
Digital Signal Processing Recipes in Java  Lyon and Rao 09/01/97  

Page 28 

(CN) 8 (CT) Digital Images and Image Formats 
 
 
 
       "This is the Wild West of the   
        Information Age" - Bart Kosko 
 
 

(A-heading) The DataBahn  

 

As the Internet connects the world together, and as more users cram to get onto this 

information thoroughfare, we find that it can take a long time to get data from point A to 

point B. Never before as now do we need to squeeze information content down in size 

before it is exchanged or transferred. Luckily the enormous size of digital images have 

already motivated the creation of a number of space saving image and file formats. 

Consider this: an uncompressed digital bitmap image of 640x480 pixels with 256 colors 

takes up 307 KB, or 1/3 MB. It can be frustrating to watch an image file of this size load 

into your browser from a web site.  

In this chapter, you will find a discussion of the what and why of image formats - there 

are a lot of them ! You will learn some of the latest and greatest formats for the Internet. 

Finally, you will see details of the formats that are supported in Diffcad. 

 

(A-heading) A Bird's Eye View of Image Formats 

There are three broad categories of image formats: vector formats, bitmap formats and 

other formats. 

(B-heading) Vector and Bitmap formats 

In describing an image, you can resort to several levels of detail. In the lowest level of 

abstraction, you may describe each and every element (pixel) of the image. An image that 

is described in this manner is referred to as bitmapped, since the end result is a map of 

bits (or pixels). A bitmap image and its associated data are shown in Figures 8.1a and 



Digital Signal Processing Recipes in Java  Lyon and Rao 09/01/97  

Page 28 

8.1b. 

 

 

 

 

Figure 8.1a  A bitmap format image   Figure 8.1b Bitmap format data 

 This is ultimately, how images are represented for display on monitors and viewed. A 

computer monitor or television has an addressable array of physical pixels or dots.  The 

dot has position , and color information. Color will be talked about further very shortly. 

Bitmap images are difficult to scale from their original resolution (without DSP!). They 

can be bulky and hence cumbersome to transport. You can mitigate the size problem with 

compression (covered soon), but only at the expense of increased time to decode and 

render.  

(B-Heading) Vector formats 

Now we consider a way to represent images with a higher level of abstraction. Suppose 

you store endpoints of line segments to compose a representation of an image. This may 

be useful to render a CAD drawing for example. You store coordinates for the starting 

point, a direction and a length and maybe some color information. The rest of the screen 

that does not have line segments will be a background color. This is a simple vector 

image file format, and is a good compact format for line drawings. Vector formats are 

quick to read and are compact, for the types of images they are intended to represent. 

Vector formats typically store not only line primitives, but also some 2D shapes, such as 

circles and squares and curved lines , which are higher levels of abstraction. These shapes 

could be used to compose jet planes or integrated circuit layouts, for example. Figures 

8.2a and 8.2b show an example of a simple vector image and its associated data. 

 

 



Digital Signal Processing Recipes in Java  Lyon and Rao 09/01/97  

Page 28 

 

 

Figure 8.2a Vector format image  Figure 8.2b Vector format data 

 

You could continue on using higher and higher levels of abstraction going to 3D objects 

as primitives, and Avatars (3D computer puppets) in virtual worlds.  

One advantage of a vector format image, is that it is relatively easy to scale the image 

without loss of detail. Many clipart collections are stored as vector format files so that 

they can be scaled easily. A disadvantage of vector formats is that it is hard to store very 

detailed image information such as photographs, where you may need to vary color 

information on a pixel by pixel basis.  

(C-heading) Conversion between vector and bitmap formats 

Converting from a vector format image to a bitmap format is easy and straightforward; in 

fact, this conversion will be very common, since most display output devices are 

bitmapped. For a very detailed vector format image, it is important to choose a high 

enough resolution for the destination bitmap, otherwise, some artifacts will appear in the 

image, such as jagged lines (" the jaggies") instead of straight lines. 

Converting from a bitmap format image to a vector image is difficult. In Chapter 9, you 

will meet this formidable challenge with DSP routines for edge and outline detection. 

Another issue is the possible loss of color information when you go from a rich bitmap 

representation to a (possibly) poor vector representation. 

 

(B-heading) Other types of formats 

[Murray et al.] describe several other types of formats for digital images. These are 

described briefly as follows: 

· Scene - A scene format file has a condensed representation of an image. It is 

sometimes hard to tell the difference between this format and a vector format.  



Digital Signal Processing Recipes in Java  Lyon and Rao 09/01/97  

Page 28 

· Metafile - A metafile can store both vector format elements and bitmap format 

elements. Examples of this type of format file are the PICT format and the CGM 

format. Because of their versatility, these files are often used to cross the bridge 

between different hardware or software platforms. 

· Animation - Animation formats come in many flavors. The simplest type just stores 

adjacent frames of an animation sequence in one file for playing. Another type stores 

not only images but along with them color maps for the images. Changing the color 

map can give the illusion of motion. Finally, a more sophisticated animation format 

will store frame difference information along with key frames. This technique is used 

to store motion video also and exploits the fact that in any given movie or animation, 

from frame to frame there is on average not a lot of changed information. There is 

usually a large chunk of the background or features that are static. If you store the 

data that changes, instead of all the data, you save a lot of space.  

· Multimedia - Multimedia formats allow you to store all kinds of different data types 

and formats together; you could have video information, text information and sound 

information coexisting peacefully. 

· 3D - 3D formats not only support descriptions of lines, shapes and 3D geometries, but 

also textures, reflections and anything else a rendering program would need to 

reconstruct a 3D image or world. Objects in a 3D file are sometimes called scene 

elements. Many existing vector file formats have been extended to support 3D. Such 

formats, such as Autodesk's DXF format, are referred to as extended vector formats. 

VRML is a little more than a 3D format, since it includes support for HTML style 

linking to other URLs on the World Wide Web. 

· Font(bitmap, stroke, outline) - Fonts are special graphic files. They come in their own 

subsets of types based on bitmap formats or on vector formats (stroke, outline). One 

additional constraint usually imposed on font files is that they must be very quick to 

index into. So there is usually a database index associated with the font data placed in 



Digital Signal Processing Recipes in Java  Lyon and Rao 09/01/97  

Page 28 

a header or footer of the file.  

· PDL - PDL, or Page Description Language formats are usually textual programmatic 

descriptions of how to render graphics and text. An example of this type of format is 

the ubiquitous Postscript format. This format is more akin to source code rather than 

just graphics data, and hence requires a sophisticated program in order to be able to 

create output.  

(B-heading) Color Depth, Palettes and Transparency 

Before getting to a monitor, an image, regardless of the format it is stored in by an 

application,  is usually represented by a bitmap in a special memory known as a frame 

buffer. (The exception would be for a random scan display monitor - a vector image 

display monitor.)  The frame buffer stores the image that is to be displayed as it is being 

scanned by the graphics processor that feeds a CRT monitor for viewing. En route to the 

monitor, the graphics processor may be commanded by the host processor (CPU) to 

manipulate the stream of pixels before they are displayed. One example of processing is 

to convert color depth information by using a color look-up table (CLUT), also known as 

a color palette. Color depth refers to the number of bits that are used to represent one  

pixel, or bits per pixel (bpp). For a color depth of 1, you represent a black and white 

image; a 1 turns on a pixel (white) and a 0 turns off a pixel (black). A color depth of 8 

bpp, means that you have 256 (=28) possible values for a color.  

A CLUT is a table of color values with an index. Use of this table can allow for some 

image size reduction. You essentially form an indirect addressing scheme. Say you have 

256 possible values for a color (indexes). You may store 24 bit per pixel color values in 

each entry of the CLUT since your hardware supports it. You achieve some data 

compression since your image data may reference 8 bit CLUT indexes, instead of 24 bit 

color data. Your image data must also include the CLUT too however. The total data for 

a 640x480 image is (640x480x8 + 256x24)/8 = 308K bytes. If the CLUT was not used, 

the total data would be (640x480x24)/8 = 922K bytes. In this example the use of a CLUT  



Digital Signal Processing Recipes in Java  Lyon and Rao 09/01/97  

Page 28 

results in a savings of 2/3 in file size. 

 A CLUT doesn't always make sense to use. If you use a large number of colors in an 

image, then it may be more space-efficient to store the full pixel value directly. 

Generally, for images with more than 256 colors, it is better to store literal or absolute 

format, because the overhead of a very large CLUT is not worth the space. In fact the size 

of the CLUT may approach the size of the image itself. 

 

(C-heading) Transparency 

In the television world, you often see live video being overlaid onto a static image (like a 

weather map). In the bitmap world, this is like overlaying two bitmaps onto each other 

and specifying portions of one bitmap to be transparent, in certain areas, to allow the 

background image to show through. Similarly, you could use transparency characteristics 

to do a fade from one video source to another. In this case, there would be degrees of 

transparency (not just on or off). Transparency is often described in bitmaps on a pixel by 

pixel basis. Here, transparency information is appended to pixel value information. The 

TGA format for example uses 5 bits each for R, G, B (red, green, blue) and 1 extra bit for 

transparency, for a total of 16 bits. When the transparency bit is on, the display hardware 

must ignore that particular pixel, so that any background image may show through. A 32-

bit variant of the TGA format specifies 8 bits for transparency, called the alpha channel. 

Here each of R, G and B use 8 bits and alpha uses an additional 8 bits to specify the 

degree of transparency (0=completely transparent to 255=completely opaque). 

 

 

(A-heading) Graphics Formats Menu 

 

This section will give you a directory of some of the more popular  image formats and 

some of their traits. Below, Table 8.1 shows a list of many different formats along with 



Digital Signal Processing Recipes in Java  Lyon and Rao 09/01/97  

Page 28 

their type (adapted from [Murray et al.])  Diffcad uses a subset of these formats, namely: 

GIF, JPEG, VEC, PICT and PPM.  

Later in the section, you will read about general characteristics of graphics formats, such 

as file organization, compression and progressive display. 

 
Table 8.1 Image formats and type (adapted from [Murray et al.]) 
Format Type  
Autocad DXF Vector  
Autodesk 3D Studio Scene description  
BMP (Windows) Bitmap  
CGM Metafile  
FLI Animation  
GEM Raster Bitmap  
GEM VDI Metafile  
GIF Bitmap  
Harvard Graphics Metafile  
IFF Bitmap  
Intel DVI Multimedia  
JPEG File Interchange 
Format 

Bitmap  

Kodak PhotoCD Bitmap  
MPEG Multimedia  
PCX (Windows) Bitmap  
PICT (Mac) Metafile  
Pixar RIB Scene Description  
PNG Bitmap  
POV Vector  
PPM Bitmap   
QuickTime Multimedia  
Rayshade Scene Description  
SPIFF Bitmap  
Sun Raster Bitmap  
TIFF Bitmap  
TTDDD Vector and Animation  
Utah RLE Bitmap  
VEC Vector  
WMF (Windows) Metafile  
   

Most graphic formats support some form of data compression. In the next section you 

will see a discussion of compression methods. 

 



Digital Signal Processing Recipes in Java  Lyon and Rao 09/01/97  

Page 28 

(B-heading) Compression Methods : Making Bits of Bits 

 

There are compression methods that are used on digital information (not just image data), 

and other methods specifically suited for image data and other special classes of data. 

First we look at four methods of general data compression: RLE, LZW, Huffman 

encoding and Arithmetic encoding.  Later in this section we look at a compression 

method that is well suited for image data: DCT or transform based compression. 

Compression can be lossy, or can be perfect. Lossy compressors discard information, 

albeit information that is considered to be the least relevant in a particular application. 

You will read more on this shortly. 

Compression can be symmetric; that is the process of compression is very similar in 

complexity, time and methodology to decompression. On the other hand, asymmetric 

compression is a situation where a more complicated process is needed for one direction 

over the other; an example is the original Intel DVI video format, where a parallel 

supercomputer is used to compress a video sequence, while a tiny amount of microcode 

in a video DSP chip is used to decompress the sequence. This is highly asymmetric. 

For Bitmap format files, normally only the bitmap data is compressed. Any other 

information in the file (header, footer) is left uncompressed for easy reading. For Vector 

format files, there is usually no compression. This is because Vector formats are 

inherently compact being a higher level of abstraction than a bitmap. Also rendering a 

vector format file takes a lot of time to begin with and adding decompression would 

further slow down applications that use vector format files. 

 

Start NOTE 

In the discussions below, encoding is usually discussed. The decoding process is just the 

set of reverse operations to that of encoding. 

End NOTE 



Digital Signal Processing Recipes in Java  Lyon and Rao 09/01/97  

Page 28 

 

(C-heading) Run Length Encoding (RLE) 

Run length encoding is a general compression method that takes sequences or runs of a 

particular character, and encodes it more compactly as a number and the character. 

For example: 

 

AAAAAAAAAABC 

 

could be coded as:  10A1B1C 

 

The number 10 is the run count and the following letter A is the run value. If each ASCII 

character takes up 1 byte of storage, then the original uncompressed string takes up 12 

bytes, while the compressed string takes up 7 bytes. Notice that even a run length of 1 

requires a minimum of 2 characters.  

 

For binary character encoding, there are several choices. You can encode on a bit basis 

(looking for runs of bits), on a byte basis or on a pixel basis, where a pixel may take up 

multiple bytes. The overhead of storing a run length for each run value may in some 

cases cause a file to be larger than the original, which is termed negative compression. 

One method to minimize the effect of the run length code for small runs is to encode a bit 

at the beginning of each block that enables run length interpretation for that block. In 

other words, if the enable bit is set to 1, the block is interpreted as run length encoded. If 

it is set to 0, then the following data is interpreted as unencoded or literal data. 

With 2D bitmap data, you have freedom to encode data along rows, which are also 

referred to as scan lines, or along columns, or along some other sub-block partitioning of 

the data.. You could choose some of the options discussed to achieve the best 

compression. 



Digital Signal Processing Recipes in Java  Lyon and Rao 09/01/97  

Page 28 

 

(C-heading) Lempel, Ziv, and Welch Compression (LZW) 

A very widely used algorithm for data compression was invented by Lempel, Ziv and 

Welch and is known as LZW. Actually there are several algorithms: LZ77, LZ78 and 

LZW are all patented; use of these may be subject to licensing fees and a lot of legal 

headaches. It is possible to adapt LZ77 so that you do not infringe on its patent (see 

PKZIP below). Unfortunately, several widespread programs and formats made use of 

these patented algorithms, like the Compuserve GIF file format. As a backlash against 

having to pay for what used to be in the public domain and hence free, several 

alternatives to the patented LZW algorithms were developed and offered to the public. 

The popular archiving compressor, PKZIP replaced the original LZW compressor with a 

compressor based on an adapted non-infringing variation of the LZ77 algorithm. GIF is 

still oppressed with infringement problems. The world is still full of GIF images 

however. There are many freeware utilities to convert GIF files to other formats, such as 

PPM. The PNG graphics format was created specifically as an alternative to GIF and 

again is also based on a non-infringing variation of the LZ77 algorithm. 

How does LZW work ? The LZ family of compressors are dictionary-based encoding 

algorithms. As data is read by a compressor, a table or data-dictionary , is built that has 

entries for patterns that occur in the input data stream. If new data that is read, is not in 

the dictionary, then a new entry is made in the table for it. When data that has a 

dictionary entry is read in, then the entry, which has a smaller size than the original data, 

is copied to the output (compressed) data stream. A key feature of LZW is that the 

dictionary does not need to be stored for the decoder; the decoder will be able to 

reconstruct the dictionary because of the way that the data is organized. This can save a 

lot of overhead and space. LZW is a lossless compression scheme. 

 

(C-heading) Huffman Encoding 



Digital Signal Processing Recipes in Java  Lyon and Rao 09/01/97  

Page 28 

Like LZW, Huffman encoding is based on code words. Here, shorter codes are chosen to 

represent the most commonly occurring sequences in a data stream, while longer codes 

are used for less frequent sequences. The letter A, if used very frequently in some input 

text, may be coded with 2 bits instead of the usual ASCII 8 bits, while the letter Q, which 

occurs very infrequently may be coded with 12 bits, as an example. The dictionary used 

for encoding is required for the decoder to do its work. There is no on-the-fly 

construction of a dictionary as you saw in the LZW compressor. The data stream that is 

produced from Huffman Encoding has a subtle requirement: Each code word should not 

be the prefix of any other code word. This will allow a decoder to uniquely determine 

each entry of the table based on a sequential read of the data stream. An improvement on 

Huffman Encoding is Arithmetic Encoding, which is discussed next. Both Huffman 

Encoding and Arithmetic Encoding are lossless compression schemes. 

 

 

(C-heading) Arithmetic Encoding 

Arithmetic Encoding, or entropy coding, improves on Huffman Encoding in a couple of 

ways: (1) you can have fractional codes, that is you can have a 4.18 bit long code (this is 

defined in a statistical way) and (2) more complex statistics are used that look at context 

information to derive a code for an input pattern - a U may be assigned a long code 

because it does not occur too often, while a U following a Q may be assigned a short 

code, since a U is very likely to follow a Q. A brand of Arithmetic Encoding, called a Q-

coder is patented by IBM and AT&T and is subject to licensing considerations. An 

extension of the JPEG compression standard uses the Q-coder. 

 

(C-heading) DCT based or Transform based Compression 

The Discrete Cosine Transform (DCT) converts image data to the frequency domain, 

much like the DFT, the Discrete Fourier Transform which is discussed at length in the 



Digital Signal Processing Recipes in Java  Lyon and Rao 09/01/97  

Page 28 

next chapter. The DCT is a special case of the DFT [see Netravali et al.].  The transform 

yields a set of values that correspond to magnitudes of frequency components. The 

human eye cannot distinguish very high frequency color changes, and this information 

may be discarded without a great loss in detail of an image. Also, transform values which 

are zero or close to zero may be effectively compressed with a lossless compression 

scheme such as Huffman encoding as may be done in JPEG. The overall JPEG 

compression method is lossy. 

 

 

(B-heading) Progressive Display and the Internet 

For users of the Internet and the WWW, it is very useful to allow for progressive display 

of graphics images. This means that when a user is navigating the Web and goes to a new 

destination, if graphics data is loaded for display, it is shown while it is loading, so the 

user can immediately recognize the image, instead of waiting for the entire image file to 

load before seeing anything. A few formats allow for this: GIF and its patent-free 

successor, PNG, and JPEG. In GIF, there is an option to store graphics data with every 

eighth line of data, then every fourth line, then every second line and finally every line, 

for a total of four passes over the data. You can see a preview of an image with only one-

eighth of the complete data in this scheme. This storage option is called the interlaced 

option for GIF. The non-interlaced storage option just stores rows sequentially and does 

not allow for progressive display. 

 

 

 

Figure 8.3 Interlaced and Non-interlaced storage in GIF  

 

 



Digital Signal Processing Recipes in Java  Lyon and Rao 09/01/97  

Page 28 

 

The PNG format goes one up on GIF. PNG has an interlaced format, where every eighth 

pixel of every eighth line is first transmitted. This allows an image to be viewed with 

only 1/64 of the full image data. 

JPEG data streams have an option for progressive display. Rather than being based on 

scan lines, the image is sent in progressively more detailed layers. That is, 

approximations of the original image are sent in sequence, so that the viewer sees the 

whole image right away, and the quality of the image improves with time. Each scan of 

progressive JPEG takes a full JPEG decompression cycle to display, which can be CPU 

intensive however. Another extension of JPEG provides for hierarchical storage of the 

same image at multiple resolutions, where a complete image is available at different 

resolutions to match the resolution of the display or print hardware. 

 

 

(A-heading) Details of several formats 

In this section you will read about details of some file formats, including those that are 

used by DiffCAD. Note that the Sun Java AWT class library provides built-in support for 

reading and writing JPEG and GIF image files. DiffCAD provides wrapper classes for 

some of this functionality. See the classes: WriteGIF, ReadGIF and VSImage. 

 

 

(B-heading) GIF 

GIF is a file format that uses the LZW compressor, as mentioned previously. There are 

two versions, GIF87a, the original and GIF89a. GIF89a may be incompatible with 

software that reads only GIF87a images, so most modern readers are expected to be able 

to read both formats. The formats are similar but GIF89a has further extensions. The file 

layout is shown below for both formats in Figure 8.4, and this highlights the differences: 



Digital Signal Processing Recipes in Java  Lyon and Rao 09/01/97  

Page 28 

 

 

Figure 8.4 GIF87a and GIF89a file layout 

 

There are several pieces to the file format which are discussed in detail below: 

 

· Header - the header is 6 bytes in size. The first 3 bytes are “GIF” to identify the 

format as GIF. The next three bytes are the version “87a” or “89a”. 

  

· Logical Screen Descriptor - This is a fixed size group of bytes that contain 

information about the minimum screen resolution (height and width), and color 

information to reproduce the image. If the screen is smaller than the screen 

parameters, then some scaling will need to be performed by the application to display 

the image. 

  

· Global Color Table - This is an optional section that contains a CLUT of up to 256 

entries. 

  

· Local Image Descriptor - This section has characteristics of the image data that 

follows including, where on the display the image should start and the image 

resolution and color information. 

  

· Local Color Table - GIF is expandable to be able to include more than one image, 

though this is rarely used. There is therefore the provision to include a color table 

(termed “local”) for each of the images. This is an optional table for specifying a 

CLUT for the image data that follows. This table, if present, supercedes, the Global 

Color Table. 



Digital Signal Processing Recipes in Java  Lyon and Rao 09/01/97  

Page 28 

  

· Image Data - Image data when compressed by LZW usually comes out as a stream of 

data that must be read from beginning to end. GIF splits the data into a series of sub-

blocks. Each sub-block starts with a count byte, which can range in value from 1 to 

255. The count byte value specifies the number of data bytes that will follow. At the 

end of the sub-block a byte of value zero is used to terminate the sub-block.  

  

(B-heading) JPEG/JFIF 

The JPEG standard leaves some ambiguities that make it an incomplete file format 

standard. C-Cube Microsystems created a file format called JPEG File Interchange 

Format (JFIF) that fills in the gaps. It is completely based on the baseline JPEG standard. 

JPEG is generally best applied to high-resolution full color (24bpp) images. This is 

because the transform-based coding will have more latitude for compression with more 

color information. Keep in mind that sharp edges, such as those created by overlaid text, 

can become blurry. When compressing with JPEG, an application usually presents a 

quality setting that you may change to trade off compression to quality. For high 

frequency detail in your source image, you may want a high quality setting. This will 

result in lower compression however. The tradeoff between quality and compression is a 

thorny and persistent issue for JPEG. 

 

A JPEG encoder uses the following steps: 

 

1.  Create header information 

2.  Read in the source image data in RGB 

3.  Transform data to YUV color space - Y is black and white intensity information, and 

the U and V channels have color information. This is done with a linear 

transformation (see Chapter 9 for color space conversion). 



Digital Signal Processing Recipes in Java  Lyon and Rao 09/01/97  

Page 28 

4.  Subsample the U and V channels - that is throw away some color information because 

it should be imperceptible to the viewer; use fewer samples of U and V for every 

sample of Y. 

5.  Perform the DCT on the Y, U and V data. 

6.  Quantize the resulting coefficients into different bins (this performs some 

compression by reducing the number of different possible values; more aggressive 

quantization is used for the color components). 

7.  Huffman encode the quantized data and produce an output data stream. 

 

Both a raw JPEG file and a JFIF file start with the the bytes 255 and 232 to signify the 

start of image marker. For a JFIF file, you will see the bytes 255 and 240 followed by the 

characters “JFIF”, and information about the image. Data that follows the first block is 

standard JPEG data as defined by the specification. For detailed information, obtain the 

specification from the American National Standards Institute [see ANSI]. 

 

 

 

(B-heading) PPM 

PPM is a bitmap format that is used as an intermediate format when converting from one 

system or file format to another. There are a set of portable freeware utilities written by 

Jeff Poskanzer that convert to and from PPM to many other graphic file formats. For 

example, ppmtogif converts from the PPM format to GIF. 

 

The file organization is extremely simple for PPM. You start with an ASCII header, and 

the bitmap data follows as either ASCII data or binary data. No compression is used. 

Data elements are separated by white space (space, tab, carriage return or linefeeds). 

 



Digital Signal Processing Recipes in Java  Lyon and Rao 09/01/97  

Page 28 

The PPM header looks like the following: 
 
MagicValue P3= ASCII data, P6= binary data 
ImageWidth Width of image in pixels (ASCII decimal value) 
ImageHeight Height of image in pixels (ASCII decimal value) 
MaxGrey Maximum color value (ASCII decimal value) 
 

The MaxGrey value specifies the maximum value for a color component. Each pixel is 

specified by three values for R, G and B components. 

 

Here is an example file: 

 
# example of a 3 x 3 bitmap 
P3 
3 3 
255 
0 0 0  0 0 0  0 0 255 
0 0 128 0 7 0  0 1  89 
9 0  0  0 9  9  0  0  0 
 
 

Comments may be included in a file starting with the # character. The bitmap is for 3 

pixels tall by 3 pixels across. The third pixel of the second row has RGB values of 

(0, 1, 89).  

 

Because PPM is a simple format, the entire source code is shown below in listing 8.1 -

how DiffCad implements a PPM reader.  

 

Listing 8.1 Reading the PPM format: The ReadPPM class 
/** 
 * ReadPPM is a class that reads an image from 
 * a PPM format file. 
 * 
 * Victor Silva (victor@cse.bridgeport.edu). 
 * 
 */ 
 



Digital Signal Processing Recipes in Java  Lyon and Rao 09/01/97  

Page 28 

import java.io.*; 
import java.awt.image.*; 
 
public class ReadPPM 
{ 
   public ReadPPM(InputStream in) 
   { 
   } 
 
   private int type; 
   private static final int PBM_ASCII = 1; 
   private static final int PGM_ASCII = 2; 
   private static final int PPM_ASCII = 3; 
   private static final int PBM_RAW = 4; 
   private static final int PGM_RAW = 5; 
   private static final int PPM_RAW = 6; 
 
   private int width = -1, height = -1; 
   private int maxval; 
 
   /// Subclasses implement this to read in enough of the image stream 
   // to figure out the width and height. 
   void readHeader(InputStream in) throws IOException 
   { 
      char c1, c2; 
 
      c1 = (char) readByte( in ); 
      c2 = (char) readByte( in ); 
 
      if (c1 != 'P') 
      { 
         throw new IOException( "not a PBM/PGM/PPM file" ); 
      } 
      switch(c2) 
      { 
      case '1': 
         type = PBM_ASCII; 
         break; 
 
      case '2': 
         type = PGM_ASCII; 
         break; 
 
      case '3': 
         type = PPM_ASCII; 
         break; 



Digital Signal Processing Recipes in Java  Lyon and Rao 09/01/97  

Page 28 

 
      case '4': 
         type = PBM_RAW; 
         break; 
 
      case '5': 
         type = PGM_RAW; 
         break; 
 
      case '6': 
         type = PPM_RAW; 
         break; 
 
      default: 
         throw new IOException( "not a standard PBM/PGM/PPM file" ); 
      } 
      width = readInt( in ); 
      height = readInt( in ); 
      if ( type != PBM_ASCII && type != PBM_RAW ) 
      { 
         maxval = readInt( in ); 
      } 
   } 
 
   int getWidth() 
   { 
      return width; 
   } 
 
   int getHeight() 
   { 
      return height; 
   } 
 
   void readRow( InputStream in, int row, int[] rgbRow ) throws IOException 
   { 
      int col, r, g, b; 
      int rgb = 0; 
      char c; 
 
      for(col=0; col<width; col++) 
      { 
         switch(type) 
         { 
         case PBM_ASCII: 
            c = readChar( in ); 



Digital Signal Processing Recipes in Java  Lyon and Rao 09/01/97  

Page 28 

            if ( c == '1' ) 
            { 
               rgb = 0xff000000; 
            } 
            else 
            { 
               if ( c == '0' ) 
               { 
                  rgb = 0xffffffff; 
               } 
               else 
               { 
                  throw new IOException( "illegal PBM bit" ); 
               } 
            } 
            break; 
         case PGM_ASCII: 
            g = readInt(in); 
            rgb = makeRgb(g, g, g); 
            break; 
         case PPM_ASCII: 
            r = readInt( in ); 
            g = readInt( in ); 
            b = readInt( in ); 
            rgb = makeRgb( r, g, b ); 
            break; 
         case PBM_RAW: 
            if ( readBit( in ) ) 
            { 
               rgb = 0xff000000; 
            } 
            else 
            { 
               rgb = 0xffffffff; 
            } 
            break; 
         case PGM_RAW: 
            g = readByte( in ); 
            if ( maxval != 255 ) 
            { 
               g = fixDepth( g ); 
            } 
            rgb = makeRgb( g, g, g ); 
            break; 
         case PPM_RAW: 
            r = readByte( in ); 



Digital Signal Processing Recipes in Java  Lyon and Rao 09/01/97  

Page 28 

            g = readByte( in ); 
            b = readByte( in ); 
            if ( maxval != 255 ) 
            { 
               r = fixDepth( r ); 
               g = fixDepth( g ); 
               b = fixDepth( b ); 
            } 
            rgb = makeRgb( r, g, b ); 
            break; 
 
         default: 
            break; 
         } 
         rgbRow[col] = rgb; 
      } 
   } 
 
   private static int readByte(InputStream in) throws IOException 
   { 
      int b = in.read(); 
 
      // if end of file 
      if (b == -1) 
      { 
         throw new EOFException(); 
      } 
      return b; 
   } 
 
   private int bitshift = -1; 
   private int bits; 
 
   private boolean readBit( InputStream in ) throws IOException 
   { 
      if ( bitshift == -1 ) 
      { 
         bits = readByte( in ); 
         bitshift = 7; 
      } 
      boolean bit = ( ( ( bits >> bitshift ) & 1 ) != 0 ); 
      --bitshift; 
      return bit; 
   } 
 
   /// Utility routine to read a character, ignoring comments. 



Digital Signal Processing Recipes in Java  Lyon and Rao 09/01/97  

Page 28 

   private static char readChar( InputStream in ) throws IOException 
   { 
      char c; 
 
      c = (char) readByte( in ); 
      if ( c == '#' ) 
      { 
         do 
         { 
            c = (char) readByte( in ); 
         } 
         while ( c != '\n' && c != '\r' ); 
      } 
 
      return c; 
   } 
 
    /// Utility routine to read the first non-whitespace character. 
   private static char readNonwhiteChar( InputStream in ) throws IOException 
   { 
      char c; 
 
      do 
      { 
         c = readChar( in ); 
      } 
      while ( c == ' ' || c == '\t' || c == '\n' || c == '\r' ); 
 
      return c; 
   } 
 
    /// Utility routine to read an ASCII integer, ignoring comments. 
   private static int readInt( InputStream in ) throws IOException 
   { 
      char c; 
      int i; 
 
      c = readNonwhiteChar( in ); 
      if ( c < '0' || c > '9' ) 
      { 
         throw new IOException( "junk in file where integer should be" ); 
      } 
 
      i = 0; 
      do 
      { 



Digital Signal Processing Recipes in Java  Lyon and Rao 09/01/97  

Page 28 

         i = i * 10 + c - '0'; 
         c = readChar( in ); 
      } 
      while ( c >= '0' && c <= '9' ); 
 
      return i; 
   } 
 
   /// Utility routine to rescale a pixel value from a non-eight-bit maxval. 
   private int fixDepth( int p ) 
   { 
      return ( p * 255 + maxval / 2 ) / maxval; 
   } 
 
   /// Utility routine make an RGBdefault pixel from three color values. 
   private static int makeRgb( int r, int g, int b ) 
   { 
      return 0xff000000 | ( r << 16 ) | ( g << 8 ) | b; 
   } 
} 
 
 
(B-heading) VEC 

The VEC format is a simple native vector file format used by DiffCad. Data in the file is 

integer ASCII data. There are no other markers in the file. There are two types of use in 

the format: POINT and VECTOR. First here is the POINT type: 

 

Points are stored as ASCII decimal numbers and are comprised of two coordinates, x and 

y that are separated by spaces or tabs. Points are separated by newlines (linefeeds). Here 

is a file describing a  3 pixel square. 
 
0 0 
3 0 
3 3  
0 3 
 

 

Storing separate points can be useful to describe shapes and objects. Edge detection (see 

Chapter 9) of an image can create this sort of output. Also, this format may be used for 



Digital Signal Processing Recipes in Java  Lyon and Rao 09/01/97  

Page 28 

computer vision and vector display applications. 

 

The VECTOR type of data is specified in a similar manner, except that two points are 

defined per line as follows: 

 
x1 y1 x2 y2 
x3 y3 x4 y4 
... 
 
Here (x1, y1) defines the tail of a vector and (x2, y2) defines the head: 
                     (x1, y1)      (x2,y2) 
 
 
Begin NOTE 
Diffcad has a routine to convert from xy points to vectors. 
End NOTE 
 
 
(B-heading) PICT 

The PICT format is a Macintosh metafile format. It can incorporate both bitmap and 

vector data. Diffcad can write PICT vector data only (the reader is referred to the 

savepict.java class)The PICT format is a fairly complex format and few details will be 

shown here. PICT can use two different forms of compression: JPEG and PackBits. 

PackBits is an RLE type of encoding scheme. 

 

 

(A-heading) Summary 

Digital image file formats are defined by several characteristics: the type of file format it 

is (vector, bitmap or other), the size efficiency based on the compression technology it 

uses, the number of colors it can handle and the resolution of images that it supports. 

Another factor useful for Internet based graphics is progressive display, which is the 

display of a partial image as a graphics file is downloaded. Three formats have specific 

provisions for this : GIF, PNG and JPEG. Although the universe of graphic file formats is 



Digital Signal Processing Recipes in Java  Lyon and Rao 09/01/97  

Page 28 

very large there is a great deal of similarity between formats of the same type. One 

bitmap format is likely to be as capable as another. Metafile formats provide the 

capability for vector and bitmap representations in a single format. Higher levels of 

abstraction are available in vector formats ultimately leading to representation of 3D 

objects, scenes and worlds in 3D formats. DiffCad supports GIF, JPEG,  PPM, VEC, and 

a subset of PICT. 

 


