IPL-2

RPI Image Processing Laboratory Bulletin No. |[Rev. |[Page
COMPUTER DOCUMENTATION =i ad 1.0 1

»”

TITLE:

The Straw User's Manual

ABSTRACT:This bulletin describes how to operate the IPL's raytracer known
as Straw. While Straw will produce realistic images it is very costly to

run. It is useful to those who would like to produce graphics for
computer vision or for graphics own sake.

DESCRIPTION:

To run Straw the user types:
SEG STRAWYSTRAW

It is usual for the user to run Straw as a phantom. To get started running

your Straw programs a special section entitled PRIMOS exists for the
first time user, this begins on page 69.

[Use additional sheets if necessary]

Date: Total
Prepared
by:p Douglas Lyon 8/17/87 Pages:

77

Abstract

This report describes how to use a software system for generating
pictures on the Deanza. The software is known as Straw. The technique
for generating the pictures is known as raytracing. Raytracing enables
a user to set up a scene which looks real. The process of defining the
scene to the computer is not well defined. Because of the somewhat
limitea interface a keyboard has to offer the user is often involved in
stating geometries and cooefficients to the Straw program. The Straw
programming language is a syntax which allows the user to concentrate
effort on the geometries and cooefficients without having to deal to
much with the computer. This report will hopefully bring raytracing to

the non-graphics-specialist.

Page 2

Table of Contents

ABSTRACT.......'...l....Il......l..l...........'............'...l.....z

ACKNOWLEDGEMENT...3
INTRODUCTION ¢ e e seeoseocscocscsssassesassasssssnassasssnsscssocsnccnccssd
GETTING_STARTED...5
NOTATION..-.........6
CAMERA..9
COLOR..ll
COTOMO...13
EXECUTE e e o evosecescessesessosenasnssssascssssavascssasssssescssnscoasesld

FRAME..........ll'..o...-‘.......0..0n....l.Q...O...l.......!......l.ls

IMAGE_OUTPUT...17
INITIALIZE...18
INTENSITY_MAP..19
LIGHT . o o e oeveescoacsssonenasasvosoassssssesscssosssssssssosscascssascssell
PAINT_TABLE............................L.............................21
PATCH..22
PATCH_TREES..23
PLANE..24
POLYHEDRON « o ¢ 0 s o s 0o soecsaseesensesssssasssscssssssssossscssasacsossnssld
QUADRIC_BOUNDS...26

QUADRIC_COEFFSI.‘............'.l.....-l..l...l'....I.................27

SPHERE....'.......OC..-.Oo.O.l..-..co.o..c......OIIQ..I............|-28

SSAVE......D....I..'....'......'....l....l....'..-...................29

TEXTURE__MAPI......'.....I....I......l..‘.I'....l.............l....l..30

VERTEX s v e v v o vececsssssssessssannsessssssssssosssanassessassssssassess3l
MOTION_BLURe e« e s oo senosnsscasescasassssssssnssssosssssosassssssasssse32
EX_LoleeasocooannsososasaeseennsassssssssssssasenssssssnsssonasssssesS0
EX_ Le2eeeoeeeeeasoasosssansssossnsosasssssansssnanosssssssassasssssss5l
EX 2.l eeeeeseeseeseocososnesesonsossssnasssssssesncnansssesssssascsesd3
EX 222 e eenoacosasssensssnssassasoncacsssassssssnsvessasssoscsssssessds
EX 243 eseeeecacennsansesesssssassssssssssssssssnsssssssasassscscssssd?
EX 3 eLeeeeesonseenacesaseanssasosassosasnssesanasscssssssssascssssvasbl
EX 4 oleeeeseeesoceenanssnseeaassannsssssssssssssassasssassasaccnnsescbd
BIBLIOGRAPH Y« « oo e e ovvcsonsenccsasseassascsassssosssavcssssssassessscssb?
VLT v eoeeonnsooannsaossasessessnnsessasssssssansssansssscssacssassb8
PRIMOS e « e v v evoeaseessasesncosaseesaseancasssssssasssacasssssasnssseesby

DBS.........'..'...'..........Q......'.I...I.....'...'.II....I.......?Z

COMMAND_SUMMARY.......II.I................'....I......'............'.73

FUTURE_RESEARCH.l........l.................l.........l.'.............76

Acknowledgment

The research reported here was supported by the 1Image Processing

Laboratory, Professor Herbert Freeman, Principal Investigator.

Page 3

Introduction

This is a users manual for the in house raytracer used at the Image
Processing Laboratory at RPI. A raytracer traces a line from a source
of light to a raster element in a display (called a pixel) and
determines the pixels brightness by various techniques. The user of
this software need not be concerned with how the program works. This
manual will not cover the theory behind raytracing. Whenever an
intuitive feel for a coefficient is needed an example photograph is
presented which should help the user understand the meaning of a term.
A classic example is the quadric surface. Experimentation is required
for the user to get a feel for the shapes derivable for the surface.

In the appendix on Examples of the use of the quadric_coeffs Command

the user will find all families of quadric surfaces presented so that a
quadric surface grammar may result. It is expected that the user will
become familiar enough with the effects of the command of interest so

that only the reference part of this manual needs to be used.

Page 4

Getting Started

In order to get started in straw you must first read the tutorial on
your operating system. Each operating system for which straw runs is
described after the bibliography at the end of the table of contents.
This manual is not ment to be read as a novel but is instead a guide to

a large software subsystem which requires your interaction.

GOOD LUCK!

Page 5

Notation

The Straw primitives which are intended to be used in a input command
sequence and the user callable extensions to this package are described

in this appendix.

Straw commands may be entered in any order within reason. Exit will
have an immeaiate effect, you should try to mirror your own thought
processes in the order that you use your commands. A geometry command
(sphere, plane..) will make reference to a color which must be defined
already. Never refer to a nonexistent entity. If you follow this rule

you will probably not get into trouble.

Throughout this manual a consistent notation is used:

'*! - denotes multiplication.
'#%' - means raised to the power, x**2 means Xx*X.
'dx' - denotes a change in Xx.
'dy' - denotes a change in y.
*dz' - denotes a change in z.

Unless otherwise noted all positional units are in millimeters, all

rotationalL units are degrees. The units for ambience are unknown.

A common layout is utilized to describe the various primitives. The
layout consists of a series of entries and the relative information.
Please note that in the case of interactive dialogues the computers
response is underlined. I1f the computer response is unknown then the
symbol '..' is used to indicate that situation dependent output will be

Page 6

Notation

emmitted by the computer. Reading through the layout the user will see
a similarity between the documentatin style and the UNIX style, this is
delibrate. A unified documenation standard is essential for easy
reader interface. User friendly is not the point, rather information

content and accessability have been maximised.

ROUTINE NAME The name of the primitive and a one-line description of

the primitive are given.

CALLING SEQUENCE The actual calling sequence of the primitive in the
user's software is displayed. Sometimes '{...}' are used to
indicate a portion of the calling line which may be repeated
forever. A 'I|' indicates that the user is given a choice of one

argument OR another.

ARGUMENTS The varible utilized in the calling sequence are identified

and described. Each variable is in the form:

<type> <varible> - <description>

where <type> is the type of the varible. The possible types are
integer, character (data type representing character strings
such as integer), and keyword (special sequence of characters
which give a token to the command parser). If a varible is the
return of a function, <description> will start with "Function

return,".

DESCRIPTION A description of the function of the primitive is given.

Page 7

Notation

IMPLEMENTATION A brief description of the algorithm utilized for the

primitive is given.

DEFICIENCIES AND PROBLEMS The primivie may have some defiencies of

problems that may be due to the algorithm utilized or to the
dependence of the algorithm to the underlying system. This

entry makes the user aware of the possible deficiencies and

problems of the primitive.

ROUTINES CALLED This entry 1lists the routines or system-dependent

macros that are utilized in the implementation of the primitive.

REFERENCES Pointers to further information on the primitive or on the

algorithm utilized is given in this entry.

The Straw primitives are described in alphabetical order.

Page 8

CAMERA CAMERA

ROUTINE NAME CAMERA - places a camera in the object coodinate system

CALLING SEQUENCE Camera: <x> <y> <z> <rot_x> <rot_y> {rot_z>
<focal_length>;

ARGUMENTS real x - the x position in the scene space.

real y - the y position in the scene space.

real z - the z position in the scene space.

real rot_x - the degrees of rotation about the camera's x axis.
real rot_y - the degrees of rotation about the camera's y ayis.
real rot_z - the degrees of rotation about the camera's z axis.
real focal_length - the actual focal length of the camera in
millimeters.

DESCRIPTION The camera command will position the virtual camera in a
scene. The camera has no physical attributes, will therefore
cast no shadow and cannot be seen even in a mirror. The
rotation axis are shown below, OCS 1is for Object Coordinate
System, CCS is for Camera Coordinate System.

0Cs CCs

C
Z Y
|
|
t
|

N, "
/

/
X
Positive rotation 1is clockwise motion about the named CCS axis
as if you were looking toward the origin while sitting on the
axis. 1Initially the camera positioned at point (0,200,0) in OCs
will point towards (0,0,0) in the OCs iff dx,dy, and dz are 0.
The camera therefore looks out its own 2z axis. This |is
translation and rotation independent, the camera always looks
down the CCS Z axis. From the initial camera position the
grammer for camera is as follows:
a change in dy is a pan.
a change in dx is a tilt.
a change in dz is a swing.
if dy = 90 degrees the CCS looks like this:
CCs

IMPLEMENTATION In order to properly rotate the camera use the
following formula:
x_rot = 90 - arctan(dz / sqrt(dx**2 + dy**2))
y_rot arctan(dx/dy)

Page 9

CAMERA CAMERA

z_rot = image rotation on the screen (+ is clockwise).

dx = x - X_Coordinate_to_be_center_of_screen
dy = Yy - Y_Coordinate_to_be_center_of_screen
dz = z - Z_Coordinate to_be_center_of_screen

The focal_length is calculated by the following formula,
focal_length = frame_size / window_size * sqrt(dx**2 + dy**2 +
dz**2)

DEFICIENCIES AND PROBLEMS A focal length of zero will result in a
divide exception error and Straw will bomb.

REFERENCES See the Frame command for more info on frame/window size.
See also LONG8l1, LACR83 and POTM82.

Page 10

COLOR COLOR

ROUTINE NAME COLOR - This defines intensity, texture maps, paint
tables and colors.

CALLING SEQUENCE Color: <identifier> <red> <green> <blue> <ambient
coeff> <diffuse coeff> <reflection coeff> <transparency coeff>
<index of refraction> <specular coeff> <glossiness>
&
<image_map identifier> <map switch> <min pix> <max pix> <min
line> <max line> <u repeat> <v repeat>
/* case 1l: a sphere */
<min u> <max u> <min v> <max v>
/* case 2 : planar surface */
<x(u=0,v=0)> <y(u=0,v=0)> <z(u=0,v=0)>
<x(u=1,v=0)> <y(u=l,v=0)> <z(u=1l,v=0)>
<x (u=0,v=1)> <y(u=0,v=1)> <z(u=0,v=1)>
/* case 3 : bi-cubic patches */
<min u> <max u> <min v> <max v>
&
<texture_map identifier> <map switch> <min pix> <max pix> <min
line> <max line> <u repeat> <v repeat> <S(Fu,Fv)> /* case 1: a
sphere */
<min u> <max u> <min v> <max v>
/* case 2 : planar surface */
<x(u=0,v=0)> <y(u=0,v=0)> <z(u=0,v=0)>
<x(u=1l,v=0)> <y(u=l,v=0)> <z(u=1l,v=0)>
<x(u=0,v=1)> <y(u=0,v=1)> <z(u=0,v=1)>
/* case 3 : bi=-cubic patches */
<min u> <max u> <min v> <max v>
&
<paint_table identifier> ;

ARGUMENTS keyword <identifier> - Name of the color to be used by a
surface command.
integer (0 - ?) <red> - gives strength of red ambient light
integer (0 ~ ?) <green> - gives strength of green ambient light
integer (0 - ?) <blue> - gives strength of blue ambient light
real <ambient coeff> - saturation of the final color.

integer (0 - ?) <diffuse coeff> =~ gives degree of diffuse
reflection.

real <reflection coeff> - amplification of incident 1light
reflected.

real <transmission coeff> - amplification of incident 1light
transmitted.

real <index of refraction> - bends 1light passing through an
object.

integer (0 - ?) <specular coeff> - brightness of reflection.
real <glossiness> - size of reflection.

keyword '&' - required delimiter for intensity mapping.

keyword <image_map identifier> = identifier set up by
Intensity_map command.

keyword <map switch> - either 'transposed' or 'normal' are used
to rotate the mapping 90 degrees.

integer <min pix> - minimum pixel in mapped image.

Page 11

COLOR

integer <max pix> -~ maximum pixel in mapped image.
integer <min line> - minimum scan line in mapped image.
integer <max line> - maximum scan line in mapped image.
integer <u repeat> - map repeat in u parameter.

integer <v repeat> - map repeat in v parameter.

keyword <texture_map identifier> - identifier set
Texture_map command.

keyword <map switch> - either 'transposed' or 'normal’
to rotate the mapping 90 degrees.

integer <min pix> - minimum pixel in mapped image.
integer <max pix> - maximum pixel in mapped image.
integer <min line> - minimum scan line in mapped image.
integer <max line> - maximum scan line in mapped image.
integer <u repeat> - map repeat in u parameter.

integer <v repeat> - map repeat in v parameter.

real <S(Fu,Fv)> - scale of texture function derivitives
Fv.

keyword '&' - required delimiter for texture mapping.
keyword <paint_table identifier> - Name of paint table
Paint_table command.

COLOR

up by

are used

Fu and

given by

DESCRIPTION The color command is used to set up the color intensity
map, texture, map and paint table of an object. The absolute

minimum required for a color to be seen is a definition
following arguments:
<identifier>, <red>, <green>, <blue>, <ambient coeff>

for the

The reason for the question mark in the color command is due to
the limit of the users display system. A color ambience of 500

is unreasonable for a display system whose limit is

255 (at

least for direct viewing). The problem is that the internal
dynamic range for intensity is greater than the displayable

dynamic range.

IMPLEMENTATION The parametric definition of a sphere used is:

X = Xo + r*cos(u)*cos(v)
Y = Yo + r*sin(u)*cos(v)
7 = 20 + r*sin(v)

DEFICIENCIES AND PROBLEMS This is a hard command to use. The maximum

number of colors is 100. There is a parameter for this

in the

file COMMON.F77. There doesn't seem to be a provision for

mapping onto quadric surfaces. Presidence is given

to those

operators which appear 1latest in the color definition. It is
very diffucult to use many different techniques from the color
command at once. Straw seems to allow only one type of coloring
at a time. Any image trranslation must be done externally to

the straw program.

REFERENCES See the Straw code, intensity map command and the
map command and the paint_table command.

Page 12

texture

COTOMO COTOMO

ROUTINE NAME COTOMO - converts a color (type 26) image to a monocrome
(type 8). .

CALLING SEQUENCE Cotomo Enter directory name:<directory>

Enter input file name or number:<infile name>
Input color images ..

directory:s ..

name: ..

number: ..

comment: ..

date: ..

.br Enter output file name: <outfile name>
Output monochrome image

directory: ..

name: ..

number: ..

comment: ..

date: ..

Enter red multiplication coefficient:
{tred coei>

Enter green multiplication coefficient:
{green coef>

Enter blue multiplication coefficient:
<blue coer>

ARGUMENTS keyword <directory> - This is a DBS directory created by the
Dcreate command, see U-107.
keyword <infile name> - the type 26 DBS input file you want to
process.
keyword <outfile name> - the type 8 DBS output file you want to
process.
real (0..1l) <red coef> - .33 for unbiased, .30 for NTSC.
real (0..1) <green coef> - .33 for unbiased, .59 for NTSC.
real (0..1) <blue coef> - .33 for unbiased, .11 for NTSC.

DESCRIPTION Cotomo converts a DeAnza image in a DBS format type 26
(color) to DBS format 8 (monocrome). A type 8 format is
essential to texture mapping in Straw. The user may only
operate on inputs and outputs in the same DBS directory.
Further the user must save the input with the Ssave command
described elsewhere in this manual in order to establish a type
26 input file. The type 8 image appears only in the red
channel.

IMPLEMENTATION The unbiased conversion formula is:
L = 0.33*R + 0.33*G + 0.33*B
The NTSC (National Television Standards Committee) conversion
formula is:
L = 0.30*¥R + 0.59*G + 0.11*B
Note that all coefficients must sum to one.

DEFICIENCIES AND PROBLEMS There should be a formula to obtain the half

Page 13

COTOMO

COTOMO

tone masks for printing purposes so that a color seperation
would not have to be done at the printers. Infact if this
software were to output on a monocrome device (versetec,
tekcopier, laser printer) the color could be reconstructed. It
would be nicer if the software prompted the user for biased or
NTSC converstion rather than have the user look this stuff up.

ROUTINES CALLED SAVSCL, OPN$DR, TNOUA, TIDEC, LST$FL, T$DIP, PUTS$DT,

CLS$UN, TNOU, GETSDT

REFERENCES See the Intensity_map command elsewhere in this manual.

See also User bulliten 107.

Page 14

EXECUTE EXECUTE

ROUTINE NAME EXECUTE - Calculates an image.
CALLING SEQUENCE Execute ;

ARGUMENTS None.

DESCRIPTION Execute may be performed iterativly during a single run of
Straw. This feature is what gives Straw flexibility as an
animation tool. By altering the data base after an execution a
reexecution will take the alterations into account when

generating the next picture.

Page 15

FRAME FRAME

ROUTINE NAME FRAME - contours the output of Straw to a user specified
size.

CALLING SEQUENCE FRAME: <r_size> <s_size> <r_pixels> <s_lines>
<i_pixel> <f_pixel> <i_line> <f_line> ;

ARGUMENTS
real <r_size> - the horizontal dimensions of the camera frame to
become the output screen.
real <s_size> - the vertical dimensions of the camera frame to
become the output screen.
real <r_pixels> =~ horizonal number of pixels on the output
display.
real <s_lines> - number of scan lines in the output device.
real <i_pixel> - initial pixel number.
real <f_pixel> - final pixel number.
real <i_line> - initial line number.
real <f_line> - final line number.

DESCRIPTION The frame command allows the user to generate output for

various display devices. Frame allows the user to shape the
Straw output picture and align it on the screen of raster
devices with up to 1024 by 1024 resolution. For the purpose of
debugging pictures it is often useful to set the picture
resolution to 64 by 64 and then zoom into the picture. The
f rame commands last four arguments are optional. The frame
interacts with the £focal length. For <r_size> of 30
(millimeters) by <s_size> of 30 (mm)

IMPLEMENTATION The following formula give relationship between various
parameters in the Frame command:
r_pixels = f_pixel - i_pixel + 1
s_lines = f£f_line - i_line + 1
"The basic law governing the formation through a lens can be
described by lens formula used in geometrical optics:

1/b + 1/v = 1/F

where D is the object distance, V is the Image distance, and F
is the focal length of the lens, all measured along the optical
axis. " [POTM82] This is always true in Straw except for the
post processing techniques which limit the lens aperture.

DEFICIENCIES AND PROBLEMS Frame does not presently support display
devices with greater resolution than 1024 by 1024. To change
this would change the performance of Straw running on systems
with output devices of lower resolution. The frame and the
focal length of the camera command specify the viewing pyramid.
The viewing pyramid is not straight foward to establish without
some thought and this make the frame command somewhat combersome
for the average user.

REFERENCES See Long81 and POTM82.

Page 16

IMAGE_OUTPUT IMAGE_OUTPUT

ROUTINE NAME IMAGE_OUTPUT - opens a DBS image file for a Straw
picture.

CALLING SEQUENCE Image_output: <directory> <file> ;

ARGUMENTS keyword <directory> =~ this is a DBS directory made by the
DCREATE command.
keyword <file> - this is the name or number of the file in the
DBS directory.

DESCRIPTION Image_output must be given before a picture may be
executed. In the event that the user wishes to execute a Straw
data base more than once Image_output must be called each time
Straw has generated a picture.

DEFICIENCIES AND PROBLEMS This routine relies on the DBS software
subsystem.

ROUYTINES CALLED PUTSDT, GETSDT, ...
REFERENCES See User bulliten 107

Page 17

INITIALIZE INITIALIZE

ROUTINE NAME INITIALIZE - This routine will set the Straw database to
the default setting.

CALLING SEQUENCE Initialize ;
ARGUMENTS None.

DESCRIPTION Initialize should always be called when the Straw is
initially invoked. It sould never be called during an animation
sequence unless the user plans to set all the features in the
data base to something different or feels that the data base is
to full to handle any more objects. There are definite reasons
for the advanced Straw user to want to delete objects from the
data base. Initialize is the only way to do this and the
penalty is that the user must completly regenerate the data base
from the ground up.

DEFICIENCIES AND PROBLEMS There seems to be no way to initialize one

specific class of commands such as spheres or light sources.
This would require extending the command parser and the Straw.

Page 18

INTENSITY_MAP INTENSITY_MAP

ROUTINE NAME INTENSITY MAP - specifies source of a color image.
CALLING SEQUENCE Intensity_map: <identifier> <directory> <file> ;

ARGUMENTS keyword <identifier> - this is a token to be used later by
the Straw. keyword <directory> - this is the name of the DBS
file directory with the image file. keyword <file> - this is
the name of the image file.

DESCRIPTION Intensity_map will open a color (type 26) DBS images file
for input to the Straw mapping subsystem. Intensity_map only
defines a token to be used later as a Color command Kkeyword
identifier. Paint tables take presidence over intensity maps
and intensity maps take presidence over normal color command
listed previous to intensity maps.

DEFICIENCIES AND PROBLEMS Since only a DBS type image will work here
the user must use the ssave command to save an image in the
proper format. The DIPS subsystem will not do this. The Ssave
command is installed as part of the UNSPSOFTware so that the
user may conviently use type 26 images. The DBS directories
must be closed when straw opens them or an error will occur.

REFERENCES See Ssave.

Page 19

LIGHT LIGHT

ROUTINE NAME LIGHT - inserts a light into the object coordinate
system.

CALLING SEQUENCE Light: <identifier> <x> <y> <z> <red> <green> <blue>
<shawdow flag> <shadow coeff>;

ARGUMENTS keyword <identifier> - Allows the light source to be refered
to by name.

real <x> - The position along the X axis in the object
coordinate system.
real <y> - The position along the Y axis in the object
coordinate system.
real <z> - The position along the 2 axis in the object

coordinate system.

real <red> - red intensity of the light source.
real <blue> - blue intensity of the light source.
real <green> -green intensity of the light source.

keyword <shadow £flag> - ‘'shadow' or 'noshadow’ indicates
presents of shadows.
real <shadow coef> - determines shadows contrast as cast by

light source.

DESCRIPTION The Light command will effect the color percieved by the
user of an object in the object coordinate system. This extends
the color notation currently used by defining the lighting
characteristics of an environment. Only the <identifier> <x>
<y> <z> <red> <green> <blue> arguments are absolutly necessary
for there to be light.

DEFICIENCIES AND PROBLEMS Currently it 1is impossible to get an
intuitive feel for the parameters in this command because:
A. An RGB color space model of light has no relevence to any
color system artists study.
B. The upper and lower limitations of these parameters in Straw
is not yet known.

There is a maximum of 20 1light source currently permissible.
There is a parameter for this in the file COMMON.F77.

REFERENCES See Long8l

Page 20

PAINT_TABLE PAINT_TABLE

ROUTINE NAME PAINT TABLE - a 1linear interpolation of color along a
surface.
CALLING SEQUENCE Paint_table: <identifier> [<from_x> <from_y>

<from_z> <from_red> <from_green> <from_blue> <to_x> <to_y>
<to_z> <to_red> <to_green> <to_blue>l;

ARGUMENTS keyword <identifier> - a token to be refered to by the color
command.
real <from_x> - x position on a surface where the 'from' color
starts.
real <from_y> =- Yy position on a surface where the 'from' color
starts.
real <from_z> - z position on a surface where the 'from' color
starts.
real <from_red> - the red component of the 'from' color.
real <from_green> - the green component of the 'from' color.
real <from_blue> - the blue component of the 'from' color.
real <to_x> - x position on a surface where the 'to' color ends.
real <to_y> - y position on a surface where the 'to' color ends.
real <to_z> - z position on a surface where the 'to' color ends.
real <to_red> - the red component of the 'to' color.
real <to_green> - the green component of the 'to' color.
real <to_blue> - the blue component of the 'to' color.

DESCRIPTION Paint_table allows a range of colors to show up which the
user does not directly define. The color 1limits are actually
3-dimensional vectors which define a point in color space.
Paint tables take presidence over intensity maps.

IMPLEMENTATION To go from one point in color space to another a linear
interpolation is used. '

DEFICIENCIES AND PROBLEMS As with all rgb manipulations, the additive
synthesis color theory is not well understood. A better
approach might be a color naming system which allows the user
various color names and modifiers. If the user tries to make
the from point and the too point the same value the straw will
attempt to divide by zero at run time and bomb out.

bPage 21

PATCH PATCH

ROUTINE NAME PATCH - defines a bicubic surface

CALLING SEQUENCE patch : <identifier> <color> <r_min> <list of
control points> ;

ARGUMENTS keyword <identifier> - a means of labeling the patch which
is not used.
keyword <color> - a color name for the patch color.
real <r_min> - the smaller r_min gives better patch resolution.
keyword <list of control points> - 16 points defined by Vertex.

DESCRIPTION In development...

Page 22

PATCH_TREES PATCH_TREES

ROUTINE NAME PATCH_TREES - reads a DBS file containing patches.

CALLING SEQUENCE patch_trees : <identifier> <color> <directory>

<file> ;

ARGUMENTS keyword <identifier> - Names the tree, not used at this
time.
keyword <color> =~ Defined by the Color command, gives color to
patches.

keyword <directory> - A dbs directory.
keyword <file> - Name or number of file in the directory.

DESCRIPTION Patch_trees reads predefined sheets of bicubic patches
and/or quadtrees of bounding volumes from the specified file.
<directory> and <file> default to '*' if unspecified. vkt
usually lists the files in the directory. The type of DBS file
which a PATCH_TREES command can read is 1021.

REFERENCES See the section on DBS.

bPage 23

PLANE PLANE

ROUTINE NAME PLANE - places a plane based on verticies in the Straw
data base.

CALLING SEQUENCE plane : <identifier> <color> <vertex 1list> {&
<vertex list>} ;

ARGUMENTS keyword <identifier> - This names the plane for use in the
Polygon command.

keyword <color> - This is a color name defined by the Color
command.
keyword <vertex list> - a list of verticies which define the
boundary.

keyword & <vertex list> - verticies which define internal holes.

DESCRIPTION

The Plane command enters the plane into the Straw data base.
Nothing is displayed until the Polygon command. 1000 planes are
permissible.

Page 24

POLYHEDRON POLYHEDRON

ROUTINE NAME POLYHEDRON - displays a goup of planes.
CALLING SEQUENCE polyhedron : <identifier> ;

ARGUMENTS keyword <identifier> - a label for the polyhedron with no
present use.

DESCRIPTION
Polyhedron gives the Straw data base the definition of all the
previously defined planes since the last Polyhedron command or
since the last initialization of the Straw.

DEFICIENCIES AND PROBLEMS

There are no tools for manipulating the Polyhedron.

Page 25

QUADRIC_BOUNDS QUADRIC_BOUNDS

ROUTINE NAME QUADRIC_BOUNDS - Establishes boundaries for a quadric
surface.

CALLING SEQUENCE

Quadric_bounds: <identifier>, <+!-> <quadric> & I {+1-}
<guadric> cee.¢

ARGUMENTS keyword <identifier> - Not used label for Straw data base.
keyword <+|-> - indicates which side of the quadric surface 1is
used for

bounding.
keyword <quadric> - a surface defined by the Quadric command.

Page 26

QUADRIC_COEFFS QUADRIC_COEFFS

ROUTINE NAME QUADRIC_COEFFS - defines coefficients of a quadric
surface.
CALLING SEQUENCE Quadric_coeffs: <identifier>, <color>,

{actual/auxilliaryl}, <a0>, «... <a9>;

ARGUMENTS keyword <identifier> - For later use by the 'quadric_bounds'
command.
keyword <color> =~ This is a color name defined by the Color
command.
keyword f{actual/auxilliary} - auxilliary surfaces bound actual
surfaces.
real <al0>, <a9> - <coefficients of a general quadric
equation.

DESCRIPTION

Spheres, ellipsoids, paraboloids and hyperboloids are all the
standard shapes which can be expressed with this equation. Also
possible are rich examples where the guadric 'blows up' filling
the screen except in the middle where there is a smooth hole.

IMPLEMENTATION The equation for the quadric surface is:
a0 * x**2 + al * y**2 + a2 * z**%2 + a3 * x * y + a4 * y ¥ z + a5
* z * x + a6 * x + a7 *y + a8 *z + a9 =0

DEFICIENCIES AND PROBLEMS The problem with the quadric surface is that
must users have trouble getting a 'feel' for it. 1In response to
this a 'dictionary' of shapes available for the quadric surface
is supplied in the appendix.

Page 27

SPHERE SPHERE

ROUTINE NAME SPHERE - generates a sphere in the object coordinate
system.

CALLING SEQUENCE Sphere: <identifier> <color> <x> <y> <z> <r> ;

ARGUMENTS keyword <identifier> - This names a sphere for later
reference.
keyword <color> =~ This is a color name defined by the Color
command.

real <x> - This is the displacement along the X axis in the
object coordinate space.

real <y> - This is the displacement along the Y axis in the
object coordinate space.

real <z> - This is the displacement along the 2Z axis in the
object coordinate space.

real <r> - this is the radius of the sphere in the object
coordinate space.

DESCRIPTION Sphere is a surface command which gives the user an
efficient method of generating spheres. Intersection,
transparency, distortion and backdrops are all common uses of
the Sphere command.

DEFICIENCIES AND PROBLEMS Currently Straw supports only 150 spheres.
The number of spheres can be changed by altering the file
'common.£77"'.

REFERENCES See the Straw code.

Page 28

SSAVE SSAVE

ROUTINE NAME SSAVE - save a DeAnza image to a DBS file in red line,
followed by green line followed by blue line packing.

CALLING SEQUENCE Ssave
Enter directory name: <directory>

Enter initial x(pixel):<initial x>

Enter initial y(pixel):<initial y>

Enter number of pixels:<number of pixels>
Enter number of lines:<number of lines>
Enter output file name:<file name>

ARGUMENTS keyword <directory> - this is a DBS directory created by the
Dcreate command, see U-107.
integer (0..511) <initial x> - x in DeAnza coordinate system.
integer (0..51l) <initial y> - y in DeAnza coordinate system.
integer (1..512) <number of pixels> - the number of pixels per
line.
integer (1..512) <number of 1line> - the number of lines per
screen.
keywoed <file name> - the Dbs file name you want for the image.

DESCRIPTION Ssave save a DeAnza image in a DBS format so that the red,
green, and blue lines follow each other in sequence. The style
of storage is known as DBS type 26. This is the only type of
storage permitted for the purpose of intensity mapping. The use
of this command is therefore essential for the flexible use of
intensity mapping. The DeAnza coordinate system 1is such that
the lower left corner of the screen is 0,0 and the upper left is
0,511.

ROUTINES CALLED SAV$CL, OPNS$SDR, TNOUA, TIDEC, LSTFL, TDIP, PUTS$DT,
CLS$UN

REFERENCES See the Intensity_map command elsewhere in the manual. See
also User bulliten 107.

Page 29

TEXTU RE_MAP TEXTURE_MAP

ROUTINE NAME TEXTURE_MAP - specifies source of a monocrome image.
CALLING SEQUENCE Texture_map: <identifier> <directory> <file> ;

ARGUMENTS keyword <identifier> - this is a token to be used later by
the Straw.
keyword <directory> - this is the name of the DBS file directory
with the image file.
keyword <file> - this is the name of the image file.

DESCRIPTION Texture_map will open a monocrome (type 8) DBS images file
for input to the Straw mapping subsystem. Texture_map only
defines a token to be used later as a Color command keyword
identifier.

DEFICIENCIES AND PROBLEMS Since only a DBS type 8 image will work here
the user must use the Cotomo command to save an image in the
proper format. The DIPS subsystem will not do this. The Cotomo
command is installed as part of the UNSPSOFTware so that the
user may conviently use type 8 images. The DBS directory must
be closed when opened by the texture_map command otherwise an
error will occur.

REFERENCES See Cotomo,

Page 30

VERTEX VERTEX

ROUTINE NAME VERTEX - establishes the coordinates of a vertex.
CALLING SEQUENCE vertex : <identifier> <x> <y> <z> ;
ARGUMENTS keyword <identifier> - the name of the vertex to be used
' later.
real <x> - world coordinate x position.
real <y> - world coordinate y position.
real <z> - world coordinate z position.
DESCRIPTION

The vertex command is providing information for the Straw data
base. Planes and patches are built out of verticies.

Page 31

MOTION_BLUR MOTION_BLUR

In addition to generating a raster image with a pin-hole camera model,
Straw can optionally save information about each image sample point.
These sample points may be converted into an actual raster image by a

post-processor.

A post-processor, BLUR, adds motion blur [51[6]1[7], due to a finite
exposure time of real cameras, to moving surfaces. This is
accomplished by convolving all image samples which belong to a moving
surface with a point-spread function(PSF) (8] computed from the path
and velocity of the motion, and the duration of the exposure. This
convolution can be performed equally well in the spatial or the

f requency domain.

The following paragraphs describe a procedure for modeling motion blur

in computer-generated images by the use of BLUR.

Page 32

MOTION_BLUR MOTION_BLUR

(A) Introduction to Motion Blur

The removal of camera degradation to recover the original image based
on some a priori knowledge of the degradation phenomenon is called
image restoration [8]. 1In synthesizing motion blur the problem is
almost inversed, that is, the objective is to generate an appropriate

degradation function given an idealized description of the scene.

There are two principal reasons for motion blur:

1. Movements of Objects:
The motion of objects in the scene is the most common cause for image

blurring.

2. Movements of the Shutter:
Film is exposed in a camera by the movement of the shutter across the

film plane.

The generation of motion blur in computer-synthesized images consists
of two stages:

1) a hidden-surface program generates intensity sample points of an
instantaneous image identifying points which in motion and giving the
image path of the projected motion;

2) BLUR which blurs the moving points by convolving them with the
optical system-transfer functions [8] derived from the image path and
merges them with the stationary points into a final raster image.
Where the optical system-transfer function for uniform motion blur is a
sinc function.

Page 33

MOTION_BLUR MOTION_BLUR

The process of the addition of motion blur is shown in Figure 1.
First, separate 'sample points of a moving object with the same path
r' (t) into a raster image f. The motion blur PSF h 1is computed from
the object path «r'(t), the exposure time t:frame, and the exposure
length T:frame as a raster image h. The images £ and h are then
convolved into a blurred image £*h. This convolution can be performed
either directly in the spatial domain, or optionally images f and h can
be converted by FFT into F and H, respectively, in the £frequency
domain, multiplied into FxH, and then converted back into f£*h by an
inverse FFT. Finally, all blurred images of the moving objects are
merged with the image of the stationary objects into the output raster

image.

Page 34

MOTION_BLUR

Path r'(t)
I Exposure | Exposure Time
| f£:all Length | t:frame
N1/ T:f rame NI/
| Separate | | Compute I
| Samples I | PSF |
I I I I
| I |
I | f£:moving | h
I \i/ \1/
| o
| | Compute | | Compute |
| | FFT] | FFT |
[[|
f:stationary | | I
| | F | H
| \I/ NI/
|
I I |
| | Convolve |
I I I
I |
| | FxH
| \1/
=
| | Compute I
I | Inverse FFT I
I l_ |
I I
I | £+*h
\I/ NI/
| Merge I
| Samples [
I I
|
\I/ g

Figure 1 Block diagram of the motion-blur processor

Page

35

MOTION_BLUR

MOTION_BLUR MOTION_BLUR

(B) Processor BLUR

BLUR consists of nine sub-routines as following for generating motion

blur described in Figure 1.

l. CIR : Convert see-format color image to real color
format

2. CRI : Convert real color image format to see-format

3. FFT2D : FFT transform of real color image

4, MFFT2D: Convert color FFT image to image format

5. FBLUR : Convolve motion blur operator in £frequency
domain

6. SPLIT : Convert a comb-sample [6] image to real images

7. SBLUR : Convolve motion blur operator in spatial domain

8. IFFT2D: Inverse FFT transform of real color image

9. MERGE : Merge real color images into an see-format image

Figure 2 shows you the images type before and after

applying a particular routine.

Figure 3 shows you the typical paths to generating motion

blur.

Page 36

MOTION_BLUR

35

36 -~>|

2001

36 -=>1

35

Figure 2

CRI | ==>
|
|
FBLUR |-->
1
|
SPLIT |=-->
|
T
MFFT2D |-->
|
T
MERGE |~=>

26

36

35

25

26

Page

26

35

35

36

-=>| CIR
|
I
-=>| SBLUR
|
=
-->1 FFT2D
|
] i
-=>| IFFT2D

37

|==> 35
I

Image type before and after applying an operator

MOTION_BLUR

MOTION_BLUR

| | 35 | I 35 I I
26 ==>| CIR |===-- >| SBLUR |====- > CRI |-=-=>26
| I | I I I
I I 35 I I 35 T E—
2001-->| SPLIT |====-- >| SBLUR |===== > I
L |===> R | MERGE [--->26
I 35 | I
——)mmme—s—see————- >l -
I | 35 | | 36 | | 36 |
2001-->| SPLIT |=---->| FFT2D |--->| FBLUR |--->| IFF2D |
I el == (= I N B R Pe—
I - I I
I I I | |
| 26<=---| MFFT2D [<-- I
I [————— I
| |
I |
| _ — I
I 35 | I 135

-------- >] MERGE |<——========m==m
(TR

!
NI/
26

Figure 3 Typical paths to generating motion blur

Page 38

MOTION_BLUR

MOTION_BLUR MOTION_BLUR

(C) Examples and Comments

In this segment, we will show you how to invoke sub-routines of BLUR.
Figure 4, the unblurred image, 1is the original image be used in the
following examples. Underscored characters are typed in by user. The

key sub-routines are SBLUR and FBLUR.

1. CIR: Type 26 generated by STRAW is the color output type and the

mapped image input type. Type 35 is the real image type.

2. CRI: Same as CIR except the input and output image types are
exchanged. The following is the procedure invoking CRI. CIR has same

process.

OK,SEG STRAW>BLUR>CRI

Enter directory name:IMAGES
Enter input file name or number:26
Input real color image:

directory: IMAGES

name: SBLUR D2 S0.2 111 111
number: 26

comment: BLURRED REAL COLOR IMAGE
date: FRI, 09 NOV 1984 23:28:15

Enter output f£ile name:CRI D2.0 S0.2 111 111 2

Output real image:
directory: IMAGES

name: CRI D2,0 S0.2 111 111 2

number: 28

comment: CONVERTED FROM REAL COLOR IMAGE
date: FRI, 09 NOV 1984 23:32:11

3. SPLIT: Type 2001 is the output image type of POINT OUTPUT of
STRAW. SPLIT is used to separate the moving objects from stationary
image. The output images have four bands. Adding the fourth band (to
the red, green, and blue intensity bands) is required for computing in
each blurred image the fraction of the exposure length T:frame that the

Page 39

MOTION_BLUR MOTION_BLUR

moving object overlaps each pixel. This band contains the exposure

length T:frame in every pixel that the instantaneous image of the

moving object overlaps and 0 elsewhere.

OK, SEG STRAW>BLUR>SPLIT

Enter directory name:images
END DIRECTORY <IMAGEl >
Enter z-buffer file name or number:62

Input z-buffer file: __

directory: IMAGES

name: PO_OUT
number: 62
comment: WRITTEN BY: STRAW
date: TUE, 30 OCT 1984 12:21:48
Z-buffer input file:
number of parameters: 129
number of samples: 7892
number of buffers: 8
number of scan lines: 64
number of pixels: 64
Enter number of moving images:
{1}
Enter number of moving surfaces in image 1:
{1}
Enter surface identification range:
20 40
20 40

Enter output file name:SPLIT IMAGES

Output real image:
directory: IMAGES

name: SPLIT IMAGEl

number: 0

comment: WRITTEN BY: SPLIT

date: WED, 05 DEC 1984 01:10:50

Band 1 completed
Band 2 completed
Band 3 completed

Band 4 completed
Enter output file name:SPLIT STATIONARY IMAGE

output real image:
directory: IMAGES

name: "~ SPLIT STATIONARY IMAGE
number: 1
comment: WRITTEN BY: SPLIT
date: WED, 05 DEC 1984 0l:11:34
Band 1 completed
Band 2 completed
Band 3 completed
Band 4 completed

Page 40

MOTION_BLUR

4. FFPT2D: Process same as CIR.
5. IFFT2D: Process same as FFT2D.
6. MFFT2D: Process same as IFFT2D.

MFFT2D, where the input is the image

7. SBLUR: SBLUR is the most tricky

performed directly in the spatial

But, be careful of input image

MOTION_BLUR

type.

But, images type are inversed.

Figure 5 shows the output of
in Figure 4.
sub-routine of BLUR. SBLUR is

domain. We show you the execution

process, then describe the parameters used.

OK,SBLUR

Enter directory name:IMAGES
Enter input file name or number:3
Input real color image:
directory: IMAGES
name: CIR 26 TO 35
number: 3
comment:
date:

FRI, 09 NOV 1984

CONVERTED FROM COLOR IMAGE
22:
Enter output file name:SBLUR D2 SO0.

03:35
2 111 111 4

Output blurred image
directory: IMAGES
name: SBLUR D2 S0.2 111 111
number: 26
comment:
date: FRI, 09 NOV 1984

Enter duration time and snap time:

2, 0.2

Enter coefficients of motion in

111

Encter coefficients of motion in
111

EnEer number of path steps:

u:

Vs

Contents of the blur operator:

i u v coeff

1 0 0 0.500

2 3 3 0.500
Band 1 completed
Band 2 completed
Band 3 completed

Page

4

BLURRED REAL COLOR IMAGE
23:

28:15

41

MOTION_BLUR MOTION_BLUR

The blurred image obtained by applying the above process 1is shown in
Figure 6.

Exposure time is the dominant factor for motion blur. The exposure
time would be increased with a corresponding increase 1in the motion
blur.

Snap time doesn't have as much of an effect on motion blur as exposure
time. It provides the information to determine the amount of time
T:frame that each pixel in the stationary image is visible. The value
of snap time must be smaller than the value of exposure time.
Coefficients of u and v determine the path of the moving objects.
Figure 7 shows the blurred image by setting u:=(.l1 .1 .1) and v:=(11
1). v affects the vertical direction for the motion blur and u,
horizontal. First coefficient of u or v 1is the least significant
factor and the last is the most.

The effects of the number of path steps can be seen by comparing Figure
6 and Fiqure 8. 1In Figure 6, we set it 2 and set it 6 in Figure 8.
The number of path steps determine the number of aliasing objects shown

in blurred image. It is used to simulate multiple exposure.

8. FBLUR: Same as SBLUR. But, it is applied in the frequency domain
and doesn't have snap time and path steps effects. You can see the
differences between Figure 8 and Figure 9 which are obtained by
applying SBLUR and FBLUR respectively. The execution process is shown

below.

OK,SEG STRAW>BLUR>FBLUR

Enter directory name:IMAGES
Enter input file name or number:30
Input real color image:

directory: IMAGES

Page 42

MOTION_BLUR MOTION_BLUR

name: FFT2D 35 TC 36

number: 30

comment: FFT OF REAL COLOR IMAGE
date: THU, 15 NOV 1984 20:31:15

Enter output file name:FBLUR t4 .l.1l.1 222

Output blurred image
directory: IMAGES

name: FBLUR T4 .l1.1.1 222
number: 5
comment: BLURRED REAL COLOR IMAGE
date: WED, 05 DEC 1984 00:52:42

Enter time exposure:

4

Enter coefficients of motion in u:

o1 1 .1

Enter coefficients of motion in v:

2 2 2

Band 1 completed

Band 2 completed

Band 3 completed
9, MERGE: Up to now I have not made this routine work yet. I traced
the source program and found that MERGE tried to open a same image
input file repeatedly and assign four different file units to the same
file for attaching to four bands simultaneously. Primos always stopped
the process when MERGE tried to open a file twice, with the Primos

prompt 'file in use'. Maybe the previous version of Primos accepts

this kind file handling.

Page 43

MOTION_BLUR MOTION._ BLUR

Figure 4 Unblurred image

Page 44

MOTION_BLUR MOTION_BLUR

Figure 5 Output image of MFFT2D(Fourier transform)

Page 45

MOTION_BLUR MOTION_BLUR

Figure 6 Blurred image (SBLUR D=2 S=.2 u=(1 1 1) v=(1 1 1) r=2)

Pade A6

MOTION_BLUR MOTION_BLUR

Figure 7 Blurred image (SBLUR D=2 S=.2 u=(.1l .l 1) v=(111) r=4)

Page 47

MOTION_BLUR MOTION_BLUR

Figure 8 Blurred image (SBLUR D=2 S§=.2 u=(11 1) v=(1 1 1) r=6)

Page 48

MOTION_BLUR MOTION_BLUR

Figure 9 Blurred image (FBLUR D=4 u=(.1l .l) v=(2 2 2))

Page 49

EX_1.1 EX_1.1

[Establish your output file.
[IMAGE_OUTPUT:<directory> <file> ;

image_output: temp_images ex_l.1;

The new naming convention will be as follows:

"ex_" indicates the input is part of the example series.
"G.R" where G and R are integers => 1 indicates the geometry
stages and the revision stages respectivly.

Notice that lines may be as long as you wish but are terminated by
a semicolon.

Notice that arguments need be seperated only by a space and may
NOT have any spaces internal to them. "Scratch images” is

an invalid argument. "Scratch_images" is an acceptable argument.
Upper or lower case letters are interchangeable.

[N e W M e W W o]

{
[color command. Color is the most complex command to use.
[COLOR: <identifier> <red> <green> <blue> <ambient coeff> ;

color: white 255. 255 255 1.0 ;
[Notice that the decimal point is optional.

[The sphere is the simplest object to use.
[SPHERE : <identifier> <color> <x> <y> <z> <radius>;

sphere : ball white 0 0 0 20 ;
[Light is important. In order to view an object there must be 1light.
[LIGHT : <identifier> <x> <y> <2z> <red> <green> <blue> ;

light : sun 200 200 200 1 11 ;

[The camera is important. We have to identify the camera which is
taking a

[picture of our sphere.

[CAMERA : <x> <y> <2z> <rot_x> <rot_y> <rot_z> <focal_length> ;

camera : 0 100 0 0 0 O 50 ;
[The frame defines our resolution. If we choose a small frame the

[program will be done quickly.
[FRAME : <r_size> <s_size> <r_pixels> <s_lines> ...;

frame : 30 30 512 512 ;
[this is a 512 by 512 frame

[Execute is important. Without Straw will do nothing.

execute;

[Exit is the 'nice' way to terminate the Straw. A not nice

[way would be to allow the Straw to hit the end of the input file
[unexpectedly, this would generate a fatal error.

exit;

Page 50

EX_1.2 EX_1.2

[Establish your output file.
[IMAGE_OUTPUT:<directory> <file> ;
image_output: temp_images ex_1.2;

Notice that lines may be as long as you wish but are terminated by
a semicolon.

Notice that arguments need be seperated only by a space and may
NOT have any spaces internal to them. "Scratch images" is

an invalid argument. "Scratch_images" is an acceptable argument.
Upper or lower case letters are interchangeable.

Color command. Color is the most complex command to use.
Since the primaries for the subtractive colors

are cyan, magenta, and yellow the red, green, and blue
additive synthesis color theories of Straw are particularly
difficult to work with. Here then are some examples

to get you started:

[The following colors will vary according to brightness.
[include the file in your straw code for use.

[color: <id> r g b abient diff ref xmit ref spec glos;
color: blue 40 210 250 .5 150 0. 0. 1. 120 50;

color: purple 140 30 155 .5 150 0 0 1 120 50;

color: orangel 160 40 40 .5 150 0 0 1 120 50;

color: orange2 240 120 0 .5 130 0 0 1 1;

color: mirror 255 255 255 .15 240 1 0 1 120 50;

color: mirrorl 10 10 10 .1 150 1 0 0 120 50;

color: mirror2 10 10 10 .2 150 2 0 0 120 50;

color: mirror3 10 10 10 .3 150 3 0 0 120 50;

color: split 0 0 0 .1 150 .5 .5 @ 120 50;

color: puke_green 100 100 0 .5 150 0 0 1 120 50;

color: yellow 300 300 50 .5 150 0 0 1 120 50;

color: crystal 0 0 0 0 0 1 1 1.1 200 50;

color: white 300 300 300 .5 150 0.0 0.0 1.0 120 50;

[Be careful not to give the Straw two colors with the same name.

e R R el e lanl e o N o W N Ny W

[Notice that the decimal point is optional.

[The sphere is the simplest object to use.
[SPHERE : <identifier> <color> <x> <y> <z> <radius>;

sphere : ball orangel 0 0 0 10 ;

[Light is important. In order to view an object there must be light.
[LIGHT : <identifier> <x> <y> <z> <red> <green> <blue> ;

light : sun 200 200 200 1 11 ;

sun2 -200 200 200 1 1 1 ;

light

{ The camera is important. We have to identify the camera which is
taking a
[picture of our sphere.

Page 51

EX_1.2 EX_1.2

[CAMERA : <x> <y> <z> <rot_x> <rot_y> <rot_z> <focal_length> ;

camera ¢ 0 100 @ 0 O O 50 ;
[The frame defines our resolution. If we choose a small frame the

[program will be done quickly.
[FRAME : <r_size> <s_size> <r_pixels> <s_lines> ...;

frame : 30 30 256 256 ;
[this is a 256 by 256 frame

[Execute is important. Without Straw will do nothing.

execute;
[Exit is the 'nice' way to terminate the Straw. A not nice

[way would be to allow the Straw to hit the end of the input file
[unexpectedly, this would generate a fatal error.

exit;

Page 52

EX_2.1 EX_2.1

[Establish your output file.
[IMAGE_OUTPUT:<directory> <file> ;

image_output: temp_images ex_2.1;

[

[(The following colors will vary according to brightness.
[include the file in your straw code for use.

[color: <id> r g b abient diff ref xmit ref spec glos;
color: blue 40 210 250 .5 150 0. 0. 1. 120 50;
color: purple 140 30 155 .5 150 0 0 1 120 50;

color: orangel 160 40 40 .5 150 0 0 1 120 50;
color: orange2 240 120 0 .5 130 0 0 1 1;
color: mirror 255 255 255 .15 240 1 0 1 120 50;

color: mirrorl 10 10 10 .1 150 1 0 0 120 50;

color: mirror2 10 10 10 .2 150 2 0 0 120 50;

color: mirror3 10 10 10 .3 150 3 0 0 120 50;

color: split 0 0 0 .1 150 .5 .5 0 120 50;

color: puke_green 100 100 0 .5 150 0 0 1 120 50;

color: yellow 300 300 50 .5 150 0 0 1 120 50;

color: crystal 0 0 0 0 011 1.1 200 50;

color: white 300 300 300 .5 150 0.0 0.0 1.0 120 50;

[Be careful not to give the Straw two colors with the same name.

[Notice that the decimal point is optional.

[The sphere is the simplest object to use.
[SPHERE : <identifier> <color> <x> <y> <z> <radius>;

sphere : ball orangel 0 0 0 10 ;
sphere : sky blue 0 0 0 10000 ;

[Light is important. In order to view an object there must be 1light.
[LIGHT : <identifier> <x> <y> <z> <red> <green> <blue> ;

light : moon 200 200 200 .4 .4 .4 ;
light : star -200 200 200 .1 .1 .1 ;

[The camera is important. We have to identify the camera which Iis
taking a

[picture of our sphere.

[CAMERA : <x> <y> <z2> <rot_x> <rot_y> <rot_z> <focal_length> ;

camera ¢ 0 100 0 0 0 0 50 ;

[The frame defines our resolution. If we choose a small frame the
[program will be done quickly.

[FRAME : <r_size> <s_size> <r_pixels> <s_lines> ...;

frame : 30 30 64 64 ;
[this is a 64 by 64 frame

[Execute is important. Without Straw will do nothing.

Page 53

EX_2.1

EX_2.1
execute;
[Exit is the 'nice' way to terminate the Straw.

A not nice
[way would be to allow the Straw to hit the end of the input file
[unexpectedly, this would generate a fatal error.

exit;

bPage 54

EX_2.2 EX_2.2

[Establish your output file.
[IMAGE_OUTPUT:<directory> <file> ;
image_output: temp_images ex_2.2;

[include the file in your straw code for use.

[color: <id> r g b abient diff ref xmit ref spec glos;
color: blue 40 210 250 .5 150 0. O. 1. 120 50;
color: purple 140 30 155 .5 150 0 0 1 120 50;

color: orangel 160 40 40 .5 150 0 0 1 120 50;

color: orange2 240 120 0 .5 130 0 0 1 1;

color: mirror 255 255 255 .15 240 1 0 1 120 50;

color: mirrorl 10 10 10 .1 150 1 0 0 120 50;

color: mirror2 10 10 10 .2 150 2 0 0 120 50;

color: mirror3 10 10 10 .3 150 3 0 0 120 50;

color: split 0 0 0 .1 150 .5 .5 0 120 50;

color: puke_green 100 100 0 .5 150 0 0 1 120 50;
color: yellow 300 300 50 .5 150 0 0 1 120 50;

color: crystal 0 0 0 0 0 1 1 1.1 200 50;

color: white 300 300 300 .5 150 0.0 0.0 1.0 120 50;

[Be careful not to give the Straw two colors with the same name.

[Notice that the decimal point is optional.

[The sphere is the simplest object to use.
[SPHERE : <identifier> <color> <x> <y> <z> <radius>;

e

sphere : balll orangel 0 0 0 10
[a crystal dimple.

sphere : ball2 crystal -3 3 3 5 ;

sphere : sky blue 0 0 0 10000 ;
[Light is important. In order to view an object there must be light.
[LIGHT : <identifier> <x> <y> <2z> <red> <green> <blue> ;

light ¢ 1light 200 200 200 .8 .8 .8 ;

[The camera is important. We have to identify the camera which is
taking a

[picture of our sphere.

[CAMERA : <x> <y> <2> <rot_x> <rot_y> <rot_z> <focal_length> ;

camera ¢ O0 100 0 0 0 O 50 ;

[The frame defines our resolution. If we choose a small frame the
[program will be done quickly.

[FRAME : <r_size> <s_size> <r_pixels> <s_lines> ...;

frame : 30 30 256 256 ;
[this is a 256 by 256 frame

[Execute is important. Without Straw will do nothing.

execute;

Page 55

EX_2.2 EX_2.2

[Exit is the 'nice' way to terminate the Straw. A not nice
[way would be to allow the Straw to hit the end of the input file
[unexpectedly, this would generate a fatal error.

exit;

Page 56

EX_2.3 EX_2.3

[big hues on abatu
[

initialize;

[

[Camera and frame parameters:
[

camera: 0, -300, 50, 5, 180, -20, 100.00;
([camera: 0, 250, 0, O, O, O, 5;

frame: 30.0, 30.0, 64 , 64 ;

shade: 10, 10.0, 10.0, 10000.0, 10000.0;

[

[output image file:

[

image_output: TEMP_IMAGES, 'big hues on abatu';
[

[Mapped images:
[just changed this to stars....doug

intensity_map: stars, scratch_images, 3;
intensity_map: baby, scratch_images, 6;
i

E Paint tables:

paint_table: red-green

0 0 126 255 0 0

0 0 15 255 255 0

0 0 -15 255 255 0

000 -126 0 255 0;
[

paint_table: green-blue
0 0 126 0 255 0O

0 0 15 0 255 255

0 0 -15 0 255 255

0 0 =126 0 0 255;
(

paint_table: blue-red

Page 57

EX_2.3 EX_2.3

126 0 0 255
15 255 0 255
=15 255 0 255

o O O o

=126 255 0 0;

Color definitions:

r——— 0 o o o

color: hue-1 255 255 255 0.4 125.0 0.0 0.0 1.0 0.0 1
& & & red-green;

color: hue-2 255 255 255 0.4 125.0 0.0 0.0 1.0 0.0 1
& & & green-blue;

color: hue-3 255 255 255 0.4 125.0 0.0 0.0 1.0 0.0 1
& & & blue-red;

E more Color definitions:

color: stars 0 0 O

1.2 2. 0.0

1.0 0.0

1.0 100

&

stars normal 1 512 1 512 1 1 -3.14 3.14 -3.14 3.14

;

color: baby 0 0 O

1.2 2. 0.0

1.0 0.0

1.0 100

&

baby normat 1 512 1 512 1 1 -3.14 3.14 -3.14 3.14

H

color: hue-3 255 255 255 0.4 125.0 0.0 0.0 1.0 0.0 1

Page 58

EX_2.3

& & & blue-red;

color: blue-red-mirror

o, 0, 0, 0.15, 100.0, .9, 0.0, 1.0, 250.0, 80
& & & blue-red;

color: red-green-mirror

o, o, 0, 0.15, 100.0, .9, 0.0, 1.0, 250.0, 80
& & & red-green;

E Vertices for planes:

vertex: v-9, -100, 200, 200;

vertex: v-10, 300, 200, 200;

vertex: v-11, 300, 200, -100;

vertex: v-12, -100, 200, -100;

vertex: v1 900 -400 1500;

vertex: v2 900 -400 -1500;

vertex: v3 -900 -400 -1500;

vertex: v4 =900 -400 1500;

E Definitions of planar surfaces:

plane: bak_mirror red-green-mirror vl v2 v3 v4;
plane: front_mirror blue-red-mirror v-9 v-10 v-11 v-12;
polyhedron: cube_mirror;

E Spheres:

sphere: universe stars 0 0 0 20000000000;

sphere: baby_planet baby 0 0 0 20;
[

[Light sources:

(

light: 1lamp, 1000, 1000, 1000, 1.0, 1.0, 1.0, shadows, 0.0;
[

Page 59

EX_2.3

EX_2.3 EX_2.3

[Execute:
[

list: all;
status: all;
execute;

exit;
[

Page 60

EX_3.1

[Three sides of a cube with mapped
[.e.. with a planar mirror

initialize;
[

[Camera and frame parameters:
[XY Z RX RY RZ FL

camera: 0' 30' 45' 0' -90' 0' 30;

frame: 30.0, 30.0, 512, 512;
[

image_output: image, 'outside a mandalla

paint_table: red-green
0 126 255 0 0

0 15 255 255 0

0 -15 255 255 0

0 -126 0 255 0;

—_—_—0 o o o

Color definitions:

color: mirror 0, 0, 0, 0.15, 200.0, 1.25, 1.0, 1.0, 250.0, 80;
color: orange 240, 120, 0, 0.40, 155.5, 0.0, 0.0, 1.0, 150.0, 1;
color: hue-l1l 255 255 255 0.6 125.0 0.0 0.0 1.0 0.0 1

& & & red-green;

color: doug 255, 255, 255, 1., 155.5, 0.0, 0.0, 1.0, 150.0, 1;

images ¢e..

color: purple 140 30 155 .5 150 0 0 1 120 50;

[

[Vertices for planes:

vertex: v-1, 0, 0, O;

vertex: v-2, 0, 60, 0;

vertex:s v-3, 0, 30, 90;

vertex: v-4, 800, 0, O;

vertex: v-5, 800,60,0;

vertex: v-6, 800, 30, 90;

plane: p-1l, mirror, v-1, v~4, v-6,
plane: p-2, mirror, v-2, v=5, v-6,
plane: p-3, mirror, v-2, v-5, v-4,
polyhedron: prism;

[Spheres:

[

sphere: balll hue-1l 825 30 45 30;

Page

v-3;
v=-3;
v=1;

61

program mandalla';

EX_3.1

EX_3.1

[Light sources:
[

light: 1lamp, 300, 300, 300, 1.0, 1.0, 1.0, shadows, 0.0;

E Execute:

[

list: all;
status: all;
execute;

exit;

Page

62

EX_3.1

EX_4.1 EX_4.1

[big hues on abatu
[

initialize;

[

[Camera and frame parameters:

[

camera: 0, 200, 0, O, O, O, 5;

frame: 30.0, 30.0, 512 , 512 ;

shade: 10, 10.0, 10.0, 10000.0, 10000.0;
[

[output image file:

[

image_output: TEMP_IMAGES, 'big hues on abatu';
[

[Mapped images:
[just changed this to stars....doug

intensity_map: stars, scratch_images, 3;
intensity_map: baby, scratch_images, 6;
i

E Paint tables:

paint_table: red-green

0 0 126 255 0 O

0 0 15 255 255 0

0 0 -15 255 255 0

0 0 -126 0 255 0;
[

paint_table: green-blue
0 0 126 0 255 0

0 0 15 0 255 255

0 0 -15 0 255 255

? 0 -126 0 0 255;

paint_table: blue-red

Page 63

EX_4.1 EX_4.1

126 0 0 255
15 255 0 255
-15 255 0 255

o O ©O o

=126 255 0 0;

Color definitions:

—_——,—_0 o o o

color: hue-1 255 255 255 0.4 125.0 0.0 0.0 1.0 0.0 1
& & & red-green;

color: hue-2 255 255 255 0.4 125.0 0.0 0.0 1.0 0.0 1
& & & green-blue;

color: hue-3 255 255 255 0.4 125.0 0.0 0.0 1.0 0.0 1
& & & blue-red;

E more Color definitions:

color: stars 0 0 O

1.2 2, 0.0

1.0 0.0

1.0 100

&

stars normal 1 512 1 51211 -3.14 3.14 -3.14 3.14

;

color: baby 0 0 O

1.2 2, 0.0

1.0 0.0

1.0 100

&

baby normal 1 512 1 5121 1 -3.14 3.14 -3.14 3.14

i

color: hue-3 255 255 255 0.4 125.0 0.0 0.0 1.0 0.0 1

Page 64

EX_4.1 EX_4.1

& & & blue-red;

color: blue-red-mirror

o, 0, 0, 0.15, 100.0, .9, 0.0, 1.0, 250.0, 80

& & & blue-red;

color: red-green-mirror

o, 0, 0, 0.15, 100.0, .9, 0.0, 1.0, 250.0, 80

& & & red-green;

é Vertices for planes:

vertex: v-9, -100, 200, 200;

vertex: v-10, 300, 200, 200;

vertex: v-11, 300, 200, -100;

vertex: v-12, -100, 200, -100;

vertex: vl 900 -400 1500;

vertex: v2 900 -400 -1500;

vertex: v3 -900 -400 -1500;

vertex: v4 -900 =400 1500;

{ Definitions of planar surfaces:

{[plane: bak_mirror red-green-mirror vl v2 v3 v4;
[[plane: front_mirror blue-red-mirror v-9 v-10 v-11 v-12;
[[polyhedron: cube_mirror;

Spheres:

—

sphere: universe stars 0 0 0 20000000000;

sphere: baby_planet baby 0 0 0 200;
[

[Light sources:

[

light: lamp, 1000, 1000, 1000, 1.0, 1.0, 1.0, shadows, 0.0;
[

[Execute:
{

Page 65

EX_4.1 EX_4.1

list: all:
status: all;
execute;

exit;
[

Page 66

BIBLIOGRAPHY BIBLIOGRAPHY

1. Long, D. and Young, J. 1981 'STRAW' Command Processor User's

Manual

2. Lacroix, V. and Vishwanathan, S. 1983 'HELP-STRAW' A User's

Manual for STRAW

3. Staff of IPL, 1982 DIPS USER'S MANUAL - IPL-TR-020

4., Foley, J.D. and Van Dam, A. 1982 Fundamentals of Interactive

Computer Graphics

5. Potmesil, M. and Chakravarty, I 1982 Synthetic Image Generation

with a lens and Aperature Camera Model

6. Potmesil, M. and Chakravarty, I., Modeling Motion Blur in

Computer-Generated Images, ACM Computer Graphics, Vol 17, no. 3, July

1983

7. Potmesil, M. 1982 Generating Three-Dimensional Surface Models of

solid objects from multiple projections IPL-TR-003

8. Andrews H.C. and Hunt B.R., 1976 Digital Image Restoration

Page 67

VITA VITA

Leng-Meng Lin was born in 1957 in Keelung, Taiwan. In 1979, he
received his B.S. degree 1in Electrical Engineering from Chung Yuan
Christian University in Taiwan. Two years later, he received his M.S.
degree from National Cheng Kung University in Taiwan. From 1981 to
1983, he was an techinal officer of Republic of China. Presently he is
going for Ph.D. degree at Rensselaer Polytechnic Institute in Troy,

NY.

Douglas Lyon is the Chief Scientist for Raytal Inc., a company involved
with laser imaging in real time. He is also Chief Engineer for WRPI a
college run 10000 watt radio station. Born in New York City in 1960
Doug has published in Kim one user's note, and assorted hobbiest
journels. Doug posseses a B.S. from RPI and 1is working towards an

M.E.

Page 68

PRIMOS PRIMOS

This is an appendix on PRIMOS. PRIMOS is an operating system which
runs on Prlme computers. For future versions of Straw refer to the
appendix for your operating system. Straw is native to PRIMOS and this
is the first operating system dependent appendix to the Straw User's
Manual. The following topics should be understood, preferably in the

order in which they are listed.

Editing files - In order to prepare input files for Straw the user must

know how to work the editor. The recommended editor is EMACS. An
excellent tutorial is available, type:

teach-emacs

Experence shows that the first time user of EMACS will fair well with
only one lesson and some experienced EMACS users or a manual close at

hand. Please note: to get help in EMACS type 'CTRL_'.

Displaying Images - In order to see Straw images the user must know how

to work a subsystem called DIPS. See the "Dips User's Manual"
(IPL-TR-020). Critical commands to learn are:
DISP - this allows a user to display an image.

S&Z - this permits scrolling and zooming.

Creating an image directory - An image directory 1is called a DBS

directory (Data Base System). The image directory handles all data
going into and out of Straw which is not text. Text data consists of a
standard ASCII file which is human readable. The input text file
consists of Straw commands. The output text file contains the input
text plus the Straw interpretation.

Page 69

PRIMOS PRIMOS

To create an image directory use the Primos command DCREATE.

contains an appendix on examples. In order to get started with Straw
it is advisable to copy the directory STRAW>.GETTING_STARTED into your
UFD. This is done by typing:

COPY STRAW>.GETTING_STARTED <your ufd here>.STRAW

All examples are input text files. To use the input text files you

must invoke Straw. Type ORGIN (to get back to your home ufd),

A *>,STRAW (to place yourself in your 'straw' environment),

PH PH_STRAW (to launch a phantom which will run the first example) The
phantom will run as a background task. The system will issue a message
'phantom user is 'nn'.' where nn is an integer. This will execute a
straw program listed as example 1.1 elsewhere in this manual. To find
out how the phantom did when the phantom logs out you must edit the
file l$print$'.

Read the *INFO* file, this will guide you through the rest of the Straw
environment.

Presently, the UFD called STRAW contains a directory called
.DOCUMENTATION, this is where the source for this manual may be found.
A copy also exists in UNSPSOFT>DOC>STRAW.

A DBS directory need be created only once. A DBS directory has no
known limit for the number of images stored (disk space has always been

exceeded first).

Rolling your own Straw - The file ph_straw contains a unique file name

which refers to the path name of the straw input file. This is done in

Page 70

PRIMOS PRIMOS

the context of a straw program. Launching this file as a phantom will
therefore invoke the straw software subsytem and redirect the flow of
control of the straw program to the data pointed to by the filename

placed in the ph_straw file.

In summary you must edit ph_straw and put in your own file name. The
convention is to use the directory called .INPUTS to store your straw
input files (violations of this convention abound). Invoke dips to
display the images in the DBS directory called IMAGES in order to see
the straw output for the examples. The image directory is defined by

the image_output command in straw.

Page 71

DBS DBS

The following information is not for the casual user and is given for

completness only.

DBS is a Data Base System for supporting the Straw program (See U-107).

Straw extends the current DBS types with the following types:

Type 8 is the texture image input type.
Type 26 is the color output type and the mapped image input type. It
is the input to cir, dips and straw.

Type 35 is the output of split, cir and sblur it is the

input of sblur, merge and cri, fftad

Type 36 is the fblur input f££t2d, fblur output

Type 1011 is the Parametric network file type. This is the output of
SURFED. This is a software subsystem for adage generated pictures.
Type 1021 is the Surface-Quadtree file type. This is read by the straw
command PATCH_TREES.

Type 1022 is the Solid-Parallelepiped file type. This is input to
STRAW.

Typy 1063 is a muftod image.

Type 2001 is the Z-Buffer file type split program input, it is

generated by STRAW.

35 -> merge -> 2 35 => cri -> 26 36 -> fblur -> 35 26 -> cir -> 35 36
-> mfft2d -> 25 35 => f£ft2d -> 36 point_output -> 2001 2001 -> split ->
35

Page 72

COMMAND_SUMMARY COMMAND_SUMMARY

Camera: <x>, <Ky>, <z>, <rx>, <ry>, <rz>, <£1>,

{perspectivelorthogonal}l; defines camera parameters.

Frame: <frmu>, <frmv>, <nu>, <nv>, <nuint>, <nufin>, <nvint>, <nvfin>;

defines frame parameters of camera and synthetic image.

Image_output: <directory>, <file>; opens output image file.

Point_output: <directory>, <file>; opens output zbuffer file.

Paint_table: <identifier>, <min_x>, ecee <MaX_X>, ocoeo & <min_x>,

.eee <max_x>; enters a paint table.

Intensity_map: <identifier>, <directory>, <file>; opens a color image

file for intensity mapping.

Texture_map: <identifier>, <directory>, <file>; opens a monochrome

image file for texture mapping.

Color: <identifier>, <red>, <green>, <blue>, <c_ambient>, <c_diffuse>,
<c_reflection>, <c_transmission>, <c_refraction>, <c_specular>,
<k_glossiness> & <intensity map> & <texture_map> & <paint_table>;

defines properties of a color.

Light: <identifier>, <x>, <y>, <z>, <r>, <g>, ,

{shadows Inoshadows}, <contrast>; defines a point light source.

Sphere: <identifier>, <color>, <x>, <y>, <z>, <r>; defines a sphere.

Page 73

COMMAND_SUMMARY COMMAND_SUMMARY

Vertex: <identifier>, <x>, <y>, <z>; defines vertex for planar faces

or bicubic patches.

Plane: <identifier>, <color>, <vertex>, <vertex> & <vertex>,

cees <vertex>; defines edges of a planar face.

Polyhedron: <identifier>; defines a group of planar faces.

Patch: <identifier>, <color>, <r_min>, <vertex_1>, <vertex_16>;

defines a bicubic patch by 16 control points.

Patch_trees: <identifier>, <color>, <directory>, <file>; reads

bicubic patch quadtrees from a file.

Quadric_coeffs: <identifier>, <color>, {actual/auxilliary}, <al>,

<a9>; defines coefficients of a quadric surface.

Quadric_bounds: <identifier>, {+1-} <quadric> & oo I {+1-1}

<quadric>; defines bounds of a quadric surface.

Sample: <level>, <diffr>; defines number of pixel sampling levels and

division coefficient.

Shade: <maxray>, <hidmin>, <shamin>, <refmax>, <tramax>; sets

parameters of the recursive shader.

Status: <what>, <what>,; 1lists current status and contents of

Page 74

COMMAND_SUMMARY

the STRAW data base.

List: <what>, <what>,; defines 1listing opti

generation.

Initialize; initializes the STRAW data base.

Execute; generates a synthetic image.

Exit; exits from the STRAW processor.

Stereo: {leftlright}, <x>, <y>, <z>, <angle>; computes

stereo camera parameters,

Input: <file>; reads STRAW commands from a file.

Help; lists STRAW command syntax.

COMMAND_SUMMARY

ons for image

complementary

Solid_output: <directory>, <file>; opens output solid-parallelepiped

file.

Projection_output: <directory>, <file>,{

merge_nearrest|

merge_closedImerge_orthographic}; opens output parametric-network file

and selects the type of projection.

Page 75

