Once the FilenameFilter instance is created, it may be passed to utilities
that will determine if a file name should be allowed on a list.
(B-heading) Class Summary
public interface FilenameFilter
 boolean accept(File dir, String name);
}
(B-heading) Class Usage
The best way to illustrate the usage of the FilenameFilter is to show some examples. All
the examples are taken from the futils package.
Typically, a more efficient approach is to keep all file names in File instances. It is the
case, however, that there are reasons for maintaining lists of files as arrays of String
instances. This is particularly efficient when attempting to trade space for time. For
example, the storage of a String instance is based on a dictionary that assumes the String
is immutable. This permits the reuse of substrings. Therefore redundancy in absolute path
name storage should not be too memory inefficient, as the String storage facility has been
highly optimized. By emphasizing the storage of absolute path names in String instances,
we have gained a space efficiency. However, having to create and dispose of many File
instance creates a CPU inefficiency. Questions concerning the quantitative aspects of this
trade-off remain open.
(B-heading) DirFilter
The DirFilter takes a file name and returns true if the file is a directory. It does this by
first making an instance of the File class, using the file name, then targeting the instance
with an isDirectory() invocation.

package futils;
import java.io.*;
import java.util.*;
public class DirFilter implements FilenameFilter {

public boolean accept(File dir, String name) {
return new File(dir, name).isDirectory();

}
}

(B-heading) The FileFilter Class

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 165 Chapter 9: Image Processing in Java

The FileFilter class, just like the DirFilter Class, is used to determine if the dir+name
constitutes a valid file by creating a temporary File instance.

package futils;
import java.io.*;
import java.util.*;
public class FileFilter implements FilenameFilter {

public boolean accept(File dir, String name) {
return new File(dir, name).isFile();

 }
}

(B-heading) The WildFilter Class
The WildFilter class contains the suffix string of the file name string that the programmer
is looking for. Once the WildFilter is instanced, the suffix is unchangable (due to the
private visibility of the suffix class variable).

package futils;
import java.io.*;
import java.util.*;
public class WildFilter implements FilenameFilter {
 private String suffix;
 WildFilter (String suffix_) {
 suffix = suffix_;
 }

 public boolean accept(File dir, String name) {

return name.endsWith(suffix);
}

 }
(B-heading) Ls.getWildNames
The Ls.getWildNames() static method brings up a standard file open dialog box. After a
user selection, all the names are returned in a String array, with the absolute path name.

 static public String[] getWildNames(String wild) {
 File dir = Futil.getDirFile();
 String absPath = dir.getAbsolutePath();
 String[] fileNames = dir.list(new WildFilter(wild));
 System.out.println("getWildNames:"+absPath);
 for (int i=0; i < fileNames.length; i++) {
 fileNames[i] = absPath+fileNames[i] ;
 }
 return fileNames;
 }

(B-heading) Ls.wildToConsole
The Ls.wildToConsole provides the service of listing all the files to the standard output
device. This is equivalent to the Unix ‘ls *.wild’, or the DOS ‘dir *.wild’.

 static public void wildToConsole(String wild) {
 String[] files = getWildNames(wild);
 System.out.println(files.length + " file(s):");
 for (int i=0; i < files.length; i++)

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 166 Chapter 9: Image Processing in Java

 System.out.println("\t" + files[i]);
 }

(B-heading) Ls.deleteWildFile
Now for the really dangerous stuff. A method that deletes all the files in a directory,
without confirmation!
(BEGIN WARNING) Use this method with caution.
(END WARNING)

static public void deleteWildFiles(String wild) {
String[] files = getWildNames(wild);
System.out.println(files.length + " file(s):");
for (int i=0; i < files.length; i++)
deleteFile(files[i]);

}
(B-heading) Ls.WordPrintMerge
The Ls.WordPrintMerge gets all the files that end with a “PICT” suffix and creates
Microsoft Word print merge commands that will include the pict files into a single word
document. In fact, this is the utilitie that helped create the figure manuscript for chapter 1
of this book.

static public void WordPrintMerge() {
String wild = "PICT";
String[] files = getWildNames(wild);
System.out.println(files.length + " file(s):");
int fileNumber;
for (int i=0; i < files.length; i++) {

fileNumber = i + 1;
System.out.print("Figure *."+

 fileNumber +
 ". «INCLUDE hd:current:Java
book:chapter I:batch 1 rev1:picts:");
 System.out.println(files[i]+"»");
 }
 }

(B-Heading) Ls.lowerFileNames
(BEGIN WARNING)
Now for the really dangerous (and fun!) stuff. The Ls.lowerFileNames takes a File
instance and recursivly traverses the file system converting ALL file names to lower
case!(END WARNING). There is no single command in most computer operating
systems for doing this (for obvious reasons). The purpose of Ls.lowerFileNames is to
maintain web sites that have file names that do not match the case of the file names in the
hypertext references. This is particularly painful for web masters who port web sites from
one file system to another. For example, on a DOS system, the file names may appear as
upper case. On a Mac or Unix file system, files are mixed case.

public void lowerFileNames(File thePath){
String[] fileNames = thePath.list();
String pathstr = thePath.getPath();
for(int i=0;
fileNames != null && i< fileNames.length; i++) {

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 167 Chapter 9: Image Processing in Java

String aFileName = fileNames[i];
String newFileName = aFileName.toLowerCase();
File theFile = new File(pathstr, aFileName);
if(theFile.isFile()){
//rename theFile to lowewr cases
System.out.print(i+":" + aFileName);
theFile.renameTo(new File(pathstr, newFileName));
System.out.println("\t==>\t"+newFileName);
}else{
//case theFile is Dir, in the Dir,
// repeat same procedure
System.out.println("Dir:"+aFileName);
lowerFileNames(new File(pathstr+aFileName));
}

}
return;

}//lowerFileNames
(A-heading) The FileOutputStream Class

The FileOutputStream class resides in the java.io package. Instances of the
FileOutputStream class are used as targets of the close method. When an instance of a
FileOutputStream is made, the file is opened for write.
Since the creation and closing of a FileOutputStream instance can throw an IOException,
operations involving the use of a FileOutputStream are surrounded by a try and catch.
(B-heading) Class Summary

public class FileOutputStream extends OutputStream {
public FileOutputStream(String name) throws IOException
public FileOutputStream(File file) throws IOException
public FileOutputStream(FileDescriptor fdObj)
public native void write(int b) throws IOException;
public void write(byte b[]) throws IOException
public void write(byte b[], int off, int len) throws
IOException
public native void close() throws IOException;
public final FileDescriptor getFD() throws IOException
}

(B-heading) Class Usage
To open a file, using a standard file save dialog box, define a FileOutputStream instance
by using the Futil.getWriteFileName()

FileOutputStream output_stream = new
FileOutputStream(getWriteFileName());

Suppose the following variables are predefined:
String fileName;
File file;
FileDescriptor fd;
byte b, bytes[];
int offset, length;

Then to open a file for write (remember to use try and catch):

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 168 Chapter 9: Image Processing in Java

fos = new FileOutputStream(name);
To open a file using a File instance:

fos = new FileOutputStream(file);
To open a file using a FileDescriptor instance:

fos = new FileOutputStream(fd);
To write a byte of data:

fos.write(b);
To write an array of bytes:

fos.write(bytes);
To write a subarray of bytes:

fos.write(bytes, offset, length);
To close the FileOutputStream:

fos.close();
To get the file descriptor:

fd = fos.getFD();
(B-heading) Futil.getFileOutputStream
A simple way to get a file output stream, by prompting the user with a file dialog box and
intercepting the possible resulting exceptions, is given below. The
Futil.getFileOutputStream method will return null if the output file is unable to be made.

public static FileOutputStream getFileOutputStream() {
 FileOutputStream fos = null;
 try {fos =
 new FileOutputStream(getWriteFileName());
 }
 catch (IOException e) {
 System.out.println("futil:Could not create
file");
 }
 return fos;
 }

(B-heading) Futil.closeOutputStream
As with the getFileOutputStream, there is a closeOutputStream method. (BEGIN NOTE)
Any subclass of the OutputStream (i.e., the FileOutputStream) will be automatically cast
into an OutputStream instance during the call. Thus, there is no need for a
Futil.closeFileOutputStream method (END NOTE)

 public static void closeOutputStream(OutputStream os) {
 try {os.close();} // end try
 catch (IOException exe)
 {System.out.println(

"futil: could not close outputstream");}
 }

(A-heading) The PrintStream Class

The PrintStream class resides in the java.io package. An instance of the PrintStream class
exists in System.out and has been introduced, informally using:

System.out.println("Hello World");

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 169 Chapter 9: Image Processing in Java

A PrintStream instance may be explicitly flushed. When flushed, the buffered output will
be written. A newline can be used to trigger a flush.
(B-heading) Class Summary

public class PrintStream extends FilterOutputStream {
public PrintStream(OutputStream out)
public PrintStream(OutputStream out, boolean autoflush)
public void write(int b)
public void write(byte b[], int off, int len)
public void flush()
public void close()
public boolean checkError()
public void print(Object obj)
synchronized public void print(String s)
synchronized public void print(char s[])
public void print(char c)
public void print(int i)
public void print(long l)
public void print(float f)
public void print(double d)
public void print(boolean b)
public void println()
synchronized public void println(Object obj)
synchronized public void println(String s)
synchronized public void println(char s[])
synchronized public void println(char c)
synchronized public void println(int i)
synchronized public void println(long l)
synchronized public void println(float f)
synchronized public void println(double d)
synchronized public void println(boolean b)
}

(B-heading) Class Usage
Suppose the following variables are predefined:

OutputStream os;
PrintStream ps=new PrintStream(os);
boolean autoflush;
byte b, bytes[];
int offset, length;
boolean aboolean;
Object object;
String string;
char aChar, charArray[];
int i;
long l;
float f;
double d;

To make a PrintStream instance from any OutputStream instance:
ps = new PrintStream(os);

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 170 Chapter 9: Image Processing in Java

To specify the automatic flush:
ps = new PrintStream(os, autoflush);

To write a byte:
ps.write(b);

To write a subarray:
ps.write(bytes, offset, length);

To flush the stream:
ps.flush();

To close the stream:
ps.close();

To flush the print stream with output stream error messages and a return true if an error
ever occured during the life of the PrintStream:

aboolean = ps.checkError();
To print a newline:

ps.println();
To print an object or an object+newline:

ps.print(object);
ps.println(object);

To print a String or a string+newline:
ps.print(string);
ps.println(string);

To print a char or an array of char:
ps.print(aChar);

ps.print(charArray);
To print an int, long, float or double:

ps.print(i);
ps.print(l);
ps.print(f);
ps.print(d);

To print an int, long, float or double + newline:
ps.println(i);
ps.println(l);
ps.println(f);
ps.println(d);

To print a boolean or boolean + newline:
ps.print(aboolean);
ps.println(aboolean);

(B-heading) Futil.makeTocHtml
In this section we show a method for reading all the documents in a directory and creating
a table of contents, in HTML. The user is prompted for the input directory and for the
location of the output file. It is beyond the scope of this book to explain HTML.
The Futil.makeTocHTML uses Futil.getDirFile to create a standard file open dialog that
prompts the user for an HTML file.

1. public static void makeTocHtml() {
2. File dir = getDirFile();
3. String[] files = dir.list(new FileFilter());
4. System.out.println(files.length + " file(s):");

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 171 Chapter 9: Image Processing in Java

In line 5, the Futil.getFileOutputStream is used (without exception handling, since this
has been handled at a lower level).

5. FileOutputStream fos = getFileOutputStream();
6. PrintStream ps = new PrintStream(fos);
7. ps.println("<HTML>");
8. ps.println("<BODY>");
9. ps.println("");

On lines 10 and 11, the file names are written as a part of the HTML. Note that file
instances were never needed, as this is a simple text output program. The href is a
hypertext reference that shows the file with a relative path name.

10. for (int i=0; i < files.length; i++)
11. ps.println(""+
12. files[i]+"<P>");
13. ps.println("");
14. ps.println("</BODY>");
15. ps.println("</HTML>");
16. closeOutputStream(fos);
17. }

The browser output of makeTocHtml (after being run on the futils package) appears
below:

Cat.java
DirFilter.java
FileFilter.java
Find.java
Futil.java
Ls.java
WildFilter.java

When any of the underlined links are clicked on, a plain-text file of the source code is
shown.
(A-heading) The FileInputStream Class

The FileInputStream class resides in the java.io package. It may be constructed from a
file name or File instance. The FileInputStream is a subclass of the InputStream class.
The FileInputStream keeps a private copy of the FileDescriptor reference.
The read methods always block if there are no more bytes to read. When a read method
blocks, it will stop execution of the thread. This indicates that I/O bound tasks should
probably be placed into their own threads. If, on the other hand, a file will open quickly,
then placing the file I/O in its own thread may needlessly complicate the program. Thus,
the decision to use threaded I/O depends upon the application.
(B-heading) Class Summary

public class FileInputStream extends InputStream {
public FileInputStream(String name) throws
FileNotFoundException
public FileInputStream(File file) throws
FileNotFoundException
public FileInputStream(FileDescriptor fdObj)
public int read() throws IOException;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 172 Chapter 9: Image Processing in Java

public int read(byte b[]) throws IOException
public int read(byte b[], int off, int len) throws
IOException
public long skip(long n) throws IOException
public int available() throws IOException
public void close() throws IOException
public final FileDescriptor getFD() throws IOException
}

(B-heading) Class Usage
Suppose the following variables are predefined:

String fileName;
FileInputStream fis;
File file;
FileDescriptor fd;
byte b bytes[];
int length, offset;
int amountRead;
int n, numberSkipped;

To make an instance of the FileInputStream class from a file name, File instance or
FileDescriptor instance:

fis = new FileInputStream(fileName);
fis = new FileInputStream(file);
fis = new FileInputStream(fd);

To read a byte of data (-1 returned at end of stream):
b = fis.read();

To read an array of bytes (-1 returned at end of stream):
amountRead = fis.read(bytes);

To read a subarray of bytes:
amountRead = fis.read(bytes, offset, length);

To skip n bytes:
numberSkipped = fis.skip(n);

To find out how many bytes can be read (used to test the length of the file):
n = fis.available();

To close the stream
fis.close();

To get the file descriptor:
fd = fis.getFD();

(B-heading) Futil.getFileInputStream
In order to localize the exception handling within the Futil class, a static public method
has been devised called Futil.getFileInputStream. As seen below, getFileInputStream is
overloaded to either take an absolute path name, or no argument at all. When no
argument is passed, a standard file dialog box is presented to the user for file selection.
After a valid file is selected the getFileInputStream calls the overloaded version of itself
that takes a string. Should the user cancel out of the dialog box selection, an exception
causes an error message to be printed and program execution continues.

public static FileInputStream getFileInputStream() {
 return getFileInputStream(getReadFileName());
 }

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 173 Chapter 9: Image Processing in Java

public static FileInputStream getFileInputStream(String
name) {
 FileInputStream fis = null;
 try
 {fis = new FileInputStream(name);}
 catch (IOException e)
 {System.out.println("futil:Could not open file");}
 return fis;
 }

Recall that FileInputStream also has a constructor that works with a File instance:
public static FileInputStream getFileInputStream(File file)
{
 FileInputStream fis = null;
 try
 {fis = new FileInputStream(file);}
 catch (IOException e)
 {System.out.println("futil:Could not open file");}
 return fis;
 }

(B-heading) Futil.available
The Futil.available method is a static public method that permits a fast file check to see
how many bytes are in a file. This is a very specific operation that was developed for the
recursive futils.DirList class (which appears in the next section).

// Open the file, return -1 if file cannot be opened
// otherwise return the size in bytes
public static int available(File file) {
 FileInputStream fis = null;
 int sizeInBytes = -1;
 try {
 fis = new FileInputStream(file);
 sizeInBytes = fis.available();
 fis.close();
 }
 catch (IOException e)
 {System.out.println("Futil:Could not open file");}
 return sizeInBytes;
}

(B-heading) The futils.DirList class–Recursive File Lister (ls -al */* >foo)
The DirList class resides in the futils package. If DirList.main is invoked, a standard open
dialog box is presented to the user. The user selects a file and DirList builds a list of all
files in the directory and all subdirectories. Invocation of DirList.main is like the Unix
command ‘ls -al */* >foo’ in that DirList opens each file, prints the size, in bytes, and
stores the File instances, the total number of files visited and total number of bytes. A
class instance variable called history is of Vector type and holds instances of all files
visited.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 174 Chapter 9: Image Processing in Java

(BEGIN WARNING) The power of recursive file management is fraught with danger.
Do not attempt to write recursive file deletes as this is a serious time bomb. (END
WARNING)

package futils;
import java.awt.*;
import java.io.*;
import java.util.*;
import java.lang.*;
public class DirList {
 String startDir;
 public Vector history = new Vector();
 int totalBytes = 0;
 int totalFiles = 0;
 public static void main(String args[]) {
 DirList dl = new DirList();
 dl.printStats();
 }
 DirList() {
 startDir = Ls.getDirName();
 startAtThisDir(startDir);
 }

 public void printStats() {
 System.out.println("Saw " +
 totalFiles +
 " files with a total size of " +
 totalBytes +
 " bytes");
 }
 //--
-
 // Recursive function that given an anchor directory
 // will walk directory tree
 //
 //--
-
 public void startAtThisDir(String anchorDir)
 {
 FileFilter files = new FileFilter();
 DirFilter dirs = new DirFilter();
 File f1 = new File(anchorDir);
 File f2;
 FileInputStream fis;
 int i;
 String[] ls;
 int bytes;
 System.out.println("Selected -> " + anchorDir);
 System.out.println("Files in this Directory: ");

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 175 Chapter 9: Image Processing in Java

 //---

 // Loop through all the filenames in the current
directory
 // and store them in history:
 //---

 for (ls = f1.list(files), i=0;
 ls != null && i < ls.length; i++) {
 totalFiles++;
 f2 = new File(f1, ls[i]);
 bytes = Futil.available(f2);
 totalBytes += bytes;
 System.out.println(f2 +
 " has "+
 bytes + " bytes");
 history.addElement(f2);
 }
 //---

 // This loop recurses on all directory names in
 // the current working directory.
 //---

 for (ls = f1.list(dirs),
 i=0; ls != null && i < ls.length; i++)
 startAtThisDir(anchorDir + ls[i] + f1.separator);
 }
}

(BEGIN NOTE) The use of the Ls.getDirName and Futil.available methods enabled the
elimination of the try-catch structure that generally characterizes Java I/O code. As a
result, the code for the DirList class has fewer nested code blocks. Since the exception
handling is occuring at a lower level, some of the complexity is hidden from the
programmer and the code appears easier to read. (END NOTE)
(A-heading) The DataInputStream Class

The DataInputStream class resides in the java.io package. The DataInputStream class is a
byte stream reader. The DataInputStream provides high-level methods that supply
reading and casting services from a stream of bytes into various primative data types.
This is useful when attempting to decode binary files (like the audio files in the following
chapter).
The DataInputStream is a subclass of the FilterInputStream and implements the
DataInput interface. When a read is performed and no bytes are available, the thread will
block (cease to execute).
(B-heading) Class Summary

public class DataInputStream extends FilterInputStream
implements DataInput {
public DataInputStream(InputStream in)

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 176 Chapter 9: Image Processing in Java

public final int read(byte b[]) throws IOException
public final int read(byte b[], int off, int len) throws
IOException
public final void readFully(byte b[]) throws IOException
public final void readFully(byte b[], int off, int len)
throws IOException
public final int skipBytes(int n) throws IOException
public final boolean readBoolean() throws IOException
public final byte readByte() throws IOException
public final int readUnsignedByte() throws IOException
public final short readShort() throws IOException
public final int readUnsignedShort() throws IOException
public final char readChar() throws IOException
public final int readInt() throws IOException
public final long readLong() throws IOException
public final float readFloat() throws IOException
public final double readDouble() throws IOException
public final String readLine() throws IOException
public final String readUTF() throws IOException
public final static String readUTF(DataInput in) throws
IOException

}
(B-heading) Class Usage

InputStream is;
byte b, bytes[];
int length, offset;
char c;
int i;
long l;
float f;
double d;
String string;

Suppose that the following variables are predefined:
InputStream is;
DataInputStream dis;
int numberRead;

To create an instance of the DataInputStream class:
dis = new DataInputStream(is);

To read data into a byte array or subarray:
numberRead = dis.read(bytes);
numberRead = dis.read(bytes, offset, length);

To read bytes.length into bytes from bytes[0]:
dis.readFully(bytes);

To read bytes into a subarray:
dis.readFully(bytes, offset, length);

To skip bytes:
numberSkipped = dis.skip(numberToSkip);

To read a boolean (a single byte that is non-zero for true to be returned):

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 177 Chapter 9: Image Processing in Java

aboolean = dis.readBoolean();
To read a byte:

b = dis.readByte();
To read the byte into an int:

i = dis.readUnsignedByte();
To read a 16 bit signed or unsigned short:

s = dis.readShort();
i = dis.readUnsignedShort();

To read a 16 bit char:
c = dis.readChar();

To read a 32 bits into an int:
i = dis.readInt();

To read 64 bits into a long:
l = dis.readLong();

To read 32 bits into a float:
f = dis.readFloat();

To read 64 bits into a double:
d = dis.readDouble();

To read a line, stopping at the end of the stream, '\n', '\r' or '\r\n'
string = dis.readLine();

To read a Unicode Transfer Format (UTF string):
string = dis.readUTF();

To read UTF from an InputStream:
string = DataInputStream.readUTF(is);

(B-heading) Cat.fileToStream and Cat.javasToFile
The futils package has a facility that works like the cat command of Unix. The basic idea
is that we would like Java to perform the ‘cat *.java >file’ sequence. That is, list all the
files in the present directory into a single file.
On line 2 we build a list of files with the ‘.java’ suffix. Lines 6 and 7 pass the file name
and printstream of each file to the Cat.fileToStream method.

1.static public void javasToFile() {
2.String[] files = Ls.getWildNames("java");
3. FileOutputStream fos =
4. Futil.getFileOutputStream();
5. PrintStream ps = new PrintStream(fos);
6. for (int i=0; i < files.length; i++)
7. fileToStream(files[i], ps);
8. Futil.closeOutputStream(fos);
9. }
10.static public void fileToStream(String fileName,
PrintStream output) {
11.System.out.println("cat: "+fileName);
12.FileInputStream fis =
Futil.getFileInputStream(fileName);
13. String line;

The mapping is that there may be many input files, but only a single output stream. This
requires that we open and close the FileInputStream many times....on several different

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 178 Chapter 9: Image Processing in Java

files. (BEGIN NOTE) There is a try and catch surrounding lines 15-17. This is due to the
IOException that line 16 might throw. (END NOTE)

14. try {
15. DataInputStream dis = new DataInputStream(fis);
16. while ((line = dis.readLine()) != null)
17. output.println(line);
18. } // try
19. catch (Exception exe)
20. {System.out.println("cat:Error on input file");}
21. Futil.closeInputStream(fis);
22. }

(A-heading) The DataOutputStream Class

Like the DataInputStream class, the DataOutputStream class resides in the java.io
package. The DataOutputStream class is a byte stream writer. The DataOutputStream
provides high-level methods that supply writing services from various primative data
types into a stream of bytes. This is useful when attempting to encode binary files (like
the audio files in the following chapter).
The DataOutputStream is a subclass of the FilterOutputStream and implements the
DataOutput interface.
A DataOutputStream instance keeps track of the number of bytes that it has written. This
is kept in protected storage. All output performed with blocking is blocked until the data
is finally written. If the output does not say "with blocking" then the output may be
buffered and flushed either manually or automatically.
A UTF-8 format is used to write strings in a machine independent manner. Chars from 1-
127 are written as a single byte. Chars from 128-2047 and 0 are written by a pair of bytes.
Chars from 2048-65535 are written by 3 bytes. The actual bit format is given in [Gosling
and Yellin].
(B-heading) Class Summary

public class DataOutputStream extends FilterOutputStream
implements DataOutput
public DataOutputStream(OutputStream out)
public synchronized void write(int b) throws IOException
public synchronized void write(byte b[], int off, int len)
public void flush() throws IOException
public final void writeBoolean(boolean v) throws
IOException
public final void writeByte(int v) throws IOException
public final void writeShort(int v) throws IOException
public final void writeChar(int v) throws IOException
public final void writeInt(int v) throws IOException
public final void writeLong(long v) throws IOException
public final void writeFloat(float v) throws IOException
public final void writeDouble(double v) throws IOException
public final void writeBytes(String s) throws IOException
public final void writeChars(String s) throws IOException
public final void writeUTF(String str) throws IOException
public final int size()

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 179 Chapter 9: Image Processing in Java

}
(B-heading) Class Usage
Suppose that the following variables are predefined:

char c;
String string;
OutputStream os;
short s;
int i, offset, length;
long l;
float f;
double d;
byte b;
byte bytes[];

To construct a new DataOutputStream instance:
DataOutputStream dos = new DataOutputStream(is);

To write a byte, with blocking:
dos.write(b);

To write a sub-array of bytes:
dos.write(bytes, offset, length);

To flush the output stream:
dos.flush();

To write a boolean (as a 0 or a 1 byte):
dos.writeBoolean(aboolean);

To write a byte to an underlying 8 bit representation:
dos.writeByte(b);

To write a short to an underlying 16 bit representation with the high-byte first:
dos.writeShort(s);

To write a char to an underlying 16 bit representation with the high-byte first:
dos.writeChar(c);

To write an int to an underlying 32 bit representation with the high-byte first:
dos.writeInt(i);

To write a long to an underlying 64 bit representation with the high-byte first:
dos.writeLong(l);

To write a float to an underlying 32 bit representation with the high-byte first:
dos.writeFload(f);

To write a double to an underlying 64 bit representation with the high-byte first:
dos.writeDouble(d);

To write a String as a sequence of bytes (this casts each char as a byte, then writes the
byte). This will write s.len bytes:

dos.writeBytes(s);
To write a String as a sequence of 16 bit chars. This will output 2 * s.len bytes:

dos.writeChars(s);
To write a string in a machine independent UTF-8 format:

dos.writeUTF(s);
To get the number of bytes written:

i = dos.size();

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 180 Chapter 9: Image Processing in Java

(B-heading) Java, C, C++ -> HTML, The HTML Converter

Formats! You want formats? We got formats! Formats for browsers (HTML). Formats
for Word processors (RTF). Formats for computer languages (Java, C, C++). Formats for
images (JPEG, GIF, PPM). Formats, you can’t live with ‘em, you can’t live without ‘em!
In this section we address the conversion of Java, C and C++ into formatted and colorized
HTML (Hyper Text Markup Language).
(BEGIN ON CD) One of the packages included with the DiffCAD program is called the
htmlconverter package. (END ON CD) The htmlconverter package contains the support
systems for the HtmlGenerator class, a Java, C and C++ source code conversion program
that generates formatted and colored HTML files. The following code was converted to
HTML by the HtmlGenerator. The HTML was then converted into RTF (Rich Text
Format). RTF is the format that Microsoft Word is able to read. The conversion from
HTML to RTF was performed using a program called MacLinkPlus [DataViz].

1. package htmlconverter;
2. import java.io.*;

The JavaStream extends the DataInputStream and, as such, is able to inherit the
DataInputStream methods.

3. public class JavaStream extends DataInputStream
4. implements JavaText, CText, CplusplusText {
5. JavaHtmlString mainText = new JavaHtmlString();
6. JavaHtmlString comments = new JavaHtmlString();
7. JavaHtmlString strings = new JavaHtmlString();
8. JavaHtmlString keywords = new JavaHtmlString();
9. DataOutputStream dos;
10. public static String[] reservedWords =
javaReservedWords;

The JavaStream constructor takes an InputStream
11. JavaStream(DataInputStream s0, DataOutputStream s1)
{
12. super(s0);
13. dos = s1;
14. }
15. public void convertToHtml() {
16. int index;
17. boolean isCommentedOut = false;
18. boolean isQuoted = false;
19. boolean isSingleQuoted = false;

The basic idea behind the convertToHtml method is that a string of characters should be
read using the readln method. Since JavaStream is a subclass of the DataInputStream,
JavaStream inherits the readln method.

1. String line;
2. String str1, str2;

3. try {
4. while (true) {

Line 5 reads until the end of a line and places the characters into the line String.
5. line = readLine(); // get a line

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 181 Chapter 9: Image Processing in Java

6. if (line == null) { // if line is
null
7. break; // break
this loop
8. }

After a line of text is read, a series of seach an replaces are performed. For example:
1. for (int counter = 0; counter < line.length();
counter++) {

Recall, from Chapter 2, that to find anString starting from anInt we use:
anInt = anotherString.indexOf(aString, anInt);
So in line 2, we start from the counter position and look for the less than character.

2. index = line.indexOf("<", counter);
3. if (index < 0) break;
4. // if < is not found then break this loop

We then insert the string at the index point, replacing the ‘<‘ with ‘<’. This replacement
is performed because HTML represents the ‘<‘ character as ‘<’ and hold ‘<‘ as
reserved.

5. line = line.substring(0, index) + "<"
6. + line.substring(index + 1, line.length());
7. // replace < to <
8. counter = index + 4;
9. // update counter
10. }

This search and replace is continued until all the replacements are performed. At that
point the line is written to the DataOutputStream instance using a write bytes.
(A-heading) StreamTokenizer

The StreamTokenizer class resides in the java.io package. It is used to convert an
InputStream instance into a stream of tokens. We refer the reader to [Gosling and Yellin]
for a more complete description of the StreamTokenizer. Bytes are read from the
InputStream instance and are treated as unsigned shorts that range from 0-255.
A StreamTokenizer instance is an instance of a parser. The parser settings may be altered
to recognize C-style comments, C++ style comment, line terminators, and to convert
tokens to lower case.
The StreamTokenizer is a higher-level Stream than the DataInputStream.
(B-heading) Class Summary

public class StreamTokenizer {
public int ttype
public static final int TT_EOF
public static final int TT_EOL
public static final int TT_NUMBER
public static final int TT_WORD
public String sval
public double nval
public StreamTokenizer (InputStream I)
public void resetSyntax()
public void wordChars(int low, int hi)
public void whitespaceChars(int low, int hi)

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 182 Chapter 9: Image Processing in Java

public void ordinaryChars(int low, int hi)
public void ordinaryChar(int ch)
public void commentChar(int ch)
public void quoteChar(int ch)
public void parseNumbers()
public void StreamTokenizer:eolIsSignificant(boolean
flag)
public void StreamTokenizer:slashStarComments(boolean
flag)
public void slashSlashComments(boolean flag)
public void lowerCaseMode(boolean fl)
public int nextToken() throws IOException
public void pushBack()
public int lineno()
public String toString()

}
(B-heading) Class Usage
Suppose the following variables are predefined:

String sval;
double nval;
InputStream is;
int low, hi, ch, token, lineNumber;
String s;
StreamTokenizer st;

To make an instance of a StreamTokenizer:
st = new StreamTokenizer(is);

The StreamTokenizer has several constants held as public static final ints. They are used
by case statements to determine the token type. They are the end-of-file and end-of-line
token:

StreamTokenizer.TT_EOF
StreamTokenizer.TT_EOL

To determine if the token is a number(value in nval):
StreamTokenizer.TT_NUMBER

To determine if the token is a word (value in sval):
StreamTokenizer.TT_WORD

To make all characters ordinary:
st.resetSyntax();

To cumulativly specify the Unicode characters to be used for words:
st.wordChars(low, hi);

To spec the white space chars:
st.whitespaceChars(low,hi);

Ordinary chars are returned by nextToken. To spec the ordinary chars:
st.ordinaryChars(low, hi);

To add an ordinaryChar:
st.ordinaryChar(ch);

To add a single line comment char (all chars to end of line are comment chars and
tokenizer skips them:

st.commentChar(ch);

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 183 Chapter 9: Image Processing in Java

To spec the quote char to delimit a string:
st.quoteChar(ch);

To spec that numbers should be parsed:
st.parseNumbers();

To make TT_EOL be returned by nexttoken:
flag = true;
st.eolIsSignificant(flag);

To select '/*' comments:
st.slashStarComments(flag);

To select '//' comments:
st.slashSlashComments(flag);

To select if TT_WORD are converted to lower case:
lowerCaseMode(fl);

To parse a token, returning ttype:
ttype = st.netToken();

To push a token back into the stream:
st.pushBack();

To get the current line number:
i = st.lineno();

To convert the StreamToken to a string:
s = st.toString();

(B-heading) Futil. readDataFile
In order to save the state of our DiffCAD program, we write several key parameters into a
file. These parameters are stored with keywords and values so that a human with a text
editor (perhaps a non-programmer) is able to alter the data. A sample data file follows:

Data format is order dependent lyon.Laser Rotation=
34.4198 6.47311 -36.7812 lyon.Camera rho=

18.4931 pc= 125.3 -102.35 A= 4.8 F=
3.6 lyon.Wedge p1 = -403.685
591.244 lyon.Grating P1= 6651 P2= 2261 L= 81

 The readDataFile method is in the futils package. It is used to take a file name and read
data into an array of doubles. To perform this task we use a StreamTokenizer instance
called tokens.

1. public static void readDataFile(String file,double
data[]) {
2. System.out.println("processing:\t" + file);
3. FileInputStream inputFile =
4. getFileInputStream(file);
5. StreamTokenizer tokens = new
StreamTokenizer(inputFile);
6. int next = 0;
7. int num = 0;

Note that the tokens.nextToken() must be nested in a try-catch block.
8. try {
9. while ((next = tokens.nextToken()) !=
tokens.TT_EOF) {
10. switch (next) {
11. case tokens.TT_WORD:

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 184 Chapter 9: Image Processing in Java

12. break;
Lines 11 and 12 indicate that words are ignored (they are for humans!!). Only numbers
matter, and since people are warned not to change the order of the parameters, future
versions of the data file may only add numbers to the end of the file. They may not insert
numbers!

13. case tokens.TT_NUMBER:
14. data[num] = (double)
tokens.nval;
15. System.out.println(num+": "+
data[num]);
16. num = num + 1;
17. break;
18. case tokens.TT_EOL:
19. break;
20. }
21. }
22. }
23. catch (Exception exe)
24.

{System.out.println("listFilteredHrefFile:er!");}
25. closeInputStream(inputFile);
26. }

Creation of the file is a simple matter. In the following code, we open a file as a
PrintStream instance, write out the data, then close the file:

 public static void save() {
 FileOutputStream os =
Futil.getWriteFileOutputStream();
 PrintStream output = new PrintStream(os);
 output.println("Data format is order dependent");
 Geometry.print(output);
 Futil.closeOutputStream(os);
 }

The Geometry.print is a public static method that uses the Print class in the futils
package, which is described in the following section.
(B-heading) Futil.Print
To ease the implementation of output to files and the console, the futils package provides
its own Print class. The Print class is a public final class with a private constructor, to
prevent instantiation. The key point about the Print class is that it stores an instance of the
PrintOutputStream in a settable variable. Thus, output may be directed to a file or, by
default, to the console. The trick is that the change of the PrintOutputStream is
centralized, and all methods that make use of the Print class benefit from this
centralization. For example, in the Geometry class we write:

1. static public void print(PrintStream out) {
We setPrintStream in the Print class, execute our print, then reset the stream.

2. Print.setPrintStream(out);
3. print();
4. Print.setPrintStream(System.out);
5. } // print

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 185 Chapter 9: Image Processing in Java

Every shape knows how to print (using the Print class) and so will make use of the new
output stream when printing. if the print method of line 6 is invoked without line 2 being
executed then the output will be directed to the console.

6. static public void print() {
7. laser.print();
8. camera.print();
9. wedge.print();
10. grating.print();
11. System.out.println("Lambda = "+
lambda.getValue());
12. System.out.println("s = " + s());
13. } // print

The code for the futils.Print follows:
1. package futils;
2. import java.util.*;
3. import java.io.*;
4. public final class Print {
5. // prevent instantiation
6. private Print() {}
7. private static PrintStream output = System.out;
8. public static void setPrintStream(PrintStream ps) {
9. output = ps;
10. }
11. public static PrintStream getPrintStream() {
12. return output;
13. }
14. public static void d(double i)
15. {Print.output.print(i+"\t");}
16. public static void ln(double d)
17. {Print.output.println(d);}
18. public static void ln(String str)
19. {Print.output.println(str);}
20. public static void print(String str)
21. {Print.output.print(str);}
22. public static void print(double d)
23. {Print.output.print(d);}
24. public static void print(int d)
25. {Print.output.print(d);}
26. public static void className(Object o)
27. {Print.output.print(o.getClass().getName() +
"\t");}
28. }

(B-heading) Futil.writeFilteredHrefFile
A buggy web authoring tool (like Netscape 3.01 Gold), will produce HTML that has
hrefs (hyper-text references) with embedded spaces. The API documentation shows an
href on line 8. The space between “API” and “Documentation” is a bug. Browsers will
stop reading the href name after the first space. To get browsers to recognize the space,
we must replace spaces with their hexidecimal equivalent, %20.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 186 Chapter 9: Image Processing in Java

1. <html>
2. <head>
3. <title>
4. API User's Guide
5. </title>
6. </head>
7. <body>
8. Java
API

The corrected version of line 8 follows:
 Java API

To perform this transform, we build a custom tokenizer that looks for quoted strings and
replaces all spaces that they contain with a %20. This has the bug of transforming the
spaces in non-href strings to %20 too (a bug we have been able to live with).

1. public static void writeFilteredHrefFile(String
inputName, String outputName) {
2. System.out.println("Filtering:\t" + inputName
+"\t>\t"+outputName);
3. try {

Lines 4-7 make an input stream and a StreamTokenizer instance.
4. FileInputStream is = new FileInputStream(inputName);
5. StreamTokenizer tokens = new StreamTokenizer(is);
6. FileOutputStream os = new FileOutputStream(outputName);
7. PrintStream output = new PrintStream(os);
8. int i;
9. int next = 0;

The interesting bit is line 10, recall that resetSyntax will make all characters ordinary.
This that there are no comment characters.

10. tokens.resetSyntax();
Line 11 says that all characters are word characters. Line 12 identifies the only character
of interest, the quote character. Recall that nextToken will read until the quoteCharacter,
setting sval to the value of the body of the string contained in quotes.

11. tokens.wordChars(0,255);
12. tokens.quoteChar('"');
13. while ((next = tokens.nextToken()) != tokens.TT_EOF) {
14. switch (next) {
15. case '"':
16. output.print('"');

We now output a quote, then we scan the string for a space. If a space is found, output a
“%20” otherwise output the character.

17. for (i=0;i<tokens.sval.length();i++)
18. if (tokens.sval.charAt(i) == ' ')
19. output.print("%20");
20. else
21. output.print(tokens.sval.charAt(i));
22. output.print('"');
23. break;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 187 Chapter 9: Image Processing in Java

In all other cases we simply output the string read. This is really nice because we only
read upto the point at which a delimiting character occurs.

24. case tokens.TT_WORD:
25. output.print(tokens.sval+" ");
26. break;
27. case tokens.TT_NUMBER:
28. output.print(tokens.nval+" ");
29. break;
30. case tokens.TT_EOL:
31. output.println();
32. break;
33. } // end switch
34. } // end while
35. is.close();
36. os.close();
37. } // end try
38. catch (Exception exe)
39. {System.out.println("writeFilteredHrefFile:er!");}
40. }

(A heading) Exercises

The astute reader will note that we did not perform local handling of exceptions for the
StreamTokenizer. We suggest the development of a StreamTokenizer with local handling
of exceptions as an exercise for the reader.
Another topic for exploration includes the adding of features onto the futils.DirList class.
One nice feature might be to include a constructor that takes a String instance for a suffix.
DirList could then construct a WildFilter instance to form a list of only those files that
have an ending that matches the suffix string.
A topic of exploration, that we have not seen in any book (yet) is the creation of a Unix
like command line interface to Java. Then commands like “ls *.java > foo” could be
typed into the command line reader. This could be an excellent way to employ piping and
to write a series of data processing type tools.
(A-heading) Summary

In this chapter we covered the Dialog and FileDialog classes as the widgets to use to get
file names from the user. The Futils.getReadFileName and Futils.getWriteFileName both
had embedded calls to the FileDialog constructor. As a result, there is no reason to embed
a file name into a file in the Java source code. The futils package contained a list of
classes that are used on a daily basis and save several line of source code each time that
they are used.
From a design viewpoint, the programmer might object to handling exceptions locally, as
the futils classes attempt to do. This generally does not appear to be a problem. In short,
we have found the local handling of exceptions to be the correct approach in all cases that
we have encountered so far.
This chapter introduced a number of new classes that are unique to this book. The Ls
class has the ability to list batches of files using the ‘ls *.<suffix>“ and place the results
into internal data structures. The Ls class provides the ability to recursively traverse the
directory tree structure using a form that is like the UNIX ‘ls -al */*’. The Cat class takes

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 188 Chapter 9: Image Processing in Java

the output of Ls and lists the files into a single file. Batch processing was also used by the
HtmlGenerator class to input C, C++ or Java and output colored and formatted HTML,
with a hyper-linked HTML index.
(CN) 5 Digital Audio Processing

Thy voice sounds like a prophet's word;
And in its hollow tones are heard

- Fitz-Greene Halleck. 1790-1867.
(A-heading) What is Digital Signal Processing?

Sound is a pressure wave that traverses a medium. Sound pressure waves in air are the
objective cause of human hearing. Sound will not travel through a vacuum, but it will
travel through various phases of matter (solid, liquid and gas).
A transducer is a device that takes power from one system and supplies power to another.
For example, a microphone is a transducer that takes sound power and supplies electrical
power. The electrical power supplied by the microphone forms a signal that is analog. An
analog signal is continuous.
Digitization is a process that converts a continuous signals into a digital form.
Digitization (also known as analog to digital conversion) is performed by sampling and
quantization. Sampling is the process of converting a continuous signal into a set of
voltages. Quantization is the process of converting the sampled voltages into a countable
set of digital values. Analog data that is converted to digital data is said to be PCM
encoded. PCM stands for Pulse Code Modulation and is a broad term that can refer to any
type of digital encoding of analog data. Figure 5.1 depicts a PCM encoder.

Figure 5.1. Block diagram of a PCM encoder
A low-pass filter (called an anti-aliasing filter) is typically set to attenuate frequencies at
or above one-half the analog to digital converters’ sampling rate (this is known as the
Nyquest frequency).
To transform the PCM signal back into the analog domain, we couple a digital-to-analog
converter with another low-pass filter. A block diagram of the PCM decoder is shown in
Figure 5.2.

Figure 5.2. Block diagram of a PCM decoder
Digital signal processing is a kind of data processing that operates on PCM data. Thus,
broadly speaking, audio, image and image sequence processing are 1-D, 2-D and 3-D
digital signal processing.
In common usage, the term digital signal processing refers to one dimensional signals,
V(t). In image processing we often speak about two dimensional signals, I(x, y). This
chapter deals only with one dimensional digital signal processing in Java.
(A-heading) Why do we need digital signal processing?

A digital signal stream may come from any energy (i.e., sound, measurement,
temperature, speed, pressure, radiation, etc.). There also exist non-physical phenomena
that can produce a digital stream of data (i.e., financial data, statistical data, network
traffic, etc.).
In short, digital signal processing may be performed on any recordable event. Digital
signal processing is just a kind of data processing.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 189 Chapter 9: Image Processing in Java

In this chapter we treat only the restricted domain of audio digital signal processing in
Java. There are several reason for this;

1. Java can already play audio files.
2. The techniques may be extended to other types of data.
3. We can hear the results.
4. It is fun!

(A-heading) What is the spectrum of a signal?

The harmonic content of a signal is called the spectrum of the signal. The spectrum of a
signal consists of a series of sin and cosine waves. Spectra is the plural form of spectrum.
A French mathematician, Jean Baptist Joseph de Fourier (1768-1830), showed that
harmonic waves (i.e., sine and cosine waves) may be summed in a series to form any
periodic waveform. The summation (called the superposition principle) fails to
approximate a waveform when the equations governing the waveform are non-linear (i.e.,
shock waves, turbulence, chaos, etc.) [Halliday]. The series was first formulated by, and
is used in, harmonic analysis (also called Fourier analysis). Harmonic analysis is the
process that determines the harmonic components of a complex wave. The series may be
written as

v(t) = a0 + (a1 cos t + b1 sin t) + (a2 cos2t + b2 sin2t)+K (5.1)
where a0 ,a1,b1,a2 ,b2K are constants called Fourier coefficients.
For example, a sawtooth wave may be computed by letting k in

f (x) = 2
π

−1()(n−1) sin(nπx)
nn=1

K

∑
go to infinity. When k=5, the waveform of Figure 5.3 results:

Figure 5.3. Sawtooth waveform with k=10
When k=100, the waveform of Figure 5.4 is produced.

Figure 5.4. Sawtooth waveform with k=100
 When the waveform to be approximated is not periodic, the summation is replaced by
the Fourier transform:

V(f) = F[v(t)] = v(t)e−2πiftdt
−∞

∞

∫ (5.2)

v(t) = F−1 V(f)[] = V(f)e2πiftdt
−∞

∞

∫
(5.3)

Where eiθ is given by Euler’s identity:
eiθ = cosθ + isinθ (5.4)

Euler’s identity can lead to several equivalent representations for the Fourier series. For
example there is the Sine-Cosine Representation

x(t) = an cos(2πnf 0t) + bn sin(2πnf 0t)
n=1

∞

∑
n=0

∞

∑

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 190 Chapter 9: Image Processing in Java

where f 0 = frequency and nf 0 = nth harmonic of f 0 . The constants, known as Fourier
coefficients, are found by correlating the time dependent function, x(t), with a Nth
harmonic sine-cosine pair:

a0 = 1
T

x(t)dt
0

T

∫
an = 2

T
x(t)cos(2πnf 0t)dt

0

T

∫
bn = 2

T
x(t)sin(2πnf 0t)dt

0

T

∫

.

Another common representation of the Fourier series is the amplitude-phase
representation. This is also a result of the Euler’s identity:

x(t) = c0 + cn cos(2πf 0t + θn)
n=1

∞

∑

c0 = 1
T

x(t)dt
0

T

∫
cn = an

2 + bn
2

θn = −tan−1 bn

an

In general the usage of the representation of the Fourier transform is a matter of
preference, as the various representations are equivalent. There are some interesting
properties of the Fourier transform, and while it is beyond this scope to state them all (or
to prove any of them), we do give some of them here.
A Fourier transform representation of an a periodic signal has discrete spectral
components at f 0 and nf 0 , as shown by (5.1). An aperiodic signal as a continuous and
infinite spectrum, as shown by (5.2) and (5.3). This means that time-limited signals
(which are, by definition, aperiodic) have infinite bandwidth.
The effective bandwidth of a signal is the width of the spectra which contains the most

power. The average power in a given interval of time is computed by P = 1
t1 − t2

x(t) 2

t1

t2

∫ .

To compute the average power in a periodic signal, whose period is T, we use

P = 1
T

x(t) 2 dt
0

T

∫ . The PSD (Power Spectral Density) is the power at a specific

frequency, S(f) . Chapter 6 will discuss the computation of the PSD in more detail, but a
sample PSD may be seen in Figure 5.6.
The Fourier transforms are important because they permit computation in either the time-
domain or in the frequency domain. Some relations with Fourier transforms follow:
Superposition state that linear combinations in the time domain become linear
combinations in the frequency domain:

a1V1(f) + a2V2 (f) = F[a1v1(t) + a2v1(t)] (5.5)

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 191 Chapter 9: Image Processing in Java

Delay in the time domain causes a phase shift in the frequency domain:
V(f)e−2πif = F(v(t − td)) (5.6)

Scale change in the time domain causes a reciprocal scale change in the frequency
domain:

1
α

V
f

α

 = F(v(αt)),α ≠ 0 (5.7)

The convolution theorem state that multiplication in the time domain causes convolution
in the frequency domain:

V * W(f) = F(v(t)w(t)) (5.8)
Where convolution between two functions of the same variable is defined by:

V * W(f) ≡ V(λ)W(f − λ)dλ
−∞

∞

∫ (5.9)

For proofs of these results, see [Carlson].
(A-Heading) What does sampling do to the spectrum of a signal?

The digitization process, as depicted in Figure 5.1, starts with the process of sampling.
The sampling-reconstruction process does not have to perform digitization, and yet is still
responsible for the introduction of additional harmonic content into the reconstructed
signal. The sampling-reconstruction process is shown in Figure 5.5.

Figure 5.5. The Sampling-Reconstruction process
Figure 5.5 shows a continuous signal, v(t) being sampled at a rate of f s using an
electronically controlled switch. The output of the switch is fed into an amplifier that has
a gain of R. Mathematically, the sampling function may be expressed in terms of a Dirac
delta function multiplied by v(t) in the time domain. The Dirac delta function, δ(t), is a
generalized function that is defined by:

δ(t)
−ε

ε

∫ dt = 1 (5.10)

Where ε is arbitrarily small. Thus the Dirac delta function is a unit impluse that occurs at
time t=0. We can make the Dirac delta function fire at any time, td , by using the form

δ(t − td). (5.11)
Further, we can model the sampling function as an infinite sum of Dirac delta functions:

s(t) = δ(t − n / f s)
n=−∞

∞

∑ (5.12)

The switching function multiples s(t) by v(t). The sampled function is represented by

vs (t) = v(t)s(t) = v(t) δ(t − n / f s)
n=−∞

∞

∑ (5.13)

Recall that multiplication in the time domain is convolution in the frequency domain:
Vs (f) = F[vs (t)] = V(f) * S(f) (5.14)

The Fourier transform of an impulse train is also an impulse train

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 192 Chapter 9: Image Processing in Java

Vs (f) = V(F) * f sδ(f − nf s)
n=−∞

∞

∑ (5.15)

Finally we see that sampling a signal at a rate of f s causes the spectrum to be reproduced
at f s intervals.

Vs (f) = f s V(f − nf s)
n=−∞

∞

∑ (5.16)

A sample of this spectrum replication is shown in Figure 5.6.

Figure 5.6 Spectrum replication due to sampling
Equation (5.16) is called the aliasing formula.
(A-heading) Audio Files

In this section we describe how to read, play, graph and write audio files. The current
Java API can open an audio file and play it. There is no support for decoding the audio
file. Thus, the code that we present in this chapter extends and builds upon the existing
Java API.
The reader will find a collection of sound utilities for the Mac at:
http://wwwhost.ots.utexas.edu/mac/pub-mac-sound.html. There are also a collection of
sound utilities on the book CD-ROM. These are quite useful for recording and
resampling audio files.
(A-heading) The sun.audio Package

AudioData, AudioDataStream, AudioPlayer, AudioStream, AudioStreamSequence and
ContinuousAudioDataStream are public classes that reside in the sun.audio package.
(BEGIN WARNING) Code that makes use of classes in the Java sun.audio package does
so in an undocumented and unsupported way. When the Java sun.audio package changes,
code that depends on the classes in the sun.audio package may not work. (END
WARNING).
(BEGIN NOTE) A trick of the Java trade is to take a library of files (like the classes.zip
file that comes with some applet viewers) and unzip the file. Unzipping creates a large
number of class files (446 for JDK 1.0.2) and it is a very good idea to perform this
operation on a copy of the classes.zip (don’t break your applet viewer!). Using a class
browser (like the class dumper included with DiffCAD) you can list the fields of the
class. This is called hacking.(END NOTE)
A clip of audio data, contains µ -law encoded 8-bit, 8000 sample rate data. This data can
be used to construct an AudioDataStream instance. The getAudioData method gets an
audio clip out of the cache. The AudioStream is an input stream used to play AudioData.
For more documentation on the sun.audio package see
http://www.cdt.luth.se/java/doc/sun/shared/Package-sun.audio.html.
(BEGIN NOTE)
Current implementations have been tested with the book software on Mac OS System
7.5x, Windows 95/NT and Sun Solaris operating systems. The sound player software
cannot make audio output on a wintel platform that lacks a sound card. Further, some
sound cards do not get driven properly by the current Java sound drivers. Sound blaster
compatible cards seem to work with this books software.
(END NOTE)

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 193 Chapter 9: Image Processing in Java

We have guessed how classes in the sun.audio package might work. There is no
documentation upon which to base a solid code foundation. However, the code that we
present in the following section does work, at present.
(A-heading) The AudioStream Class

The AudioStream class resides in the sun.audio package. It is used to Convert an
InputStream to an AudioStream. The AudioStream extends the FilterInputStream class.
As a subclass of the FilterInputStream, the AudioStream class inherits all the methods
and attributes of the FilterInputStream.
(B-heading) Class Summary
Since we cannot reverse engineer the software that makes up the AudioStream, we
reproduce the raw class dumper output from the DiffCAD program

package sun.audio
import java.lang.Thread;
import java.io.IOException;
/*
 * This class has 1 optional class attributes.
 * These attributes are:
 * Attribute 1 is of type SourceFile
 * SourceFile : AudioStream.java
 */

public class AudioStream extends FilterInputStream {
public void AudioStream(java.io.InputStream a);
public int read(byte a[], int b, int c);
public sun.audio.AudioData getData();
public int getLength();
}

(B-heading) Class Usage
Suppose the following variables are pre-defined:

InputStream is;
int position, length;
byte bytes[];
AudioData ad;

To construct an Instance of the AudioStream class (throws IOException):
 AudioStream as = new AudioStream(is);

To construct an instance of an AudioStream from a URL:
AudioStream as = new AudioStream(url.openStream());

To read an array of bytes from the input stream starting at position and proceeding for
length bytes (throws IOException):

as.read(bytes, position, length);
To find the length of the AudioStream instance:

length = as.getLength();
To get the AudioData from an AudioStream instance:

ad = as.getData();

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 194 Chapter 9: Image Processing in Java

(A-heading) The AudioData Class

The AudioData class resides in the sun.audio package. An instance of the AudioData
class is often called a clip of audio data. The AudioData instance consists of 8-bit µ-law
encoded, 8000 Hz sample rate data. An instance of the AudioData stream is used to
construct an instance of an AudioDataStream. An instance of an AudioDataStream can be
played to the speaker of audio capable machines.
(BEGIN WARNING)
As a resident of the sun.audio package, the interface is subject to change without notice.
The class summary was derived from the DiffCAD class dumper.
(END WARNING)
(B-heading) Class Summary

public class AudioData extends java.lang.Object {
public void AudioData(byte a[]);
}

(B-heading) Class Usage
Suppose the following variables are predefined:

AudioStream as;
byte bytes[];

To make and instance of the AudioData:
ad = new AudioData(bytes);

To get data from an AudioStream:
ad = as.getData();

(A-heading) The AudioDataStream Class

The AudioDataStream resides in the sun.audio package. It extends
ByteArrayInputStream. An AudioDataStream instance provides an input stream to play
AudioData.
(BEGIN WARNING)
As a resident of the sun.audio package, the interface is subject to change without notice.
The class summary was derived from the DiffCAD class dumper.
(END WARNING)
(B-heading) Class Summary

public class AudioDataStream extends ByteArrayInputStream {
public void AudioDataStream(sun.audio.AudioData a);
}

(B-heading) Class Usage
The AudioDataStream has only one public method, its constructor.
Suppose the following variables are predefined:

byte ulawData[];
AudioData audioData = new AudioData (ulawData);

To make an instance of the AudioDataStream:
audioDataStream = new AudioDataStream (audioData);

(B-heading) Reading and Playing an AU File
The following code fragment, from the (BEGIN ON CDROM) UlawCodec class (END
ON CD ROM) shows how to read data from a Sun AU file. This is used to make and play
an AudioDataStream instance:

package lyon.audio;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 195 Chapter 9: Image Processing in Java

import java.io.*;
import sun.audio.*;
import futils.Futil;
public class UlawCodec implements Runnable {
private byte ulawData[];
private double doubleArray[];
private AudioDataStream audioDataStream = null;
private AudioStream audioStream = null;
....
// --

//
// public ReadAUFile(String name);
//
// This constructor can be used to acquire the audio
samples
// from an AU file
//
// ---

 public void readAUFile(String fileName){
 // force recomputation
 // of the doubleArray, as it is invalid
 doubleArray = null;
 try {
 audioStream = new AudioStream(new
FileInputStream(fileName));
 // AudioStream constructor expects data stream from AU
file as input
 ulawData = new byte[audioStream.getLength()];
 audioStream.read(ulawData, 0, audioStream.getLength());
 }catch(Exception e){}
 }
 public void readAUFile() {
 String fileName = Futil.getReadFileName();
 readAUFile(fileName);
 }

(A-heading) The AudioStreamSequence Class

The AudioStreamSequence resides in the sun.audio package. An instance of the
AudioStreamSequence can be used to convert a sequence of input streams into a single
InputStream. This is typically used to play two audio clips in sequence.
(BEGIN WARNING) As a resident of the sun.audio package, the interface is subject to
change without notice. The class summary was derived from the DiffCAD class dumper.
(END WARNING)
(B-heading) Class Summary

public class AudioStreamSequence extends
java.io.InputStream {

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 196 Chapter 9: Image Processing in Java

public void AudioStreamSequence(java.util.Enumeration a);
public int read();
public int read(byte a[], int b, int c);
}

(B-heading) Class Usage
Suppose the following variables are predefined:

AudioStream as1, as2;
Vector v = new Vector();
v.addElement(as1);
v.addElement(as2);
int lenghtRead, length, position;
byte bytes[];

To make a new instance of the AudioStreamSequence:
AudioStreamSequence ass = new
AudioStreamSequence(v.elements());

To play the AudioStreamSequence instance:
AudioPlayer.player.start(audiostream);

To read from an instance of the AudioStreamSequence and flip to the next stream if an
EOF is encountered (throws IOException):

lengthRead = ass.read(bytes, position, length);
lengthRead = ass.read();

(A-heading) The AudioPlayer Class

The AudioPlayer class resides in the sun.audio package. This class provides an interface
to play and instance of the AudioStream.
(BEGIN WARNING) As a resident of the sun.audio package, the interface is subject to
change without notice. The class summary was derived from the DiffCAD class dumper.
(END WARNING)
(B-heading) Class Summary

import java.io.PrintStream;
import java.lang.System;
public class AudioPlayer extends java.lang.Thread {
public static final sun.audio.AudioPlayer player;
private void AudioPlayer();
public synchronized void start(java.io.InputStream a);
public synchronized void stop(java.io.InputStream a);
public void run();
}

(B-heading) Class Usage
Suppose the following variables are pre-defines:

AudioStream as;
AudoData ad = as.getData();

To play an audio stream use:
AudioPlayer.player.start(as);

To stop playing an audio stream use:
AudioPlayer.player.stop(as);

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 197 Chapter 9: Image Processing in Java

(A-heading) The µ -law CODEC concept

In this section we show how to use a software CODEC (COder-DECoder) to decode a
Sun AU audio file and play it. The Java API uses a µ -law (pronounced mu-law)
compression technique for playing audio files. The supported µ -law format consists of
logarithmically companded, 8 khz sample rate, byte-quantized, voice-grade audio. The
word compandor is a contraction of “compressor” and “expander” [BTL]. The sample
time for an 8000 samples per second system is 1/8000 = 0.000125 second = 125 µs . Such
a format generates an 8000 sample/second * 8 bits / sample = 64 kbps data stream and is
common in telephony. Also, the peak bandwidth of such a compression format is

Bandwidth = Sampling Rate

2
= 4khz

. (5.17)
The International Telecommunication Union (ITU) formerly CCITT, has created a
specification called, G.711. There are two PCM algorithms defined within the G.711
standard, “A-Law” and µ -law. In both the “A-Law” and µ -law format, the sample rate
is 8 khz. In a linear PCM system there are uniform voltage quantization steps [Bates].
A copy of the G.711 specification is available for sale at http://www.itu.int/itudoc/itu-
t/rec/g/g700-799/g711_27434.html (it is 20 Swiss francs, last we checked). The Sun
reference implementation is on the CD, along with a wealth of other audio information.
The µ -law encoding formula is given by:

y = F x() = sign(x)Vmax

ln 1 + µx

Vmax

ln 1 + µ()
where

−Vmax ≤ x ≤ Vmax

(5.18)

The “A-law formula is given by:

y = A

1 + ln A

x

Vmax

,

x
Vmax

< 1
A

and

y = sign(x)
1 + ln A

1 + ln
Ax

Vmax

,

1
A

≤ x
Vmax

≤ 1

(5.19).

Typical values of the compression parameters used in (5.18) and (5.19) are:
µ = 100 and 255

A = 87.6
(5.20)

A graph of (5.18), with Vmax = 1, and µ = 255 is shown in Figure 5.7. The value of
µ =255 is used for North American telephone transmission. The value of A=87.6 is used
for European telephone transmission. The rationale for companding is that the human ear
has an inability to differentiate between amplitudes of sound waves as the amplitude
increases [Embree].

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 198 Chapter 9: Image Processing in Java

Figure 5.7 Graph of the µ-law transfer function, with µ=255.
One metric of PCM performance is the ratio of the signal power to quantization noise
power (signal-to-quantizing distortion ratio). The basic idea behind “A-law” and µ -law
companding is that a logarithmic curve may be used to improve the signal-to-quantizing
distortion ratio at low signal levels.
Binary PCM will have a number of quantization levels given by:

Nq = 2Nb (5.21)
where

Nq = the number of quantization levels

Nb = the number of bits per sample
.

The signal power varies from 0 to 1, inclusive, and is given by:
S ∈ 0...1[]

The signal voltage, x, varies from:
−Vmax ≤ x ≤ Vmax (5.22).

For simplicity we assume that
Vmax = 1 (5.23)

The uniform quantizer divides the signal voltage evenly among the number of
quantization levels. The uniform quantizers’ quantization error voltage is given by:

− 1
2Nb

≤ ε ≤ 1
2Nb

where

ε = quantization error voltage

(5.24)

The average quantization error is 0, but the root-mean-square (RMS) value of the
quantization error is the mean square quantization noise power. The term “root-mean-
square” refers to the fact that the computation is performed by taking the square-root of
the mean of error voltage squared [Carlson and Gisser]. Recall that for a continuous

probability distribution function, the expectation is taken by E X[] = xf X (x)dx
−∞

∞

∫ and the

variance is taken by σX
2 (t) = E X(t) 2[] . The variance expands to σX

2 (t) = x2 f X (x)dx
−∞

∞

∫ .

The reader may also recall that for a discrete random variable, E[X] = mean = 1
N

xi
i=1

N

∑

and σX
2 (t) = var iance = E X(t) 2[] = 1

N
xi − E[X]()2

i=1

N

∑ .

Thus, we compute the RMS error by integrating the square of the quantization error
voltage over the range in (5.24), assuming a zero mean:

σ 2 = 1

2 / Nq() ε
−1/ Nq

1/ Nq

∫
2

dε = 1
3Nq

2
(5.25).

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 199 Chapter 9: Image Processing in Java

When the maximum signal voltage is constrained, as in (5.22) and (5.23) we compute the
signal-to-quantization noise power as:

SNRD = 10 log10 3 × 22 Nb Sx()
SNRD = 10 log10 3 + 20Nb log10 2Sx

(5.26)

Where the signal power is given by Sx . If the signal power is equal to 1, then the range on
the upper bound for the signal-to-quantization noise power is:

SNRD ≤ 4.8 + 6Nb (5.27).
With the 8-bit PCM system and uniform quantization, the best we can hope for is a SNR
of 52.8 dB. Note that the SNR (in dB) falls off linearly as a function of the power in
(5.26). It can be shown that the companding equations of (5.18) and (5.19) will provide
an improvement in the SNR when the signal power falls below -20 dB.
It must also be mentioned that for signal powers above -20 dB, companding degrades
performance, relative to uniform quantization, assuming that the PDF (Probability
Distribution Function) of a voice signal has a Laplace distribution of the form

 = ()p x
1
2

α e
()−α x

[Carlson].
The compression parameter values given in (5.20) are based on an assumed PDF of an
input signal. The PDF assumption is required for telephony applications. However, in the
instance of audio files that are stored on static media (such as CD ROM, or web server
hard drive) the computation of the PDF can be performed off-line. For such a system, the
SNR is

SNRD = Sx

σ 2 =
3Nq

2Sx

Kz

where

Kz = 2
p(x)

y'[] 20

1

∫

(5.27)

computing the derivative of (5.18) with respect to x, and substituting into (5.27) yields

 = Kz 2 d

⌠

⌡

0

1

()p x () + Vmax µ x 4 ()ln + 1 µ 4

µ4 Vmax4
x

(5.28)
Once the PDF , p(x), is computed, the companding parameter can be precomputed using a
criterion of optimality based on the bit rate budget. For example, a bit rate budget of 16
kbps might require a 4 bit sample with a 4 khz sampling rate. Such a system might be
used to stream audio (transmit in real time) via a low data-rate phone connection. Ideally,
a server should be able to resample and compand the audio before transmission, in
response to the bit rate budget.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 200 Chapter 9: Image Processing in Java

(A-heading) The UlawCodec Class

The UlawCodec class is a public class that resides in the lyon.audio package. (BEGIN
ONCDROM) The UlawCodec class performs the µ -law CODEC function, in addition to
providing file save and open services.(END ON CD ROM) Java can, in principle, process
any file format. The basic problem, however, is that Java’s present API is only able to
play an AudioDataStream that is µ -law encoded. Thus, while Java is able to read,
process and write any audio data format file, an intermediary µ -law encoding is required
to play the audio, at present.
(B-heading) Class Summary

public class UlawCodec implements Runnable {
public UlawCodec()
public UlawCodec(String name)
public UlawCodec(short linearArrayOfShort[])
public UlawCodec(double linearArrayOfDouble[])
public UlawCodec(byte ulawArrayOfByte[])
public void readAUFile(String fileName)
public void readAUFile()
public void writeAUFile(String fileName)
public void writeAUFile()
public void playSync()
public void playAsync()
public byte [] getUlawData()
public void setUlawData(byte ulawArrayOfByte[])
public double[] getDoubleArray()
public int getLength()
public double getDuration()
public void reverseUlaw()
public static void main(String argc[])
}

(B-heading) Class Usage
The UlawCodec has several constructors, each has, as it main goal, to construct a µ -law
encoded byte array in a private storage area. The only way to obtain access to this storage
area is via the getUlawData and setUlawData methods. This is due, in part, to a series of
parallel data structures that must maintain their consistency. For example, when you
invoke the getDoubleArray method, a check is performed to see if the internal
DoubleArray is null. If the array is null, it is set using computations involving the
ulawData. The consistency maintenance mechanism is invisible to the programmer.
Suppose the following variables are pre-defined:

UlawCodec ulc;
String fileName;
byte ulawArrayOfByte[];
short linearArrayOfShort[];
Double linearArrayOfDouble[];
int length;
double timeInSeconds;
String args[];

To read in a Sun AU file, using a standard file open dialog box:

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 201 Chapter 9: Image Processing in Java

ulc = new UlawCodec();
To read in a Sun AU file, using a file name:

ulc = new UlawCodec(fileName);
To construct a UlawCodec instance from a 16 bit linear data array:

ulc = new UlawCodec(linearArrayOfShort);
To construct a UlawCodec instance from a linear double array:

ulc = new UlawCodec(linearArrayOfDouble);
To overwrite the internal data and read in a new AU file, given a file name:

ulc.readAUFile(fileName);
To prompt the user for a read file name and overwrite the internal data:

ulc.readAUFile();
To write the internal data as new AU file, given a file name:

ulc.writeAUFile(fileName);
To prompt the user for a file name, then write a Sun AU file:

ulc.writeAUFile();
To play synchronously, returning only after the sound is played:

ulc.playSync();
To play asynchronously, returning right away and playing the sound in the background:

ulc.playAsync();
To get the raw companded byte data:

ulawArrayOfByte = ulc.getUlawData();
To set the raw companded byte data:

ulc.setUlawData(ulawArrayOfByte);
To get the data as an array of linear doubles:

linearArrayOfDouble = ulc.getDoubleArray();
To get the number of samples:

length = ulc.getLength();
To get the play time in seconds:

timeInSeconds = ulc.getDuration();
To reverse the Ulaw data, forcing recomputation of the DoubleArray:

ulc.reverseUlaw();
To test the read play and write methods:

UlawCODEC.main(args);
(B-heading) Reading and writing µ -law
 The following example, excerpted from the UlawCodec.java file, shows how the main
method is implemented:

1. public static void main(String argc[]){
2. UlawCodec ulc = new UlawCodec();
3. ulc.playSync();
4. ulc.writeAUFile();
5. }

(BEGIN ON CDROM) Line 2 shows the default constructor for the CODEC. The default
constructor opens the standard file dialog box in order for the user to select a AU file.
(END ON CDROM) Line 3 plays the sound and does not return until the sounds has
completed playing. The writeAUFile opens a dialog box and the user must type in a file
name to save the AU file.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 202 Chapter 9: Image Processing in Java

(A-heading) The Oscillator Class

The Oscillator class is a public class in the lyon.audio package and is independent of all
other packages. Several instances of the Oscillator class may be made to create banks of
Oscillators. The Oscillator class makes use of double precision data arrays and can make
very low-distortion waveforms. The weak link in the chain is the Java API’s voice grade
audio realization. To combat this limitation (before Sun does) would require the
development of Java native methods for playing audio on all platforms. Such a
development effort requires many hours of skilled labor.
(B-heading) Class Summary

public class Oscillator {
public Oscillator(double frequency, int length)
public double[] getSineWave()
public double[] getSquareWave()
public double[] getSawWave()
public double[] getTriangleWave()
public double getDuration()
public int getSampleRate()
public double getFrequency()
public void setModulationIndex(double I)
public void setModulationFrequency(double fm)
public double[] getFM()
public double[] getAM()

}

(B-heading) Class Usage
The Oscillator class has a number of private properties that are accessed via get and set
methods. An Oscillator instance is created for a fixed carrier frequency and number of
samples. All waveforms vary from -1 to 1. Suppose the following variables are
predefined:

double frequency = 440;
double length = 2000; // the total number of samples
Oscillator osc;
double audioData[];
double timeInSeconds;
int sampleRate;
double indexOfModulation;

Then to make an instance of an Oscillator:
osc = new Oscillator(frequency, length);

To get sine, square, saw tooth and triangle waves:
audioData = osc.getSineWave();
audioData = osc.getSquareWave();
audioData = osc.getSawWave();
audioData = osc.getTriangleWave();

To get the time the wave form will last, in seconds:
timeInSeconds = osc.getDuration();

To get the sample rate, in Hz:
sampleRate = osc.getSampleRate()

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 203 Chapter 9: Image Processing in Java

To get the frequency, in Hz:
frequency = osc.getFrequency()

To set the index of modulation of the FM oscillator:
osc.setModulationIndex(indexOfModulation);

To set the modulation frequency of both the AM and FM oscillators:
osc.setModulationFrequency(frequency);
audioData = osc.getFM()
audioData = osc.getAM()

The index of modulation and the modulation frequency are topics that are covered in
more detail in Chapter 6.

(B-heading) Class Examples
The AudioFrame class is able to generate a series of waveforms using the Oscillator class
and the UlawCodec class.

public class AudioFrame extends ClosableFrame {
private UlawCodec ulc;
private Oscillator osc =

new Oscillator(440,4000);
...
public class AudioFrame extends ClosableFrame {

private UlawCodec ulc;
private Oscillator osc =

new Oscillator(440,4000);
...
public void play() {

ulc.playSync();
}
public void sineWave() {

ulc = new UlawCodec(
osc.getSineWave());

play();
}
public void squareWave() {

ulc = new UlawCodec(
osc.getSquareWave());

play();
}
public void sawWave() {

ulc = new UlawCodec(
osc.getSawWave());

play();
}
public void triangleWave() {

ulc = new UlawCodec(
osc.getTriangleWave());

play();
}
public void am() {

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 204 Chapter 9: Image Processing in Java

osc.setModulationIndex(0.5d);
osc.setModulationFrequency(200d);
ulc = new UlawCodec(

osc.getAM());
play();

}

public void fm() {
osc.setModulationIndex(0.5d);
osc.setModulationFrequency(200d);
ulc = new UlawCodec(

osc.getFM());
play();

}

(B-heading) Class Implementation
An Oscillator is able to generate repeated waveforms by constructing a single cycle of the
waveform into a wavetable. The wavetable is copied repeatedly into an array of double
data known, internally as audioData.
The Oscillator class is implemented with a series of private class variables:

1. package lyon.audio;
2. import futils.utils.Computation;

3. public class Oscillator {
4. private double audioData[];
5. private double waveTable[];

Lines 4 and 5 show that the audioData waveTables are unallocated until the constructor is
invoked. Line 6 shows the sampleRate. The constructor could be overloaded to take other
sample rates, but 8000 Hz is the default for Java’s current API.

6. private int sampleRate = 8000;
Line 7 shows the frequency, in Hz. For a sine wave, this is the number of wave table
cycles that must be clocked out, per second. Lambda is the number of seconds in the
period of one cycle. Line 9 shows the number of samples in a single cycle of the wave
table, if this were computed with precision. Keep in mind that the length of a wave table
is always an integer and the samplesPerCycle must be converted as a result.

7. private double frequency;
8. private double lambda;
9. private double samplesPerCycle;

Oscillator construction requires that the carrier frequency and number of cycles be
known. Line 3 show the memory allocation for the audioData.

1. public Oscillator(double frequency_, int length) {
2. frequency = frequency_;
3. audioData = new double[length];

Once the period of the waveform is computed, on line 5, we are able to compute the
number of samples in a cycle of the wave table. This is the samplesPerCycle variable,
cast into an integer. Given the integral approximation, the computation for the actual
frequency at which the wave table is clocked out is:

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 205 Chapter 9: Image Processing in Java

f actual = sampleRate / waveTable.length (5.29)
With the wave table length being:

waveTable.length = round(sampleRate / f) (530)
To compute the error in the digital oscillator instance, we subtract the frequency that we
wanted from the rate cycles are clocked out of the wave table.

f e = f − f actual

For example, for a frequency of 440 Hz, waveTable.length = 18 sampleRate = 8000
audioData.length = 4000 and the actual frequency = 444.444 Hz. Exact frequencies may
be had when the frequency desired is an exact multiple of the sampleRate. For example,
400 will be reproduced with precision because 8000/400 = a waveTable.length of 20.

4. //the period of the wave form is
5. lambda = 1/frequency;
6. //The number of samples per period is
7. samplesPerCycle = sampleRate * lambda;

8. delta_freq = 1/samplesPerCycle;
9. waveTable =
10. new double[(int) samplesPerCycle];

11. }

(B-heading) Building the WaveTable
The AudioDataFromTable method in the Oscillator class is used to turn a single cycle of
a the WaveTable into a long array of audio data. A constraint on the audioData array is
that it must have an absolute value that is strictly less than 1 (due to the companding
formulas).

1. private double[] AudioDataFromTable() {
2. int k = 0;
3. for (int i = 0; i < audioData.length; i++) {

Line 4 builds the audioData from the waveTable. While the indexes, i and k both begin at
0, lines 6 and 7 reset k, while index i increments on.

4. audioData[i] = waveTable[k];
5. k++;
6. if (k >= waveTable.length)
7. k = 0;
8. }
9. System.out.println("\nlambda="+lambda+
10. "\nfrequency = "+frequency+
11. "\nwaveTable.length = "+waveTable.length+
12. "\nsampleRate = "+sampleRate+
13. "\naudioData.length = "+audioData.length+
14. "\nactual frequency = "+actualFrequency());
15. return audioData;
16. }

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 206 Chapter 9: Image Processing in Java

In the getSineWave method, the waveTable is computed for a single cycle. To make sure
that the absolute value of the amplitude of the sine wave is always less than 1, it is first
multiplied by 0.98, on line 20.

17. public double[] getSineWave() {
18. for (int i=0; i<waveTable.length; i++)
19. waveTable[i] =
20. 0.98*Math.sin(twopi * i/waveTable.length);
21. return AudioDataFromTable();
22. }

To build a wave table for a saw wave, we set the initial voltage to -1, then compute a

change in voltage, dv using the length of the wave table, L so that V0 = −1,dv = 2
L

. then,

after L-1 intervals, the final voltage will reach a value of 1-dv. The following code
implements the getSawWave method:

1. public double[] getSawWave() {
In line 2, the initial voltage is set to a value that is a little higher than 1.0. This is due to
the constraint on the CODEC’s input. Also, in line 4, the check is i<waveTable.length
rather than i <= waveTable.length. Thus the saw wave will end at (v-dv), rather than at
1.0 volts.

2. double v = -0.99;
3. double dv = 2.0 / (double) waveTable.length;
4. for (int i=0; i<waveTable.length; i++){
5. waveTable[i] = v;
6. v += dv;
7. }
8. System.out.println("Sawwave ends at:"+(double)(v-dv));
9. return AudioDataFromTable();
10. }

The saw wave output is shown in Figure 5.8.

Figure 5.8 The saw wave output

(A-heading) The DoubleDataProducer Interface

The DoubleDataProducer interface is a public interface that resides in the lyon.audio
package. The purpose of the DoubleDataProducer interface is to isolate the OscopeFrame
class (see next section) from application specific code needed to obtain an array of data.
Classes that implement the DoubleDataProducer interface must provide methods whose
signature is consistent with lines 3 and 4:

1. package lyon.audio;
2. public interface DoubleDataProducer {
3. double [] getDoubleData();
4. void openDataFile();
5. }

For an example of usage, see the following section.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 207 Chapter 9: Image Processing in Java

(A-heading) The OscopeFrame Class

The OscopeFrame class is a public abstract class in the lyon.audio package. The
OscopeFrame may be extended in order to add an oscilloscope type feature to any frame.
The OscopeFrame has its own paint method, so the user must be careful to call
super.paint if a paint method is implemented in the subclass.
The OscopeFrame has four private scrollbars whose events are handled locally. Thus, any
subframe that handles events must be sure to call super.handleEvent at the end of the
handleEvent method. Also, the OscopeFrame has a main menu bar setting. This may be
overridden by the subclass, though doing so will remove the main menu bar features.
The OscopeFrame extends the PictFrame class. The PictFrame class implements a feature
in the main menubar that enables the OscopeFrame to save a copy of itself as a pict file.
The vector part of pict file format is used so that the OscopeFrame has a vector output
that may be edited with any draw program (including MS Word’s draw utility). Figure
5.10 is an example of a vector output that the OscopeFrame is able to generate. An
example of the main menu bar that the OscopeFrame sets up is shown in Figure 5.9.

Figure 5.9. The OscopeFrame SaveMenu Permits the saving of Vector Output

Figure 5.10. An example of the vector output from the OscopeFrame
The OscopeFrame implements the DoubleDataProducer interface. As a result, the
programmer must implement the getDoubleData and openDataFile methods, or the
subclass will be abstract. When openDataFile is invoked, the subclass must respond by
invoking setDoubleData.
An example of the OscopeFrame is shown in Figure 5.11.

Figure 5.11. The Triangle Wave in the OscopeFrame
Scroll bar adjustments permit translation and scaling of the waveform, both in the time
domain and in the amplitude domain. Another view of the triangle wave of Figure 5.11 is
shown in Figure 5.12.

Figure 5.12. Another View of the Triangle Wave in the OscopeFrame
1From Figure 5.12 we can visually measure ten 250 micro second divisions cycles in the
waveform. This corresponds to a frequency of 1/(2500 micro seconds) = 400 Hz. This is
exactly what was specified for the oscillator (a multiple of the 8000 Hz sampling rate).
(B-heading) Class Summary
package lyon.audio;
import java.awt.*;
import futils.utils.Draw;
import futils.Futil;
import lyon.dclap.PictFrame;

public abstract class OscopeFrame
extends PictFrame implements DoubleDataProducer {

public OscopeFrame(String title)
public void setDoubleData(double [] d)
public void setGridColor(Color c)
public void paint(Graphics g)

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 208 Chapter 9: Image Processing in Java

public boolean handleEvent(Event e)
}

(B-heading) Class Usage
Since the OscopeFrame implements the DoubleDataProducer interface, the subclass must
implement the getDoubleData and OpenDataFile methods. The AudioFrame subclasses
the OscopeFrame, as shown in the following code:

package lyon.audio;
import java.awt.*;
import gui.*;
import grapher.*;
import observers.*;
import futils.utils.*;
import futils.bench.*;
import futils.Futil;
import lyon.dclap.PictFrame;
public class AudioFrame extends OscopeFrame {

UlawCodec ulc;
...

The AudioFrame constructor shows the name of the Frame being passed to the
OscopeFrame

public AudioFrame(String name) {
super(name);

....
The getDoubleData and OpenDataFile methods are defined, to keep the AudioFrame
class from being abstract:

public double [] getDoubleData() {
return ulc.getDoubleArray();

}
public void openDataFile() {

ulc = new UlawCodec();
setDoubleData(ulc.getDoubleArray());
ulc.playAsync();

}
While no paint method was defined in the AudioFrame, there were events. Thus, at the
end of the event handler, we are careful to call super.handleEvent, so that the
OscopeFrame events are processed:

public boolean handleEvent(Event e) {
if (Evt.match(e,saveSound_mi)) {

saveAs();
return true;

}....
return super.handleEvent(e);

}

(B-heading) Modifying the OscopeFrame
Once the user starts to use the OscopeFrame, there may be a need to add features to the
OscopeFrame class, without altering the existing API. One way this can be accomplished
is by adding to the pre-existing menubar. In the following code, we demonstrate how to

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 209 Chapter 9: Image Processing in Java

add the feature of turning the OscopeFrame grid on and off using a menu item in the main
menu bar. The OscopeFrame extends the PictFrame, and, in doing so, inherits an existing
menu bar. To add an item to the menu bar, we add the following instance variables to the
OscopeFrame class:

private boolean drawGrid = true;
private MenuBar mb = getMenuBar();
private Menu m = new Menu("Scope Menu");

private MenuItem drawGrid_mi =
new MenuItem("[d]raw grid");

The idea is that, when the “d-key” is depressed, or when the user selects the “[d]raw grid”
item from the main menu bar, we want to turn off the drawing of the grid. This is
accomplished in two places. The first place is the handleEvent method:

public boolean handleEvent(Event e) {
if(Evt.match(e,drawGrid_mi)) {

drawGrid = ! drawGrid;
return true;

}....
The second place that requires modification is in the drawTrace method:

 private void drawTrace(Graphics g) {
 doubleData = getDoubleData();

 double limit = (double)(doubleData.length *
xScaleFactor);

 dim = size();
height = dim.height;
width = dim.width;

In the following line, we check the status of the drawGrid variable to see if a grid should
be draw.

if (drawGrid)
Draw.grid(20, g, gridColor);

....
(B-heading) How does the OscopeFrame do the scaling labels?
One of the unique features of the OscopeFrame is that it automatically switches to a next
logical range when the user clicks in the time-scale or voltage-scale scrollbars. This is an
interface hack that is cleaver enough to warrant some explanation.
The OscopeFrame has a series of pre-defined scale factors, with corresponding labels, for
both the time-scaling (y-scale) and the voltage-scaling (x-scale). These are held as private
class variables and are described as follows:

1. private final double
2. xScaleFactors[] = {50000, 25000, 10000, 5000, 2500,
1000,

 3. 250, 100, 50, 25,
10,

 4. 2.5, 1, .5,
.25, .1,

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 210 Chapter 9: Image Processing in Java

 5. .025, .01, .005, .0025,
.001,

6.;

7. private final String xSFLabels[] = {"0.05 u", "0.1 u",
"0.25 u",
8. "0.5 u", "1 u",
"2.5 u",
9. "5 u", "10 u",
"25 u",
10. "50 u", "100
u", "250 u",
11. "500 u", "1
m", "2.5 m",
12. "5 m", "10 m",
"25 m",
13. "50 m", "100
m", "250 m",
14. "500 m", "1
", "2.5 ",
15. "5 "};

Note that the xsfStartIndex indicates the default start point for both the scale factor and
the label for the corresponding scale factor. This has a direct correspondence with the y-
scale factors, shown in line 32.

16. private final int xsfStartIndex = 14;
17. private double xScaleFactor =
xScaleFactors[xsfStartIndex];
18. private double oldXScaleFactor =
xScaleFactors[xsfStartIndex];
19. private String xSFLabel = new
String(xSFLabels[xsfStartIndex]);

20. private final double
21. yScaleFactors[] = {

22. 200, 100, 50, 20, 10,
23. 2, 1, .5, .2, .1};

24. private final String
25. ySFLabels[] = {
26. "1 m", "2.5 m",
27. "5 m", "10 m",
28. "25 m", "50 m",
29. "100 m", "250 m",
30. "500 m", "1 ",
31. "2.5 ", "5 "};

32. private final int ysfStartIndex = 8;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 211 Chapter 9: Image Processing in Java

33. private double yScaleFactor = 1;
34. private double oldYScaleFactor = 1;
35. private String ySFLabel = new
String(ySFLabels[ysfStartIndex]);

Now, the clever bit is that the top and bottom scrollbar instances return integers that can
be used to index into the label and scale arrays. This is shown in the following code,
excerpted from the handleEvent method:

if(e.target == sbHorzTop) {
int i = sbHorzTop.getValue();
xScaleFactor = xScaleFactors[i];

if (xScaleFactor != oldXScaleFactor) {
xSFLabel = xSFLabels[i];
repaint();
oldXScaleFactor = xScaleFactor;

}
return true;

}
The Scrollbar characteristics are set so that they will only return a valid range for an
index into the scale factors and scale labels:

// Set top scrollbar characteristics
sbHorzTop.setValues(xsfStartIndex, 0, 0, 24);
// Set right scrollbar characteristics
sbVertRight.setValues(ysfStartIndex, 0, 0, 11);

(A-heading) The DoubleGraph Class

Some programmers will not want to bother extending the OscopeFrame class, mentioned
in the previous section. There are a few reasons for this. Some programmers may find the
implements interface difficult to implement properly. Other may wish for a simpler API,
which, though less general, does make the code easier to both write and understand. The
DoubleGraph class will make an OscopeFrame and handle all the scrollbar events and
interface implementations for you.
The DoubleGraph class resides in the lyon.audio package, but is so generally useful, that
it could appear in a utilities class.
(B-heading) Class Summary

public class DoubleGraph extends OscopeFrame {
DoubleGraph(double d[],String title)
public double[] getDoubleData()
public void openDataFile()

}
(B-heading) Class Usage
The AudioFrame class has a public method called graphSound. It shows the typical usage
for the DoubleGraph class instance:

public void graphSound() {
new DoubleGraph(ulc.getDoubleArray(),"Sound");

}
The act of instantiation displays the OscopeFrame, with scrollbars. (BEGIN NOTE) To
avoid added complexity, there are no features for altering an existing DoubleGraph

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 212 Chapter 9: Image Processing in Java

frame. Just make another. The old frame will be collected by the garbage collector when
all references to it are removed. You may note that the DoubleGraph instance has a life
that ends after the graphSound method returns. The DoubleGraph instance will thus be a
temporary one. It would be hard to build a simpler API for graphing an array of doubles.
(END NOTE)
(A-heading) Summary

This chapter has covered a lot of ground. Much of it was covered quickly and without
rigor. The basic objective is to give the reader just enough background to understand the
basic results of Fourier analysis so that the code of Chapter 6 may be better understood.
A great deal of complexity is hidden from the user in the classes just presented. Code is
reproduced, where appropriate to the exposition of the book. However, to get a real look
at the code, the programs on the CD-ROM can make excellent reading.
Adding features to the classes presented in this chapter can be a fruitful source of
exercises for the reader. For example, turning off the grid is just one feature that may be
added to the OscopeFrame. There are so many others. Coloring a grid, extending the
OscopeFrame to make a DualTraceOscopeFrame, creating an x vs. y plot in the
OscopeFrame, etc.

 (CN) 6 Digital Audio Transform Recipes

...then thus he cried,
When I the process have in memory,

How thou hast wearied me on every side...
William Wordsworth, 1888

This chapter covers some of the finer points of one-dimensional digital signal processing.
The last chapter showed some of the mathematical basis for the Fourier transform and
pointed out some of its properties. This chapter addresses how to implement the Fourier
transform using uniformly sampled audio. We start with a description of the DFT
(Discrete Fourier Transform) and IDFT (Inverse Discrete Fourier Transform). We show
how the computation of the DFT and IDFT may be performed in Java and show why
such operations are typically held as slow. A speed up of the DFT and IDFT is discussed
using a class of algorithms known as the FFT (Fast Fourier Transform) and the IFFT
(Inverse Fast Fourier Transform).
As the DFT and FFT are covered, we demonstrate the computation of the psd (Power
Spectral Density) mentioned in the previous chapter. The remaining portion of the
chapter is dedicated to applications of these transforms. The applications include filtering,
windowing, pitch-shifting and the spectral analysis of resampling.
(A-heading) The Discrete Fourier Transform

Let
vj , j ∈ 0... N −1[] (6.1)

be the sampled version of the waveform, v(t) where N is the number of samples.
(BEGIN NOTE) Equation (6.1) numbers from zero, rather than one, to reflect the start
point of arrays in Java.
(END NOTE) Recall that the Fourier transform of v(t) was given by

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 213 Chapter 9: Image Processing in Java

V(f) = F[v(t)] = v(t)e−2πiftdt
−∞

∞

∫ (6.2).

(BEGIN NOTE)
V(f) can only exists if v(t) is absolutely integrable, i.e.

v(t) dt
−∞

∞

∫ < +∞

 (END NOTE)
Recall also, that the inverse Fourier transform of V(f) was given by

v(t) = F−1 V(f)[] = V(f)e2πiftdt
−∞

∞

∫
(6.3).

In order to compute (6.2) for the sampled waveform of (6.1), we must perform a discrete
time Fourier transform called the DFT (Discrete Fourier Transform). The DFT is given
by

Vk = 1
N

e−2πijk / Nvj
j =0

N −1

∑ (6.4).

Recall, from Chapter 5, Euler’s relation,
eiθ = cosθ + isinθ (6.4a).

This permits the alternate formulation of the kernal of the transform in (6.4) as:
e−2πijk / N = cos −2πjk / N() + isin −2πjk / N() (6.4b).

Recall that an even function is one that has the property that f (−x) = f (x). Also, that an
odd function has the property that f (−x) = − f (x). Since sin(−θ) = −sinθ , sine is an odd
function. Also, since cos(−θ) = cosθ , cosine is an even function. Using the odd-even
function properties of sine and cosine, we rewrite (6.4b) as:

e−2πijk / N = cos 2πjk / N() − isin 2πjk / N() (6.4c).
Substituting (6.4c) into (6.4) we obtain the form of the DFT used in the Java
implementation:

Vk = 1
N

cos 2πjk / N() − isin 2πjk / N()()vj
j =0

N −1

∑ (6.5).

When implementing the Java program we compute the real and imaginary parts of (6.5)
using:

 for(int j = 0; j < N; j++) {
 twoPijkOnN = twoPikOnN * j;
 r_data[k] += v[j] * Math.cos(twoPijkOnN);
 i_data[k] -= v[j] * Math.sin(twoPijkOnN);
 }
 r_data[k] /= N;
 i_data[k] /= N;

The complete routine for the DFT is given at the bottom of the section. Recall that the
above loop is executed N times. The index, k is varied from 0...N-1. Why? Because the

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 214 Chapter 9: Image Processing in Java

DFT divides the spectrum into N parts. Each spectral division is accessed using the
frequency index, k. The frequency, f k , is computed from k using:

f k = k

N∆t
(6.6),

where the sampling period, ∆t , is given by:
∆t = 1 / f s (6.7).

An examination of (6.5) and (6.6) shows that the spectrum is described by integral
harmonics of f s / N . For example, suppose that the sampling rate, f s , is 8000 Hz and
that the number of points is 2048; then the smallest change in frequency that can be

detected is given by f1 = 1
2048

8000 ≈ 4Hz . Therefore, integral harmonics of 4 Hz will

be used to approximate v(t).
The psd (Power Spectral Density) gives the power at a specific frequency index, psdk .
We compute the power at any f k by summing the square of the real and imaginary
components of the amplitude:

psdk = real2 (Vk) + imaginary2 (Vk) (6.8).
The amplitude spectral density is given by the square root of the power spectral density.

(BEGIN ON CDROM)
An implementation of the DFT is shown below.

1. package lyon.audio;
2. import java.io.*;
3. import java.awt.*;
4. import grapher.Graph;
5. public class FFT extends Frame {

6. double r_data[] = null;
7. double i_data[] = null;
8. ...
 public double[] dft(double v[]) {
 int N = v.length;

 double t_img, t_real;

 double twoPikOnN;
 double twoPijkOnN;

 // how many bits do we need?
 N=log2(N);
 //Truncate input data to a power of two
 // length = 2**(number of bits).
 N = 1<<N;

 double twoPiOnN = 2 * Math.PI / N;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 215 Chapter 9: Image Processing in Java

 // We truncate to a power of two so that
 // we can compare execution times with the FFT.
 // DFT generally does not need to truncate its input.

 r_data = new double [N];
 i_data = new double [N];
 double psd[] = new double[N];

 System.out.println("Executing DFT on "+N+" points...");

 for(int k=0; k<N; k++) {

 twoPikOnN = twoPiOnN *k;

 for(int j = 0; j < N; j++) {
 twoPijkOnN = twoPikOnN * j;
 r_data[k] += v[j] * Math.cos(twoPijkOnN);
 i_data[k] -= v[j] * Math.sin(twoPijkOnN);
 }
 r_data[k] /= N;
 i_data[k] /= N;

 psd[k] =
 r_data[k] * r_data[k] +
 i_data[k] * i_data[k];

 }
 return(psd);
 }

(END ONCDROM)
(B-heading) Bit Computations and a Log Review
We have notice that some students are confused by the use of logs in the following code:

1. // how many bits do we need?
2. N=log2(N);
3. //Truncate input data to a power of two
4. // length = 2**(number of bits).
5. N = 1<<N;

If lines 2 and 5 are obvious, the reader should probably skip to the next section.
Otherwise, please read on! Logs are pretty basic things, but people do seem to forget
them.
The log function is defined by:

if x = ay then y = loga x

For example, if x = 210 then 10 = log2 x .
The following are known as the laws of logarithms:

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 216 Chapter 9: Image Processing in Java

loga (xy) = loga x + loga y

loga (x / y) = loga x − loga y

loga xn = n loga x
For example, to find log2 4096 use:

4096 = 2y

ln 4096 = y ln 2

ln 4096
ln 2

= y = 12

so,

log2 x = ln x

ln 2
Also, to find logB x use:

logB x = ln x

ln B
= log10 x

log10 B
(6.9)

So, based on (6.9), line 2 computes the number of bits needed, rounding down, via
truncation, the integral number, N. To compute (6.9) to the base 2, we use:

 public static int log2(int n) {
 return (int) (Math.log(n)/Math.log(2.0));
 }

Thus, line 2 replaces N, the number of items in the list, plus one, with the log of N to the
base 2, rounded down (also known as the floor function) to the nearest integer.

2. N=log2(N);
Finally, line 5 creates a number which is an integral power of two:

5. N = 1<<N;
(BEGIN NOTE)
DFT does not need to truncate the length of the data to be a power of two. We will see,
however, that there are implementations of the FFT (Fast Fourier Transform) that do
require this truncation. To fairly compare the performance of the DFT implementation
against the FFT implementation, we must perform the same truncation for both
algorithms.
(END NOTE)
(A-heading) The futils.Timer Class, Benchmarking the DFT

Benchmarking is a craft that permits the measurement of hardware and software
performance. One of the remarkable things about Java is that the compile-once-run-
anywhere attribute enables the same bytes codes to be executed on different
implementations of the Java machine. In addition, we have similar Java virtual machines
that are implemented on different hardware platforms. This enables a base-line
comparson of different hardware platforms when executing the byte codes. One use of
benchmarking is to measure the effect of the implementation of an algorithm on the
execution time. Also of interest is the measurement of two different algorithm’s
execution time for the same data.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 217 Chapter 9: Image Processing in Java

(BEGIN NOTE) There is a difference between the performance measurement of various
algorithmic implementations and the performance measurement of various algorithms.
Better algorithms are generally combined with better implementations to yield
performance improvement.
(END NOTE).
(B-heading) Class Summary

package futils.bench;
import java.io.*;
public class Timer {

public Timer()
public void mark()
public void record()
public float elapsed()
public void report(PrintStream pstream)
public void report()

}

(B-heading) Class Usage
Suppose the following variables are pre-defined:

Timer t1;
PrintStream pstream;

To make an instance of a Timer class (with the elapsed time set to zero) use:
t1 = new Timer();

To mark the time (like resetting a stop-watch):
t1.mark();

To add the elapsed time to the total elapsed time since the record method was last
invoked:

t1.record();
To return the elapsed time in seconds:

t1.elapsed();
To print the elapsed time, in seconds, to the PrintStream instance pstream:

t1.report(pstream);
To print the elapsed time, in seconds, to System.out:

t1.report();
(B-heading) BenchMarking the DFT method
In this section we show how to use the Timer class to measure the execution time of the
DFT. This serves both as an example of how to use the DFT and how to benchmark a
method. Benchmarking showed that executing the DFT on 2048 points took 55 seconds
on a 100 Mhz PPC 601, without a JIT compilier. The following example of how to use
the DFT in the lyon.audio package is contained in the AudioFrame class;

public void dft() {

FFT f = new FFT();
double [] doubleData = ulc.getDoubleArray();
double [] psd;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 218 Chapter 9: Image Processing in Java

 // Time the fft
 Timer t1 = new Timer();
 t1.mark();

psd=f.dft(doubleData);

 // Stop the timer and report.
 t1.record();
 System.out.println("Time to perform DFT:");
 t1.report();

f.graphs();
new DoubleGraph(psd,"psd");

}

(A-heading) The Inverse DFT

Recall also, that the inverse Fourier transform of V(f) was given by

v(t) = F−1 V(f)[] = V(f)e2πiftdt
−∞

∞

∫
(6.3).

In order to compute (6.3) for the sampled waveform of (6.1), we must perform an inverse
discrete time Fourier transform called the IDFT (Inverse Discrete Fourier Transform).
The IDFT is given by

Vk = e2πijk / Nvj
j =0

N −1

∑ (6.10).

(Begin NOTE)
Recall that in (6.4):

Vk = 1
N

e−2πijk / Nvj
j =0

N −1

∑ (6.4).

the summation result is multiplied by 1/N. This is not the case in (6.10). In some
expositions, both (6.10) and (6.4) are multiplied by 1 / N , in order to keep the DFT and
IDFT symmetric. We abandoned such an approach during development because it both
complicates the presentation of the PSD and requires slightly more computation.
(END NOTE)
Recall, from Chapter 5, Euler’s relation,

eiθ = cosθ + isinθ (6.4a).
Substituting (6.4a) into (6.10) results in:

vk = cos 2πjk / N() + isin 2πjk / N()[]V j
j =0

N −1

∑ (6.11).

Recall that when two complex numbers are multiplied together, z1z2 the result may be
expressed as:

z1z2 = (x1 + iy1)(x2 + iy2) = x1x2 − y1y2 + i x1y2 + y1x2() (6.11a)

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 219 Chapter 9: Image Processing in Java

Based on (6.11a) we conclude that the real part of z1z2 is given by:
real(z1z2) = x1x2 − y1y2 (6.11b)

and the imaginary part of z1z2 is given by:
imaginary(z1z2) = x1y2 + y1x2 (6.11c).

We are interested in a reconstruction of a real signal. Therefore we do not need to
compute the result in (6.11c). Substituting (6.11b) into (6.11) yields:

real(vk) = cos 2πjk / N()real(V j) − sin 2πjk / N()imaginary(V j)[]
j =0

N −1

∑ (6.12).

Computing only the real part of the IDFT saves 2N multiplies and N additions for each
frequency index, k computed in (6.12) than in (6.11). A comparison of (6.12) with (6.5),

Vk = 1
N

cos 2πjk / N() − isin 2πjk / N()()vj
j =0

N −1

∑ (6.5)

shows that both take about the same amount of time to compute (something that our
experiments confirm).

 The following code implements the IDFT shown in (6.12):
 // assume that r_data and i_data are
 // set. Also assume that the real
 // value is to be returned
public double[] idft() {
 int N = r_data.length;
 double twoPiOnN = 2 * Math.PI / N;

 double twoPikOnN;
 double twoPijkOnN;

 double v[] = new double[N];

 System.out.println("Executing IDFT on "+N+" points...");

 for(int k=0; k<N; k++) {
 twoPikOnN = twoPiOnN *k;
 for(int j = 0; j < N; j++) {
 twoPijkOnN = twoPikOnN * j;
 v[k] += r_data[j] * Math.cos(twoPijkOnN)
 - i_data[j] * Math.sin(twoPijkOnN);

 }
 }
 return(v);
 }

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 220 Chapter 9: Image Processing in Java

(A-heading) Numeric Check of the DFT and IDFT

A numeric check should be an integral part of every class. The FFT class contains a
method called testDFT whose sole job it is to verify the correctness of the DFT and IDFT
implementation. With the number of samples set to 8, the testing method is able to print
the input and output points for human comparison.

 public static void testDFT() {

 int N = 8;
 FFT f = new FFT(N);

 double v[];

 double x1[] = new double[N];
 for (int j=0; j<N; j++)
 x1[j] = j;

 // take dft
 f.dft(x1);

 v = f.idft();
 System.out.println("j\tx1[j]\tre[j]\tim[j]\t v[j]");
 for (int j=0; j < N; j++)
 System.out.println(
 j+"\t"+
 x1[j]+"\t"+
 f.r_data[j]+"\t"+
 f.i_data[j]+"\t"+
 v[j]);

 }
(Begin NOTE) We print the intermediate DFT results to permit a detailed check against
variations in implementation. Full data disclosure allows a base-line comparison between
different implementations of the DFT. As we shall see in the following section, this is a
comforting data result, particularly when compared with the FFT data. (END NOTE)

Executing IDFT on 8 points...
j x1[j] re[j] im[j] v[j]
0 0 3.5 0 -3.10862e-15
1 1 -0.5 1.20711 1
2 2 -0.5 0.5 2.00000
3 3 -0.5 0.207107 3
4 4 -0.5 0 4
5 5 -0.500000 -0.207107 5
6 6 -0.500000 -0.5 6
7 7 -0.5 -1.20711 7

While the input is not quite the same as the output, it is quite close.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 221 Chapter 9: Image Processing in Java

(A-heading) The FFT

The Fast Fourier Transform (FFT) is a family of algorithms designed to speed the
computation of the DFT:

Vk = 1
N

e−2πijk / Nvj
j =0

N −1

∑ (6.4).

Direct computation of the DFT takes O(N 2) complex multiplications while the FFT takes
O(N log N) complex multiplications. In this section we show an FFT algorithm known as
the decimation in time, radix 2 FFT algorithm (also known as the Cooley-Tukey
algorithm). The Cooley-Tukey algorithm is probably one of the most widely used of the
FFT algorithms. The radix 2 property means that the number of samples to be
transformed must be a power of two. The decimation in time means that the algorithm
performs a recursive subdivision of the input sequence into its odd and even members.
We are able to perform this subdivision as a result of the Danielson-Lanczos Lemma:

Vk = 1

N
Vk

e + W kVk
o[] ∀ k ∈ 0KN −1[]

Proof of the Danielson-Lanczos Lemma:
Let

W = e−2πi / N (6.13)
so that

W jk = W jW j (k −1)

Substitute (6.13) into (6.4) to obtain

Vk = 1
N

W jkvj
j =0

N −1

∑ (6.14).

Separate (6.14) into its odd and even components. This is done by altering how the
samples are indexed.

Vk = 1
N

W 2 jkv2 j + W 2 j +1()kv2 j +1
j =0

N / 2−1

∑
j =0

N / 2−1

∑

 (6.15)

Where (6.15) shows summations operating over the odd and even indices. For example, if
j = 0,1,2,3...,

then
2 j = 0,2,4,6... and 2 j +1 = 1,3,5....

Factoring the exponents in (6.15) yields

Vk = 1
N

W 2 jkv2 j + W 2 jkW kv2 j +1
j =0

N / 2−1

∑
j =0

N / 2−1

∑

The W k term in the right most summation is not a function of the index, so that:

Vk = 1
N

W 2 jkv2 j + W k W 2 jkv2 j +1
j =0

N / 2−1

∑
j =0

N / 2−1

∑

 (6.16).

To reflect the odd and even summations, (6.16) is rewritten as

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 222 Chapter 9: Image Processing in Java

Vk = 1
N

Vk
e + W kVk

o[] ∀ k ∈ 0KN −1[] (6.17).

Q.E.D.
The implications of (6.17) are that we can divide the sequence into odd and even
numbered samples. Thus the Danielson-Lancoz lemma enables a divide and conquer
algorithm to recursively split the sample sequence in half. The computational result of the
Danielson-Lancoz lemma is that the O(N 2) DFT may be computed in O(N log N) time.
The Danielson-Lancoz lemma shows that a sequence must be divided up into its odd and
even subsets. That these subsets must in-turn be divided into their subsets. This continues
until we have only two members per subset. An illustration of this subdivision, for N=8,
is shown in Figure 6.1. This is called decimation in time.

Figure 6.1 Decimation in time.
It is natural to implement the decimation in time using recursive calls with odd and even
sets. It has been shown, however, that a recursive implementation is six times slower than
a non-recursive implementation [Gonzalez et al.]. To avoid a recursive approach to
decimation, a bit-reversal algorithm is used to perform the decimation in time. This is
called the Cooley-Tukey algorithm.
The Cooley-Tukey FFT algorithm performs decimation in time by using a bit-reversal,
this is shown in Figure 6.2.

Figure 6.2. An Example of how to decimate by bit reversal
To arrive at the bit reversal, we implement a Java method in the FFT class:

 int bitr(int j) {
 int ans = 0;
 for (int i = 0; i< nu; i++) {
 ans = (ans <<1) + (j&1);
 j = j>>1;
 }
 return ans;
 }

The bitr method works by linking together two software shift-registers, as shown in
Figure 6.3.

Figure 6.3. The j and a registers are linked with the + operator.
After the decimation in time is performed, the balance of the computation is optimization
hacks and house-keeping. For example, a simplification results from Vk being periodic in
N so that Vk +N = Vk .
Proof:
Recall that the DFT is given by:

Vk = 1
N

e−2πijk / Nvj
j =0

N −1

∑ (6.4)

so that

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 223 Chapter 9: Image Processing in Java

Vk +N = 1
N

e−2πij (k +N) / Nvj
j =0

N −1

∑
expanding the exponents and simplifying using

Vk +N = 1
N

e−2πijk / Ne−2πijN / Nvj
j =0

N −1

∑
with e−2πij = cos(−2πj) + isin(−2πj) = 1. Thus

Vk +N = 1
N

e−2πijk / Nvj
j =0

N −1

∑
with Vk +N = Vk (6.18)
Q.E.D.
In addition, it can be shown that

W k +N / 2 = −W k 0 ≤ k ≤ N / 2 (6.19)
Proof:
Recall (6.13) is given by

W = e−2πi / N (6.13)
So that

e−2πi(k +N / 2) / N = cos(−2π(k + N / 2) / N) + isin(−2π(k + N / 2) / N)
with

cos(−2π(k + N / 2) / N) = cos(2πk / N + π) = −cos(2πk / N)

sin(−2π(k + N / 2) / N) = sin(2πk / N + π) = −sin(2πk / N)
. (6.20)

this naturally leads to:
W k +N / 2 = −W k 0 ≤ k ≤ N / 2

Q.E.D.

A further efficiency may be had by the use of the recurrence relation
W jk = W jW j (k −1) (6.21).

Proof:
W jk = e−2πijk / N = cos −2πjk / N() + isin(−2πjk / N)

W jk = cos −2πjk / N() + isin(−2πjk / N)

W jk = cos −2πj / N() + isin(−2πj / N)[]
 ∗ cos −2πj(k −1) / N() + isin(−2πj(k −1) / N)[]
W jk = W jW j (k −1)

(6.22)

Q.E.D.
The real and imaginary parts of (6.22) are given by

real(z1z2) = x1x2 − y1y2 (6.11b)
so that

Wr
jk = Wr

jWr
j (k −1) − Wi

jWi
j (k −1) (6.23)

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 224 Chapter 9: Image Processing in Java

and the imaginary part of (6.22) is given by:
imaginary(z1z2) = x1y2 + y1x2 (6.11c).

so that
Wi

jk = Wr
jWi

j (k −1) + Wi
jWr

j (k −1) (6.24).
Equations (6.23) and (6.24) form the basis of the recurrance relationships that enables the
quick computation of the next W jk based on the previous W jk . An implementation of
(6.24) follows:

1. // (eq 6.23) and (eq 6.24)
2. wtemp = Wjk_r;
3. Wjk_r = Wj_r * Wjk_r - Wj_i * Wjk_i;
4. Wjk_i = Wj_r * Wjk_i + Wj_i * wtemp;

Line 2 shows the introduction of wtemp, a temporary variable that enables the
computation of the multiplication of the two complex numbers.
(A-heading) The FFT Class

The FFT class is a public class that resides in the lyon.audio package. It depends on the
grapher.Graph package for performing graph function, as well as the futils.bench.Timer
class, for performing the benchmarking functions. If these packages are not needed, they
may be removed, along with their invocations. Such a situation might arise if this code
were to be used in another program.
The grapher package provides a simple interface to make an automatically scaled graph.
Generally only a single method is invoked. This is best shown by the following example:

public void makeHanning() {
double window[];

window = makeHanning(256);
Graph.graph(window,

 "The Hanning window","f");
}

Where the “The Hanning window” string appears along the x-axis and “f” appears on the
y-axis. The Graph.graph may be invoked directly because the graph method is static.
Also, it only graphs an array of type double.
(B-heading) Class Summary

package lyon.audio;
import java.io.*;
import java.awt.*;
import grapher.Graph;
import futils.bench.Timer;
public class FFT extends Frame {
public FFT(int N)
public FFT()
public void graphs()
public void graphs(String t)
public void setTitle(String t)
public static double getMaxValue(double in[])
public static int log2(int n)
public static double[] arrayCopy(double [] in)
public double [] computePSD ()

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 225 Chapter 9: Image Processing in Java

public double[] dft(double v[])
public double[] idft()
public double [] getReal()
public double [] getImaginary()
public void forwardFFT(double in_r[], double in_i[])
public void reverseFFT(double in_r[], double in_i[])
public void printArray(double[] v,String title)
public void printArrays(String title)
public void printReal(String title)
public static void main(String args[])
public static void timeFFT()
public static void testFFT()
public static void testDFT()

}

(B-heading) Class Usage
The FFT class maintains internal data arrays that are stored as doubles. These arrays are
private and are used to assist computations. Further, the in-place Cooley-Tukey algorithm
employed for the fast transform is destructive for the original data. The FFT class in the
lyon.audio package uses doubles for all computations. This class is for 1-D (audio)
transforms.
Suppose the following variables are predefined:

FFT f;
int N = 8;
double inputArray[];
String title = "My data title";
double aDoubleArray[];
double in_r[];
double in_i[];

To make a new instance of the FFT class, and allocate two internal arrays of double, each
of length N:

f = new FFT(N);
To make a new instance of the FFT class, with no memory allocation:

f = new FFT();
To graph the real and imaginary data arrays:

f.graphs();
To graph the real and imaginary data arrays with a title:

f.graphs(title);
To set the title for the graphs:

f.setTitle(title);
To get the maximum value of an inputArray:

FFT.getMaxValue(inputArray);
To compute the floor of the log of an int to base 2:

int numberOfBits = FFT.log2(N);
To copy an array of double:

aDoubleArray = FFT.arrayCopy(inputArray);
To compute the psd (power spectral density) of the last dft or fft:

aDoubleArray = f.computePSD();

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 226 Chapter 9: Image Processing in Java

To non-destructively compute the dft of an input array and return the psd:
aDoubleArray = f.dft(inputArray);

(BEGIN NOTE) DFT, IDFT, FFT and IFFT alter the internal data structures in an
instance of the FFT class.(END NOTE)
To get the real part of the last transform:

aDoubleArray = f.getReal();
To get the imaginary part of the last transform:

aDoubleArray = f.getImaginary();
To take the idft of the internal data and return the real part:

aDoubleArray = f.idft();
To take the forward fft on two input arrays, destructively:

f.forwardFFT(in_r, in_i);
To take the inverse FFT on two input arrays, destructively

f.reverseFFT(in_r, in_i);
To print an array of double, with a title:

f.printArray(aDoubleArray, title);
To print the internal real and imaginary arrays, with a title:

f.printArrays(title);
To print the internal real array, with a title:

f.printReal(title);
To test the DFT, IDFT, FFT and IFFT:

FFT.main();
To time the FFT:

FFT.timeFFT();
To test the FFT:

FFT.testFFT();
To test the DFT:

FFT.testDFT();
(B-heading) Testing the FFT and IFFT
The FFT class has a static method that permits the testing of the DFT, IDFT, FFT and
IFFT. It also performs timing for a transform of 2048 doubles. To run this test, you must
invoke

FFT.main();
The code for the FFT.main method follows:

 public static void main(String args[]) {
 testDFT();
 timeFFT();
 testFFT();
 }

The test methods are run on an 8 point input array consisting of a linear ramp. This is to
provide a short sequence of input data that can be verified by printing. The timing is
performed on 2048 samples stored in two arrays of 2048 doubles each (real and
imaginary). The output of the main method follows:

Executing DFT on 8 points...
Executing IDFT on 8 points...
j x1[j] re[j] im[j] v[j]
0 0 3.5 0 -3.10862e-15
1 1 -0.5 1.20711 1

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 227 Chapter 9: Image Processing in Java

2 2 -0.5 0.5 2.00000
3 3 -0.5 0.207107 3
4 4 -0.5 0 4
5 5 -0.500000-0.207107 5
6 6 -0.500000 -0.5 6
7 7 -0.5 -1.20711 7
fft: bit reversal
Time for 2048point fftTime 0.178000 sec
fft: bit reversal
Time for 2048point ifftTime 0.164000 sec
Starting 1D FFT test...
fft: bit reversal
fft: bit reversal
j x1[j] re[j] im[j] v[j]
0 0 3.5 0 0
1 1 -0.5 1.20711 1.00000
2 2 -0.5 0.5 2.00000
3 3 -0.500000 0.207107 3.00000
4 4 -0.5 0 4
5 5 -0.5 -0.207107 5
6 6 -0.5 -0.5 6
7 7 -0.500000 -1.20711 7

The reader will see that the input and output are highly correlated for both the DFT and
FFT. The surprising thing is how accurate these two radically different algorithms and
implementations are. Also, recall that the execution times for the DFT was benchmarked
at 55 seconds. The FFT implementation is run in 0.178 seconds, a 308 times speed up.
Keep in mind, at 8000 samples per second, the 2048 samples represent 0.256 seconds of
data. Also, on a limited data rate connection (such as a 28.8 kbps modem) the time to
transmit the data is 2048*8 bits /28800 bits/sec = 0.56 seconds. We suggest that many
dial-up users experience a slower connection than the maximum their modem permits.
Thus, there is a window of opportunity for devising a real-time codec (IN JAVA!!) able
to perform FFT based compression algorithms. An algorithm based on transform
compress typically takes the original data, performs the forward transform, selects
coefficients, quantizes and then transmits. Data is recovered by taking the coefficients
and performing an inverse transform. Very Low Bit Rate Voice Compression (VLBRVC)
is a rich and growing field that lies beyond the scope of this book. See
http://www.bdti.com/faq/dsp_faq.htm for an FAQ that relates to this and other DSP
topics.
(B-heading) Implementing the FFT.testFFT
The following code shows how to use the FFT class to perform a forward and inverse
FFT. The static nature of the testFFT method indicates that invocation may be performed
without making an instance of the FFT class.
Line 3 makes an instance of the FFT class, without performing any allocation for the
internal data structures. Thus the allocation and copying of arrays is performed outside of
the forwardFFT methods. This is due, in part, to the destructive nature of the in-place
Cooley-Tukey FFT algorithm. The trade-off is that the programmer must keep track of
the data that is being processed by the forwardFFT. The alternative is to automatically
copy arrays, perform the in-place forwardFFT, then return the copies. Our findings

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 228 Chapter 9: Image Processing in Java

indicate that the dynamic allocation of memory (particularly during the image processing,
seen later in this book) can slow performance by up to 100 times! Thus, the house
keeping chores performed by the programmer are warranted by a leap in performance.

1. public static void testFFT() {
2. System.out.println("Starting 1D FFT test...");
3. FFT f = new FFT();

Line 4 may be altered to any number of samples, N, but a large N will result in a large
printout.

4. int N = 8;
5. int numBits = f.log2(N);

Lines 6-8 set up the input data to be a ramp that varies from 0 to N.
6. double x1[] = new double[N];
7. for (int j=0; j<N; j++)
8. x1[j] = j;

Now the housekeeping. The programmer, interested in keeping copies of the original
data, the result of the forward FFT and the result of the inverse FFT, must allocate four
arrays! This is an unusual case, as it requires that all intermediate results be kept for
checking purposes. Normally, production code would not have to keep all intermediate
results.

9. double[] in_r = new double[N];
10. double[] in_i = new double[N];

The in_r and in_i arrays are copies of the input data, with the imaginary component equal
to zero. Real data (like audio data) often has a zero imaginary component. There are
algorithms that can save significant time by taking advantage of the zero imaginary part
of the input data. This requires a different FFT implementation.

11. double[] fftResult_r = new double[N];
12. double[] fftResult_i = new double[N];

13. // copy test signal.
14. in_r = arrayCopy(x1);

Line 14 copies the input data into in_r.
15. f.forwardFFT(in_r, in_i);

Line 15 replaces in_r and in_i with the forward FFT results.
16. // Copy to new array because IFFT will
17. // destroy the FFT results.
18. fftResult_r = arrayCopy(in_r);
19. fftResult_i = arrayCopy(in_i);
20. f.reverseFFT(in_r, in_i);
21. System.out.println("j\tx1[j]\tre[j]\tim[j]\tv[j]");
22. for(int i=0; i<N; i++) {
23. System.out.println(
24. i + "\t" +
25. x1[i] + "\t" +
26. fftResult_r[i] + "\t" +
27. fftResult_i[i] + "\t" +
28. in_r[i]);
29. }

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 229 Chapter 9: Image Processing in Java

30. }
(A-heading) PSD Computations

 To compute the psd of the FFT output, we use the computePSD method in the FFT class.
The psd is computed by squaring the real and imaginary parts of the output of the FFT
and placing them into a new array. The code for the computePSD method follows:

public double [] computePSD () {
 double [] psd = new double[r_data.length];
 for (int k = 0; k < r_data.length; k++) {
 psd[k] =
 r_data[k] * r_data[k] +
 i_data[k] * i_data[k];

 }
 return psd;
 }

To test the psd, there is a private method in the FFT class called testPSD
private static void testPSD() {

FFT f = new FFT();
 int N = 8;
 int numBits = f.log2(N);
 double x1[] = new double[N];
 for (int j=0; j<N; j++)
 x1[j] = j;
 double[] in_r = new double[N];
 double[] in_i = new double[N];
 // copy test signal.
 in_r = arrayCopy(x1);
 f.forwardFFT(in_r, in_i);
 f.printArrays("After the FFT");
 double psd[] = f.computePSD();

FFT.printArray(psd,"The psd");
}

The output of the test method appears below:
After the FFT
[0]=(3.5,0)
[1]=(-0.5,1.20711)
[2]=(-0.5,0.5)
[3]=(-0.5,0.207107)
[4]=(-0.5,0)
[5]=(-0.500000,-0.207107)
[6]=(-0.500000,-0.5)
[7]=(-0.500000,-1.20711)
The psd
v[0]=12.25
v[1]=1.70711
v[2]=0.5

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 230 Chapter 9: Image Processing in Java

v[3]=0.292893
v[4]=0.25
v[5]=0.292893
v[6]=0.500000
v[7]=1.70711
Completed(0)

The reader can readily verify that the psd is indeed the sum of the squares of the real and
the imaginary parts of the spectra.

Figure 6.4. The psd of a 2048 Sampled Waveform
The implementation of the psd computation and the graphing are shown in the following
section.
(B-heading) Implementation of the Transforms in the AudioFrame
In the AudioFrame class, we assume that we will be taking the FFT of a real signal. A
real signal, like audio, has no imaginary part, only a single value that varies from sample
to sample. Thus, we construct a complex input to the FFT, setting the imaginary part of
the input equal to zero.
When taking the IFFT, a signal that starts as being real will, end up as a real signal. The
exception to this occurs when a spectral modification introduces terms that do not null
out in the imaginary plane. This could happen, for example, if we add the spectra from
real and imaginary signals.
Figure 6.5 shows the part of the Audio menu in the MainMenuBar in the AudioFrame
that contains the transform fragments for performing the FFT manipulations. The
keyboard shortcuts are shown in brackets (i.e., ‘[1]’).

Figure 6.5. The Transform Fragment of the AudioFrame
The menu items are initialized at the head of the AudioFrame class using the following
code fragment:

MenuItem fft_mi = addMenuItem(m,"[1] FFT");
MenuItem ifft_mi = addMenuItem(m,"[2] IFFT");
MenuItem dft_mi = addMenuItem(m,"[3] DFT");
MenuItem idft_mi = addMenuItem(m,"[4] IDFT");
MenuItem graphPSD_mi = addMenuItem(m,"[5] Graph PSD, R and
I");

The event handling is performed in the handleEvent method, using the Evt class to detect
the keyboard shortcuts. This enables rapid processing by the user:

if (Evt.match(e,fft_mi)) {
fft();
return true;

}
if (Evt.match(e,ifft_mi)) {

ifft();
return true;

}

if (Evt.match(e, dft_mi)) {
fftInstance = dft();
return true;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 231 Chapter 9: Image Processing in Java

}
if (Evt.match(e, idft_mi)) {

idft(fftInstance);
return true;

}

if (Evt.match(e, graphPSD_mi)) {
graphPSD();
return true;

}
A class variable, called the fftInstance is used to pass the complex data results from
method to method. The fftInstance is declared right after the Oscillator and UlawCodec
instances

public class AudioFrame extends OscopeFrame {

private Oscillator osc =
new Oscillator(400,4000);

UlawCodec ulc;
FFT fftInstance;

In the following DFT and IDFT code, we include facilities for benchmarking the
execution of the DFT on long sequences. This is because we find the DFT and IDFT to
be so slow as to be of interest only for timing purposes. Also, as a twist on the
implementation possibilities, we show the dft method returning an instance of the FFT
class. This is used to replace the fftInstance class variable in the handleEvent method.

public FFT dft() {
double doubleArray[] = ulc.getDoubleArray();
double [] psd;
FFT f = new FFT();

 Timer t1 = new Timer();
 t1.mark();

psd=f.dft(doubleArray);
 // Stop the timer and report.
 t1.record();
 System.out.println("Time to perform DFT:");
 t1.report();

f.graphs();
return f;

}
The handleEvent passes the fftInstance to the idft method for processing. Thus, this
method is overwriting the fftInstance variable (since it is passed, like all instances, by
reference). The IDFT method follows:

public void idft(FFT f) {
double doubleArray[];

 Timer t1 = new Timer();
 t1.mark();

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 232 Chapter 9: Image Processing in Java

doubleArray=f.idft();
 // Stop the timer and report.
 t1.record();
 System.out.println("Time to perform IDFT:");
 t1.report();

f.graphs();
}

In the following fft method, the fftInstance is overwritten. Data is obtained from a
getTruncatedDoubleData method that truncates the input data to the nearest integral
power of two. We have elected to perform this truncation explictly, as some users might
prefer to pad their input data with extra samples. Consider, if the input data consisted of
2049 samples, such a practice would pad the input data to 4096 samples. This is a
doubling of the processing time. As the loss of data may well be objectionable to some,
we have elected to perform the truncation, or padding, outside of the FFT class. The
programmer must be careful (BEGIN WARNING) if the input to the FFT is not an
integral power of two, the forwardFFT and reverseFFT method will produce WRONG
results as no check is performed! (END WARNING)

public void fft() {

 fftInstance = new FFT();
 double[] r_d = getTruncatedDoubleData();
 double[] i_d = new double[r_d.length];
 fftInstance.forwardFFT(r_d, i_d);
 ulc.play();

}
(BEGIN NOTE) The UlawCodec instance, ulc, is played after the fft. (END NOTE) The
audio data AudioFrame class is not shortened or altered by the fft invocation. The play
simply signals when the fft is complete.
The audio data is copied before truncation occurs. It is not overwritten until after the ifft
method is invoked. The getTruncatedDoubleData truncation method follows:

double [] getTruncatedDoubleData() {
 double[] temp = FFT.arrayCopy(getDoubleData());

 int trunc = 1 << FFT.log2(temp.length);
 System.out.println("Truncated size: " + trunc);
 double[] truncArray = new double[trunc];

 for (int i=0; i < trunc; i++)
 truncArray[i] = temp[i];

 return truncArray;

}
Performing an FFT is sometimes called analysis. After the analysis, there may be a
frequency domain based pattern recognition (i.e., what note was played) or a spectral
modification (i.e., filtering, pitch shifting, etc.). The IFFT is sometime called synthesis

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 233 Chapter 9: Image Processing in Java

because the time-domain waveform is resynthesized from the frequency domain
description. The implementation of the ifft method in the AudioFrame follows:

public void ifft() {
double realInput[] =

FFT.arrayCopy(fftInstance.getReal());
double imaginaryInput[] =

FFT.arrayCopy(fftInstance.getImaginary());
fftInstance.reverseFFT(realInput,imaginaryInput);
ulc = new UlawCodec(realInput);
ulc.play();

}
(BEGIN NOTE) The ifft method throws away the imaginary part of the reverseFFT
methods output. For real input signals, the imaginary part is zero, in theory. We have
found, however, that there is some small near-zero imaginary part that has been attributed
to round-off error. (END NOTE)
The graph of the psd is performed using graphPSD

public void graphPSD() {
 Graph.graph(fftInstance.computePSD(),
 "PSD of truncated waveform","a^2");

};
For example, suppose that a saw wave is used as an input.
The sawwave and psd are shown using the OscopeFrame and graph methods on the left
and right in Figure 6.6.

Figure 6.6. SawWave and Spectral output from the graphPSD method.
(BEGIN NOTE) Real signals always have a spectra that is symmetric about its center.
(END NOTE)
(B-heading) A Noise filter using the FFT
The basic idea of providing a noise filter is that you take a signal, with added noise,
perform and FFT on the signal, remove all spectral harmonics that have a psd below
some threshold, then take the IFFT. Selecting the psd threshold for noise can be tricky.
What works well on a synthetic sound might turn a sampled sound into silence.
There are limits to the amount of noise that can be filtered out. A block diagram of the
process appears in Figure 6.7. The code for adding noise to the waveform stored in the
AudioFrame instance is shown below:

public void addNoise() {
double r_d[] = getDoubleData();
for (int i = 0; i< r_d.length; i++)

r_d[i] = r_d[i] + 0.1*(Math.random() -0.5);
ulc = new UlawCodec(r_d);

}

Figure 6.7. The Noise Filter
The Math.random method returns a random value between zero and one. Thus, the
sampled data is summed with time-domain uniformly distributed noise (also known as
white noise) that varies from -0.10 to 0.10. The following code performs a psd based
cutoff, after taking the FFT of the sound samples:

public void removeNoise() {

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 234 Chapter 9: Image Processing in Java

double noisePowerCutoff = 0.05;

 fftInstance = new FFT();
 double r_d[] = getTruncatedDoubleData();
 double i_d[] = new double[r_d.length];
 fftInstance.forwardFFT(r_d, i_d);
 double psd[] = fftInstance.computePSD();
 for (int i = 0; i < psd.length; i++) {
 if (psd[i] < noisePowerCutoff) {
 r_d[i] = 0;
 i_d[i] = 0;
 }
 }
 fftInstance.reverseFFT(r_d,i_d);

ulc = new UlawCodec(r_d);
ulc.play();

}
The removeNoise and addNoise methods are placed under interactive user control via the
main-menu bar entries:

MenuItem addNoise_mi = addMenuItem(m,"[A] Add Noise");
MenuItem removeNoise_mi = addMenuItem(m,"[R] Remove
Noise");

The initial waveform is a sine wave of 400 Hz. A graph of the sinewave with psd is
shown in Figure 6.8.

Figure 6.8. Graph of the Sine Tone at 400 Hz with psd

Figure 6.9 shows the sinewave after noise is added.

Figure 6.9. Sinewave after the addition of noise
The psd of the sinewave plus noise is shown in Figure 6.10.

Figure 6.10. The psd of the Sinewave plus Noise
(BEGIN NOTE) Figure 6.10 shows the clean spectral break between the noise and the
sinewave. The removal of noise from such a waveform is performed with a trivial
frequency-based amplitude detector. (END NOTE)

Figure 6.11. The Reconstructed Waveform and its psd
(A-heading) Spectral Leakage of the DFT

Recall that in equation (6.6)

f k = k

N∆t
(6.6),

we may compute the frequency of the kth sample of a spectrum. For example, when the
number of samples, N = 2048, the smallest change in frequency is 8000/2048 = 3.9 Hz.
For the spectrum shown in Figure 6.5, the central point is given by N/2 = 2048/2 = 1024.
By (6.6), therefore, we compute the highest frequency that may be represented by 2048

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 235 Chapter 9: Image Processing in Java

samples (with 8khz sampling rate) as (8000/2048) *1024 = 4000 Hz. Also, we may
solve for any sample using (6.25):

k = Nf k / f s (6.25).
Thus, for the 400 Hz sawwave spectrum shown in Figure 6.8, we expect the maximum
amplitude to occur at k = Nf k / f s = 2048 * 400 / 8000 = 102.4 . How can the FFT (or
DFT, for that matter) represent energy at k = 102.4? The answer is that the energy is
spread around k=102, and 103. Often the kth array element in the frequency domain is
referred to as a frequency bin. Since the 400 Hz tone is in both bins 102 and 103, the
phenomenon is called spectral leakage. The problem with spectral leakage is that it is
different for different frequencies. For example, at 390.625 Hz, k = 2048*390.625/8000 =
100, exactly. Thus, there is no spectral leakage for some frequencies, where there may be
a great deal of spectral leakage for others. This is the frequency-domain rationale for
spectral leakage.
The time-domain rationale for spectral leakage is that, for a waveform that is not periodic
in time, the temporal effect of the sample window becomes visible in the Fourier
transform [Walker].
A procedure known as windowing predistorts the input samples so that the spectral
leakage is evened out (spreading on-bin signals more and off-bin signals less).
Windowing is a common procedure. It is typically performed with one of a variety of
possible filters (Cesáro, hanning, Hamming, Parzen, Welch, etc.). It is beyond the scope
of this book to cover all the filters. The hanning filter is a popular windowing filter, and is
applied in the sample domain by a complex multiplication. In the case when the input
signal is real (as in audio) only a single multiplication is required. The equation for the
hanning filter is:

wj = 1
2

1 − cos
2πj

N −1

 j ∈ 0... N −1[] (6.27)

Figure 6.12 shows a 256 sample version of the hanning window, in the frequency
domain, generated by the DiffCAD program.

Figure 6.12. The hanning window
The main point of windowing is that it reduces the amplitude of the samples at the
beginning and end of the window. The following code, from the AudioFrame class, will
make and graph the hanning window:

public void makeHanning() {
double window[];

window = makeHanning(256);
Graph.graph(window,

 "The Hanning window","f");
}

The method returns an array of doubles that may be stored for later use. This permits
reuse of the window for production code.

public double[] makeHanning(int n) {
double window[] = new double[n];

double arg = 2.0 * Math.PI/ (n - 1);

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 236 Chapter 9: Image Processing in Java

for (int i = 0; i < n; i++)
window[i] = 0.5 - 0.5 * Math.cos(arg*i);

 return window;

}
To apply the window to the samples, we have devised a windowArray method in the
AudioFrame class:

public void multHanning() {
double[] r_d = getTruncatedDoubleData();
double[] window = makeHanning(r_d.length);

windowAudio(r_d, window, "hanning");
}

public void windowArray(double window[],double r_d[]) {
for (int i = 0; i < window.length; i++) {

r_d[i] *= window[i];
}

}
The primary difference between one window and the next is the way it tapers off at the
ends of the samples. One window, called the Bartlett window, is a linear window that is
described by:

wj =

2 j

N −1
 j ∈ 0...

N −1
2

2 − 2 j

N −1
 j ∈ N −1

2
... N −1

(6.28)

Figure 6.13. The Bartlett Window
Figure 6.13 shows a graph of the Bartlett. The Bartlett window is generated by the
method makeBartlett, shown below:

public double[] makeBartlett(int n) {
double window[] = new double[n];
double a = 2.0 / (n - 1);
for (int i = 0; i < n/2; i++)

window[i] = i * a;
for (int i = n/2; i < n; i++)

window[i] = 2.0 - i * a;
 return window;
}

We propose a window that is zero at the sample end-points and also has zero first and
second derivatives at both the end-points and the center. Such a window may be
formulated with two fifth-order polynomials (called quintics). We present, for your
interest, some Maple code for deriving a quintic-based window.
Maple is a symbolic manipulator that can help with some math problems. In Maple, we
let dy and ddy be the first and second derivatives of the polynomial with respect to the

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 237 Chapter 9: Image Processing in Java

dilation parameter u. The dilation parameter will be varied between zero and one,
inclusive. The amplitude of the qunitic will vary from y0 to y1. Maple’s optimize routine
can output a procedure for computing quintics in minimum CPU time. What follows is a
Maple procedure for generating the Lyon window. See [Lyon 91] for more information
and an application of the quintic to maneuvering.

restart;y:=a5*u^5+a4*u^4+a3*u^3+a2*u^2+a1*u+a0:
> dy:=diff(y,u):
> ddy:=diff(dy,u):
> a0:=y0:
> a1:=solve(y1=subs(u=1,y),a1):
> a2:=solve(0=subs(u=0,dy),a2):
> a3:=solve(0=subs(u=1,dy),a3):
> a4:=solve(0=subs(u=0,ddy),a4):
> a5:=solve(0=subs(u=1,ddy),a5):
> readlib(C):
> C(y,optimized);
 t2 = u*u;
 t3 = t2*t2;
 t11 = (6.0*y1-6.0*y0)*t3*u+(-
15.0*y1+15.0*y0)*t3+(10.0*y1-10.0*y0)*t2*u+y0;

The following code makes the Lyon window
public double y5(double y0, double y1, double u) {

double t2 = u*u;
double t3 = t2*t2;
return

(6 * y1 - 6 * y0) * t3 * u +
(-15 * y1 + 15 * y0) * t3 +
(10 * y1 - 10 * y0) * t2 * u + y0;

}

wj =
6u5 -15u4 +10u3 u =

2 j

N -1
, j ∈ 0...

N −1
2

−6u5 +15u4 -10u3 +1 u =
2 j +1 − N

N -1
, j ∈ N −1

2
... N −1

(6.29)

The easier way to formulate (and compute) the dilation parameter, u, is by incrementing it
by 2/N as in:

public double[] makeLyon(int n) {
double window[] = new double[n];

double u = 0.0;
double du = 2.0/n;
for (int i = 0; i < n/2; i++) {

window[i] = y5(0,1.0,u);
u += du;

}
u=0;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 238 Chapter 9: Image Processing in Java

for (int i = n/2; i < n; i++) {
window[i] = y5(1.0,0.0,u);
u += du;

}
 return window;

}

Figure 6.14. The Lyon and hanning windows compared
The Lyon and hanning windows are shown in Figure 6.14. (BEGIN NOTE) More study
is needed to elaborate on the design trade-offs between the Lyon window and other
popular windows. About the only remarkable thing about it is that it has a zero first and
second derivatives at the center and end-points. The Lyon window also has more taper at
the side-lobes than the hanning window and so may reduce aliasing error more. (END
NOTE)
(A-heading) The Hi-pass filter

One very simple way to design a hi-pass filter is to take an FFT on the input samples,
then multiply the spectrum by the filter envolope. For example, to make a hi-pass filter,
we may zero out the low frequencies using a rectangular pass-band function, like the one
shown in Figure 6.15.

Figure 6.15. A passband shown spectral harmonics to admit

Figure 6.16. The Sawwave and its psd

Figure 6.17. The Hi-pass filtered Sawwave and its psd
(Begin Note) For the psd depicted in this chapter, the higher frequencies are toward the
center of the graph. (end Note) For the determination of the performance of the various
windows, we follow [Embree] and plot the windowed waveform along side the log (in
dB) of the psd. We use the dB log and zoom into the first 200 samples of the psd to make
smaller details clear. We are computing the graph using:

public void graphPSD() {
 double psd[] = fftInstance.computePSD();
 double shortPsd[] = new double[200];
 for (int i =0 ; i < shortPsd.length; i++) {
 shortPsd[i] = 10*Math.log(Math.sqrt(psd[i]));
 }
 Graph.graph(shortPsd, "spectral mag","a dB");
}

Figure 6.18. A Rectangular window and spectral dB log.
Figure 6.18 shows a sinewave with a rectangular window. The sine wave is 400 Hz with
8000 Hz sampling. This is often expresed as a relative frequency of 400/8000 = 0.05.
Figure 6.19 shown the hanning window with the spectral log magnitude.

Figure 6.19. The hanning windowed data with the FFT result.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 239 Chapter 9: Image Processing in Java

The triangular windowed input of the Bartlett window is shown in Figure 6.20, along
with the psd.

Figure 6.20. The Bartlett windowed data and the psd

Figure 6.21. The Lyon window and psd
Figures 6.20 and 6.21 show that the Lyon window has somewhat better side lobe
performance than the Bartlett window (lower spectral leakage). Also that the main lobe in
the Lyon window is narrower than the Bartlett window (lower noise bandwidth).
Figure 6.22 shows the spectra for the Lyon and hanning windows on the left and right, for
comparison.

Figure 6.22. Spectra of Lyon vs. hanning windows
The Lyon and hanning windows appear to be very close spectrally. The Lyon window
appears to have a few dB better side lobe performance over the hanning window. The
main lobe is slightly wider, however, and so has a slightly larger equivalent noise
bandwidth. For more information on windowing see [Mitra].

(A-heading) Frequency shifting using the FFT

To shift the pitch of a time-domain signal, we take the FFT, perform the high-pass
filtering, shown in the previous section, shift the spectrum lower, and then perform the
IFFT. Recall that the FFT produces a real and a complex output. Also recall that the
fftInstance is a class variable in the AudioFrame class. Thus, we design our pitch shifter
as just one of many possible spectral modifications that may be performed by the user
before the IFFT is taken. The plan is to work on bins 0..N/2 first, then to copy the bins
about the N/2 point in the spectrum, assuming that the left and right-hand sides are
symmetric (as is always the case for real signals). The code for the pitch shift follows:

public void pitchShift() {
fftInstance = new FFT();
double[] r_d = getTruncatedDoubleData();
int N = r_d.length;
double[] i_d = new double[N];
int N_on_4 = N/4;

fftInstance.forwardFFT(r_d, i_d);
// shift data down
for (int i = 0; i < N_on_4; i++) {

r_d[i] = r_d[i + N_on_4];
i_d[i] = i_d[i + N_on_4];

}
for (int i= N_on_4; i < N/2; i++) {

r_d[i] = 0;
i_d[i] = 0;

}

// reflect about center, assuming a real signal
int i,j;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 240 Chapter 9: Image Processing in Java

for (i=0,j=N-1; i < N/2; i++, j--) {
r_d[j] = r_d[i];
i_d[j] = i_d[i];

}

fftInstance.reverseFFT(r_d,i_d);

ulc = new UlawCodec(r_d);

ulc.play();

}
The result for synthetic tones, rich in harmonics, is to filter out some of the lower
frequencies and to lower the upper harmonic content.

Figure 6.23. The Squarewave and its psd

Figure 6.24. The pitch-shifted square wave and its psd.

(A-heading) Resampling and the FFT

Resampling a 1-D waveform is a common way to perform time-compressed speech. One
very easy way to perform the resampling is to perform Fairbanks sampling and throw
away every other sample [Fairbanks].
The resampling method performs a 2:1 subsampling in the time domain. The code for the
resample method follows:

public void resample() {
double[] r_d = getTruncatedDoubleData();
int N = r_d.length;
double [] resampled = new double[N/2];
for (int i=0; i < N/2; i++)

resampled[i] = r_d[2*i];

ulc = new UlawCodec(resampled);

ulc.play();

}
Figure 6.25 shows a sawwave and its psd. Compare Figure 6.25 with 6.26 that shows the
sawwave and psd after the 2:1 subsampling algorithm has been applied.

Figure 6.25. The sawwave and psd before the subsampling

Figure 6.26. The sawave and psd after subsampling
From figures 6.26 and 6.25 we can clearly see that the 2:1 subsampling has doubled the
pitch of the harmonics, and halved the number of available samples.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 241 Chapter 9: Image Processing in Java

(A-Heading) Centering the FFT

There are a great many books that show how the lowest frequency is toward the center of
the psd when taking an FFT. This is due to the process of centering the FFT. Centering
the FFT is accomplished by replacing the sample data with a value that is changing from
positive to negative when the sample value goes from zero to one. This may be described
by the formula:

vk = vk −1()k (6.30)
For the real sample on input. After the IFFT (or IDFT) the formula must be applied again
[Myler].

Figure 6.27 A Pulse with A Centered psd.
The centered psd for a pulse is shown in Figure 6.27. One can modify the forwardFFT in
the AudioFrame to perform this method by using:

public void forwardFFT(double in_r[], double in_i[]) {
int id;

 int localN;
 double wtemp, Wjk_r, Wjk_i, Wj_r, Wj_i;
 double theta, tempr, tempi;
 int ti, tj;

 int numBits = log2(in_r.length);
 if (forward) {
 centering(in_r);
 }

Where centering is a method that computes equation (6.28) on the real part of the sample
data. Centering may be implemented as follows (in the FFT class):

private void centering(double r[]) {
int s = 1;
for (int i = 0; i < r.length; i++) {

s = -s;
r[i] *= s;

}
}

The reverseFFT implements centering after the IFFT is finishing up:
public void reverseFFT(double in_r[], double in_i[]) {

forward = false;
forwardFFT(in_r, in_i);
forward = true;
centering(in_r);

}

Figure 6.28. An Uncentered psd
Without centering the psd is shown with the lowest frequencies on the edges. This is the
convention that we have adopted for the 1-D psd display (except when explicitly marked

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 242 Chapter 9: Image Processing in Java

otherwise). We are amazed that so few books speak about the uncentered magnitude
Fourier spectrum and how to correct it. Left uncentered, the FFT and DFT produces
results that can match the outputs of other FFT and DFT implementations (like [Moore]).
As a result, we felt it best to leave the spectrum uncentered, at least for the 1-D FFT.
(A-heading) Summary

The close of this chapter is a sad time! Just as things were getting fun, we move on to the
image processing section of the book (which will, hopefully, be even more fun!!). The
idea that a pitch shifter be combined with a resampler to compress speech is not new. In
fact, it may be used to help perform skimming on recorded speech (a topic of current
research) [Arons].
The introduction to the DFT, IDFT, FFT and IFFT is not new either. Also, it is probably
the case that the FFT is not the fastest. For the fastest fourier transform in the west, see
http://theory.lcs.mit.edu/~fftw. It may well be the fastest, but it may also rank as one of
the most complex of implementations. It is still O(N log N) but it has a very low constant
time. This link also has pointers to public domain software for performing FFTs
(including a mixed radix FFT).
The derivation of the Lyon window, using Maple, is new, as far as we know. The Lyon
window (two quintics with flat ends) is not new, though its application as a window for
signals probably is. In the past the quintic was viewed as a curvature controlled trajectory
for maneuvering a car [Lyon 90]. We make no claim as to the suitablity of the Lyon
window for signal processing since the window has not been throughly investigated and
this poses a topic of future research.
(CN) 7. An Introduction to Image Processing

From her whole frame--an atmosphere which quite
Arrayed her in its beams, tremulous and soft and bright.

The Revolt of Islam. A Poem in Twelve Cantos.
Canto Eleventh

Peter Packed a Pickled Pixel
Its color was that of hash

for every program that displayed
This pixel it would crash

- D. Lyon
Image processing is a kind of digital signal processing that occurs on a 2-D array of
sampled data. For example, it has been shown that image processing techniques may be
used to compress DEM (Digital Elevation Map) data [Franklin]. DEM data consists of a
2-D array of ranges, sometimes called a range image.
Often, the input image is acquired by a sensor able to detect energy. Typically the energy
to be detected is light energy. For the purpose of this chapter, we shall make the
assumption that we will sample an image using a uniform grid over which we perform the
spatial sampling of the energy.
When we speak about the resolution of the image, we talk about the size of the array used
to store the significant image data. For example, an array with 640 columns and 480 rows
may contain double precision floating point numbers, but if only 8 bits of information is
significant, then we say that the image resolution is 640x480 by 8 bits per pixel.
Image processing has applications in the areas of art, science, industry, government, and
space [Holzmann] [Pratt]. Branches of image processing (like digital image warping)

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 243 Chapter 9: Image Processing in Java

have found applications in remote sensing, computer vision, special effects, and computer
graphics [Wolberg].
(B-heading) Video Cameras and Scanners
Energy used to form an image typically starts as an analog signal (just like the 1-D DSP
case). The primary difference is that the 2-D transducer is able to detect both the power in
the incident energy and its relative direction.
Several techniques are commonly used to determine the relative direction of energy. A
mechanical scanning technique (like RADAR) can physically move a sensor in order to
obtain a range image. Some flat-bed scanners have a mechanical arm, called a platten,
that contains a linear solid-state array. The platten is moved over an illuminated image.
Another example of a mechanical scanner is called a drum scanner. The drum scanner
(typically a high-end scanner used in pre-press applications) physically spins a drum with
mounted art-work.
Electronic scanning is performed by electron-beam deflection. The deflection is
accomplished via an electric or magnetic field. The electron beam scans the
photosensitive surface which in turn alters the beam current. The current change is
proportional to the incident light. Tube cameras are an example of systems that perform
electronic scanning. The semiconductor industry has produced solid state alternatives to
tube cameras that dominated both in cost and in performance specifications in all but
niche markets. As a result, tube cameras have fallen out of favor (both professional and
consumer users typically favor solid state cameras).
The primary solid state camera in use today is the CCD (Charged Coupled Device)
camera. The CCD camera was invented by Willard S. Boyle and George E. Smith at Bell
Labs in the early 1970s. For semiconductor-based sensors, like the CCD cameras, a
scanning array will have individual sensing elements, each of which corresponds to a
pixel. The size of the elements ranges around 7-14 µm. Recall that 1 µm (also called a

micron) is 1×10−6 meters. The wavelength of a He-Ne laser (a red light) is 638 nm (nm =
nanometers = 1×10−9 meters.

Figure 7.1. A Stepped Gray wedge and the Output of a linear scanning array.
Figure 7.1 shows an image with an increasing gray level and a single white line that has
been resampled from its center.
Flatbed scanners typically have high-resolution linear CCD elements with a mechanically
deflected platten that gives them higher resolution than hand-held cameras. For this
reason, people will often take a picture with a film camera, then scan the image to obtain
a high resolution scan. Film ranges in quality from common to laboratory grade.
Common grade film has a grain size that is able to yield 100 lines per mm (10,000 nm) ,
(i.e., 35 mm Kodak 5369). Laboratory grade file yields about 1000 lines per mm (1,000
nm) [Kodak]. The high-end 35 mm digital slide scanners are able to yield 2048x3072
pixels with 36 bits per pixel (see http://www.davidmyers.com.au/rfs2035.htm for an
example). This is about 6.2 million pixels per image. Electronic still cameras have CCDs
that have 850x984 pixel resolution (for example
http://www.kodak.com/daiHome/pdf/dc120.pdf). Video cameras (image sequence
digitization cameras) typically operate with CCDs that have resolutions of 640x480 24 bit
pixels (for example, http://www.kodak.com/daiHome/pdf/dvc300.pdf).

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 244 Chapter 9: Image Processing in Java

While film is 100 to 1000 times higher in resolution than the CCD cameras, per unit of
imaging area, another factor is total size. While the common size for film is 35 mm, there
are larger format negatives available for special applications (i.e., 70 mm movie film, 127
mm portrait cameras, large format x-ray film, panorama cameras, etc.). These large
formats can make an enormous jump in the number of pixels available. The other factor
in the equation is cost. The price of digital still image cameras appears to be dropping
quickly. Also, it is not clear that people need the high resolution that film has to offer. We
have found that students really have no idea how much data can be produced by a high-
resolution scan of a large image. For example, a 3x5 inch color photo will, when scanned
at 24 bits per pixel and at 1200 pixels per inch, produce 3*5*1200*1200*3 = 64 MB of
data (MB = MegaByte, Mb = Megabit). We have found students turning up the virtual
memory to 450 MB when running Photoshop, so that they can scan 8 * 10 photos at 1200
pixels per inch (8*10*1200*1200*3 = 345 MB). Some students have even said that they
need such images for their home pages (No, Really)!
(A-heading) The Observer Interface

While it may seem out of place to put the observer interface here, it is a central class for
understanding how the Image class works. Also, we have put off covering the Observer
interface until now. The Observer interface resides in the java.util package. It is used to
require implementation of methods that are needed to maintain consistency in an object-
oriented environment. The relationship between the class that implements the Observer
interface and class that extends the Observable class is the relationship between a view
and a model (sometimes called the model-view relationship). An example of the model-
view relationship is that between the gas tank of a car and a fuel gauge. If the amount of
fuel in the tank changes, the fuel gauge readout changes. In Java, the simulation of a fuel
tank notifies the fuel gauge readout so that the screen is consistent with the underlying
simulation of the fuel tank.
There is a directed flow of information between an instance of a class that extends
Observable and the instance of the class that implements Observer. The Observable
instance keeps an instance of a vector that lists all the Observer instances that have
registered an interest in the state of the Observable instance. Whenever the Observable
instance changes, it broadcasts an update message to each of the Observer instances that
have registered. This relationship is shown in Figure 7.2.

Figure 7.2. The Observable uses the update method to transmit data to the Observer.
A class that implements the Observer interface supports an update method that takes an
Object-typed argument.
(B-heading) Interface Summary

package java.util;

public interface Observer {
 void update(Observable o, Object arg);
}

For usage see the next section.
(A-heading) The Observable Class

The Observable class resides in the java.util package. An instance of the Observable class
makes use of an instance of a list of the observer instances that have registered

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 245 Chapter 9: Image Processing in Java

themselves. The list is called an ObserverList and resides invisibly within the java.util
package.
(B-heading) Class Summary

package java.util;
public class Observable {
 public synchronized void addObserver(Observer o)
 public synchronized void deleteObserver(Observer o)
 public void notifyObservers()
 public synchronized void notifyObservers(Object arg)
 public synchronized void deleteObservers()
 public synchronized boolean hasChanged()
 public synchronized int countObservers()
}

(B-heading) The NamedObservable
The NamedObservable class provides a mechanism to associate a String instance with the
Observable instance. The code for the NamedObserver follows:

package observers;
import java.util.*;
// The NameObservable is just like an Observable
// only it has a name property associated with
// every Observable instance.
public abstract class NamedObservable extends Observable {

private String name;

public synchronized void setName(String nm) {
name = nm;

}

public synchronized String getName() {
return name;

}
}

(BEGIN NOTE) The get and set methods in the NamedObservable class are
synchronized, to prevent contention problems from occuring during multi-threaded
operation. It is common to see class variables, such as the name string as being accessed
only through synchronized method (as discussed in Chapter 2). This is the reason for
declaring the name string private. (END NOTE)
(B-heading) The ObservableDouble Observer-Observable Example
The DiffCAD program depends on the model-view paradigm and so has a package called
observers. One of the classes in the observers package is called ObservableDouble.
When the setValue method is invoked on an instance of the ObservableDouble class, the
setChanged method is invoked and the notifyObservers method causes an update method
to be broadcast to all the interested Observer instances.

package observers;
import java.util.*;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 246 Chapter 9: Image Processing in Java

public class ObservableDouble extends NamedObservable {

// The value of interest
private double value;

public ObservableDouble(double newValue, String nm) {
value = newValue;
setName(nm);

}

public synchronized void setValue(double newValue) {
 if (newValue != value) {
 value = newValue;
 super.setChanged();
 super.notifyObservers();
 }
}

public synchronized double getValue() {
 return value;
 }
}

(B-Heading) DoubleDialog and the IntDialog
As part of the observers package there are DoubleDialog and IntDialog classes. When an
instance of the IntDialog is made, a display is generated like the one shown in Figure 7.3.

Figure 7.3. IntDialog with an Embedded Observable on display
The value of the int in initially used for the display in the text field. When the int is
altered, by the user, the setValue method causes the observers to be updated. This
dynamically alters the text field in the dialog box. The IntDialog class follows (the
DoubleDialog is almost the same except that the DoubleDialog contains an
ObservableDouble rather than an ObservableInt):

package observers;
import java.awt.*;
import java.applet.*;
import java.io.*;

import gui.*;

public class IntDialog extends ClosableFrame {

Label label1;
IntTextField textfield;

Button okButton;
Button cancelButton;

ObservableInt i;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 247 Chapter 9: Image Processing in Java

private static int offset = 25;

public IntDialog(
String dialog_title,
String label,
ObservableInt sample_int) {

 super(dialog_title);
 init(dialog_title, label);
 set(sample_int);
 setForeground(Color.white);
 setBackground(Color.white);

}

void set(ObservableInt sample_int) {
i = sample_int;

textfield = new IntTextField(i);
add("Right",textfield);
textfield.reshape(89, 25, 64, 16);
cancelButton = new Button("Cancel");
add(cancelButton);
cancelButton.reshape(13, 175, 88, 28);

okButton = new Button("OK");
add(okButton);
okButton.reshape(130, 175, 63, 29);

pack();
show();

}
 public void init(String dialog_title, String label) {

setLayout(new FlowLayout());
resize(250, 250);
reshape(offset, offset,

250, 250);
offset = offset + 15;
setResizable(false);

//Initialize components
label1 = new Label(label);
add("Left", label1);
label1.reshape(5, 19, 86, 23);

 }

 void ok() {
System.out.println("OK!");
String s = textfield.getText();

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 248 Chapter 9: Image Processing in Java

Integer i_Integer = new Integer(i.getValue());
// default values

try {
 i_Integer = Integer.valueOf(s);
 i.setValue(i_Integer.intValue());

 }
 catch (NumberFormatException e) {
 System.out.println(
 "IntDialog:ER! Not a number, using
defaults");
 // pick a reasonable default
 }

return;
 }

 private void cancel() {
 System.out.println("Cancel!");
 }

 public boolean handleEvent(Event event) {
 if (Evt.match(event, 'o', okButton))
 ok();

 else if (Evt.match(event, 'k', cancelButton))
 cancel();
 return super.handleEvent(event);
 }
}

(BEGIN NOTE) We realize that the user may like to make the cancel method perform a
different task other than print cancel. This would be a good spot to send an application
specific message or restore a value. (END NOTE)
An example of the use of the IntDialog may be found in the AudioFrame class. The
example follows:

IntDialog spDialog = new IntDialog(
 "start Position Of Samples To Graph dialog",
 "Enter start position:",
 startPositionOfSamplesToGraph
);

Where
private ObservableInt startPositionOfSamplesToGraph;

is declared in the AudioFrame as a class variable.
(B-heading) Dialogs in the ImageFrame
The ImageFrame class resides in the lyon.ipl package. It is used to hold instances that
contain image data and display them It is also used to dispatch events and manage dialogs
that prompt the user for parameters. The dialogs all contain instances of Observable

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 249 Chapter 9: Image Processing in Java

classes. What follows is a list of the Observable class variables in the ImageFrame and
the Dialog instance creation that depends on them:
We see that in lines 1 and 2 there are two ObservableDouble instances, each provided
with a label (because they are named) and a value.

private ObservableDouble multKonst = new
ObservableDouble(1.0,"mult:");
private ObservableDouble addKonst = new
ObservableDouble(0.0,"add:");
private ObservableInt threshholdKonst = new
ObservableInt(128, "Threshold:");
private ObservableInt scaleKonst = new
ObservableInt(1, "Scale:");
private DoubleDialog multDialog = new
DoubleDialog("Multiply Dialog",

"* k", multKonst);
private DoubleDialog addDialog = new DoubleDialog("Add
Dialog",

"+ offset", addKonst);
private IntDialog threshDialog = new

IntDialog("Threshold Dialog",
"Threshold constant", threshholdKonst);

private IntDialog scaleKonstDialog = new
IntDialog("Scale Dialog",

"Integer Scale constant", scaleKonst);
When an instance of the ImageFrame class is made, the IntDialog and DoubleDialog
instance appear on the screen. At that point, the user may over-ride the defaults in the
dialog boxes and click “OK”. When this occurs, the image processing operation in
invoked will use the updated values. For example:

public void linearComb() {
pp.linearComb(multKonst.getValue(),addKonst.getValue())

;
updateDisplay(pp);

}

(A-heading) The Image Class

In Java, an image is stored in an instance of the Image class. The image class resides in
the java.awt package and is designed with the intention that images are produced by I/O
bound systems (i.e., networked based systems). The Image class has provisions to take
ImageObserver instances in many of its methods. The ImageObserver instance is
registered for notification after an image becomes available.
(B-heading) Class Summary
package java.awt;
import java.awt.image.ImageProducer;
import java.awt.image.ImageObserver;

public abstract class Image {
public abstract int getWidth(ImageObserver observer);

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 250 Chapter 9: Image Processing in Java

public abstract int getHeight(ImageObserver observer);
public abstract ImageProducer getSource();
public abstract Graphics getGraphics();
public abstract Object getProperty(String name,
ImageObserver observer);
public static final Object UndefinedProperty = new
Object();
public abstract void flush();

}
(B-heading) Class Usage
The Image class uses the observer-observable model. The Image class is an abstract class
and so may not be instanced. Recall from Chapter 3 that every Component implements an
ImageObserver. This means that we can pass an instance of the Component to the
image.getWidth invocation to obtain a call-back. The call-back will occur in the form of
an imageUpdate method invocation on the interested ImageObserver instance.
Suppose the following variables are predefined:

Image image;
ImageObserver imageObserver;
ImageProducer imageProducer;
int height, width;
Graphics graphics;
String name;

To get the width of the image use:
width = image.getWidth(imageObserver);

(returns -1 if image is not ready and notifies the observer when the image becomes
ready).
To get the height of the image use:

height = image.getHeight(imageObserver);
(returns -1 if image is not ready and notifies the observer when the image becomes
ready).
To get the instance that produces the image pixels:

imageProducer = image.getSource();
To get a graphics instance for an off-screen image:

graphics = image.getGraphics();
To get an image property, by name, use:

object = image.getProperty(name, imageObserver);
If the image is not available, the getProperty returns null and notifies the imageObserver
later. Image.UndefinedProperty is a static final Object instance that is returned when the
property is undefined.
To destroy all the resources used by an image that will not be likely to be used for a while
use:

image.flush();

(A-heading) The ImageObserver

The ImageObserver is an interface that resides in the java.awt.image package. Every
Component implements the ImageObserver and Components are typically used to make
instances of Images. An instance of a class that implements the ImageObserver interface

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 251 Chapter 9: Image Processing in Java

registers as having an interest in the contents of an ImageProducer instance. When the
contents is altered, the ImageObserver instance is notified by the ImageProducer instance,
using the imageUpdate method invocation.
(B-heading) Summary

package java.awt.image;
import java.awt.Image;
public interface ImageObserver {
public boolean imageUpdate(Image img, int infoflags, int
x, int y, int width, int height);
public static final int WIDTH = 1;
public static final int HEIGHT = 2;
public static final int PROPERTIES = 4;
public static final int SOMEBITS = 8;
public static final int FRAMEBITS = 16;
public static final int ALLBITS = 32;
public static final int ERROR = 64;
public static final int ABORT = 128;

}
(B-heading) Image Instancing in the ImageFrame
In the ImageFrame class, we have a getImage method that prompts the user for an input
file, then proceeds to open the image file, waiting until the image file is read and the
resources needed to store the Image instance are allocated. This is a design pattern that
we have decided to defeat to simplify the programmers’ job when reading an image. We
find the code to be harder to understand, write and teach and prefer a simpler API for
reading an image. To defeat the call-back routine, we make a temporary ImageProducer
that is invoked with the method getImage. Methods such as getImage greatly simplify
user code, but make the assumption that the image resides on a low latency storage device
(i.e., the hard disk). The fileName and the image variables are both class variables in the
ImageFrame class. The getImage method follows:

public void getImage() {
// Open up the image, by file name and wait for it!
fileName = Futil.getReadFileName();
System.out.println("Get image:"+fileName);
try {

image = getToolkit().getImage(fileName);
waitForImage(this,image);
}

catch (Exception e) {
System.out.println("Get Image could not open

"+e);
}
// move the image, change its dimensions
reshape(100, 100,

image.getWidth(this), image.getHeight(this));

//set image title
setTitle(fileName);

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 252 Chapter 9: Image Processing in Java

show();
}

The waitForImage method permits avoidance of the call-back method and will have the
thread stop before the getImage method returns. The paint method for the ImageFrame
invokes the drawImage method on the Graphics instance, g.

public void paint(Graphics g) {
 g.drawImage(image,0,0,this);

}
(A-heading) The PixelPlane Class

The PixelPlane class resides in the lyon.ipl package and is used to give the user a high-
level interface to pixel-based operations. The intention of the PixelPlane class is to permit
the processing of an array of data, without having to follow ImageProducer-
ImageConsumer design pattern. This makes the software much easer to teach, write and
understand. We have found that Java programmers prefer the simpler array model for
manipulating images. An instance of a PixelPlane class stores its pixels in a 1-D array of
int. A PixelPlane instance does not do image processing. It is just a handy way to access
pixels and allocate Image instance memory.
The basic idea is that we do not need to keep an instance of an Image around. All of the
image processing will occur on and between instances of the PixelPlane class. Should we
need an Image instance (for display) we can always make one from an instance of the
PixelPlane class. The approach of making Image instances on-demand represents a
space-time trade-off that is typical in computer science. An Image instance takes up so
much space, that dynamic allocation can free up enough space during processing to make
otherwise infeasible operations feasible (from a memory usage point-of-view).
Since Java does not have (as of this writing) any notion of row-major or column-major
order, we cannot use doubly-nested for-loops to access 2-D arrays. To do so might cause
thrashing to the disk (this is particularly slow and is typical when memory is accessed in
a non-sequential fashion). To ease the burden of thrashing, a single-dimensioned array is
stored internally in the PixelPlane instance. The 2-D array is implemented by multiplying
the row index by the column index. Methods are also provided that permit linear indexing
into the array, for slightly higher speed of some image processing operations.
(B-heading) Class Summary

package lyon.ipl;
import futils.*;
import futils.utils.*;
import java.awt.*;
import java.awt.image.*;
import java.applet.Applet;
public class PixelPlane {
public int pels[]
public PixelPlane(int w, int h)
public PixelPlane(double x, double y)
public PixelPlane copy()
public Image makeImage()
public int getLength()
public int getHeight()
public int getWidth()

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 253 Chapter 9: Image Processing in Java

public boolean inrange(int x, int y)
public int getRed(int i)
public int getGreen(int i)
public int getBlue(int i)
public int getRed(int x, int y)
public int getGreen(int x, int y)
public int getBlue(int x, int y)
public int getAlpha(int x, int y)
public int MakePixel(int r, int g, int b, int a)
public void setPixel(int x, int y, int r, int g, int b,
int a)
public void setPixel(int x, int y, int pel)
public int getPixel(int x, int y)
public int getPixel(int i)
public void printSize()

}

(B-heading) Class Usage
Suppose The following variables are predefined:

PixelPlane pp, ppCopy;
int width, height;
double w, h;
int pixelArray[];
Image image;
boolean aBoolean;
int x,y;
int i, c, a, r, g, b, pel;

Then to make an instance of a PixelPlane that is width by height:
pp = new PixelPlane(width, height);

The PixelPlane constructor is overloaded to be used with double-type dimensions:
pp = new PixelPlane(w, h);

To get at the internal pixel array (this is not suggested, but permitted to maintain
flexibility):

pixelArray = pp.pels;
To make a copy of the PixelPlane (this uses the System.arraycopy method, so it should be
pretty quick):

ppCopy = pp.copy();
To make and Image instance from a file (makes a standard file open dialog box) use:

image = PixelPlane.openImage();
openImage is a static method, so you don’t need to make a PixelPlane instance. To get
the total number of pixels in the PixelPlane instance, use:

int numberOfPixels = pp.getLength();
To get the width and height, in pixels, from the PixelPlane instance, use:

height = pp.getHeight();
width = pp.getWidth();

To see if two x,y coordinates are in range, use:
aBoolean = inrange(x,y);

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 254 Chapter 9: Image Processing in Java

To get a color stored into an int from a location in the PixelPlane instance (using the
linear array):

c = pp.getRed(i);
The color value, c, always varies from 0...255.

c = pp.getGreen(i);
c = pp.getBlue(i);

To get the same color values, using the (x,y) coordinates:
c = pp.getRed(x, y);

Each access into the pixel plane costs one multiply. After Sun releases an API that stores
multidimensional arrays, in known order, the multiply can be eliminated, speeding pixel
access:

c = pp.getGreen(x, y);
c = pp.getBlue(x, y);
c = pp.getAlpha(x, y);

A pixel is stored in a packed in, 4 bytes per pixel, ARGB format. To pack a pixel:
pel = pp.MakePixel(r, g, b, a);

To set a pixel at location (x, y):
pp.setPixel(x, y, r, g, b, a);

To set a pixel equal to the packed pel at location (x, y):
pp.setPixel(x, y, pel);

To get a packed pixel at location (x, y):
pel = pp.getPixel(x, y);

To get a packed pixel from the linear array at location i:
pel = pp.getPixel(i);

To print the PixelPlane instance’s size to the console:
pp.printSize();
}

(A-heading) The ProcessPlane Class

The ProcessPlane class resides in the lyon.ipl package. It consists of an extension to the
PixelPlane class. By creating instances of the ProcessPlane class, we add methods to the
PixelPlane instance that provide for elementary image processing services. The services
themselves are not profound, but how they are implemented in Java is of interest. A class
summary appears below.
(B-heading) Class Summary

package lyon.ipl;
import java.awt.*;
public class ProcessPlane extends PixelPlane {
public ProcessPlane (double x, double y)
public ProcessPlane (int x, int y)
public void cornergray() {
public ProcessPlane scale(int scale) {
public void threshold(int konst)
public void diagGray()
public ProcessPlane edge()
public void linearComb(double konstD, double akD)
public void Subimage(ProcessPlane pp)
public void makeGray()

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 255 Chapter 9: Image Processing in Java

public void randResample()
public void shadow()
public void negate()

}
(B-heading) Class Usage
Suppose the following variables are predefined:

ProcessPlane pp, pp2;
int height, width;
double heightD, widthD, a, b;
int scale, konst;

To make an instance of a ProcessPlane that allocates internal pixel storage for a
heightxwidth by 32 color, RGBA (Red, Green, Blue and Alpha) image:

pp = new ProcessPlane(height, width);
To make an instance of a ProcessPlane that uses doubles for size and casts the doubles to
int before allocating storage:

pp = new ProcessPlane(heightD, widthD);
To make an image of the previous images size, but fill it with a cornergray test pattern, as
shown in Figure 7.4:

pp.cornergray();

Figure 7.4. The cornergray method output
To scale an image by a postive integer using pixel replication:

pp.scale(konst);
To threshold an image using a integer value that ranges from 0 to 255, as shown in Figure
7.5:

pp.threshold(konst);

Figure 7.5. Effect of threshold on a image
To make a diagonal test pattern using the existing images dimensions, as shown in Figure
7.6:

pp.diagGray();

Figure 7.6. The effect of the diagGray method
To make a single pixel-width wide edge from the left-most edge on the image, at the
center of a thick bright stripe, as shown in Figure 7.7, use:

pp.edge();

Figure 7.7. Effect of the edge method
The edge method uses a domain-specific edge detector that is useful for range-finding via
diffraction. See the following section for more information about the implementation.
(BEGIN NOTE) This edge detection method will produce unsatisfactory results when
applied to images outside of the intended domain. (END NOTE)
To perform the operation pi = api + b ∀ i ∈ i = 0...numberOfPixels[] where
pi = ith image pixel :

pp.linearComb(a, b);
To subtract pp2 from pp, leaving the result in pp (i.e., pp = pp - pp2):

pp.Subimage(pp2);

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 256 Chapter 9: Image Processing in Java

To make pp a gray image by copying the red plane to the green and blue planes:
pp.makeGray();

To perform a stocastic resampling, of the image, an effect illustrated in Figure 7.7:
pp.randResample();

Figure 7.8. The effect of randResample
To perform a shadow mask on the image (as shown in Figure 7.9) use:

pp.shadow();

Figure 7.9. Effect of the shadow method
To negate the image (as shown in Figure 7.10) use:

pp.negate();

Figure 7.10. Effect of the negate method
This section showed a collection of image processing services performed by instances of
the ProcessPlane class. While all the images are shown as gray-scale images, this is a
limitation of the printing process. All the operations are 24 bit color operations.
(B-heading) Class Implementation, The negate method
None of the image processing operations shown in this section are remarkable. Perhaps
the more interesting question is that of how the operations are implemented. We start
with the simplest of the image processing operations, the negate method:

public void negate() {
int r,g,b,a;
for (int y=0; y < getHeight(); y++)

for (int x =0 ; x < getWidth(); x++) {
 r = getRed (x,y);
 g = getGreen(x,y);
 b = getBlue (x,y);
 a = getAlpha(x,y);
 setPixel(x, y, 255 - r,255 - g,255 - b, a);

}
}

The negate method is added to the ProcessPlane class to enable any instance of a
ProcessPlane to be able to negate itself. (BEGIN NOTE) Since we extend the PixelPlane
class, we inherit all the methods from that class. Also, we do not negate the alpha plane,
since that would make the image black. (END NOTE)
Within the ImageFrame class, we have a MenuItem instance called negate_mi:

MenuItem negate_mi = addItem("[n]negate");
Where the addItem method adds the MenuItem instance to the main menu bar:

public MenuItem addItem(String itemName) {
MenuItem mi = new MenuItem(itemName);
m.add(mi);
return(mi);

}
Finally, we handle the event using the Evt’s match method to select either the keyboard
event or the menu selection event:

public boolean handleEvent(Event e) {
 if (Evt.match(e,negate_mi)) {

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 257 Chapter 9: Image Processing in Java

 negate();
return true;

}...
(B-heading) Class Implementation, The Shadow method
The Shadow method is a filter that moves a 2 by 2 pixel window, one pixel at a time,
across an image. It replaces the pixel at the upper left corner of the window with the
value of the pixel minus one-half the value of the pixel at the lower-right corner.

public void shadow() {
int r,g,b,a;
for (int y=0; y < getHeight()-2; y++)

for (int x =0 ; x < getWidth()-2; x++) {
 r = getRed (x,y);
 g = getGreen(x,y);
 b = getBlue (x,y);
 a = getAlpha(x,y);
 r = r + (127 - getRed (x+2,y+2));
 g = g + (127 - getGreen(x+2,y+2));
 b = b + (127 - getBlue (x+2,y+2));
 setPixel(x,y,r,g,b,a);

}
}

(B-heading) Class Implementation, The edge method
The edge method is probably one of the more complex image processing methods in the
ProcessPlane class. The edge method runs through the following steps:

1. Compute the average intensity, a, for pixel row, y.
2. Find the pixel, xr, that exceeds a.
3. Find the very next pixel, xl, that does not exceed a.
4. Compute the average of xr and xl and call it xa.
5. Store xa,y as an edge point.
6. Increment y.
7. If y > imageHeight then stop, else goto 1.

This type of ad-hoc algorithm will always find the left-most bright edge for a well
defined stripe. At the same time, it finds the centroid of the stripe. As the stripe gets
closer to the left of the image, the program runs faster (since it has to search fewer pixels
to find the stripe). Thus, good lighting and camera positioning are needed to make this
algorithm run fast. The Java implementation of the edge method follows:

public ProcessPlane edge() {
ProcessPlane pp = new ProcessPlane(getWidth(),

getHeight());

int r,a;
int average; // average intensity
for (int y = 0; y < getHeight(); y++)
new_line: {

average = 0;
for (int x =0 ; x < getWidth(); x++)

average = average + getRed (x,y);

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 258 Chapter 9: Image Processing in Java

average = average / getWidth();
for (int x =0 ; x < getWidth(); x++) {
 r = getRed (x,y);
 a = getAlpha(x,y);
 if (r > average) {
 int start=x;
 for (int i=x;i < getWidth(); i++) {
 r = getRed (i,y);
 if (r < average) {
 pp.setPixel(
 start + (i - start) / 2,
 y,255,255,255,a);
 break new_line;
 }
 }
 }
 }

}
return pp;

}

(CN) 8 (CT) Digital Images and Image Formats

"This is the Wild West of the
 Information Age" -

Bart Kosko

(A-heading) The DataBahn

As the Internet connects the world together, and as more users cram to get onto this
information thoroughfare, we find that it can take a long time to get data from point A to
point B. Never before as now do we need to squeeze information content down in size
before it is exchanged or transferred. Luckily the enormous size of digital images have
already motivated the creation of a number of space saving image and file formats.
Consider this: an uncompressed digital bitmap image of 640x480 pixels with 256 colors
takes up 307 KB, or 1/3 MB. It can be frustrating to watch an image file of this size load
into your browser from a web site.
In this chapter, you will find a discussion of the what and why of image formats - there
are a lot of them ! You will learn some of the latest and greatest formats for the Internet.
Finally, you will see details of the formats that are supported in Diffcad.

(A-heading) A Bird's Eye View of Image Formats
There are three broad categories of image formats: vector formats, bitmap formats and
other formats.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 259 Chapter 9: Image Processing in Java

(B-heading) Vector and Bitmap formats
In describing an image, you can resort to several levels of detail. In the lowest level of
abstraction, you may describe each and every element (pixel) of the image. An image that
is described in this manner is referred to as bitmapped, since the end result is a map of
bits (or pixels). A bitmap image and its associated data are shown in Figures 8.1a and
8.1b.

Figure 8.1a A bitmap format image Figure 8.1b Bitmap format data
 This is ultimately, how images are represented for display on monitors and viewed. A
computer monitor or television has an addressable array of physical pixels or dots. The
dot has position , and color information. Color will be talked about further very shortly.
Bitmap images are difficult to scale from their original resolution (without DSP!). They
can be bulky and hence cumbersome to transport. You can mitigate the size problem with
compression (covered soon), but only at the expense of increased time to decode and
render.
(B-Heading) Vector formats
Now we consider a way to represent images with a higher level of abstraction. Suppose
you store endpoints of line segments to compose a representation of an image. This may
be useful to render a CAD drawing for example. You store coordinates for the starting
point, a direction and a length and maybe some color information. The rest of the screen
that does not have line segments will be a background color. This is a simple vector
image file format, and is a good compact format for line drawings. Vector formats are
quick to read and are compact, for the types of images they are intended to represent.
Vector formats typically store not only line primitives, but also some 2D shapes, such as
circles and squares and curved lines , which are higher levels of abstraction. These shapes
could be used to compose jet planes or integrated circuit layouts, for example. Figures
8.2a and 8.2b show an example of a simple vector image and its associated data.

Figure 8.2a Vector format image Figure 8.2b Vector format data

You could continue on using higher and higher levels of abstraction going to 3D objects
as primitives, and Avatars (3D computer puppets) in virtual worlds.
One advantage of a vector format image, is that it is relatively easy to scale the image
without loss of detail. Many clipart collections are stored as vector format files so that
they can be scaled easily. A disadvantage of vector formats is that it is hard to store very
detailed image information such as photographs, where you may need to vary color
information on a pixel by pixel basis.
(C-heading) Conversion between vector and bitmap formats
Converting from a vector format image to a bitmap format is easy and straightforward; in
fact, this conversion will be very common, since most display output devices are
bitmapped. For a very detailed vector format image, it is important to choose a high

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 260 Chapter 9: Image Processing in Java

enough resolution for the destination bitmap, otherwise, some artifacts will appear in the
image, such as jagged lines (" the jaggies") instead of straight lines.
Converting from a bitmap format image to a vector image is difficult. In Chapter 9, you
will meet this formidable challenge with DSP routines for edge and outline detection.
Another issue is the possible loss of color information when you go from a rich bitmap
representation to a (possibly) poor vector representation.

(B-heading) Other types of formats
[Murray et al.] describe several other types of formats for digital images. These are
described briefly as follows:
· Scene - A scene format file has a condensed representation of an image. It is

sometimes hard to tell the difference between this format and a vector format.
· Metafile - A metafile can store both vector format elements and bitmap format

elements. Examples of this type of format file are the PICT format and the CGM
format. Because of their versatility, these files are often used to cross the bridge
between different hardware or software platforms.

· Animation - Animation formats come in many flavors. The simplest type just stores
adjacent frames of an animation sequence in one file for playing. Another type stores
not only images but along with them color maps for the images. Changing the color
map can give the illusion of motion. Finally, a more sophisticated animation format
will store frame difference information along with key frames. This technique is used
to store motion video also and exploits the fact that in any given movie or animation,
from frame to frame there is on average not a lot of changed information. There is
usually a large chunk of the background or features that are static. If you store the
data that changes, instead of all the data, you save a lot of space.

· Multimedia - Multimedia formats allow you to store all kinds of different data types
and formats together; you could have video information, text information and sound
information coexisting peacefully.

· 3D - 3D formats not only support descriptions of lines, shapes and 3D geometries, but
also textures, reflections and anything else a rendering program would need to
reconstruct a 3D image or world. Objects in a 3D file are sometimes called scene
elements. Many existing vector file formats have been extended to support 3D. Such
formats, such as Autodesk's DXF format, are referred to as extended vector formats.
VRML is a little more than a 3D format, since it includes support for HTML style
linking to other URLs on the World Wide Web.

· Font(bitmap, stroke, outline) - Fonts are special graphic files. They come in their own
subsets of types based on bitmap formats or on vector formats (stroke, outline). One
additional constraint usually imposed on font files is that they must be very quick to
index into. So there is usually a database index associated with the font data placed in
a header or footer of the file.

· PDL - PDL, or Page Description Language formats are usually textual programmatic
descriptions of how to render graphics and text. An example of this type of format is
the ubiquitous Postscript format. This format is more akin to source code rather than
just graphics data, and hence requires a sophisticated program in order to be able to
create output.

(B-heading) Color Depth, Palettes and Transparency

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 261 Chapter 9: Image Processing in Java

Before getting to a monitor, an image, regardless of the format it is stored in by an
application, is usually represented by a bitmap in a special memory known as a frame
buffer. (The exception would be for a random scan display monitor - a vector image
display monitor.) The frame buffer stores the image that is to be displayed as it is being
scanned by the graphics processor that feeds a CRT monitor for viewing. En route to the
monitor, the graphics processor may be commanded by the host processor (CPU) to
manipulate the stream of pixels before they are displayed. One example of processing is
to convert color depth information by using a color look-up table (CLUT), also known as
a color palette. Color depth refers to the number of bits that are used to represent one
pixel, or bits per pixel (bpp). For a color depth of 1, you represent a black and white
image; a 1 turns on a pixel (white) and a 0 turns off a pixel (black). A color depth of 8
bpp, means that you have 256 (=28) possible values for a color.
A CLUT is a table of color values with an index. Use of this table can allow for some
image size reduction. You essentially form an indirect addressing scheme. Say you have
256 possible values for a color (indexes). You may store 24 bit per pixel color values in
each entry of the CLUT since your hardware supports it. You achieve some data
compression since your image data may reference 8 bit CLUT indexes, instead of 24 bit
color data. Your image data must also include the CLUT too however. The total data for a
640x480 image is (640x480x8 + 256x24)/8 = 308K bytes. If the CLUT was not used, the
total data would be (640x480x24)/8 = 922K bytes. In this example the use of a CLUT
results in a savings of 2/3 in file size.
 A CLUT doesn't always make sense to use. If you use a large number of colors in an
image, then it may be more space-efficient to store the full pixel value directly.
Generally, for images with more than 256 colors, it is better to store literal or absolute
format, because the overhead of a very large CLUT is not worth the space. In fact the size
of the CLUT may approach the size of the image itself.

(C-heading) Transparency
In the television world, you often see live video being overlaid onto a static image (like a
weather map). In the bitmap world, this is like overlaying two bitmaps onto each other
and specifying portions of one bitmap to be transparent, in certain areas, to allow the
background image to show through. Similarly, you could use transparency characteristics
to do a fade from one video source to another. In this case, there would be degrees of
transparency (not just on or off). Transparency is often described in bitmaps on a pixel by
pixel basis. Here, transparency information is appended to pixel value information. The
TGA format for example uses 5 bits each for R, G, B (red, green, blue) and 1 extra bit for
transparency, for a total of 16 bits. When the transparency bit is on, the display hardware
must ignore that particular pixel, so that any background image may show through. A 32-
bit variant of the TGA format specifies 8 bits for transparency, called the alpha channel.
Here each of R, G and B use 8 bits and alpha uses an additional 8 bits to specify the
degree of transparency (0=completely transparent to 255=completely opaque).

(A-heading) Graphics Formats Menu

This section will give you a directory of some of the more popular image formats and
some of their traits. Below, Table 8.1 shows a list of many different formats along with

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 262 Chapter 9: Image Processing in Java

their type (adapted from [Murray et al.]) Diffcad uses a subset of these formats, namely:
GIF, JPEG, VEC, PICT and PPM.
Later in the section, you will read about general characteristics of graphics formats, such
as file organization, compression and progressive display.

Table 8.1 Image formats and type (adapted from [Murray et al.])
Format Type
Autocad DXF Vector
Autodesk 3D Studio Scene description
BMP (Windows) Bitmap
CGM Metafile
FLI Animation
GEM Raster Bitmap
GEM VDI Metafile
GIF Bitmap
Harvard Graphics Metafile
IFF Bitmap
Intel DVI Multimedia
JPEG File Interchange
Format

Bitmap

Kodak PhotoCD Bitmap
MPEG Multimedia
PCX (Windows) Bitmap
PICT (Mac) Metafile
Pixar RIB Scene Description
PNG Bitmap
POV Vector
PPM Bitmap
QuickTime Multimedia
Rayshade Scene Description
SPIFF Bitmap
Sun Raster Bitmap
TIFF Bitmap
TTDDD Vector and Animation
Utah RLE Bitmap
VEC Vector
WMF (Windows) Metafile

Most graphic formats support some form of data compression. In the next section you
will see a discussion of compression methods.

(B-heading) Compression Methods : Making Bits of Bits

There are compression methods that are used on digital information (not just image data),
and other methods specifically suited for image data and other special classes of data.
First we look at four methods of general data compression: RLE, LZW, Huffman
encoding and Arithmetic encoding. Later in this section we look at a compression
method that is well suited for image data: DCT or transform based compression.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 263 Chapter 9: Image Processing in Java

Compression can be lossy, or can be perfect. Lossy compressors discard information,
albeit information that is considered to be the least relevant in a particular application.
You will read more on this shortly.
Compression can be symmetric; that is the process of compression is very similar in
complexity, time and methodology to decompression. On the other hand, asymmetric
compression is a situation where a more complicated process is needed for one direction
over the other; an example is the original Intel DVI video format, where a parallel
supercomputer is used to compress a video sequence, while a tiny amount of microcode
in a video DSP chip is used to decompress the sequence. This is highly asymmetric.
For Bitmap format files, normally only the bitmap data is compressed. Any other
information in the file (header, footer) is left uncompressed for easy reading. For Vector
format files, there is usually no compression. This is because Vector formats are
inherently compact being a higher level of abstraction than a bitmap. Also rendering a
vector format file takes a lot of time to begin with and adding decompression would
further slow down applications that use vector format files.

Start NOTE
In the discussions below, encoding is usually discussed. The decoding process is just the
set of reverse operations to that of encoding.
End NOTE

(C-heading) Run Length Encoding (RLE)
Run length encoding is a general compression method that takes sequences or runs of a
particular character, and encodes it more compactly as a number and the character.
For example:

AAAAAAAAAABC

could be coded as: 10A1B1C

The number 10 is the run count and the following letter A is the run value. If each ASCII
character takes up 1 byte of storage, then the original uncompressed string takes up 12
bytes, while the compressed string takes up 7 bytes. Notice that even a run length of 1
requires a minimum of 2 characters.

For binary character encoding, there are several choices. You can encode on a bit basis
(looking for runs of bits), on a byte basis or on a pixel basis, where a pixel may take up
multiple bytes. The overhead of storing a run length for each run value may in some cases
cause a file to be larger than the original, which is termed negative compression. One
method to minimize the effect of the run length code for small runs is to encode a bit at
the beginning of each block that enables run length interpretation for that block. In other
words, if the enable bit is set to 1, the block is interpreted as run length encoded. If it is
set to 0, then the following data is interpreted as unencoded or literal data.
With 2D bitmap data, you have freedom to encode data along rows, which are also
referred to as scan lines, or along columns, or along some other sub-block partitioning of
the data.. You could choose some of the options discussed to achieve the best
compression.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 264 Chapter 9: Image Processing in Java

(C-heading) Lempel, Ziv, and Welch Compression (LZW)
A very widely used algorithm for data compression was invented by Lempel, Ziv and
Welch and is known as LZW. Actually there are several algorithms: LZ77, LZ78 and
LZW are all patented; use of these may be subject to licensing fees and a lot of legal
headaches. It is possible to adapt LZ77 so that you do not infringe on its patent (see
PKZIP below). Unfortunately, several widespread programs and formats made use of
these patented algorithms, like the Compuserve GIF file format. As a backlash against
having to pay for what used to be in the public domain and hence free, several
alternatives to the patented LZW algorithms were developed and offered to the public.
The popular archiving compressor, PKZIP replaced the original LZW compressor with a
compressor based on an adapted non-infringing variation of the LZ77 algorithm. GIF is
still oppressed with infringement problems. The world is still full of GIF images
however. There are many freeware utilities to convert GIF files to other formats, such as
PPM. The PNG graphics format was created specifically as an alternative to GIF and
again is also based on a non-infringing variation of the LZ77 algorithm.
How does LZW work ? The LZ family of compressors are dictionary-based encoding
algorithms. As data is read by a compressor, a table or data-dictionary , is built that has
entries for patterns that occur in the input data stream. If new data that is read, is not in
the dictionary, then a new entry is made in the table for it. When data that has a dictionary
entry is read in, then the entry, which has a smaller size than the original data, is copied to
the output (compressed) data stream. A key feature of LZW is that the dictionary does not
need to be stored for the decoder; the decoder will be able to reconstruct the dictionary
because of the way that the data is organized. This can save a lot of overhead and space.
LZW is a lossless compression scheme.

(C-heading) Huffman Encoding
Like LZW, Huffman encoding is based on code words. Here, shorter codes are chosen to
represent the most commonly occurring sequences in a data stream, while longer codes
are used for less frequent sequences. The letter A, if used very frequently in some input
text, may be coded with 2 bits instead of the usual ASCII 8 bits, while the letter Q, which
occurs very infrequently may be coded with 12 bits, as an example. The dictionary used
for encoding is required for the decoder to do its work. There is no on-the-fly
construction of a dictionary as you saw in the LZW compressor. The data stream that is
produced from Huffman Encoding has a subtle requirement: Each code word should not
be the prefix of any other code word. This will allow a decoder to uniquely determine
each entry of the table based on a sequential read of the data stream. An improvement on
Huffman Encoding is Arithmetic Encoding, which is discussed next. Both Huffman
Encoding and Arithmetic Encoding are lossless compression schemes.

(C-heading) Arithmetic Encoding
Arithmetic Encoding, or entropy coding, improves on Huffman Encoding in a couple of
ways: (1) you can have fractional codes, that is you can have a 4.18 bit long code (this is
defined in a statistical way) and (2) more complex statistics are used that look at context
information to derive a code for an input pattern - a U may be assigned a long code
because it does not occur too often, while a U following a Q may be assigned a short

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 265 Chapter 9: Image Processing in Java

code, since a U is very likely to follow a Q. A brand of Arithmetic Encoding, called a Q-
coder is patented by IBM and AT&T and is subject to licensing considerations. An
extension of the JPEG compression standard uses the Q-coder.

(C-heading) DCT based or Transform based Compression
The Discrete Cosine Transform (DCT) converts image data to the frequency domain,
much like the DFT, the Discrete Fourier Transform which is discussed at length in the
next chapter. The DCT is a special case of the DFT [see Netravali et al.]. The transform
yields a set of values that correspond to magnitudes of frequency components. The
human eye cannot distinguish very high frequency color changes, and this information
may be discarded without a great loss in detail of an image. Also, transform values which
are zero or close to zero may be effectively compressed with a lossless compression
scheme such as Huffman encoding as may be done in JPEG. The overall JPEG
compression method is lossy.

(B-heading) Progressive Display and the Internet
For users of the Internet and the WWW, it is very useful to allow for progressive display
of graphics images. This means that when a user is navigating the Web and goes to a new
destination, if graphics data is loaded for display, it is shown while it is loading, so the
user can immediately recognize the image, instead of waiting for the entire image file to
load before seeing anything. A few formats allow for this: GIF and its patent-free
successor, PNG, and JPEG. In GIF, there is an option to store graphics data with every
eighth line of data, then every fourth line, then every second line and finally every line,
for a total of four passes over the data. You can see a preview of an image with only one-
eighth of the complete data in this scheme. This storage option is called the interlaced
option for GIF. The non-interlaced storage option just stores rows sequentially and does
not allow for progressive display.

Figure 8.3 Interlaced and Non-interlaced storage in GIF

The PNG format goes one up on GIF. PNG has an interlaced format, where every eighth
pixel of every eighth line is first transmitted. This allows an image to be viewed with only
1/64 of the full image data.
JPEG data streams have an option for progressive display. Rather than being based on
scan lines, the image is sent in progressively more detailed layers. That is,
approximations of the original image are sent in sequence, so that the viewer sees the
whole image right away, and the quality of the image improves with time. Each scan of
progressive JPEG takes a full JPEG decompression cycle to display, which can be CPU
intensive however. Another extension of JPEG provides for hierarchical storage of the
same image at multiple resolutions, where a complete image is available at different
resolutions to match the resolution of the display or print hardware.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 266 Chapter 9: Image Processing in Java

(A-heading) Details of several formats
In this section you will read about details of some file formats, including those that are
used by DiffCAD. Note that the Sun Java AWT class library provides built-in support for
reading and writing JPEG and GIF image files. DiffCAD provides wrapper classes for
some of this functionality. See the classes: WriteGIF, ReadGIF and VSImage.

(B-heading) GIF
GIF is a file format that uses the LZW compressor, as mentioned previously. There are
two versions, GIF87a, the original and GIF89a. GIF89a may be incompatible with
software that reads only GIF87a images, so most modern readers are expected to be able
to read both formats. The formats are similar but GIF89a has further extensions. The file
layout is shown below for both formats in Figure 8.4, and this highlights the differences:

Figure 8.4 GIF87a and GIF89a file layout

There are several pieces to the file format which are discussed in detail below:

· Header - the header is 6 bytes in size. The first 3 bytes are “GIF” to identify the
format as GIF. The next three bytes are the version “87a” or “89a”.

· Logical Screen Descriptor - This is a fixed size group of bytes that contain
information about the minimum screen resolution (height and width), and color
information to reproduce the image. If the screen is smaller than the screen
parameters, then some scaling will need to be performed by the application to display
the image.

· Global Color Table - This is an optional section that contains a CLUT of up to 256
entries.

· Local Image Descriptor - This section has characteristics of the image data that
follows including, where on the display the image should start and the image
resolution and color information.

· Local Color Table - GIF is expandable to be able to include more than one image,
though this is rarely used. There is therefore the provision to include a color table
(termed “local”) for each of the images. This is an optional table for specifying a
CLUT for the image data that follows. This table, if present, supercedes, the Global
Color Table.

· Image Data - Image data when compressed by LZW usually comes out as a stream of
data that must be read from beginning to end. GIF splits the data into a series of sub-
blocks. Each sub-block starts with a count byte, which can range in value from 1 to
255. The count byte value specifies the number of data bytes that will follow. At the
end of the sub-block a byte of value zero is used to terminate the sub-block.

(B-heading) JPEG/JFIF

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 267 Chapter 9: Image Processing in Java

The JPEG standard leaves some ambiguities that make it an incomplete file format
standard. C-Cube Microsystems created a file format called JPEG File Interchange
Format (JFIF) that fills in the gaps. It is completely based on the baseline JPEG standard.
JPEG is generally best applied to high-resolution full color (24bpp) images. This is
because the transform-based coding will have more latitude for compression with more
color information. Keep in mind that sharp edges, such as those created by overlaid text,
can become blurry. When compressing with JPEG, an application usually presents a
quality setting that you may change to trade off compression to quality. For high
frequency detail in your source image, you may want a high quality setting. This will
result in lower compression however. The tradeoff between quality and compression is a
thorny and persistent issue for JPEG.

A JPEG encoder uses the following steps:

1. Create header information
2. Read in the source image data in RGB
3. Transform data to YUV color space - Y is black and white intensity information, and

the U and V channels have color information. This is done with a linear
transformation (see Chapter 9 for color space conversion).

4. Subsample the U and V channels - that is throw away some color information because
it should be imperceptible to the viewer; use fewer samples of U and V for every
sample of Y.

5. Perform the DCT on the Y, U and V data.
6. Quantize the resulting coefficients into different bins (this performs some

compression by reducing the number of different possible values; more aggressive
quantization is used for the color components).

7. Huffman encode the quantized data and produce an output data stream.

Both a raw JPEG file and a JFIF file start with the the bytes 255 and 232 to signify the
start of image marker. For a JFIF file, you will see the bytes 255 and 240 followed by the
characters “JFIF”, and information about the image. Data that follows the first block is
standard JPEG data as defined by the specification. For detailed information, obtain the
specification from the American National Standards Institute [see ANSI].

(B-heading) PPM
PPM is a bitmap format that is used as an intermediate format when converting from one
system or file format to another. There are a set of portable freeware utilities written by
Jeff Poskanzer that convert to and from PPM to many other graphic file formats. For
example, ppmtogif converts from the PPM format to GIF.

The file organization is extremely simple for PPM. You start with an ASCII header, and
the bitmap data follows as either ASCII data or binary data. No compression is used. Data
elements are separated by white space (space, tab, carriage return or linefeeds).

The PPM header looks like the following:

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 268 Chapter 9: Image Processing in Java

MagicValue P3= ASCII data, P6= binary data
ImageWidth Width of image in pixels (ASCII decimal value)
ImageHeight Height of image in pixels (ASCII decimal value)
MaxGrey Maximum color value (ASCII decimal value)

The MaxGrey value specifies the maximum value for a color component. Each pixel is
specified by three values for R, G and B components.

Here is an example file:

example of a 3 x 3 bitmap
P3
3 3
255
0 0 0 0 0 0 0 0 255
0 0 128 0 7 0 0 1 89
9 0 0 0 9 9 0 0 0

Comments may be included in a file starting with the # character. The bitmap is for 3
pixels tall by 3 pixels across. The third pixel of the second row has RGB values of
(0, 1, 89).

Because PPM is a simple format, the entire source code is shown below in listing 8.1
-how DiffCad implements a PPM reader.

Listing 8.1 Reading the PPM format: The ReadPPM class
/**
 * ReadPPM is a class that reads an image from
 * a PPM format file.
 *
 * Victor Silva (victor@cse.bridgeport.edu).
 *
 */

import java.io.*;
import java.awt.image.*;

public class ReadPPM
{
 public ReadPPM(InputStream in)
 {
 }

 private int type;
 private static final int PBM_ASCII = 1;
 private static final int PGM_ASCII = 2;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 269 Chapter 9: Image Processing in Java

 private static final int PPM_ASCII = 3;
 private static final int PBM_RAW = 4;
 private static final int PGM_RAW = 5;
 private static final int PPM_RAW = 6;

 private int width = -1, height = -1;
 private int maxval;

 /// Subclasses implement this to read in enough of the image stream
 // to figure out the width and height.
 void readHeader(InputStream in) throws IOException
 {
 char c1, c2;

 c1 = (char) readByte(in);
 c2 = (char) readByte(in);

 if (c1 != 'P')
 {
 throw new IOException("not a PBM/PGM/PPM file");
 }
 switch(c2)
 {
 case '1':
 type = PBM_ASCII;
 break;

 case '2':
 type = PGM_ASCII;
 break;

 case '3':
 type = PPM_ASCII;
 break;

 case '4':
 type = PBM_RAW;
 break;

 case '5':
 type = PGM_RAW;
 break;

 case '6':
 type = PPM_RAW;
 break;

 default:

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 270 Chapter 9: Image Processing in Java

 throw new IOException("not a standard PBM/PGM/PPM file");
 }
 width = readInt(in);
 height = readInt(in);
 if (type != PBM_ASCII && type != PBM_RAW)
 {
 maxval = readInt(in);
 }
 }

 int getWidth()
 {
 return width;
 }

 int getHeight()
 {
 return height;
 }

 void readRow(InputStream in, int row, int[] rgbRow) throws IOException
 {
 int col, r, g, b;
 int rgb = 0;
 char c;

 for(col=0; col<width; col++)
 {
 switch(type)
 {
 case PBM_ASCII:
 c = readChar(in);
 if (c == '1')
 {
 rgb = 0xff000000;
 }
 else
 {
 if (c == '0')
 {
 rgb = 0xffffffff;
 }
 else
 {
 throw new IOException("illegal PBM bit");
 }
 }
 break;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 271 Chapter 9: Image Processing in Java

 case PGM_ASCII:
 g = readInt(in);
 rgb = makeRgb(g, g, g);
 break;
 case PPM_ASCII:
 r = readInt(in);
 g = readInt(in);
 b = readInt(in);
 rgb = makeRgb(r, g, b);
 break;
 case PBM_RAW:
 if (readBit(in))
 {
 rgb = 0xff000000;
 }
 else
 {
 rgb = 0xffffffff;
 }
 break;
 case PGM_RAW:
 g = readByte(in);
 if (maxval != 255)
 {
 g = fixDepth(g);
 }
 rgb = makeRgb(g, g, g);
 break;
 case PPM_RAW:
 r = readByte(in);
 g = readByte(in);
 b = readByte(in);
 if (maxval != 255)
 {
 r = fixDepth(r);
 g = fixDepth(g);
 b = fixDepth(b);
 }
 rgb = makeRgb(r, g, b);
 break;

 default:
 break;
 }
 rgbRow[col] = rgb;
 }
 }

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 272 Chapter 9: Image Processing in Java

 private static int readByte(InputStream in) throws IOException
 {
 int b = in.read();

 // if end of file
 if (b == -1)
 {
 throw new EOFException();
 }
 return b;
 }

 private int bitshift = -1;
 private int bits;

 private boolean readBit(InputStream in) throws IOException
 {
 if (bitshift == -1)
 {
 bits = readByte(in);
 bitshift = 7;
 }
 boolean bit = (((bits >> bitshift) & 1) != 0);
 --bitshift;
 return bit;
 }

 /// Utility routine to read a character, ignoring comments.
 private static char readChar(InputStream in) throws IOException
 {
 char c;

 c = (char) readByte(in);
 if (c == '#')
 {
 do
 {
 c = (char) readByte(in);
 }
 while (c != '\n' && c != '\r');
 }

 return c;
 }

 /// Utility routine to read the first non-whitespace character.
 private static char readNonwhiteChar(InputStream in) throws IOException
 {

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 273 Chapter 9: Image Processing in Java

 char c;

 do
 {
 c = readChar(in);
 }
 while (c == ' ' || c == '\t' || c == '\n' || c == '\r');

 return c;
 }

 /// Utility routine to read an ASCII integer, ignoring comments.
 private static int readInt(InputStream in) throws IOException
 {
 char c;
 int i;

 c = readNonwhiteChar(in);
 if (c < '0' || c > '9')
 {
 throw new IOException("junk in file where integer should be");
 }

 i = 0;
 do
 {
 i = i * 10 + c - '0';
 c = readChar(in);
 }
 while (c >= '0' && c <= '9');

 return i;
 }

 /// Utility routine to rescale a pixel value from a non-eight-bit maxval.
 private int fixDepth(int p)
 {
 return (p * 255 + maxval / 2) / maxval;
 }

 /// Utility routine make an RGBdefault pixel from three color values.
 private static int makeRgb(int r, int g, int b)
 {
 return 0xff000000 | (r << 16) | (g << 8) | b;
 }
}

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 274 Chapter 9: Image Processing in Java

(B-heading) VEC
The VEC format is a simple native vector file format used by DiffCad. Data in the file is
integer ASCII data. There are no other markers in the file. There are two types of use in
the format: POINT and VECTOR. First here is the POINT type:

Points are stored as ASCII decimal numbers and are comprised of two coordinates, x and
y that are separated by spaces or tabs. Points are separated by newlines (linefeeds). Here
is a file describing a 3 pixel square.

0 0
3 0
3 3
0 3

Storing separate points can be useful to describe shapes and objects. Edge detection (see
Chapter 9) of an image can create this sort of output. Also, this format may be used for
computer vision and vector display applications.

The VECTOR type of data is specified in a similar manner, except that two points are
defined per line as follows:

x1 y1 x2 y2
x3 y3 x4 y4
...

Here (x1, y1) defines the tail of a vector and (x2, y2) defines the head:
 (x1, y1) (x2,y2)

Begin NOTE
Diffcad has a routine to convert from xy points to vectors.
End NOTE

(B-heading) PICT
The PICT format is a Macintosh metafile format. It can incorporate both bitmap and
vector data. Diffcad can write PICT vector data only (the reader is referred to the
savepict.java class)The PICT format is a fairly complex format and few details will be
shown here. PICT can use two different forms of compression: JPEG and PackBits.
PackBits is an RLE type of encoding scheme.

(A-heading) Summary
Digital image file formats are defined by several characteristics: the type of file format it
is (vector, bitmap or other), the size efficiency based on the compression technology it
uses, the number of colors it can handle and the resolution of images that it supports.
Another factor useful for Internet based graphics is progressive display, which is the

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 275 Chapter 9: Image Processing in Java

display of a partial image as a graphics file is downloaded. Three formats have specific
provisions for this : GIF, PNG and JPEG. Although the universe of graphic file formats is
very large there is a great deal of similarity between formats of the same type. One
bitmap format is likely to be as capable as another. Metafile formats provide the
capability for vector and bitmap representations in a single format. Higher levels of
abstraction are available in vector formats ultimately leading to representation of 3D
objects, scenes and worlds in 3D formats. DiffCad supports GIF, JPEG, PPM, VEC, and
a subset of PICT.

(CN) 9. Image Processing in Java

The worth of a book is to be measured by what you can carry away from it.
-James Bryce

Save the mandrills, collect the whole set.
- DL

This chapter covers the computation of the histogram of an image. We follow this with a
derivation of the basis for the 2D fast Fourier transform (2D FFT) and a summary of a
class that implements the 2D FFT. We show how to use the FFT to perform high and low
pass filtering.
The high-pass filtering of the FFT is used to create edges. These edges are linked using a
raster to vector converter. The raster to vector converter inputs an edge-detected image
and outputs a series of line segments that may be drawn to the screen and saved as a pict
file.
Finally we cover color-space conversions and elementary 2D rotation and scaling.
(A-heading) The Histogram

The histogram of an image is the probability mass function (PMF) of the pixel intensities.
The probability mass function shows the statistical frequency of occurance for an event.
Thus, the computation of the PMF is obtained by counting the number of times an event
(a particular intensity) occurs in the data, then dividing by the total number of pixels in
the image.
For example, suppose an image consists of a 1-D array given by:

255 255 128 64[] (9.1)
The PMF is computed by counting the total number of times a particular event occurs,
then dividing by the total number of elements. The array is then expressed as an event
with its associated PMF number:

event PMF

64 1 / 4

128 1 / 4

255 1 / 2

(9.2)
(BEGIN NOTE) The PMF is a discrete probability distribution function (PDF). Like the
PDF, the PMF numbers will always sum to one. (END NOTE). Naturally, the image
arrays are much larger than that given in (9.1). Further, the array list shown in (9.2) is
typically shown as a bar chart. An example histogram is shown in Figure 9.1.

Figure 9.1. An Example Histogram

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 276 Chapter 9: Image Processing in Java

The histogram of Figure 9.1 is shown for 255 intensities in red, green, blue (RGB) and
intensity (I). The intensity is computed by averaging the RGB components and truncating
to the nearest integer. The Histogram frame extends the PictFrame, and in doing so, is
able to save the histogram as a pict file (for editing). An example is shown in Figure 9.2.

Figure 9.2. A section of the Histogram frames’ pict output.
(BEGIN NOTE) Once the histogram is saved as pict, the fonts may be changed so that
they are no longer bit-mapped. In this case, they are selected as Times Roman. (END
NOTE)
A code fragment from the Histogram class in the lyon.ipl package shows how to
implement the display of Figure 9.1:

package lyon.ipl;
import java.awt.*;
import java.awt.image.*;
import gui.*;
import lyon.dclap.*;
class Histogram extends PictFrame {

public int red[] = new int[256];
public int green[] = new int[256];
public int blue[] = new int[256];
public int intensity[] = new int[256];

The constructor for the Histogram class takes a PixelPlane instance as an argument,
public Histogram(PixelPlane p) {

...
Histogram uses the RGB values to act as indicies into three arrays of 256 integers.

for (int i=0; i<tp; i++) {
red[p.getRed(i)]+=1;
green[p.getGreen(i)]+=1;
blue[p.getBlue(i)]+=1;

}
The Histogram constructor then computes the intensity by taking the truncated average of
the three colors.

for (int i=0; i<intensity.length; i++) {
intensity[i] = (red[i]+green[i]+blue[i])/3;

}
The rest of the code is devoted to normalization and display. (BEGIN CDROM) The full
source code is available on the book’s CDROM. (END CDROM)
(A-Heading) The 2D DFT

Recall the 1D DFT from chapter 6:

Vk = 1
N

e−2πijk / Nvj
j =0

N −1

∑ (6.4).

and that the inverse DFT is given by:

vj = e2πijk / NVk
k =0

N −1

∑ (6.10).

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 277 Chapter 9: Image Processing in Java

Suppose that we have a 2D array of uniformly sampled and quantized data:
f (x, y)

where
x ∈ 0..W −1[], y ∈ [0..H −1]

The terms W and H are the width and height of the image, in pixels.
The 2D discrete fourier transform (2D DFT) is given by

F u,v() = 1
WH

f x, y()e−2πi ux / W +vy / H()

y=0

H −1

∑
x =0

W −1

∑ (9.1)

The inverse 2D DFT (2D IDFT) is given by:

f x, y() = F u,v()e2πi ux / W +vy / H()

u=0

W −1

∑
v=0

H −1

∑ (9.2)

(BEGIN NOTE) The (1/WH) term is not present in the IDFT. Nor is the negative sign in
the exponent. (END NOTE) We introduce a notation (following [Gonzalez et al.]), that
uses a symbol called the double arrow, to shorten the expressions in (9.1) and (9.2) to:

f x, y() ⇔ F u,v() (9.2a)

In order to turn the 2D DFT into a 2D FFT, we use the separability property to break the
2D DFT into two fast 1D FFTs. The exponential functions separability is due to the laws
of exponents, namely, eaeb = e a+b().
To employ the separability property, we factor (9.1) into:

F u,v() = 1
H

1
W

f x, y()e−2πiux / W

x =0

W −1

∑

y=0

H −1

∑ e−2πivy / H (9.3)

Similarly, we factor the 2D IDFT from (9.2) into:

f x, y() = F u,v()e2πiux / W

u=0

W −1

∑

v=0

H −1

∑ e2πivy / H (9.4)

 The separability property means that the 2D DFT may be computed by finding the 1D
DFT on the rows of the image, then finding the 1D DFT on the columns. This means that
we can use our 1D DFT (and FFT) code from Chapter 6 to help perform our 2D FFT.
Our implementation of (9.3) transforms each row, placing the outcome in a complex
array whose dimensions match that of the original image. Then we transform each
column of the complex array. Thus, the 1-D DFT is performed on each row, then again
on each column.
Recall the centering of Chapter 6 that used

vk = vk −1()k (6.30)
to cause a shift in the psd. This comes about as a result of the time-shift theorem that
states that in the frequency domain, spatial translation causes an added linear phase with
slope proportional to the shift so that

f (x − x0 , y − y0) ⇔ F(u,v)e−2πi x0u / W +y0v / H() (9.5)
The dual of (9.5) is

F(u − u0 ,v − v0) ⇔ f (x, y)e2πi u0 x / W +v0 y / H() (9.6)

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 278 Chapter 9: Image Processing in Java

Where the left-hand side of (9.5) is the Fourier transform of the right-hand side (using
double arrow notation). Thus, a positional shift in the input plane causes a phase shift in
the output plane. To put it another way, a positional shift in the time domain causes a
phase shift in the frequency domain. This makes sense if we think of a sine wave being
shifted in time. Relative to the unshifted sine wave, the shifted sine wave has a different
phase. We represent a phase shift by multiplying by the complex exponential. To center
the frequency on the 2D DFT, we shift the frequency bins by W/2 and H/2. Thus, (9.6)
becomes:

F(u − W

2
,v − H

2
) ⇔ f (x, y)e2πi Wx / (2W)+Hy / (2 H)() (9.7)

which simplifies to

F(u − W

2
,v − H

2
) ⇔ f (x, y)eπi x +y() (9.8)

by Euler’s relation, eiθ = cosθ + isinθ , and since x,y are integers, we get:

eπi x +y() = cos(π(x + y)) + isin(π(x + y)) = −1()x +y (9.9)
Substituting (9.9) into (9.8) results in:

F(u − W

2
,v − H

2
) ⇔ f (x, y) −1()x +y (9.10)

All 2D FFT’s (described in this book) are centered using (9.10). A proof of the time-shift
theorem for the 1D continuous case follows.

F[v(t − td)] = v(t − td)e−i2πt

−∞

∞

∫ dt

let γ = t − td and dt = γ so that

F[v(t − td)] = v(γ)e−i2π(γ +td)

−∞

∞

∫ dγ

so that

F[v(t − td)] = e−i2πtd v(γ)e−i2πγ

−∞

∞

∫ dγ

Q.E.D.
We can take a similar approach in the 2D discrete time domain to prove (9.5):

f (x − x0 , y − y0) ⇔ F(u,v)e−2πi x0u / W +y0v / H() (9.5)
Invoking the definition of the continuous Fourier transform (9.5) yields:

F(f (x − x0 , y − y0)) = f x − x0 , y − y0()e−2πi ux / W +vy / H()dxdy∫∫ (9.7)

Let
X = x − x0 and Y = y − y0 (9.8)

so that
dX = dx and dY = dy

By substitution we obtain

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 279 Chapter 9: Image Processing in Java

F(f (x − x0 , y − y0)) = f X,Y()e−2πi u(x +x0) / W +v(y+y0) / H()dXdY∫∫
F(f (x − x0 , y − y0)) = e−2πi ux0 / W +vy0 / H() f X,Y()e−2πi ux / W +vy / H()dXdY∫∫

from which

f (x − x0 , y − y0) ⇔ F(u,v)e−2πi x0u / W +y0v / H() (9.5)
follows.
Q.E.D.
Further usage and optimization details are discussed in the following section.
(A Heading) The FFTPlane Class

The FFTPlane class resides in the lyon.ipl package. It provides an object-oriented 2D
color FFT and IFFT service. An instance of the FFTPlane class may be created from an
instance of the PixelPlane class. The FFTPlane class treats all images as color and is not
smart about conserving memory when working with achromatic images. The FFTPlane
class makes a copy of the pixels in the PixelPlane instance. The copy is stored internally
using complex red, green and blue arrays of float type.
(BEGIN NOTE) It is important to set an FFTPlane instance to null in order to reclaim the
memory used when an FFTPlane instance is done. (END NOTE)
The FFTPlane class has the ability to multiply each of its internally complex numbers in
the frequency domain by real numbers stored in a PixelPlane instance. This enables the
implementation of 2D filters.
(B heading) Class Summary

package lyon.ipl;
import java.awt.*;
import java.awt.image.*;
import java.io.*;
import gui.*;
import VS.*;
public class FFTPlane {
public FFTPlane(ProcessPlane ppIn)
public void mult(ProcessPlane ppIn)
public void fft()
public void ifft()

}
(B heading) Class Usage
Suppose the following variables are predefined:

FFTPlane fftp;
ProcessPlane pp; // pp is a 2**n by 2**n image
ProcessPlane filter;

Then to make an instance of the FFTPlane, use:
fftp = new FFTPlane(pp);

(BEGIN NOTE) The ProcessPlane instance is altered by the methods in the FFTPlane
instances. (END NOTE)
To perform an in-place FFT on the instance of the fftp:

fftp.fft();

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 280 Chapter 9: Image Processing in Java

The results of the fft method are left in internal data-structures. The ProcessPlane instance
is altered to show the log of the psd.
To perform a multiplication, pixel by pixel, from the real pixels in filter, replacing the
complex pixels in the fftp instance:

fftp.mult(filter);
(BEGIN NOTE) The filter instance should be the same dimensions as the fftp. Also, the
pixels should vary from 0 to 255. They will be divided by 255 (so as not to increase the
magnitude of the fftp result) before they are multiplied. The multiplication works with
color filters (i.e., any ProcessPlane that has colors in it). (END NOTE)
To invoke the an IFFT on an instance of the FFTPlane and place the result in the original
ProcessPlane instance, pp:

fftp.ifft();
(BEGIN NOTE) This destroys the original ProcessPlane instance, pp. (END NOTE)
In the following section, we show how to retro-fit the ProcessPlane class so that any
instance of the ProcessPlane can support the fft(), mult(pp) and ifft() invocations.

(B heading) The ProcessPlane implementation
We have retrofitted the ProcessPlane class with an fft method. We hold that this is the
preferred way to perform a 2D FFT, leaving the FFTPlane defined for those who would
like the ability to extend the FFTPlane’s abilities. The ProcessPlane is retrofitted as
follows:

private FFTPlane fftp;
public void fft() {

System.out.println("Running the FFT...");
fftp = new FFTPlane(this);
fftp.fft();

}
public void multFFT(ProcessPlane pp_) {

if (fftp == null) {
fft();

}
else {

fftp.mult(pp_);
}

}
public void ifft() {

System.out.println("Running the iFFT...");
if (fftp == null) {

System.out.println("You must take the FFT
first!");

}
else

fftp.ifft();
}

The ImageFrame class has been updated to permit multiplication by images that are
stored in the childFrame. The update for the ImageFrame class follows:

public void fft() {

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 281 Chapter 9: Image Processing in Java

pp.fft();
updateDisplay(pp);

}
public void multFFT() {

pp.multFFT(childFrame.pp);
updateDisplay(pp);

}

public void ifft() {
pp.ifft();
updateDisplay(pp);

}

(B heading) DiffCAD and the Example 2D FFT’s
Some examples of Fourier Transform pairs are shown in the following Figures. On the
left is f(x,y). On the right is F(u,v). The results are obtained using the DiffCAD program.
To improve the visibility of the psd, we auto-scale and invert the psd. Figure 9.3 shows
one and two squares painted with a bit-mapped paint program called Debabelizer
[Debabelizer].

Figure 9.3 A Square and Its psd.
Figure 9.4 shows a black ring (which acts as a notch filter) with its psd.

Figure 9.4. A black ring and its psd
These are used as input. To have a little more control than exists in most paint programs,
we have retrofitted the PixelPlane class with a dot method. It permits the generation of a
filled circle (like that shown in Figure 9.5) with a specified radius.

Figure 9.5 A black dot with its psd.
The code for the dot method follows:

public void dot(int xc, int yc, int r) {

int x1 = 0;
int y1 = 0;
int x2 = getWidth();
int y2 = getHeight();
float r2 = r * r;
for (int x = x1; x < x2; x++)

for (int y = y1; y < y2; y++) {
if (((x-xc)*(x-xc) + (y-yc)*(y-yc)) < r2)

setPixel(x,y,0,0,0,255);
else

setPixel(x,y,255,255,255,255);
}

}
To synthesize diffraction gratings (a research goal of the DiffCAD program), we add a
lines method to the ProcessPlane whose prototype is given by:

public void lines(Rectangle r, int increment)
Figure 9.6 shows an odd shaped circle, with its psd.

Figure 9.6. An odd-shaped circle with its FFT

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 282 Chapter 9: Image Processing in Java

Figures 9.7 to 9.10 show psds multiplied by bi-level images. After the multiplication is
performed, an IFFT is taken. This enables the construction of images that can be used as
filters in the frequency domain.

Figure 9.7. Atriangle, with its FFT
Figure 9.8. mandrill, Its FFT

Figure 9.9. , A filter that removes some of the low frequencies from the mandrill and the
IFFT
Figure 9.10. A filter that removes some of the high frequencies from the mandrill and the
IFFT
Another neat trick we can perform with the FFT, is Fraunhofer diffraction. Fraunhofer
diffraction is a special case of Fresnel diffraction and occurs when either the distance
from the grating is large or when the rules in the grating are close together. Fraunhofer
diffraction is used when performing X-ray diffraction for studying underlying crystal-like
structures (like DNA). The DiffCAD program uses Fraunhofer diffraction to perform
diffraction-based rangefinding [DeWitt and Lyon]. The following formula (whose
derivation appears in [Walker]) shows the relationship between the DFT and Fraunhofer
diffraction:

I(u,v, D) ≈ 1
λD

Â
u

λD
,

v

λD

2

(9.11)

Where λ is the wavelength of light, I(u,v, D) is the intensity from Fraunhofer

diffraction, and D is the distance between the target and the grating. Â is the 2-D Fourier
transform of the aperture (i.e., the grating):

Â(u,v) = A(x, y)e−2πi(ux +vy)

∞
∫∫ dydx (9.12)

Figure 9.11, with its associated FFT, is offered as an example of a far field diffraction
image computed by taking an FFT.

Figure 9.11. A grating with associated FFT
An increment paramter is input using the scale dialog box, and indicates the number of
pixels to be skipped between lines. An example of the ProcessPlane being used is given
in the ImageFrame class:

public void lines() {
pp.lines(bounds(),scaleKonst.getValue());
updateDisplay(pp);

}
A variable inter-rule width grating (called a chirp grating) can give a radically different
diffraction pattern from a fixed with grating. An example is shown in Figure 9.12.

Figure 9.12. A chirp grating with FFT

(BEGIN NOTE) For the diffraction images shown, λ D = 1. If λ =638 nm (about the
wavelength of a He-Ne laser) then D = 1/ λ ≈ 1.5 million meters.(END NOTE) Based on
the assumption that the light is far, the FFT can assist us directly in the computation of
(9.12). At modest distance and with a small aperture, relative to D, we can use the Fresnel
diffraction formula:

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 283 Chapter 9: Image Processing in Java

I(u,v, D) ≈ 1
λD

A(x, y)e
πi

λD
(u−x)2 +(v−y)2[]

∞
∫∫ dydx

2

(9.13).

Developing code to solve (9.13) is beyond the scope of this book. A numeric solution of
(9.13) may be found in [Baker].

(A Heading) Raster to Vector Conversion

In this section we show how to take an edge detected image and turn it into a list of line
segments. We take an ad-hoc approach to the conversion that runs in O(N 2) time. For
small numbers of N the quadratic growth does not appear to be a problem. We do not
address refinements to the algorithm.
Converting a list of point coordinates into vectors (i.e., line segments) has applications in
the graphic arts, CAD and computer vision. In the graphic arts we use the vectors to form
an editable outline of an image. The outline may be reproduced without the jaggies
inherent in bit-mapped images. In CAD we use the vectors to help construct a geometric
model. In computer vision, we use the vectors to obtain geometric features that can be
used in recognition. Another application for raster to vector conversion is in the output of
line data using a vector-based device. For example, a pen plotter that uses a mechanical
arm to deflect a pen must have the raster data converted to vector for efficient operation.
Vector display systems (like laser-based mirror deflection systems) form another class of
devices where the raster to vector conversion process is needed. In fact, in addition to
converting from raster to vector, we must also order the vectors end-to-end. Ordering the
vectors end-to-end will speed plotting on a mechanical pen plotter by minimizing the
pen-up time. A pen plotter will typically lift a pen off of the drawing surface before
attempting to draw. A vector display device (like an oscilliscope or laser) will typically
use blanking signal to turn off the beam. If the vector list is not retraced frequently
enough, the human visual system will experience the sensation of flicker. Ordering the
vectors will maximize the number of vectors to be displayed without flicker.
The process of traversing the vector list in minimum time is a similar problem to that
faced by a mail carrier starting out from a post office and delivering letters to each block
with minimum walking. This is called the Chinese postman problem. See [Roberts] for a
discussion of the Chinese postman problem.
Finally, one application that would appear to be of critical need in this day and age of
network communications is in data compression. If we could transmit a geometry faster
than a bit-mapped rendering of the geometry, then we could render the geometry at any
resolution using a Java program running on the client. For example, suppose that we
wanted to distribute a popular test pattern (like color bars). We could render the test
pattern at various resolutions and then download them over the net, but this would be
very wasteful of bandwidth and local data storage. Color bars consist of 11 rectangles of
various sizes and colors. A 640x480 image of color bars could take over 300 k bytes of
memory. The program needed to store and display 11 rectangles takes less than 100 bytes
of memory (and is much more flexible!).
Before the raster to vector conversion process can start, we assume that we have good
edges. Edge detection is a tuff problem and may be accomplished in one of several ways.
We have already seen how to perform edge detection using a high-pass filter created with
an FFT. In Chapter 7 we saw how a domain-specific edge detector can find the centroid

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 284 Chapter 9: Image Processing in Java

of a thick edge. Sometimes we need to combine methods, like the auto-scale and negate
methods with a threshold. In this section, we assume that a good edge-detected image is
used as input. The goal is to take the edge detected image and create a vector description
of the image. Figure 9.13 shows the output of the edge detector, and the result of a raster
to vector conversion. The file was saved as line segments to a pict file.

Figure 9.13 Raster to Vector converter
The basic idea behind raster to vector conversion is that a list of integer coordinates of the
form:

x1 y1
x2 y2
...

Should be used as input. The output consists of a series of vectors of the form:
x1 y1 x2 y2
x3 y3 x4 y4
...

The idea is that the points used as input will exhibit intra-frame coherence. We exploit
this coherence by connecting the dots (the white-pixels). The success of the algorithm
depends on many points satisfying a criterion of adjacency. The criterion of adjacency is
used to determine when two points are next to one another.
Typically, we say that two points are next to one another if they lie within a circle whose
radius is one pixel. If two points are next to one another, then they can be used to form a
line segment that is exactly two pixels long. The line segment consists of a head, a tail
and a slope. The compression ratio depends on the quality of the image edge detection,
the amount in intra-frame coherence and the criterion of adjacency. Using a randomly
selected GIF image, found on the net, we were able to take 1314 points (edge detected
pixels) and create 51 editiable lines (a 25:1 compression ratio). When converting an
image with lines in it (like a diffraction grating) the compression ratio goes up to 132:1.
Further, our slope tolerance was very tight, so there was no introduced distortion. Our
experience with different images indicates that it is difficult to generalize about the
expected compression ratios.
(B Heading) A raster to vector algorithm
In this section we present an algorithm that runs in O(N 2), where N is the number of
input points. We start with a set of points in a point list, pl. Our objective is to create a set
of vectors, v. The following code is excerpted from the Xy2vec class in the lyon.ipl
package:

public static void main(String args[]) {
Vector v = new Vector();
PointList pl = new PointList();
Xy2vec x = new Xy2vec();

The following line will read the points from an input file and place the data into the point
list, pl:

 x.readPoints(pl);
The point list is treated like a stack, where the popPoint method returns a point from the
top of the stack:

 Points p = pl.popPoint();
Points is a point list data type, a class in the lyon.ipl package that we cover in a later
section. In the following while loop, we check to make sure that the point list is not

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 285 Chapter 9: Image Processing in Java

empty. Our objective is to place the point in one of a list of vectors. If we cannot, we
make a new vector:

 while (p != null) {
 boolean point_not_stashed = true;
 // Empty vector ?
 if (v.size() == 0) {

The Vec class is another class in the lyon.ipl package. An instance of a Vec consists of a
head, a tail and a slope. When a Vec instance is first created the tail is null. To keep track
of this, we provide an flag called, tail_is_empty. We set this to true whenever we make a
new Vec instance. To complicate matters somewhat, the list of Vec instances is stored in
an instance of the Vector class, v.

 Vec W = new Vec(p);
 W.tail_is_empty = true;
 v.addElement(W);
 point_not_stashed = false;
 } else {

For each Vec instance in the list of vectors, v, we test to see if the point is adjacent to the
Vec instance. If it is, we test to see if the slope is within a tolerance. If the point is
adjacent to the vectors end-points and the slope is within tolerance, we grow the vector by
one point. We then declare that the point is placed in the list of vectors and move on to
the next point. If we cannot place the point, we create a new vector with the orphaned
point at the head.

 for (int i=0;
(i<(int)v.size())&&point_not_stashed;i++) {
 Vec newV = (Vec)v.elementAt(i);
 if (newV.head.isAdjacent(p)&&
 newV.isSlopeAcceptable(p)) {
 newV.addHead(p);
 point_not_stashed = false;
 }
 // Put new point to tail
 if (point_not_stashed) {
 if ((newV.tail_is_empty &&
 newV.head.isAdjacent(p))||
 (!newV.tail_is_empty &&
 newV.tail.isAdjacent(p)&&
 newV.isSlopeAcceptable(p))) {
 newV.addTail(p);
 if (newV.tail_is_empty) {
 newV.tail_is_empty = false;
 newV.getSlope();}
 point_not_stashed = false;
 }

 }
 }// for
 // Put new point to head
 if (point_not_stashed) {

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 286 Chapter 9: Image Processing in Java

 Vec nv = new Vec(p);
 nv.tail_is_empty = true;
 v.addElement(nv);
 point_not_stashed = false;
 }
 }

After we are done with the point, we proceed to the next point;
 p = pl.popPoint(); // Get new point
 }// while

x.printOutData(v);
We say that the algorithm is O(N 2) because in the worst-case, we will be able to create
vectors that are one pixel long. This is a pathologic case create by an advisary and occurs
when there is no pixel adjacency. This hardly ever happens. In fact it might be better to
consider an average case of O(V 2) where V is the expected number of vectors.
Computing the average case is probably only practical when the image domain is known
in advance (i.e., compression ratio for text images).
(B heading) The Slope class
There are two parameters that are central in controlling the behavior of the raster to
vector algorithm. The first, known as the slope tolerance, is stored in the Slope class
(seen below). The second, known as the radius squared of a circle about the vector end-
points is described in the next section. The following code resides in the lyon.ipl package
and is contained in the Slope.java file:

package lyon.ipl;
class Slope {
public double dx, dy;

The slope of a vector is represented by the change in y divided by the change in x. As we
attempt to extend an existing vector, we will add to a vector’s endpoint only if the slope
changes by less than some ε amount. The value for ε will depend on the desired
compression ratio and the tolerance for loss in the compression. Lower values for ε will
result in a higher compression ratio with greater loss.

public static double eps = 0.001;

Slope() {};

Slope(double dx_, double dy_) {
 dx = dx_;
 dy = dy_;
}

The isEqual method checks for ε difference in the slopes between the existing slope and
a proposed slope.

public boolean isEqual(Slope s) {
if (s.dx == 0 && dx == 0)

 return true;
 if ((s.dx != 0) &&(dx != 0))
 return (Math.abs((s.dy/s.dx) - (dy/dx)) < eps);
 else

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 287 Chapter 9: Image Processing in Java

 return false;
 }
} // class Slope

(B heading) The Points class
The Points class resides in the lyon.ipl package and is used to store a list of points that are
used as input to the Xy2vec algorithm. A central parameter that controls the loss in the
output as well as the compression ratio is the radius of a circle about a vector endpoint
that determines adjacency.
To determine if two points are adjacent, we use a boolean method called isAdjacent
which we embed into the Points class:

package lyon.ipl;
class Points {
double x,y;

The square of the radius of the distance between two points that are judged adjacent is
called dr

double dr = 1.0;
Points(double px, double py) {
 x = px;
 y = py;
}

To decide if two points are adjacent we check the distance between them, in pixels. This
distance is compared with dr. We can adjust dr to be a number greater than one, but it
will introduce some geometric distortion:

 public boolean isAdjacent(Points p) {
 double dx = x-p.x;
 double dy = y - p.y;
 double r = dx * dx + dy * dy;

 return r <= dr;
} // isPointsAdjacent

} // class Points

(A Heading) Color Models

Light energy is a form of electromagnetic radiation. As Maxwell said, It consists of
waves propagated through an electromagnetic field according to electromagnetic laws
[Banerjee]. A light source may radiate energy with several spectral components. To
determine the spectra of a light source, an instrument called a spectrometer is used. A
typical light source (like a tungsten filament in an incandescent lamp) will be heated to a
temperature that causes a phenomena known as radiancy. Radiancy is defined as the rate
per unit surface area at which energy is radiated into the forward hemisphere [Resnick].
Radiancy is typically given in watts per centimeter squared and is found by integrating
the spectral radiancy. The spectral radiancy is found by using a spectrometer to measure
the amount of energy which falls over an area at a particular wavelength.
A cavity radiator is an idealized heated solid that emits a radiancy that is given by:

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 288 Chapter 9: Image Processing in Java

Rc = σT 4 (9.14)

Where T is in degrees Kelvin and σ = 5.67x10−8 W / m2K 4 is the Stefan-Boltzmann
constant. A typical cavity radiator is made of a block of metal (i.e, tantalum, tungsten or
molybdenum). The cavity is created by drilling a small hole. Radiancy is typically
measured when temperatures are typically in the 1500-7000 K range. It is important to
realize that the radiancy at the surface of different materials is a material property but that
the radiancy of all cavity radiators is governed by (9.14) and is independent of the
material.
Another attribute of the cavity radiator (which is also known as a black-body radiator,
full radiator or Planckian radiator) is the spectral radiancy. Spectral radiancy for the
Planckian radiator is given by

Me = c1

(ec2 / λT −1)λ5 (9.15)

where c1 = 3.74183x10−16 Wm2 , and c2 = 1.4388x10−2 mK and Me is in W / m3 [Hunt].
(BEGIN NOTE) Cavity radiators all have the same spectral radiancy.(END NOTE)
To summarize, light is energy that has a spectral radiancy. We can compute the psd for
light just like we do for sound. To reconstruct the light we must therefore duplicate the
spectral radiancy. Such an effort may be exceedingly impractical if the objective is to
build a computer display for the purpose of human vision. For the rest of this section we
discuss how to reconstruct the spectral radiancy of light for the purpose of human
perception. This assumption enables the construction of practical computer display
systems.
The human perception of the spectral radiancy of light is called color vision. For the
purpose of discussion, we shall use the term color to mean the human perception of color.
Our goal is to describe a color model that can assist in reconstructing colors for humans
to see.
When the objective is to reconstruct light for the purpose of the human perception of
color then color becomes a psychophysical quantity. The known relationships between
the psychological color experience and physical light stimulation has given rise to several
conflicting theories about how the human nervous system works [Teevan].
Color sensation in the human eye is produced when light of various wavelengths fall
upon the eye. Most of the color models that are in common use today are based upon the
tristimulus theory of color perception. The theory is based on the physiological approach
that attempts to explain the eyes’ behaviour in terms of its components. The eye is a
photosensitive sensor that contains optical elements and photoreceptor cells. There are
two types of photoreceptor cells, rods and cones. These enable a spectral response for
human vision. The spectral response of human vision not only varies from person to
person, but also as an individual ages. Age alters the spectral response of the human eye
because age causes a progressive yellowing of the lens of the eye. Thus, there is no
general agreement on the spectral sensitivities of the human visual system [Cowan et al.].
Rods are responsible for low-light imaging and do not play a part in normal color vision.
The rods have varying amounts of a photosensitive pigment, called rhodopsin. Rhodopsin
absorbs light most strongly in the blue-green part of the spectrum.
Cones are divided into three types, R, G, and B. It has not yet been possible to isolate the
pigments in cones [Hunt]. The cones have been found to have a logarithmic response.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 289 Chapter 9: Image Processing in Java

Also, the spectral response for each of the cones differs in central-frequency, peak-
amplitude and bandwidth [Faugeras].
The tristimulus theory of color perception says that we only need three color primaries to
create the gamut of visible color. Also, an examination of the spectral response curves
should enable us to approximate the colors for which the cones have a peak spectral
response. These happen at about 444 nm (b), 526 nm (g) and 645 nm (b) [Cohen et al.].
(Begin NOTE) The red and green cones have a similar spectral sensitivity.(END NOTE)
Typical range in the human visual system is from 380 to 770 nm. So, the RGB monitors
(and systems for the storage of image data) has its roots in the human visual system.
Further, the perceptual system is logarithmic in response (for both vision and hearing!).
This accounts for the popularity of the logarithmic companding techniques discussed in
Chapter 5.
The tristimulus theory leads to a color model that consists of a 3D color space. A color
model provides a framework for color specification. There are two kinds of color
synthesis, additive synthesis and subtractive synthesis.
The additive synthesis color model adds light created via radiance. The RGB color model
is a common example of an additive synthesis color model. With the RGB color model,
red, green and blue light are added in equal amounts to create various shades of gray.
When red, green and blue light are combined in equal amounts, at maximum intensity
(on, for example, a computer monitor) the color is called white.
The subtractive synthesis color model removes light energy via absorbtion. The cyan,
yellow and magenta pigments are applied in equal amounts to make varying shades of
black. Figure 9.14 shows the relationship between the RGB system and the CMY system.
When colors are combined in equal amounts, the color-space points lies on the main
diagonal between the white and black points on the color cube.

Figure 9.14. Additive vs. Subtractive Color Synthesis

(B Heading) The HLS System
One of the color spaces held in common use is the hue, luminance and saturation model
(HLS). This model uses a cylindrical coordinate system. In a cynlindrical coordinate
system, you specify the magnitude of a vector as a function of the height and angle. The
height is used to represent luminance. The angle is used to represent hue. The magnitude
of the vector represents the saturation. The basic idea behind the conversion is that red is
assigned a hue angle of 0 degrees, blue 240 degrees and green 120 degrees. Luminance
and saturation vary from zero to one, while the hue varies from zero to 360 degrees.
The ImageFrame class has been modified to perform the RGB to HLS and HLS to RGB
conversions. These facilities are built into the ProcessPlane (pp) instance. Their
invocation follows:

public void rgb2hls() {
pp.rgb2hls();
updateDisplay(pp);

}
public void hls2rgb() {

pp.hls2rgb();
updateDisplay(pp);

}

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 290 Chapter 9: Image Processing in Java

These are methods in the ImageFrame. The ProcessPlane instance is stored in pp. Menu
items have been added to the ImageFrame to make the invocation of the conversions
automatic. Figure 9.15 shows the color menu from the ImageFrame.

Figure 9.15 The Color Menu in the ImageFrame
One complicating aspect of color-space computation is the use of floating-point numbers
in the transformation matricies. Recall that in the ProcessPlane class, we store an image
as a packed array of 32 bit ints. Such an array is unsuitable for the storage of floating-
point computations. The reason why is that round-off error will build rapidly when only 8
bits are used to represent each color. To mitigate the effect of round-off error, and to
facilitate other floating-point computations, we have elected to store the images as 3
arrays of float. This presents the programmer with the burden of setting instances of the
color conversion classes to null in order to reclaim memory. Further, it requires that the
garbage collector be explictly invoked if out-of-memory errors occur. We have found
that this is hardly ever needed as we have associated these instances with windows that
are under the users’ control. When a user disposes of an ImageFrame instance, all image
data is reclaimed. Thus, memory errors will occur if there are too many windows open.
The user must, as a result, close some windows before proceeding.
(B Heading) The IYQ System
The IYQ system was invented for color television transmission. The symbol I stands for
In-phase, Y for lumenance and Q for Quadrature. The IYQ color space is used in several
analog color television transmission systems including PAL (Phase Alternating Lines),
NTSC (National Television Systems Committee) and SECAM (Sequentiel Couleur avec
Memoire). NTSC is used in the United States, Canada, Mexico and Japan. SECAM is
used in France, the former USSR and eastern Europe. PAL is used in western Europe.
The IYQ system is based on the idea that the human visual system requires crisp outlines,
but that it can tolerate lower color bandwidths. This system reduces color bandwidth by
low-pass filtering the I and Q color components. Further, because the eye is less sensitive
to magenta than to orange, the I color component (orange-cyan) is given more bandwidth
than the Q color component (green-magenta). Thus there are compelling human visual
reasons for using the IYQ system (even in non-analog video compression systems)
[Inglis].
To transform the RGB color into the IYQ color, a 3x3 matrix multiplication is required.

Y

I

Q

=
0.299 0.587 0.114

0.596 −0.274 −0.322

0.211 −0.522 0.311

R

G

B

(9.16)

To convert back from the IYQ space we use:

R

G

B

=
0.299 0.587 0.114

0.596 −0.274 −0.322

0.211 −0.522 0.311

−1
Y

I

Q

(9.17)

For reasons of computational precision, we do not evaluate the matrix inverse expressed
in (9.17). Some books will give the matrix and its inverse in print, with 3 significant
figures of resolution [Rogers]. We can get a much more precise answer if we allow Java
to perform the inverse using the precision of a float or a double. This is particularly
important since we will be using a floating-point format to store our pixels.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 291 Chapter 9: Image Processing in Java

Some images (like X-rays, MRI, and Hubble telescope pictures) contain more than 8 bits
of color information per color plane. A floating-point format is ideal for storing this type
of image. While we cannot help the fact that display buffers will only show 8 bits per
color, we certianly do not have to introduce that limitation into our computations or our
data files.
(A Heading) The FloatImage class

The FloatImage class resides in the lyon.ipl package. The purpose of this class is to turn a
ProcessPlane instance into 3 arrays of floats. The floats are needed in order to perform
high-precision image processing. A reference to the ProcessPlane instance that is used to
create the FloatImage is kept, in internal private storage.
(B heading) Class Summary

package lyon.ipl;
import java.net.URL;
import java.applet.Applet;
import java.awt.*;
import java.awt.image.*;
import futils.utils.*;

public class FloatImage {
public float r[];
public float g[];
public float b[];
public FloatImage(int l)
public FloatImage(ProcessPlane pp_)
public ProcessPlane makeProcessPlane()
public int getLength()
public int getHeight()
public int getWidth()
public float getRed(int i)
public float getGreen(int i)
public float getBlue(int i)
public float getAlpha(int i)
public float getRed(int x, int y)
public float getGreen(int x, int y)
public float getBlue(int x, int y)
public float getAlpha(int x, int y)
public void setPixel(int x, int y, float r_, float g_,
float b_)
public void setPixel(int i, float r_, float g_, float
b_)
public void printSize()
public float max(int i)
public float min(int i)

}

(B heading) Class Usage
Suppose the following variables are predefined

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 292 Chapter 9: Image Processing in Java

FloatImage fi;
ProcessPlane pp;
double red[];
double green[];
double blue[];
int l;

To get and set the color components from a FloatImage instance:
red = fi.r;
green = fi.g;
blue = fi.b;

(BEGIN NOTE) after great deliberation, we have decided to make the rgb data structures
public. The alternative is to fill code with getArray accessor methods. At this time, we are
still not sure if this was the right design choice. Typically, accessor methods are used to
keep threads synchronized. We have abandoned this approach. The result is code that is
unsuitable for multi-threading, but is smaller, faster and easier to understand. (END
NOTE)
To make an instance of a FloatImage with l pixels:

fi = new FloatImage(l);
To make an instance of a FloatImage by making a copy of a ProcessPlane instance:

fi = new FloatImage(pp);
(BEGIN NOTE) Operations performed on the FloatImage instance do not alter the
ProcessPlane instances data. All elements in the ProcessPlane instance were copied and
type-converted during the copy process.(END NOTE)
To turn a an instance of a FloatImage into an instance of a ProcessPlane:

pp = fi.makeProcessPlane();
To get the number of pixels in the FloatImage instance:

l = fi.getLength();
To get the height and width of the FloatImage instance:

int h = fi.getHeight();
int w = fi.getWidth();

To get the red, green, blue and alpha components in the FloatImage instance, treating all
the arrays as 1D arrays:

int i;
float r = fi.getRed(i);
float g = fi.getGreen(i);
float b = fi.getBlue(i);
float a = fi.getAlpha(i);

(BEGIN NOTE) The alpha channel is never kept in the FloatImage instance. Instead, the
alpha channel is converted from the ProcessPlane on demand. The reason is that no
FloatImage methods alter the alpha channel, so no floating-point version of the alpha
channel is needed. (END NOTE)
To get the red, green, blue and alpha components in the FloatImage instance, treating all
the arrays as 2D arrays:

int x, y;
float r = fi.getRed(x, y);
float g = fi.getGreen(x, y);
float b = fi.getBlue(x, y);

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 293 Chapter 9: Image Processing in Java

float a = fi.getAlpha(x, y);
To set a floating-point pixel, using 2D coordinates:

float r, g, b;
int x, y;
fi.setPixel(x, y, r, g, b);

To set a floating-point pixel, using the 1D internal order:
fi.setPixel(i, r, g, b);

To print the size of the array to the System.out:
fi.printSize();

To find the minimum and maximum amplitude color components located at position i in
the 1D internal order:

float intensity = fi.max(i);
float intensity = fi.min(i);

(A Heading) The ColorConverter class

The ColorConverter class is an abstract class that resides in the VS package. The
ColorConverter class is extended with implementations required for methods that convert
from and to the RGB color space. Internally, the ColorConverter class provides a storage
area for the FloatImage and ProcessPlane instances.
(b heading) Class Summary

package VS;
import java.awt.*;
import java.io.*;
import lyon.ipl.*;
public abstract class ColorConverter {
public ProcessPlane pp;
public FloatImage fi;
public ColorConverter(ProcessPlane pp_)
public abstract int[] fromRGB();
public abstract int[] toRGB();
public FloatImage getFloatImage()

}
(b heading) Class Usage
A class that extends the ColorConverter class must implement the methods fromRGB()
and toRGB(). A class that extends the ColorConverter class is used to convert a
ProcessPlane instance (an RGB image) into an another color-space encoded FloatImage
instance. The IYQ class is an example of a class that extends the ColorConverter class:

package lyon.ipl;
import VS.*;
public class IYQ extends ColorConverter {

Recall that the RGB to IYQ conversion requires a matrix multiplication given by (9.16):
Y

I

Q

=
0.299 0.587 0.114

0.596 −0.274 −0.322

0.211 −0.522 0.311

R

G

B

(9.16)

An implementation of (9.16) follows:
double A[][] = {

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 294 Chapter 9: Image Processing in Java

{ 0.299, 0.587, 0.114},
{ 0.596,-0.274, -0.322},
{ 0.211, 0.522, 0.311}
};

To create instances of a matrix that knows how to invert itself and multiply itself by other
matricies we use the Mat3 class. We shall discuss the Mat3 class in the following section.

Mat3 rgb2iyqMat = new Mat3(A);
Performing the matrix inversion in Java is done at instantiation. The results are much
more precise than those found in most publications:

Mat3 iyq2rgbMat = rgb2iyqMat.invert();
The constructor calls the super class, ColorConverter, which copies the ProcessPlane
instance into a new FloatImage instance. This constructor is required of any class that is
to extend the ColorConverter.

public IYQ (ProcessPlane pp_) {
super(pp_);

}
The following two methods are typical of any that implement a color-space conversion
using a 3x3 matrix multiplication. This happens to be quite common with color-space
conversions, but there are several that do not perform the matrix multiplication of (9.16)
(i.e., polar coordinate color systems like HVS and HLS).

public int[] fromRGB() {
double pel[];
float r, g, b;
 for (int i=0; i < fi.getLength(); i++) {
 pel =
rgb2iyqMat.multiply(fi.r[i],fi.g[i],fi.b[i]);
 fi.r[i] = (float) pel[0];
 fi.g[i] = (float) pel[1];
 fi.b[i] = (float) pel[2];
 pp.setPixel(i, (int) pel[0], (int) pel[1],
(int)pel[2], 255);
 }
 return(pp.pels);
}
public int[] toRGB() {
double pel[];
 for (int i=0; i < fi.r.length; i++) {
 pel = iyq2rgbMat.multiply(fi.r[i],fi.g[i],
fi.b[i]);
 fi.r[i] = (float) pel[0];
 fi.g[i] = (float) pel[1];
 fi.b[i] = (float) pel[2];
 pp.setPixel(i, (int) pel[0], (int) pel[1],
(int)pel[2], 255);
 }
 return(pp.pels);
 }

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 295 Chapter 9: Image Processing in Java

}
(A Heading) The Mat3 Class – Maple, the Java Gin Joint

The Mat3 class is a public class that resides in the lyon.ipl package. The purpose of the
Mat3 class is to provide an optimized way to multiply non-sparse 3x3 matricies. It also
acts as a test-bed for experiments in using Maple (a symbolic manipulator) to generate
optimized Java code.
We have found that the code generated by Maple is both human readable and optimized
for speed of execution. When used correctly, the code is also found to be error-free.
Maple is able to ease the programmer’s burden but only in some cases. In general the
code that Maple generates requires human-manipulation before it becomes usable as Java.
(B heading) Class Summary

package lyon.ipl;
public class Mat3 {
public Mat3 (double a[][])
public double [] [] getArray()
public Mat3 invert()
public Mat3 multiply(Mat3 bmat3)
public double[] multiply(double v1, double v2, double v3
)
public void print()

}
(B heading) Class Usage
There is an example of class usage in the IYQ class. The Mat3 class is a public class that
resides in the lyon.ipl package. It is an optimized class designed for multiplying 3x3
matricies by each other or by 3x1’s. It is designed for color-space conversion, but is
generally applicable to other tasks. The Mat3 class also supports a fast 3x3 matrix
inversion. Suppose that the following variables are pre-defined:

double A[][] = {
{ 0.299, 0.587, 0.114},
{ 0.596,-0.274, -0.322},
{ 0.211, 0.522, 0.311}
};

Mat3 m3;
Mat3 m3inverse;

To make a new instance of Mat3 use:
m3 = new Mat3(A);

To find the inversion of an instance of Mat3:
m3inverse = m3.invert();

To get the double precision 3x3 array stored in a Mat3 instance:
A = m3.getArray();

To multiply two Mat3 instances:
Mat3 identity = m3.multiply(m3inverse);

(BEGIN NOTE) Floating-point error prevents the Mat3 instance of the identity matrix
from being exact, but it is close. (END NOTE)
To multiply the 3x3 in Mat3 by a 3x1 to obtain a 3x1 array of double (also optimized),
use:

double r, g, b;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 296 Chapter 9: Image Processing in Java

double v3[] = m3.multiply(r, g, b);
To print a Mat3 instance to the System.out PrintStream:

m3.print();
(B heading) Maple: The Java Gin Joint
Maple is a language for symbolic manipulation [Char et al.]. Maple V was used to
generate optimized Java code for implementing Matrix manipulation in the Mat3 class.
This is an interesting twist in Java that we have not seen in any other Java books.
The cotton gin is one of the symbols of the beginning of the industrial revolution. Before
the industrial revolution, all work was perfomed by hand, and assembly-line methods
were unknown. Perhaps, software is in its preindustrial-revolution days too. We have yet
to fomulate automatic methods for the generation of software, except in special cases.
The area of matrix manipulation is one of those cases (and there are few others).
In Maple, the following code will generate the Java source needed to generate a time-
optimal 3x3 matrix inversion:

1. with(linalg):
2. readlib(C):
3. a =array(0..2,0..2,[]):
4. b =array(0..2,0..2,[]):
5. b =inverse(matrix(a)):
6. C(b,optimized);

The lines are numbered for reference only. Line 1 reads in the linear algebra package into
Maple. Line 2 reads in the C-language generator. Lines 3 and 4 create arrays whose index
starts at zero. Line 5 converts the a array into a matrix type, forms the inverse
symbolically and sets the answer to b. Line 6 outputs the following code:

public Mat3 invert() {
 double b[] [] = new double [3][3];
 double t4 = a[0][0]*a[1][1];
 double t6 = a[0][0]*a[1][2];
 double t8 = a[0][1]*a[1][0];
 double t10 = a[0][2]*a[1][0];
 double t12 = a[0][1]*a[2][0];
 double t14 = a[0][2]*a[2][0];
 double t17 =
 1/(-t4*a[2][2]+t6*a[2][1]+t8*a[2][2]-t10*a[2][1]-
t12*a[1][2]+t14*a
[1][1]);
 b[0][0] = -(a[1][1]*a[2][2]-a[1][2]*a[2][1])*t17;
 b[0][1] = -(-a[0][1]*a[2][2]+a[0][2]*a[2][1])*t17;
 b[0][2] = (-a[0][1]*a[1][2]+a[0][2]*a[1][1])*t17;
 b[1][0] = (a[1][0]*a[2][2]-a[1][2]*a[2][0])*t17;
 b[1][1] = (-a[0][0]*a[2][2]+t14)*t17;
 b[1][2] = -(-t6+t10)*t17;
 b[2][0] = (-a[1][0]*a[2][1]+a[1][1]*a[2][0])*t17;
 b[2][1] = -(-a[0][0]*a[2][1]+t12)*t17;
 b[2][2] = (-t4+t8)*t17;

 return new Mat3(b);

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 297 Chapter 9: Image Processing in Java

}
We find this pretty handy. Maple can automatically unwind for-loops, generate auxiliary
variables and save a lot of typing. The declaration of double for the temporary variables
(tnn) that Maple generates must be done by hand.
The technique of using Maple extends well into other matrix operations. In Maple, for
example, we can unwind the for loops in a multiplication using:

C(multiply(matrix(b),matrix(a)),optimized):
The optimized output is reformatted, annotatted and appears below:

public Mat3 multiply(Mat3 bmat3) {
double WW [][] = new double[3][3];
double b [][] = bmat3.getArray();

WW[0][0] =
a[0][0]*b[0][0]+a[0][1]*b[1][0]+a[0][2]*b[2][0];

WW[0][1] =
a[0][0]*b[0][1]+a[0][1]*b[1][1]+a[0][2]*b[2][1];

WW[0][2] =
a[0][0]*b[0][2]+a[0][1]*b[1][2]+a[0][2]*b[2][2];

WW[1][0] =
a[1][0]*b[0][0]+a[1][1]*b[1][0]+a[1][2]*b[2][0];

WW[1][1] =
a[1][0]*b[0][1]+a[1][1]*b[1][1]+a[1][2]*b[2][1];

WW[1][2] =
a[1][0]*b[0][2]+a[1][1]*b[1][2]+a[1][2]*b[2][2];

WW[2][0] =
a[2][0]*b[0][0]+a[2][1]*b[1][0]+a[2][2]*b[2][0];

WW[2][1] =
a[2][0]*b[0][1]+a[2][1]*b[1][1]+a[2][2]*b[2][1];

WW[2][2] =
a[2][0]*b[0][2]+a[2][1]*b[1][2]+a[2][2]*b[2][2];

return (new Mat3(WW));
}

The process of generating Java is not totally automatic. Some human intervention is
required. The method entry points and returns must be added. Most of the hard work is
done by Maple. The following Maple code will generate Java code, like the above, for
any N, where N is an integer greater than one:

readlib(linalg):
readlib(C):
multn := proc(N)

 local a, b, c, v;
 a := array(0..N,0..N);
 b := array(0..N,0..N);
 c := array(0..N,0..N);
 v := vector([seq(vec[i],i=0..N)]);
 print(v);
 c := multiply(matrix(a),matrix(b));
 print(`Mult N by N times N by N`); print(N+1);
 C(c, optimized);
 print(`Mult N by N times N by 1`); print(N+1);

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 298 Chapter 9: Image Processing in Java

 c := multiply(matrix(a),v);
 C(c, optimized);
 c := inverse(matrix(a));
 print('inverse'); print(N);
 C(c, optimized);
 end;

The amount of time Maple takes to perform the multn procedure increase quadratically
with increasing N. Therefore, this technique will not be practical for all sizes of N. Also,
we have not optimized for specially sparse matricies, like rotation matricies that occur in
computer graphics and robotics.
(A heading) Image Geometry

In this section we cover the derivation and implementation of elementary 2D image
transformation using matrix multiplication. We will cover the operations of translation,
rotation, scale and shear, using 3x3 matrix multiplications. To perform these operations,
we shall make extensive use of the Mat3 class, derived in the previous section.
(B heading) 2D translation
To translate a point, p, whose coordinates are p. x, p.y() plane by an amount, t, whose

offset is given by, t. x,t.y() , use:

p' = p. x + t. x, p.y + t.y() (9.17)
In Java notation

pPrime = p.add(t);
An implementation of this may be found in the point class, which resides in the lyon
package:

public class point extends Computation {
 double x = 0;
 double y = 0;

...

 public point add(point t) {
 return new point(x + t.x, y + t.y);
}

...
This is a particularly slow implementation, because a new point is allocated every time an
addition is performed. We use such code for illustration, only.
(B heading) 2D scaling
To scale a point, p, whose coordinates are p. x, p.y() plane by an amount, t, whose scale

is given by, s. x,s.y(), use:

p' = p. x * s. x, p.y * s.y() (9.18)
To scale about a point, t, first translate to the origin, perform the scaling, then translate
back. This may be represented by:

p' = (p. x − t. x) * s. x + t. x,(p. x − t.y) * s.y + t.y() (9.19)
In Java, we can express (9.19) and (9.18) by overloading a method in the point class:

public point scale(point s) {
return new point(x * s.x, y * s.y);

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 299 Chapter 9: Image Processing in Java

}
In the following implementation of (9.19) we scale about point t.

public point scale(point s, point t) {
return new point((x - t.x) * s.x + t.x, (y - t.y)*

s.y+t.y);
}

Since (9.18) scales about the origin, the point will move relative to the origin. Further, if
scaling were uniform, the amount of scaling in each dimension would be equal.
(B heading) 2D rotation
An example of rotation about the center of an image is shown in Figure 9.16.

Figure 9.16 Lena rotated about the center of the frame
To rotate about the center of an image, first translate the center to the origin, rotate, then
translate back.
To rotate a point, p, whose coordinates are p. x, p.y() plane by an amount, θ , about the
origin use:

p' = p. x cosθ − p.ysinθ, p. x sinθ + p.ycosθ() (9.20)
To rotate about a point, t, first translate to the origin, perform the rotation, then translate
back. This may be represented by the column vector:

p' =
(p. x − t. x) p. x cosθ − p.ysinθ() + t. x

(p. x − t.y) p. x sinθ + p.ycosθ() + t.y

(9.21)

Positive angles are measured counterclockwise. As an exercise, you should be able to
reformulate the rotational transformations for negative angles. Use the identities:

cos −θ() = cosθ
sin(−θ) = −sin θ

Proof of p' = p. x cosθ − p.ysinθ, p. x sinθ + p.ycosθ():
Suppose that a complex number of magnitude r represents p so that p = reiφ, Then
rotation, with respect to the origin, by an amount of θ , can be had by multiplication via
another complex number, pθ = eiθ so that

p' = ppθ = reiφeiθ = rei(θ +φ) (9.22)

by Euler’s relation, eiθ = cosθ + isinθ we obtain:
ei(θ +φ) = r cos θ + φ() + isin θ + φ()[] (9.23)

We then invoke the double angle formulas for sine and cosine to obtain:

ei(θ +φ) = r
cosφcosθ − sinφsinθ +

i cosφsinθ + sinφcosθ()

 (9.24)

Recall that p = reiφ is, by Eulars relation:

p = reiφ = r cosφ + ir sinφ = p. x + ip.y (9.25).
Substituting (9.25) into (9.24) yields

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 300 Chapter 9: Image Processing in Java

p' = rei(θ +φ) =
p. x cosθ − p.ysinθ +
i p. x sinθ + p.ycosθ()

 (9.26)

From (9.26), it follows directly that rotation about the origin is given by:
p' = p. x cosθ − p.ysinθ, p. x sinθ + p.ycosθ()

Q.E.D.
(BEGIN NOTE) An display of the amplitude vs the phase of a waveform can be rotated
by the introduction of a delay.(END NOTE)
In the Shape class we implement the point rotation about any point using a translation to
the center, followed by a rotation, followed by a translation back. The Shape class resides
in the lyon package. This code modifies the original point so that time does not have to be
spent allocating and disposing of new point instances.

public void pointRotation(point p, point pc, double theta)
{
 // rotate point p about pc an amount of theta radians
 // return the modified point
 double c_theta = Math.cos(theta);
 double s_theta = Math.sin(theta);
 double tx = pc.x + (p.x - pc.x) * c_theta - (p.y -
pc.y) * s_theta;
 double ty = pc.y + (p.y - pc.y) * c_theta + (p.x -
pc.x) * s_theta;
 p.x = tx;
 p.y = ty;
}

The point rotation may be applied to images or to graphic objects. Figure 9.17 shows a
pin-hole camera used for simulating a diffraction rangefinder in the DiffCAD program.
As the camera is repositioned, it automatically pans to point toward the center of a
diffraction grating.

Figure 9.17. A pin-hole camera rotated about its center of focus.

homogeneous coordinate transforms in 2D
So far we have see that translation, scaling and rotation are:

p' = p. x + t. x, p.y + t.y() (9.17)

p' = (p. x − t. x) * s. x + t. x,(p. x − t.y) * s.y + t.y() (9.19)
and

p' =
(p. x − t. x) p. x cosθ − p.ysinθ() + t. x

(p. x − t.y) p. x sinθ + p.ycosθ() + t.y

(9.21)

In order to concatenate several transforms into a single computational entity, we
introduce homogeneous coordinates. This will speed the computation of combinations of
serveral transformations by creating a single matrix against which points will be
multiplied. For this discussion, we follow [Foley et al.].
With homogeneous coordinates we use tuples in 2D; (x,y,w). Also, one of the coordinates
must be non-zero (typically w is non-zero).

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 301 Chapter 9: Image Processing in Java

Iff

P =
x

y

w

P' = αP (9.27)
then P’ and P represent the same point. That is, a linear combination of P does not alter
the position of the original point. The proportionality factor, α , is eliminated by
computing the Cartesian coordinates of the homogeneous point:

Cartesian coordinates = (x/w,y/w,1) (9.28)
The XYW homogeneous coordinate space, with the w=1 plane and point P(x,y,w)
projects onto the w=1 plane.
Homogeneous coordinate transformations in 2 space require a 3x3 matrix multiplication.
(BEGIN NOTE) If all you want to do is translate, you are doing 3 multiplies and 2 adds
for nothing!(END NOTE)
The matrix form for the translation is:

p' . x

p' . y

1

=
1 0 t. x

0 1 t.y

0 0 1

p. x

p.y

1

 (9.29)

Which is just like
p' = p. x + t. x, p.y + t.y() (9.17)

with the exception of the w variable. (BEGIN NOTE)Multiplication by zero in (9.29)
takes the computer as long to do as the multiplication by a non-zero (unless we intercept
this special case) (END NOTE)
Some graphics text books premultiply rather than postmultiply by the column vectors. To
convert between the forms, use transposition:

p' . x

p' .y

1

T

=
p. x

p.y

1

T
1 0 t. x

0 1 t.y

0 0 1

T

(9.30).

Expanding (9.30) results in:

p' . x p' .y 1[] = p. x p.y 1[]
1 0 0

0 1 0

t. x t.y 1

(9.31)

The Java implementation of (9.29) may be found in the translation method in the Mat3
class of the lyon.ipl package:

public Mat3 translation(point t) {
a = new double[3][3];
a[0][0] = 1;
a[1][1] = 1;
a[2][2] = 1;
a[0][2] = t.x;

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 302 Chapter 9: Image Processing in Java

a[1][2] = t.y;
return new Mat3(a);

}
Suppose we write:

public static void main(String args[]) {
Mat3 trans = Mat3.translation(new point(2,3));
trans.print();

}
Then the output is:

1 0 2
0 1 3
0 0 1

Now we can perform the homogeneous coordinate transformations using matrix
multiplications. We use this ability to concatenate many transformations into a single
matrix representation. For example:

public static void main(String args[]) {
Mat3 trans1 = Mat3.translation(new point(2,3));
Mat3 trans2 = Mat3.translation(new point(1,2));
Mat3 trans3 = trans1.multiply(trans2);
trans1.print();
System.out.println(" * ");
trans2.print();
System.out.println(" = ");
trans3.print();

}
1 0 2
0 1 3
0 0 1
 *
1 0 1
0 1 2
0 0 1
 =
1 0 3
0 1 5
0 0 1

This is a concatenation of two transformations, trans1 and trans2, into a single
transformation matrix, trans3. The matrix product is also called compounding, catenation,
concatenation or composition. Once the transform is formulated, it may be applied to all
points in the scene. Several policy issues must be resolved in order to implement matrix
compounding:
We have allocated the memory for a transformation matrix using a static method in the
Mat3 class. The memory allocation is dynamic and possibly wasteful. This might be OK,
however, since the number of transformation matricies may be small, relative to the
number of points that require transformation. When we are done with the transformation
matrix, we should set it to null so that the garbage collector can reclaim the storage.
It is probably good policy to keep a copy of the master object and apply the composite
transform to all the points each time. Incrementally transforming the points on an integer

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 303 Chapter 9: Image Processing in Java

coordinate system (like an image plane) will distort the image. For example, suppose that
I wanted rotate an image by 50 degrees in 10 degree increments. The progression of the
image is shown in Figure 9.18.

Figure 9.18. Incremental rotation in an integral coordinate system.
Figure 9.18 shows that when the result of a rotation is used to supply data for the
transform input, the result gets distorted and that error accumulates through the
transforms. To reduce the distortion, we start with the original data and recompute the
transformation matrix. The same 50o rotation can be had, without accumulating
distortion, as shown in Figure 9.19.

Figure 9.19. Non-incremental rotation in an integral coordinate system
An interesting aspect of the distortion is the aesthetic quality of an image after the
incremental rotation. Figure 9.20 show what happens to the poor mandrill after a 360o

rotation is accomplished in 18 steps of 20o each.
Figure 9.20. Mandrill after 18 incremental rotations of 20o each.

The matrix form for the scaling is:
p' . x

p' .y

1

=
s. x 0 0

0 s.y 0

0 0 1

p. x

p.y

1

(9.32)

The Java implementation of (9.32) is:
public static Mat3 scaling(point s) {

double m[][] = new double[3][3];
m[0][0] = s.x;
m[1][1] = s.y;
m[2][2] = 1;
return new Mat3(m);

}
Successive scalings are multiplicative, just like successive translations so that:

public static void main(String args[]) {
Mat3 trans1 = Mat3.scaling(new point(2,3));
Mat3 trans2 = Mat3.scaling(new point(1,2));
Mat3 trans3 = trans1.multiply(trans2);
trans1.print();
System.out.println(" * ");
trans2.print();
System.out.println(" = ");
trans3.print();

}
Results in:

2 0 0
0 3 0
0 0 1
 *
1 0 0
0 2 0
0 0 1

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 304 Chapter 9: Image Processing in Java

 =
2 0 0
0 6 0
0 0 1

Figure 9.20 shows the mandrill with a 3:1 zoom out followed by a 3:1 zoom in. This
effect was first done optically by systems like the Blockpix processor [Manning]. Our
empirical test show that the color gamut produced by Blockpix processors has a wider
range than that produced by color monitors.

Figure 9.20. Original mandrill, Zoom out 3:1, then Zoom in

The matrix form for the rotation is:
p' . x

p' .y

1

=
cosθ −sinθ 0

sinθ cosθ 0

0 0 1

p. x

p.y

1

(9.33)

The Java implementation of (9.33) follows:
public static Mat3 rotation(double theta) {

double m[][] = new double[3][3];
double cas = Math.cos(theta);
double sas = Math.sin(theta);
m[0][0] = cas;
m[1][1] = cas;
m[0][1] = -sas;
m[1][0] = sas;
return new Mat3(m);

}
(BEGIN NOTE)
The Math.sin and Math.cos functions in Java use radians for input.
(END NOTE)
As an example:

public static void main(String args[]) {
Mat3 trans3 = Mat3.rotation(90 * piOn180);
trans3.print();

}
produces:

0 -1 0
1 0 0
0 0 0

The rotation and translation transforms are rigid-body transformations since they do not
distort the object. Scale is not a rigid body transformation since scaling in the x and y
directions may be different.
Affine transformations consist of sequences of rotation, translation, scale and shear
operations. Affine transformations preserve the parallelism of lines, but not lengths or
angles.
Shear can go in the x or y-direction. For example:
The shear transform in the x-direction is given by:

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 305 Chapter 9: Image Processing in Java

p' . x

p' .y

1

=
1 sh. x 0

0 1 0

0 0 1

p. x

p.y

1

 (9.34).

The shear transform in the y-direction is given by:
p' . x

p' .y

1

=
1 0 0

sh.y 1 0

0 0 1

p. x

p.y

1

(9.35).

An implementation for the construction of a shear matrix follows:
public static Mat3 shear(point sh) {

double m[][] = new double[3][3];
m[0][0] = 1;
m[1][1] = 1;
m[2][2] = 1;
m[0][1] = sh.x;
m[1][0] = sh.y;
return new Mat3(m);

}
The following shows an example of the shear method being invoked:

public static void main(String args[]) {
Mat3 trans1 = Mat3.shear(new point(1,2));
trans1.print();

}
The output follows:

1 1 0
2 1 0
0 0 1

(B heading) Applications of affine transforms
In this section we show some examples of the use of affine transforms in the DiffCAD
program for manipulating image data. In all the cases, the ProcessPlane class has been
modified to permit the use of a 3x3 matrix transform to process the output coordinates of
the image. The output coordinates are multiplied by the matrix transform, centered on the
image coordinates. The result of the multiplication is used to resample the input image.
No filtering is performed, so we can expect aliasing effects. The heart of the
transformation is a method called xform:

public void xform(Mat3 transform) {
 int w = getWidth();
 int h = getHeight();
 int xc = w/2;
 int yc = h/2;

We see that the xform method takes a precomputed tranformation matrix in the form of
an instance of the Mat3 class. The height and width are obtained from the input image.
The output image is stored in an instance of the ProcessPlane, pp:

 ProcessPlane pp = new ProcessPlane(w,h);

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 306 Chapter 9: Image Processing in Java

The result of the 3x3 matrix multiplication by a 3x1 is a 3x1. The result is stored in an
array called p:

 double p[] = new double [3];
 int pixel;
 int xp, yp;

We follow the idea of [Expeset] and start to scan the output image using coordinates that
bias the center of the image toward the origin. This permits rotation about the center of
the image, rather than the origin (the upper left corner of the image in the Java AWT).

 for (int x = -xc; x < xc; x++)
 for (int y=-yc; y < yc; y++) {
 p=transform.multiply(x,y,1);
 xp = (int) p[0]+xc;
 yp = (int) p[1]+yc;
 if ((xp < w) && (yp < h) && (xp >= 0) && (yp >= 0)) {
 pixel = getPixel(xp, yp);
 pp.setPixel(x+xc,y+yc,pixel);
 }
 }
 pels = pp.pels;
}

The xform method permits implementation of any of the transforms by creating a 3x3
matrix and calling xform. For example, the ProcessPlane method, turn:

public void turn(double degrees) {
 double pion180 = Math.PI / 180.0;
 double theta = degrees * pion180;
 xform(Mat3.rotation(theta));
}

Another example is the ProcessPlane method, zoom:
public void zoom(double percentage) {
 xform(Mat3.scaling(new point(percentage,percentage)));
}

Finally we implement the shear in x and y using:
public void shearx(double shx) {
 xform(Mat3.shear(new point(shx,0)));
}
public void sheary(double shy) {
 xform(Mat3.shear(new point(0,shy)));
}

The results of a shear in x and a shear in y are shown in Figure 9.21.
Figure 9.21. Shear in x and shear in y.

Instead of making a new image, we can use the input image as the canvas for out output.
We can then reprocess the image, using the result. This is known as a feedback loop.
Many cool effect are based on feedback. Figure 9.22 shows zoom being used with
feedback. The only modification that we need to make is to add a new xform method to
the ProcessPlane, called xformfeedback. The xformfeedback method is just like the
xform method except for one important difference:

 for (int x = -xc; x < xc; x++)

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 307 Chapter 9: Image Processing in Java

 for (int y=-yc; y < yc; y++) {
 p=transform.multiply(x,y,1);
 xp = (int) p[0]+xc;
 yp = (int) p[1]+yc;
 if ((xp < w) && (yp < h) && (xp >= 0) && (yp >= 0)) {
 pixel = getPixel(xp, yp);

A this this point in the code, xform would set the pixel on a ProcessPlane
instance...instead xformfeedback uses its own.

 setPixel(x+xc,y+yc,pixel);
 }
 }

Figure 9.22. Many cool effects are based on feedback
Orginally analog feedback was obtained by pointing two mirrors at one another. People
who frequent barbershops are typically placed in chair that have a mirror in front and a
mirror behind them. The images are scaled in size and place inside one another. This
feedback appears to go on forever. Electronically, the feedback may be performed by
pointing a video camera at a monitor that outputs what the video camera scans. This type
of processing permits video synthesizers to be placed into the loop. Now a days
companies like Quantel and Ampex produce video equipment that is able to produce
effects like this in real-time [Schwartz et al.]. Figure 9.23 shows Lena after rotational
feedback is performed (the process of evolution into the form shown is actually more
interesting than the final form itself). To implement the feedback effect, we simply
invoke the feedback version of the xform method:

public void turnfb(double degrees) {
 double pion180 = Math.PI / 180.0;
 double theta = degrees * pion180;
 xformfeedback(Mat3.rotation(theta));
}

We can combine effect sequentially, without any modification to DiffCAD. Figure 9.24
shows zoom feedback applied to the result of rotational feedback.

Figure 9.24 Rotational and zoom feedback (sequentially applied)
With a small modification, we can create a composite transform matrix that can yield
composite transform feedback. The following method (called shearyfb) shows how
multiplication of several transform matricies can create a concatenated transform matrix:

public void shearyfb(double s) {
Mat3 t = Mat3.shear(new point(.5,.5));
point tp = new point(1.4, 0.9);
t.multiply(Mat3.scaling(tp));
t.multiply(Mat3.rotation(20*Math.PI/180));

 xformfeedback(t);
}

The result of this effect is shown in Figure 9.25.
Figure 9.25 Composite transform feedback

As a final thought, we propose a theory that allows for the clear distinction of visual
computer art. We claim that art is a language of communication and that, like any
language, art forms have grammar. For example, camera grammar might be; dolly, pan,

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 308 Chapter 9: Image Processing in Java

tilt and rotate. Thus we claim that computer art is different from other art forms in that it
contributes new effects for image manipulation (i.e., the affine feedback transform).

(A Heading) Summary

In this chapter we showed how to take a histogram, perform an FFT, IFFT and to use
these transforms to filter an image. One application that we explored was the creation of
diffraction in the far-field. This was made possible by some simplifying assumptions that
made far-field diffraction computationally identical with the FFT.
We also introduced an algorithm for raster to vector conversion. This is an essential first
step in extracting linear features from an image. The vectors still require ordering (the
Chinese Postman problem). Space and time do not permit us to explore a solution, though
we do have one [Lyon 85].
In this chapter we have explored affine transforms in there typical use, take an input
image, process it, place it in an output frame. We showed how to make a simple variation
on the affine transform by using feedback.
This simple variation on the use of the affine transforms makes for a wonderfully rich
asthetic exploration (i.e., eye candy). The rotational feedback about the center has a
polor-coordinate symmetry appears to leads to decentralized eye-movement. Such
patterns appear to have an almost mandala-like effect. We theorize that decentralized eye
movement assists the mind in achieving the meditative state. Time did not permit us to
develop a nice interface to our image manipulation system. This might be a topic of
future exploration. One aspect of the 2D image effects, that we have not been able to
convey in the figures, is the asthetic aspects of the image evolution. During small
incremental steps, intermediate results have been saved to create fascinating experimental
animations that permit an exploration into the grammar of affine feedback.
As another whirlwind chapter comes to a close, it is doubly sad, as it marks the end of the
book and there is so much left to do! To explore image warping further, the reader is
guided to [Wolberg]. To further research into 2D image effects, [Holtzman] provides a
unique perspective.
Image processing is an huge topic and there are so many good books to choose from. We
have been looking to [Pratt] and [Myler] for inspiration and guidance.

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 1 Chapter 9: Image Processing in Java

V(t) 297, 302
µ -law 314
µ -law CODEC 313
“Write Once, Run Anywhere”™ 8
.i.Java, C, C++ -> HTML 278
2D DFT 486
2D FFT 483, 495
3x3 matricies 524
3x3 matrix 515
3x3 matrix transform 545
A-Law 314
action 188, 196
Ada 17
addCheckBoxes 214
Adding Checkboxes to Frames 213
Adding Labels to Frames 224
addItem 225
addNoise 388
addNotify 169, 188, 196, 225
Affine transformations 543
affine transforms 545
ALGOL 13
Ampex 548
applet 29
Arabic 119
arglist 57
Arithmetic Encoding 454
ASCII 462
ASCIIByteArray 124
Asymetrix SuperCede 35
AU File 309
Audio 104, 295
Audio Files 303
AudioData 304, 307, 308
AudioData Class 307
AudioDataFromTable 330
AudioDataStream 304, 308, 309
AudioDataStream Class 308
AudioFrame 325, 337
AudioPlayer 304
AudioPlayer Class 312
AudioStream 304, 305, 306
AudioStreamSequence 304, 311
available 265
Avatars 442
average power 300
AWT 148

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 2 Chapter 9: Image Processing in Java

Backus Naur Form 50
Baker 499
Banerjee 509
Bart Kosko 439
Bartlett window 393
benchmark 26
Benchmarking 352
BenchMarking the DFT 354
Bengali 119
Binary PCM 315
bitExpression 56
bitmap formats 440
bitr 66
Bjarne 2
black 149
black-body radiator 510
blue 149
Boolean 50
Borg 232
bounds 186
Boyle 408
bpp 445
brighter 150
Button 184
byteArray 165
ByteArrayInputStream 308
bytesWidth 165
C++ 278
Cameras 407
Canada 514
Canvas 184
Cartesian coordinates 536
castingExpression 56
Cat.fileToStream 273
Cat.javasToFile 273
Cavity 510
cavity radiator 509
CCD 408
Centering the FFT 402
Cesáro 390
Chan and Lee 148
Chan and Lee] 28
chaos 298
Char 526
Character 50
character 58
Character.isDefined 119
Character.isDigit 119

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 3 Chapter 9: Image Processing in Java

Character.isJavaLetter 119
Character.isJavaLetterOrDigit 119
Character.isLetter 119
Character.isLetterOrDigit 119
Character.isLowerCase 119
Character.isSpace 119
Character.isTitleCase 119
Character.isUpperCase 119
charArray 165
charsWidth 165, 166
charWidth 165, 166
Checkbox 184
Checkbox Class 211
checkImage 187
Chinese postman problem. 500
chirp grating 498
Choice 184, 225
Choice Class 224
class ReadPPM 464
Class Usage 156
classDeclaration 53
className 57
clearRect 155, 158, 159
clipRect 155, 157
Clocksin 51
CLUT 446
CMY 149, 512
COBOL 17
CodeWarrior 36
Color Class 148
Color Depth 445
color look-up table 445
Color Models 509
color vision. 510
ColorConverter class 520
companding 315
compilationUnit 52
Component 148, 190, 211
component = locate(x, y) 195
Component Class 184
Component Hierarchy 184
component.addNotify() 196
component.checkImage 195
component.createImage 194
component.deliverEvent(anEvent) 195
component.disable() 191
component.enable() 190
component.enable(cond) 191

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 4 Chapter 9: Image Processing in Java

component.getFontMetrics(font) 193
component.getGraphics() 193
component.hide() 191
component.imageUpdate 194
component.inside 195
component.isVisible 190
component.layout() 193
component.move(x, y) 192
component.nextFocus() 196
component.paint(graphics) 193
component.paintAll(graphics) 193
component.postEvent(anEvent) 195
component.prepareImage 194
component.print(graphics) 194
component.printAll(graphics) 194
component.removeNotify() 196
component.repaint() 193
component.repaint(milliseconds) 193
component.repaint(milliseconds, x, y, width, height) 194
component.repaint(x, y, width, height) 194
component.requestFocus() 196
component.reshape(x, y, width, height) 192
component.resize(aDimension) 192
component.resize(width, height) 192
component.setBackground(aColor) 192
component.setFont(font) 192
component.setForeground(aColor) 191
component.show() 191
component.show(cond) 191
component.toString() 196
component.update(graphics) 193
component.validate() 193
ComponentPeer 185
compression 502
Compression Methods 450
Concurrent Euclid 18
cones 511
constructorDeclaration 53
Container 148, 184
Container Class 197
context switch 132
ContinuousAudioDataStream 304
convertToHtml 280
convolution 301
Cooley-Tukey 361
copyArea 155, 158
counterclockwise 533
countItems 225

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 5 Chapter 9: Image Processing in Java

Cowan 511
crash-proof 10
createImage 187
creatingExpression 57
criterion of adjacency. 501
CROSSHAIR_CURSOR 203
cyan 149
cylindrical coordinate system 513
Danielson-Lancoz 363
Danielson-Lanczos Lemma 361
darker 150
darkGray 149
Data Types

Abstract Classes and Methods 102
addElement 128, 129
AppletFrame 90
AppletUtil 90
array types 82
Arrays 127
boolean 82, 117
Camera_grating_line 92
Casting 98
Character 118
char[] 124
class types 82
ClassCastException 98
classDeclaration 88
Classes 87
className 88
concat 125
Constants 86
constructor 92
Data Types 82
deep_array 128
Double 121, 123
endsWith 126
fieldDeclaration 89
Float 121, 123
getBytes 126
identifier 88
indexOf 126
integer 82, 122
interface types 82
interfaceName 88
lastIndexOf 127
long 123
modifier 88
new Vector() 128

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 6 Chapter 9: Image Processing in Java

Null 97
numeric 82
numeric wrapper classes 121
Object 124
Overloaded Methods 92
primitive types 82
reference types 82
Shape 92
startsWith 126
Static Methods 94
String 121, 124
String.equals 126
String.indexOf 126
String.lastIndexOf 127
String.valueOf 124
Strings 123
Subclassing 98
substring 125
toLowerCase 125
toString 125
toUpperCase 125
valueOf 122
Vectors 128
Wrapper classes 116

DataInputStream 271, 274
DataInputStream Class 269
DataOutputStream 274, 275

DataOutputStream(is) 277
flush() throws IOException 275
size() 276
write(byte b[], int off, int len) 275
write(int b) 275
writeBoolean(boolean v) throws IOException 275
writeByte(int v) throws IOException 275
writeBytes(String s) throws IOException 276
writeChar(int v) throws IOException 276
writeChars(String s) throws IOException 276
writeDouble(double v) throws IOException 276
writeFloat(float v) throws IOException 276
writeInt(int v) throws IOException 276
writeLong(long v) throws IOException 276
writeShort(int v) throws IOException 275
writeUTF(String str) throws IOException 276

DataOutputStream Class 274
DataViz 279
Date 137, 167
DCT 455
Debabelizer 495

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 7 Chapter 9: Image Processing in Java

decimalDigits 58
Decimation in time 363
default 109
DEFAULT_CURSOR 203
Delphi 17
DEM 406
Devanagari 119
Developer Environments 2
DeWitt and Lyon 497
DFT 344, 497
dialog

addNotify() 234
getTitle 234
getTitle() 235
isModal() 234
isResizable() 234
setResizable(boolean resizable) 234
setTitle(String title) 234
setTitle(title) 235

Dialog Class 233
Dialogs in the ImageFrame 419
DiffCAD 80, 105, 279
diffraction 497
Digital Elevation Map 406
digital image warping 406
Digital Oscilliscope. 202
Digital Signal Processing 295
digital-to-analog converter 296
DigitalThread 136
Dimension 137
Dirac delta function 302
Discrete Cosine Transform 455
Discrete Fourier Transform 345
dispose 156, 204
distanceInPixels 167
docComment 53
doStatement 55, 72
dot 496
Double 50
DoubleDataProducer 334, 335
DoubleDataProducer Interface 332
DoubleDialog 414
DoubleGraph Class 342
draw a grid 162
Draw a String with a Background 167
Draw a Vertical String 168
draw3DRect 155, 159
drawArc 155, 160

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 8 Chapter 9: Image Processing in Java

drawBytes 156, 161
drawChars 156, 161
drawImage 156, 161
drawLine 155, 158, 163
drawOval 155, 159
drawPolygon 155, 160
drawRect 159
drawRoundRect 155, 159
drawString 156, 161
drawVerticalString 168
drum scanner 407
DualTraceOscopeFrame 344
dum_constants 113
DXF 448
Electronic scanning 407
Embree 397
enable 169, 186
enumerate 145
Euler 346, 533
Euler’s 299
Event

ACTION_EVENT 173
ALT_MASK 171
AudioFrame 177
controlDown 173
CTRL_MASK 171
DOWN 171
END 171
Event 173
Event Handling 176
Evt Class 179
Evt.match 180
F1 171
F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12 175
F10 171
F11 172
F12 172
F2 171
F3 171
F4 171
F5 171
F6 171
F7 171
F8 171
F9 171
getKeyboardShortCut 181
GOT_FOCUS 173
HOME 171

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 9 Chapter 9: Image Processing in Java

Keyboard 176
keyDown 177
KEY_ACTION 172
KEY_ACTION_RELEASE 172
KEY_EVENT, SHIFT_MASK, CTRL_MASK,META_MASK, ALT_MASK,
HOME, END, PGUP, PGDN,KEY_PRESS, KEY_RELEASE, KEY_ACTION,
KEY_ACTION_RELEASE 175
KEY_PRESS 172
KEY_RELEASE 172
LEFT 171
LIST_DESELECT 172
LIST_EVENT, LIST_SELECT, LIST_DESELECT 176
LIST_SELECT 172
LOAD_FILE 173
LOST_FOCUS 173
match 179
matchKey 179
metaDown 173
META_MASK 171
MISC_EVENT, ACTION_EVENT,LOAD_FILE, SAVE_FILE, GOT_FOCUS,
LOST_FOCUS 176
modifiers 174
Mouse 182
mouseDown 182
mouseDrag 183
mouseEnter 183
mouseExit 183
mouseMove 183
mouseUp 183
MOUSE_DOWN 172
MOUSE_DRAG 172
MOUSE_ENTER 172
MOUSE_EVENT, MOUSE_DOWN, MOUSE_UP, MOUSE_MOVE,
MOUSE_ENTER, MOUSE_EXIT, MOUSE_DRAG 176
MOUSE_EXIT 172
MOUSE_MOVE 172
MOUSE_UP 172
PGDN 171
PGUP 171
pick device 182
RIGHT 171
SAVE_FILE 173
SCROLL_ABSOLUTE 172
SCROLL_EVENT, SCROLL_LINE_UP, SCROLL_LINE_DOWN,
SCROLL_PAGE_UP, SCROLL_PAGE_DOWN, SCROLL_ABSOLUTE 176
SCROLL_LINE_DOWN 172
SCROLL_LINE_UP 172
SCROLL_PAGE_DOWN 172

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 10 Chapter 9: Image Processing in Java

SCROLL_PAGE_UP 172
shiftDown 173
SHIFT_MASK 171
Target 177
Tognazzini’s 182
translate 173
UP 171
UP, DOWN, LEFT, RIGHT 175
WINDOW_DEICONIFY 172
WINDOW_DESTROY 172
WINDOW_EVENT, WINDOW_DESTROY, WINDOW_EXPOSE,
WINDOW_ICONIFY, WINDOW_DEICONIFY, WINDOW_MOVED,
WINDOW_EVENT 175
WINDOW_EXPOSE 172
WINDOW_ICONIFY 172
WINDOW_MOVED 172

Event Class 170
Exceptions 130
Expeset 546
exponentPart 58
expression 55
ExtendedArabic 119
eye 511
E_RESIZE_CURSOR 203
Fairbanks 401
far-field diffraction 550
Fast Fourier Transform 66
Fast Hartley Transform 66
Faugeras 511
Feudal Times 232
FFT 66, 361, 483, 494
FFT.testFFT 374
FFTPlane 492

fft() 492
ifft() 492, 493
mult(ProcessPlane ppIn) 492
mult(filter) 493
new FFTPlane(pp) 492

FFTPlane Class 491
FHT 66
fieldDeclaration 53, 112
FileDialog 189
FileInputStream 261, 262, 265
FileInputStream Class 261
Files

closeOutputStream 255
deleteFile 249
deleteWildFiles 249

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 11 Chapter 9: Image Processing in Java

dialog.dispose() 238
dialog.getDirectory() 237
dialog.getFile() 237
DirFilter 246
File Class 239
FileDescriptor 252
FileDialog 235, 237

addNotify() 235
FileDialog(Frame parent, String title) 235
FileDialog(Frame parent, String title, int mode) 235
getDirectory() 235, 236
getFile() 235
getFilenameFilter() 236, 237
getMode() 235, 236
LOAD 235
SAVE 235
setDirectory(String dir) 235
setFile(path) 237
setFile(String file) 235
setFilenameFilter(FilenameFilter filter) 236
setFilenameFilter(filter) 237

FileFilter Class 247
FilenameFilter 239

canRead() 240
canWrite() 240
delete() 240
equals(Object obj) 240
exists() 240
File(absPath) 241
File(dirFile,fileName) 241
File(dirName,fileName) 241
File(File dir, String name) 240
File(String path) 239
File(String path, String name) 239
getAbsolutePath() 240
getName() 240
getParent() 240
getPath() 240
hashCode() 240
isAbsolute() 240
isDirectory() 240
isFile() 240
lastModified() 240
length() 240
list() 240
list(FilenameFilter filter) 240
mkdir() 240
mkdirs() 240

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 12 Chapter 9: Image Processing in Java

pathSeparator 239
pathSeparatorChar 239
renameTo(File dest) 240
separator 239
separatorChar 239
toString() 240

FilenameFilter interface 245
FileOutputStream 253
FileOutputStream Class 252
fos.write(b) 253
fos.write(bytes) 253
Futil.closeOutputStream 254
Futil.getDirFile 245
Futil.getFileOutputStream 254
Futil.getReadFile 245
Futil.getReadFileName 237
Futil.getWriteFile 245
Futil.getWriteFileName 238
futils 246
getFileOutputStream 255
getWildNames 249
getWriteFileName 254
INCLUDE 250
lower case 250
Ls.deleteFile 244
Ls.deleteWildFile 249
Ls.getDirName 243
Ls.getWildNames 248
Ls.lowerFileNames 250, 251
Ls.wildToConsole 249
Ls.WordPrintMerge 249
OutputStream 255
PICT 250
recursivly traverses the file system 250
WildFilter Class 247
WordPrintMerge 250
write 252

fill3DRect 155, 159
fillArc 155, 160
fillOval 155, 160
fillPolygon 156, 160, 161
fillRect 155, 158
fillRoundRect 155, 159
FilterInputStream 306
FilterOutputStream 275
Final Classes and Methods 103
Fitz-Greene Halleck 295
Float 50

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 13 Chapter 9: Image Processing in Java

FloatImage
b[] 516
FloatImage(int l) 516
FloatImage(ProcessPlane pp_) 516
getAlpha(int i) 517
getAlpha(int x, int y) 517
getBlue(int i) 517
getBlue(int x, int y) 517
getGreen(int i) 517
getGreen(int x, int y) 517
getHeight() 516
getLength() 516
getRed(int i) 517
getRed(int x, int y) 517
getWidth() 517
g[] 516
makeProcessPlane() 516, 519
max(int i) 517
min(int i) 517
printSize() 517
r[] 516
setPixel(int i, float r_, float g_, float b_) 517
setPixel(int x, int y, float r_, float g_, float b_) 517

FloatImage class 516
floatLiteral 58
floatTypeSuffix 58
FontMetrics 164
Fonts 445
Formats 278
forStatement 55
forwardFFT 375, 376
Fourier analysis 298
Fourier coefficients 298
Frame Class 203
France 514
Franklin 406
Fraunhofer 497
Fraunhofer diffraction 497
Frequency shifting using the FFT 399
Fresnel diffraction 497
fromRGB 523
Futil 232
Futil. readDataFile 286
Futil.available 265
Futil.getFileInputStream 263
Futil.makeTocHtml 259
Futil.Print 288
Futil.writeFilteredHrefFile 290

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 14 Chapter 9: Image Processing in Java

futils 232
futils.bench 367
futils.DirList 294
futils.DirList class 265
futils.Timer Class 352
G.711 314
Gehani 18
Geometry 288
George E. Smith 408
getAscent 164, 166
getBackground 186
getBlue 150
getCheckboxGroup 212
getClipRect 157, 158, 163
getColor 150, 154, 157
getColorModel 186
getComponents 199
getDescent 164, 166
getFileInputStream 263, 264
getFileOutputStream 273
getFont 154, 158, 164, 186
getFontMetrics 136, 154, 155, 158, 165, 167, 187
getForeground 186
getGreen 150
getHeight 164, 166
getHSBColor 150
getIconImage 204
getItem 225
getLabel 169, 211
getLeading 164, 166
getLineIncrement 216
getMaxAdvance 165
getMaxAscent 164, 166
getMaxDecent 165
getMaxDescent 166
getMaximum 215
getMinimum 215
getOrientation 215
getPageIncrement 216
getParent 185, 190
getPeer 185
getRed 150
getRGB 150
getSelectedIndex 225
getSelectedItem 225
getState 212
getSystemThreadGroup 146
getTitle 204

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 15 Chapter 9: Image Processing in Java

getToolkit 185
getTruncatedDoubleData 383
getUlawData 319
getValue 215
getVisible 216
getWidths 165
getWriteFileOutputStream 288
GIF 278, 447, 461
GIF87a 457
GIF89a 458
Gosling 17
gotFocus 188, 196
grammar 130
grapher.Graph 367
Graphics Class 154
Graphics Formats 447
gray 149
Gray wedge 408
green 149
GridLayout 210
GUI 148
Gujarati 119
Gurmukhi 119
Hamming 390
handleEvent 188
HAND_CURSOR 203
Hanning 367, 391
harmonic analysis 298
He-Ne laser 408
height 137
Hi-pass filter 396
histogram 483, 484
HLS System 512
Holtzman 551
Holzmann 406
homogeneous coordinate transforms 535
homogeneous point 536
HORIZONTAL 215
HSB 149
HSBtoRGB 150
hsbvals 153
HTML 2, 33, 278, 295
HTML Converter 278
HTML generator 105
HTML Generator Panel 209
HTML Model 32
HtmlGenerator 106, 295
hue 513

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 16 Chapter 9: Image Processing in Java

Huffman 450
Huffman Encoding 454
human perception 510
Hunt 511
hyper-linked 295
identifier 59
IDFT 344, 487
IFFT 380, 495
Image 421

flush() 421
getGraphics() 421
getHeight(ImageObserver observer) 421
getProperty(String name, ImageObserver observer) 421
getSource() 421
getWidth(ImageObserver observer) 421
UndefinedProperty = new Object() 421

Image Class 420
Image Formats 439
Image Geometry 530
Image Instancing 424
Image Processing 405
Image Processing in Java 483
ImageObserver 423

ABORT 424
ALLBITS 424
ERROR 424
FRAMEBITS 424
HEIGHT 423
PROPERTIES 424
SOMEBITS 424
WIDTH 423

ImageProducer 190
imageUpdate 187
Imports 107
importStatement 53, 108
Indic 119
InputStream 306
IntDialog 414, 418, 420
Integer 50
integerLiteral 58
interfaceDeclaration 53, 112
interfaceName 58, 112
Interfaces 112
Inverse DFT 356
isAdjacent 504
isEnabled 169, 185
ISO-LATIN-1 119
isResizable 205

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 17 Chapter 9: Image Processing in Java

isShowing 185
isSlopeAcceptable 504
isValid 185
isVisible 185
IYQ 514
iyq2rgbMat 522
James Bryce 483
Japan 514
Java 278
java.awt.Frame(String) 208
java.lang 123
java.lang.ThreadGroup 143
Javaholic 107
JFIF 459
Joseph de Fourier 298
JPEG 278, 447, 459
JVM 34
Kannada 119
Kelvin 509
keyDown 104, 188, 196
keyUp 188, 196
Kodak 408, 448
Kona 6
Label 184
Label Class 222
Lao 119
Laplace distribution 317
layout 186
leading 166
Lempel 452
lightGray 149
linalg 529
linear scanning array 408
Linotype 164
List 184
listFilteredHrefFile 287
literalExpression 57
log2 375
logicalExpression 56
Long 50
lossy 450
lostFocus 188, 196
low-pass filter. 296
ls -al */* 265
ls -al */* >foo 265
luminance 513
Lyon window 394
lyon.ipl 419, 431, 516

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 18 Chapter 9: Image Processing in Java

LZW 452
m-law 307
MacLinkPlus 279
magenta 149
MainMenuBar 380
makeBartlett 393
makeHanning 367, 391
makeTocHtml 260
Malayalam 119
mandrills 483
Maple 394, 524, 526
Maple code 529
Mat3 522, 524, 537

getArray() 524, 525
invert() 524, 525
Mat3 (double a[][]) 524
multiply(double v1, double v2, double v3) 524
multiply(m3inverse) 525
multiply(Mat3 bmat3) 524
print() 524

Mat3 Class 524
Maxwell 509
MAX_RADIX 120
MAX_VALUE 120
MBNF 50
mechanical scanning 407
MenuComponent 169
MenuItem Class 168
method_declaration 53
Mexico 514
milliseconds in a day 135
MIME 32
minimumSize 186
MIN_RADIX 120
MIN_VALUE 120
Modified Backus Naur Form 50
modifier 57, 108
molybdenum 509
Moore 404
mouseChoice 227
mouseDown 188, 195
mouseDrag 188, 195
mouseEnter 188, 196
mouseExit 188, 196
mouseMove 188, 195
mouseUp 188, 195
MOVE_CURSOR 203
multFFT 495

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 19 Chapter 9: Image Processing in Java

multHanning 392
Murray 443
Myler 402, 551
NamedObservable 411

getName() { 412
setName(String nm) { 412

National Television Systems Committee 514
Natural Intelligence 45
Netravali 455
new Date 137
New York Tribune 164
nextFocus 188
NE_RESIZE_CURSOR 203
Noise filter using the FFT 386
NTSC 514
NumberFormatException 417
Numeric Check of the DFT and IDFT 359
numericExpression 56
NW_RESIZE_CURSOR 203
Nyquest 296
N_RESIZE_CURSOR 203
Observable 410, 411

addObserver(Observer o) 411
countObservers() 411
deleteObserver(Observer o) 411
deleteObservers() 411
hasChanged() 411
notifyObservers(Object arg) 411

Observable Class 411
ObservableDouble 413, 419

getValue() { 414
notifyObservers() 413
setChanged() 413
setValue

(double newValue) { 413
ObservableDouble 412
Observer Interface 409
Observer-Observable Example 412
Ole-Johan Dahl 11
optimized output 528
orange 149
orientation 215
Oscillator

getAM 323
getDuration 323
getFM 323
getFrequency 323
getSampleRate 323

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 20 Chapter 9: Image Processing in Java

getSawWave 323
getSineWave 323
getSquareWave 323
getTriangleWave 323
setModulationFrequency 323
setModulationIndex 323

Oscillator Class 322
OscopeFrame 337
OscopeFrame Class 333
Package small 107
packageName 57, 105
Packages 105
packageStatement 52, 105
PAL 514
Palettes 445
Panel 148
Panel Class 209
parallelism 132
parameter 54
parameterList 54
paramString 169
Parzen 390
Pascal 49
PCM 296
PCM decoder 296
PDAs 5
peer 189
perception 510
Phase Alternating Lines 514
photoreceptor 511
Photoshop 409
physiological 511
picoJava 1, 6
PICT 447, 482
PictFrame 333
pink 149
PixelPlane 427, 431

getAlpha(int x, int y) 428
getBlue(int i) 427
getBlue(int x, int y) 428
getGreen(int i) 427
getGreen(int x, int y) 427
getHeight() 427
getLength() 427
getPixel(int i) 428
getPixel(int x, int y) 428
getRed(int i) 427
getRed(int x, int y) 427

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 21 Chapter 9: Image Processing in Java

getWidth() 427
inrange(int x, int y) 427
makeImage() 427
MakePixel(int r, int g, int b, int a) 428
printSize() 428
setPixel(int x, int y, int pel) 428
setPixel(int x, int y, int r, int g, int b, int a) 428

PixelPlane Class 426
Planckian radiator 510
playAsync 319
playSync 319
PMF 484
PNG 456
point 531
Points

isAdjacent(Points p) { 508
Points class 507
polymorphism 103, 129
poor mandrill 540
Power Spectral Density 345
PPM 278, 447, 461
Pratt 406, 551
preferredSize 186
prepareImage 187
pressure waves 295
Print 289
printAll 187
PrintStream 255, 288

checkError() 256
close() 256
flush() 256
print(boolean b) 256
print(char c) 256
print(double d) 256
print(float f) 256
print(int i) 256
print(long l) 256
print(Object obj) 256
println() 256
println(boolean b) 256
println(char c) 256
println(char s[]) 256
println(double d) 256
println(float f) 256
println(int i) 256
println(long l) 256
println(Object obj) 256
println(String s) 256

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 22 Chapter 9: Image Processing in Java

public void print(char s[]) 256
public void print(String s) 256
write 255
write(byte b[], int off, int len) 255

PrintStream Class 255
printThreadGroups 146
private 109
private protected - 109
probability mass function 484
ProcessPlane 431, 493, 496, 514, 547

cornergray() { 431
diagGray() 431
edge method 437
edge() 431
linearComb(a, b) 434
linearComb(double konstD, double akD) 431
makeGray() 431, 434
negate method 435
negate() 432
randResample() 432, 434
scale(int scale) { 431
Shadow method 436
shadow() 432, 434
shearx(double shx) { 547
sheary(double shy) { 547
shearyfb(double s) { 549
Subimage(pp2) 434
Subimage(ProcessPlane pp) 431
threshold(int konst) 431
turn(double degrees) { 546
xformfeedback. The xformfeedback method is just like the xform method except for
one important difference 548
zoom(double percentage) { 547

ProcessPlane Class 431
Progressive Display 455
Prolog 51
protected 109
PSD 300
PSD Computations 377
psychological 510
psychophysical 510
public 109
Pulse Code Modulation 296
Quadrature 514
Quantel 548
Quantization 296
RaceThread 135
RADAR 407

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 23 Chapter 9: Image Processing in Java

Radiancy 509
range image 406
raster to vector algorithm 502
Raster to Vector Conversion 499
RatFOR 13
readAUFile 310
readBoolean 270, 272
readByte 270, 272
readChar 270, 272
readDataFile 286
readDouble 270
readFloat 270, 272
readFully 270, 271
readInt 270, 272
readlib 529
readLine 270
readLong 270, 272
readShort 270, 272
readUnsignedByte 270, 272
readUnsignedShort 270, 272
readUTF 270, 273
real-time codec 374
real_dumb 113
rectangular window 398
recurses on all directory names 268
Recursive File Lister 265
red 149
removeNoise 388
removeNotify 188
requestFocus 188
Resampling 401
reshape 186
Resnick 509
reverseFFT 371
RGB 148
rgb2hls 513
rgb2iyqMat 522
RGBtoHSB 150
RLE 450, 451
Robert Frost 232
Roberts 500
rods 511
Rogers 515
rotation 532
RTF 33, 278
Run Length Encoding 451
sampling 301
saturation 513

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 24 Chapter 9: Image Processing in Java

sawtooth 298
scaling 531
scaling labels 339
Scanners 407
Schwartz 548
Scrollbar 184
Scrollbar Class 215
SECAM 514
select 225
separability 487
setBackground 186
setCheckboxGroup 212
setColor 154, 157
setFont 154, 186
setForeground 186
setIconImage 204
setLabel 169, 212
setLineIncrement 216
setMenuBar 204
setPageIncrement 216
setPaintMode 154, 157
setPrintStream 289
setResizable 205
setState 212
setTitle 204
setUlawData 319
setValue 215
setXORMode 154, 157
SE_RESIZE_CURSOR 203
shear 544
show 186
Simula 11
skip 272
skipBytes 270
Slope

isEqual(Slope s) { 507
Slope class 505
SNR 317
Sound 295
Sound blaster 305
Spectra 298
Spectral Leakage of the DFT 389
spectral radiancy. 509
spectrum 298
startAtThisDir 267
statement 54
statementBlock 54
staticInitializer 54

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 25 Chapter 9: Image Processing in Java

Stefan-Boltzmann 509
stop() 136
StreamTokenizer 281, 282, 294

commentChar(int ch) 282
eolIsSignificant(boolean flag) 283
lineno() 283
lowerCaseMode(boolean fl) 283
nextToken() throws IOException 283
ordinaryChar(int ch) 282
ordinaryChars(int low, int hi) 282
parseNumbers() 283
pushBack() 283
quoteChar(int ch) 282
resetSyntax() 282
slashSlashComments(boolean flag) 283
slashStarComments(boolean flag) 283
StreamTokenizer.TT_EOF 284
StreamTokenizer.TT_EOL 284
toString() 283
TT_EOF 282
TT_EOL 282
TT_NUMBER 282
TT_WORD 282
whitespaceChars(int low, int hi) 282
wordChars(int low, int hi) 282

string 58
stringExpression 56
stringWidth 165, 166
Stroustrup 3, 11
subsampling 402
sun.audio 304
switchStatement 55
SW_RESIZE_CURSOR 203
syntax 49, 60

additive_operators 63
assignment_operators 65
bitExpression 68
bitwise_AND_operator 64
bitwise_OR 64
bitwise_XOR 64
Break 80
break_statement 80
Comments 59
conditional_operator 64
continue 80
Continue 78
continue_statement 79
creation_operators 63

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 26 Chapter 9: Image Processing in Java

equality_operators 64
expression 67
Expressions 67
Flow of Control 66
For 77
forStatement 77
identifier 61
Identifiers 61
If 68
ifStatement 68
keyword 61
logicalExpression 67
logical_AND 64
logical_OR 64
MBNF 59
multiplicative_operators 63
numericExpression 67
Operators 62
postfix_operators 63
relational_operators 64
Return 81
return_statement 81
shift_operators 64
stringExpression 68
Switch 73
switchStatement 73
Syntax 59
testingExpression 67
unary operators 62
unary_operators 63
variableDeclaration 77
variableDeclarator 77
variableInitializer 77
While and do statements 72

systemThreadGroup 142, 145
S_RESIZE_CURSOR 203
Tamil 119
TargetControlPanel 210
Teevan 510
television 441
Telugu 119
testDFT 359
testingExpression 56
testPSD 378
TextComponent 184
TEXT_CURSOR 203
Thai 119
The FontMetrics Class 163

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 27 Chapter 9: Image Processing in Java

theDate 137
theDate.toString 167
theFontMetrics 167
ThreadGroup 142, 143, 145
threadGroupsArray 142, 145
Threads 132
Timer 353
tokens.nextToken() 287
tokens.TT_EOL 287
tokens.TT_NUMBER 287
toLowerCase 120
Tony Hoare 49
toString 120, 188
toTitleCase 120
toUpperCase 120
traditional typesetting 164
transformation matricies 514
Transforms in the AudioFrame 379
translate 154, 158
translation 530
Transparency 445, 446
tristimulus 511
tristimulus theory 511
tryStatement 55, 130
turbulence 298
type 57
typeDeclaration 53
typeSpecifier 57
ulawArrayOfByte 319
UlawCodec 309, 319, 325
UlawCodec Class 318
Unicode 273
USSR 514
UTF 273
validate 186
validation 30
variableDeclaration 54
variableDeclarator 54
variableInitializer 54
VEC 447, 480
Vector formats 441
vector formats, 440
VERTICAL 215
Very Low Bit Rate Voice Compression 374
Video 407
Visibility 110
Visibility 108
visibility_modifier 109

Digital Signal Processing Recipes in Java • Lyon and Rao April 13, 2000

11:18 AM–Page 28 Chapter 9: Image Processing in Java

VLBRVC 374
VS package 520
WAIT_CURSOR 203
Walker 390, 497
Watson 15
wave table length 329
WaveTable 330
WEBOS 1, 4
Welch 390, 452
whileStatement 55, 72
white 149
width 137
William Wordsworth 344
windowAudio 392
windowing 390
WINDOW_DESTROY 208
Wolberg 407, 551
wrapper class 50
writeAUFile 319, 322
writing µ -law 322
W_RESIZE_CURSOR 203
xScaleFactors 219
Xy2vec 502
yellow 149
yScaleFactors 220
ZetaLisp 2
Ziv 452

