IPL-TR-087

Introduction
to
The TI Explorer

Douglas Lyon
October 22, 1986

IMAGE PROCESSING LABORATORY

Electrical, Computer, and Systems Engineering Department
Rensselaer Polytechnic Institute
Troy, New York 12180-3590



Table of Contents

PREFACE.ccesecososacosscassssosssccnssscocscnsasensl
REBOOTING SYSTEMe:eeecssccsssocossocssscssacacsscscd
GENERAL USER I/Occeccesccsoossscscsossssscssscnscasd
MAKING A DEMO SYSTEM:cceococsoscccocscssasasssanssh
CREATING A LOGINececovsoosoarsoosossosesssconcsnaonsl
WINDOW MENUS:essesssssssscsscssssascssosavncssncocced
SUBSYSTEMSeesescocccosssssesvscccssescasasssassocsed
ZMACS e eeeevsososoossssssssscsassssssssessscossased
LISP_LISTNEReccecsscosssessscccsssssssssoanccessld
PEEKERe ccvoeoscceccassasscssnossascsononsssassaneld
PROG RAMMING TUTORIAL:.esosocssccccsssnssssccsssssl?
GUIDE TO TI DOCUMENTATION:eeseecvsesosscccscassasl?



PREFACE

The following manual is intended for the first
time user of the Explorer. This is not a
reference manual but an introduction. The
Explorer is a Texas Instruments version of the MIT
CADR machine and as such is properly classed as a
Lisp machine. The native machine code 1is a
dialect of 1lisp called Zetalisp. To provide
compatibility a less powerful dialect of Lisp

called Common Lisp 1is also available. The
intention of the Explorer is to provide an
environment for performing AI research. The
machine gives the user access to the entire
operating system (written in Zetalisp). The
Explorer is set up as a personal computer with
multiprocessing capabilities. There is no

protection against accidental deletion of files.
The naive user may well delete files by accident.
Since there 1is no password protection and no file
protection the new user is advised to be very
careful about deleting files. All wusers are
advised to back up files.

Page 2



ACKNOWLEDGEMENT

The author is happy to acknowledge the following
assistance received during the course of the
development of this manual:

To Professor Jim Modestino who £first suggested
that this manual would be of use to new users of
the Explorer.

To Steve Rezsutek for initial outline suggestions
and for testing the manual on the Explorer as it
was being written.

To Junichi Kanai for reading an initial draft of
this document and for suggesting the section on
programming.

To the Symbolics Education Center whose section on
Flavors was borrowed to help make the section on
programming complete.

To all those whom I have forgotten to mention.
Thanks!

D.L.

IPL PERSONNEL

Laboratory Director : Jim Modestino

Laboratory Manager : Ken Walter JEC 2304 x6800
Computer Operator : Doug Lyon JEC 6049 x8229

IPL Secretary : Linda Fischer JEC 6001 x6330

Page 3



REBOOTING SYSTEM

Many time the user of the system will need to
reboot. A reboot can take the form of a
reinitialization of the 1lisp world. This will
happen more frequently as more people begin to use
larger programs. The reason is that every
function uses space in the lisp world. Not only
does it make the world smaller but it also uses up
function names. Since all functions are global
(except lambda expressions) most users of
functions will want to start with a clean slate
and a smaller world. Packages (which are not
described here) and Flavor (which come later) are
techniques which address this problem.

STOPPING THE PROGRAM

You can usually stop a running program which has
gone awry by typing ABORT. If ABORT does not
work, you can try META-ABORT or META~CTRL-ABORT.

WARM BOOT

If the system is totally locked up, you can warm
boot by pressing META-CTRL-CTRL-RETURN. This will
restart all processes without destroying the
contents of virtual memory of edited buffers.

COLD BOOT
This destroys all data in core, Type
META-CTRL~META-CTRL~-ABORT.

CYCLING POWER

This is performed by pressing the button below the
left most disk drive so that it is released. Then
press it in again so that it is latched.

Page 4



GENERAL USER 1/0

MOUSE NOTATION

The optical mouse which accompanies the Explorer
has 3 buttons. They are mouse-left (ML) ,
mouse-middle (MM) , and mouse-right (MR)
respectively. Standard user I/0 convention is to
use the notation MXN to denote a mouse action.
Here X may be L,M, or R for Left Middle or Right
and N is an integer which indicates the number of
times the button 1is pressed (generally once or
twice). Thus to obtain the system menu type: MR2
(Mouse-Right-Twice). During your use of the
Explorer you will discover that the mouse cursor
will cause items on the display to become
high-lighted. These items are called mouse
sensitive items. The system convention for
obtaining a default menu on a mouse sensitive item
is to MOUSE-RIGHT.

KEYBOARD USE

Most of the control keys are not latched, that is
you must hold them in order to have them modify
the character code of another. For example
HYPER-space requires you to hold the HYPER key
down while pressing the space bar. HYPER, SUPER,
META, SYMBOL, and CTRL are all unlatched keys.
The exceptions are the keys at the top of the
keyboard. HELP, SYSTEM, NETWORK, STATUS, and TERM
are all latched keys. To select the LISP LISTENER
you type SYSTEM-L. That is you push the SYSTEM
key release it and then type an L.

SYSTEM MENU

The system menu contains many system programs for
the user to try. They may be selected with a
MOUSE-LEFT. You may use the system menu to enter
the LISP LISTENER or ZMACS or PEEK (these will be
described later).

SELECTING USING THE SYSTEM KEY

Another way to select system programs is to use
the SYSTEM key. To see the available programs
type: SYSTEM-HELP. This may be used to enter
most of the programs 1listed in the system menu.
The user may wish to try typing SYSTEM-G to obtain
a glossary. )

Page 5



MAKING A DEMO SYSTEM

The user may wish to try making a demo system by
evaluating an S-EXPRESSION in the LISP LISTENER.

Type:

SYSTEM-L
(make-system 'demo :noconfirm :silent)

to load the demo system. This may not be
necessary of the DEMO system has already been
loaded. To tell if it is loaded, enter the system
menu and look for DEMO under programs. If demo is
listed, then it is loaded and may be entered using
a mouse selection.

Page 6



CREATING A LOGIN

STARTING A NEW USER

To start a new use on the system, enter the system
menu and select the NEW USER selection under the
USER AIDS section. When you are done following
the directions given there you will be logged into
the Explorer.

LOGGING OUT

To logout from the Explorer you select the LISP
LISTENER and evaluate

(logout)

This will return 't' and you will be logged out of

the machine.
LOGGING 1IN

Once your login ID has been established you may
log back in by entering the LISP LISTENER and

typing:
(login 'ID)

Where ID is your user ID.

Page 7



WINDOW MENUS

To customize the window configurations for your
comfort, you must adjust the window attributes.
You do this by selecting the window, entering the
system menu, and selecting the WINDOW ATTRIBUTES
section under the WINDOWS column. Some commonly
adjusted attributes are: REVERSE VIDEO and FONT
SELECTION.

Page 8



SUBSYSTEMS

The following is a list of commonly used software
subsystems and a brief description of each. Use
the programming primer to get practice using these
subsystems. The big 3 covered here are: ZMACS,
LISP LISTENER and the PEEKER.

Page 9



ZMACS COMMAND SUMMARY

CTRL-V View the next page

META-V View the previous page

CTRL-L Refresh this page

CTRL-F Move cursor Forward one character
CTRL-B Move cursor Backward one character
CTRL-N Move cursor down to Next line

CTRL-Z Move cursor up to previous line

META-< Move cursor to beginning of file
META-> Move cursor to end of file

META-S Move cursor to search forward

META-R Move cursor to search backward

CTRL-D Delete character at the cursor

CTRL~-H Delete character before cursor

CTRL-K Delete text from cursor to end of line
CTRL-X CTRL~-S Save buffer in editing file
CTRL-X CTRL-F Find file and read into buffer
CTRL-X CTRL-W Write buffer to file

CTRL-SH-A retrieves an argument list

META-. searches for a function

CTRL-META-A beginning of lisp form
CTRL-META-Q reformat lisp form

The following Meta-x commands require that the
user type in the ZMACS subcommand.

META-X compile changed definitions

META-X save all files

META-X find unbalabced parenthesis

SYSTEM <CHAR> To select another system and exit
ZMACS

You are now ready to type in your first program.
Into the ZMACS buffer you must configure your file
header. To do this type META-X set fonts RETURN
The mini-buffer will prompt you for some font
names. Try typing

cptfont RETURN

Now it says: Change the (Blah) ? (Y or N)

Type a Y here and all subsequent times. This will
change the file header in a human and machine
readable form. You could just type a file header
into the file but you would have to reevaluate the
header. Now try to set the BASE. Type

META-X set base RETURN 10.

For this example, use base 10.

Now we will define a flavor for making a fractal
texture.

Page 10



r e
:3: define a flavor for the fractal texture
:3: dgenerator
(defflavor fractal-texture-maker ((a 125)
(b 125)
(window terminal-io)
(number-of-colors 1))
()
t:settable-instance-variables
This flavor is a template for objects in the lisp
environment. When we make an object from a flavor
we have an instance of the object. The object
has instance variables in it. In our case
They are a, b, window and number-of-colors.
Their defaults are 125, 125, terminal-io and 1
respectivly.

:doug-set to be sent to an instace of the
fractal-texture-maker. The &key argument
in the parameter list allows local variables
to the method to be bound by default to the
values accompaning them in the parenthesis.
The user may change these upon invocation.
More on this later.
fmethod (fractal-texture-maker :doug-set) (&key (xoffset 0)
(yoffset 0)
(step .00001)
(x -.749)
(y 1)
(xmax 1000)
(ymax 512))

i
H
H
H
H
H
H
[
;s The following method will allow the message
H
H
H
H
H
H
e

NN WE WS WE WO WE WO WE WP WO WE We WE WO WO WO

; LET* allows variables to be used
; as they are being calculated. Use of LET implies
; a parallel binding.
(let* ((aspect 1)
(temp 0)
(k 0)
(1 0)
(xmax-on-2 (// xmax 2))
(ymax-on-2 (// ymax 2)))

e we we
we wme ™o

Page 11



Loop and while are macros which work like progn.

e we we
g W %N
e we we

(loop with j .
initially.
(setq j (- y (* step aspect ymax-on-2 (// ymax 2)))
while (< i (+ x (* xmax-on-2 1) step))) do

(setg i (+ i step))

(setq temp (send self :iterate i j))

(if (eq nil temp) (setq temp 255))

(if (> temp 127)

(send window
tdraw-point
(+ xoffset x) (+ yoffset y)))

(setg k (+ k 1)))

(setg 1 (+ 1 1)))))

(defmethod (fractal-texture-maker :iterate) (cl c2)
(let* ((iter 255) (tl1 0) (zl 0) (z2 0))
(loop for i from 1 to iter do
(if (or (> zl 2.0) (< zl =2.0) (> z2 2.0) (< z2 -2.0))

(return i)

(setqg tl (+ (* (+ zl1 z2) (- zl 22)) cl)
z2 (* z1 z2)
z2 (+ 2zl 2zl c2)
i (+11)
zl (+ (* (+ tl z2) (- t1 22)) cl)
z2 (* z1 tl)
z2 (+ z2 22 ¢c2))))))

Page 12



To save/compile the program type

CTRL-W pl : <login id>; fractal.lisp
META-X COMPILE BUFFER

Now you may select the LISP LISTENER and make an
instance of the new flavor. Type:

(setq foo (make-instance 'fractal-texture-mak
er))

A print name should be returned. Now you can send
it a message. Before you start to output onto the
screen, lets consider what will happen. If the
program draws on the screen upon which you perform
your typing then your typing will destroy what the
program draws. If you were to describe foo by

typing:
(decribe fo0)

you would discover that the window instance
variable 1in the foo instance of the
fractal-texture-maker flavor 1is bound to an
instance of the LISP LISTENER. You can verify
this to be true by typing:

(print terminal-io)

Now an interesting way to go about drawing the
DOUG-SET is to select zmacs and typing:

BREAK

This will suspend the zmacs edit session and give
you a tempory typeout window with a LISP LISTENER.
From here you may run your DOUG-SET. Type:

Page 13



(send foo :doug-set)

and then select your initial LISP LISTNER by
typing

SYSTEM-L

This will take about 20 minutes and should produce
a pretty picture on the explorer.

Page 14



LISP LISTENER

The LISP LISTENER is a read eval loop which
expects to see lisp s-expressions. You select the
LISTENER by typing SYSTEM-L. You may use this to
evaluate programs.

Page 15



PEEKER

The PEEKER is a subsystem for displaying the
processes running on your Explorer. You may find
that in the course of normal operations the window
system locks and is unable to accept input. You
may also find that a process needs to be reset or
arrested. Type:

SELECT-P

to peek at the processes on the Explorer. This
will give you a menu which includes the option
PROCESSES. Type a P or MOUSE on PROCESSES in
order to display the processes. Some processes
ate quite important and should not be deleted,
arrested or reset. You may have to cold boot if
you do this. All . the processes are mouse
sensitive and a default menu may be obtained by
using a MOUSE-RIGHT.

Page 16 .



PROG RAMMING TUTORIAL

This section is intended for the programmer new to
the Zetalisp environment. The naive programmer
may be tempted to stick with the already acquired
knowledge of Lisp and thus use Common Lisp, or not
take advantage of the flavor system in Zetalisp.
Be warned, the flavor system is the key to
increased productivity on the Lisp machine and
should be embraced by any programmer who wants to
be a full fledged Lisp machine hacker, Your
productivity will increase, your code will look
cleaner, run faster and writing in Zetalisp will
make your soul fly! Remember, you heard it here
first.

ENTERING LISP MODES

To enter Zetalisp you type:
(turn_zeta_lisp_on)
To enter Common Lisp you type:

(turn_common_lisp_on)

To read more about language modes read section F
of the Programming Primer.

DIFFERENCES BETWEEN ZETALISP AND COMMON LISP

Later in this section of the manual 1 will
introduce Zetalisp for beginning Lisp programmers,
I will not treat Common Lisp here because Lisp
Experience is assumed on behalf of the reader and
the standard reference for the Explorer (Common
Lisp by Steele) is an excellent book for
beginners. The main difference between Zetalisp
and Common Lisp is the object orientation and its'
implementation called the Flavor system.

Page 17



WHAT ARE FLAVORS?

Flavors are programmer-defined data types, much
like the kind that the type statement of Pascal
lets you define (or the defstruct of Zetalisp).
Many of the more complicated system data types are
implemented as flavors. Understanding flavors is

vour key to the system.

Objects that have a flavor as their data type are
called instances of that flavor. You can't create
instances of a flavor until that flavor is
defined. The system defines some flavors for you,
so you can make instances of them right away.

Each flavor has a name, which is a symbol used to
identify that flavor. The function that creates
new instances (it's called make-instance) takes a
flavor name as one of its arguments.

Each flavor instance has a table of instance
variables. Each instance variable has a name,
which is a symbol, and a value, which is any Lisp
object. All the instances of one flavor have
instance variables with the same names, but the
values can differ from instance to instance. Two
instances of different flavors can have completely
different instance variables.

You can create new flavors with the special
operator DEFFLAVOR, like this:

(defflavor "flavor-name"
("instance-variable-1"
"instance-variable-2"

"instance-variable-n"
()
:settable-instance-variables)

Note: Defflavor is 1like defun in that is is
always at the top level in your file.

Page 18



For example, let's create a flavor called ship.

(defflavor ship
(x y captain)
]
:settable-instance-variables)

This form only defines the flavor ship; we have
not yet made any instances of the ship flavor.
All instances of the ship flavor will have three
instance variables, x, y, and captain. The values
of these instance variables will vary from
instance to instance: that's why they are called
instances variables.

CREATING INSTANCES

You may create an instance of the ship flavor by
typing:

(Setqg bigship (make-instance 'ship :x 300 :y
400 :captain 'hook))

The printed representation will look something
like: '

#<ship 604824>

You do not have to initialize the instance
variables, but if you don't they will be left
unbound., Defaults may be added by placing an
extra set of parenthesis around the instance
variables. For example:

(defflavor ship
((x 200)
(captain 'hook)) _
() )
:settable-instance-variables)

Page 19



This defines the default initialization for which
is evaluated 1in the global environment at
make-instance time.

METHODS

Wwhen we compile the DEFFLAVOR for ship, we not
only get a template for creating instances of a
ship, but we also get several methods. Methods
may take arguments, perform some section and
return a result. When ship is compiled, six new
methods appear, :x, 3y, :captain, :set-x, :set-y
and :set-captain. The set methods allow the user
to change the values of the instance variables and
are created because of the
:settable~instance-variables option used 1in the
DEFFLAVOR form.

A method is run when a user sends a message to an

instance. Send is a function. It takes one of
these forms:

(send instance :message)

(send instance :message argl ... argn)

WRITING YOUR OWN METHODS

The following examples show you how to wuse the
DEFMETHOD special operator to write your own
methods.

(defmethod (ship :draw) ()
(send terminals-io :draw-rectangle 40 20 (-
x 20) (- y 10) tv:alu-xor)

The first operand to DEFMETHOD is a list
containing the flavor name and the message name.

The second operand is a parameter list. This

methods has no parameters but, as with defun, the
() are still required.

Page 20



We reference X and Y, the instance variables,
without sending for them. This 1s because a
method runs inside an instance, and all the
instance variables are available as local
variables of the method.

To run this method type:

(send bigship :draw)

For more information about Zetalisp see the
Programming Primer section 5.

Page 21



GUIDE TO TI DOCUMENTATION

The first time user should get familiar with the
Operations Guide and Programming Primer. Try some
of the examples in the Primer.

Here is a list of all the TI documentation.

Lisp Reference

Window System Reference

System Software Release Information
System Software Installation Guide
Technical Summary

Glossary

System Software Design Notes
Programming Primer

Programming Concepts And Tools
Zmacs Editor Reference

Zzmacs Editor Tutorial

Comm User'S Guide

Tcp/Ip User'S Guide

Other Comm Guides

Operations Guide

Cit User's Guide

Master Index

Happy computingl!!

DL.

Page 22



