
Macintosh Technical Notes

• #1: Desk Accessories and System Resources

See also:

Written by:
Updated:

The Resource Manager

Bryan Stearns February 25, 1985
March 1, 1988

This note formerly described a strategy for dealing with system resources
from desk accessories. We no longer recommend calling ReleaseResource
or DetachResource for a system resource. When you are done with a
system resource, leave it alone; do not try to dispose or release it.

•

•
Technical Note #1 page 1 of1 Desk Accessories andSystem Resources

•

•

•

•
Macintosh Technical Notes

#2: Compatibility Guidelines

Written by: Cary Clark
Scott Knaster

Modified by: Louella Pizzuti
Updated:

January 21, 1986

February 9, 1987
March 1, 1988

•

Apple has many enhancements planned for the Macintosh family of computers. To help
ensure your software's compatibility with these enhancements, check each item in this
note to be sure that you're following the recommendations.

If your software is written in a high-level language like Pascal or C and if you adhere to
the guidelines listed in Inside Macintosh, many of the questions in this note won't
concern you. If you develop in assembly language, you should read each question
carefully. If you answer any question "yes," your software may encounter difficulty
running on future Macintosh computers, and you should take the recommended action
to change your software.

Do you depend on 68000 instructions which require that the processor be
in supervisor mode?

In general, your software should not include instructions which depend on supervisor
mode. These include modifying the contents of the status register. Most programs which
modify the status register are only changing the Condition Code Register (CCR) half of
the status register, so an instruction which addresses the CCR will work fine. Also, your
software should not use the User Stack Pointer (USP) or turn interrupts on and off.

Do you have code which executes in response to an exception and relies
on the position of data in the exception's local stack frame?

Exception stack frames vary on different microprocessors in the 68000 family, some of
which may be used in future Macintosh computers. You should avoid using the TRAP

instruction. Note: You can determine which microprocessor is installed by examining
the low-memory global CPUFlag (a byte at $12F). These are the values:

•

CPUFlag
$00
$01
$02
$03

Technical Note #2

microprocessor
68000
68010
68020
68030

page 1 of 5 Macintosh Compatibility Guidelines

Do you use low-memory globals not documented in Inside Macintosh?

Other microprocessors in the 68000 family use the exception vectors in locations $ 0
through $FF in different ways. No undocumented location below the system heap ($100
through $13FF) is guaranteed to be available for use in future systems. •

Do you make assumptions about the file system which are not consistent
with both the original Macintosh File System and the Hierarchical File
System?

Your applications should be compatible with both file systems. The easiest way to do
this is to stick to the old files system trap calls (which work with both file systems) and
avoid direct manipulation of data structures such as file control blocks and volume
control blocks whenever possible.

Do you depend on the system or application heaps starting at a hard-coded
address?

The starting addresses and the size of the system and application heaps has already
changed (Macintosh vs. Macintosh Plus) and will change again in the future. Use the
global ApplZone to find the application heap and SysZone to find the system heap.
Also, don't count on the application heap zone starting at an address less than 65536
(that is, a system heap smaller than 64K).

Do you look through the system's queues directly?

In general, you should avoid examining queue elements directly. Instead, use the •
Operating System calls to manipulate queue elements.

Do you directly address memory-mapped hardware such as the VIA, the
SCC, or the IWM?

You should avoid accessing this memory directly and use trap calls instead (disk driver,
serial driver, etc.). Future machines may include a memory management unit (MMU)
which may prevent access to memory-mapped hardware. Also, these memory-mapped
devices may not be present on future machines. The addresses of these devices are
likely to change, so if you must access the hardware directly, get the base address of the
device from the appropriate low-memory global (obtainable from includes and interface
files):

device
VIA
SCCRd
SCCWr
IWM

Technical Note #2

global
$104
$108
$10C
$1EO

page 2 of 5 Macintosh Compatibility Guidelines

•

•
Do you assume the location or size of the screen?

The location, size, and bit depth of the screen is different in various machines. You can
determine its location and size by examining the QuickDraw global variable
s c r e e nB its on machines without Color QuickDraw. On machines with Color
QuickDraw, the device list, described in the Graphics Devices chapter of Inside
Macintosh, tells the location and size and bit depth of each screen, screenBits
contains the location and size of the main device, and GrayRgn contains a region
describing the shape and size of the desktop.

Does your software fail on some Macintosh models or on A/UX?

If so, you should determine the reason. Failure to run on all versions of the Macintosh
may indicate problems which will prevent your software from working on future
machines. Failture to run on A/UX, Apple's Unix for the Macintosh, also may indicate
such problems.

Do you change master pointer flags of relocatable blocks directly with
BSET or acta instructions?

In the future and on NUX, all 32 bits of a master pointer may be used, with the flags byte
moved elsewhere. Use the Memory Manager calls HPurge, HNoPurge, HLock,
HUnlock, HSetRBit, HClrRBit, HGetState, and HSetState to manipulate the
master pointer flags. (See the Memory Manager chapter of Inside Macintosh Volume IV
for information on these calls.)

• Do you check for 128K, 512K, and 1M RAM sizes?

You should be flexible enough to allow for non-standard memory sizes. This will allow
your software to work in environments like MultiFinder.

Is your software incompatible with a third-party vendor's hardware?

If so, the incompatibility may prevent your software from working on future machines.
You should research the incompatibility and try to determine a solution.

Do you rely on system resources being in RAM?

On most of our systems, some system resources are in ROM. You should not assume,
for example, that you can regain RAM space by releasing system resources.

Does your software have timing-sensitive code?

•
Various Macintoshes run at different clock speeds, so timing loops will be invalid. You
can use the trap call Delay for timing, or you can examine the global variable Ticks .

Technical Note #2 page 3 of 5 Macintosh Compatibility Guidelines

Do you have code which writes to addresses within the code itself?

A memory management unit (MMU) may one day prevent code from writing to
addresses within code memory. Also, some microprocessors in the 68000 family cache
code as it's encountered. Your data blocks should be allocated on the stack or in heap •
blocks separate from the code, and your code should not modify itself.

Do you rely on keyboard key codes rather than ASCII codes?

The various keyboards are slightly different; future keyboards may be different from
them. For textual input, you should read ASCII codes rather than key codes.

Do you rely on the format of packed addresses in the trap dispatch table?

The trap dispatch table is different on various Macintoshes. There's no guarantee of the
trap table's format in the future. You should use the system calls GetTrapAddress and
Set TrapAddress to manipulate the trap dispatch table.

Do you use the Resource Manager calls AddReference or RmveReference?

These calls have been removed from the 128K ROM. They are no longer supported.

Do you store information in the application parameters area (the 32 bytes
between the application and unit globals and the jump table)?

This space is reserved for use by Apple.

Do you depend on values in registers after a trap call, other than those
documented in Inside Macintosh?

These values aren't guaranteed. The register conventions documented in Inside
Macintosh will, of course, be supported. Often, you may not realize that your code is
depending on these undocumented values, so check your register usage carefully.

Do you use the IMMED bit in File Manager calls?

This bit, which was documented in early versions of Inside Macintosh as a special form
of File Manager call, actually did nothing for File Manager calls, and was used only for
Device Manager calls. With the advent of the Hierarchical File System, this bit indicates
that the call has a parameter block with hierarchical information.

Do you make assumptions about the number and size of disk drives?

There are now five sizes of Apple disks for the Macintosh (400K, 800K, and 20M, 40M,
80M), as well as many more from third-party vendors. You should use Standard File and
File Manager calls to determine the number and size of disk drives.

•

•
Technical Note #2 page 4 of 5 Macintosh Compatibility Guidelines

Do you depend on alternate (page 2) sound or video buffers?

Some Macintoshes do not support alternate sound and video buffers.

• Do you print by sending ASCII directly to the printer driver?

To retain compatibility with both locally-connected and AppleTalk-connected printers,
you should print using Printing Managerr, as documented in Inside Macintosh.

Does your application fail when it's the startup application (i.e., without
the Finder being run first)?

If so, you're probably not initializing a variable. If your application does not work as the
startup application, you should determine why and fix the problem, since it may cause
your application to fail in the future.

•

•
Technical Note #2 page 5 of 5 Macintosh Compatibility Guidelines

•

•

•

Macintosh Technical Notes

• #3: Command-Shift-Number Keys

See also: The Toolbox Event Manager
Technical Note #11 Q-MPW: Writing Standalone Code

Written by:
Modified by:
Updated:

Harvey Alcabes
Ginger Jernigan

March 3,1985
April 25,1985
March 1, 1988

In the standard system, there are two Command-Shift-number key combinations that are
automatically captured and processed by GetNextEvent. The combinations are:

Command-Shift-1
Command-Shift-2

Eject internal disk
Eject external disk

•
Numbers from 3 to 9 are also captured by GetNextEvent, but are processed by calling
'FKEY' resources. You can implement your own actions for Command-Shift-number
combinations for numbers 5 to 9 by defining your own 'FKEY' resource. The routine
must have no parameters. The 10 of the resource must correspond to the number you
want the routine to respond to. For example, if you want to define an action for
Command-Shift-8, you would create an 'FKEY' resource with an 10 of 8. The 'FKEY'
resource should contain the code that you want to execute when the key is pressed.

The following Command-Shift-number key combinations are implemented with 'FKEY'
resources in the standard System file.

•

Command-Shift-3

Command-Shift-4
(with Caps Lock on)

Save current screen as MacPaint file named
Screen 0, Screen 1, ... Screen 9
(Works in one-bit mode only on Mac II)

Print the active window (to an ImageWriter)
Print the entire screen (to an ImageWriter)

Technical Note #3 page 1 of 1 Command-Shift-Number Keys

• • •

Macintosh Technical Notes

• #4: Error Returns from GetNewDialog

See also:

Written by:
Updated:

The Dialog Manager

Russ Daniels April 4, 1985
March 1, 1988

•

When calling GetNewDialog to retrieve a dialog template from a previously opened
resource file, how are error conditions indicated to the caller?

Unfortunately, they aren't. The Dialog Manager calls GetResource and assumes the
returned value is good. Since the Dialog Manager doesn't check, you have two choices.
Your first choice is to call Get Resource for the dialog template, item list, and any
resources needed by items in the item list yourself. But what do you do when you find
the resources aren't there? Try to display an alert telling the user your application has
been mortally wounded? What if resources needed for the alert aren't available?

The second, simpler alternative is to assure that the dialog template and other resources
will be available when you build your product. This is really an adequate solution: If
somebody uses a resource editor to remove your dialog template, you can hardly be
blamed for its not executing properly.

A good debugging technique to catch this sort of problem is to put the value $50FFCOOI
at absolute memory location 0 (the first long word of memory). If you do that, when the
Dialog Manager tries to dereference the nil handle returned by the Resource Manager,
YOU'll get an address error or bus error with some register containing $ 5 OFFC 0 0 1. If you
list the instructions around the program counter, YOU'll often see something like:

MOVE.L (A2) ,AI

MOVE.L (AI),AI

; in effect (0) ,AI

; the error occurs here

•

GetNewWindow and most of the other "GetSomething" calls will return nil if the
"something" is not found.

Technical Note #4 page 1 of 1 Error Returns from GetNewDialog

•

•

•

Macintosh Technical Notes

• #5: Using Modeless Dialogs from Desk Accessories

See also:

Written by:
Updated:

The Toolbox Event Manager
The Dialog Manager
The Desk Manager

Russ Daniels April 4, 1985
March 1, 1988

When a desk accessory creates a window (including a modeless dialog window) it must
set the windowKind to its refnum-a negative number. When the application calls
Get Next Event , the Event Manager calls SystemEvent, which checks to see if the
event belongs to a desk accessory. SystemEvent checks the windowKind of the
frontmost window, and uses the (negative) number for the refnum to make a control call,
giving the desk accessory a shot at the event. Then SystemEvent returns TRUE, and
GetNextEvent returns FALSE.

So, your desk accessory gets an event from SystemEvent. Since your window is a
modeless dialog, you call IsDialogEvent, which mysteriously returns FALSE. What is
going on?

• Like SystemEvent, IsDialogEvent checks the windowKind of windows in the window
list, looking for dialog windows. It does this by looking for windows with a windowKind of
2. In this case, it finds none, and does nothing.

The solution is to change the windowkind of your window to 2 before calling
IsDialogEvent. This allows the Dialog Manager to recognize and handle the event
properly. Before returning to SystemEvent, be sure to restore the windowKind. That
way, when the application calls the Dialog Manager with the same event (the
application should pass all events to Dialog Manager if it has any modeless dialogs
itself), the Dialog Manager will ignore it.

•
Technical Note #5 page 1 of 1 Using Modeless Dialogs from DAs

•

•

•

Macintosh Technical Notes

• #6: Shortcut for Owned Resources

See also: The Resource Manager
Technical Note #23-

Life With FonVDA Mover-Desk Accessories

Written by:
Updated:

Bryan Stearns May 10,1986
March 1, 1988

•

To allow the Font/OA Mover to renumber desk accessories as needed when moving
them between system files, desk accessories should use the "owned resource" protocol
described in the Resource Manager chapter of Inside Macintosh Volume I.

All resource IDs in a desk accessory should be zero-based. At runtime, a routine can be
called to find the current "base" value to add to a resource's zero-based value to get the
actual current 10 of that resource. Then, when a resource is needed, its zero-based
value can be added to the resource base value, giving the actual resource 10 to be used
in future Resource Manager calls.

Here's the source to a handy routine to get the resource base value, GetResBase:

;FUNCTION GetResBase(driverNumber: INTEGER): INTEGER;

;GetResBase takes the driver number and returns the ID
;of the first resource owned by that driver. This is
;according to the private resource numbering convention
;documented in the Resource Manager.

GetResBase FUNC

•

MOVE.L
MOVE.W
NOT.W
ASL.W
ORI.W
MOVE.W
JMP

END

Technical Note #6

(SP)+,AO
(SP)+,DO

DO
#5,DO
#$COOO,DO
DO, (SP)
(AO)

page 1 of 1

Get return address
Get driver number
Change to unit number
Move it over in the word
Add the magic bits
Return function result
and return

Shortcut for Owned Resources

•

•

•

Macintosh Technical Notes

• #7: A Few Quick Debugging Tips

Written by:
Updated:

Jim Friedlander April 16, 1986
March 1, 1988

•

•

This presents a few tips which may make your debugging easier.

Setting memory location 0 to something odd

Dereferencing nil handles can cause real problems for an application. If location 0 (nil)
is something even, the dereference will not cause an address error, and the application
can run on for quite a while, making tracing back to the problem quite difficult. If location
o contains something odd, such as $50FFC001, an address error will be generated
immediately when a nil handle is dereferenced. On Macintoshes with 68020s, like the
Mac II, this same value ($50FFC001) will cause a bus error. An address error or bus
error will also be generated, of course, when the ROM tries to dereference a nil handle,
such as when you call HNoPurge (hndl) , where hndl is nil.

Some versions of the TMON debugger set location 0 to 'NIL!' ($4E494C21) or
$50FFCOOl. If you are using MacsBug, you should include code in your program that
sets location O. Of course, there is no need to ship your application with this code in
it-it's just for debugging purposes. Old versions of the Finder used to set location 0 to
the value $464F424A ('FOBJ'). On newer machines, newly launched applications get
location 0 set to $00F80000 by the Segment Loader.

Checksumming for slow motion mode

Entering the Macsbug command "ss 400000 400000" will cause Macsbug to do a
checksum of the location $400000 every time an instruction is executed. Checksum the
ROM, because it will not change while your program is executing (the ROM may change
in between launches of your application, but that's OK)! This will cause the Macintosh to
go into slow motion mode. For example, you will need to hold down the mouse button
for about 10 seconds to get a menu to pull down-you can see how the ROM draws
menus, grays text, etc.

This technique is very handy for catching problems like multiple updates of your
windows, redrawing scroll bars more than once, that troublesome flashing grow icon,
etc. To turn slow motion mode off, simply enter MacsBug and type "ss".

Technical Note #7 page 1 of 2 A Few Quick Debugging Tips

TMON performs this function in a different way. Instead of calculating the checksum after
each instruction, it only calculates checksums after each trap. You can checksum
different amounts of the ROM depending on how much you want things to slow down .

Checksumming MemErr

A lot of programs don't call MemError as often as they should. If you are having strange,
memory-related problems, one thing that you can do to help find them is to checksum on
MemErr (the low memory global word at $220). In MacsBug, type "SS 220 221". In
TMON, enter 220 and 221 as limits on the 'Checksum (bgn end) :' line and on the line
above, enter the range of traps you wish to have the checksum calculated after.
When MemErr changes, the debugger will appear, and you can check your code to
make sure that you are checking MemErr. If not, you might have found a problem that
could cause your program to crash!

Checksumming on a master pointer

•

Due to fear of moving memory, some programmers lock every handle that they create.
Of course, handles need only be locked if they are going to be dereferenced and if a
call will be made that can cause relocation. Unnecessarily locking handles can cause
unwanted heap fragmentation. If you suspect that a particular memory block is moving
on you when you have its handle dereferenced, you can checksum the master pointer
(the handle you got back from NewHandle is the address of the master pointer). Your
program will drop into the debugger each time your handle changes-that is, either
when the block it refers to is relocated, or when the master pointer's flags byte changes. •

•
Technical Note #7 page 2 of 2 A Few Quick Debugging Tips

Macintosh Technical Notes

• #8: RecoverHandle Bug in AppleTalk Pascal Interfaces

See also:

Written by:
Updated:

AppleTalk Manager

Bryan Stearns April 21, 1986
March 1, 1988

Previous versions of this note described a bug in the AppleTalk Pascal
Interfaces. This bug was fixed in MPW 1.0 and newer.

•

•
Technical Note #8 page 1 of 1 Bug in AppleTalk Pascal Interfaces

• • •

•
Macintosh
Technical Notes

Developer Technical Support

#9: Will Your AppleTalk Application
Support Internets?

Written by:
Written by:

Sriram Subramanian & Pete Helme
Bryan Steams

April 1990
April 1986

•

•

This Technical Note discusses how AppleTalk applications should work across internets, groups
of interconnected AppleTalk networks. It explains the differences between life on a single
AppleTalk network and life on an internet.
Changes since March 1988: Removed the section on AppleTalk retry timers, as it is no
longer accurate; see Technical Note #270, AppleTalk Timers Explained, for more information on
retry timers.

You can read about internets (AppleTalk networks connect by one or more bridges) in Inside
AppleTalk. What do you need to do about them?

Use a High-Level Network Protocol

Make sure you use the Datagram Delivery Protocol (DDP), or a higher AppleTalk protocol based
on DDP, like the AppleTalk Transaction Protocol (ATP). Be warned that Link Access Protocol
(LAP) packets do not make it across bridges to other AppleTalk networks. Also, don't broadcast;
broadcast packets are not forwarded by bridges (broadcasting using protocols above LAP is
discouraged, anyway).

Use Name Binding

As usual, use the Name Binding Protocol (NBP) to announce your presence on the network, as
well as to find other entities on the network. Pay special attention to zone name fields; the asterisk
(as in "MyLaser:LaserWriter:*") in a name you look up is now important; it means "my zone only"
(see the Zone Information Protocol (ZIP) chapter of Inside AppleTalk for information on finding
out what other zones exist). The zone field should always be an asterisk when registering a name.

Pay Attention to Network Number Fields

When handling the network addresses returned by NBPLookUp (or anyone else), don't be
surprised if the network number field is non-zero.

Am I Running on an Internet?

The low-memory global ABridge is used to keep track of a bridge on the local AppleTalk
network (NBP and DDP use this value). If ABr idge is non-zero, then you're running on an
internet; if it's zero, chances are, you're not (this is not guaranteed, however, due to the fact that
the ABridge value is "aged", and if NBP hasn't heard from the bridge in a long time, the value is
cleared).

#9: Will Your AppleTalk Application Support lntcrnets? 10f2

Macintosh Technical Notes

Watch for Out-Of-Sequence and Non-Exactly-Once Requests

Due to a "race" condition on an internet, it's possible for an exactly-once ATP packet to slip •
through twice; to keep this from happening, send a sequence number as part of the data with each
ATP packet; whenever you make a request, bump the sequence number, and never honor an old
sequence number.

Further Reference:
• Inside AppleTalk
• Inside Macintosh, Volumes II & Y, The AppleTalk Manager
• Technical Note #250, AppleTalk: Phase 2 on the Macintosh
• Technical Note #270, AppleTalk Timers Explained

•

•
20f2 #9: Will Your AppleTalk Application Support Intemets?

•
Macintosh Technical Notes

#10: Pinouts

See also: Macintosh Hardware Reference Manual
Technical Note #65-Macintosh Plus Pinouts

Written by:
Modified:
Updated:

Mark Baumwell April 26, 1985
July 23, 1985
March 1, 1988

•

This note gives pinouts for Macintosh ports, cables, and other products.

Below are pinout descriptions for the Macintosh ports, cables, and various other
products. Please refer to the Hardware chapter of Inside Macintosh and the Macintosh
Hardware Reference Manual for more information, especially about power limits. Note
that unconnected pins are omitted.

Macintosh Port Pinouts

Macintosh Serial Connectors (DB-9)

E.i.n
1
2
3
4
5
6
7
8
9

~
Ground
+5V
Ground
TxD+
TxD
+12V
HSK
RxD+
RxD-

Description/Notes

See Inside Macintosh for power limits

Transmit Data line
Transmit Data line
See Macintosh Hardware chapter for power limits
t!andSha./Se: CTS or TRxC, depends on Zilog 8530 mode
Receive Data line; ground this line to emulate RS232
Receive Data line

Macintosh Mouse Connector (DB-9)

•

Pin
1
2
3
4
5
7
8
9

~
Ground
+5V
GND
X2
X1
SW
Y2
Y1

Description/Notes

See Inside Macintosh for power limits
Ground
Horizontal movement line (connected to VIA PB4 line)
Horizontal movement line (connected to SCC DCDA- line)
Mouse button line (connected to VIA PB3)
Vertical movement line (connected to VIA PB5 line)
Vertical movement line (connected to SCC DCDB-line)

Technical Note #10 page 1 of 6 Macintosh Pinouts

Macintosh Keyboard Connector (RJ-11 Telephone-style jack)

Pin
1
2
3
4

Name
Ground
KBD1
KBD2
+5V

Description/Notes

Keyboard clock
Keyboard data
See Inside Macintosh for power limits •

Macintosh External Drive Connector (08-19)

Pin
1
2
3
4
5
6
7
8
10
11
12
13
14
15
16
17
18
19

Name
Ground
Ground
Ground
Ground
-12V
+5V
+12V
+12V
PWM
PHO
PH1
PH2
PH3
WrReq
HdSel
Enbl2
Rd
Wr

Description/Notes

See Inside Macintosh for power limits
See Inside Macintosh for power limits
See Inside Macintosh for power limits
See Inside Macintosh for power limits
Regulates speed of the drive
Control line to send commands to the drive
Control line to send commands to the drive
Control line to send commands to the drive
Control line to send commands to the drive
Turns on the ability to write data to the drive
Control line to send commands to the drive
Enables the Rd line (else Rd is tri-stated)
Data actually read from the drive
Data actually written to the drive •

Other Pinouts

Macintosh XL Serial Connector A (08-25)

Pin
1
2
3
4
5
6
7
8
15
17
24

Name
Ground
TxD
RxD
RTS
CTS
DSR
Ground
DCD
TxC
RxC
TEXT

Description/Notes

Transmit Data line
Receive Data line
Request to Send
Clear To Send
Data Set Ready

Data Carrier Detect
Connected to TRxCA
Connected to RTxCA
Connected to TRxCA

•
Technical Note #10 page 20f 6 Macintosh Pinouts

Macintosh XL Serial Connector 8 (08-25)

•
Pin
1
2
3
6
7
19
20

Name
Ground
TxD
RxD
HSK/DSR
Ground
RxD+
TXD+/DTR

Description/Notes

Transmit Data line
Receive Data line
TRxCB or CTSB

Receive Data line
connected to DTRB

Apple 300/1200 Modem Serial Connector (08-9)

Modem Name Description/Not es
2 DSR Output from modem
3 Ground
5 RxD Output from modem
6 DTR Input to modem
7 DCD Output from modem
8 Ground
9 TxD Input to modem

Apple ImageWriter Serial Connector (08-25)

•
ImageWriter
1
2
3
4
7
14
20

Name
Ground
SD
RD
RTS
Ground
FAULT
DTR

Description/Notes

Send Data; Output from ImageWriter
Receive Data; Input to ImageWriter
Output from ImageWriter

False when deselected; Output from ImageWriter
Output from ImageWriter

Apple LaserWriter AppleTalk Connector (08-9)

•

LaserWriter
1
3
4
5
7
8
9

~
Ground
Ground
TxD+
TxD
RXCLK
RxD+
RxD-

pescription/Notes

Transmit Data line
Transmit Data line
TRxC of Zilog 8530
Receive Data line
Receive Data line

Technical Note #10 page 30f 6 Macintosh Pinouts

Apple LaserWriter Serial Connector (08-25)

LaserWriter
1
2
3
4
5
6
7
8
20
22

Name
Ground
TXD
RXD
RTS
CTS
DSR
Ground
DCD
DTR
RING

Description/Notes

Transmit Data; Output from LaserWriter
Receive Data; Input to LaserWriter
Output from LaserWriter
Input to LaserWriter
Input to LaserWriter (connected to DCBB- of 8530)

Input to LaserWriter (connected to DCBA- of 8530)
Output from LaserWriter
Input to LaserWriter

•

Macintosh Cable Pinouts

Note for the cable descriptions below:

The arrows ("~") show which side is an input and which is an output. For example, the
notation "a ~ b" means that signal "a" is an output and "b" is an input.

When pins are said to be connected on a side in the Notes column, it means the pins are
connected on that side of the connector.

Macintosh ImageWriter Cable
(part number 590-0169) •Macintosh
.(!lli9l
1
3
5
7
8
9

Ground
Ground
TxD- ~

HSK (-
RxD+
RxD- (-

RD
DTR
GND
SD

ImageWriler
(DB25)
1
7
3
20

2

pins 3, 8 connected on Macintosh side
RD = Receive Data

Not connected on ImageWriter side
SD = Send Data

Macintosh Modem Cable (Warning! Don't use this cable to connect 2 Macintoshes!)
(part number 590-0197-A)

Macintosh ~ Modem ~

LOO.9l .(!lli9l
3 Ground 3 pins 3, 8 connected on EACH side
5 TxD- ~ TxD 9
6 +12V ~ DTR 6
7 HSK (- DCD 7
8 No wire 8
9 RxD- (- RxD 5

•
Technical Note #10 page 4016 Macintosh Pinouts

Macintosh to Macintosh Cable (Macintosh Modem Cable with pin 6 clipped on both ends.)

Macintosh Name Macintosh ~

LOOID. iOO9l

• 3 Ground 3 pins 3, 8 connected on EACH side
5 TxD- ~ RxO- 9
7 HSK ~ OCO 7
8 No wire 8
9 RxO- ~ TxD- 5

Macintosh External Drive Cable
(part number 590-0183-8)

•

Macintosh
.<OOID
1
2
3
4
6
7
8
10
11
12
13
14
15
16
17
18
19

Ground
Ground
Ground
Ground
+5V
+12V
+12V
PWM
PHO
PH1
PH2
PH3
WrReq
HdSel
Enbl2
Rd
Wr

Sony prive
(20 Pin Ribbon)
1
3
5
7
11
13
15
20
2
4
6
8
10
12
14
16
18

•

Macintosh XL Null Modem Cable
(part number 590-0166-A)

Macintosh XL ~ .QI.E ~
(0825) (0825)
1 Ground 1
2 TxO- ~ RxO 3
3 RxO- ~ TxO 2
4,5 RTS,CTS ~ OCO 8 pins 4, 5 connected together
6 OSR ~ OTR 20
7 Ground 7
8 DCO ~ RTS,CTS 4, 5 pins 4, 5 connected together
20 OTR ~ OSR 6

Technical Note #10 page 50f6 Madntosh Pinouts

Macintosh to Non-Apple Product Cable Pinouts

Macintosh to IBM PC Serial Cable #1 (not tested) •Macintosh ~ IBM PC ~

ill6m (DB25)
3 Ground 7 pins 3, 8 connected on Macintosh side
5 TxD- ~ RxD 3
7 HSK f- DTR 20
8 RxD+ Ground Not connected on IBM side
9 RxD- f- TxD 2

CTS f- RTS 4-5 pins 4, 5 connected on IBM side
DSR f- DCD,DTR 6-8-20 pins 6, 8, 20 connected on IBM side

Macintosh to IBM PC Serial Cable #2 (not tested)

Macintosh ~ IBM PC ~

.rn.em (DB25)
1 Ground 1
3 Ground 7 pins 3, 8 connected on Macintosh side
5 TxD- ~ RxD 3
9 RxD- f- TxD 2

CTS f- RTS 4-5 pins 4,5 connected on IBM side
DSR f- DTR 6-8 pins 6, 8 connected on IBM side

•

•
Technical Note #10 page 60t 6 Macintosh Pinouts

•

•

•

Macintosh
Technical Notes

Developer Technical Support

#11: Memory-Based MacWrite Format
Revised: August 1989

This Technical Note formerly described the format of files created by MacWrite® 2.2.
Changes since March 1988: Updated the CLARIS address.

This Note formerly discussed the memory-based MacWrite 2.2 file format. For information on
MacWrite and other CLARIS products, contact CLARIS at:

CLARIS Corporation
5201 Patrick Henry Drive
P.O. Box 58168
Santa Clara, CA 95052-8168

Technical Support
Telephone: (408) 727-9054
AppleLink: Claris.Tech

Customer Relations
Telephone: (408) 727-8227
AppleLink: Claris.CR

MacWrite is a registered trademark of CLARIS Corporation.

#11: Memory-Based MacWrite Format 1 of 1

• • •

•

•

•

Macintosh
Technical Notes

Developer Technical Support

#12: Disk-Based MacWrite Format
Revised: August 1989

This Technical Note formerly described the format of files created by MacWrite®, which is now
published by CLARIS.
Changes since March 1988: Updated the CLARIS address.

This Note formerly discussed the disk-based MacWrite file format. For information on MacWrite
and other CLARIS products, contact CLARIS at:

CLARIS Corporation
5201 Patrick Henry Drive
P.O. Box 58168
Santa Clara, CA 95052-8168

Technical Support
Telephone: (408) 727-9054
AppleLink: Claris.Tech

Customer Relations
Telephone: (408) 727-8227
AppleLink: Claris.CR

MacWrite is a registered trademark of CLARIS Corporation.

#12: Disk-Based MacWrite Format 1 of 1

• • •

•

•

•

Macintosh
Technical Notes

DeveloperTechnical Support

#13: MacWrite Clipboard Format
Ftevised: i\ugust 1989

This Technical Note formerly described the clipboard format used by MacWrite®, which is now
published by CLARIS.
Changes since March 1988: Updated the CLARIS address.

This Note formerly discussed the MacWrite clipboard format. For information on MacWrite and
other CLARIS products, contact CLARIS at:

CLARIS Corporation
5201 Patrick Henry Drive
P.O. Box 58168
Santa Clara, Ci\ 95052-8168

Technical Support
Telephone: (408) 727-9054
Applel.ink: Claris.Tech

Customer Relations
Telephone: (408) 727-8227
Applel.ink: Claris.Ck

MacWrite is a registered trademark of CLARIS Corporation.

#13: MacWrite Clipboard Format 1 of 1

•

•

•

Macintosh Technical Notes

• #14: The INIT 31 Mechanism

See:

Written by:
Updated:

The System Resource File
The Start Manager

Bryan Stearns March 13, 1986
March 1, 1988

This note formerly described things that are now covered in the System
Resource File chapter of Inside Macintosh Volume IVand the Start Manager
chapter of Inside Macintosh Volume V. Please refer to Inside Macintosh.

•

•
Technical Note #14 page 1 of 1 The INIT 31 Mechanism

•

•

•

Macintosh Technical Notes

• #15: Finder 4.1

Written by:
Updated:

Harvey Alcabes April 12, 1985
March 1, 1988

This note formerly described Finder 4.1, which is now recommended only for
use with 64K ROM machines. Information specific to 64K ROM machines has
been deleted from Macintosh Technical Notes for reasons of clarity.

•

•
Technical Note #15 page 1 of 1 Finder Update

•

•

•

Macintosh Technical Notes

• #16: MacWorks XL

Written by:

Updated:

Harvey Alcabes
Mark Baumwell

May 11,1985

March 1, 1988

Earlier versions of this note described MacWorks XL, the system software
that allowed you to use Macintosh applications on the Macintosh XL.
Information specific to Macintosh XL machines has been deleted from
Macintosh Technical Notes for reasons of clarity.

•

•
Technical Note #16 page 1 of 1 MacWorksXL

•

•

•

•
Macintosh Technical Notes

#17: Low-Level Print Driver Calls

See also:

Written by:
Updated:

The Print Manager

Ginger Jernigan April 14, 1986
March 1, 1988

•

•

This technical note has been replaced by information in Inside Macintosh
Volume V. Please refer to the Print Manager chapter of Inside Macintosh
Volume Vfor information on low-level print driver calls.

Technical Note #17 page 1 of 1 Low-Level Printer Driver Calls

• • •

Macintosh Technical Notes

• #18: TextEdit Conversion Utility

See also: Macintosh Memory Management: An Introduction
TextEdit

Written by:
Updated:

Harvey Alcabes April 10, 1985
March 1, 1988

•

Text sometimes must be converted between a Pascal string and "pure" text
in a handle. This note illustrates a way to do this using MPW Pascal.

Text contained in TextEdit records sometimes must be passed to routines which expect
a Pascal string of type Str255 (a length byte followed by up to 255 characters). The
following MPW Pascal unit can be used to convert between TextEdit records and Pascal
strings:

UNIT TEConverti

{General utilities for conversion between TextEdit and strings}

INTERFACE

USES MemTypes,QuickDraw,OSIntf,ToolIntf;

PROCEDURE TERecToStr(hTE: TEHandle; VAR str: Str255)i
{TERecToStr converts the TextEdit record hTE to the string str.}
{If necessary, the text will be truncated to 255 characters.}

PROCEDURE StrToTERec(str: Str255; hTE: TEHandle);
{StrToTERec converts the string str to the TextEdit record hTE. }

IMPLEMENTATION

PROCEDURE TERecToStr(hTE: TEHandle; VAR str: Str255);

BEGIN
GetIText(hTEAA.hText, str);

END;

PROCEDURE StrToTERec(str: Str255; hTE: TEHandle);

• END .

BEGIN
TESetText(POINTER(ORD4(@str) + 1), ORD4(length(str», hTE);

END;

Technical Note #18 page 1 of 1 TextEdit Conversion Utility

•

•

•

•
Macintosh
Technical Notes

Developer Technical Support

#19: How To Produce Continuous Sound
Without Clicking

Revised by:
Written by:

Jim Reekes
Ginger Jernigan

June 1989
April 1985

•

•

This Technical Note formerly described how to use the Sound Driver to produce continuous sound
without clicking.
Changes since March 1988: The continuous sound technique is no longer recommended.

Apple currently discourages use of the Sound Driver due to compatibility issues. The hardware
support for sound designed into the early Macintosh architecture was minimal. (Many things have
changed since 1983-1984.) The new Macintosh computers contain a custom chip to provide better
support for sound, namely the Apple Sound Chip (ASC). The ASC is present in the complete
Macintosh II family as well as the Macintosh SE/30 and later machines. When the older hardware
of the Macintosh Plus and SE are accessed, it is likely to cause a click. This click is a hardware
problem. The software solution to this problem was to continuously play silence. This is not a
real solution to the problem and is not advisable for the following reasons:

• The Sound Driver is no longer supported. There have always been, and still are,
bugs in the glue code for StartSound.

• The Sound Driver may not be present in future System Software releases, or future
hardware may not be able to support it. The Sound Manager is the application's
interface to the sound hardware.

• The technique used to create a continuous sound should have only been used on a
Macintosh Plus or SE, since these are the only models that have the "embarrassing
click." Do not use this method on a Macintosh which has the Apple Sound Chip.

• Using the continuous sound technique, or the Sound Driver for that matter, will
cause problems for the system and those applications that properly use the Sound
Manager. Also realize that _ SysBeep, which is a common routine that everything
uses, is a Sound Manager routine.

• The continuous sound technique wastes CPU time by playing silence. With
multimedia applications and the advent of MultiFinder, it is important to allow the
CPU to do as much work as possible. The continuous sound technique used the
CPU to continuously play silence, thus stealing valuable time from other, more
important, jobs.

Further Reference:
• TheSoundManager, Interim Chapter by Jim Reekes, October 2,1988
• Technical Note #180, MultiFinder Miscellanea

#19: How To Produce Continuous Sound Without Clicking i er r

•

•

•

Macintosh Technical Notes

#20: Data Servers on AppleTalk

See also:

Written by:
Updated:

The AppleTalk Manager
Inside LaserWriter

Bryan Stearns April 29, 1985
March 1, 1988

Many applications could benefit from the ability to share common data
between several Macintoshes, without requiring a file server. This technical
note discusses one technique for managing this AppleTalk communication.

There are four main classes of network "server" devices:

Device Servers, such as the LaserWriter, allow several users to share a single
hardware device; other examples of this (currently under development by third parties)
are modem servers and serial servers (to take advantage of non-intelligent printers such
as the ImageWriter).

File Servers, such as AppleShare, which support file access operations over the
network. A user station sends high-level requests over the network (such as "Open this
file," "Read 137 bytes starting at the current file position of this file," "Close this file," etc.).

Block Servers, which answer to block requests over the network. These requests
impart no file system knowledge about the blocks being passed, i.e., the server doesn't
know which files are open by which users, and therefore cannot protect one user's open
file from other users. Examples of this type of server are available from third-party
developers.

Data Servers, which answer to requests at a higher level than file servers, such as
"Give me the first four records from the database which match the following search
specification." This note directs its attention at this type of server.

A data server is like a file server in that it responds to intelligent requests, but the
requests that it responds to can be more specialized, because the code in the server
was written to handle that specific type of request. This has several added benefits: user
station processing can be reduced, if the data server is used for sorting or searching
operations; and network traffic is reduced, because of the specificity of the requests
passed over the network. The data server can even be designed to do printing (over the
network to a LaserWriter, or on a local ImageWriter), given that it has the data and can
be directed as to the format in which it should be printed.

Technical Note #20 page 1 of 4 Data Servers on AppleTalk

ATP: The AppleTalk Transaction Protocol

ATP, the assured-delivery AppleTalk Transaction Protocol, can be used to support all
types of server communications (the LaserWriter uses ATP for its communications!).
Here is a possible scenario between two user stations ("Dave" and "Bill") and a data •
server station ("OneServer", a server of type "MyServer"). We've found that the
"conversational" analogy is helpful when planning AppleTalk communications; this
example is therefore presented as a conversation, along with appropriate AppleTalk
Manager calls (Note that no error handling is presented, however; your application
should contain code for handling errors, specifically the "half-open connection" problem
described below).

Establishing the Connection

Each station uses ATPLoad to make sure that AppleTalk is loaded. The server station,
since it wants to accept requests, opens a socket and registers its name using
NBPRegister. The user stations use NBPLookUp to find out the server's network
address. This looks like this, conversationally:

Server: "I'm ready to accept
requests!"

Dave: "Any'MyServers'
out there?"

Dave: "Hey, MyServer! What
socket should I talk to you
on?"

Bill: "Any'MyServers'
out there?"

Bill: "Hey, MyServer! What
socket should I talk to you
on?"

Server: "Hi, Dave! Use Socket N."

Server: "Hi, Bill! Use socket M."

ATPLoad Opens AppleTalk
OpenSocket Creates socket
NBPRegister Assigns name to socket
ATPGetRequest queue a few asynchronous
ATPGetRequest calls, to be able to handle several
ATPGetRequest users

ATPLoad Opens AppleTalk •NBPLookup look for servers, finds OneServer

ATPRequest Ask the server which socket to
use for further communications

ATPLoad Opens AppleTalk
NBPLookup look for servers, finds OneServer

ATPRequest Ask the server which socket to
use for further communications

ATPOpenSkt Get a new socket for talking to Dave
ATPResponse Send Dave the socket number
ATPGetRequest Replace the used GetRequest

ATPOpenSkt Get a new socket for talking to Bill
ATPResponse Send Bill the socket number
ATPGetRequest Replace the used GetRequest

From this point on, the server knows that any requests received on socket N are from
Dave, and those received on socket M are from Bill. The conversations continue, after a
brief discussion of error handling.

•
Technical Note #20 page 2 of4 Data Servers on AppleTalk

•

•

•

Half-Open Connections

There is a possibility that one side of a connection could go down (be powered off,
rebooted accidently, or simply crash) before the connection has been officially broken. If
a user station goes down, the server must throwaway any saved state information and
close that user's open socket. This can be done by requiring that the user stations
periodically "tickle" the server: every 30 seconds (for example) the user station sends a
dummy request to the server, which sends a dummy response. This lets each side of the
connection know that the other side is still "alive."

When the server detects that two intervals have gone by without a tickle request, it can
assume that the user station has crashed, and close that user's socket and throwaway
any accumulated state information.

The user station should use a vertical-blanking task to generate these tickle requests
asyncronously, rather than generating them within the GetNextEvent loop; this avoids
problems with long periods away from GetNextEvent (such as when a modal dialog
box is running). This task can look at the time that the last request was made of the
server, and if it's approaching the interval time, queue an asynchronous request to
tickle the server (it's important that any AppleTalk calls made from interrupt or completion
routines be asynchronous).

If a user station's request (including a tickle request) goes unanswered, the user station
should recover by looking for the server and reestablishing communications as shown
above (beginning with the call to NBPLookUp) .

More information about half-open connections can be found in the Printer Access
Protocol chapter of Inside LaserWriter, available from APDA.

Using the Connection

The user stations Dave and Bill have established communications with the server, each
on its own socket (note that the user stations have not had to open their own sockets, or
register names of their own, to do this-the names we're using are merely for
explanational convenience). They are also automatically tickling the server as
necessary.

Technical Note #20 page 3 of4 Data Servers on AppleTalk

Now the user stations make requests of the server as needed:

•The server checks to make sure that
no one else is using that database.

Bill opens a database.Bill: "I'd like to use the sales ATPRequest
figures for this year."

Server: "Ok, Bill." ATPResponse

Dave: "Hey, Server - I'm still here!" ATPRequest Dave notices that the interval time is
approaching, and makes a tickle
request.

Server: "Ok, Dave." ATPResponse

Bill: "Please print the figures ATPRequest
for January thru June."

Server: "Ok, Bill." ATPResponse

The server resets its "last time I heard
from Dave".

Bill asks for specific data.

The server does a database search
sorts the results, and prints them
on a locallmagewriter.

Dave: "I'd like to use the sales
figures for this year."

ATPRequest Dave opens a database.

The user stations continue making requests of the server, until each is finished. The type
of work being done by the server determines how long the conversation will last: since
the number of sockets openable by the server is limited, it may be desirable to structure
the requests in such a way that the average conversation is very short. It may also be
necessary to have a (NBP named) socket open on the user station, if the server needs to
communicate with the user on other than a request-response basis. Here is how our
example connections ended:

Server: "Sorry, Dave, I can't do that.
Bill is using that database."

Closing the Connection

ATPResponse The server finds that Bill is using that
data.

•
Dave: "Thank you, server, I'm done ATPRequest

now. You've been a big help."
Dave tells the server he's finished.

Server: "Ok, Dave. Bye now." ATPResponse
ATPCloseSkt

ATPCloseSkt

The server kisses Dave goodbye.
After the Response operation
completes, the server closes
the socket Dave was using. It also
notices that Bill hasn't sent a request
in more than two intervals, and closes
Bill's socket, too.

The user station can forget about the socket it was using on the server; if it needs to talk
with the server again, it starts at the NBPLookUp (just in case the server has moved, gone
down and come up, etc.).

•
Technical Note #20 page 4 of 4 Data Servers on AppleTalk

Macintosh Technical Notes

• #21: QuickDraw's Internal Picture Definition

See also: QuickDraw
Color QuickDraw
Using Assembly Language
Technical Note #59-Pictures and Clip Regions

Written by:
Modified by:
Updated:

Ginger Jernigan
Rick Blair

April 24, 1985
November 15, 1986
March 1, 1988

•

This technical note describes the internal format of the QuickDraw picture
data structure. This revision corrects some errors in the opcode descriptions
and provides some examples.

This technical note describes the internal definition of the QuickDraw picture. The
information given here only applies to QuickDraw picture format version 1.0 (which is
always created by Macintoshes without Color QuickDraw). Picture format version 2.0 is
documented in the Color QuickDraw chapter of Inside Macintosh. This information
should not be used to write your own picture bottleneck procedures; if we add new
objects to the picture definition, your program will not be able to operate on pictures
created using standard QuickDraw. Your program will not know the size of the new
objects and will, therefore, not be able to proceed past the new objects. (What this
ultimately means is that you can't process a new picture with an old bottleneck proc.)

Terms

An opcode is a number that Dza wP Lc t u r e uses to determine what object to draw or
what mode to change for subsequent drawing. The following list gives the opcode, the
name of the object (or mode), the associated data, and the total size of the opcode and
data. To better interpret the sizes, please refer to page 1-91 of the Using Assembly
Language chapter of Inside Macintosh. For types not described there, here is a quick
list:

•

opcode
mode
point
0..255
-128..127
rect
poly
region

byte
word
4 bytes
byte
signed byte
8 bytes
10+ bytes (starts with word size for poly (inc/. size word)
10+ bytes (starts with word size for region (inc/. size word)

Technical Note #21 page 1 of6 QuickDraw's Internal Picture Definition

fixed point long
pattern 8 bytes
rowbytes word (always even)
bit data rowbytes * (bounds.bottom - bounds.top) bytes

•Each picture definition begins with a picsize (word), then a picframe (rect), and
then the picture definition, which consists of a combination of the following opcodes:

Opcode ~ Additional pata Total Size (bytes)

00 NOP none 1
01 clipRgn rgn 1+rgn
02 bkPat pattern 9
03 txFont font (word) 3
04 txFace face (byte) 2
05 txMode mode (word) 3
06 spExtra extra (fixed point) 5
07 pnSize pnSize (point) 5
08 pnMode mode (word) 3
09 pnPat pattern 9
OA thePat pattern 9
OB ovSize point 5
OC origin dh, dv (words) 5
OD txSize size (word) 3
OE fgColor color (long) 5
OF bkColor color (long) 5

10 txRatio numer (point), denom (point) 9
11 picVersion version (byte) 2 •20 line pnloc (point), newPt (point) 9
21 line from newPt (point) 5
22 short line pnloc (point); dh, dv (-128..127) 7
23 short line from dh, dv (-128 ..127) 3

28 long text txloc (point), count (0..255), text 6+text
29 DH text dh (0..255), count (0..255), text a-text
2A DV text dv (0..255), count (0..255), text a-text
2B DHDV text dh, dv (0..255), count (0..255), text 4+text

30 frameRect rect 9
31 paintRect rect 9
32 eraseRect rect 9
33 invertRect rect 9
34 fillReet rect 9

38 frameSameRect rect 1
39 paintSameReet rect 1
3A eraseSameRect rect 1
3B invertSameRect rect 1
3C fillSameRect rect 1

40 frameRRect rect (ovalwidth, height; see 1, below) 9
41 paintRReet rect (ovalwidth, height; see 1, below) 9
42 eraseRRect rect (ovalwidth, height; see 1, below) 9 •

Technical Note #21 page 2 of6 QuickDraw's Internal Picture Definition

Opeode (cont.) ~ Additional Data Total Size (bytes)

43 invertRReet reet (ovalwidth, height; see 1, below) 9
44 fillRReet reet (ovalwidth, height; see 1, below) 9

• 48 frameSameR Reet reet 1
49 paintSameRReet reet 1
4A eraseSame RReet reet 1
48 invertSameRReet reet 1

4C fillSameRReet reet 1

50 frameOval rect 9
51 paintOval rect 9
52 eraseOval reet 9
53 invertOval reet 9
54 fiIIOval reet 9

58 frameSameOval reet 1
59 paintSameOval reet 1
5A eraseSameOval reet 1
58 invertSameOval reet 1
5C fillSameOval reet 1

60 frameAre reet, startAngle, areAngle 13
61 paintArc rect, startAngle, arcAngle 13
62 eraseAre rect, startAngle, areAngle 13
63 invertAre reet, startAngle, arcAngle 13
64 fillAre reet, startAngle, areAngle 13

• 68 frameSameArc startAngle, arcAngle 5
69 paintSameArc startAngle, arcAngle 5
6A eraseSameArc startAngle, arcAngle 5
68 invertSameArc startAngle, arcAngle 5
6C fillSameArc startAngle, areAngle 5

70 framePoly poly 1+poly
71 paintPoly poly 1-poty
72 erasePoly poly 1+poly
73 invertPoly poly 1-poly
74 fillPoly poly 1-poly

78 frameSamePoly (not yet implemented-same as 70, etc.) 1
79 paintSamePoly (not yet implemented) 1
7A eraseSamePoly (not yet implemented) 1
78 invertSamePoly (not yet implemented) 1
7C fillSamePoly (not yet implemented) 1

80 frameRgn rgn 1+rgn
81 paintRgn rgn 1+rgn
82 eraseRgn rgn 1+rgn
83 invertRgn rgn 1+rgn
84 fillRgn rgn 1+rgn

88 frameSameRgn (not yet implemented-same as 80, etc.) 1

• 89 paintSameRgn (not yet implemented) 1
8A eraseSameRgn (not yet implemented) 1
88 invertSameRgn (not yet implemented) 1

Technical Note #21 page 3 of 6 QuickDraw's Internal Picture Definition

Opcode (cont.) Na.me. Additional Data TotalSize (bytes)

8C fillSameRgn (not yet implemented) 1
90 BitsRect rowBytes, bounds, srcRect, dstRect, mode, 29+unpacked

unpacked bitData bitData •91 BitsRgn rowBytes, bounds, srcRect, dstRect, mode, 29+rgn+
maskRgn, unpacked bitData bitData

98 PackBitsRect rowBytes, bounds, srcRect, dstRect, mode, 29+packed
packed bitData for each row bitData

99 PackBitsRgn rowBytes, bounds, srcRect, dstRect, mode, 29+rgn+
maskRgn, packed bitData for each row packed bitData

AO shortComment kind{word) 3
A1 longComment kind{word), size{word), data s-oata

FF EndOfPicture none 1

Notes

Rounded-corner rectangles use the setting of the ovSize point (see opcode $08,
above).

OpenP icture and DrawP icture set up a default set of port characteristics when they
start. When drawing occurs, if the user's settings don't match the defaults, mode
opcodes are generated. This is why there is usually a eli p Rg n code after the
picVersion: the default clip region is an empty rectangle.

The only savings that the "same" opcodes achieve under the current implementation is •
for rectangles. DrawP icture keeps track of the last rectangle used and if a "same"
opcode is encountered that requests a rectangle, the last recto will be used (and no
rectangle will appear in the opcode's data).

This last section contains some Pascal program fragments that generate pictures. Each
section starts out with the picture itself (yes, they're dull) followed by the code to create
and draw it, and concludes with a commented hex dump of the picture.

{variables used in all examples}

VAR
err:
ph:
h:
r:
smallr:
orgr:
pstate:

OSErr;
PicHandle;
Handle;
Rect;
Rect;
Rect;
PenState; {are they in the Rose Bowl, or the state pen?}

•
Technical Note #21 page 4 of 6 QuickDraw's Internal Picture Definition

•

•

•

I. {Rounded-corner rectangle}
SetRect (r, 20, 10, 120, 175);
ClipRect(myWindowA.portRect);
ph := OpenPicture(r);
FrameRoundRect (r, 5, 4); {r,width,height}
ClosePicture;
DrawPicture(ph, r);

'PICT' (1) 0026 {size} OOOA 0014 OOAF 0078 {picFrame}
1101 {version I} 01 OOOA 0000 0000 OOFA 0190 {clipRgn - 10 byte region}
OB 0004 0005 {ovSize point} 40 OOOA 0014 OOAF 0078 {frameRRect rectangle}
FF {fin}

II. {Overpainted arc}
GetPenState(pstate); {save}
SetRect(r, 20, 10, 120, 175);
ClipRect(myWindowA.portRect);
ph := OpenPicture(r);
PaintArc(r, 3, 45); {r,startangle,endangle}
PenPat (gray) ;
PenMode(patXor); {turn the black to gray}
PaintArc(r, 3, 45); {r,startangle,endangle}
ClosePicture;
SetPenState(pstate); {restore}
DrawPicture(ph, r);

data 'PICT' (2) 0036 {size} OOOA 0014 OOAF 0078 {picFrame}
1101 {version I} 01 OOOA 0000 0000 OOFA 0190 {clipRgn - 10 byte region}
61 OOOA 0014 OOAF 0078 0003 002D {paintArc rectangle,startangle,endangle}
08 OOOA {pnMode patXor - note that the pnMode comes before the pnPat}
09 AA55 AA55 AA55 AA55 {pnPat gray}
69 0003 002D {paintSameArc startangle,endangle}
FF {fin}

Technical Note #21 page 5 of6 QuickDraw's Internal Picture Definition

III. {CopyBits nopack, norgn, nowoman, nocry}
GetPenState(pstate);
SetRect(r, 20,10,120,175);
SetRect(smallr, 20, 10, 25, 15);
SetRect(orgr, 0, 0, 30, 20);
ClipRect(myWindowA.portRect);
ph := OpenPicture(r);
PaintRect(r);
CopyBits (myWindowA.portBits, myWindowA.portBits,

smallr, orgr, notSrcXor, NIL);
{note: result BitMap is 8 bits wide instead of the 5 specified by smallr}
ClosePicture;
SetPenState(pstate); {restore the port's original pen state}
DrawPicture(ph, r);

data 'PICT' (3) 0048 {size} OOOA 0014 OOAF 0078 {picFrame}
1101 {version 1} 01 OOOA 0000 0000 OOFA 0190 {clipRgn - 10 byte region}
31 OOOA 0014 OOAF 0078 {paintRect rectangle}
90 0002 OOOA 0014 OOOF 001C {BitsRect rowbytes bounds (note that bounds is

wider than smallr) }
OOOA 0014 OOOF 0019 {srcRect}
0000 0000 0014 001E {dstRect}
00 06 {mode=notSrcXor}
0000 0000 0000 0000 0000 {5 rows of empty bitmap (we copied from a

still-blank window) }
FF {fin}

•

•

•
Technical Note#21 page 6 ot s QuickDraw's Internal Picture Definition

Macintosh Technical Notes

• #22: TEScroll Bug

See also: TextEdit
Technical Note #131-TextEdit Bugs

Written by:
Updated:

Bryan Stearns April 21, 1986
March 1, 1988

A bug in TextEdit causes the following problem: a call to TEScroll with no horizontal or
vertical displacement (that is, both dh and dv set to zero) results in disappearance of the
insertion point. Since such calls do nothing, they should be avoided:

IF (dh <> 0) OR (dv <> 0) THEN TEScroll(dh,dv,myTEHandle)i

•

•
Technical Note #22 page 1 of 1 TEScroll Bug

• • •

Macintosh Technical Notes

• #23: Life With FonVDA Mover-Desk Accessories

See also: The Resource Manager
Technical Note #6-Shortcut for Owned Resources

Written by:
Updated:

Ginger Jernigan April 25, 1985
March 1, 1988

•

•

This technical note describes how to make sure that your desk accessory will
work after being moved by Font/Desk Accessory Mover.

If you want your desk accessory to work properly after being moved by the Font/DA
Mover, there are some eccentricities that you need to be aware of. When the Font/DA
Mover moves a desk accessory, it renumbers to avoid conflicts in ID numbers. It will also
renumber all of your desk accessory's owned resources. See the Resource Manager
chapter of Inside Macintosh for more information on owned resources.

Since these owned resources are renumbered, your code will need to calculate the
resource ID of any owned resource it uses. For example, if your desk accessory has an
owned 'DLOG' resource, and calls GetNewDialog with the ID you assigned to it
originally, the Resource Manager will not find it. The solution is that every time your desk
accessory references an owned resource, it must figure out (at execution time) the ID of
the resource according to the current driver resource ID.

When the Font/DA Mover renumbers, it does its best to keep resources pointing to each
other properly. This means that it tries to renumber resource IDs embedded in other
resources as well as the resources themselves. For example, the reference to a 'DITL'
within a 'DLOG' or 'ALRI' resource gets changed automatically. Font/DA Mover knows
about the standard embedded resource IDs in most of the standard resources, but if you
define your own, the Font/DA Mover won't be able to renumber them for you. The
embedded resource IDs which the Font/DA Mover knows about are listed below.

Note that certain resources can never be owned, because their resource IDs are
restricted to a certain range. One such example is a WDEF. Since the ID of a WDEF is
specified along with a four bit variation code, the range of WDEF IDs that can be used is
0-16363. Since none of this falls within the owned resource ID range, WDEFs cannot be
owned. For the same reason, MDEFs, CDEFs, and MBDFs can't be owned either.

As a rule of thumb, before you ship a desk accessory, move it to a disk with another desk
accessory of the same ID. This will cause the Font/DA Mover to renumber your desk
accessory. If the moved copy doesn't work, then there is probably something wrong with
the way you are handling your owned resources.

Technical Note #23 page 1 of 2 Life With Font/DA Mover

Embedded resources known by Font/DA Mover

These are all true for Font/DA Mover 3.3 and newer:

• references to 'DITL' resources in 'DLOG'/'ALRT' resources •
• references to 'ICON', 'PICT', 'CTRL' in 'DITL' resources
• references to 'MENU' resources inside the resources themselves (menulD field)
• references to 'MENU' resources in 'MBAR' resources

Anything not on this list has to be fixed by the desk accessory.

By the way...

Before Font/DA Mover, desk accessories could have an ID in the range 12 to 31. Now,
and in the future, desk accessories can only have IDs in the range 12 to 26, because
Font/DA Mover will only assign numbers in this range. Numbers 27 thru 31 are reserved.

•

Technical Note #23 page 2 of 2 Life With Font/DA Mover

Macintosh Technical Notes

• #24: Available Volumes

See also:

Written by:
Modified by:
Updated:

The File Manager

Bryan Stearns
Bryan Stearns

April 26, 1985
October 15, 1985
March 1, 1988

Standard File lets the user select one file from any available volume; it is
sometimes necessary for an application to find which volumes are present.
This technical note gives the proper method of accomplishing this.

There is a little-noticed feature of the low-level file manager call PBHGetVlnfo which
allows specification of a "volume index" to select the volume. This volume index selects
the nth volume in the VCB queue. The following function uses PBHGetVlnfo to find out
about a given volume. In MPW Pascal:

•
FUNCTION GetIndVolume(whichVol: INTEGER; VAR volName: Str255;

VAR volRefNum: INTEGER): OSErr;

{Return the name and vRefNum of volume specified by whichVol.}

VAR
volPB HParamBlockRec;
error OSErr;

{makes it easier to fill in!}
{make sure it returns the name}
{O means use ioVolIndex}
{use this to determine the volume}

BEGIN
:= @volName;
:= 0;
:= whichVol;

BEGIN
WITH volPB DO

ioNamePtr
ioVRefNum
ioVolIndex

END; {with}
error := PBHGetVInfo(@volPB,false); {do it}
IF error = noErr THEN BEGIN {if no error occurred}

volRefNum := volPB.ioVRefNum; {return the volume reference}
END; {if no error}
{other information is available from this record; see the FILE}
{Manager's description of PBHGetVInfo for more details ... }
GetIndVolume := error; {return error code}

END;

•
Technical Note #24 page 1 of2 Available Volumes

In MPWC:

OSErr
short
char
short

GetlndVolume(whichVol,volName,volRefNum)
int whichVol;
*volName;
int *volRefNum;

/*Return the name and vRefNum of volume specified by whichVol.*/

•
HVolumeParam
OSErr

volPB;
error;

volPB.ioNamePtr = volName; /*make sure it returns the name*/
volPB.ioVRefNum = 0; /*0 means use ioVollndex*/
volPB.ioVollndex = whichVol; /*use this to determine the volume*/

error = PBHGetVlnfo(&volPB,false); /*do it*/
if (error == noErr) /*if no error occurred */

*volRefNum = volPB.ioVRefNum; /*return the volume reference*/

/*other information is available from this record; see the FILE*/
/*Manager's description of PBHGetVlnfo for more details ... */

To find out about all volumes on-line, you can call this routine several times, starting at
whichVol := 1 and incrementing whichVol until the routine returns nsvErr.

return (error) ;
} /* GetlndVolume */

Technical Note #24

/*always return error code*/

page 2 of2 Available Volumes

•

•

Macintosh Technical Notes

• #25: Don't Depend on Register A5 Within Trap Patches

See also:

Written by:
Updated:

The Operating System Utilities

Bryan Stearns June 25, 1986
March 1, 1988

•

•

Future software may allow desk accessories to have their own globals by
changing register AS when the accessory is entered and exited. This can
cause problems for applications that patch traps without following certain
rules.

If your application patches any traps, it's important that the patches not depend on
register AS. This is because you may have intercepted a trap used by a desk accessory.

If you need access to your globals within your patch, you can save AS (on the stack,
perhaps), load AS from the low-memory global Current AS (this is guaranteed to be
correct for your application), do whatever you have to do within your patch, then restore
AS on the way out. Note that if you make any traps within your patch (or call the "real"
version of the routine you patched), you should restore the caller's AS before doing so.

There are several ways of depending on AS within a patch that you should watch out for:

• Are you making any references to your global variables, or those of any units
that you're using, such as thePort from QuickDraw? These are accessed
with As-relative references with negative offsets.

• Are you making any inter-segment subroutine calls? These are accessed
with As-relative references with positive offsets.

• Are you using any system calls (either traps or "glue" routines) which will
depend on AS during their execution? In this case, you need to be sure that
you restore the caller's AS before executing the call.

To be safest, patched traps should follow the same rules as interrupt handlers.

Note

In general, applications should not have to patch any traps, and risk compatibility
problems if they do! If you'd like help in removing your dependence on patching, please
contact Macintosh Developer Technical Support.

Technical Note #25 page 1 of 1 Register A5 Within Trap Patches

•

•

•

•
Macintosh
Technical Notes

Developer Technical Support

#26: Fond of FONDs
Written by: Joseph Maurer May 1992

•

•

This Technical Note takes the place of Tech Note #26, "Character vs. String Operations in
QuickDraw" by Bryan Stearns (March 1988), which pointed out the possible differences between
the results of a StringWidth call and successive calls to CharWidth. This Note updates and
brings into a broader context the issues related to text measuring. It also provides additional
documentation on font family resources (' FOND'S), and addresses various other frequently asked
questions related to the Font Manager. For reasons of consistency and easier reference, much of
the contents of Technical Notes #191, "Font Names," #198, "Font/DA Mover, Styled Fonts, and
, NFNT ' s," and #245, "Font Family Numbers," have been updated and worked into this Note as
well.

Introduction

Every Macintosh developer needs to draw text in a GrafPort, and to specify typeface, size, and
style. In most cases, there are no problems, and application developers don't need to have in-depth
knowledge of the Font Manager's inner workings and the data structures involved. Sometimes,
however, the results on the screen or on printed output may be different from what you expected.
Then, usually, DTS comes into play to figure out what the problem is and how to fix it. This Note
is based on sharp developer questions from the last year or so, which point mainly at shortcomings
of the existing Font Manager architecture, inconsistencies in its data structures, and missing details
in the documentation.

We'll start with a historical overview, which discusses the introduction of font family description
resources (' FOND's) back in 1986, explains the consequences of non-proportionally scaling
fonts, and covers non-registration and volatility of font family numbers.

We will then deal with the Font/DA Mover and the built-in "Mover" of the Finder in System 7. We
discuss a number of not-so-well-known aspects of moving fonts in and out of a suitcase file, and
recommend that you altogether abandon the resource type' FONT'. We'll also comment on font
names, and show you how to put separate stylistic variants of a typeface together into one font
family. And we provide documentation on the ffVersion field of a 'FOND I (accompanied by a
disclaimer and another piece of irritating information).

The main body of this Note addresses how the Font Manager works in the FMSwapFont context,
and gives information on the scaling factors in the FMOu t put structure and on the changes
introduced by TrueType. We again took the examples of unexpected behavior (under certain
circumstances) from developer questions. Thanks for helping document this!

Determining the width of text, as required for line layout, is sometimes trickier than you might
think. We will document the effects of SetFractEnable in more detail and mention some more
line layout problems.

#26: Fond of FONDs 1 of 12

Macintosh Technical Notes

Finally, this Note includes sample code that puts the OutlineMetrics call to work, and
determines text bounding ooxes for bitmap fonts.

Some FOND Background

Originally (Inside Macintosh Volume I, Chapter 7), all font-related data was contained in resources
of type 'FONT'. For a font number within the range 0....255, and a font size restricted to less
than 128, the (unnamed) 'FONT' resource with an ID:

128*(font number) + (font size)

contained the bitmap font strike, while the r FONT r resource with ill = 128*(font number),
corresponding to font size 0, did not contain any data, but its resource name provided the font
family name. QuickDraw took care of stylistic variants like italic, bold, shadow, and so on; if a
user had a specifically fine-tuned font strike for a stylistic variant, QuickDraw would not
automatically substitute it when drawing text.

•

For aesthetic reasons, bitmap fonts for different sizes were usually designed with widths non
proportional to the point size. For example, the text "Show the difference in text widths" drawn
with Courier 9 measures 170 pixels, whereas the same text drawn with Courier 18 measures 374
pixels, which is 10% more than you expect. (By the way, this is bad news for the ImageWriter
printer driver. When "Best" mode (144 dpi) is selected and text in Courier 9 is to be printed, the
printer driver uses Courier 18 to render the 9-point font size on the paper at twice the screen
resolution, and obviously has big trouble compensating for the 10% difference in text width.)

On the other hand, given that only integer character widths (in QuickDraw's 72 dpi units) are
possible, proportional font scaling is compromised anyway. Accumulated rounding errors in text •
measuring, particularly for scaled fonts, contribute to the headaches of many Macintosh
programmers. The computed text widths (vital for positioning text precisely and for line layout
algorithms to justify text) sometimes change quite abruptly when the user removes or adds certain
font sizes.

The introduction of the LaserWriter, and the success of Macintosh in the desktop publishing arena,
required an extension of the original Font Manager architecture. This extension is based on the
concept of "font family description" resources of type 'FOND', and on a new resource type
r NFNT I for the data of the existing r FONT r resources (see Inside Macintosh Volume IV, Chapter
5).

The' FOND r resource stores size-independent information about the font family, and its resource
ID is the font number (in the range 0...32767). The resource name of the 'FOND r is the font
name, and it contains a variable-length font association table, which references the font strikes
belonging to a specific font family. These references include size, style, and resource ill of the
, NFNT' or r FONT r resource containing the bitmap font data. TrueType fonts were retrofitted into
this scheme, and are identified as font strike resources for point size zero. Any reference to point
size zero refers to a resource of type r s f n t r •

Note: The range 0...32767 for font numbers is subdivided into ranges for the various
script systems (see Inside Macintosh Volume VI, pages 13-8 and 14-22, and
Technical Note #242, "Fonts and the Script Manager"). This restricts the range of
font numbers for the Roman script to 0...16383, with 0,1, and 16383 reserved for
the system. •

2 of 12 #26: Fond of FONDs

Since Apple originally intended fonts to be referenced by their font family numbers,
DTS attempted to register those numbers (see Inside Macintosh Volume I, page 219
and Volume IV, page 31). This failed-not only because the number of fonts
registered grew greater than the number of font family numbers available, but also
because the Font/DA Mover (version 3.8, shipped with System 6), and the
"Mover" built into the System 7 Finder resolve conflicts between font IDs (which
happened anyway!) by renumbering the fonts on-the-fly. There is no font ID
registration any more--except for the very special case of Japanese Kanji I FOND I_

I fbi t I IDs, and potentially for Korean, Chinese and other double-byte fonts.

As early as April 1988, Technical Note #191, "Font Names," recommended the use
of font names rather than font family numbers. Since then, the recommendation
has been reinforced in Inside Macintosh Volume VI, page 12-16. Fortunately, most
applications have been good about following this recommendation. Unfortunately,
some exceptions remain, even in Apple's own software. QuickDraw Pictures
created without 32-Bit QuickDraw refer to fonts by font family number only!

•
Developer Technical Support May 1992

•

•

For obvious reasons of upward compatibility (to maintain existing fonts, and to avoid reflowing of
existing documents), the introduction of I FOND I s did not solve all the problems. This is what this
Note is all about.

Mooring Fonts

The Font/DA Mover utility has evolved into version 4.1, which knows about I sfnt I s. It is
available on the Developer CD Series disc, path "Tools & Apps (Moofl): Misc. Utilities:". The
Finder in System 7 incorporates its own "Mover" (see Inside Macintosh Volume VI, page 9-33),
which makes the Font/DA Mover redundant for System 7 users.

Given the combinatorial explosion of all imaginable situations with I FOND 's, I FONT 's,
I NFNT I S and 's fnt I s, and stylistic variations of fonts belonging to the same family, the font
moving job deserves respect. The following notes cover some less well-known aspects of this
business.

• If an old "standalone" 'FONT' (without corresponding I FOND I resource) is moved into a
suitcase file, Font/DA Mover or the System 7 Mover creates a minimal I FOND I resource on
the-fly. This I FOND I has no tables, and nearly all its fields are zeroed. The System 7 Finder
also converts the resource type from I FONT I to I NFNT '; unfortunately, the Font/DA Mover
keeps the resource type 'FONT'.

Note: While it is perfectly legal to have' FOND I s continue to reference the older
I FONT I type, DTS recommends that you avoid I FONT I s. Accessing
, FONT's is much slower, since the Font Manager always looks for I FOND I S

and I NFNT I s first. More importantly, 'FONT I S are troublemakers if an
application comes with its own font in its resource fork. Imagine an application
that includes a private I FOND I which references a I FONT I in its resource
fork by resource ID. When the Font Manager wants to load the font resource, it
first looks for a resource of type I NFNT I with this same resource ID. If there's
an 'NFNT I in the System file with the same resource ID, the Font Manager will
pick it instead of the 'FONT I from the application's resource fork. This
happens more often than you'd like to think!

#26: Fond of FONDs 3 of 12

Macintosh Technical Notes

• Under the current font architecture, the font name is the resource name of the 'FOND' resource •
(let's forget about 'FONT'S altogether), so the font name can be any Pascal string.
Unfortunately, this conflicts with the 31-character limitation of a file name when the System 7
Finder derives the file name of a movable font file (Inside Macintosh Volume VI, page 9-34)
from the font name. Some third-party fonts corne with font names long enough to cause
trouble. You may also see this problem when trying to open a suitcase if the Finder can't
generate distinct names for all of the fonts in the suitcase; the Finder may say the suitcase is
"damaged" when it is not.

Note: Each TrueType 's f nt' resource contains a Naming Table (see The
TrueType TM Font Format Specification, APDATM M0825LUA) which provides
nearly unrestricted font naming capabilities, to accommodate the needs of font
manufacturers. A forthcoming Macintosh Technical Note on TrueType Naming
Tables gives additional information.

• QuickDraw and the current Font Manager have no provision for stylistic variants like "light,"
"medium," "demi," "book," "black," "heavy," "extra," "ultra," etc., used in the context of
professional typesetting. Therefore, each of these variants comes with a separate font family
resource. Probably for reasons of consistency, the "italic" variants have their own font family
resources as well. Unfortunately, unless each 'FOND I references both the "plain" and the
"italic" font strikes, QuickDraw will no longer know a customized italic font strike exists.

It is fairly easy, using System 7 and ResEdit, to merge two font families (named, for exmaple,
"myFont" and "myFont italic") into one. This way, QuickDraw will automatically use the pre
designed italic font strike instead of creating one algorithmically. Follow these convenient
steps:

1. Make sure there is no resource ill conflict between the 'NFNT' s and 's fnt I S belonging
to both families.

2. Make sure the style bits for italic are set in the font association table of "myFont italic."
3. From ResEdit's File menu, "Get Info..." on the "myFont" 'FOND' resource. Write down

the resource ill of the "myFont" I FOND' .
4. From ResEdit's File menu, "Get Info..." on the "myFont italic" 'FOND'. Change its

resource ill to be identical to the one you wrote down in step 3. Change its resource name
to "myFont."

5. Use the Finder in System 7 to move the contents of the "myFont italic" suitcase into the
original "myFont" suitcase. It will merge all constituents into one font association table,
and thus enable transparent substitution of the right font for QuickDraw's italic style.

Version Numbers

The I FOND' structure (see Inside Macintosh Volume IV, page 45, "FamRec") contains a field
ffVersion, and inquiring minds naturally want to know more about it. Before anything else,
however, please read the following disclaimer:

Disclaimer: The Font Manager does not check version numbers in a I FOND', and we
recommend that you not rely on the (intentionally vague) statements below,
but rather analyze the data in the' FOND' independently.

•

•
4 of 12 #26: Fond of FONDs

Currently, values 0...3 may appear in the ffVersion field, with the following intended
interpretations:

Version 0: Usually indicates that the I FOND I has been created on the fly by the Font/DA
Mover (or the System 7 Finder). But the I FOND' for Palatino on the
distribution disks of System 7 is a counterexample.

Version 1: Obviously indicates the first version when 'FOND's came out (Inside
Macintosh Volume IV, page 36).

Version 2: Corresponds to the extension of the' FOND' format documented in Inside
Macintosh Volume V, page 185 (which does not mean that the I FOND I

actually contains a bounding box table).
Version 3: The I FOND I is supposed to contain a bounding box table.

•
Developer Technical Support May 1992

This brings up an annoying fact. All measurement values (referring to a hypothetical l-point font)
in the 'FOND' are in a 16-bit fixed-point format, with an integer part in the high-order 4 bits and a
fractional part in the low-order 12 bits. You would expect that negative values (like for
ffDescent, or in the kerning tables) are represented in the usual two's-complement format, such
that standard binary arithmetic applies. This is mostly true, but not always. Again, Palatino is a
counterexample (and probably not the only one). To our knowledge, version 0 and version I
, FOND's have negative values represented in a format where the most significant bit is the sign
bit, and the rest represents the absolute value. However, there is nothing in the system software
that enforces this, so counterexamples may exist.

FUNCTION Check4p12Value(n: Integer): Integer;
{ n is a 4.12 fixed-point value; i.e .• its "real" value is n/4096.
{ If n is "unreasonably negative." interpret the most significant bit
{ as sign bit. and convert to the usual two's complement format.•

Warning: Don't rely on the version number, but include sanity checks for the negative
values in a I FOND' instead! The following Pascal function shows how
this can be done:

•

BEGIN
IF n < S8FFF THEN { means: (4.12-interpretation of n) is below - 7 }

Check4p12Value := - BitAnd(n.S7FFF)
{ i.e .• mask sign bit. and take negative of absolute value}
ELSE

Check4p12Value := n;
END;

In the Heart of the Font Manager

Swapping Fonts

As stated in Inside Macintosh, there is only one contact between QuickDraw and the Font Manager:
the FMSwapFont function. Each of the three QuickDraw text measuring functions
(CharWidth, StringWidth and TextWidth) always ends up in the QuickDraw bottleneck
procedure QDProcs. txMeasProc. Each of the three QuickDraw text drawing procedures
(DrawChar, DrawString and DrawText) always ends up in the QDProcs. textProc
bottleneck procedure. Any reasonable textProc (like StdText) needs to call the currently
installed text measuring bottleneck procedure before actually rendering the text. And what does
any reasonable text measuring bottleneck procedure (like StdTxMeas) do first, before anything

#26: Fond of FONDs 5 of 12

Macintosh Technical Notes

else? It calls FMSwapFont, to make sure we are talking about the right font and its properties!
(To be precise, GetFontlnfo and FontMetrics are the other calls that make sure the right •
font is swapped in and set up, without requiring you to call FMSwapFont explicitly.)

Responding to a font request is a lot of work, and FMSwapFont has been optimized to return as
quickly as possible if the request is the same as the previous one. Building the global width
table (see Inside Macintosh Volume IV, page 41) is among the more time-consuming tasks related
to FMSwapFont; this is why the Font Manager maintains a cache of up to 12 width tables.

Inside Macintosh Volume I, page 220 documents the Font Manager's choice when a font of the
requested size is not available. However, some consequences or additional features have
occasionally been a surprise to developers (and users as well).

Scaling Factors in FMOutPut and StdTxMeas

Let's suppose you have only a l2-point bitmap version of Palatino, and don't have any Palatino
outline fonts. When you request Palatino 18, QuickDraw sets up the FMlnput record with
size = 18andnumer = denom = Point($00010001).Onreturn,the FMOutput
record contains the handle to the font record to use (the' NFNT I with the Palatino 12 bitmap font
strike), and indicates the scaling factors QuickDraw will have to use to produce the desired text
point size in FMOutput. numer and FMOutput. denom. In this example, that ratio is 3/2.

Note that these are also the values returned in StdTxMeas (Inside Macintosh Volume I, page
199) if you call the procedure with numer = denom = Point ($00010001). Why?
Because StdTxMeas calls FMSwapFont, as explained under "Swapping Fonts." StdTxMeas
does not apply these scaling factors to the text it measures. In our example, it would measure
Palatino 12 and return numer and den om in the ratio 3/2 to tell you that your application must •
multiply the results by these values to get the correct measurements for Palatino 18. This has
surprised more than one programmer who didn't expect nume r and denom to change!

By the way, the Font Manager always normalizes the scaling factors as fractions numer/denom
such that the denominator is e qu a 1 to 25 6. In our example, the real numbers returned by
FMSwapFont or StdTxMeas are numer = 384 and denom = 256.

Warning: If the scaling factors numer and denom passed to
StdTxMeas, StdText (see Inside Macintosh Volume I, pages
198 and 199), or in the FMlnput record to FMSwapFont are
such that txSize*numer.v/denom.v is less than 0.5 and
rounds to 0, and if there is more than one's f nt' resource
referenced in the font association table, then the current Font
Manager may get confused and return results for the wrong font
strike.

TrueType Always Has the Right Size

The default value of outlinePreferred is FALSE. If you have bitmap fonts for Palatino 12
and Palatino 14 in your system as well as a Palatino TrueType font, then requests for Palatino 12
or Palatino 14 are fulfilled with the bitmap fonts, but requests for any other size are fulfilled with
the TrueType font. In particular, if you (or, for example, a printer driver) need Palatino 12 scaled
by 2, the Font Manager will actually look for Palatino 24 and return the outline font, regardless of
the setting of QutlinePreferred. Even if you wanted the bitmap font doubled for exact •

6 of 12 #26: Fond of FONDs

"what-you-see-is-what-you-get" text placement, you're out of luck-you get the TrueType font,
which may have very different font metrics or character shapes.

Ifthe Font Manager uses an outline font to fulfill a given font request, the IsOutline function
returns TRUE. Interestingly, this does not imply that RealFont returns TRUE as well. If the
text size is smaller than the value lowestRecPPEM ("smallest readable size in pixels") in the
'head I font header in the TrueType font (see The TrueType Font Format Specification, version
1.0, page 227), then RealFont returns FALSE!

First Size, Then Style-or: To Be or Not to Be Outline

•
Developer Technical Support May 1992

•

•

When the Font Manager walks the font association table of a 'FOND' to look for a font strike of a
specified size and style, it stops at the first font of the right size. Only if you requested a stylistic
variant (like bold or italic) does it take a closer look at the fonts of the same size. It does this by
putting weights on the various style bits (for example, 8 for italic, 4 for bold, 3 for outline) and
choosing the font strike whose style weight most closely matches the weight of the requested style.
All this is fine when only bitmap fonts are available. With the presence of TrueType outlines,
however, the results are not always as expected, depending on the font configuration installed.

Let's look at a few examples:

Example 1: Let's suppose you have the bitmap font Times 12 (Normal) and the
TrueType fonts Times (Normal), Times Italic and Times Bold in your
system. If you request Times 14 Italic or Times 14 Bold, it's rendered from
the Times Italic or Times Bold TrueType fonts. However, if you ask for
Times 12 Italic or Times 12 Bold, and your system has the default setting of
out lineP referred = FALSE, the Font Manager decides to take the
Times 12 bitmap and let QuickDraw algorithmically slant it (for italics) or
smear it (for bold).

Example 2: Let's suppose you want to draw big, bold Helvetica characters and there are
no existing bitmaps for the size you want. If the Helvetica Bold TrueType
outlines are available, the Font Manager chooses them and the only surprise
in text rendering will be a pleasant one. If there is no Helvetica Bold
TrueType font, however (like in the machine of your customer, who kept
only the normal Helvetica TrueType font in his system), then the characters
are rendered using the normal Helvetica outlines and, in a second step,
QuickDraw applies its horizontal l-pixel "smearing" to simulate the bold
stylistic variant. The result is very different (and rather an unpleasant
surprise).

Example 3: Admittedly, this is less likely (but it has happened). Let's suppose
somebody decides to rip the Times TrueType outline out of the System file
(don't ask me why-I don't know). He forgets to take the Times Italic
TrueType outline away as well. The next time he draws text in Times
(Normal), in a size for which there is no bitmap font (or if
outlinePreferred TRUE), the Font Manager goes for an
'sfnt', and the text shows up in italic (what a surprise!).

Unfortunately, given the current implementation of the Font Manager, there are no solutions to the
problems illustrated above-other than asking users of your application to install the fonts you
recommend. The only way to anticipate these potential surprises from within your application is to

#26: Fond of FONDs 7 of 12

Macintosh Technical Notes

look into the I FOND I S font association table. You can't depend on the I sOutline function
because it returns TRUE as soon as the Font Manager stops at an I sfnt I, in its first pass •
through the font association table-regardless of subsequent stylistic variations. This means, for
example, if you ask for Helvetica Bold and I sOu t 1 ine returns TRUE, you don't know if you got
the Helvetica Bold TrueType font or if QuickDraw "smeared" the Helvetica (Plain) TrueType font.

Where Do the Widths Come From?

Text measuring (for example, for precise text placement in forms with bounding boxes) and most
line layout algorithms for justified text rely heavily on the character widths contained in the global
width table. Given that under the current font architecture, we may easily have three or more
different width tables for the same font specification (the non-proportional integer widths attached
to the I NFNT I , the fractional widths contained in the I FOND I , and the fractional widths provided
by the's fnt '), it is important to understand where the widths corne from in any case.

Since SetFractEnable was introduced (Inside Macintosh Volume IV, page 32 and Volume
V, page 180), its setting TRUE or FALSE was supposed to give predictable effects. If it's
FALSE, the Font Manager takes the integer widths from the I NFNT I ; if it's TRUE, it takes the
fractional widths from the I FOND I. Unfortunately, there are some additional details and side
effects that are not well known.

• The Font Manager looks at bit 14 of the ffFlags field in the I FOND I (see Inside Macintosh
Volume IV pages 36 and 37). If it is set (like it is for Courier), the fractional widths from the
I FOND I are never used.

• If SetFractEnable is TRUE and you request a stylistic variation like bold or italic, the Font
Manager looks at bits 12 and 13 of the ffFlags field to decide how different widths or extra
widths for the stylistic variants have to be used. What it decides is documented in the "Font
Manager" chapter of Inside Macintosh Preview, located on the Developer CD Series discs.

• Given that it is not possible to set the pen to a fractional position, precise text positioning with
fractional widths enabled is always compromised because of (accumulated) rounding errors.

• QuickDraw distributes the accumulated rounding errors across characters within a string (instead
of adding it at the end of the drawn text). This results in poor text quality on the screen, and in
problems when calculating the position of the insertion point between characters.

• The LaserWriter driver watches what you pass to SetFractEnable. Passing TRUE to
SetFractEnable disables some of the LaserWriter driver's line layout features, assuming that the
programmer intends to control text placement manually. Explicitly passing FALSE to
SetFractEnable achieves different results than using the default value of FALSE-Font
Substitution behaves differently, for example. These effects are sometimes Not What You
Wanted.

• On non-32-Bit-QuickDraw systems, SetFractEnable is not recorded in pictures. This affects the
line layout of text reproduced through DrawPicture if the picture was created with fractional
widths enabled.

In systems with TrueType, quite naturally the widths always corne from the's fnt I when the
Font Manager uses a TrueType font. If fractEnable is FALSE, hand-tuned integer character
widths for specific point sizes corne from the I hdmx I table in the I sfnt I. If fractEnable is
FALSE and no I hdmx I table is present or it contains no entries for the desired point size, the
fractional character widths from the's fnt ' are rounded to integral values.

•

•
8 of 12 #26: Fond of FONDs

The routines SpaceExtra (Inside Macintosh Volume I, page 172) and CharExtra (Inside
Macintosh Volume V, page 77; available only in color GrafPorts) are intended to help you draw
fully justified text. This works fine on the screen, but not all printer drivers are smart enough to
use these settings appropriately under all circumstances. In particular, if you pass TRUE to
SetFractEnable, or if you tum the LaserWriterdriver's line layout algorithm off (by means of
the picture comment LineLayoutOff; see Macintosh Technical Note #91), or if font
substitution is enabled and actually occurs, it is better not to rely on SpaceExtra and
CharExtra when printing fully justified text. Instead, keep the LaserWriter driver's line layout
adjustments off, and calculate the placement of your text (word by word, or even character by
character) yourself.

•
Developer Technical Support

More Line Layout Problems

May 1992

•

•

Putting Text Into Boxes

TrueType fonts carne to the Macintosh together with seven new Font Manager routines (as
documented in Inside Macintosh Volume VI, Chapter 12). The OutlineMetrics function is
certainly the most sophisticated of these, and sample code illustrating its usage may be helpful. The
following procedure DrawBoxedString assumes that the new outline calls (Inside Macintosh
Volume VI, Chapter 12) are available, and that IsOutline returns TRUE for the current port
setting.

PROCEDURE DrawBoxedString(pt: Point; s: Str255);
Draw string s at pen position (pt.h, pt.v), and show each character's bounding box.)

CONST
kOneOne $00010001;

VAR
advA: FixedPt r;
IsbA: FixedPtr;
bdsA: RectPtr;
err,i,yMin,yMax,leftEdge,temp: Integer;
numer,denom: Point;
advance,lsb: Fixed;
r: Rect;

BEGIN
numer Point (kOneOne);
denom '= Point (kOneOne) ; { unless you want to draw with scaling factors

.... }

MoveTo(pt.h,pt.v);
DrawString(s) ;

This is for the pleasure of your eyes only - in practice, you would probably
first look at the metrics, and then decide where and how to draw the string!

advA .- FixedPtr(NewPtr(Length(s) * SizeOf(Fixed)));
IsbA := FixedPtr(NewPtr(Length(s) * SizeOf(Fixed)));
bdsA := RectPtr(NewPtr(Length(s) * SizeOf(Rect)));
{ Please, check for NIL pointers here! }
err := OutlineMetrics(Length(s),@s[lJ,numer,denom,yMax,yMin,adVA,lsbA,

bdsA) ;
advance := 0;
FOR i := 1 TO Length(s) DO { for each character}

BEGIN
{ Add accumulated advanceWidth and leftSideBearing of current glyph }
{ horizontally to starting point. }
leftEdge := pt.h + Fix2Long(advance + IsbA A

) ;

#26: Fond of FONDs 9 of 12

Macintosh Technical Notes

r ;= bdsA~; { The bounding box rectangle is in TrueType coordinates. }
temp := r.bottom; { need to flip it "upside down" }
r.bottom := - r.top;
r.top := - temp;
OffsetRect(r,leftEdge,pt.v);
FrameRect (r); { This is the glyph's bounding box. }
advance := advance + advA~;

{ "Advance" is Fixed, to avoid accumulation of rounding errors. }
{ Now, bump pointers for next glyph. }
bdsA .= RectPtr(ord4(bdsA) + SizeOf(Rect));
advA FixedPtr(ord4(advA) + SizeOf(Fixed)};
lsbA .= FixedPtr(ord4(lsbA) + SizeOf(Fixed));

END;
DisposPtr(Ptr(advA)) ;
DisposPtr(Ptr(lsbA));
DisposPtr(Ptr(bdsA));

END; { DrawBoxedString }

OutlineMetrics exists because many developers need pixel-precise information on placement
and bounding boxes, often on a character-by-character basis. Unfortunately, there is no similar
facility for text drawing with bitmap fonts. Worse, under certain circumstances, italicized or
shadowed (or both) bitmap fonts are sometimes poorly clipped, particularly for scaled sizes.
Cosmetic workarounds include adding a space character to strings drawn in italic. You might also
draw the text off-screen first (in order to determine the bounding box of the black pixels) and use
CopyBits to copy the text onto the screen-but using CopyBits for text is usually bad for
printing.

The existing documentation on the FMOutput and global width table structures (Inside Macintosh
Volume I, page 227 and Volume IV, page 41) suggests it's possible to devise a routine for
determining a fairly precise text bounding box for bitmap fonts. The procedure below,
BitmapTextBoundingBox, is a first attempt. It assumes that TrueType is unavailable, or that
the IsOutline call returned FALSE for the currentport settings. While the returned bounding
box is not always "tight," be careful before modifying the algorithm and shrinking the resulting
bounding box-bitmap fonts just don't contain enough precise information for an exact bounding
box, and different bitmap fonts and different sizes may require different adjustments.

PROCEDURE TextBoundingBox(s: Str255; numer,denom: Point; VAR box: Rect);

CONST
FMgrOutRec = $998; { FMOutRec starts here in low memory
tabFont = 1024;
{ global width table offset for font record handle, see 1M IV-41 }

•

•

TYPE
FontRecPtr ~FontRec;

only for StdTxMeas; we'll use FontMetrics }
see Inside Macintosh, IV-32 }

VAR
hScale,vScale: Fixed;
err,intWidth,kernAdjust:
xy: Point;
info: FontInfo;
fm: FMetricRec;
fmOut: FMOutput;
h: Handle;

Integer;

BEGIN
intWidth := StdTxMeas(ord(s[O]l ,@s[ll,numer,denom,info);
{ calls FMSwapFont and everything - }
(StdTxMeas returns possibly modified scaling factors numer, denom)
hScale := FixRatio(numer.h,denom.h); •

10 of 12 #26: Fond of FONDs

•

•

DeveloperTechnical SupPOrt

vScale :~ FixRatio(numer.v,denom.v);
{ These are the scaling factors QuickDraw uses
{ in "stretching" the available character bitmaps
fmOut := FMOutPtr(FMgrOutRec)~;

{ has been filled by the most recent FMSwapFont,
{ implicitly called by StdTxMeas }
SetRect(box,O, - info.ascent,intWidth,info.descent);
{ bounding box for unsealed plain text }
IF (italic IN thePort~.txFace) AND {fmOut.italic <> 0) THEN BEGIN
{ the following is heuristics _)

box.right ;= box.right + (info.ascent + info.descent - 1) *
fmOut.italic DIV 16;

FontMetrics(fm) ;
HLock(fm.WTabHandle); { We'll point to global WidthTable.
h ;= Handle(LongPtr(ord4(fm.WTabHandle~)+ tabFont)~);

{ Be sure it's a handle to a 'NFNT' or 'FONT' ! }
kernAdjust :~ FontRecPtr(h~)~.kernMax;

OffsetRect(box, - kernAdjust,O);
HUnlock (fm.WTabHandle) ;

END;
IF (bold IN thePort~.txFace) AND (fmOut.bold <> O) THEN

box. right := box. right + fmOut.bold - fmOut.extra;
IF {outline IN thePort~.txFace) THEN InsetRect(box, - 1, - 1);

IF (shadow IN thePort~.txFace) AND (fmOut.shadow <> 0) THEN BEGIN
IF fmOut.shadow > 3 THEN fmOut.shadow := 3;
box. right ;= box. right + fmOut.shadow;
box.bottom ;= box.bottom + fmOut.shadow;
InsetRect(box, - 1, - 1);

END;
{ Now scale the box (more or less) as QuickDraw would do. }
{ Note that some of the adjustments are based on trial and error_
box.top := FixRound(FixMul(Long2Fix(box.top),vScale));
box.left := FixRound(FixMul(Long2Fix(box.left),hScale)) - 1;
box.bottom := FixRound(FixMul(Long2Fix(box.bottom),vScale)) + 1;
box.right := FixRound(FixMul(Long2Fix(box.right),hScale)) + 1;
GetPen(xy) ;
OffsetRect(box,xy.h,xy.v) ;

END;

Conclusion

May 1992

•

At the time when the original Font Manager architecture was designed, based on QuickDraw's
hard-coded 72 dpi resolution, nobody could anticipate that some years later, the Macintosh would
be used to tackle professional typesetting projects. Several advanced page layout applications
managed to work around the "built-in" limitations, at high development costs, and some
compatibility and performance problems. In many other cases, however, those limitations caused
questions to DTS and unsatisfying compromises. This Note can't do much more than explain the
state of affairs; the real solution to the problems must come from a redesigned foundation.
TrueType leads the way and already fulfills many of the requirements; everything else is getting
closer and closer.

#26: Fond of FONDs II of 12

Macintosh Technical Notes

Further Reference:
• Inside Macintosh, Volume I, Chapter 7, The Font Manager •
• Inside Macintosh, Volume IV, Chapter 5, The Font Manager
• Inside Macintosh, Volume V, Chapter 9, The Font Manager
• Inside Macintosh, Volume VI, Chapter 12, The Font Manager
• New & Improved Inside Macintosh, Imaging: The Font Manager. Developer CD Series

disc, path Developer Essentials: Technical Docs: Inside Macintosh Preview
• Macintosh Technical Note #91, Picture Comments-The Real Deal
• Macintosh Technical Note #191, Font Names
• Macintosh Technical Note #242, Fonts and the Script Manager
• Macintosh Technical Note #245, Font Family Numbers
• Apple LaserWriter Reference, Chapter 2, Working With Fonts (Addison-Wesley, 1988)
• Adobe Technical Note #0091 (PostScript Developer Support Group), Macintosh FOND

Resources

PostScript and Adobe are registered trademarks of Adobe Systems Incorporated.
Helvetica and Palatino are registered trademarks of Linotype AG and/or its subsidiaries.

Velocio is not a trademark of the author.

•

•
12 of 12 #26: Fond of FONDs

•
Macintosh
Technical Notes

Developer Technical Support

#27: MacDraw's PICT File Format
Revised:
Written by: Ginger Jernigan

August 1989
August 1986

•

•

This Technical Note formerly described the PICf file format used by MacDraw® and the picture
comments the MacDraw used to communicate with the LaserWriter driver.
Changes since March 1988: Updated the CLARIS address.

This Note formerly discussed the PICf file format used by MacDraw, which is now published by
CLARIS. For information on MacDraw (its specific use of the PICf format) and other CLARIS
products, contact CLARIS at:

CLARIS Corporation
5201 Patrick Henry Drive
P.O. Box 58168
Santa Clara, CA 95052-8168

Technical Support
Telephone: (408) 727-9054
AppleLink: Claris.Tech

Customer Relations
Telephone: (408) 727-8227
AppleLink: Claris.CR

Inside Macintosh, Volume V-39, Color QuickDraw and Technical Note #21, QuickDraw's
Internal Picture Format, now document the PICT file format. Technical Note #91, Optimizing for
the LaserWriter-Picture Comments, now documents the picture comments which the LaserWriter
driver supports.

Further Reference:
• Inside Macintosh, Volume V-39, Color QuickDraw
• Technical Note #21, QuickDraw's Internal Picture Format
• Technical Note #91, Optimizing for the LaserWriter-Picture Comments

MacDraw is a registered trademark of CLARIS Corporation.

#27: MacDraw's PIer File Format 1 of 1

• • •

Macintosh Technical Notes

• #28: Finders and Foreign Drives

Written by:
Updated:

Ginger Jernigan May 7,1984
March 1, 1988

•

•

This technical note describes the differences in the way the 1.1 g, 4.1, 5.0 and
newer Finders communicate with foreign (non-Sony) disk drives.

Identifying Foreign Drives

Non-Sony disk drives can send an icon and a descriptive string to the Finder; this icon is
used on the desktop to represent the drive. The string is displayed in the "Get Info" box
for any object belonging to that disk. When the Finder notices a non-Sony drive in the
VCB queue, it will issue 1 or 2 control calls to the disk driver to get the icon and string.

Finder 1.1g issues one control call to the driver with csCode = 20 and the driver returns
the icon 10 in csParam. This method has problems because the icon 10 is tied to a
particular system file. So, if the Finder switch-launches to a different floppy, the foreign
disk's icon reverts to the Sony's.

Finders 4.1 and newer issue a newer control call and, if that fails, they issue the old
Control call. The new call has csCode = 21, and the driver should return a pointer in
csParam. The pointer points to an 'ICN#' followed by a 1 to 31 byte Pascal string
containing the descriptor. This implies that the icon and the string must be part of the
disk driver's code because only the existence of the driver indicates that the disk is
attached.

This has implications about the translation of the driver for overseas markets, but the
descriptor will usually be a trademarked name which isn't translated. However, the
driver install program could be made responsible for inserting the translated name into
the driver.

Drivers should respond to both control calls if compatibility with both Finders is desired.

Formatting Foreign Drives

When the user chooses the Erase Disk option in the Finder, a non-Sony driver needs to
know that this has happened so it can format the disk. Finder 4.1 and newer notify the
driver that the drive needs to be formatted and verified. They first issue a Control call to
the driver with the csCode =6 to tell the disk driver to format the drive. Then they issue a
Control call with a csCode =5 to tell the driver to verify the drive.

Technical Note #28 page 1 of 2 Finders and Foreign Drives

Other Nifty Things to Know About

Finders 4.1 and newer also permit the user to drag any online disk to the trash can. The
Finder will clean up the disk state, issue an Eject call followed by an Unmount call to
the disk and then, an event loop later, reclaim all the memory. This means any •
program/accessory used to mount volumes should reconcile its private data, menus, etc.
to the current state of the VCB queue. These Finders also notice if a volume disappears
and will clean up safely. But, because of a quirk in timing, a mount manager cannot
unmount one volume then mount another immediately; it must wait for the Finder to loop
around and clean up the first disk before it notices the second. (It should have cleaned
up old ones before it notices new ones, but it doesn't.)

Finders 5.0 and newer allow you to drag the startup disk to the trash; Finder 4.1 just
ignored you. Finders 5.0 and newer take the volume offline as if you had chosen Eject.

•

•
Technical Note #28 page 2 of 2 Finders and Foreign Drives

Macintosh Technical Notes

• #29: Resources Contained in the Desktop File

See also:

Written by:
Modified by:
Updated:

The Finder Interface

Ginger Jernigan
Ginger Jernigan

May 7,1985
December 2,1985
March 1, 1988

•

This technical note describes the resources found in the Desktop file. Note:
Don't base anything critical on the format of the Desktop file. AppleShare
already uses another scheme; AppleShare volumes don't have Desktop files.
The format of this file can, and probably will, change in the future.

The Desktop file contains almost the same resources for both the Macintosh File System
(MFS) and the Hierarchical File System (HFS). This technical note describes the
resources found in both. This information is for reading only. This means your
application can read it but it should NEVER write out information of its own, because the
Finder, as well as Macintosh Developer Technical Support, won't like it.

The Desktop is a resource file which contains the folder information on an MFS volume,
the "Get Info" comments, the application bundles, 'FREF's and 'ICN#'s, and information
concerning the whereabouts of applications on an HFS disk. Everything except the
comments are preloaded when the desktop is opened, making it easier for the Finder to
find things.

The contents of the Desktop file are described below. The resource types are the same
for both MFS and HFS volumes unless otherwise stated.

'APPL': This resource type is used by the HFS to locate applications. This is
used by the Finder to locate the right application when a document is opened.
Each application is identified by the creator, the directory number, and the
application name. This is used only by HFS.

'BNDL': This resource type contains a copy of all of the bundles for all of the
applications that are either on the disk or are the creators of documents that are on
the disk. This is used by the Finder to find the right icons for documents and
applications. If you have a document whose creator the Finder has not seen yet, it
will not be in the Desktop file and the default document icon will be used.

•
'FREF': This contains a copy of all of the FREFs referenced in the bundles.

Technical Note #29 page 1 of 2 Resources Contained in the Desktop File

'FCMT': This resource contains all of the "Get Info" comments for
applications and documents. On MFS volumes the ID is a hash of the object's
name. The hashing algorithm is as follows:

FUNCTION HashString(str: Str255): INTEGER;

The ID for the FCMT returned in function result •
HashString

MOVE.L (SP)+,AO
MOVE.L (SP)+,Al

MOVEQ #O,DO
MOVE.B (Al)+,DO

MOVEQ #O,D2
@2

get return address
get string pointer

get string length

accumulate ID here

@l

MOVE.B
EOR.B
ROR.W
BMI.S
NEG.W

(Al) +, Dl
Dl,D2
#l,D2
@l
D2

get next char
XOR in
stir things up
ID must be negative

SUBQ.W #l,DO
BNE.S @2

MOVE D2, (SP)
JMP (AO)

loop until done
until end of string

return the hashed code

For HFS volumes, the ID of the resource is randomly generated using UniqueID. •
To find the ID of the comment for a file or directory call PBGetCat Info. The
comment ID for a file is kept in ioFlXFndrInfo. fdComment. The comment ID for a
directory is kept in ioDrFndrInfo. frComment.

'FOBJ': This resource type contains all of the folder information for an MFS
volume. The format of this resource is not available. This is only in an MFS
volume's Desktop file.

'ICN#': This resource type contains a copy of all of the 'ICN#' resources
referenced in the bundles and any others that may be present.

'STR ': This is a string that identifies the version of the Finder, but it isn't
always correct.

Creators: A resource with a type equal to the creator of each application with
a bundle is stored in the Desktop file for reference purposes only. The data stored
in these resources is for the Finder's use only.

Be aware that if a resource is copied from an application resource file and there is an ID
conflict, the Finder will renumber the resource in the Desktop file.

•
Technical Note #29 page 2 of 2 Resources Contained in the Desktop File

Macintosh Technical Notes

• #30: Font Height Tables

See Also:

Written by:
Updated:

The Font Manager
The Resource Manager

Gene Pope April 25, 1986
March 1, 1988

•

•

This technical note describes how the Font Manager (except in 64K ROMs)
calculates height tables for fonts and how you can force recalculation.

In order to expedite the processing of fonts, the Font Manager (in anything newer than
the 64K ROMs) calculates a height table for all of the characters in a font when the font is
first loaded into memory. This height table is then appended to the end of the font
resource in memory; if some program (such as a font editor) subsequently saves the
font, the height table will be saved with the font and will not have to be built again. This
is fine for most cases except, for example, when the tables really should be recalculated,
such as in a font editor when the ascent and/or descent have changed.

The following is an example of how to eliminate the height table from a font:

IF (BitAnd(hStrike AA.fontTyp,$l)=l) THEN BEGIN (We have a height table)
(Truncate the height table)
SetHandleSize(Handle(hStrike),GetHandleSize(Handle(hStrike)

(2*(hStrike AA.lastChar-hStrike AA.firstChar)+3)));

(We no longer have a height table so set the flag to indicate that)
hStrikeAA.format := BitAnd(hStrikeAA.fontType,$FFFFFFFE);

END;

In MPWC:

if «**hStrike) .fontType & Oxl ==1) (/*We have a height table*/
/*Truncate the height table*/
SetHandleSize«Handle)hStrike,GetHandleSize«Handle)hStrike)-

(2* ((**hStrike) .1astChar- (**hStrike) . firstChar) +3)) ;
/*We no longer have a height table so set the flag to indicate that*/
(**hStrike) .fontType = (**hStrike) .fontType & OxFFFFFFFE;

where hStrike is a handle to the 'FONT' or 'NFNT' resource (handle to a FontRec).

Note: After the height table has been eliminated, the modified font should be saved to
disk (with ChangedResource and WriteResource) and purged from memory (using
ReleaseResource). This is an important step, because the Font Manager does not
expect other code to go behind its back removing height tables that it has calculated.

Technical Note #30 page 1 of 1 Font Height Tables

•

•

•

•
Macintosh
Technical Notes

RJEVIJEW

#31A:

Developer Technical Support

GestaltWaitNextEvent
Revised by: C.K. Haun <TR> April 1 1992

•

This Technical Note discusses a new Event Manager call in Macintosh System Software.

The Changing World
The Macintosh operating environment is changing rapidly. Modular system software, dynamically
linked libraries, plug and play hardware, all add up to a confusing environment for the application
programmer.

To dispel this c9~fH§..!pn, it is essential that an application alwaysknow what features are available
for its use. Th~\#.Jer"erience will be greatlyf~nhanced when the user can drop a new system

extension into ~~1~~IJhn&&~li:i'I~FY~t,IYi1~tr':~i1r~~1~j:~:irc,pns.
To allow this' eW¥funcdttb:~{providid.Jisa:mySt8.:t'lttensWhifti:b"lSeen added to System 7 and
later, Gesta~;K",~"""<. t~l~t,EJ.~~'{m:l:: !~j:J~/" el\\;~/' 1~i~M:fi" \l~::fr ~l:jlf

The best way to explain GWNE is to see it in action. The function prototype for GWNE is:

pascal EventReturnStructHandle GestaltWaitNextEvent(EventMaskHandle
theMask, SleepHan.d.J...~.,..sleepValue, GestaltAvailap'.J"eHandle
featuresAvailablil~~~\~ltAvailableHandlemjRiffibmNeeded,GWNECallbackHandle

myCallBack) ; i~l!1I!I!r ,lll!f.~I!~ ':11:;:i:;:;::l~:}~ .,::il:::?~·:;ill::::;::r~::1111::ll!t:.:, ~;li!IIIII~[::::
The first thing yori~n notic.il:is tilt'the::ilfibuslWregllih pammeter is missing. No one could ever

figure this out, s~;llt~:~p'rdfoIlfd. ~~~!IIII~i:::::/::ll'I!,.:~:f ,~lIllf ~I!ji!;:/:'
There are six new structures defined for this callUlir

The first is the EventReturnStruct. Since you never know what features may be connected to
your Mac, you can never be certain what events you'll get back. Also, it is possible to get multiple
events simultaneously, depending on the types of devices and extensions the user has installed So
this variable structure has been created to let you know what happened during the event call.

struct EventReturnStruct{
unsigned long
struct EventRecord2

} ;

where EventRecord2 is:

NumberOfEvents;
**theEvents;

•
struct EventRecord2

unsigned long
Handle
DateTimeRec
EventRecord2

#31A: GestaltWaitNextEvent

typeOfEvent;
eventData;
eventTime;
**nextEvent;

1 of 5

Macintosh Technical Notes

} ;

When GWNE returns, you will then walk through the linked list of EventRecord2 structures,
examining the event type and parsing the data in the eventData field as appropriate for that event.
The numberOfEvents parameter is available to quickly determine how many events have occurred.
Since it is possible for you to get up to 4294967295 events per GWNE call (or up to available
memory) it may be appropriate to display a watch cursor or 'please wait' dialog after returning
from GWNE.

•
Also please note that each event contains a DateTimeRec structure. Ticks are not enough for some
events, for example if the SubSpace manager (see develop issue 7) is installed, the normal starting
point of Jan 1 1904 is not adequate, since events posted many millennia earlier or later may also be
queued to your machine. Please see the specific event source documentation for explanation of this
record for specific events.

The next new structure is the EventMaskStruct. This is necessary since there is a large amount
of possible events (again, up to 4294967295) that you may be interested in, and they may have
different masking needs.

struct EventMaskStruct{

H
uns di gl ne d lon$:::::~:::::::::::":::::::::::,,,.. typeOfEvent; .::~;:<~::

an e :l:~:~:~;~:~{::~M~::. eventAcceptPa1t:~eters;

}; =~~~~~ Evenltcet'f"l? lV
You'll note that you'~t"!n:· pa~s";:;reasbn~"'bothf6r acc~ting::tilsTefuSl1fg ~ event, the contents of
these handles is determined by the eventType field.

•
typeOfEvent;
eventWakeParameters;
eventStayAsleepParameters;
XOREvents;
ANDEvents;
OREvents;
NOTEvents;
**nextSleep;

Warning: You must pass a handle in both eventAcceptParameters and
eventRefuseParameters. Failure to do so may cause an event not
intended for:yeU'l"'CQ.P.lputer to be accepted. Ar'W%-:

.iiliill.!':::= 11111i:: ;'''li:::f;::::(:i:) .:::/::::W:::ME:r'::':~ill!II~::;::. "::;!IIIJt
The old sleep value has al.$.I:!thang'il ~~~~:::he\1l,{iffuqWe s,i¥epr@pdle defines not only how long
you'll sleep, but also if ygj/shoq!iffiWal$.ilup fcW:::~n»~:I>;~cfied ~Y¢.9,t. This gives you much more
flexibility to customize y6uri:applicationl:t8 meedi~frear'neats oflydirrcustomers.

:t:::::,ii::r:'
struct SleepStruct{

unsigned long
Handle
Handle
EventMaskHandle
EventMaskHandle
EventMaskHandle
EventMaskHandle
struct SleepStruct

} ;

The new sleep structure gives you much finer control over what you wish to wake up for. Besides
passing the wake up parameters and stay sleeping parameters (the definition of these parameters is
determined by the event number) you also pass handles to the events that may relate to the event
you are concerned about.

For example, you pass a SleepStruct for a kMonitorMoved event that specifies that you should
only be awakened if the monitor moved more that 75 degrees vertically, but stay sleeping if the •
20fS #31A: GestaltWaitNextEvent

move angle exceeds 90 degrees vertical. This may be all that is required, but you may also be
concerned about what caused that to happen. If you pass an event mask for a
kCatJumpedOnMontior as one ofthe ANDEvent parameters, then you will be wakened if the 75-90
tilt is the result of the kCatJumpedOnMontior. If there are some simultaneous events that you
don't care about, pass them in the NOTEvents. In this case, you may pass a kEarthQuakeEvent
mask with a value of kLessThanRichter4 .0 as a parameter. This would indicate that you want to
be wakened ifmonitor moved more that 75 degrees vertically, but stay sleeping if the move angle
exceeds 75 degrees vertical and this was not caused by a small earthquake.

A few experiments will make this clear, and you'll be glad to have the control you have.

•
Developer Technical SuPPOrt April 1992

The next new parameter is the GestaltAvailableHandle, this will return to you a list of current
system features. This will allow you to dispatch rapidly to the appropriate routine when the user
adds or deletes a system feature.

struct GestaltAvailable
Boolean
Boolean
FeatureStruct
Boolean
FeatureStruct

{

changed;
added;
**addedFeatures;
removed;
**removedFeatures;

•
}; ~~~~~:*~~~:Ill!::
where Feature~c..tl,"S:r:'· ...,.~.:.r.:...r»

:~i~ll~: .::::11~11~11\ :~~~JW:<":>::""
struct Feat~~Sti:m1.cth@;; ,:::

oST~i#,:" W[@:,,,.,, ·:=t..lbt"':'·
long
OSErr
struct FeatureStruct

} ;

~:::~:~:~ji~~:: ~1~11!~~ o:-=>'~l~~~l .~...:;.:..:..,.'.....:::.:.:~-;::·.:~.~:;.:1.:~:~.:::L:'.:
~~~1~~~~~ ~...... ~~ ~ ~t:ct«::;
response;
result;
**nextFeature;

:O:-:::-:':-:-::::::::::::~:-:::::''''''''' ••:;::::-....--:::::;.

The selector is se.If.+.txpl'ibatory. Response and l::£J~h.,are included here, because GWNE will

automaticallycall1:'e clltl~!11i~1j:;P1rt;:~4'£tl~uring its call.

The next parametg:iJo GWE i$.mj'ilotqM;'G~j:f·al~#.~aq~jbleHandle.This record specifies the
minimum requir~:.hl§;:yddf apiji~atiorij:I~:;'::~ i1re,m.,l:again.

While we hope every application is rewrift&f::;'to take advantage of every possible system
configuration dynamically, we understand that there are some smaller shops where this will not be
possible for a few months after GWNE goes into general use. For example, there may be some
applications that will take a while to revise to continue working when the user removes QuickDraw
from the system.

If this is the case for your application, in this parameter all the features that you need to run in
minimumNeeded.

Note: Please do not abuse this feature. If your application is too picky and not
ready to handle many different configurations, it is possible for you to call GWNE
and never return. The user would be confused by this.

•
The final new structure is the GWNECallbackHandle

struct GWNECallbackHandlel
VoidProcPtr callBack;
FeatureStruct **featuresNeeded;

#31A: GestaltWaitNextEvent 30f5



Macintosh Technical Notes

short minimumCallBackMinutes;
} ;

Because of the power of GWNE , it sometimes takes a longer time to complete than the older WNE
routine. If you would like to take some periodic action during a GWNE call, pass this structure.
GWNE will call your callBack proc when the amount of minutes specified in
minimumCallBackMinutes has elapsed if the feature set you defined in featuresNeeded is
available.

Cautionary Notes

Obviously GWNE is going to take a little more time than the older WaitNextEvent call. Also, GWNE
disables interrupts for the duration of the call to prevent new selectors and features from being
added while the call is in progress.

This should not be a problem for a well-behaved application, if you are checking Ticks instead of
incrementing a variable during interrupt time you will not be affected

•

Note: TickCount now returns minutes, not sixtieths of a second.

Determining if GWNE is available

At this writing, GWNE is designed to be a system extension, and there are no plans to incorporate it
in core system software. Iii'e.mf)6h\Mgit in the core softwarc;"ifoYld)imit its effectiveness.

',", :~l~~: :-».1........-.:.:.. "::C::::" .....:::0:.:••••:-:-:-:.:;. ;:<:x';';. ,. s::m*f[:.:::
This ~ean~ that determin :~,:,::.:...::iits a~~~ablf:~~*: gfb1lfa . W ~jipiust call GWNE to determine if
GWNE IS available. We recc.munend,U foDttwmgtijbde.U~': ,fll\t:~: iit~W .

II Prior to callin~y~ ~~oa~w recovery if call fails

CopyMachineRAMToDisk(); 1* your routine *1

II Install a bus error handler. This will point to the code immediatly after
II the GWNE call

InstallMyBusError();

I I Call GWNE

myEvts=GestaltWaitNextEvent(myMaskHandle,mySleepHandle,returnedFeatureSet,mini
mumFeaturesNeeded,callBackHandle);

if (didBusError) {

•

II this flag will be set by your bus error handler. If it is set,then GWNE is
II not currently installed. Reload memory from disk

CopyDiskImageBackToRAM(); 1* your routine *1

40f5

CallWaitNextEvent()i II default to calling WNE

#31A: GestaltWaitNextEvent

•



NOTE: You cannot assume that GWNE will never be available if it was not available one time.
The user may install or remove it at any time, so you must write your event loop in this
fashion.•

Developer Technical Support April 1992

Conclusion:

GestaltWaitNextEvent answers the prayers of developers, and the needs of users. It gives a well
defmed, consistent interface to a fluid environment.

Obviously, existing applications will need some rewriting to become fully GWNE aware. We
expect incorporation will take up to two weeks, and re-writing your code to be 'any feature aware'
may take slightly longer. However, it will be worth the effort.

Further Reference:
• Inside Macintosh, Volume VII-XXIII, Possible Event Codes References

•
.,;.;.

.;;.: ;.::.::::;..:' :..:'.,..::':;":~.::'.'.::;.~.:::::::.:..::.::.:::!::.:..:".':~:::'.::[.!.~.i.~,.::,::::.:::';~.:.:::'.::.:::.:::..::;•....::..'.~..::••.....:::.:..::::::::!.:::'.:;,.:~:.:;,~.,~..:;::.:.i.',:.I.i.:.!: .:~~#V'''imt:E·· e ·:~::~tmt {~ft ':':~1%iiliTf .:.::..:..:..:..'..;..:..'.:....;t:.:::••:.:.r.i-:..«.;.x:·..:,.:..f::.·.,...'.:!:,.'.:·...~...::.'l~1~~: ~'..w. • ~.

~' tr:;
·:·::~.;.·...:.:.·:~::::f:~:'..~.:.:.:. .::t ::~:~:~:t

.~ ;:~:.:.: '~I?'

JIlt

•

;·Ailll·lllr::;"'~~:~~11:11ii: ;.x::,,::~:,~:· if:,:,:: ";;:$:j:':::::::. ;::~,:::~' .~.:::'.:·.••;;'•.••:••.•.•••::·:.•.•••:;•...•.••••:f:::;.::f..:::::.:X:~..:',.::::;:;..::!'.:(.(.~:~..:::..::.,.::::'..:~.,..;::~..::,.,.:::;..::.::,.:::r:::~:~::(:~.r.::;.:;.i!:;Jl.:::;:::
.,

A.:c.;..•::.:.::.::.::.....:::::::~::':::::...:::..::;:::':.:[.~..:.:~::.::~:.::::l:::.::~::::::1::~:.':::.~::f..•. ...; ..:...:::..::..:...:.:..:.:::::::::.:::::..:..:.::.:..f.'..:;:·:.~:.~.·::.~:;:·.:;.;:~:f.~.·~.~.J ,!,l,fl:::q,f 4fY :t!,lf ."J~.,,"> IttJtlliV

#31A: GestaltWaitNextEvent 50f5



• • •



Macintosh Technical Notes

• #32: Reserved Resource Types

See:

Written by:
Updated:

The Resource Manager

Scott Knaster May 13,1985
March 1, 1988

Your applications and desk accessories can create their own resource types. To avoid
using type names which have been or will be used in the system, Apple has reserved all
resource type names which consist entirely of spaces ($20), lower-case letters ($61
through $7A), and "international" characters (greater than $7F).

In addition Apple has reserved a number of resource types which contain upper-case
letters and the "#" character. For a list of these resource types, see The Resource
Manager Chapter of Inside Macintosh (starting with Volume \I).

•

•
Technical Note #32 page 1 of 1 Reserved Resource Types



•

•

•



Macintosh Technical Notes

• #33: ImageWriter " Paper Motion

Written by:
Updated:

Ginger Jernigan April 30, 1986
March 1, 1988

The purpose of this technical note is to answer the many questions asked
about why the paper moves the way it does on the ImageWriter II.

Many people have asked why the paper is rolled backward at the beginning of a
Macintosh print job on the ImageWriter II. First, note that this only happens with pin-feed
paper (Le. not with hand-feed or the sheet-feeder) and only at the beginning of a job.

It is not a bug, and it is not malicious programming. It is simply that users are told in the
manual to load pin-feed paper with the top edge at the pinch-rollers, making it easy to
rip off the printed page(s) without wrecking the paper that is still in the printer or having
to roll the paper up and down manually. At the end of every job, the software makes sure
that the paper is left in this position, leaving the print-head roughly an inch from the
edge. If something is to be printed higher than that, the paper has to be rolled
backwards.

• As you are probably aware, the "printable rectangle" (rPage) reported to the application
by the print code begins 1/2 inch from the top edge, not one inch. The reason for that is
that we want a document to print exactly the same way whether you are printing on the
ImageWriter I or II. On the tmageWriter I, the paper starts with the print-head 1/2 inch
from the top edge, so the top of rPage is at that position for both printers.

There is no way to eliminate the reverse-feed action, because the user would have to
load the paper a different way AND the software would have to know that this was done.

Incidentally, in addition to the paper motion described above, there is also the "burp."
This is a 1/B-inch motion back and forth to take up the slop in the printer's gear-train. It is
needed on the old-model printer, and there is debate about whether or not it's needed
on ALL ImageWriter Ils, or only some, or none. The burp has been in and out of the
tmageWriter II code in various releases; right now it's in.

•
Technical Note #33 page 1 of 1 ImageWriter II Paper Motion



• • •



Macintosh Technical Notes

• #34: User Items in Dialogs

See also: Inside Macintosh, The Dialog Manager

Written by:
Updated:
Revised by:

Bryan Stearns

Jim Reekes

May 29,1985
March 1, 1988
October 1, 1988

The Dialog Manager does not go into detail about how to manage user
items in dialogs; this Technical Note describes the process.
Changes since March 1, 1988: Added MPW C 3.0 code, added a
SetPort call to the Pascal example, and noted the necessity and meaning

of enabled items.

To use a userltem with the Dialog Manager, you must define a dialog, load the dialog
and install your userltem, and respond to events which relate to your userltem. If
your application wants to receive mouse clicks in the userltem, then you must set the
item to enabled.

• Defining a Dialog Box with a userltem

You should define the dialog box in your resource file as follows. Note that it is
defined as invisible, since we have to play with the userltem before we can draw it.

resource 'DLOG' (1001) {
{100,100,300,4001,
dBoxProc, invisible, noGoAway, OxO,
1001,
"Test Dialog"

I ;

resource'DITL' (1001) {
{

{l60, 190, 180, 280j,
button { enabled, "OK" I;

{104, 144, 120, 2961,
user Item { enabled I

I ;

/* type/ID for box */
/* rectangle for window */
/* note it is invisible */

/* matching item list */

/* rectangle for button */
/* an OK button */
/* rectangle for item */
/* a user item! */

•
Loading and Preparing to Show the Dialog Box

Before we can actually show the dialog box to the user, we need two support routines.
The Dialog Manager calls the first procedure whenever we need to draw our
userltem. You should install it (as shown below) after calling GetNewDialog but
before calling ShowWindow. This first procedure simply draws the userltem.

Technical Note #34 page 1 of4 User Items in Dialogs



PROCEDURE MyDraw(theDialog: Dialogptr; theItem: INTEGER);

In MPW Pascal:

VAR
iType
iBox
iHdl

INTEGER;
Rect;
Handle;

{returned item type}
{returned bounds rectI
{returned item handle}

•
BEGIN

GetDItem{theDialog,theItem,iType,iHdl,iBox); {get the box}
FillRect{iBox,ltGray}; {fill with light gray}
FrameRect{iBox}; {frame it}

END; {MyDraw}

In MPWC 3.0:

pascal void MyDraw(theDialog,theItem)
DialogPtr theDialog;
short int theItem;

short int
Rect
Handle

iType;
iBox;
iHdl;

/*returned item type*/
/*returned bounds rect*/
/*returned item handle*/

GetDItem{theDialog,theItem,&iType,&iHdl,&iBox); /*get the box*/
FillRect{&iBox,qd.ltGray); /*fill with light gray*/
FrameRect(&iBox}; /*frame it*/

/*MyDraw*/

The other necessary procedure is a filter procedure (filterProc) that the Dialog
Manager calls whenever ModalDialog receives an event (this only applies when
calling _ModalDialog; modeless dialogs are covered below). The default
filterProc looks for key-down and auto-key events and simulates pressing the OK
button (or whatever else is item 1) if the user has pressed either the Return key or the
Enter key. To support a userltem, the filterProc must handle events for any
userltem items in the dialog in addition to performing the default filterProc tasks.
The following short filterProc supports these types of items; when the user clicks in
the userltem, the filterProc inverts it.

•
In MPW Pascal:

FUNCTION MyFilter{theDialog: Dialogptr; VAR theEvent: EventRecord;
VAR itemHit: INTEGER): BOOLEAN;

CONST
enterKey 3;
returnKey 13;

VAR
{we'll play w/ mouse}
{for enter/return}
{returned boundsrect}
{returned item handle}
{returned item and type}

Point;
SignedByte;
Rect;
Handle;

itemHit : INTEGER;

mouseLoc
key
iBox
iHdl
iType,

BEGIN
SetPort{theDialog);
MyFilter := FALSE; {assume not our event}

•
Technical Note #34 page 2 of4 User Items in Dialogs



{we handled it}
{he hit the userItem}
{if he hit our userItem}
{mousedown}
(event case)
{MyFilter}

•
CASE theEvent.what OF {which event?}

keyDown,autoKey: BEGIN {he hit a key}
key := SignedByte(event.message}; {get keycode}
IF (key = enterKey) OR (key = returnKey ) THEN BEGIN

MyFilter := TRUE; {we handled it}
itemHit := 1; {he hit the 1st item}

END; {test CR or Enter}
END; {keydown}
mouseDown: BEGIN {he clicked}

mouseLoc := theEvent.where; {get the mouse pos'n}
GlobaIToLocal(mouseLoc); {convert to local}
GetDItem(theDialog,2,iType,iHdl,iBox); {get our box}
IF PtInRect{mouseLoc,iBox) THEN BEGIN {he hit our item}

InvertRect(iBox);
MyFi1ter := TRUE;
itemHit := 2;

END;
END;

END;
END;

In MPWC3.0:

pascal Boolean MyFilter(theDialog,theEvent,itemHit)
Dia10gPtr theDialog;
EventRecord *theEvent;
short int *itemHit;

•
idefine enterKey
idefine returnKey

char
short int
Rect
Handle
Point

3;
13;

key;
iType;
iBox;
iHdl;
mouseLoc;

/*the enter key*/
/*the return key*/

/*for enter/return*/
/*returned item type*/
/*returned boundsrect*/
/*returned item handle*/
/*we'll play w/ mouse*/

SetPort(theDialog);
switch (theEvent->what) /*which event?*/

•

case keyDown:
case autoKey: /*he hit a key*/

key = theEvent->message; /*get ascii code*/
if ({key == enterKey) I I (key == returnKey»
( /*he hit CR or Enter*/

*itemHit = 1; /*he hit the 1st item*/
return(true); /*we handled it*/

} /*he hit CR or enter*/
break; /* case keydown, case autoKey */

case mouseDown: /*he clicked*/
mouseLoc theEvent->where; /*get the mouse pos'n*/
GlobaIToLocal{&mouseLoc); /*convert to local*/
GetDltem{theDialog,2,&iType,&iHdl,&iBox); /*get our box*/
if (PtInRect(mouseLoc,&iBox»
( /*he hit our item*/

InvertRect(&iBox);
*itemHit = 2; /*he hit the userltem*/
return{true); /*we handled it*/

} /*if he hit our userItem*/
break; /*case mouseDown */

} /*event switch*/
return(false); /* we're still here, so return false

(we didn't handle the event) */
/*MyFilter* /

Technical Note#34 page 3 of 4 User Items inDialogs



Invoking the Dialog Box

When we need this dialog box, we load it into memory as follows: •In MPW Pascal:

PROCEDURE DoOurDialog;

VAR
myDialog : DialogPtr;
iType, itemHit : INTEGER;
iBox Rect;
iHdl Handle;

{the dialog pointer}
{returned item type}
{returned boundsRect}
{returned item Handle}

run it}{let dialog manager
(until he hits ok.)
{throw it away}
{DoOurDialog}

BEGIN
myDialog := GetNewDialog(1001,nil,POINTER{-I»; {get the box}
GetDItem{myDialog,2,iType,iHdl,iBox); (2 is the item number)
SetDItem{myDialog,2,iType,@myDraw,iBox); {install draw proc}
ShowWindow{theDialog); {make it visible}
REPEAT

ModalDialog{@MyFilter, itemHit );
UNTIL itemHit = 1;
DisposDialog{myDialog);

END;

In MPWC3.0:

void DoOurDialog()

DialogPtr
short int
short int
Rect
Handle

myDialog;
iType;
itemHit;
iBox;
iHdl;

/*the dialog pointer*/
/*returned item type*/
/*returned from ModalDialog*/
/*returned boundsRect*/
/*returned item Handle*/

•
myDialog = GetNewDialog{1001,nil, (WindowPtr)-I); /*get the box*/
GetDItem{myDialog,2,&iType,&iHdl,&iBox); /*2 is the item number*/
SetDItem{myDialog,2,iType,MyDraw,&iBox); /*install draw proc*/
ShowWindow{myDialog); /*make it visible*/

while (itemHit != 1) ModalDialog{MyFilter, &itemHit);
DisposDialog{myDialog); /*throw it away*/

/*DoOurDialog*/

Using userltem Items with Modeless Dialogs

If you are using user Item items in modeless dialog box, the Dialog Manager will call
the draw procedure when DialogSelect receives an update event for the dialog
box. When the user clicks on your user Item and it is enabled, DialogSelect will
return TRUE. The itemHit will be equal to the item number of your userItem. Your
code can then handle this like the mouse-down event case in the example above.

•
Technical Note #34 page 4 of4 User Items in Dialogs



Macintosh Technical Notes

• #35: DrawPicture Problem

Written by:
Updated:

Mark Baumwell June 19, 1986
March 1, 1988

This note formerly described a problem with DrawPicture that occurred only
on 64K ROM machines. Information specific to 64K ROM machines has been
deleted from Macintosh Technical Notes for reasons of clarity .

•

•
Technical Note #35 page 1 of 1 DrawPicture Problem



•

•

•



Macintosh Technical Notes

• #36: Drive Queue Elements

See also:

Written by:
Updated:

The File Manager
The Device Manager

Bryan Stearns June 12, 1985
March 1, 1988

This note expands on Inside Macintosh's definition of the drive queue, which
is given in the File Manager chapter.

As shown in Inside Macintosh, a drive queue element has the following structure:

Note that dQDrvSz2 is only used if qType is 1. In this case, dQDrvSz2 contains the
high-order word of the size, and dQDrvSz contains the low-order word.

•

DrvQEl = RECORD
qLink: QElemPtr;
qType: INTEGER;
dQDrive: INTEGER;
dQRefNum: INTEGER;
dQFSID: INTEGER;
dQDrvSz: INTEGER;
dQDrvSz2: INTEGER;

END;

(next queue entry)
{queue type)
(drive number)
{driver reference number)
(file-system identifier)
(number of logical blocks on drive)
{additional field to handle large drive size)

Inside Macintosh also mentions four bytes of flags that preced each drive queue entry.
How are these flags accessed? The flags begin 4 bytes before the address pointed to by
the DrvQElPtr. In assembly language, accessing this isn't a problem:

MOVE.L -4(AO),DO ;AO = DrvQEIPtr; get drive queue flags

•

If you're using Pascal, it's a little more complicated. You can get to the f lags with this
routine:

FUNCTION DriveFlags(aDQEPtr: DrvQElPtr): LONGINT;

VAR
flagsPtr ALONGINT; (we'll point at drive queue flags with this)

BEGIN
(subtract 4 from the DrvQElPtr, and get the LONGINT there)
flagsPtr := POINTER (ORD4 (aDQEPtr) - 4);
DriveFlags .= flagsPtr A;

END;

Technical Note #36 page 1 of 3 Drive Queue Elements



From MPW C, you can use:

long DriveFlags(aDQEPtr)
DrvQEIPtr aDQEPtr;

/* DriveFlags */
return(*«long *)aDQEPtr - 1»;

} /* DriveFlags */

/* coerce flagsPtr to a (long *)
so that subtracting 1 from it
will back us up 4 bytes */

•
Creating New Drives

To add a drive to the drive queue, assembly-language programmers can use the
function defined below. It takes two parameters: the driver reference number of the
driver which is to "own" this drive, and the size of the new drive in blocks. It returns the
drive number created. It is vital that you not hard-code the drive number; if the user has
installed other non-standard drives in the queue, the drive number you're expecting may
already be taken. (Note that the example function below arbitrates to find an unused
drive number, taking care of this problem for you. Also, note that this function doesn't
mount the new volume; your code should take care of that, calling the Disk Initialization
Package to reformat the volume if necessary).

;---------------------------------------------------------------------------

;---------------------------------------------------------------------------
;FUNCTION AddMyDrive(drvSize: LONGINT; drvrRef: INTEGER): INTEGER;

;Add a drive to the drive queue. Returns the new drive number, or a negative
;error code (from trying to allocate the memory for the queue element) . •

EXPORTAddMyDrive PROC

;---------------------------------------------------------------------------
DQESize EQU 18 ;size of a drive queue element
;We use a constant here because the number in SysEqu.a doesn't take into
;account the flags LONGINT before the element, or the size word at the end.
;---------------------------------------------------------------------------
StackFrame
result
params
drvSize
drvrRef
paramSize
return
link
block
linkSize

RECORD
DS.W
EQU
DS.L
DS.W
EQU
DS.L
DS.L
DS.B
EQU
ENDR

{link}, DECR
1

*
1
1
params-*
1
1
ioQElSize

*

;function result

;drive size parameter
;drive refNum parameter

;return address
;saved value of A6 from LINK
;parameter block for call to MountVol

;---------------------------------------------------------------------------
WITH StackFrame ;use the offsets declared above

;search existing drive queue for an unused number

LINK

LEA
MOVEQ

A6,#linkSize

DrvQHdr,AO
#4,DO

;create stack frame

;get the drive queue header
;start with drive number 4 •

Technical Note#36 page 2 of 3 Drive Queue Elements



•
CheckDrvNum

MOVE.L
CheckDrv

CMP.W
BEQ.S
CMP.L
BEQ.S
MOVE.L
BRA.S

qHead(AO),A1

dqDrive (A1) , DO
NextDrvNum
A1,qTail(AO)
GotDrvNum
qLink(A1),A1
CheckDrv

istart with first drive

idoes this drive already have our number?
iyep, bump the number and try again.
ino, are we at the end of the queue?
iif yes, our number's unique! Go use it.
ipoint to next queue element
igo check it.

NextDrvNum
ithis drive number is taken, pick another

ADDQ.W
BRA.S

GotDrvNum

#1, DO
CheckDrvNum

ibump to next possible drive number
itry the new number

iwe got a good number (in DO.W), set it aside

MOVE.W DO, result (A6) ireturn it to the user

iget room for the new DQE

ifill out the DQE• GotDQE

MOVEQ
NewPtr

BEQ.S
MOVE.W
BRA.S

#DQESize,DO
sys
GotDQE
DO, result (A6)
FinishUp

isize of drive queue element, adjusted
iget memory for it
ino error ... continue
icouldn't get the memory! return error
iand exit

MOVE.L

MOVE.W
CLR.W
MOVE.W
MOVE.W

#$80000, (AO)+ iflags: non-ejectablei bump past flags

#l,qType(AO) iqType of 1 means we do use dQDrvSz2
dQFSID(AO) i"local file system"
drvSize(A6),dQDrvSz2(AO) ihigh word of number of blocks
drvSize+2(A6),dQDrvSz(AO) ilow word of number of blocks

icall AddDrive

MOVE.W result(A6),DO
SWAP DO
MOVE.W drvrRef(A6),DO

AddDrive

iget the drive number back
iput it in the high word
imove the driver refNum in the low word
iadd this drive to the drive queue

FinishUp
UNLK
MOVE.L
ADDQ
JMP

A6
(SP)+,AO
#paramSize,Sp
(AO)

iget rid of stack frame
iget return address
iget rid of parameters
iback to caller

•
;---------------------------------------------------------------------------

ENDPROC

Technical Note #36 page 3 of 3 Drive Queue Elements



•

•

•



Macintosh Technical Notes

• #37: Differentiating Between Logic Boards

See: Technical Note #129-SysEnvirons

Written by:
Updated:

Mark Baumwell June 19, 1986
March 1, 1988

Earlier versions of this note are obsoleted by existence of SysEnvirons,
which is documented in Technical Note #129.

•

•
Technical Note #37 page 1 of 1 Differentiating Between Logic Boards



• • •



•
Macintosh Technical Notes

#38: The ROM Debugger

Written by:
Updated:

Louella Pizzuti June 20, 1986
March 1, 1988

•

•

The debugger in ROM (not present on the Macintosh 128, Macintosh 512, or Macintosh
XL) recognizes the following commands:

PC [expr J (program counter)

Typing PC on a line by itself displays the program counter. Typing PC 50000 sets the
program counter to $50000.

SM [address [number (s) ]] (set memory)

Typing SM on a line by itself displays the next 96 bytes of memory. Typing SM 50000 will
display memory starting at $50000. Typing 8M 5000048492054 6865 72652120 will
set memory starting at $50000 to $4849 ... Subsequently hitting Return will increment
the display a screen at a time.

OM [address] (display memory)

Typing OM on a line by itself displays the next 96 bytes of memory. Typing OM 50000 will
display memory at $50000. Subsequently hitting Return will increment the display a
screen at a time.

SR [expr] (status register)

Typing SR on a line by itself displays the status register. Typing SR 2004 sets the status
register to $2004.

TD (total display)

Displays memory at the "magic" location $3FFC80, which contains the current values of
the registers. The registers are displayed in the following order: DO-D7, AO-A7, PC, SR.

G [address] (gO)

Executes instructions starting at address. If G is typed on a line by itself, execution
begins at the address indicated by the program counter.

Note: If you want to exit to the shell, you just need to type: SM 0 A9F 4, then G 0

Note: If you crash into the debugger and the system hangs, try turning off your modem.

Technical Note #38 page 1 of 1 The ROM Debugger



• • •



Macintosh Technical Notes

• #39: Segment Loader Patch

Written by:

Modified by:
Updated:

Russ Daniels
Bryan Stearns
Jim Friedlander

August 1, 1985

November 15, 1986
March 1, 1988

This note formerly described a patch to the Segment Loader for 64K ROM
machines. Information specific to 64K ROM machines has been deleted from
Macintosh Technical Notes for reasons of clarity .

•

•
Technical Note #39 page 1 of 1 Segment Loader Patch



• • •



Macintosh Technical Notes

• #40: Finder Flags

See also:

Written by:
Modified by:
Updated:

The File Manager

Jim Friedlander
Jim Friedlander

June 16, 1986
March 2, 1987
March 1, 1988

This revision corrects the meanings of bits 6 and 7, which were interchanged
in the older version of this technical note. ResEdit uses these bits incorrectly
in versions older than 1.2.

The Finder keeps and uses a series of file information flags for each file. These flags are
located in the fdFlag-s fiekl (a word at offset $28 into an HParamBlockRec) of the
ioFlFndrlnfo record of a parameter block. They may change with newer versions of
the Finder. Finders 5.4 and newer assign the following meanings to the flags:

•

•

Bit
o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Technical Note #40

Meaning
Set if file/folder is on the desktop (Finder 5.0 and later)
bFOwnAppl (used internally)
reserved (currently unused)
reserved (currently unused)
bFNever (never SwitchLaunch) (not implemented)
bFAlways (always SwitchLaunch)
Set if file is a shareable application
reserved (used by System)
Inited (seen by Finder)
Changed (used internally by Finder)
Busy (copied from File System busy bit)
NoCopy (not used in 5.0 and later, formerly called BOZO)
System (set if file is a system file)
HasBundle
Invisible
Locked

page 1 of 1 Finder Flags



• • •



•
Macintosh
Technical Notes

Developer Technical Support

#41: Drawing Into an Off-Screen Bitmap
Revised by:
Written by:

Jon Zap & Forrest Tanaka
Jim Friedlander & Ginger Jernigan

June 1990
July 1985

This Technical Note provides an example of creating an off-screen bitmap, drawing to it, and then
copying from it to the screen.
Changes since April 1990: Clarified the section on window updates with off-screen bitmapsl
to explicitly limit these updates to your own windows.

The following is an example of creating and drawing to an off-screen bitmap, then copying from it
to an on-screen window. We supply this example in both MPW Pascal and C.

MPW Pascal

First, let's look at a general purpose function to create an off-screen bitmap. This function creates
the Gr a fP 0 rt on the heap. You could also create it on the stack and pass the uninitialized
structure to a function similar to this one.

• FUNCTION CreateOffscreenBitMap(VAR newOffscreen:GrafPtr; inBounds:Rect) BOOLEAN;

VAR
savePort
newPort

CrafP't r s
GrafPtr;

BEGIN
GetPort(savePort) ; {need this to restore thePort after OpenPort changes it}

{allocate the GrafPort}

{failed to allocate it}

{avoid wide-open clipRgn, to be safe}
{in case in Bounds is > screen bounds}

•

newPort := GrafPtr(NewPtr(sizeof(GrafPort)));
IF MemError <> noErr THEN BEGIN

CreateOffscreenBitMap := false;
EXIT (CreateOffscreenBitMap) ;

END;
{

the OpenPort call does the following
allocates space for visRgn (set to screenBits.bounds) and clipRgn (set wide open)
sets port Bits to screenBits
sets portRect to screenBits.bounds
etc. (see 1M 1-163,164)
side effect: does a SetPort(offScreen)

}

OpenPort(newPort);
{make bitmap exactly the size of the bounds that caller supplied}
WITH newPort~ DO BEGIN {portRect, clipRgn, and visRgn are in newPort}

portRect := inBounds;
RectRgn(clipRgn, inBounds);
RectRgn(visRgn, inBounds);

END;

#41: Drawing Into an Off-Screen Bitmap lof6



{see if we had enough room for the bits}

dump the visRgn and clipRgn }
dump the GrafPort}

rowBytes * number of rows}
Note about using NewHandle rather than NewPtr}
LONGINT(inBounds.bottom - inBounds.top));

Macintosh Technical Notes

WITH newPortA.portBits DO BEGIN {baseAddr, rowBytes and bounds are in newPort}
bounds := inBounds;
{rowBytes is size of row It must be rounded up to even number of bytes)
rowBytes := ((inBounds.right - inBounds.left + 15) DIV 16) * 2;

{number of bytes in BitMap is
{see note at end of Technical
baseAddr := NewPtr(rowBytes *

END;
IF MemError <> noErr THEN BEGIN

SetPort(savePort);
ClosePort(newPort);
DisposPtr(Ptr(newPort)) ;
CreateOffscreenBitMap '= false;

END
ELSE BEGIN

{ since the bits are just memory, let's erase them before we start
EraseRect(inBounds); {OpenPort did a SetPort(newPort)}
newOffscreen := newPort;
SetPort(savePort};
CreateOffscreenBitMap '= true;

END;
END;

Here is the procedure to get rid of an off-screen bitmap created by the previous function:

•

Now that you know how to create and destroy an off-screen bitmap, let's go through the motions
of using one. First, let's define a few things to make the _NewWindow call a little clearer.

PROCEDURE DestroyOffscreenBitMap(oldOffscreen
BEGIN

ClosePort(oldOffscreen) ;
DisposPtr(oldOffscreen~.portBits.baseAddr) ;
DisposPtr(Ptr(oldOffscreen)) ;

END;

GrafPtr) ;

dump the visRgn and clipRgn }
dump the bits }
dump the port } •

CONST
kIsVisible = true;
kNoGoAway = false;
kMakeFrontWindow = -1;
myString = 'The EYE'; {string to display}

Here's the body of the test code:

VAR
offscreen
ovalRect
myWBounds
OSRect
myWindow

BEGIN
InitToolbox;

GrafPtr;
Rect;
Rect;
Rect;
WindowPtr;

(our off-screen bitmap}
{used for example drawing}
{for creating window}
{portRect and bounds tor off-screen bitmap}

{exercise left to the reader}

myWBounds := screenBits.bounds; {size ot main screen}
InsetRect(myWBounds, 50,50); { make it fit better}
myWindow := NewWindow(NIL, myWBounds, 'Test Window', kIsVisible,

noGrowDocProc, WindowPtr(kMakeFrontWindow), kNoGoAway, 0);

IF NOT CreateOffscreenBitMap(offscreen,myWindow~.portRect) THEN BEGIN
SysBeep(I);
ExitToShell;

END; •
2 of6 #41: Drawing Into anOff-Screen Bitmap



•
Developer Technical Support

{ Example drawing to our off-screen bitmap }
SetPort(offscreen);
OSRect := offscreen~.portRect; offscreen bitmap's local coordinate rect }
ovalRect := OSRect;
FiIIOval(ovaIRect, black);
InsetRect(ovaIRect, 1, 20);
FillOval(ovaIRect, white);
InsetRect(ovaIRect, 40, 1);
FiIIOval(ovaIRect, black);
WITH ovalRect DO

MoveTo ( (left+r ight-StringWidth (myString)) DIV 2, (top+bottom-12) DIV 2);
TextMode(srcXor);
DrawString(myString);

{ copy from the off-screen bitmap to the on-screen window. Note that in this
case the source and destination rects are the same size and both cover the
entire area. These rects are allowed to be portions of the source and/or
destination and do not have to be the same size. If they are not the same size
then _CopyBits scales the image accordingly
}

SetPort(myWindow);
CopyBits(offscreen~.portBits,myWindow~.portBits,

offscreen~.portRect, myWindow~.portRect, srcCopy, NIL);

June 1990

First, let's look at a general purpose function to create an off-screen bitmap. This function creates
the GrafPort on the heap. You could also create it on the stack and pass the uninitialized
structure to a function similar to this one.•

DestroyOffscreenBitMap(offscreen) ;

WHILE NOT Button DO;
END.

MPWC

{remove the evidence}

{give user a chance to see the results}

Boolean CreateOffscreenBitMap(GrafPtr *newOffscreen, Rect *inBounds)
{

GrafPtr savePort;
GrafPtr newPort;

GetPort(&savePort) ; /* need this to restore thePort after OpenPort */

/* allocate the grafPort ~/

/* failed to allocate the off-screen port */

/* avoid wide-open clipRgn, to be safe */
/* in case newBounds is > screen bounds */

•

newPort = (GrafPtr) NewPtr(sizeof(GrafPort));
if (MemError () ! = noErr)

return false;
/*
the call to OpenPort does the following .

allocates space for visRgn (set to screenBits.bounds) and clipRgn (set wide open)
sets portBits to screenBits
sets portRect to screenBits.bounds
etc. (see 1M 1-163,164)
side effect: does a SetPort(&offScreen)

*/
OpenPort(newPort) ;
/* make bitmap the size of the bounds that caller supplied */
newPort->portRect = *inBounds;
newPort->portBits.bounds = *inBounds;
RectRgn(newPort->clipRgn, inBounds);
RectRgn(newPort->visRgn, inBounds);

/* rowBytes is size of row, it must be rounded up to an even number of bytes */
newPort->portBits.rowBytes = ((inBounds->right - inBounds->left + 15) » 4) « 1;

#41: Drawing Into an Off-Screen Bitmap 3 of6



Macintosh Technical Notes

/* dump the visRgn and clipRgn */
/* dump the GrafPort */
/* tell caller we failed */

/* number of bytes in BitMap is rowBytes * number of rows */
/* see notes at end of Technical Note about using NewHandle rather than NewPtr */
newPort->portBits.baseAddr =

NewPtr(newPort->portBits.rowBytes * (long) (inBounds->bottom - inBounds->top));
if (MemError () ! =noErr) ( /* check to see if we had enough room for the bits * /

SetPort(savePort);
ClosePort(newPort);
DisposPtr((Ptr)newPort) ;
return false;
}

/* since the bits are just memory, let's clear them before we start */
EraseRect(inBounds); /* OpenPort did a SetPort(newPort) so we are ok */
*newOffscreen = newPort;
SetPort(savePort) ;
return true; /* tell caller we succeeded! */

Here is the function to get rid of an off-screen bitmap created by the previous function:

•

void DestroyOffscreenBitMap(GrafPtr oldOffscreen)
{

ClosePort(oldOffscreen);
DisposPtr(oldOffscreen->portBits.baseAddr) ;
DisposPtr((Ptr)oldOffscreen) ;

/* dump the visRgn and clipRgn */
/* dump the bits */
/* dump the port */

Now that you know how to create and destroy an off-screen bitmap, let's go through the motions
of using one. First, let's define a few things to make the _NewWindow call a little clearer.

#define kIsVisible true
#define kNoGoAway false
#define kNoWindowStorage OL
#define kFrontWindow ((WindowPtr) -lL)

Here's the body of the test code:

main ()
(

char* myString = "\pThe EYE"; /* string to display */

•
GrafPtr
Rect
Rect
Rect
WindowPtr

off screen;
ovalRect;
myWBounds;
OSRect;
myWindow;

/* our off-screen bitmap */
/* used for example drawing */
/* for creating window */
/* portRect and bounds for off-screen bitmap*/

InitToolbox(); /* exercise for the reader */
myWBounds = qd.screenBits.bounds; /* size of main screen */
InsetRect(&myWBounds, 50,50); /* make it fit better */
myWindow = NewWindow(kNoWindowStorage, &myWBounds, "\pTest Window", kIsVisible,

noGrowDocProc, kFrontWindow, kNoGoAway, 0);
if (!CreateOffscreenBitMap(&offscreen, &myWindow->portRect» {

SysBeep(l) ;
Exi t ToShell () ;
}

•
40f6 #41: Drawing Into anOff-Screen Bitmap



•
Developer Technical Support

/* Example drawing to our off-screen bitmap*/
SetPort(offscreen);
OSRect = offscreen->portRect; /* offscreen bitmap's local coordinate rect */
ovalRect = OSRect;
FillOval(&ovalRect, qd.black);
InsetRect(&ovalRect, I, 20);
FillOval(&ovalRect, qd.white);
InsetRect (&ovalRect, 40, 1);
FillOval(&ovalRect, qd.black);
MoveTo((ovalRect.left + ovalRect.right - StringWidth(myString)) » I,

(ovalRect.top + ovalRect.bottom - 12) » 1);
TextMode(srcXor) ;
DrawString (myString) ;

/* copy from the off-screen bitmap to the on-screen window. Note that in this
case the source and destination rects are the same size and both cover the
entire area. These rects are allowed to be portions of the source and/or
destination and do not have to be the same size. If they are not the same size
then _CopyBits scales the image accordingly.
*/

Set Port (myWindow) ;
CopyBits (&offscreen->portBits, &(*myWindow) .portBits,

&offscreen->portRect, &(*myWindow) .portRect, srcCopy, OL);

DestroyOffscreenBitMap(offscreen); /* dump the off-screen bitmap */
while (!Button()); /* give user a chance to see our work of art */

June 1990

•

•

Comments

In the example code, the bits of the BitMap structure, which are pointed to by the ba s eAddr
field, are allocated by a NewPt r call. If your off-screen bitmap is close to the size of the screen,
then the amount of memory needed for the bits can be quite large (on the order of 20K for the
Macintosh SE or 128K for a large screen). This is quite a lot of memory to lock down in your
heap and it can easily lead to fragmentation if you intend to keep the off-screen bitmap around for
any length of time. One alternative that lessens this problem is to get the bits via _NewHandle so
the Memory Manager can move them when necessary. To implement this approach, you need to
keep the handle separate from the GrafPort (for example, in a structure that combines a
GrafPort and a Handle). When you want to use the off-screen bitmap you would then lock
the handle and put the dereferenced handle into the baseAddr field. When you are not using the
off-screen bitmap you can then unlock it.

This example does not demonstrate one of the more typical uses of off-screen bitmaps, which is to
preserve the contents of windows so that after a temporary window or dialog box obscures part of
your windows and is then dismissed, you can quickly handle the resulting update events without
recreating all of the intermediate drawing commands.

Make sure you only restore the pixels within the content regions of your own windows in case the
temporary window partly obscures windows belonging to other applications or to the desktop.
Another application could change the contents of its windows while they are behind your
temporary window, so you cannot simply restore all the pixels that were behind the temporary
window because that would restore the old contents of the other application's windows. Instead,
you could keep keep an off-screen bitmap for each of your windows and then restore them by
copying each bit map into the corresponding window's ports when they get their update events.

An alternate method is to make a single off-screen bitmap that is as large as the temporary windowI
and a region that is the union of the content regions of your windows. Before you display the

#41: Drawing Into an Off-Screen Bitmap 50f6



Macintosh Technical Notes

temporary window, copy the screen into the off-screen bit map using the region as a mask. After
the temporary window is dismissed, restore the obscured area by copying from the off-screen bit
map into a copy of the Window Manager port, and use the region as a mask. If the region has the
proper shape and location, it prevents CopyBi t s from drawing outside of the content regions of
your windows. See Technical Note-#194, WMgrPortability for details about drawing across
windows.

In some cases it can be just as fast and convenient to simply define a picture (PICT) and then draw
it into your window when necessary. There are cases, however, such as text rotation, where it is
advantageous to do the drawing off the screen, manipulate the bit image, and then copy the result
to the visible window (thus avoiding the dangers inherent in writing directly to the screen). In
addition, this technique reduces flicker, because all of the drawing done off the screen appears on
the screen at once.

It is also important to realize that, if you plan on using the pre-Color QuickDraw eight-color model,
an off-screen bitmap loses any color information and you do not see your colors on a system that is
capable of displaying them. In this case you should either use a PICT to save the drawing
information or check for the presence of Color QuickDraw and, when it is present, use a P ixMap
instead of a BitMap and the color toolbox calls (Inside Macintosh, Volume V) instead of the
standard QuickDraw calls (Inside Macintosh, Volume I).

You may also want to refer to the OffScreen library (DTS Sample Code #15) which provides both
high- and low-level off-screen bitmap support for the 128K and later ROMs. The OffSample
application (DTS Sample Code #16) demonstrates the use of this library.

Further Reference:
• Inside Macintosh, Volumes I & IV, QuickDraw
• Inside Macintosh, Volume V, Color QuickDraw
• Technical Note #120, Drawing Into an Off-Screen Pixel Map
• Technical Note #194, WMgrPortability
• DTS Macintosh Sample Code #15, OffScreen & #16, OffSample

•

•

•
60f6 #41: Drawing Into an Off-Screen Bitmap



Macintosh Technical Notes

• #42: Pascal Routines Passed by Pointer

See also: Macintosh Memory Management: An Introduction

Written by:
Updated:

Scott Knaster July 22, 1985
March 1, 1988

•

•

Routines passed by pointer are used in many places in conjunction with Macintosh
system routines. For example, filter procedures for modal dialogs are passed by pointer,
as are controls' action procedures (when calling TrackControl), and I/O completion
routines.

If you're using MPW Pascal, the syntax is usually

partCode := TrackControl(theControl, startPt, @MyProc)

where MyProc is the procedure passed by pointer (using the @ symbol).

Because of the way that MPW Pascal (and some other compilers) construct stack
frames, any procedure or function passed by pointer must not have its declaration
nested within another procedure or function. If its declaration is nested, the program will
crash, probably with an illegal instruction error. The following example demonstrates
this:

PROGRAM CertainDeath;

PROCEDURE CallDialog;

VAR
x : INTEGER;

FUNCTION MyFilter(theDialog: DialogPtr; VAR theEvent: EventRecord;
VAR itemHit: INTEGER): Boolean;

{note that MyFilter's declaration is nested within CallDialog}

BEGIN {MyFilter}
{body of MyFilter}

END; {MyFilter}

BEGIN {CallDialog}
ModalDialog(@MyFilter,itemHit) {<------------ will crash here}

END; {CallDialog}

BEGIN {main program}
CallDialog;

END .

Technical Note #42 page 1 of 1 Pascal Routines Passed by Pointer



• • •



Macintosh Technical Notes

• #43: Calling LoadSeg

See also:

Written by:
Updated:

The Segment Loader

Gene Pope October 15, 1985
March 1, 1988

Earlier versions of this note described a way to call the LoadSeg trap, which is
used internally by the Segment Loader. We no longer recommend calling
LoadSeg directly.

•

•
Technical Note #43 page 1 of 1 Calling LoadSeg



• • •



Macintosh Technical Notes

• #44: HFS Compatibility

See also:

Written by:
Modified by:

Updated:

The File Manager

Jim Friedlander
Scott Knaster
Jim Friedlander

October 9, 1985
December 5, 1985

March 1, 1988

•

•

This technical note tells you how to make sure that your applications run
under the Hierarchical File System (HFS).

The Hierarchical File System (HFS) provides fast, efficient management of larger
volumes than the original Macintosh File System (MFS). Since HFS is hierarchical, HFS
folders have a meaning different from MFS folders. In MFS, a folder has only graphical
significance-it is only used by the Finder as a means of visually grouping files. The
MFS directory structure is actually flat (all files are at the 'root' level). Under HFS, a
folder is a directory that can contain files and other directories.

A folder is accessed by use of a WORefNurn (Working Directory reference number). Calls
that return a vRe fNurn when running under MFS may return a WORe fNurn when running
under HFS. You may use a WORefNurn wherever a vRefNurn may be used.

In order to provide for compatibility with software written for MFS, the HFS calls that
open files search both the default directory and the directory that contains the System
and the Finder (HFS marks this last directory so it always knows where to look for the
System and the Finder).

Your goal should be to write programs that are file system independent. Your programs
should not only be able to access files on other volumes, but also files that are in other
directories. Accomplishing this is not difficult-most applications that were written for
MFS work correctly under HFS. If you find that your current applications do not run
correctly under HFS, you should check to see if you are doing any of the following five
things:

Are you using Standard File?

This is very important to ensure that your application will run correctly under HFS. HFS
uses an extended Standard File, which allows the user to select from files in different
directories. This increased functionality was implemented without changing Standard
File's external specification-the only difference is that SFReply. vRefNurn can now be
a WDRefNurn. Please note that using Standard File's dialog hook and filter procs or
adding controls of your own will not cause compatibility problems with HFS.

Technical Note #44 page 1 of 2 HFS Compatibility Issues



Existing applications that use Standard File properly run without modification under
HFS. Applications that take the SFReply. vRefNum and convert that to a volume name,
then append it to SFReply. fName (as in #2 below) do not function correctly under
HFS-the user can only open files in the root directory. If you call Open with •
SFReply. vRefNum and SFReply. fName, everything will work correctly. Remember,
SFReply. vRefNum may be a WDRefNum . Using Standard File will virtually guarantee
that your application will be compatible with MFS, HFS, and future file systems.

Are you concatenating volume names to file names, i.e. using file
names of the form VOLUME: fileName?

Applications that do this do not work correctly under HFS (in fact, they do not even run
correctly under MFS). Instead of this, use a vRefNum to access a volume or a directory.
Fully qualified pathnames (such as volume: folderl: folder2: filename) work
correctly, but we don't recommend that you use them. Please don't ever make a user
type in a full pathname!

Are you searching directories for files using a loop such as
FOR index:= 1 to ioVNmFls DO

where ioVNmFls was returned from a PBGetVinfo call?

This technique should not be used. Instead, use repeated calls to PBGetF Info using
ioFDirIndex until fnfErr is returned. Indexed calls to PBGetFInfo will return files in
the directory specified by the vRefNum that you put in the parameter block.

Are you assuming that a vRefNum will actually refer to a volume? •

A vRefNum can now be a WDRefNum. A WDRefNum indicates which working directory
(folder) a file is in, not which volume the file is on. Don't think of a vRefNum as a way to
access a volume, but rather as a means of telling the file system where to find a file.

Are you walking through the vee queue?

You should let us do the walking for you. Using indexed calls to PBGetVInfo will allow
you to get information about any mounted volume. You shouldn't walk through the VCB
queue because it changed for HFS and might change in the future. The routines that we
supply will correctly access information in the VCB queue.

Are you using the file system's "IMMED" bit? (assembly language only)

Inside Macintosh describes bit 9 of the trap word as the immediate bit. In fact, setting this
bit under MFS did not work as documented; it did not have the desired effect of
bypassing the file I/O queue. Under HFS, this bit is used; it distinguishes HFS varieties
of calls from MFS varieties. For example, the PBOpen call has this bit clear; PBHOpen has
it set. Therefore, you must be sure that your file system calls do not use this bit as the
immediate bit.

•
Technical Note #44 page 2 of 2 HFS Compatibility Issues



Macintosh Technical Notes

• #45: Inside Macintosh Quick Reference

Compiled by:
Updated:

Jim Friedlander August 2, 1985
March 1, 1988

This note formerly listed the traps from Inside Macintosh Volumes I-III. Better
references are now available elsewhere.

•

•
Technical Note #45 page 1 of 1 Inside Macintosh Reference



•

•

•



Macintosh Technical Notes

• #46: Separate Resource Files

See also:

Written by:
Updated:

The Resource Manager

Bryan Stearns October 16, 1985
March 1, 1988

•

•

During application development, you use a resource compiler (RMaker or Rez) to
convert a resource definition file into an executable application. You rarely change
anything but your CODE resources during development, and the resource compiler
spends a lot of time compiling other resources which have not changed since they were
originally created.

To save time, some developers have adopted the technique of storing all of these
"static" resources in a separate resource file. This file should be placed on the same
volume as your application; when your application starts up, use OpenResF i le to open
the separate file. This will cause the resource map for the separate file to be searched
before the normal application resource file's map (which now contains mostly CODE
resources, along with any brand-new resources still being tested).

This will have little or no effect on the rest of your program. Any time that a resource is
needed, both resource files will be searched automatically so you don't need to
change each GetResource call. (Actually, having the extra resource file open has a
minor impact on memory management, and uses one more file-control block; unless
you're using a lot of open files at once, or are running at the limits of available memory
without segmentation, this shouldn't affect you.)

Once your application is close to being finished, you can use ResEdit to move all the
resources back into the main application file, and remove the extra OpenResFile at the
beginning of your application. You should do this for any major release (alpha, beta,
and any other 'heavy-testing' releases). Other minor modifications (such as fine-tuning
dialog box item positions) may also be done with ResEdit at this time.

The only catch is that you must be careful if your application adds resources to its own
resource file. Most applications do not do this (it's not really a great idea, and causes
problems with file servers).

Technical Note #46 page 1 of 1 Separate Resource Files



• • •



Macintosh Technical Notes

• #47: Customizing Standard File

See also:

Written by:
Updated:

The Standard File Package

Jim Friedlander October 11, 1985
March 1, 1988

•

•

This note contains an example program that demonstrates how SFPGetFile
can be customized using the dialog hook and file filter functions.

SFPGetF i le'S dialog hook function and file filter function enable you to customize
SFPGetF ile'S behavior to fit the needs of your application. This technical note consists
primarily of a short example program that

1) changes the title of the Open button to 'MyOpen',

2) adds two radio buttons so that the user can choose to display either text files or
text files and applications.

3) adds a quit button to the SFPGetFile dialog,

All this is done in a way so as to provide compatibility with the Macintosh File System
(MFS), the Hierarchical File System (HFS) and (hopefully) future systems. If you have
any questions as you read, the complete source of the demo program and the resource
compiler input file is provided at the end of this technical note.

Basically, we need to do three things: add our extra controls to the resource compiler
input file, write a dialog hook function, and write a file filter function.

Modifying the Resource Compiler Input File

First we need to define a dialog in our resource file. It will be DLOG #128:

CONST myDLOGID = 128;

and it's Rez description is:

resource 'DLOG' (128, purgeable) {
{O, 0, 200, 349},
dBoxProc, invisible, noGoAway,
OxO,
128,
"MyGF"

} ;

Technical Note #47 page 1 of 12 Customizing SFPGetFile



The above coordinates (0 0 200 349) are from the standard Standard File dialog. If you
need to change the size of the dialog to accommodate new controls, change these
coordinates. Next we need to add a DITL in our resource file that is the same as the
standard HFS DITL #-4000 except for one item. We need to change the left coordinate
of Userltem #4, or part of the dialog will be hidden if we're running under MFS: •

/* [4] */
/* left coordinate changed from 232 to 252 so program will

work on MFS */
{39, 252, 59, 3471,
UserItem {

disabled
1;

None of the other items of the DITL should be changed, so that your program will remain
as compatible as possible with different versions of Standard File. Finally, we need to
add three items to this DITL, two radio buttons and one button (to serve as a quit button)

/* [11] textButton */
{1, 14, 20, 1421,
RadioButton {

enabled,
"Text files only"

1;
/* [12] textAppButton */
{19, 14, 38, 1761,
RadioButton {

enabled,
"Text and applications"

1;
/* [13] quitButton */
{6, 256, 24,3361,
Button {

enabled,
"Quit"

Because we've added three items, we need also need to change the item count for the
DITL from 10 to 13. We also include the following in our resource file:

resource 'STR#' (256) {
{/* array StringArray: 1 elements */

/* [1] */
"MyOpen"

} ;

That's all there is to modify in the resource file.

•

•
Technical Note #47 page 2 of 12 Customizing SFPGetFile



•

•

The Dialog Hook

We will be calling SFPGetF ile as follows:

SFPGetFile (wher, ", @SFFileFilter, NumFileTypes,
MyFileTypes, @MySFHook, reply, myDLOGID,nil);

Notice that we're passing @MySFHook to Standard File. This is the address of our dialog
hook routine. Our dialog hook is declared as:

FUNCTION MySFHook(MySFitem: INTEGER; theDialog: DialogPtr) : INTEGER;

A dialog hook routine allows us to see every item hit before standard file acts on it. This
allows us to handle controls that aren't in the standard SFPGetF i Ie'S DITl or to handle
standard controls in non-standard ways. The dialog hook in this example consists of a
case statement with MySF item as the case selector. Before SFPGetF ile displays its
dialog, it calls our dialog hook, passing it a -1 as MySFitem. This gives us a chance to
initialize our controls. Here we will set the textAppButton to off and the textButton
to on:

GetDItem(theDialog,textAppButton,itemType,itemToChange,itemBox);
SetCtlValue(controlHandle(itemToChange),btnOff);
GetDItem(theDialog,textButton,itemType,itemToChange,itemBox);
SetCtlValue(controlHandle(itemToChange),btnOn);

and we can also change the title of an existing control. Here's how we might change the
title of the Open button using a string that we get from a resource file:

GetIndString(buttonTitle,256,1);
If buttonTitle <> " then Begin { if we really got the resource}

GetDItem(theDialog,getOpen,itemType,itemToChange,itemBox);
SetCtitle(controlHandle(itemToChange),buttonTitle);

End; {if} {if we didn't get the resource, don't change the title

Upon completion of our routine that handles the -1, we return a -1 to standard file:

MySFHook:= MySFItem; {pass back the same item we were sent}

•

We now have a SFPGetFile dialog displayed that has a quit button and two radio
buttons (the textOnly button is on, the TextApp button is off). In addition, the standard
Open button has been renamed to MyOpen (or whatever STR is the first string in STR#
256). This was all done before SFPGetF i Ie displayed the dialog. Once our hook is
exited, SFPGetFile displays the dialog and calls ModalDialog.

Technical Note #47 page 3 of 12 Customizing SFPGetFile



When the user clicks on an item in the dialog, our hook is called again. We can then
take appropriate actions, such as highlighting the textButton and un-highlighting the
textAppButton if the user clicks on the textButton. At this time, we can also update a
global variable (textOnIy) that we will use in our file filter function to tell us which files •
to display. Notice that we can redisplay the file list by returning a 101 as the result of
MySFHook. (Standard File for Systems newer than 4.3 will also read the low memory
globals, CurDirStore and SFSaveDisk, and switch directories when necessary if a 101
is returned as the result. Thus, you can point Standard File to a new directory, or a new
disk.) For example, when the textButton is hit we turn the textAppButton off, turn the
t e xtBu t t on on, update the global variable t ext On I y, and tell SFP Get File to
redisplay the list of files the user can choose from:

if not textOnly then Begin {if textOnly was turned off, turn it on now}
GetDItem(theDialog,textAppButton,itemType,itemToChange,itemBox);
SetCtlValue(controlHandle(itemToChange),btnOff);
GetDItem(theDialog,textButton,itemType,itemToChange,itemBox);
SetCtlValue(controlHandle(itemToChange),btnOn);
textOnly:=TRUE; {toggle our global variable for use in the filter}
MySFHook:= reDrawList; {lOll {we must tell SF to redraw the list}

End; {if not textOnly}

If our quit button is hit, we can pass SFPGetFiIe back the cancel button:

MySFHook:= getCancel;

If one of SFPGetF .i Le 's standard items is hit, it is very important to pass that item back to
SFPGetF i Ie:

MySFHook:= MySFItem; {pass back the same item we were sent}

The File Filter

Remember, we called SFPGetFiIe as follows:

SFPGetFile (wher, ", @SFFileFilter, NumFileTypes,
MyFileTypes, @MySFHook, reply,myDLOGID,nil);

Notice that we're passing @SFFiIeFiIter to SFPGetFiIe. This is the address of our
file filter routine. A file filter is declared as:

FUNCTION SFFileFilter (p: ParmBlkPtr): BOOLEAN;

A file filter routine allows us to control which files SFPGet File will display for the user.
Our file filter is called for every file (of the type(s) specified in the typelist) on an MFS
disk, or for every file (of the type(s) specified in the typelist) in the current directory on an
HFS disk. In addition, SFPGetF i Ie displays HFS folders for us automatically. Our file
filter selects which files should appear in the dialog by returning FALSE for every file
that should be shown and TRUE for every file that shouldn't.

•

•
Technical Note #47 page 4 of 12 Customizing SFPGetFHe



For example, using our global variable textOnIy (which we set in our dialog hook,
remember?):

• FUNCTION SFFileFilter(p:parmBlkPtr) :boolean;

Begin {SFFileFilter}
SFFileFilter:= TRUE; {Don't show it -- default}

•

•

if textOnly then
if pA.ioFlFndrInfo.fdType 'TEXT' then

SFFileFilter:= FALSE {Show TEXT files only}
else Begin
End {dummy else}

else
if (pA.ioFlFndrInfo.fdType = 'TEXT') or

(pA.ioFlFndrInfo.fdType = 'APPL') then
SFFileFilter:= FALSE; { show TEXT or APPL files}

End; {SFFileFilter}

SFPGetF i Ie calls the file filter after it has called our dialog hook. Please remember that
the filter is passed every file of the types specified in the typelist (MyFiIeTypes). If you
want your application to be able to choose from all files, pass SFPGetF i Ie a -1 as
numTypes. For information about parameters to SFPGetFiIe that haven't been
discussed in this technical note, see the Standard File Package chapter of Inside
Macintosh.

That's all there is to it!! Now that you know how to modify SFPGetFiIe to suit your
needs, please don't rush off and load up the dialog window with all kinds of controls and
text. Please make sure that you adhere to Macintosh interface standards. Similar
techniques can be used with SFGetFiIe, SFPutFiIe and SFPPutFiIe.

The complete source of the demo program and of the resource compiler input file
follows:

Technical Note #47 page 5 of 12 Customizing SFPGetFile



MPW Pascal Source

{$R-}

{Jim Friedlander

program SFGetDemo;

USES
MemTypes,
QuickDraw,
OSIntf,
ToolIntf,
PackIntf;

{$D+}

Macintosh Technical Support 9/30/85 } •
CONST

myDLOGID 128; {ID of our dialog for use with SFPGetFile}

VAR

wher: Point;
reply: SFReply;
textOnly: BOOLEAN;
myFileTypes: SFTypeList;
NumFileTypes: integer;

{ where to display dialog }
{ reply record }
{ tells us which files are currently being displayed}

{ we won't actually use this}

{------------------------------------------------------------------------------------}
FUNCTION MySFHook{MySFitem:integer; theDialog:DialogPtr): integer;

CONST
textButton
textAppButton
quitButton

stayInSF

first Time

11;
12;
13;

O',

-1;

{DITL item number of textButton}
{DITL item number of textAppButton}
{DITL item number of quitButton}

{if we want to stay in SF after getting an Open hit,
we can pass back a 0 from our hook (not used in

this example) }
{the first time our hook is called, it is passed a

-I}

•
{The following line is the key

reDrawList

btnOn
btnOff

to the whole routine -- the magic 101!!}
101; {returning 101 as item number will

file list to be recalculated}
1; {control value for on}
0; {control value for off}

cause the

VAR
itemToChange: Handle;
itemBox:Rect;
itemType:integer;
buttonTitle: Str255;

Begin {MySFHook}
case MySFItem of

firstTime: Begin

{needed for GetDItem and SetCtlValue}

{needed for GetDItem}
{needed for GetDItem}
{needed for GetIndString}

before the dialog is drawn, our hook gets called
with a -1 (firstTime) as the item so we can change

things like button titles, etc. }

•
Technical Note #47 page 6 of 12 Customizing SFPGetFile



•

•

{Here we will set the textAppButton to OFF, the textButton to ON}
GetDltem(theDialog,textAppButton, itemType, itemToChange ,itemBox);
SetCtIValue(controIHandle(itemToChange),btnOff);
GetDltem(theDialog,textButton,itemType,itemToChange,itemBox);
SetCtIValue{controIHandle{itemToChange),btnOn);

GetlndString{buttonTitle,256,l);
{get the button title from a resource file}

If buttonTitle <> " then Begin {if we really got the resource}
GetDltem{theDialog,getOpen,itemType,itemToChange,itemBo x ) ; {get a handle to the

open button}
SetCtitle{controIHandle(itemToChange),buttonTitle);

End; {if} {if we can't get the resource, we just won't change
the open button's title}

MySFHook:= MySFItem; {pass back the same item we were sent}
End; {first Time}

{Here we will turn the textAppButton OFF, the textButton ON and redraw the list}
textButton: Begin

if not textOnly then Begin
GetDItem{theDialog,textAppButton,itemType,itemToChange,itemBox);
SetCtIValue{controIHandle{itemToChange),btnOff) ;
GetDItem{theDialog,textButton,itemType, itemToChange, itemBox);
SetCtIValue{controIHandle(itemToChange),btnOn);
textOnly:=TRUE;
MySFHook:= reDrawList; {we must tell SF La redraw the list}

End; {if not textOnly}
End; {textOnlyButton}

{Here we will turn the text Button OFF, the textAppButton ON and redraw the list}
textAppButton: Begin

if text Only then Begin
GetDItem{theDialog,TextButton,itemType,itemToChange,itemBox);
SetCtIValue(controIHandle{itemToChange),BtnOff);
GetDItem(theDialog,TextAppButton,itemType,itemToChange,itemBox);
SetCtIValue{controIHandle{itemToChange),BtnOn) ;
TextOnly:=FALSE;
MySFHook:= reDrawList; {we must tell SF to redraw the list}

End; {if not textOnly}
End; {textAppButton}

quitButton: MySFHook:= getCancel; {Pass SF back a 'cancel button'}

must pass SF's 'standard' item hits back to SF}{!!"very important "" We
otherwise Begin

MySFHook:=
End; {otherwise}

End; {case}
End; {MySFHook}

MySFItem; the item hit was one of SF's standard items ... }
so just pass it back}

•

{----------------------------------------------------------------------------------~-}

Technical Note#47 page 7 of12 Customizing SFPGetFile



FUNCTION SFFileFilter(p:parmBlkPtr) :boolean; (general strategy -- check value of global var
textOnly to see which files to display)

Begin {SFFileFilter}
SFFileFilter:= TRUE;

if textOnly then
if pA.ioFIFndrInfo.fdType

SFFileFilter:= FALSE
else Begin
End {dummy else}

else
if (pA.ioFIFndrInfo.fdType

SFFileFilter:= FALSE;
End; {SFFileFilter}

{Don't show it -- default}

'TEXT' then
{Show it}

'TEXT'} or (pA.ioFIFndrInfo.fdType
{Show it}

'APPL') then

•
{------------------------------------------------------------------------------------}
Begin {main program}

InitGraf (@thePort);
InitFonts;
InitWindows;
TEInit;
InitDialogs (nil);

wher.h:=80;
wher.v:=90;
NumFileTypes:= -1; {Display all files}

we don't need to initialize MyFileTypes, because we want to get a chance to filter every file
on the disk in SFFileFilter - we will decide what to show and what not to. If you want to
filter just certain types of files by name, you would set up MyFileTypes and NumFileTypes
accordingly}

repeat
textOnly:= TRUE; {each time SFPGetFile is called, initial display will be text-only

files}
SFPGetFile (wher, ", @SFFileFilter, NumFileTypes, MyFileTypes, @MySFHook,

replY,myDLOGID, nil) ;
until reply.good = FALSE;

{until we get a cancel button hit ( or a Quit button -- thanks to our dialog hook ) }
End.

MPWC Source

#include <Types.h>
#include <Quickdraw.h>
#include <Resources.h>
#include <Fonts.h>
#include <Windows.h>
#include <Menus.h>
#include <TextEdit.h>
#include <Events.h>
#include <Dialogs.h>
#include <Packages.h>
#include <Files.h>
#include <Controls.h>
#include <ToolUtils.h>

•

•
Technical Note #47 page 8 of 12 Customizing SFPGetFile



•
/*OITL item number of textButton*/

#define textButton 11

/*OITL item number of textAppButton*/
"define textAppButton 12

/*OITL item number of quitButton*/
"define quitButton 13

/*if we want to stay in SF after getting an Open hit, we can pass back a 0
from our hook (not used in this example) */

"define stay1nSF 0

/*the first time our hook is called, it is passed a -1*/
"define firstTime -1

/*The following line is the key to the whole routine -- the magic 101! !*/
/*returning 101 as item number will cause the file list to be recalculated*/

#define reOrawList 101

/*control value for on*/
"define btnOn 1

/*control value for off*/
#define btnOff 0

/*resource 10 of our OLOG for SFPGetFile*/
"define myOLOG10 128

main ()
( /*main program*/•
Boolean
displayed*/

textOnly; /* tells us which files are currently being

pascal short MySFHook();
pascal Boolean flFilter();

Point
SFReply

/* reply record */
SFTypeList

/* we won't actually
short int

wher;
reply;

myFileTypes;
use this */
NumFileTypes

/* where to display dialog */

-1;

•

1nitGraf(&qd.thePort);
1nitFonts () ;
FlushEvents(everyEvent, 0);
1nitWindows () ;
TE1nit () ;
1nitOialogs(nil);
1nitCursor () ;

wher.h=80;
wher.v=90;

Technical Note #47 page 9 of 12 Customizing SFPGetF i le



/* we don't need to initialize MyFileTypes, because we want to get a chance to filter every
file on the disk in flFilter - we will decide what to show and what not to. if you want to
filter just certain types of files by name, you would set up MyFileTypes and NumFileTypes
accordingly*/

do
textOnly= true;

text-only files*/
SFPGetFile(&wher,

}while (reply.good);
*/

} /* main */

/*each time SFPGetFile is called, initial display will be

"",flFilter, NumFileTypes, myFileTypes, MySFHook, &reply,myDLOGID,nil);
/*until we get a cancel button hit ( or a Quit button in this case )

•
pascal short MySFHook(MySFltem,theDialog)
short MySFItem;
DialogPtr theDialog;

Handle itemToChange;
Rect itemBox;
short itemType;
char buttonTitle [256];

switch (MySFltem)
(

/*needed for GetDltem and SetCtlValue*/
/*needed for GetDltem*/

/*needed for GetDltem*/
/*needed for GetlndString*/

case firstTime:
/* before the dialog is drawn, our hook gets called with a -1 (firstTime) ... */
/* as the item so we can change things like button titles, etc. */
/*Here we will set the textAppButton to OFF, the textButton to ON*/
GetDltem(theDialog,textAppButton,&itemType,&itemToChange,&itemBox);
SetCtlValue(itemToChange,btnOff);
GetDltem(theDialog,textButton,&itemType,&itemToChange,&itemBox);
SetCtlValue(itemToChange,btnOn) ;

GetlndString«char *)buttonTitle,256,1);
/*get the button title from a resource file*/

if (buttonTitle[Oj != 0) /* check the length of the p-string to
see if we really got the resource*/

GetDltem(theDialog, getOpen , &itemType, &itemToChange,&it emBox); /*get a
handle to the open button*/

SetCTitle(itemToChange,buttonTitle);
/*if we can't get the resource, we just won't change the open button's title*/

return MySFltem; /*pass back the same item we were sent*/
break;

/*Here we will turn the textAppButton OFF, the text Button ON and redraw the list*/
case textButton:

if (! textOnly)
(

GetDltem(theDialog,textAppButton,&itemType,&itemToChange,&itemBox);
SetCtlValue(itemToChange,btnOff) ;
GetDltem(theDialog,textButton,&itemType,&itemToChange,&itemBox):
SetCtlValue(itemToChange,btnOn);
textOnly=true;
return(reDrawList);

/*we must tell SF to redraw the list*/
/*if !textOnly*/

return MySFltem;
break;

•

•
Technical Note#47 page 1Oot 12 Customizing SFPGetFile



•

•

•

/*Here we will turn the textButton OFF, the textAppButton ON and redraw the list*/
case textAppButton:

if (textOnly)
(

GetDltem (theDialog, textButton, &itemType, &itemToChange, &itemBox);
SetCtlValue(itemToChange,btnOff);
GetDltem(theDialog,textAppButton,&itemType,&itemToChange,&itemBox);
SetCtlValue(itemToChange,btnOn);
textOnly=false;
return(reDrawList);

/*we must tell SF to redraw the list*/
/*if not textOnly*/

return MySFltem; /*pass back the same item we were sent*/
break;

case quitButton:
return(getCancel);

/*Pass SF back a 'cancel button'*/

/*!!!!! !very important !!!!!!!! We must pass SF's 'standard' item hits back to SF*/
default:

return (MySFltem) ; /* the item hit was one of SF's standard items ... */
/*switch*/
return(MySFltem); /* return what we got */

/*MySFHook*/

pascal Boolean flFilter(pb)
FileParam *pb;

/* is this gross or what??? */
return «textOnly) ? «pb->ioFlFndrlnfo.fdType) != 'TEXT')

«pb->ioFlFndrlnfo.fdType) != 'TEXT') &&
«pb->ioFlFndrlnfo.fdType) != 'APPL'»);

/*flFilter*/

Rez Input File

'include "types.r"

resource 'STR" (256)

" MyOpen"

) ;

resource 'DLOG' (128, purgeable) I
10, 0, 200, 349),
dBoxProc,
invisible,
noGoAway,
OxO,
128,
"MyGF"

) ;

Technical Note #47 page 11 of12 Customizing SFPGetFile



resource 'DITL' (128, purgeable) I

/* [1) */
1138, 256, 156, 336},
Button I enabled, "Open" };

/* [2) */
11152, 59, 1232, 77},
Button I enabled, "Hidden" };
/* [3) */
1163, 256, 181, 336},
Button I enabled, "Cancel" };

/* [4) */
139, 252, 59, 347l,
UserItem I disabled };

/* [5] */
168, 256, 86, 336},
Button I enabled, "Eject" };

/* [6] */
193, 256, 111, 336l,
Button I enabled, "Drive" };
/* [7) */
139, 12, 185, 230l,
UserItem I enabled };

/* [8] */
139, 229, 185, 245},
UserItem I enabled };
/* [9) */
1124, 252, 125, 340},
UserItem I disabled };

/* [10) */
11044, 20, 1145, 116},
StaticText I disabled, "" };
/* [11] */
II, 14, 20, 142},
RadioButton I enabled, "Text files only" };
/* [12) */
119, 14, 38, 176},
RadioButton { enabled, "Text and applications" };

/* [13] */
16, 256, 24, 336},
Button I enabled, "Quit"

} ;

•

•

•
Technical Note#47 page 120112 Customizing SFPGetFile



Macintosh Technical Notes

• #48: Bundles

See also:

Written by:
Updated:

The Finder Interface

Ginger Jernigan November 1, 1985
March 1, 1988

•

This note describes what a bundle is and how to create one.

A bundle is a collection of resources. Bundles can be used for a number of different
purposes, and are currently used by the Finder ito tie an icon to a file type, allowing your
application or data file to have its own icon.

How to Create a Bundle

A bundle is a collection of resources. To make a bundle for finder icons, we need to set
up four types of resources: an ICN#, an FREF, a creator STR and a BNDL.

The ICN# resource type is an icon list. Each ICN# resource contains one or more icons,
on after another. For Finder bundle icons, there are two icons in each ICN#: one for the
icon itself and one for the mask. In our sample bundle, we have two file types, each with
its own icon. To define the icons for these files we would enter this into our Rez input file:

resource 'ICN#' (732)
{

$"FF FF FF FF"
$"FO 09 CD DD"

$"FF FF FF FF"

$"FF FF FF FF"
$"FF FF FF FF"

$"FF FF FF FF"

/* first icon: the ID number can be anything */
/* first, the icon */
/* each line is 4 bytes (32 bits) */
/* 32 lines total for icon */

/* 32nd line of icon */
/* now, the mask */
/* 32 lines total for mask */

/* 32nd line of mask*/

} ;

resource 'ICN#' (733) { /* second icon */

$"FF FF FF FF"

• } ;

$"FF FF FF FF"

Technical Note #48 page 1 of3 Bundles



Now that we've defined our icons we can set up the FREFs. An FREF is a file type
reference; you need one for each file type that has an icon. It ties a file type to a local
icon resource 10. This will be mapped by the BNDL onto an actual resource 10 number
of an ICN# resource. Our FREFs will look like this:

resource 'FREF' (816) { /* file type reference for application icon */
(

'APPL', 605, /* the type is APPL(ication), the local 10 is 605 */
/* this string should be empty (it is unused) */

} ;

resource 'FREF' (816) { /* file type reference for a document icon */

'TEXT', 612, /* the type is TEXT, the local 10 is 612 */
/* this string should be empty (it is unused) */

} ;

The reason that you specify the local 10, rather than the actual resource 10 of the ICN# is
that the Finder will copy all of the bundle resources into the Desktop file and renumber
them to avoid conflicts. This means that the actual IDs will change, but the local IDs will
remain the same.

Every application (or other file with a bundle) has a unique four-character signature. The
Finder uses this to identify an application. The creator resource that contains a single
string, and should be defined like this:

type 'MINE' as 'STR '; /* MINE is the signature */
resource 'MINE' (0) { /* the creator resource 10 must be 0 */

"MyProgram 1.0 Copyright 1988 11

} ;

Now for the BNDL resource. The BNDL resource associates local resource IDs with
actual resource IDs, and also tells the Finder what file types exist, and which ICN#s and
FREFs are part of the bundle. The resource looks like this:

resource 'BNOL' (128) { /* the bundle resource 10 should be 0 */
'MINE', /* signature of this application */
0, /* the creator resource 10 (this must be 0) */
{

'ICN#' , /* local resource 10 mapping for icons */
{

605, 732, /* ICN# local 10 605 maps to 732 */
612, 733 /* ICN# local 10 612 maps to 733 */

} ,
'FREF' , /* local resource 10 mapping for file type references */

523, 816, /* FREF local 10 523 maps to 816 */
555, 817 /* FREF local 10 555 maps to 817 */

} ,

•

•

•
Technical Note #48 page 2 of 3 Bundles



•
When you are in the Finder, your application, type APPl (FREF 816), will be displayed
with icon local 10 605 (from the FREF resource). This is ICN# 732. Files of type TEXT
(FREF 817) created by your application will be displayed with icon local 10 612 (from the
FREF resource). This is ICN# 733.

How the Finder Uses Bundles

If a file has the bundle bit set, but the bundle isn't in the Desktop file, the Finder looks for
a BNDl resource. If the BNDl resource matches the signature of theapplication, the
Finder then makes a copy of the bundle and puts it in the Desktop file. The file is then
displayed with its associated icon.

If a file has lost its icon (it's on a disk without the file containing bundle and the Desktop
file doesn't contain the bundle), then it will be displayed with the default document icon
until the Finder encounters a copy of the file that contains the right bundle. The Finder
then makes a copy of the application's bundle (renumbering resources if necessary)
and places it in the Desktop file of that disk.

Problems That May Arise

There are times when you have set up these resource types properly but the icon is
either the wrong one or it has defaulted to the standard application or data file icon.
There are a number of possible reasons for this.

• If you are using the Macintosh-based RMaker, the first thing to check is whether there
are any extraneous spaces in your resource compiler input file. The Macintosh-based
RMaker is very picky about extra spaces.

If your icon is defaulting to the standard icon, check to see that the bundle bit is set. If the
bundle bit isn't set, the Finder doesn't know to place the bundle in the Desktop file. If it
isn't in the Desktop file, the Finder displays the file with a default icon.

If you changed the icon and remade the resource file, but the file still has the same old
icon when displayed in the Finder. The old icon is still in the Desktop file. The Finder
doesn't know that you've changed it, so it uses what it has. To get it to use the new icon
you need to rebuild the Desktop file. To force the Finder to rebuild the Desktop file, you
can hold down the Option and Command keys on startup or on insertion of the disk in
question if it isn't the boot disk. The Finder will ask whether or not you want to rebuild the
desktop (meaning the Desktop file).

Have a bundle of fun!

•
Technical Note #48 page 3 of 3 Bundles



• • •



Macintosh Technical Notes

• #50: Calling SetResLoad

See also: The Resource Manager
Technical Note #1-DAs and System Resources

Written by:
Updated:

Jim Friedlander October 25, 1985
March 1, 1988

Calling SetResLoad (FALSE) can be useful if you need to get a handle to a resource,
without causing the resource to be loaded from disk if it isn't already in memory. This
technique is used in Technical Note #1. SetResLoad changes the value of the
low-memory global ResLoad (at location $ASE).

It is very important that your program not leave ResLoad set to FALSE when it exits.
Doing this will cause the system to reboot or crash when it does a GetResource call for
the next code segment to be loaded (usually the Finder). The system will crash because
GetResource will not actually load the code from disk when Res Load is FALSE.

So, make sure that you call SetResLoad (TRUE) before exiting your program.

•

•
Technical Note #50 page 1 of 1 Calling SetResLoad



•

•

•



Macintosh Technical Notes

• #51: Debugging With PurgeMem and CompactMem

See also:

Written by:
Updated:

The Memory Manager

Jim Friedlander October 19, 1985
March 1, 1988

If you are having problems finding bugs like handles that aren't locked down when they
should be, or resources that aren't there when they're supposed to be, there is a handy
technique for forcing these problems to the surface. Every time through the main event
loop call:

PurgeMem(MaxSize);
size:= CompactMem(MaxSize);

{MaxSize = $800000}

•

•

PurgeMem will purge all purgeable blocks and CompactMem will rearrange the heap,
trying to find a contiguous free block of MaxSize bytes. Obviously, this will move things
around quite a bit, so, if there are any unlocked handles that you have de-referenced,
you will find out about them very quickly.

Don't be alarmed when you see the performance of your program deteriorate drastically
-it's because lots of resources are being loaded and purged every time through the
main event loop. You might want to have a debugging menu item that toggles between
glacial and normal execution speeds.

Please be sure to remove these two lines from any code that you ship!! In fact, neither
of these two calls should normally be made from your application. They tend to undo
work that has been done by the Memory and Resource Managers.

Technical Note #51 page 1 of 1 PurgeMem and CompactMem



•

•

•



•
Macintosh
Technical Notes

Developer Technical Support

#52: Calling _Launch From a High-Level Language
Revised by: Rich Collyer
Written by: Jim Friedlander

April 1989
November 1985

•

•

This Technical Note formerly discussed calling _Launch from a high-level language which
allows inline assembly code.
Changes since March 1988: Merged contents into Technical Note #126.

This Note formerly discussed calling Launch from a high-level language. The information on
calling _Launch is now contained in-Technical Note #126, Sub(Launching) From a High-Level
Language, which also covers sublaunching other applications.

#52: Calling_Launch Froma High-Level Language 1 of 1



• • •



•
Macintosh Technical Notes

#53: MoreMasters Revisited

See also:

Written by:
Updated:

The Memory Manager

Jim Friedlander October 28, 1985
March 1, 1988

•

•

MoreMasters should be called from CODE segment 1. The number of
master pointers that a program needs can be determined empirically.
MoreMasters can be tricked into creating the exact number of master
pointers desired.

If you ask Macintosh programmers when and how many times MoreMasters should be
called, you will get a variety of answers, ranging from "four times in the initialization
segment" to "once, anywhere." As you might suspect, the answer is somewhat different
from either of these.

MoreMasters allocates a block of master pointers in the current heap zone. In the
application heap, a block of master pointers consists of 64 master pointers; in the system
heap, a block consists of 32 master pointers. Since master pointer blocks are
non-relocatable, we want to be sure to allocate them early. The system will allocate
one master pointer block as your program loads. It's the first object in the application
heap-its size is $108 bytes.

A lot of programmers call MoreMasters from an "initialization" segment, but as we shall
see, that's not such a good idea. The problem occurs when we unload our "initialization"
segment and it gets purged from memory.

Technical Note #53 page 1 of 3 MoreMasters Revisited



The following diagrams of the application heap illustrate what happens if we call
MoreMasters from CODE segment 2 (MPB stands for Master Pointer Block):

High
Memory

Low
Memory

Before MoreMasters

Free
Heap
Space

After MoreMasters

Free
Heap
Space

After CODE 2 is purged

Free
Heap
Space

•

~ non-relocatable II locked

Notice that we now have some heap fragmentation-not serious, but it can be avoided
by making all MoreMasters calls in CODE segment 1. Because InitWindows creates
the Window Manager Port (WMgrPort), it should also be called from CODE segment 1.
Both MoreMasters and InitWindows should be called before another CODE segment
is loaded, or the non-relocatable objects they allocate will be put above the CODE
segment and you'll get fragmentation when the CODE segment is purged. If you want to
call an initialization segment before calling MoreMasters and Ini tWindows, make
sure that you unload it before you call either routine. •

Now that we know when to call MoreMasters, how many times do we call it? The
answer depends on your application. If you don't call MoreMasters enough times, the
system will call it when it needs more master pointers. This can happen at very
inconvenient times, causing heap fragmentation. If you call MoreMasters too often, you
can be wasting valuable memory. This is preferable, however, to allocating too few
master pointer blocks!

The number of times you should call MoreMasters can be empirically determined.
Once your application is almost finished, remove all MoreMasters calls. Exercise your
application as completely as possible, opening windows, using handles, opening desk
accessories, etc. You can then go in with a debugger and see how many times the
system called MoreMasters. You do that by counting the non-relocatables of size $108.
Due to Memory Manager size correction, the master pointer blocks can also have a size
of $10C or $110 bytes. You should give yourself about 20% leeway - that is, if the
system called MoreMasters 10 times for you, you should call it 12 times. If you're more
cautious, you might want to call MoreMasters 15 times.

•
Technical Note #53 page 2 013 MoreMasters Revisited



Another technique that can save time at initialization is to calculate the number of master
pointers you will need, then set the MoreMast files of the heap zone header to that
number, and then call MoreMasters once:

• PROCEDURE MyMoreMasters(nurnMastPtrs INTEGER) :

VAR

oldMoreMast
zone

INTEGER:
THz:

{saved value of MoreMast}
{heap zone}

BEGIN
zone := GetZone:
WITH zone A DO BEGIN

oldMoreMast := MoreMast:
MoreMast := nurnMastPtrs:
MoreMasters;
MoreMast := oldMoreMast;

END;
END;

In MPWC:

void MyMoreMasters(nurnMastPtrs)
short nurnMastPtrs;

{get the heap zone}

{get the old value of MoreMast}
{put the value we want in the zone header}
{allocate the master pointers}
{restore the old value of MoreMast}

/* saved value of MoreMast*/
/* heap zone*/

•

•

/* MyMoreMasters */
short oldMoreMast:
THz oZone;

oZone GetZone();
oldMoreMast = oZone->moreMast;
oZone->moreMast = nurnMastPtrs;

MoreMasters();
oZone->moreMast = oldMoreMast:

/* MyMoreMasters */

/* get the heap zone*/
/* get the old value of MoreMast*/
/* put the value we want in the

zone header */
/*allocate the master pointers*/
/*restore the old value of MoreMast*/

Technical Note #53 page 3 013 MoreMasters Revisited



•

•

•



Macintosh Technical Notes

• #54: Limit to Size of Resources

Written by:
Updated:

Jim Friedlander October 23, 1985
March 1, 1988

This note formerly described a bug in WriteResource on 64K ROM
machines. Information specific to 64K ROM machines has been deleted from
Macintosh Technical Notes for reasons of clarity.

•

•
Technical Note #54 page 1 of 1 Limit to Size of Resources



• • •



Macintosh Technical Notes

• #55: Drawing Icons

See also:

Written by:
Updated:

QuickDraw
Toolbox Utilities

Jim Friedlander October 21, 1985
March 1, 1988

•

Using resources of type ICON allows drawing of icons in srcOr mode. Using
resources of type ICN# allows for more variety when drawing icons.

There are two different kinds of resources that contain icons: ICON and ICN#. An ICON
is a 32 by 32 bit image of an icon and can be drawn using the following Toolbox Utilities
calls:

MyIconHndl:= GetIcon(iconID);
PlotIcon(destRect,iconID);

While very convenient, this method only allows the drawing of icons in SrcOr mode (as
in the MiniFinder). The Finder uses resources of type ICN# to draw icons on the desktop.
Because the Finder uses ICN#s, it can draw icons in a variety of ways.

An ICN# resource is a list of 32 by 32 bit images that are grouped together. Common
convention has been to group two 32 by 32 bit images together in each ICN#. The first
image is the actual icon, the second image is the mask for the icon. To get a handle to
an ICN#, we would use something like this:

TYPE
iListHndl
iListPtr
iListStruct

VAR
myILHndl
iBitMap
mBitMap

"iListPtr;
"iListStruct;
record

icon: packed array[O .. 3l]
mask: packed array[O .. 3l]

End; {iListStruct}

iListHndl;
BitMap;
BitMap;

of Longint;
of Longint;

{handle to an ICN#}
{BitMap for the icon}
{BitMap for the mask}

•
MyILHndl:= iListHndl(GetResource('ICN#',iconID));
if MyILHndl = NIL then HandleError; { and exit or whatever is appropriate}

Technical Note #55 page 1 of 4 Drawing Icons



Once we have a handle to the icons, we need to set up two bitMaps that we will be using
later in CopyBits:

SetRect(icnRect,O,O,32,32);
With iBitMap do Begin

baseAddr:= @MyILHndlAA.icon;
rowbytes:= 4;
bounds:= icnRect;

End; {with}
With mBitMap do Begin

baseAddr:= @MyILHndlAA.mask;
rowbytes : = 4;
bounds:= icnRect;

End; {with}

{ define the icon's 'bounds'}

{ 4 * 8 =32} •
Icons can represent desktop objects that are either selected or not. Folder and volume
icons can either be open or not. The object (or the volume it is on) can either be online
or offline. The Finder draws icons using all permutations of open, selected and online:

Non-Open Non-Open Open Open
Non-Selected Selected Non-Selected Selected

~ • •Online ...
111111111111111-

Offl i ne • IJ 1lllllllililll! •H:~:~..... --
Drawing icons as non-open is basically the same for online and offline volumes. We
need to punch a hole in the desktop for the icon. This is analogous to punching a hole in
dough with an irregular shaped cookie-cutter. We can then sprinkle jimmies* all over the
cookie and they will only stick in the area that we punched out (the mask). We do this by
copyBitsing the mask onto the desktop (whatever pattern) to our destRect. For non-open,
non-selected icons:

~
~

we use the SrcBic mode so that we punch a white hole:

SetRect(destRect,left,top,left+32,top+32);
CopyBits(mBitMap,thePortA.portBits,icnRect,destRect,SrcBic,NIL);

Then we XOR in the icon:

CopyBits(iBitMap,thePortA.portBits,icnRect,destRect,SrCXor,NIL);

•

•
Technical Note #55 page2 of 4 Drawing Icons



•
That's all there is to drawing an icon as non-open, non-selected. To draw the icon as
non-open, selected:

•-we will OR in the mask, causing a mask-shaped BLACK hole to be punched in the
desktop:

CopyBits(mBitMap,thePortA.portBits,icnRect,destRect,SrcOr,NIL);

Then, as before, we XOR in the icon:

CopyBits(iBitMap,thePortA.portBits,icnRect,destRect,SrcXOr,NIL);

To draw icons as non-opened for offline volumes:

I';W
: .
:::::~

we need to do a little more work. We need to XOR a ItGray pattern into the boundsRect
of the icon. We will then punch the hole, draw the icon and then XOR out the Itgray
pattern that does not fall inside the mask. So, to draw the icon as offline, non-open,
non-selected we would:

CopyBits (mBitMap,thePortA.portBits, icnRect,destRect,SrcBic,NIL); {punch}
PaintRect(destRect); {XOR out bits outside of the mask, leaving the mask}

{filled with ltGray}
CopyBits(iBitMap,thePortA.portBits,icnRect,destRect,SrcOr,NIL); {OR in }

{ the icon to the ltGray mask}
SetPenState(OldPen); {restore the old pen state}

•
GetPenState(OldPen);
PenMode(patXor);
PenPat (ltGray) ;
PaintRect(destRect);

{save the pen state so we can restore it}

{paint a ltGray background for icon}

To draw the icon as offline, non-open, selected:

•-we would use a similar approach:

GetPenState(OldPen);
PenMode(patXor);
PenPat (dkGray) ;
PaintRect(destRect);

{ Save the pen state so we can restore it}

the icon is selected, so we need dkGray
{ paint a dkGray background for icon

•
CopyBits(mBitMap,thePortA.portBits,icnRect,destRect,SrcBic,NIL); {punch}
PaintRect(destRect); {XOR out bits outside of the mask, leaving the mask}

{filled with dkGray}
CopyBits (iBitMap,thePortA.portBits, icnRect,destRect,SrcBic,NIL); {BIC the}

{icon to the dkGray mask}
SetPenState(OldPen); {restore the old pen state}

Technical Note #55 page3 of4 Drawing Icons



Drawing the opened icons requires one less step. We don"t have to CopyBi t s the icon
in, we just use the mask. Online and offline icons are drawn the same way. To draw
icons as open, selected:

•we do the following:

GetPenState(OldPen); {save the pen state so we can restore it}
PenMode(patXor);
PenPat(dkGray); the icon is selected, so we need dkGray }
PaintRect(destRect); { paint a dkGray background for icon}
CopyBits(mBitMap,thePort~.portBits,icnRect,destRect,SrcBic,NIL); {punch}
PaintRect(destRect); {XOR out bits outside of the mask, leaving the mask}

{filled with dkGray}
SetPenState(OldPen); {restore the old pen state}

To draw icons as open, non-selected:

Illllllllmi!i

we just need to change one line from above. Instead of XORing with a dkGray pattern,
we use a ItGray pattern:

•

These techniques will work on any background, window-white or desktop-gray and all
patterns in between. Have fun.

PenPat(ltGray);

* jimmies: little bits of chocolate

{ the icon is non-selected, so we need ltGray }

•

•
Technical Note #55 page4 of 4 Drawing Icons



Macintosh Technical Notes

• #56: Break/CTS Device Driver Event Structure

See also: The Device Manager
Serial Drivers
Zilog Z8030/Z8530 SCC Serial Communications Controller

Technical Manual

Written by:
Updated:

Mark Baumwell December 2, 1986
March 1, 1988

•

•

This technical note documents the event record information that gets passed
when the serial driver posts an event for a break/CTS status change.

The serial driver can be programmed to post a device driver event upon encountering a
break status change or CTS change (via the SerHShake call). The structure of device
driver events is driver-specific. This technical note documents the event record
information that gets passed when the serial driver posts a device driver event for a
breaklCTS status change.

When the event is posted, the message field of the event record will be a long word (four
bytes). The most significant byte will contain the value of SCC Read Register 0 (see
below for the relevant Read Register 0 values). The next byte will contain the changed
(since the last interrupt) bits of the SCC read register O. The lower two bytes (word) will
contain the DCtlRefNum.

The values for Read Register 0 are as follows:

• If a break occurred, bit 7 will be set.
• If CTS changed, bit 5 will reflect the state of the CTS pin (0 means the

handshake line is asserted and that it is OK to transmit).

We discourage posting these events because interrupts would be disabled for a long
time while the event is being posted. However, it is possible to detect a break or read the
value of the CTS line in another way. A break condition will always terminate a serial
driver input request (but not an output request), and the error breakRecd (-90) will be
returned. (This constant is defined in the SysEqu file.) You could therefore detect a
break by checking the returned error code.

The state of the CTS line can be checked by making a SerStatus call and checking the
value of the ct sHold flag in the SerStaRec record. See the Serial Drivers chapter of
Inside Macintosh for details.

Technical Note #56 page 1 of 1 BreaklCTS Device Driver Event Structure



•

•

•



Macintosh Technical Notes

• #57: Macintosh Plus Overview

See:

Written by:
Updated:

Inside Macintosh Volume IV

Scott Knaster January 8, 1986
March 1, 1988

This note was originally meant as interim Macintosh Plus documentation and
has been replaced by Inside Macintosh Volume IV, which is more complete
and more accurate.

•

•
Technical Note #57 page 1 of 1 Macintosh Plus Overview



• • •



Macintosh Technical Notes

• #58: International Utilities Bug

Written by:
Updated:

Jim Friedlander January 24, 1986
March 1, 1988

This note formerly described a bug in System 2.0, which is now
recommended only for use with 64K ROM machines. Information specific to
64K ROM machines has been deleted from Macintosh Technical Notes for
reasons of clarity .

•

•
Technical Note #58 page 1 of 1 International Utilities Package Bugs



• • •



Macintosh Technical Notes

• #59: Pictures and Clip Regions

See also:

Written by:
Updated:

QuickDraw

Ginger Jernigan January 16, 1986
March 1, 1988

•

•

This note describes a problem that affects creation of QuickDraw pictures.

When a GrafPort is created, the fields in the GrafPort are given default values; one of
these is the clip region, which is set to the rectangle (-32767, -32767, 32767, 32767). If
you create a picture, then call DrawPicture with a destination rectangle that is not the
same size as the picFrame without ever changing the default clip region, nothing will
be drawn.

When the picture frame is compared with the destination rectangle and the picture is
scaled, the clip region is scaled too. In the process of scaling, the clip region you end up
overflows and becomes empty, and your picture doesn't get drawn. If you call
ClipRect (thePort 1\. portRect) before you record the picture, the picture will be
drawn correctly. The clipping on the destination port when playing back the picture is
irrelevant: once a picture is incorrectly recorded, it is too late.

Technical Note #59 Page 1 of 1 Pictures and Clip Regions



-----~--~------------~--

•

•

•



Macintosh Technical Notes

• #60: Drawing Characters into a Narrow GrafPort

See also:

Written by:
Updated:

QuickDraw

Ginger Jernigan January 20, 1986
March 1, 1988

When you draw a character into a GrafPort, your program will die with an
address error if the width of the GrafPort is smaller than the width of the
character. If you check before drawing the character to see if the GrafPort is
wide enough, you can avoid this unfortunate tragedy.

•

•
Technical Note #60 page 1 of 1 Drawing Characters into a Narrow Grafport



• • •



Macintosh Technical Notes

• #61: GetltemStyle Bug

Written by:
Updated:

Jim Friedlander January 21, 1986
March 1, 1988

This note formerly described a bug (in Get ItemStyle) which occurs only on
64K ROM machines. Information specific to 64K ROM machines has been
deleted from Macintosh Technical Notes for reasons of clarity .

•

•
Technical Note #61 page 1 of 1 GetitemStyle Bug



•

•

•



Macintosh Technical Notes

• #62: Don't Use Resource Header Application Bytes

See also:

Written by:
Updated:

The Resource Manager

Bryan Stearns January 23, 1986
March 1, 1988

The section of the Resource Manager chapter of Inside Macintosh which
describes the internal format of a resource file shows an area of the resource
header labeled "available for application data." You should not use this
area-it is used by the Resource Manager.

•

•
Technical Note #62 page 1 of 1 Don't Use Resource Header Bytes



• • •



Macintosh Technical Notes

• #63: WriteResource Bug Patch

Written by:

Modified by :
Updated:

Rick Blair
Jim Friedlander
Bryan Stearns
Jim Friedlander

January 15, 1986

March 3, 1986
March 1, 1988

This note formerly contained a patch to fix a bug in WriteResource on 64K
ROM machines. Information specific to 64K ROM machines has been deleted
from Macintosh Technical Notes for reasons of clarity .

•

•
Technical Note #63 page 1 of 1 WriteResource Bug Patch



•

•

•



Macintosh Technical Notes

• #64: IAZNotify

Written by:
Modified by:
Updated:

Jim Friedlander
Jim Friedlander

January 15, 1986
August 18, 1986
March 1, 1988

Previous versions of this technical note recommended use of a low memory
hook called IAZNotify. We no longer recommend use of IAZNotify, since
the IAZNotify hook is never called under MultiFinder.

•

•
Technical Note #64 page 1 of 1 IAZNotify



•

•

•



•
Macintosh Technical Notes

U
#65: Macintosh Plus Pinouts

See also: Macintosh Hardware Reference Manual

Written by:
Modified by:
Updated:

Mark Baumwell
Mark Baumwell

January 27,1986
March 20, 1986
March 1, 1988

This note gives pinout descriptions for some of the Macintosh Plus ports and
Macintosh Plus cables that are different than the Macintosh 128K and 512K.

Below are pinout descriptions for some Macintosh Plus ports and cables that are different
than the Macintosh 128K and 512K. Note that any unconnected pins are omitted.

Macintosh Plus Port Pinouts

• Macintosh Plus Serial Connectors (Mini DIN-8)

(Female
Connector)

•

Pin
1
2
3
4
5
6
7
8

Ma!:D.e
HSKo
HSKi/External Clock
TxD-
Ground
RxD-
TxD+
Not connected
RxD+

Description/Notes
Output Handshake (from Zilog 8530 DTR pin)
Input Handshake (CTS) or TRxC (depends on 8530 mode)
Transmit Data line

Receive Data line
Transmit Data line

Receive Data line; ground this line to emulate RS232

Technical Note #65 page 1 of3 Macintosh Plus Pinouts



Macintosh Plus SCSI Connector (08-25)

13 12 11 10 9 8 7 6 5 4 3 2

(Female • • • • • • • • • • • • •Connector) 25 24 23 22 21 20 19 18 17 16 15 14• • • • • • • • • • • •
Eln ~ Description/Notes
1 REO-
2 MSG-
3 I/O-
4 RST-
5 ACK-
6 8SY-
7 Ground
8 D80-
9 Ground
10 D83-
11 D85-
12 D86-
13 D87-
14 Ground
15 C/D-
16 Ground
17 ATN-
18 Ground
19 SEL-
20 D8P-
21 D81- •22 D82-
23 D84-
24 Ground
25 TPWR Not connected

•
Technical Note #65 page 2 of3 Macintosh Plus Pinouts



•
Macintosh Plus Cable Pinouts

Apple System Peripheral-8 Cable (connects Macintosh Plus to ImageWriter II
and Apple Personal Modem)
(Product part number: M0187)
(Cable assembly part number: 590-0340-A (stamped on cable itself).

(Male
Connector)

Jumpered to 08-9 pin 1 (in 08-9 connector)

Jumpered to 08-9 pin 3 (in 08-9 connector)

(OIN-8)
2
1
5
4
3
8
7
6

( PIN-8)
1
2
3
4
5
6
7
8

Macintosh Plus Adapter Cable (connects Macintosh Plus 01N-8 to existing
Macintosh 08-9 cables)
(Apple part number: M0189)
(Cable assembly part number: 590-0341-A (stamped on cable itself).

~(pIN-8 ) t:IarM LDa:9l
1 +12V 6
2 HSK 7
3 TxD- 5
4 Ground 3
5 RxD- 9
6 TxO+ 4
7 no wire
8 RxO+ 8

Ground 1

•

•
Technical Note #65 page3 013 Macintosh Plus Pinouts



•

•

•



•
Macintosh
Technical Notes

#66:

Developer Technical Support

Determining Which File System Is Active
Revised by:
Written by:

Robert Lenoil & Brian Bechtel
Jim Friedlander

August 1990
December 1985

•

This Technical Note discusses how to determine which file system a particular volume is running.
Changes since June 1990: Removed text about IDs $0001-$0016 being AppleShare volumes;I
other file systems use this range too.

Under certain circumstances it is necessary to determine which file system is currently running on a
particular volume. For example, on a 64K ROM machine, your application (i.e., especially disk
recovery utilities or disk editors, etc.) may need to check for MFS versus HFS. Note that this is
usually not necessary, because all ROMs, except the original 64K ROMs, include HFS. If your
application only runs on 128K ROMs or newer, you do not need to check for HFS versus MFS.
You may need to check if a particular volume is in High Sierra, ISO 9660, or audio CD format.

Before performing these file system checks, be sure to call SysEnvirons, to make sure the
machine on which you are running has ROMs which know abOut the calls you need.

To check for HFS on 64K ROM machines, check the low-memory global FSFCBLen (at location
$3F6). This global is one word in length (two bytes) and is equal to -1 if MFS is active and a
positive number (currently SSE) ifHFS is active. From Pascal, the following would perform the
check:

CONST
FSFCBLen = $3F6;

VAR
HFS: AINTEGER;

(address of the low-memory global)

•

HFS:= POINTER{FSFCBLen);
IF HFSA > 0 THEN

(we're running HFS)
ELSE

(we're running MFS)
END;

If an application determines that it is running under HFS, it should not assume that all mounted
volumes are HFS. To check individual volumes for HFS, call PBHGetVlnfo and check the
directory signature (the ioVSigWord field of an HParamBlockRec). A directory signature of
$D2D7 means the volume is an MFS volume, while a directory signature of $4244 means the
volume is an HFS volume.

#66: Determining Which File System Is Active 10f2



Macintosh Technical Notes

To find out if a volume uses a file system other than HFS or MFS, call _PBHGetVlnfo and
check the file system ID (the ioVFSID field of an HParamBlockRec). A file system ID of
$0000 means the volume is either HFS or MFS. A file system ID of $4242 means the volume is a •
High Sierra volume, while a file system ID of $4147 is an ISO 9660 volume, and a file system ID
of $4A48 is an audio CD volume. AppleShare and other file systems use a dynamic technique of
obtaining the first unused file system ID; therefore, low-numbered IDs cannot be associated with
any particular file system.

When dealing with High Sierra and ISO 9660 formats, do not assume that the volumes are CD
ROM discs. Support for these file systems is done with the External File System hook in the File
Manager, so any block-based media could potentially be in these formats. It is possible to have a
High Sierra formatted floppy disk, although it would be useless except for testing purposes.

Further Reference:
• Inside Macintosh, Volume IV, File Manager
• Technical Note #209, High Sierra & ISO 9660 CD-ROM Formats
• Technical Note #129, _SysEnvirons: System 6.0 and Beyond

•

•
20f2 #66: Determining Which File System Is Active



•
Macintosh
Technical Notes

Developer Technical Support

#67: How to Bless a Folder to Be the System Folder
Rewritten by: Colleen K. Delgadillo
Updated by: Jim Friedlander
Written by: Jim Friedlander

May 1992
March 1988

January 1986

•

•

This Technical Note describes how to determine which folder on an HFS volume is the blessed
folder, that is, the folder that contains both the System file and the Finder.

Changes since January 1986: The information about how to find the "Blessed Folder" has
been deleted from this technical note. The FindFolder function can now be used to find the
"Blessed Folder" and is documented in Inside Macintosh Volume VI, pages 9-42 to 9-44. This
note now includes information about how to bless a folder to the new system folder.

Note: The following information may be affected by future changes to system software. If you
choose to use this information, you must do so at your own risk.

The way to bless a folder is by taking the longword which is the directory ID of the blessed folder
and putting it into the Master Directory Block (MDB). This can be accomplished by using the HFS
call PBS e t V I n f o. You should not attempt to change this block directly. First call
PBHGetVlnfo and set ioVFnderlnfo[l] to the directory ID of the the new folder to be
blessed. Then call PBSetVlnfo to save this information. Once you have done this, you will
find that the Finder takes a little while to realize that you have blessed the folder. Therefore, the
icon will take a little while to change. Exactly how long you will have to wait to see the new icon is
unknown.

Forcing the icon to change sooner is not a difficult task. The best way for you to see the icon
change more quickly is to change the modification date of the directory into which you are copying
the new System Folder. Doing this will cause the Finder to reexamine the window and its contents.
When the Finder notices that the volume's modification date has changed, it begins scanning for
changes in all the open folders. This scanning process takes place about once every 10 seconds.
You can change the last modification date for that volume and the System Folder's directory ill for
that volume using PBSetVlnfo. Changing the file's Fndrlnfo or renaming the file does not
change the modification date. When you call PBSetVlnfo you will need to put the System
Folder's directory ID in the longword at ioVfndrlnfo. This longword will be the first four
bytes of this directory ID. (As usual, whenever you make a change to a field of a structure you
need to first do a P BGet Cat In f 0, change what you are going to change, and then do
PBSetCatlnfo. This ensures that you change only the portion of the volume that you intended,
in this case a longword, and not the whole structure.)

Further Reference:
• Master Directory Block: Inside Macintosh Volume IV on page 166.

#67: Finding the "Blessed Folder" 1 of 1



•

•

•



•
Macintosh
Technical Notes • ®

Developer Technical Support

#68: Searching Volumes-Solutions and Problems
Revised by:
Written by:

Jim Luther
Jim Friedlander and Rick Blair

January 1992
December 1985- October 1988

•

•

This Technical Note discusses the PBCatSearch function and tells why it should be used. It also
provides simple algorithms for searching both MFS and HFS volumes and discusses the problems
with indexed search routines.
Changes since October 1988: Includes information on PBCat Sea r chand notes the
problems with indexed search routines. Source code examples have been added and revised.
Thanks to John Norstad at Northwestern University for pointing out some of the shortcomings of
the indexed search routines. Thanks to the System 7 engineering team for adding PBCatSearch.

It may be necessary to search the volume hierarchy for files or directories with specific
characteristics. Generally speaking, your application should avoid searching entire volumes
because searching can be a very time-consuming process on a large volume. Your application
should rely instead on files being in specific directories (the same directory as the application, or in
one of the system-related folders that can be found with FindFolder) or on having the user find
files with Standard File.

Searching MFS Volumes

Under MFS. indexed calls to PBGetFlnfo return information about all files on a given volume.
Under HFS. the same technique returns information only about files in the current directory.
Here's a short code snippet showing how to use PBGetFlnfo to list all files on an MFS volume:

PROCEDURE EnumMFS (theVRefNum: Integer);
{ search the MFS volume specified by theVRefNum )

VAR
pb: ParamBlockRec;
itemName: Str255;
index: Integer;
err: OSErr;

BEGIN
WITH pb DO

BEGIN
ioNamePtr := @itemName;
ioVRefNum := theVRefNum;
ioFVersNum := 0;

END;
index := 1;
REPEAT

pb.ioFDirIndex := index;
err := PBGetFInfoSync(@pb);
IF err = noErr THEN

BEGIN
{ do something useful with the file information in pb )

#68: Searching Volumes-Solutions and Problems lof8



Macintosh Technical Notes

END;
index := index + 1;

UNTIL err <> noErr;
END;

As noted in Macintosh Technical Note #66, a directory signature of $D2D7 means a volume is an
MFS volume, while a directory signature of $4244 means the volume is an HFS volume.

Searching HFS Volumes

Fast, Reliable Searches Using PBCatSearch

The fastest and most reliable way to search an HFS volume's catalog is with the File Manager's
PBCatSearch function. PBCatSearch returns a list of FSSpec records to files or directories
that match the search criteria specified by your application. However, PBCatSearch is not
available on all volumes or under all versions of the File Manager. Volumes that support
PBCatSearch can be identified using the PBHGetVolParms function. (See the following
code.) Versions of the File Manager that support PBCatSearch can be identified with the
gestaltFSAttr Gestalt selector and gestaltFullExtFSDispatching bit as shown in
the following code:

FUNCTION HasCatSearch (vRefNum: Integer): Boolean;
See if volume specified by vRefNum supports PBCatSearch

VAR
pb: HParamBlockRec;
infoBuffer: GetVolParmsInfoBuffer;
attrib: LongInt;

BEGIN
HasCatSearch := FALSE; { default to no PBCatSearch support )
IF GestaltAvailable THEN { See Inside Macintosh Volume VI, Chapter 3 )

IF Gestalt (gestaltFSAttr, attrib) = noErr THEN
IF BTst(attrib, gestaltFullExtFSDispatching) THEN

BEGIN { this version of the File Manager can call PBCatSearch
WITH pb DO

BEGIN
ioNamePtr := NIL;
ioVRefNum := vRefNum;
ioBuffer := @infoBuffer;
ioReqCount := sizeof(infoBuffer);

END;
IF PBHGetVoIParmsSync(@pb) = noErr THEN

IF BTST(infoBuffer.vMAttrib, bHasCatSearch) THEN
HasCatSearch := TRUE; { volume supports PBCatSearch

END;
END;

Note: File servers that support the AppleTalk: Filing Protocol (AFP) version 2.1 support
PBCatSearch. That includes volumes and directories shared by System 7 File
Sharing and by the AppleShare 3.0 file server. Although AFP version 2.1 supports
PBCatSearch, the fsSBNegate bit is not supported in the ioSearchBits
field. Using PBCatSearch to ask the file server to perform the search is usually
faster than using the recursive indexed search described in the next section.

PBCat Search should be used if it is available because it is usually much faster than a recursive
search. For example, the search time for finding all files and directories on a recent Developer CD

•

•

•
20f8 #68: Searching Volumes-Solutions and Problems



was around 18 seconds with PBCatSearch. It took 6 minutes and 36 seconds with a recursive
indexed search. How long do you want the users of your application to wait?

PBCatSearch can be used to collect a list of FSSpec records to all items on a volume by setting
ioSearchBits in the parameter block to O.•
Developer Technical Support January 1992

•

•

Recursive Indexed Searches Using PBGetCatlnfo

When PBCatSearch is not available, an application must resort to a recursive indexed search.
There are a couple of potential problems with a recursive indexed search; a recursive indexed
search can use up a lot of stack space and the volume directory structure can change in the multi
user/multiprocess Macintosh environment. The example code in this note addresses the stack space
problem, but for reasons explained later, does notaddress problems caused by multiple users or
processes changing the volume directory structure during a recursive search.

The default stack space on the Macintosh can be as small as 8K; therefore, the recursive indexed
search example shown in this Note encloses the actual recursive routine in a shell that can hold
most of the variables needed, which dramatically reduces the size of the stack frame. This example
uses only 26 bytes of stack space each time the routine recurses. That is, it could search 100 levels
deep (pretty unlikely) and use only 2600 bytes of stack space.

Please notice that when the routine comes back from recursing, it has to clear the nonlocal variable
err to noErr, since the reason the routine came back from recursing is that PBGetCatInfo
returned an error:

EnumerateCatalog(myCPB.ioDrDirID);
err := noErr; {clear error return on way back}

Please notice also that you must set myCPB. ioDrDirId each time you call PBGetCatInfo,
because if PBGetCatInfo gets information about a file, it returns ioFlNum (the file number) in
the same location that ioDrDirID previously occupied.

Be sure to check bit 4, the fifth least significant bit, when you check the file attributes bit to see if
you've got a file or a folder. The following routine uses MPW Pascal's BTST function to check
that bit. If you use the Toolbox bit manipulation routines (e.g., BitTst), remember to order the
bits in reverse order from standard 68000 notation.

Here is the routine in MPW Pascal:

PROCEDURE EnumerShell (vRefNumToSearch: Integer; the vRefNum to search)
dirIDToSearch: LongInt); the dirID to search}

VAR
itemName: Str63;
myCPB: CInfoPBRec;
err: OSErr;

{----- }

PROCEDURE EnumerateCatalog (dirIDToSearch: LongInt);
CONST

ioDirFlgBit = 4;
VAR

index: Integer;
BEGIN { EnumerateCatalog

index := 1;
REPEAT

WITH myCBP DO

#68: Searching Volumes-Solutions and Problems 30f8



Macintosh Technical Notes

BEGIN
ioFDirIndex := index;
ioDrDirID := dirIDToSearch; { we need to do this every }

{ time through }
filler2 := 0; Clear the ioACUser byte if search is

interested in it. Nonserver volumes}
won't clear it for you and the value
returned is meaningless. }

END;
err := PBGetCatInfo(@myCPB, FALSE};
IF err = noErr THEN

IF BTST(myCPB.ioF1Attrib, ioDirFlgBit) THEN
BEGIN { we have a directory }

do something useful with the directory information }
in myCPB }

EnumerateCatalog(myCPB.ioDrDirID};
err := noErr; {clear error return on way back}

END
ELSE

BEGIN we have a file }

do something useful with the file information }
in myCPB }

END;
index := index + 1;

UNTIL (err <> noErr};
END; {EnumerateCatalog}

{-----}

BEGIN { EnumerShell
WITH myCPB DO

BEGIN
ioNameptr '= @itemName;
ioVRefNum := vRefNumToSearch;

END;
EnumerateCatalog(dirIDToSearch);

END; { EnumerShell }

InMPWC:

•

•
/* the following variables are
HFileInfo gMyCPB;
Str63 gItemName;
OSErr gErr;

globals */
/* for the PBGetCatInfo call */
/* place to hold file name */
/* the usual */

/*---------------------------------------------------------------------*/
void EnumerateCatalog (long int dirIDToSearch)
{ /* EnumerateCatalog */

short int
do

index=l;

*/
*/

*/

gMyCPB.ioFDirIndex= index;
gMyCPB.ioDirID= dirIDToSearch; /* we need to do this every time

/* through, since GetCatInfo
/* returns ioF1Num in this field */

gMyCPB.filler2= 0; /* Clear the ioACUser byte if search is
/* interested in it. Nonserver volumes won't
/* clear it for you and the value returned is
/* meaningless. */

*/
*/

•
4of8 #68: Searching Volumes-Solutions and Problems



•
Developer Technical Support

gErr= PBGetCatlnfo(&gMyCPB,false);
if (gErr == noErr)
{

if «gMyCPB.ioF1Attrib & ioDirMask) != 0)
/* we have a directory */
/* do something useful with the directory information */
/* in gMyCPB */

EnumerateCatalog(gMyCPB.ioDirID); 1* recurse */
gErr = noErr; /* clear error return on way back */

)

else
/* we have a file */

/* do something useful with the file information */
/* in gMyCPB */

)

++index;
) while (gErr == noErr);
/* EnumerateCatalog */

/*---------------------------------------------------------------------*/
EnumerShell(short int vRefNumToSearch, long int dirIDToSearch)

January 1992

•

•

/* EnumerShell */
gMyCPB.ioNamePtr = gItemName;
gMyCPB.ioVRefNum = vRefNumToSearch;
EnumerateCatalog(dirIDToSearch);
/* EnumerShell */

Please make sure that you are running under HFS before you use this routine (see Technical Note
#66). You can search the entire volume by specifying a starting directory ill of fsRtDirID, the
root directory constant. You can do partial searches of a volume by specifying a starting directory
ill other than fsRtDirID.

Searching in a Multi-user/Multiprocess Environment

Volumes can be shared by multiple users accessing a file server or multiple processes running on a
single Macintosh. Each user or process with access to such a shared volume may be able to make
changes to the volume's catalog at any time. Changes in a volume's catalog in the middle of a
search can cause two problems:

• Files and directories renamed or moved by another user or process can be entirely missed or
found multiple times by a search routine.

• A search routine can easily lose track of its position within the hierarchical directory structure
when files or directories are created, deleted, or renamed by another user or process.

A volume searched with a single call to PBCatSearch ensures that all parts of the volume are
searched without another user or process changing the volume's catalog. However, a single call to
PBCatSearch may not be possible or practical because of the number of matches you expect, or
because you may want to set a time limit on the search so that the user can cancel a long search.
PBCatSearch returns a catChangedErr (-1304) and no matches when the catalog of a
volume is changed by another user or process in a way that might affect the current search. The
search can be continued with the CatPositionRec returned with the catChangedErr error,
but at the risk of missing catalog entries or finding duplicate catalog entries.

#68: Searching Volumes-Solutions and Problems 50f8



Macintosh Technical Notes

Things aren't so nice for search routines based on indexed File Manager calls. The File Manager
won't notify you when a volume's catalog has changed. In fact, there are several ways the catalog •
can change that are very difficult to detect and correct for. Since methods that attempt to
resynchronize an indexed search and find all catalog entries that might be missed or found multiple
times when the catalog changes do not work for all cases, those methods are not discussed in this
Technical Note. The following paragraphs describe why some changes are very difficult to detect.

There are three changes you can make to the contents of a directory that change the list of files and
directories returned by an indexed search: creating, deleting, and renaming. Directories of an HFS
volume are always sorted alphabetically, so when a file or subdirectory is deleted from a directory,
any directory entries after it bubbles up to fill the vacated entry position; when a file or subdirectory
is created, it is inserted into the list and all entries after it bubbles down one position. When a file
or subdirectory is renamed, it is removed from its current position and moved into its alphabetically
correct position. The first two changes, creating and deleting, can be detected only at the parent
directory level. That's because a creation or deletion changes only the modification date of the
parent directory but not the modification date of any of the parent directory's ancestors. Renaming
a file or subdirectory does not change the modification date of the file or subdirectory renamed or
the modification date its parent directory, but it does change the order of files and subdirectories
found by an indexed search.

With this in mind, here are a couple of examples that are very difficult to detect.

The first example shows a file, Dashboard, moved (by another user or process) with PBCatMove
from the CDevs subdirectory to the Control Panels subdirectory. (See figures 1 and 2.) At the time
of the move, the search routine has just finished recursively looking through the Development
directory and is ready to recursively search the Games directory. After the move, two directories,
CDevs and Control Panels, have new modification dates but no change is seen at the root directory
of My Disk. There is nothing to immediately tell the search routine something has changed (except •
for the volume modification date which mayor may not mean the directory structure has changed),
so the search will see Dashboard twice. If the move were in the opposite direction, from Control
Panels to CDevs, Dashboard would be missed by the search routine.

Deoem

CDevs

Objectto~ n
move ~ __

Dashboard

OJ
My Disk

Index .d-,
Pointer ~

Da~b

Dropper Kibitz__--.~.... Control Panels

Figure 1 Before Dashboard Is Moved With PBCatMove

•
60f8 #68: Searching Volumes-Solutions and Problems



January 1992

SY"¢lder

Control Panels

n ..- Object thatU moved

Dashboard

Modification
date same

t
[0

~~~:r-- C;
De6 m dameb

CDevs Dropper Kibitz

~
Modification

date changed

Developer Technical Support

•

•
Figure 2 After Dashboard Is Moved With PBCatMove

The second example (see Figures 3 and 4) shows a directory, Toys, renamed (by another user or
process) with PBHRenarne to Games. At the time of the move, the search routine has seen the files
Aardvark and Letter and is looking at the third object in the directory, the file Resume. After the
move, the index pointer is still pointing at the third object but now the third object is the file Letter,
a file that has already been seen by the search. This change cannot be detected by looking at the
parent directory's modification date because PBHRenarne does not change any modification dates.
However, this change can be detected by checking to see if the index pointer still points to the same
file or directory. The search routine could re-index through the directory to find the Resume file
again and start searching from there, but what about the directory that was renamed? The search
routine either must miss it (and its contents) or it must repeat the search of the entire directory to
ensure nothing is missed.

Aardvark Letter Resume Toys

4

•
Index Object to rename

Figure 3 Before Toys Is Renamed With PBHRenarne

#68: Searching Volumes-Solutions and Problems 7of8

Macintosh Technical Notes

•
Aardvark Games Letter Resume

Renamed object Index

Figure 4 After Toys Is Renamed to Games With PBHRenarne

As these examples show, a change during a search of a hierarchical directory structure with
indexed File Manager calls involves the risk of missing catalog entries or finding duplicate catalog
entries. If your application depends on seeing all items on a volume at least once and only once,
you should make the users of your application aware of the problems associated with indexed
searches and suggest to them ways to make sure the volume's catalog is not changed during the
indexed search. Here's a good suggestion you could make to the user: do not use other programs
during the search. Other programs may create, delete, or rename files during the search.

Conclusion

You should always use PBCatSearch to search a volume if it is available. If PBCatSearch
isn't available and you must use an indexed search, be aware that it is difficult to ensure that you
do not miss some catalog entries or see some catalog entries multiple times during your search. •

Further Reference:
• Inside Macintosh, Volume IV, The File Manager
• Inside Macintosh, Volume V, File Manager Extensions in a Shared Environment
• Inside Macintosh, Volume VI, The Finder Interface
• Inside Macintosh, Volume VI, The File Manager
• Technical Note #66, Determining Which File System Is Active
• Technical Note #305, PBShare, PBUnshare, and PBGetUGEntry

•
8 of8 #68: Searching Volumes-Solutions and Problems

Macintosh Technical Notes

• #69: Setting ioFDirlndex in PBGetCatinfo Calls

See also: The File Manager
Technical Note #24-Available Volumes and Files
Technical Note #67-Finding the Blessed Folder

Written by:
Updated:

Jim Friedlander February 15, 1986
March 1, 1988

•

This technical note describes how to set ioFDirlndex for PBGetCatlnfo.

The File Manager chapter of Inside Macintosh volume IV is not very specific in
describing how to use ioFDirIndex when calling PBGetCat Info. It correctly says that
ioFDirIndex should be positive if you are making indexed calls to PBGetCat Info
(analogous to making indexed calls to PBGetVInfo as described in Technical Note
#24). However, the statement "If ioFDirIndex is negative or 0, the File Manager returns
information about the file having the name in ioNamePtr. .. " is not specific enough.

If ioFDirIndex is 0, you will get information about files or directories, depending on
what is specified by ioNamePtr".

If ioFDirIndex is -1, you will get information about directories only. The name in
ioNamePtr" is ignored. For example, given the following tree structure (with sample
DirIDs for the directories):

m Root

lJ1]MyFiles2

1\

•

lJ1lSys

/1\
D D D

System Finder Filel

D
File2

[]}) SubF iles

I
D

File3

Technical Note #69 page 1 of 4 Setting ioFDirlndex in PBGetCatlnfo Calls

Calling PBGetCat Info

We will now make calls to PBGetCatInfo of the form:

err:= PBGetCatInfo(@myCInfoPBRec,FALSE);

Note: We will assume that we just have a WORefnum and a file name-the information
that SFGetFile returns.

Setting up the parameter block

We will use the following fields in the parameter block. Before the call, ioCompletion
will always be set to NIL, ioNamePtr will always point at a str255, ioVRefNum will
always contain a WORefNum that references the directory 'SubFiles', and offset 48
(dirIO/flNum) will always contain a zero:

•

Offset in
parameter block

12
18

22
28
48
100

Variable name(s)
ioCompletion
ioNamePtr

ioVRefNum
ioFOirIndex
ioOir I O/ioFLNum/ioo rO i r 10

ioOrParIO/ioFlParIO •
Sample calls to PBGetCat Info

The first example will call PBGetCat Info for the file 'File3'-we will get information
about the file (ioFOirIndex =0):

Before the call
ioNamePtr" :
ioFOirIndex:

'File3'
o

After the call
ioNamePtr": 'File3'
Offset 48(ioFLNum): a file number
Offset 100(parIO): 57

Now we will get information about the directory that is specified by the iovRe fNum
(ioFOirIndex =-1). Notice that ioNamePtr" is ignored:

Before the call
ioNamePtr":
ioFOirIndex:

ignored
-1

After the call
ioNamePtr":
Offset 48(dirIO):
Offset 100(parIO):

'SubFiles'
57
37

•
Technical Note #69 page 2 of4 Setting ioFDirlndex in PBGetCatlnfo Calls

•
Notice that, since ioNamePtr" is ignored, Offset 48 contains the dirIO of the directory
specified by the iovRefNum that we passed in and that Offset 100 contains the parent ID
of that directory.
Notice that if we try to get information about the directory SubFiles by calling
PBGetCat Info with ioFOirIndex set to 0, we will get an error -43 (File not found
error) back because there is neither a file nor a directory with the name 'SubFiles' in the
directory that ioVRefNum refers to.

If you specify a full pathname in LoNarnePt; r", then the call returns information about
that path, whether it is a directory or a file. The ioVRefNum is ignored:

Before the call
ioNamePtr": 'RootSys'
ioFOirIndex: 0
ioVRefNum: refers to 'SubFiles'

After the call
ioNamePtr": 'RootSys'
Offset 48 (dirIO): 17
Offset 100 (parIO): 2

Or, if the full pathname specifies a file, the iovRefNum is overridden:

Before the call
ioNamePtr": 'RootSys:Finder'
ioFOirIndex: 0
ioVRefNum: refers to 'SubFiles'

After the call
ioNamePtr" :
Offset 48 (fINum):
Offset 100 (parIO):

'RootSys:Finder'
fileNumber
17

Or, given an ioVRefNum that refers to MyFiles2 and a partial pathname in ioNamePtr,\
we'll get information about the directory 'SubFiles':

• Before the call
ioNamePtr":
ioFOirIndex:
ioVRefNum:

'SubFiles'
o
refers to 'MyFiles2'

After the call
ioNamePtr": 'SubFiles'
Offset 48 (ci r m): 57
Offset 100 (parIO): 37

PBGetCatlnfo and The Poor Man's Search Path (PMSP)

If no ioOirIO is specified (ioOirIO is set to zero), calls to PBGetCatInfo will return
information about a file in the specified directory, but, if no such file is found, will
continue searching down the Poor Man's Search Path. Note: the PMSP is not used if
ioFOirIndex is non-zero (either -1 or >0). The default PMSP includes the directory
specified by ioVRefNum (or, if ioVRefNum is 0, the default directory) and the directory
that contains the System File and the Finder-the blessed folder. So for example:

You must be careful when using PBGetCat Info in this way to make sure that the file
you're getting information about is in the directory that you think it is, and not in a
directory further down the Poor Man's Search Path. Of course, this does not present a
problem if you are using the fName and the vRe fNum that SFGetF i Le returns.•

Before the call
ioNamePtr" :
ioFOirIndex:

Technical Note #69

'System'
o

page 3 of4

After the call
ioNamePtr": 'System'
Offset 48 (ioFLNum): a file number
Offset 100 (parIO): 17

Setting ioFDirlndex in PBGetCatinfo Calls

If you want to specifically look at a file in the blessed folder, please use the technique
described in technical note #67 to get the dirID of the 'blessed folder' and then use that
dirID as input in the ioDirID field of the parameter block (offset 48).

Summary (DirID = 0 in all the following):
If ioFDirIndex is set to 0:

1) Information will be returned about files.
2) Information will be returned about directories as follows:

A) If a partial pathname is specified by ioNamePtr" then the volume
and directory will be taken from ioVRefNum.

B) If a full pathname is specified by LoNamePt r ". In this case,
ioVRefNum is ignored.

If ioFDirIndex is set to -1:
1) Only information about directories will be returned.
2) The name pointed to by Lonamer t r is ignored.
3) If DirID and ioVRefNum are 0, you'll get information about the default

directory.

•

•

•
Technical Note #69 page 4 of4 Setting ioFDirlndex in PBGetCatinfo Calls

Macintosh Technical Notes

• #70: Forcing Disks to be Either 400K or 800K

See also:

Written by:
Updated:

The Disk Driver
The Disk Initialization Package

Rick Blair February 13, 1986
March 1, 1988

•

This document explains how to initialize a disk as either single- or double
sided. It only applies to 800K drives, of course.

You can call the disk driver to initialize a disk and determine programmatically whether it
should be initialized as single- (MFS) or double- (HFS) sided. All you have to do is call
the. Sony driver directly to do the formatting then the Disk Initialization Package to write
the directory information.

Note: This is not the way you should normally format disks within an application. If the
user puts in an unformatted disk, you should let her or him decide whether it becomes
single- or double-sided via the Disk Initialization dialog. This automatically happens
when you call DIBadMount or the user inserts a disk while in Standard File. The intent of
this technical note is to provide a means for specific applications to produce, say, 400K
disks. An example might be a production disk copying program.

From MPW Pascal:

VAR
error: OSErr;
IPtr: AINTEGER;
paramBlock: ParamBlockRec;

WITH paramBlock DO BEGIN
ioRefNum : = -5;
ioVRefNum : = 1;
csCode := 6;
IPtr:=@csParam;
IPtrA:=l;

{needs OSIntf}

{.Sony driver}
{drive number}
{format control code}
{pretend it's an INTEGER}
{number of sides}

•

END;
error:=PBControl(@paramBlock, FALSE); {do the call}
IF error=ControlErr THEN
{you are under MFS, which doesn't support control code 6, but it}
{would always get formatted single-sided anyway.}
{other errors are possible: ioErr, etc.}
END;

Technical Note #70 page 1 of 2 Forcing Disks to be Either 400K or aOOK

From MPWC:

OSErr
CntrlParam

error;
paramBlock; •paramBlock.ioCRefNum = -5;

paramBlock.ioVRefNum = 1;
paramBlock.csCode = 6;
paramBlock.csParam[O]=l;

/*.Sony driver*/
/*drive number*/
/*format control code*/
/*for single sided,2 for double-sided*/

error=PBControl(¶mBlock, false);/*do the call*/
if (error==controlErr) ;
/*you are under MFS, which doesn't support control code 6, but it*/
/*would always get formatted single-sided anyway.*/
/*other errors are possible: ioErr, etc.*/

You then call DIZero to write a standard (MFS or HFS) directory. It will produce MFS if
you formatted it single-sided, and HFS if you formatted double-sided.

•

•
Technical Note#70 page 2 of2 Forcing Disks to be Either 400K or aOOK

•
Macintosh Technical Notes

#71: Finding Drivers in the Unit Table

See also:

Written by:
Updated:

The Device Manager

Rick Blair February 4, 1986
March 1, 1988

•

This note will explain how code can be written to determine the reference

number of a previously installed driver when only the name is known.

Changes since 2/86: Since the driver can be purged and the DCE still be

allocated, the code now tests for dCtlDriver being NIL as well.

You should already be familiar with The Device Manager chapter of Inside Macintosh

before reading this technical note.

The Pascal code at the end of this note demonstrates how to obtain the reference

number of a driver that has been installed in the Unit Table. The reference number may

then be used in subsequent calls to the Device Manager such as Open, Control and

Prime.

One thing to note is that the dRAMBased bit really only tells you whether dCtlDriver is

a pointer or a handle, not necessarily whether the driver is in ROM or RAM. SCSI

drivers, for instance, are in RAM but not relocatable; their DCE entries contain pointers

to them.

From MPW Pascal:

PROCEDURE GetDrvrRefNum(driverName: Str255; VAR drvrRefNum: INTEGER);

•

TYPE
WordPtr

CaNST
UTableBase
UnitNtryCnt

dRAMBased
drvrName

VAR
negCount
DCEH
driveptr
s

"INTEGER;

$l1C;
$lD2;

6;
$12;

INTEGER;
DCtlHandle;
Ptr;
Str255;

{low memory globals}

{bit in dCtlFlags that indicates ROM/RAM}

{length byte and name of driver [string]}

Technical Note #71 page 1 of 3 Finding Drivers in the Unit Table

BEGIN
UprString(driverName, FALSE); {force same case for compare}

negCount := - WordPtr(UnitNtryCnt)A; {get -(table size)}

{Check to see that driver is installed, obtain refNum.}
{Assumes that an Open was done previously -- probably by an INIT.}
{Driver doesn't have to be open now, though.} •
drvrRefNum := - 12 + 1; {we'll start with driver refnum

right after .ATP entry}
-12,

{Look through unit table until we find the driver or reach the end.}

REPEAT
drvrRefNum := drvrRefNum - 1; {bump to next refnum}
DCEH := GetDCtlEntry(drvrRefNum); {get handle to DCE}

s := , I., {no driver, no name}

IF DCEH <> NIL THEN
WITH DCEH AA DO BEGIN {this is safe -- no chance of heap moving

before dCtlFlags/dCtlDriver references}
IF (dCtlDriver <> NIL) THEN BEGIN

IF BTST(dCtlFlags, dRAMBased) THEN
drivePtr .= Handle (dCtlDriver)A {zee dereference}

ELSE
drivePtr := Ptr(dCtlDriver);

IF drivePtr <> NIL THEN BEGIN
s := StringPtr(ORD4(drivePtr) + drvrName)A;
UprString(s,FALSE); {force same case for compare}

END;
END; {IF}

END; {WITH}
UNTIL (s = driverName) OR (drvrRefNum = negCount);

{Loop until we find it or we've just looked at the last slot.}

IF s <> driverName THEN drvrRefNum := 0; {can't find driver}
END;

From MPWC:

•

short
char

GetDrvrRefNum(driverName)
*driverName[256];

/* GetDrvrRefNum */

*define UnitNtryCnt Oxld2

/*bit in
*define
/*length
*define

Technical Note #71

dCtlFlags that indicates ROM/RAM*/
dRAMBased 6

byte and name of driver [string]*/
drvrName Ox12

page 2 of 3 Finding Drivers inthe Unit Table

•

•
short
DCtlHandle
char

negCount

negCount,dRefi
DCEHi
*drivePtr,*si

-*(short *) (UnitNtryCnt)i /*get -(table size)*/

•

•

/*Check to see that driver is installed, obtain refNum.*/

/*Assumes that an Open was done previously -- probably by an INIT.*/

/*Driver doesn't have to be open now, though.*/

dRef = -12 + 1; /*we'll start with driver refnum == -12,

right after .ATP entry*/

/*Look through unit table until we find the driver or reach the

end.*/

do
{

dRef -= 1; /*bump to next refnum*/

DCEH = GetDCtlEntry(dRef)i /*get handle to DCE*/

s = "";

if «DCEH != nil) && ((**DCEH) .dCtlDriver != nil)

{

if «(**DCEH) .dCtlFlags » dRAMBased) & 1)
/* test dRamBased bit */

drivePtr = * (Handle) (**DCEH) .dCtlDriver;

/*zee dereference*/

else
drivePtr = (**DCEH) .dCtlDriver;

if (drivePtr != nil)
s = drivePtr + drvrName;

l
l while (EqualString(s,driverName,O,O) && (dRef != negCount»j

/*Loop until we find it or we've just looked at the last slot.*/

if (EqualString(s,driverName,O,O»

return dRef;

else
return 0; /*can't find driver*/

l/* GetDrvrRefNum */

That's all there is to locating a driver and picking up the reference number.

Technical Note #71 page 3 of3 Finding Drivers in the Unit Table

•

•

•

•
Macintosh
Technical Notes

Developer Technical Support

#72: Optimizing For The LaserWriter-Techniques
Revised by:
Written by:

Pete ''Luke'' Alexander
Ginger Jernigan

October 1990
February 1986

•

•

This Technical Note discusses techniques for optimizing code for printing on the LaserWriter.
Changes since March 1988: Updated the "Printable Paper Area" and "Memory
Considerations" sections as well as the printer IDs, moved the error messages from the end of the
Note to Technical Note #161, A Printing Loop That Cares... , and removed the "Spool-A
Page!Print-A-Page" section because Technical Note #125, Effect of Spool-A-Page/Print-A-Page on
Shared Printers, already thoroughly covers this topic.

Introduction

Although the Printing Manager was originally designed to allow application code to be printer
independent, there are some things about the LaserWriter that, in some cases, have to be addressed
in a printer dependent way. This Note describes what the LaserWriter can and cannot do, memory
considerations, speed considerations, as well as other things you need to watch out for if you want
to make your printing more efficient on the LaserWriter.

How To Determine The Currently Selected Printer

With the addition of new picture comments and the PrGeneral procedure, an application should
never need to know the type of device to which it is connected. However, some developers feel
their application should be able to take advantage of all of the features provided by a particular
device, not just those provided by the Printing Manager, and in doing so, these developers produce
device-dependent applications, which can produce unpredictable results third-party and new Apple
printing devices. For this reason, Apple strongly recommends that you use only the features
provided by the Printing Manager, and do not try to use unsupported device features.

Even though there is no supported method for determining a device's type, there is one method
described in the original InsideMacintosh that still works for ImageWriter and LaserWriter printer
drivers. This method is not supported, meaning that at some point in the future it will no longer
work. ITyou use this method in your application, it is up to you to weigh the value of the feature
against the compatibility risk. The following method works for all lmageWriter, ImageWriter II,
and LaserWriter (original, Plus, UNT, IINTX) drivers. Since all new devices released from Apple
and third-party developers have their own unique ID, it is up to you to decide what to do with an
ID that your application does not recognize.

ITyou are using the high-level Printing Manager interface, first call PrValidate to make sure
you have the correct print record. Look at the high byte of the wdev word in the TPrStl
subrecord of the print record. Note that if you have your own driver and want to have your own
number, please let DTS know, and DTS can register it.

#72: Optimizing F<rThe LasetWriter-Techniques 10f5

Macintosh Technica1 Notes

Following is the current list of printer IDs:

Printer
ImageWriter 1,ImageWriter II
LaserWriter, LaserWriter Plus,
LaserWriter lINT,LaserWriter IINTX, and
Personal LaserWriter Nf
LaserWriter Ilsc, Personal LaserWriter SC
ImageWriter LQ

wDev
1

3
4
5

•
If you are using the low-level Printing Manager interface, there is no dependable way of getting the
wDev information. You should not attempt to determine the device ID when using the low-level
Printing Manager interface.

Using QuickDraw With the LaserWriter

When you print to the LaserWriter, all of the QuickDraw calls you make are translated (via
QuickDraw bottlenecks) into PostScript~, which is in the LaserWriter ROM. Most of the
operations available in QuickDraw are available in PostScript, with a few exceptions. The
LaserWriter driver does not support the following:

• XOR and NotXOR transfer modes.
• The grafverb invert.
• SetOrigin calls within PrOpenPage and PrClosePage calls. Use

- OffsetRect instead. (This is fixed in version 3.0 and later of the driver.)
• ~egions are ignored. You can simulate regions using polygons or bitmaps. Refer

to Technical Note #41, Drawing Into An Off-Screen Bitmap, for how to create off
screen bitmaps.

• Clip regions should be limited to rectangles.
• There is a small difference in character widths between screen fonts and printer

fonts. Only the end points of text strings are the same.

What You See Is Not Always What You Get

Unfortunately, what you see on the screen is not always what you get. If you are using standard
graphic objects, like rectangles, circles, etc., the object is the same size on the LaserWriter as it is
on the screen. There are, however, two types of objects where this is not the case: text and
bitmaps.

The earlier noted difference between the widths of characters on the screen and the widths of
characters on the printer is due to the difference in resolution. However, to maintain the integrity
of line breaks, the driver changes the word and character spacing to maintain the end points of the
lines as specified. What this all means is that you cannot count on the positions or the widths of
printed characters being exactly the same as they are on the screen. This is why in the original
MacDraw~, for example, if one carefully places text and a rectangle and prints it, the text
sometimes extends beyond the bounds of the rectangle on the printed page. If an application does
its own line layout (i.e., positions the words on the line itselt), then it may want to disable the
LaserWriter's line layout routines. To disable these routines, use the LineLayoutOff picture
comment described in the LaserWriter Reference Manual and Technical Note #91, Optimizing for
the LaserWriter-Picture Comments.

•

•
20f5 #72: Optimizing ForTheLaserWriter-Techniques

DeveIoper Technical Support October 1990

•

•

•

The sole exception to this rule is if an application is running on 128K ROMs or later. The 128K
ROM Font Manager supports the specification of fractional pixel widths for screen fonts,
increasing the screen to printer accuracy. This fractional width feature is disabled by default. To
enable it, an application can use SetFractEnable, after calling InitFonts.- -
Applications can use picture comments to left-, right-, or center-justify text. Only the left, right, or
center end points are accurate. If the text is fully justified, both end points are accurate. Technical
Note #91, Optimizing for the LaserWriter-Picture Comments, discusses these picture comments.

Memory Considerations

To print to the LaserWriter, you need to make sure that you have enough memory available to load
the driver's code. The best way to do this is to have all the code you need for printing in a separate
segment and unload everything else. When you print to the LaserWriter you are only able to print
in Draft mode. You are not able to spool (as the ImageWriter does in the standard or high-quality
settings), and your print code, data, and the driver code have to be resident in memory.

In terms of memory requirements, there is not any magic number that always works with all printer
drivers (including third-party printer drivers) that are available for the Macintosh. To make sure
there is enough memory available during print time, you should make your printing code a separate
segment and swap out all unwanted code and data before you call_PrOpen.

Printable Paper Area

On the LaserWriter there is a 0.45-inch border that surrounds the printable area of the paper (this is
assuming an 8.5" x 11" paper). If you select the "Larger Print Area" option in the Page Setup
dialog box, the border changes to 0.25 of an inch. This printable area is different than the available
print area of the ImageWriter. An application cannot print a larger area because of the memory
PostScript needs to image a page. PostScript takes the amount of memory available in the printer
and centers it on the paper, and there is not enough RAM in the LaserWriter to image an entire
sheet of paper.

Page Sizes

Many developers have expressed a desire to support page sizes other than those provided by the
Apple printer drivers. Even though some devices can physically support other page sizes, there is
no way for an application to tell the driver to use this size. With the ImageWriter driver, it is
possible to modify certain fields in the print record and expand the printable area of the page.
However, each of the Apple drivers implements the page sizes in a different way. No one method
works for all drivers. Because of this difference, it is strongly recommended that applications do
not attempt to change the page sizes provided in the "Style" dialog box. If your application
currently supports page sizes other than those provided by the printer driver, you are taking a
serious compatibility risk with future Apple and third-party printer drivers.

#72: Optimizing ForThe LaserWriter-Techniques 30f5

Macintosh Technical Notes

Speed Considerations

Although the LaserWriter is relatively fast, there are some techniques an application can use to •
ensure its maximum performance.

• Try to avoid using the QuickDraw Erase calls (e.g., _ Era 5 eRe c t ,
EraseOval, ete.). It takes a lot of time to handle the erase function because

every bit (90,000 bits per square inch) has to be cleared. Erasing is unnecessary
because the paper does not need to be erased the way thescreen does.

• Printing patterns takes time, since the bitmap for the pattern has to be built. The
patterns black, white, and all the gray patterns have been optimized to use the
PostScript gray scales. If you use a different pattern it works, but it just takes
longer than usual. In addition, the patterns in driver version 3.0 are rotated; they
are not rotated in version 1.0.

• Try to avoid frequently changing fonts. PostScript has to build each character it
needs either by using the drawing commands for the built-in LaserWriter fonts or
by resizing bitmaps downloaded from screen fonts on the Macintosh. As each
character is built, it is cached (if there's room), so if that character is needed again
PostScript gets if from the cache. When the font changes, the characters have to be
built from scratch in the new font, which takes time. If the font is not in the
LaserWriter, it takes time to download it from the Macintosh. If the user has the
option of choosing fonts, you have no control over this variable; however, if you
control which fonts to use, keep this in mind.

• Avoid using TextBox. It makes calls to EraseRect, which slows the
printer, for every line of text it draws. You might want to use a different method of
displaying text (e.g., _DraWString or _DrawText) or write your own version
of _TextBox. If an application is currently calling TextBox, changing to
another method of displaying text can improve speed on iiie order of five to one.

• Because of the way rectangle intersections are determined, if your clip region falls
outside of the rPage rectangle, you slow down the printer substantially. By
making sure your clip region is entirely within the rPage rectangle, you can get a
speed improvement of approximately four to one.

• Do not use spool-a-page/print-a-page as some applications do when printing on the
ImageWriter. It slows things down considerably because of all of the preparation
that has to be done when a job is initiated. Refer to Technical Note #125, Effect of
Spool-A-Page!Print-A-Page on Shared Printers, for more information.

• Using _DrawChar to place every character to print can take a lot of time. One
reason, of course, is because it has to go through the bottlenecks for every character
that is drawn. The other is that the printer driver does its best to do line layout,
making the character spacing just right. If you are trying to position characters and
the driver is trying to position characters too, there is conflict, and printing takes
much longer than necessary. In version 3.0 of the driver, there are picture
comments that tum off the line layout optimization, alleviating some of the problem.
Refer to Technical Note #91, Optimizing for the LaserWriter-Picture Comments,
for more information.

•

•
40fS ##72: Optimizing ForTheLaserWritez-Techniques

Clipping Within Text Strings

When clipping characters out of a string, make sure that the clipping rectangle or region is greater
than the bounding box of the text you want to clip. The reason is that ifyou clip part of a character
(e.g., a descender), the clipped character has to be rebuilt, which takes time. In addition, because
of thedifference between screen fonts and printer fonts, chances are that you cannot accurately clip
the right characters unless you are running on the 128K ROMs and have fractional pixel widths
enabled.

•
Developer Teclmical Support October 1990

•

•

When to Validate the Print Record

To validate the print record, call PrValidate. You need validation to check to see if all of the
fields are accurate according to the current printer selected and the current version of the driver.
You should call PrValidate when you have allocated a new print record or whenever you need
to access information from the print record (i.e., when you get rPage). The routines
PrStlDialog and PrJobDialog call PrValidate when they are called, so you do not have
to worry about it if you use these calls.

Empty QuickDraw Objects

QuickDraw objects that are empty (i.e., they have no pixels in them) and are filled but not framed,
do not print on the ImageWriter and do not show up on the screen; however, on the LaserWriter
they are real objects and do print.

Further Reference:
• InsideMacintosh> Volume I, QUickDraw
• Inside Macintosh, Volume Il, The Printing Manager
• LaserWriter Reference Manual
• Technical Note #41, Drawing Into An Off-Screen Bitmap
• Technical Note #91, Optimizing for the LaserWritef-Pieture Comments
• Technical Note #125, Effect of Spool-A-PagelPrint-A-Page on Shared Printers
• Technical Note #161, A Printing Loop That Cares ...
• PostScript Language Reference, Adobe Systems, Incorporated
• PostScript Language Tutorial and Cookbook, Adobe Systems, Incorporated

MacDraw is a registered trademark of Oaris Corporation.
PostScript is a registered trademark of Adobe Systems, Incorporated.

#72: Optimizing F(X'The LaserWritel'-Techniques 50f5

•

•

•

Macintosh Technical Notes

• #73: Color Printing

See also: QuickDraw
The Printing Manager
PostScript Language Reference Manual,

Adobe Systems

Written by:
Modified by:
Updated:

Ginger Jernigan
Scott "ZZ" Zimmerman

February 3, 1986
January 1, 1988
March 1, 1988

•

•

This discusses color printing in a Macintosh application.

Whereas the original eight-color model of QuickDraw was sufficient for printing in color
on the ImageWriter II, the introduction of Color QuickDraw has created the need for more
sophisticated printing methods.

The first section describes using the eight-color QuickDraw model with the ImageWriter
II and ImageWriter LQ drivers. Since the current Print Manager does not support Color
GrafPorts, the eight-color model is the only method available for the ImageWriters.

The next section describes a technique that can be used for printing halftone images
using PostScript (when it is available). Also described is a device independent
technique for sending the PostScript data. This technique can be used on any
LaserWriter driver 3.0 or later. It will work with all LaserWriters except the the
LaserWriter IISC.

It is very likely that better color support will be added to the Print Manager in the future.
Until then, these are the best methods available.

Technical Note #73 page 1 of4 Color Printing

Part 1, ImageWriters

The ImageWriter drivers are capable of generating each of the eight standard colors
defined in QuickDraw by the following constants:

whiteColor
blackColor
redColor
greenColor
blueColor
cyanColor
magentaColor
yellowColor

To generate color all you need to do is set the foreground and background colors before
you begin drawing (initially they are set to blackColor foreground and whiteColor
background). To do this you call the QuickDraw routines ForeColor and BackColor as
described in Inside Macintosh. If you are using QuickDraw pictures, make sure you set
the foreground and background colors before you call CloseP icture so that they are
recorded in the picture. Setting the colors before calling DrawP icture doesn't work.

The drivers also recognize two of the transfer modes: srcCopy and srcOr. The effect of
the other transfer modes is not well defined and has not been tested. It may be best to
stay away from them.

Caveats

•

When printing a large area of more than one color you will encounter a problem with the •
ribbon. When you print a large area of one color, the printer's pins pick up the color from
the back of the ribbon. When another large area of color is printed, the pins deposit the
previous color onto the back of the ribbon. Eventually the first color will come through to
the front of the ribbon, contaminating the second color. You can get the same kind of
effect if you set, for example, a foreground color of yellow and a background color of
blue. The ribbon will pick up the blue as it tries to print yellow on top of it. This problem is
partially alleviated in the 2.3 version of the ImageWriter driver by using a different
printing technique.

The ribbon goes through the printer rather quickly when printing large areas. When the
ribbon comes through the second time the colors don't look too great.

•
Technical Note #73 page 2 014 Color Printing

•

•

•

Part 2, LaserWriters

Using the PostScript 'image' Operator to Print Halftones

About 'image'

The PostScript image operator is used to send Bitmaps or Pixmaps to the LaserWriter.
The image operator can handle depths from 1 to 8 bits per pixel. Our current
LaserWriters can only image about twenty shades of gray, but the printed page will look
like there's more. Being that the image operator is still a PostScript operator, it expects
its data in the form of hexidecimal bytes. The bytes are represented by two ASCII
characters(0-9,A-F). The image operator takes these parameters:

width height depth matrix image-data

The first three are the width, height, and depth of the image, and the matrix is the
transformation matrix to be applied to the current matrix. See the PostScript Language
Reference Manual for more information. The image data is where the actual hex data
should go. Instead of inserting the data between the first parameters and the image
operator itself, it is better to use a small, PostScript procedure to read the data starting
from right after the image operator. For example:

640 480 8 [640 0 0 480 0 0]
{currentfile picstr readhexstring pop}
image
FF 00 FF 00 FF 00 FF 00 ...

In the above example, the width of the image is 640, the height is 480, and the depth is
8. The matrix (enclosed in brackets) is setup to draw the image starting at QuickDraw's
0,0 (top left of page), and with no scaling. The PostScript code (enclosed in braces) is
not executed. Instead, it is passed to the image operator, and the image operator will
call it repeatedly until it has enough data to draw the image. In this case, it will be
expecting 640*480 bytes. When the image operator calls the procedure, it does the
following:

1. Pushes the current file which in this case is the stream of data coming to the
LaserWriter over AppleTalk. This is the first parameter to readhexstring.

2. Next picstr is pushed. picstr is a string variable defined to hold one row of hex
data. The PostScript to create the picstr is:

/picstr 640 def

3. Now readhexstring is called to fill picstr with data from the current file. It begins
reading bytes which are the characters following the image operator.

4. Since readhexstring leaves both the string we want, and a boolean that we
don't want on the stack, we do one pop to kill of the boolean. Now the string is
left behind for the image operator to use.

Technical Note #73 page 3 of4 Color Printing

So using the above PostScript code you can easily print an image. Just fill in the width
height and depth, and send the hex data immediately following the PostScript code.

Setting Up for 'image'

Most of the users of this technique are going to want to print a Color QuickDraw PixMap.
Although the image command does a lot of the work for you, there are still a couple of
tricks that are recommended for performance.

Assume the Maximum Depth

Since the current version of the image operator has a maximum depth of 8 bits/pixel, it is
wise to convert the source image to the same depth before imaging. This can be done
very simply by using an offscreen GrafPort that is set to 8 bits/pixel, and then using
CopyBits to do the depth conversion for you. This will do a nice job of converting lower
resolution images to 8 bits/pixel.

Build a Color Table

•

An 8 bit deep image can only use 256 colors. Since the image that you are starting with
is probably color, and the image you get will be grayscale, you need to convert the
colors in the source color table into PostScript grayscale values. This is actually easy to
do using the Color Manager. First create a table that can hold 512 bytes. This is 2 bytes
for each color value from 0 to 255. Since PostScript wants the values in ASCII, you need
two characters for each pixel. Now loop through the colors in the color table. Call
Index2Coior to get the real RGB color for that index, and then call RGB2HSL to convert •
the RGB color into a luminance value. This value will be expressed as a SmallFract
which can then be scaled into a value from 0 to 255. This value should then be
converted to ASCII, and stored at the appropriate location in the table. When you are
done, you should be able to use a pixel value as an index into your table of PostScript
color values. For each pixel in the image, send two characters to the LaserWriter.

Sending the Data

Once you have set up the color table, all that left to do is to loop through all of the pixels,
and send their PostScript representation to the LaserWriter. There are a couple of ways
to do this. First is to use the low-level Print Manager interface and stream the PostScript
using the stdBuf PrCtlCal1. Although this seems like it would be the fastest way, the latest
version of the LaserWriter driver (5.0) converts all low-level calls to their high level
equivalent before executing them. Because of this, the low-level interface is no longer
faster than the high level. In an FKEY I have written, I use the high-level Print Manager
interface, and send the data via the PostScriptHandle PicComment. This way, I can
buffer a large amount of data, before actually sending it. Using this technique, I have
been able to image a Mac II screen in about 5 minutes on a LaserWriter Plus, and about
1.5 minutes on a LaserWriter II NTX.

•
Technical Note #73 page 4 014 Color Printing

Macintosh Technical Notes

• #74: Don't Use the Resource Fork for Data

See also: The Resource Manager
Technical Note #62-Resource Header Application Bytes

Written by:
Updated:

Bryan Stearns March 13, 1986
March 1, 1988

Don't use the resource fork of a file for non-resource data. Parts of the system (including
the File Manager and the Finder) assume that if this fork exists, it will contain valid
Resource Manager information.

PBOpenRF was provided to allow copying of the resource fork of a file in its entirety,
without Resource Manager interpretation. Do not use it to open "another data fork."

The File Manager assumes that the first block of the resource fork of a file will be part of
the resource header, and puts information there to aid in scavenging. Note that this
means that if you copy a resource file (opened with PBOpenRF), the duplicate may not be
exactly like the original.

•

•
Technical Note#74 page 1 of 1 Don't Use the Resource Forkfor Data

•

•

•

•
Macintosh
Technical Notes

Developer Technical Support

®

#75: Apple's Multidisk Installer
Revised by:
Written by:

Rich Kubota
scott douglass

January 1992
March 1986

•

•

This Technical Note documents Apple's Multidisk Installer, and it is in addition to separate
Installer documentation which provides the details of writing scripts.
Changes since September 1991: Revised information on the use of Installer version 3.1 to
version 3.2. Revised information on the use of ScriptCheck version 3.2.1 with Installer version
3.2. Added Common Questions and Answers relating to the use of the Installer.

Apple's Multidisk Installer is intended to make it easy for Macintosh users to add or update
software. It is a very useful tool for adding third-party software, and Apple recommends that you
use the Installer unless your software installation is simple. Apple also recommends that you use
version 3.2 of the Installer.

The Multidisk Installer has the following features, as of version 3.2:

• "Easy Install" mode where the Installer script writer can determine the appropriate
installation based upon examination of the target environment and provide the user
with "One-Button Installation"

• An optional "Custom Install" mode where power users can customize their
installation

• "Live" installation to the currently booted and active system; thus it is no longer
necessary to ship the Installer on a bootable disk with a System Folder

• Ability to install from an AppleShare server ("Network Install")
• Ability to install from multiple source disks
• Installation of software to folders other than the System Folder as well as creation

of new folders as necessary
• Runs under System 4.2 and later versions
• "User Function" support; this feature provides linkage to developer-defined code

segments during Easy Install, so script writers can customize the process of
determining what software to install and how to install it

• "Action Atom" support; this feature provides linkage to developer-defined code
segments that are called before or after the installation takes place; script writers can
use this feature to extend the capabilities of the Installer

• Audit Records; this feature provides the script writer with the ability to record
details about an installation so that future installations can be more intelligent

The I indm' (default map) resource of Installer 3.0.1 is no longer supported in Installer 3.1 and
later versions. This was used by script writers to implement Easy Install. It is replaced by 'infr'
(framework) and I inrl' (rule) resources.

Note: If the user opens the Installer document rather than the Installer, the wrong Installer
may be launched (depending upon the contents of their mounted volumes). This is
only a problem between versions 3.1 and 3.0.x. If you are developing a 3.1 script,

#75: Apple's Multidisk Installer 10f4

Macintosh Technical Notes

you may want to add an 'indm' resource that puts up a warning dialog box. If you
are developing a 3.0.x script, you may want to add an 'infr' and 'inrl' resource
that puts up a reportSysError dialog box. This problem is resolved in Installer
3.2. With version 3.2, the file type and creator are both 'bjbc' as opposed to the
use of 'db j I with versions 3.0.1 and 3.1.

IInstaller version 3.2 is available as a complete reference suite which includes the following:

• Installer 3.2 Scripting Guide (dated December 1, 1991, on the cover)
• Installer ScriptCheck 32b7 User's Manual
• Installer 3.2 application
• ScriptCheck 3.2.1 (MPW Tool)
• InstallerTypes.r (MPW Rez interface file)
• ActionAtomIntf.a, .h,.p (Action Atom interface files for Assembler, C, and Pascal)

The reference suite for Multidisk Installer 3.2 is available on the latest Developer CD and on
AppleLink in the Developer Services Bulletin Board. The Multidisk Installer was also provided on
the System 7 Golden Master CD-ROM: however, that package included the b7 release of the MPW
ScriptCheck tool.

Multidisk Installer version 3.2 contains a few minor improvements that will make it easier to write
scripts that work on both System 6.0.x and 7.0. Installer 3.1 had minimal testing with System 7.0.
If you are expecting to install software onto machines running System 7.0, you should consider
upgrading. Script changes should be minimal.

Common Question and Answers
Q How can I check for a minimum system version?

A Use the checkFileversion clause as part of the 'inrl' Rules Framework resource. The
format of the minimal-version parameter is shown in the InstallerTypes.r file as 'fdefine
Version'. The most common difficulties are in remembering that BCD values are required
and in dealing with two-digit version numbers. Some samples follow.

Assuming that the target-filespec resource, 'infs', for the System file is 1000, use the
following clause to check for System version 6.0.5:

checkFileVersion{lOOO, 6, 5, release, O}i

Assuming that the target-filespec resource, 'infs', for the Finder file is 1001, use the
following clause to check for Finder version 6.1.5:

checkFileVersion{lOOl, 6, Ox15, release, O}i

Assuming that the target-filespec resource, 'infs', for the AppleTalk resource file is
1002, use the following clause to check for AppleTalk version 53:

checkFileVersion{1002, Ox53, 0, release, O}i

•

•

Q My Installer script installs a desk accessory. Under System 6, each time I run the script, a
new copy of the DA appears as a DRVR resource in the System file. Why?

A

2 of4

Unfortunately, this is a symptom when the 'deleteWhenlnstalling' flag is used in
conjunction with the 'updateExisting' flag. The Installer 3.1 & 3.2 Scripting Guide
indicates that resources marked with the 'dontDeleteWhenlnstalling' flag can be

#75: Apple's Multidisk Installer

•

replaced with a new resource. The guide also indicates that the Installer will overwrite a
preexisting resource in the target file if the 'updateExisting' flag is set. Given these two
flag settings, and the use of the replace 'byName' (noByID) flag, the Installer does not
delete the DA. Instead a new DRVR resource is created with the same name but a new
resource ID.•

Developer Technical Support January 1992

A

•

The correct Installer action is accomplished by setting the 'deleteWhenlnstalling' flag
in conjunction with the 'updateExisting' flag. Alternatively, use the
'dontDeleteWhenlnstalling' flag with the 'keepExisting' flag.

Q How can I include the current volume name in a reportVolError alert as many of the
installation scripts from Apple do?

A The volume name can be included by inserting "A()" in the desired location of the Pascal
string passed to the reportVolError error reporting clause.

Q. I set the searchForFile flag in my 'infs' resource, however, the Installer acts as if it's
unable to find the file. Why?

A. The likely reason for this problem is that the desired file is within a folder by the same
name. When the searchForFile flag is set, the Installer will also find a match on a
folder. The Installer will not replace a folder with a file, nor will it add a resource to a
folder. The Installer continues as if the search failed.

Q What is the 'incd' resource about?

When the MPW ScriptCheck tool is used, it reads the script's file creation date/time stamp
and converts it into a long word with the Date2Secs procedure. ScriptCheck stores this
long word in the 'incd' resource for use with verifying files when a network installation
is performed. See the following questions for a discussion of this resource.

Q What checks are made by the Installer when preflighting an installation? Occasionally the
alert "Could not find a required file ..." occurs and the installation is aborted. .

A The Installer compiles a list of the source file specifications from each of the resource
'inra' and file' infa' atoms specified among the package' inpk' atoms included for
installation. Each source file specification includes a complete path name. As each source
file is accessed, a check is made of the file's creation date/time stamp with the date/time
stamp recorded in the corresponding 'infs' resource. If the date/time stamps do not
match, the alert results and the installation is aborted. The creation date/time stamp in the
, infs' resource can be

• entered manually into the script file so long as the value is not 1 or 0,
• filled in by ScriptCheck automatically, if a value of 1 is entered in the date field,
• forced to be updated, if the -d switch is used with ScriptCheck.

•

Q

A

What are some of the considerations when configuring a network installation setup?

Under Installer 3.1/3.2, network software installations are made possible by setting up an
installation folder on the server volume. This folder will contain the Installer application,
the Script file, and a folder(s) matching the names of the required disk(s). Within the disk
folder(s) are the corresponding contents of the disk(s).

A problem can occur when a workstation is used to create the server installation folder and
the system date and time differ significantly between the two systems. Under such

#75: Apple's Multidisk Installer 30f4

Macintosh Technical Notes

condition, files copied from the workstation to the server may have their creation and
modification date time/stamps altered. If a modification is made, the "delta" is constant for
both the creation and modification date/time stamp and for all files copied at that time. •

As indicated in the previous question, the Installer preflights a file by comparing its creation
date/time stamp with the value stored in the corresponding 'infs' resource in the script file.
To compensate for the fact that a server may alter a file's creation date/time stamp, the
Installer implements the 'ined' resource. After the user selects the Install button, the
Installer reads the 'incd' resource and compares it with the script file's creation date/time
stamp. The difference is stored as the "delta." On a normal disk installation, the "delta" is
always zero. As the Installer finds each required source file, the file's creation date/time
stamp is converted to a long word and adjusted by the "delta." The modified date/time
stamp is then compared with that stored in the script file. If the values match, the file is
considered found and the installation proceeds. On network installations, the delta may be
nonzero. If so, it indicates that the file's creation date/time stamps were modified when
copied to the server. Thus the 'incd' resource gives the Installer a way to maintain file
verification even though the date/time stamp may be altered.

A specific problem can occur when an installation is set up on some systems running older
versions of Novell Server software. Under specific conditions, files copied to some Novell
servers have their creation time stamp altered to 12:00 A.M. regardless of the original time
stamp. This includes the creation time stamp of the script file. This condition wreaks havoc
with the Installer's preflight mechanism. The "delta" determined between the I incd I

resource and the Script file's creation date/time stamp may not be consistent with the
creation date/time stamp stored in the infs resource and the corresponding file's time stamp
now at 12:00 A.M.

A work-around solution for this problem is to set the Creation time stamp for all files on the
installation disk to 12:00 A.M. , BEFORE running the ScriptCheck tool. Use the MPW •
tool SetFile to perform this function. Here's a sample MPW script for performing this
function:

SetFile -d "1/1/92 12:00AM" 'files -r -s -f ",'

This script assumes that the current directory is set to the root of the Installation disk. For
multiple disks, run this script on each disk. Use the '-f switch with ScriptCheck to ensure
that the date/time stamps are updated on scripts previously checked.

Installation of software is a nontrivial process. Apple recommends that you reserve time for
development and testing to ensure that the installation process proceeds smoothly on all target
machine configurations.

To ship the Installer with your product you must contact Apple's Software Licensing Department
(AppleLink: SW.LICENSE) and license the Installer alone or with the system software package
that includes the version of the Installer you intend to use. Software Licensing also supplies you
with a copy of the Installer that you may ship.

Further Reference:
• Installer 3.2 Reference Suite

•
4 of4 #75: Apple's Multidisk Installer

•
Macintosh Technical Notes

#76: The Macintosh Plus Update Installation Script

Written by:
Updated:

scott douglass February 24, 1986
March 1, 1988

•

•

Earlier versions of this note described the Macintosh Plus Update installation
script, because it was the first script created for the Installer. Since then,
many versions of this script have been created which no longer match what
was described here. In addition, many other scripts now exist.

Technical Note #76 page 1 of 1 The Macintosh Plus Update Script

•

•

•

•
Macintosh Technical Notes

#77: HFS Ruminations

See also: The File Manager
Technical Note #66-

Determining Which File System is Active
Technical Note #67-Finding the "Blessed Folder"
Technical Note #68-

Searching All Directories on an HFS Volume

Written by:
Updated:

Jim Friedlander June 7,1986
March 1, 1988

This technical note contains some thoughts concerning HFS.

HFS numbers

A drive number is a small positive word (e.g. 3).

• A VRefNum (as opposed to a wDRefNum) is a small negative word (e.g. $FFFE).

A WDRefNum is a large negative word (e.g. $8033).

A DirID is a long word (e.g. 38). The root directory of an HFS volume always has a
dirID of 2.

Working Directories

Normally an application doesn't need to open working directories (henceforth WD s)
using PBOpenWD, since SFGetF i Le returns a WDRefnum if the selected file is in a
directory on a hierarchical volume and you are running HFS. There are times, however,
when opening a WD is desirable (see the discussion about BootDrive below).

If you do open a WD, it should be created with an ioWDProcID of 'ERIK' ($4552494B)
and it will be deallocated by the Finder. Note that under MultiFinder, ioWDProclD will be
ignored, so you should only use 'ERIK'.

•
SFGetFiIe also creates WDs with an ioWDProcID of 'ERIK'. If SFGetFile opens two
files from the same directory (during the same application), it will only create one
working directory.

Technical Note #77 page 1 of 6 HFS Ruminations

There are no WORefnums that refer to the root-the root directory of a volume is always
referred to by a vRefNum.

When you can use HFS calls

All of the HFS 'H' calls, except for PBHSet VInfo, can be made without regard to file
system as long as you pass in a pointer to an HFS parameter block. PBHGetVol,
PBHSetVol (see the warnings in the File Manager chapter of Inside Macintosh),
PBHOpen,PBHOpenRF,PBHCreate,PBHOelete,PBHGetFInfo,PBHSetFInfo,

PBHSetFLock, PBHRstFLock and PBHRename differ from their MFS counterparts only in
that a dirIO can be passed in at offset $30.

The only difference between, for example, PBOpen and PBHOpen is that bit 9 of the trap
word is set, which tells HFS to use a larger parameter block. MFS ignores this bit, so it
will use the smaller parameter block (not including the dirIO). Remember that all of
these calls will accept a WORefNum in the ioVRefNum field of the parameter block.

PBHGet VIn fo returns more information than PBGet VIn f 0, so, if you're counting on
getting information that is returned in the HFS parameter block, but not in the MFS
parameter block, you should check to see which file system is active.

•

HFS-specific calls can only be made if HFS is active. These calls are: PBGetCat Info,
PBSetCatInfo,PBOpenWO,PBCloseWO,PBGetFCBInfo,PBGetWOInfO,PBCatMove

and PBOirCreate. PBHSetVInfo has no MFS equivalent. If any of these calls are made
when MFS is running, a system error will be generated. If PBCatMove or PBOirCreate •
are called for an MFS volume, the function will return the error code -123 (wrong
volume type). If PBGetCat Info or PBSetCat Info are called on MFS volumes, it's just
as if PBGetFInfo and PBSetFInfo were called.

Default volume

If HFS is running, a call to GetVol (before you've made any SetVol calls) will return the
WORe fNum of your application's parent directory in the vRe fNum parameter. If your
application was launched by the user clicking on one or more documents, the
WORefNums of those documents' parent directories are available in the vRefNum field of
the AppFile record returned from GetAppFiIes.

If MFS is running, a call to GetVol (before you've made any SetVol calls) will return the
vRe fNum of the volume your application is on in the vRe fNum parameter. If your
application was launched by the user clicking on one or more documents, the vRefNum
of those documents' volume are available in the vRefNum field of the AppF i Ie record
returned from GetAppF iles.

Technical Note #77 page 2 ot6 HFS Ruminations

•
BootDrive

If your application or desk accessory needs to get the WORefNurn of the "blessed folder"
of the boot drive (for example, you might want to store a configuration file there), it can
not rely on the low-memory global BootOrive (a word at $210) to contain the correct
value. If your application is the startup application, Boo t Dr i ve will contain the
WORefNurn of the directorylvolume that your application is in (not the WORefNurn of the
"blessed folder"); Your application could have been Launched from an application that
has modified BootOrive; if you are a desk accessory, you might find that some
applications alter BootOrive.

To get the "real" WORe fNurn of the "blessed folder" that contains the currently open
System file, you should call SysEnvirons (discussed in Technical Note #129). If that is
impossible, you can do something like this (Note: if you are running under MFS,
BootO rive always contains the vRe fNurn of the volume on which the currently open
System file is located):

CONST

"Integer;• TYPE

SysWDProcID
BootDrive
FSFCBLen

SysMap

Wordptr

$4552494B;
$210;
$3F6;

$A58;

{"ERIK"}
{address of Low-Mem global BootDrive}
{address of Low-Mem global to
distinguish file systems }

{address of Low-Mem global that contains
system map reference number}

(Pointer to a word(2 bytes) }

FUNCTION HFSExists: BOOLEAN;

Begin {HFSExists}
HFSExists := WordPtr(FSFCBLen)" > 0;

End; {HFSExists}

FUNCTION GetRealBootDrive: INTEGER;

VAR
MyHPB
MyWDPB
err
sysVRef

HParamBlockRec;
WDPBRec;
OSErr;
integer; {will be the vRefNum of open system's vol}

Begin {GetRealBootDrive}
if HFSExists then Begin {If we're running under HFS ... }

•
Technical Note #77

{get the VRefNum of the volume that }
{contains the open System File }
err:= GetVRefNum(WordPtr(SysMap)",sysVRef);

page 3 of 6 HFS Ruminations

with MyHPB do Begin
{Get the "System" vRefNum and "Blessed" dirID}

ioNamePtr .= NIL;
ioVRefNum .= sysVRef; {from the GetVrefNum call}
ioVolIndex .= 0;

End; {with}
err := PBHGetVInfo(@MyHPB, FALSE);

with myWDPB do Begin {Open a working directory there}
ioNamePtr .= NIL;
ioVRefNum .= sysVRef;
ioWDProcID .= SysWDProcID; {Using the system proc ID}
ioWDDirID := myHPB.ioVFndrInfo[l); { see TechNote 67}

End; {with}
err := PBOpenWD(@myWDPB, FALSE);

•

End;

GetRealBootDrive := myWDPB.ioVRefNum;
{We've got the real WD}

End Else {we're running MFS}
GetRealBootDrive := WordPtr(BootDrive)~;

{BootDrive is valid under MFS}
{GetReaIBootDrive}

From MPWC:

/*"ERIK"*/
#define
#define
/*address
#define
#define
#define

SysWDProcID Ox4552494B
BootDrive Ox210

of Low-Mem global that contains system map reference number*/
SysMap OxA58
FSFCBLen Ox3F6
HFSIsRunning ((*(short int *) (FSFCBLen)) > 0) •

OSErr GetRealBootDrive(BDrive)
short int *BDrive;

/*GetReaIBootDrive*/

/*three different
HVolumeParam
FCBPBRec
WDPBRec
OSErr
short int

if (HFSIsRunning)

parameter blocks are used here for clarity*/
myHPB;
myFCBRec;
myWDPB;
err;
sysVRef; /*will be the vRefNum of open system's

vol*/

{ /*if we're running under HFS ... */

/*get the vRefNum of the volume that contains the open System File*/
myFCBRec.ioNamePtr= nil;
myFCBRec.ioVRefNum = 0;
myFCBRec.ioRefNum = *(short int *) (SysMap);
myFCBRec.ioFCBIndx = 0;

err = PBGetFCBInfo(&myFCBRec,false);
if (err != noErr) return(err);

/*now we need the dirID of the "Blessed Folder" on this volume*/ •
Technical Note #77 page 4 of6 HFS Ruminations

•

•

•

myHPB.ioNamePtr = nil;
myHPB.ioVRefNum = myFCBRec.ioFCBVRefNum;
myHPB.ioVolIndex = 0;

err = PBHGetVInfo(&myHPB,false);
if (err != noErr) return(err);

/*we can now open a WD for the directory that contains the open
system file one will most likely already be open, so PBOpenWD will
just return that WDRefNum*/

myWDPB.ioNamePtr = nil;
myWDPB.ioVRefNum = myHPB.ioVRefNum;
myWDPB.ioWDProcID = SysWDProcID; /*'ERIK'*/
myWDPB.ioWDDirID = myHPB.ioVFndrInfo[Ol; /* see Technote # 67

[c has O-based arraysl*/

err = PBOpenWD(&myWDPB,false);
if (err != noErr) return err;

*BDrive = myWDPB.ioVRefNum; /*that's all!*/
} /* if (HFSIsRunning) */
else

*BDrive = * (short int *) (BootDrive) ;
/*BootDrive is valid under MFS*/

return noErr;
/*GetRealBootDrive*/

The Poor Man's Search Path (PMSP)

If HFS is running, the PMSP is used for any file system call that can return a file-not
found error, such as PBOpen, PBClose, PBDelete, PBGetCat Info, etc. It is not used for
indexed calls (that is, where ioFDirIndex is positive) or when a file is created
(PBCreate) or when a file is being moved between directories (PBCatMove). The PMSP
is also not used when a non-zero dirID is specified.

Here's a brief description of how the default PMSP works.

1) The directory that you specify (specified by WDRefNum or pathname) is searched; if the
specified file is not found, then

2) the volume/directory specified by Boot Dr i ve (low-memory global at $ 210) is
searched IF it is on the same volume as the directory you specified (see #1 above); if the
specified file is not found, or the directory specified by BootDrive is not on the same
volume as the directory that you specified, then

3) if there is a "blessed folder" on the same volume as the directory you specified (see
#1 above), it is searched. Please note that if #2 above specifies the same directory as
#3, then that directory is not searched twice. If no file is found, then

4) fnfErr is returned.

Technical Note #77 page 5 of6 HFS Ruminations

ioOirld and ioFINum

Two fields of the HPararnBlockRec record share the same location. ioDirID and
i of lNurn are both at offset $ 3 0 from the start of the parameter block. This causes a
problem, since, in some calls (e.g. PBGetCatInfo), a dirID is passed in and a file
number is returned in the same field.

Future versions of Apple's HFS interfaces will omit the ioF lNurn designator, so, if you
need to get the file number of a file, it will be in the ioD i r ID of the parameter block
after you have made the call. If you are making successive calls that depend on
ioDirID being set correctly, you must "reset" the ioDirID field before each call. The
program fragment in Technical Note #68 does this.

PBHGetVlnfo

Normally, PBHGetVInfo will be called specifying a vRefNurn. There are times, however,
when you may make the call and only specify a volume name. If this is so, there are a
couple of things to look out for.

Let's say that we have two volumes mounted: "Vol1 ." (the default volume) and "Vo12 .".
We also have a variable of type HPararnBlockRec called MyHPB. We want to get
information about vo 12 :, so we put a pointer to a string (let's call it fN arne) in
MyHPB. ioNarnePtr. The string fNarne is equal to "Vo12" (Please note the missing
colon). We also initialize MyHPB. ioVRefNurn to O. Then we make the call. We are very
surprised to find out that we are returned an error of 0 (noErr) and that the ioVRefNurn
that we get back is not the vRefNurn of Vo12 : , but rather that of Vol1 :.

Here's what's happening: PBHGetVInfo looks at the volume name, and sees that it is
improper (it is missing a colon). So, being a forgiving sort of call, it goes on to look at the
ioVRe fNurn field that you passed it (see pp. 99 of Inside Macintosh, vol. II). It sees a 0
there, so it returns information about the default volume.

If you want to get information about a volume, and you just have its name and you are
not sure that the name is a proper one, you should set MyHPB . ioVRe fNurn to -32768
($8000). No vRefNurn or WDRefNurn can be equal to $8000. By doing this, you are
forcing PBHGetVInfo to use the volume name and, if that name is invalid, to return a
-35 error (nsvErr), "No such volume."

PBGetWOlnfo and Register 01

There was a problem with PBGetWDInfo that sometimes caused the call to inaccurately
report the dirID of a directory. It is fixed in System 3.2 and later. To be absolutely sure
that you won't get stung by this, clear register D 1 (CLR. L D1) before a call to
PBGetWDInfo. You can do this either with an INLINE (Lisa Pascal and most C's) or with
a short assembly-language routine before the call to PBGetWDInfo.

•

•

•
Technical Note #77 page 6 of 6 HFS Ruminations

Macintosh Technical Notes

• #78: Resource Manager Tips

See also: The Resource Manager
The Memory Manager
The Menu Manager
Technical Note #129-SysEnvirons

Written by:
Updated:

Jim Friedlander June 8,1986
March 1, 1988

•

•

This note discusses some problems with the Resource Manager and how to
work around them.

OpenResFile Bug

This section of the note formerly described a bug in OpenResFile on 64K ROM
machines. Information specific to 64K ROM machines has been deleted from Macintosh
Technical Notes for reasons of clarity.

GetMenu and ResErrProc

If your application makes use of Re sE rrP roc (a pointer to a procedure stored in
low-memory global $AF2) to detect resource errors, you will get unexpected calls to your
ResErrProc procedure when calling GetMenu on 128K ROMs. The Menu Manager call
GetMenu makes a call to GetReslnfo, requesting resource information about MDEF O.
Unfortunately, ROMMaplnsert is set to FALSE, so this call fails, setting ResErr to -192
(resNotFound). This in turn will cause a call to your ResErrProc, procedure even
though the GetMenu call has worked correctly. This is only a problem if you are using
ResErrProc.

The workaround is to:
1) save the address of your ResErrProc procedure
2) clear ResErrProc

3) do a GetResource call on the MENU resource you want to get
4) check to see if you get a nil handle back, if you do, you can handle the error in
whatever way is appropriate for your application

5) call GetMenu, and
6) when you are done calling GetMenu, restore ResErrProc

Technical Note #78 page 1 of 2 Resource Manager Tips

SetResAttrs on read-only resource maps

SetResAttrs does not return an error if you are setting the resource attributes of a
resource in a resource file that has a read-only resource map. The workaround is to •
check to see if the map is read-only and proceed from there:

CONST
MapROBit = 8; {Toolbox bit ordering for bit 7 of low-order byte}

BEGIN

attrs:= GetResFileAttrs(refNum);
IF BitTst(@attrs,MapROBit) THEN ... {write-protected map}

•

•
Technical Note #78 page 2 of2 Resource Manager Tips

•
Macintosh
Technical Notes

Developer Technical Support

#79:
Revised by:
Written by:

ZoomWindow
Craig Prouse
Jim Friedlander

April 1990
June 1986

•

•

This Technical Note contains some hints about using ZoomWindow.
Changes since February 1990: Fixed a bug in DoWZoom which caused crashes if the content
of a window did not intersect with any device's gdRect. Also made DoWZoom more robust by
making savePort a local variable and checking for off-screen and inactive GDevice records.
(One variable name has changed.) Additional minor changes: Corrected original sample code to
use _EraseRect before zooming and added references to Human Interface Note #7, Who's
Zooming Whom? for more subtle and application-specific considerations.

Basics

ZoomWindow allows a window to be toggled between two states (where "state" means size and
IOcation): a default state and a user-selectable state. The default state stays the same unless the
application changes it, while the user-selectable state is altered when the user changes the size or
location of a zoomable window. The code to handle zoomable windows in a main event loop
would look something like the examples which follow.

Note: _ ZoomWindow assumes that the window that you are zooming is the current
Gra fPort. If thePort is not set to the window that is being zoomed, an
address error is generated.

MPW Pascal

CASE myEvent.what OF
mouseDown: BEGIN

partCode:= FindWindow(myEvent.where, whichWindow);
CASE partCode OF

inZoomIn, InZoomOut:
IF TrackBox(whichWindow, myEvent.where, partCode) THEN

BEGIN
GetPort(oldPort);
SetPort(whichWindow);
EraseRect(whichWindow~.portRect);

ZoomWindow(whichWindow, partCode, TRUE);
SetPort(oldPort);

END; {IF}
.•• (and so on)

END; (CASE)
END; (mouseDown)

•.. {and so on}
END; {CASE)

#79: _ZoomWindow 1 of 5

Macintosh Technical Notes

MPWC

switch (myEvent.what) {
case mouseDown:

partCode = FindWindow(myEvent.where. &whichWindow);
switch (partCode) {

case inZoomln:
case inZoomOut:

if (TrackBox(whichWindow. myEvent.where, partCode)) {
GetPort(&oldPort);
SetPort(whichWindow);
EraseRect(whichWindow->portRect);
ZoomWindow(whichWindow, partCode. true);
SetPort(oldPort);
} /* if * /

break;
... /* and so on */
/* switch */
/* and so on */

} /* switch */

If a window is zoomable, that is, if it has a window definition ID = 8 (using the standard
'WDEF '), WindowRecord. dataHandle points to a structure that consists of two rectangles.
The user-selectable state is stored in the first rectangle, and the default state is stored in the second
rectangle. An application can modify either of these states, though modifying the user-selectable
state might present a surprise to the user when the window is zoomed from the default state. An
application should also be careful to not change either rectangle so that the title bar of the window
is hidden by the menu bar.

•

Before modifying these rectangles, an application must make sure that DataHandle is not NIL.
If it is NIL for a window with window definition ID = 8, that means that the program is not •
executing on a system or machine that supports zooming windows.

One need not be concerned about the use of a window with window definition ID = 8 making an
application machine-specific-s-if the system or machine that the application is running on doesn't
support zooming windows, _FindWindow never returns inZoomIn or inZoomOut, so neither

TrackBox nor ZoomWindow are called.

If DataHandle is not NIL, an application can set the coordinates of either rectangle. For
example, the Finder sets the second rectangle (default state) so that a zoomed-out window does not
cover the disk and trash icons.

For the More Adventurous (or Seeing Double)

Developers should long have been aware that they should make no assumptions about the screen
size and use screenBits . bounds to avoid limiting utilization oflarge video displays. Modular
Macintoshes and Color QuickDraw support multiple display devices, which invalidates the use of
screenBi ts. bounds unless the boundary of only the primary display (the one with the menu
bar) is desired. When dragging and growing windows in a multi-screen environment,
developers are now urged to use the bounding rectangle of the GrayRgn. In most cases, this is
not a major modification and does not add a significant amount of code. Simply define a variable

desktopExtent := GetGrayRgn~~.rgnBBox;

•
2 of 5 #79: _ZoomWindow

and use this in place of screenBi t s . bounds. When zooming a document window, however,
additional work is required to implement a window-zooming strategy which fully conforms with
Apple's Human Interface Guidelines.•
DeveloperTechnicalSupPOrt April 1990

One difficulty is that when a new window is created with NewWindowor GetNewWindow, its
default stdState rectangle (the rectangle determining the size and position of the zoomed
window) is set by the Window Manager to be the gray region of the main display device inset by
three pixels on each side. If a window has been moved to reflect a position on a secondary
display, that window still zooms onto the main device, requiring the user to pan across the desktop
to follow the window. The preferred behavior is to zoom the window onto the device containing
the largest portion of the unzoomed window. This is a perfect example of a case where it is
necessary for the application to modify the default state rectangle before zooming.

DoWZoom is a Pascal procedure which implements this functionality. It is a good example of how
to manipulate both a WStateData record and the Color QuickDraw device list. On machines
without Color QuickDraw (e.g., Macintosh Plus, Macintosh SE, Macintosh Portable) the
stdState rectangle is left unmodified and the procedure reduces to five instructions, just like it is
illustrated under "Basics." If Color QuickDraw is present, a sequence of calculations determines
which display device contains most of the window prior to zooming. That device is considered
dominant and is the device onto which the window is zoomed. A new stdState rectangle is
computed based on the gdRect of the dominant GDevice. Allowances are made for the
window's title bar, the menu bar if necessary, and for the standard three-pixel margin. (Please
note that DoWZoom only mimics the behavior of the default ZoomWindow trap as if it were
implemented to support multiple displays. It does not account for the "natural size" of a window
for a particular purpose. See Human Interrace Note #7, Who's Zooming Whom?, for details on
what constitutes the natural size of a window.) It is not necessary to set stdState prior to

•
calling ZoomWindow when zooming back to userState, so the extra code is not executed in
this case.

DoWZoom is too complex to execute within the main event loop as shown in "Basics," but if an
application is already using a similar scheme, it can simply add the DoWZoom procedure and
replace the conditional block of code following

IF TrackBox...

with

DoWZoom(whichWindow, partCode);.

Happy Zooming.

•
#79: _ZoomWindow 30f5

Macintosh Technical Notes

PROCEDURE DoWZoom (theWindow: Windowptr; zoomDir: INTEGER);
VAR

windRect, theSect, zoomRect : Rect;
nthDevice, dominantGDevice : GDHandle;
sectArea, greatestArea : LONGINT;
bias : INTEGER;
sectFlag BOOLEAN;
savePort : GrafPtr;

BEGIN
{ theEvent is a global EventRecord from the main event loop }
IF TrackBox(theWindow,theEvent.where,zoomDir) THEN

BEGIN
GetPort(savePort);
SetPort(theWindow);
EraseRect(theWindow~.portRect); {recommended for cosmetic reasons}

If there is the possibility of multiple gDevices, then we
must check them to make sure we are zooming onto the right
display device when zooming out. }

{ sysConfig is a global SysEnvRec set up during initialization
IF (zoomDir = inZoomOut) AND sysConfig.hasColorQD THEN

BEGIN
(window's portRect must be converted to global coordinates
windRect := theWindow~.portRect;

LocaIToGlobal(windRect.topLeft);
LocaIToGlobal(windRect.botRight);
{ must calculate height of window's title bar}
bias:= windRect.top - 1

WindowPeek(theWindow)~.strucRgn~~.rgnBBox.top;

windRect.top := windRect.top - bias; (Thanks, Waynel)
nthDevice := GetDeviceList;
greatestArea := 0;
{ This loop checks the window against all the gdRects in the
{ gDevice list and remembers which gdRect contains the largest
{ portion of the window being zoomed. }
WHILE nthDevice <> NIL DO

IF TestDeviceAttribute(nthDevice,screenDevice) THEN
IF TestDeviceAttribute(nthDevice,screenActive) THEN

BEGIN
sectFlag := SectRect(windRect,nthDevice~~.gdRect,theSect);

WITH theSect DO
sectArea := LONGINT(right - left) * (bottom - top);

IF sectArea > greatestArea THEN
BEGIN

greatestArea := sectArea;
dominantGDevice := nthDevice;

END;
nthDevice := GetNextDevice(nthDevice);

END; {of WHILE)
{ We must create a zoom rectangle manually in this case.
{ account for menu bar height as well, if on main device
IF dominantGDevice = GetMainDevice THEN

bias := bias + GetMBarHei9ht;
WITH dominantGDevice~~.gdRect DO

SetRect(zoomRect,left+3,top+bias+3,ri9ht-3,bottom-3);
(Set up the WStateData record for this window.)
WStateDataHandle(WindowPeek(theWindow)~.dataHandle)~~.stdState := zoomRect;

END; (of Color QuickDraw conditional stuff)

ZoomWindow(theWindow,zoomDir,TRUE);
SetPort(savePort);

END;
END;

•

•

•
4of5 #79: _ZoomWindow

In an attempt to avoid declaring additional variables, the original version of this document was
flawed. In addition, the assignment statement responsible for setting the stdState rectangle is
relatively complex and involves two type-casts. The following may look like C, but it really is
Pascal. Trust me.•
Developer Technical Support

WStateDataHandle(WindowPeek(theWindow) A.dataHandle) AA. stdState := zoomRect;

It could be expanded into a more readable form such as:

VAR
theWRec : WindowPeek;
zbRec : WStateDataHandle;

theWRec := WindowPeek(theWindow);
zbRec := WStateDataHandle(theWRecA.dataHandle);
zbRecAA.stdState := zoomRect;

Further Reference:

April 1990

•

•

• Inside Macintosh, Volume IV, The Window Manager (pp. 49-52)
• Inside Macintosh, Volume V, Graphics Devices (p. 124), The Window Manager (p. 210)
• Human Interface Note #7, Who's Zooming Whom?

#79: _ZoornWindow 50f5

______________ __ - un _ _ n__ _

•

•

•

•
Macintosh Technical Notes

#80: Standard File Tips

See also:

Written by:
Updated:

The Standard File Package

Jim Friedlander June 7,1986
March 1, 1988

•

SFSaveDisk and CurDirStore

Low-memory location $214 (SFSaveDisk-a word) contains -1 * the vRefNum of the
volume that SF is displaying (MFS and HFS). It never contains -1 * a WDRefNum.

Low-memory location $398 (CurDirStore-a long word) contains the dirID of the
directory that SF is displaying (HFS only).

This information can be particularly useful at hook time, when the vRe fNum field of the
reply record has not yet been filled in. Note: reply. fName is filled in correctly at hook
time if a file has been selected. If a directory has been selected, reply. fType is
non-zero (it contains the dirID of the selected directory). If neither a file nor a directory
is selected, both reply. fName [0] and reply. fType are O.

Setting Standard File's default volume and directory

If you want SFGetFile or SFPutFile to display a certain volume when it draws its
dialog, you can put -1 * the vRefNum of the volume you wish it to display into the
low-memory global SFSaveDisk (a word at $214).

In Pascal, you would use something like:

TYPE
Wordptr = AINTEGER;

CONST
SFSaveDisk = $214;

VAR

SFSaveVRef: WordPt r;
myVRef INTEGER;

BEGIN

{pointer to a two-byte location}

{location of low-memory global}

•
{myVRef gets assigned here}

SFSaveVRef := WordPtr(SFSaveDisk); {point to SFSaveDisk}
SFSaveVRef A: = -1 * myVRef; {"stuff" the value in}
SFGetFile (...

Technical Note #80 page 1 of 2 Standard File Tips

In C you would use something like this (where a variable of type "short" occupies 2
bytes):

fdefine SFSaveDisk (*(short *)Ox214)

short rnyVRef i

/* rnyVRef gets assigned here */

SFSaveDisk = -1 * rnyVRefi /* "stuff" the value in */
SFGetFile (...

If you are running HFS and would like to have Standard File display a particular
directory as well as a particular volume, you can't just put a WDRefNum into SFSaveDisk.
If you do put a WDRefNum into SFSaveDisk, Standard File will display the root directory
of the default volume. Instead, you must put -1 * the vRefNum into SFSaveDisk (see
above) and put the d i rID of the directory that you wish to have displayed in
CurDirStore. If you put an invalid dirID into CurDirStore, Standard File will display
the root level of the volume referred to by SFSaveDisk. To change CurDirStore you
can use a technique similar to the above, but remember that CurDirStore is a four-byte
value. If your application is running under MFS, Standard File ignores CurDirStore, so
you can use the same code regardless of file system.

•

•

•
Technical Note #80 page 2 of 2 Standard File Tips

•
Macintosh Technical Notes

#81: Caching

See also: The File Manager
The Device Manager
Technical Note #14-The INIT 31 Mechanism

Written by:
Updated:

Rick Blair June 17, 1986
March 1, 1988

•

•

This technical note describes disk and File System caching on the
Macintosh, with particular emphasis on the high-level File System cache. Of
the three caches used for file lID, this is the one which could have the most
impact on your program. Note: This big File System cache is not available on
64K ROM machines.

A term

In this note I will use the term "HFS" to mean the Hierarchical File System and the Sony
driver which can access the 800K drives. Both RAM-based HFS (Hard Disk 20 file) and
the 128K ROM version include the second-generation Sony driver.

There's always a cache (type 1)

The first type of cache used by the File System has been around since the days of the
Macintosh File System. Under MFS, each volume has a one-block buffer for all
filelvolume data. This prevents a read of two bytes followed by a read (at the next file
position) of 4 bytes from causing actual disk /10. The volume allocation map also gets
saved in the system heap but it's not really part of the cache.

This type of caching is still used by HFS, which includes MFS-format volumes which
may be mounted while running HFS. With HFS, the cache is a little bigger: each volume
gets 1 block of buffering for the bitmap, 2 blocks for volume (including file) data, and 16
blocks for HFS B*-tree control buffering.

This cache lives in the system heap (unless HFS is using the new File System caching
mechanism, in which case things become more complicated. See "type 3" below).

Technical Note #81 page 1 of 3 Caching

Cache track fever (type 2)

The track cache, only present with the enhanced Sony driver, will cache the current
track (up to twelve blocks) so that subsequent reads to that track may use the cache. The
track cache is "write through"; all writes go to both the cache and the Sony disk so •
flushing is never required.

Track caching only takes place for synchronous I/O calls; when an application makes
asynchronous calls it expects to use the time while the disk is seeking, etc. to execute
other code.

The track cache gets its storage space from the system heap.

Cache me if you can (type 3)

The last type of cache to be discussed is only available under the 128K and greater
ROMs. This user-controlled cache is not "write-through".

Based on how much space the user has allocated via the control panel, the File System
will set up a cache which can accommodate a certain number of blocks. This storage
will come from the application heap in the space above Bufptr (see technical note #14
and below). This is really the space above the jump table and the "AS world", not
technically part of the application heap. However, moving BufPtr down will cause a
corresponding reduction in the space available to the application heap.

The installation code will also grab the space used by the old File System cache (type 1) •
since all types of disk blocks can be accommodated by this new cache.

The bulk of the caching code used for this RAM cache is also loaded above Bu f P't r' at
application launch time. This is accomplished by the INIT 35 resource which is installed
in the system heap and initialized at boot time. At application launch time, INIT 35
checks the amount of cache allocated via the control panel and moves BufPtr down
accordingly before bringing in the balance of the caching code. The RAM caching code
is in the 'CACH' 1 resource in the System File.

The caching code always makes sure there is room for 128K of application heap and
32K of cache. If the user-requested amount would reduce the heap/cache below these
values then the cache space is readjusted accordingly.

Up to 36 separate files may be buffered by the cache. Each queue is a list of blocks
cached for that file. Information is kept about the "age" of each block and the blocks are
also kept in a list in the order in which they occur in the file. The aging information tells
which blocks were least recently used; these are the first to be released when new
blocks become eligible for caching. The file order information is useful for flushing the
cache to the disk in an efficient manner, Le. the file order approximates disk order.

•
Technical Note #81 page 2 of 3 Caching

•
Assuming this cache has been enabled by the user, all files which are read from or
written to by File System (HFS) calls are subject to caching under the current
implementation. The cache is not "write through" like the track cache. When a File
System write (PBWrite, WriteResource, etc.) is done, the block is buffered until the
block is released (age discrimination), a volume flush is done or the application
terminates.

It may be useful to an application to prevent this process of reading and writing "in
place". The Finder disables caching of newly read/written blocks while doing file copies
since it would be silly to cache files that the Finder was reading into memory anyway.
Copy protection schemes may also need this capability. Disabling reading and writing in
place is accomplished by setting a bit in a low memory flag byte, CacheCom (see below).
When you set this flag, no new candidates for caching will be accepted. Blocks already
saved may still be read from the cache, of course.

CacheCom is at $39C. Bit 7 is the bit to set to disable subsequent caching, as follows:

MOVE.B CacheCom,saveTemp isave away the old value
BSET.B 17,CacheCom itell caching code to stop R/W I.P.

BTST.B 17,saveTemp
BNE.S @69
BCLR.B 17,CacheCom

icheck saved value

iclear it if it was cleared before

•

•

@69

Bit 6 contains another flag which can force all I/O to go to the disk. If that flag is set then
every time even one byte is requested from the File System the disk will be hit. I can
think of no good reason to use this except to test the system code itself. The other bits
should likewise be left alone.

Please don't use this feature unnecessarily; the user should retain control over caching.
Important: if your program doesn't have enough space to run due to caching you
should ask the user to disable (or reduce) it with the control panel and then relaunch
your application. This may be the subject of a future technical note.

BufPtr

The RAM-resident caching software arbitrates Bu fPt r in the friendliest manner
possible. It saves the old value away before changing it, and then when it is time to
release its space it looks at it again. If BufPt r has been moved again, it knows that it
can't restore the old value it saved until Bu fPt r is put back to where it left it. In this
manner any subsequent code or data put up under Bu fPt r is assured of not being
obliterated by the caching routines.

A final note

To avoid problems with data in the cache not getting written out to disk, call F 1 ushVol
after each time you write a file to disk. This ensures that the cache is written, in case a
crash occurs soon thereafter.

Technical Note #81 page 3 of 3 Caching

•

•

•

•
Macintosh Technical Notes

#82: TextEdit: Advice & Descent

See also: TextEdit
Technical Note #22-TEScroll Bug
Technical Note #127-TextEdit EOl Ambiguity
Technical Note #131-TextEdit Bugs

Written by:
Updated:

Rick Blair June 21, 1986
March 1, 1988

•

•

This technical note will point out some bugs (and possible workarounds), and
other items of interest for the TextEdit programmer.

TESelRect

Multiple line selections are often more complex shapes than simple rectangles. If this is
the case, the teSelRect field of the TERec is set to the last (bottommost) rectangle in
the selection. The teHiHook is called to invert each line of the selection.

The ROM limits the selection range (Le. the lines that get set into teSelRect) to only
those lines which will fit into the viewRect. This means that teSelRect will be left at the
last visible line. (The old 64K ROMs made all the calls for the complete selection and
just let clipping take care of the rest.)

TEDoText

The parameters of this special hook into TextEdit need a little additional explanation. D3

and D4 are described on page 391 of Inside Macintosh Volume I as being the first and
last characters to be redrawn. This is true but specific to the -1 "DoDraw" case. In fact, all
the calls to TEDoText are interested in these first and last character positions. They
determine the selection for a (1) highlight call, the caret position for a (-2) DoCaret call
(where D4 is ignored as it's assumed to equal D3), etc.

Note that the DoCaret (-2) call behaves differently than described in Inside Macintosh,
as well. Good old page 391 says it sets up the pen position for caret drawing. Since an
InvertRect call is used to draw the caret if you use the default teCarHook, the ROMs
just set up teSelRect, they don't bother with the QuickDraw pen.

Technical Note #82 page 1 of 2 TextEdit: Advice & Descent

TEScrpLength

Inside Macintosh describes TEScrpLength as a long integer; indeed, four bytes are
reserved for this value with the intent of someday using that range of values. However, •
the ROMs use word operations in their accesses to TEScrpLength and make word
calculations with it. This means that the high word of TEScrpLength is used for
calculations. This is something to watch out for.

CharWidth

Inside Macintosh says that CharWidth takes stylistic variations into account when
determining the width of a character. In fact, for italic and outllned styles the extra width
is not taken into account. TextEdit relies on CharWidth for positioning of the caret, etc. If
you have chosen to use, for instance, italic style in your TE record you will find that as
you type the caret actually overlaps the character to the left and so when the caret is
erased some of that character will get erased, too. This is somewhat disconcerting to the
user but the program will still function correctly.

Clikloops

If you add your own click loop and try to do something like update scroll bars you may
run into trouble. Before your routine gets called, TextEdit will have set clipping down to
just the viewRect. You will have to save away the old clipping region, set it out to
sufficient size (-32767, -32767, 32767, 32767 is probably OK), do your drawing, then •
restore TextEdit's clipping area so that it can function properly.

•
Technical Note #82 page 2 of 2 TextEdit: Advice & Descent

Macintosh Technical Notes

• #83: System Heap Size Warning

See also:

Written by:
Updated:

The Memory Manager

Jim Friedlander June 21, 1986
March 1, 1988

Earlier versions of this note pointed out that, due to varying system heap
sizes, the application heap does not always start at $ CB00. The start of the
application heap has not been fixed for some time now; programs that
depend on it never work on the Macintosh SE or the Macintosh II.

•

•
Technical Note #83 page 1 of 1 System Heap Size Warning

• • •

•
Macintosh Technical Notes

#84: Edit File Format

Written by:
Modified by:
Updated:

Harvey Alcabes
Bryan Johnson

April 11, 1985
August 15, 1986
March 1, 1988

•

•

This technical note describes the format of the files created by Edit. It has
been verified for versions 1.x and 2.0.

Edit, a text editor licensed by Apple and included in the Consulair 68000 Development
System, can read any text-only file whose file type is TEXT. Files created by Edit have a
creator 10 of EDIT. Edit is a disk-based editor so the file length is not limited by available
memory. Files created or modified by Edit, have the format described below; if they are
not too long they can be read by any application which can read TEXT files (eg:
MacWrite, Microsoft Word, or the APDA example program File).

The data fork contains text (ASCII characters). Carriage return characters indicate
line breaks; tab characters are displayed as described below. No other
characters have special significance.

The resource fork contains resources of type ETAB and EFNT. If Edit opens a
text-only file that does not have these resources it will add them.

The ETAB (Editor TAB) resource, resource 10 1004, contains two integers. The
first is the number of pixels to display for each space within a tab (not necessarily
the same as for the space character). The second integer is the number of these
spaces which will be displayed for each tab character.

The EFNT (Editor FoNT) resource, resource 10 1003, contains an integer followed
by a Pascal string (length byte followed by characters). The integer is the point
size of the document's font. The string contains the font name. If the string size
(including the length byte) is odd, an extra byte is added so that the resource size
is even.

For more information about Edit, contact:

Consulair Corp.
140 Campo Drive
Portola Valley, CA 94025
(415) 851-3272

Technical Note #84 page 1 of 1 Edit File Format

•

•

•

•
Macintosh Technical Notes

#85: GetNextEvent; Blinking Apple Menu

See also:

Written by:
Updated:

The Menu Manager
The Toolbox Event Manager
The Desk Manager

Rick Blair August 14, 1986
March 1, 1988

•

•

Wherein arcane mysteries are unraveled so you can make the Alarm Clock
(or a similar desk accessory) blink the Apple menu at the appointed second.
Also, why GetNextEvent is a good thing.

The obvious

Don't disable interrupts within an application! There will almost certainly come a time (or
Macintosh) where you won't be able to change the interrupt mask because the
processor is running in user mode. The one-second interrupt is used to blink the apple.

The not-so-obvious

You must call GetNextEvent periodically. GetNextEvent uses a filter (GNE filter)
which allows for a routine to be installed which overrides (or augments) the behavior of
the system. The GNE filter is installed by pointing the low-memory global jGNEFilter

(a long word at $29A) to the routine. After all other GNE processing is complete, the
routine will be called with Al pointing to the event record and DO containing the
boolean result. The filter may then modify the event record or change the function result
by altering the word on the stack at 4 (A7) . This word will match DO initially, of course.

Technical Note #85 page 1 of 2 GetNextEvent; Blinking '* Menu

A GNE filter is used to do the blinking when the interrupt handler has announced that
the moment is at hand. GetOSEvent won't do. If you don't have a standard main event
loop, it is generally a good idea to give GetNextEvent (and SystemTask, too) a call
whenever you have any idle time. GetNextEvent "extra" services include, but aren't •
limited to, the following:

1. Calling the GNE filter.
2. Removing lingering disk-switched windows (uncommon unless memory is tight).
3. Making Window Manager activate, deactivate and update events happen.
4. Getting various events from a journaling driver when one is playing.
5. Giving SystemEvent a chance at each event.
6. Running command-shift function key routines (e.g. command-shift-4 to print the

screen to an ImageWriter).

The more subtle

When the (default) GNE filter sees that the interrupt handler has set the "time to blink"
flag, it looks at the first menu in MenuList. The title of that menu must consist solely of
the "apple" character or no blinking will occur. It really just looks at the first word of the
string to see if it is $ 0 114. This is a Pascal string which has only the $14 "apple"
character in it. So you musn't have any spaces or any other characters in the title of your
first menu or you'll get no blinkin' results.

•

•
Technical Note #85 page 2 of 2 GetNextEvent; BlinkinQ '* Menu

•
Macintosh
Technical Notes

Developer Technical Support

#86: MacPaint Document Format
Revised by: Jim Reekes
Written by: Bill Atkinson

June 1989
1983

•

This Technical Note describes the internal format of a MacPaint® document, which is a standard
used by many other programs. This description is the same as that found in the "Macintosh
Miscellaneous" section of early Inside Macintosh versions.
Changes since October 1988: Fixed bugs in the example code.

MacPaint documents are easy to read and write, and they have become a standard interchange
format for full-page images on the Macintosh. This Note describes the MacPaint internal
document format to help developers generate and interpret files in this format.

MacPaint documents have a file type of "PNTG," and since they use only the data fork, you can
ignore the resource fork. The data fork contains a 512-byte header followed by compressed data
which represents a single bitmap (576 pixels wide by 720 pixels tall). At a resolution of 72 pixels
per inch, this bitmap occupies the full 8 inch by 10 inch printable area of a standard ImageWriter
printer page.

Header

The first 512 bytes of the document form a header of the following format:

• 4-byte version number (default =2)
• 38*8 = 304 bytes of patterns
• 204 unused bytes (reserved for future expansion)

As a Pascal record, the document format could look like the following:

MPHeader = RECORD
Version:
PatArray:
Future:

END;

LONGINT;
ARRAY [1 .. 38] of Pattern;
PACKED ARRAY [1 .. 204] of SignedByte;

•

If the version number is zero, the document uses default patterns, so you can ignore the rest of the
header block, and if your program generates MacPaint documents, you can write 512 bytes of zero
for the document header. Most programs which read MacPaint documents can skip the header
when reading.

Bitmap

Following the header are 720 compressed scan lines of data which form the 576 pixel wide by 720
pixel tall bitmap. Without compression, this bitmap would occupy 51,840 bytes and chew up disk
space pretty fast; typical MacPaint documents compress to about 10K using the _PackBits

#86: MacPaint Document Format 1 of 5

Macintosh Technical Notes

procedure to compress runs of equalbytes within each scan line. The bitmap part of a MacPaint
document is simply theoutput of _PackBits called720 times, with 72 bytesof input eachtime.

To determine the maximum size of a MacPaint file, it is worth noting what Inside Macintosh says
about PackBits:

"The worst case would be when PackBits adds one byte to the row of bytes
when packing."

If we include an extra 512 bytes for the file header information to the size of an uncompressed
bitmap (51,840), then the total number of bytes wouldbe 52,352. If we take into account theextra
720 "potential" bytes (one foreachrow) to theprevious total, themaximum size of a MacPaint file
becomes 53,072 bytes.

Reading Sample

•

PROCEDURE ReadMPFile;
(This is a small example procedure written in Pascal that demonstrates

how to read MacPaint files. As a final step, it takes the data that
was read and displays it on the screen to show that it worked.
Caveat: This is not intended to be an example of good programming
practice, in that the possible errors merely cause the program to exit.
This is VERY uninformative, and there should be some sort of error handler
to explain what happened. For simplicity, and thus clarity, those types
of things were deliberately not included. This example will not work
on a 128K Macintosh, since memory allocation is done too simplistically.

CONST

VAR

DefaultVolume = 0;
HeaderSize = 512;
MaxUnPackedSize = 51840;

size of MacPaint header in bytes
maximum MacPaint size in bytes }
720 lines * 72 bytes/line } •

srcPtr:
dstPtr:
saveDstptr:
lastDestPtr:
srcFile:
srcSize:
errCode:
scanLine:
aPort:
theBitMap:

Ptr;
Ptr;
Ptr;
Ptr;
INTEGER;
LONGINT;
INTEGER;
INTEGER;
GrafPort;
BitMap;

BEGIN
errCode := FSOpen('MP TestFile', DefaultVolume, srcFile}; (Open the file. }
IF errCode <> noErr THEN ExitToShell;

errcode := SetFPos(srcFile, fsFromStart, HeaderSize);
IF errCode <> noErr THEN ExitToShell;

(Skip the header. }

errCode := FSRead(srcFile, srcSize, srcPtr); (Read the data into the buffer.
IF errCode <> noErr THEN ExitToShell; File marker is past header. }

errCode := GetEOF(srcFile, srcSize);
IF errCode <> noErr THEN ExitToShell;

srcSize := srcSize - HeaderSize ;
srcPtr := NewPtr(srcSize};
IF srcPtr = NIL THEN ExitToShell;

Find out how big the file is,
and figure out source size. }

Remove the header from count. }
Make buffer just the right size.

•
20f5 #86: MacPaint Document Format

•
Developer Technical Support

errCode := FSClose(srcFile);
IF errCode <> noErr THEN ExitToShell;

(Create a buffer that will be used for
dstPtr := NewPtrClear(MaxUnPackedSize);
IF dstPtr = NIL THEN ExitToShell;
saveDstPtr := dstPtr;

June 1989

(Close the file we just read.)

the Destination BitMap.)
(MPW library routine, see TN 219)

•

Unpack each scan line into the buffer. Note that 720 scan lines are
guaranteed to be in the file. (They may be blank lines.) In the
UnPackBits call, the 72 is the count of bytes done when the file was
created. MacPaint does one scan line at a time when creating the file.
The destination pointer is tested each time through the scan loop.
UnPackBits should increment this pointer by 72, but in the case where
the packed file is corrupted UnPackBits may end up sending bits into
uncharted territory. A temporary pointer "lastDstPtr" is used for testing
the result.)

FOR scanLine := 1 TO 720 DO BEGIN
lastDstPtr := dstptr;
UnPackBits(srcPtr, dstPtr, 72); (bumps both pointers
IF ORD4(lastDstPtr) + 72 <> ORD4(dstPtr) THEN ExitToShell;

END;

(The buffer has been fully unpacked. Create a port that we can draw into.
You should save and restore the current port.)

OpenPort(@aPort};

(Create a BitMap out of our saveDstptr that can be copied to the screen.
theBitMap.baseAddr := saveDstptr;
theBitMap.rowBytes := 72; width of MacPaint picture
SetPt(theBitMap.bounds.topLeft, 0, 0);
SetPt(theBitMap.bounds.botRight, 72*8, 720); (maximum rectangle)

(Now use that BitMap and draw the piece of it to the screen.
Only draw the piece that is full screen size (portRect).

CopyBits(theBitMap, aPort,portBits, aPort.portRect,
aPort.portRect, srcCopy, NIL);

•

(We need to dispose of the
dispose of the destPtr if

DisposPtr(srcPtr);
DisposPtr(dstPtr);

END;

#86: MacPaint Document Format

memory we've allocated. You would not
you wish to edit the data.)

(dispose of the source buffer)
(dispose of the destination buffer

30f5

Macintosh Technical Notes

Writing Sample

PROCEDURE WriteMPFile;
{ This is a small example procedure written in Pascal that demonstrates how

to write MacPaint files. It will use the screen as a handy BitMap to be
written to a file.

CONST

•
VAR

DefaultVolume = 0;
Headersize = 512;
MaxFileSize = 53072;

size of MacPaint header in bytes
maximum MacPaint file size. }

srcPtr:
dstPtr:
dstFile:
dstSize:
errCode:
scan Line :
aPort:
dstBuffer:
I:
pictureptr:
tempPtr:
theBitMap:

ptr;
ptr;
INTEGER;
LONGINT;
INTEGER;
INTEGER;
GrafPort;
PACKED ARRAY[l .. HeaderSize] OF BYTE;
LONGINT;
Ptr;
BigPtr;
BitMap;

40f5

BEGIN
{ Make an empty buffer that is the picture size. }
picturePtr := NewPtrClear(MaxFileSize}; {MPW library routine, see TN 219}
IF picturePtr = NIL THEN ExitToShell;

{ Open a port so we can get to the screen's BitMap easily. You should save
and restore the current port. }

OpenPort{@aPort};

{ Create a BitMap out of our dstPtr that can be copied to the screen. }
theBitMap.baseAddr := picturePtr;
theBitMap.rowBytes := 72; width of MacPaint picture
SetPt(theBitMap.bounds.topLeft, 0, O};
SetPt(theBitMap.bounds.botRight, 72*8, 720); {maximum rectangle}

{ Draw the screen over into our picture buffer. }
CopyBits(aPort.portBits, theBitMap, aPort.portRect,

aPort.portRect, srcCopy, NIL};

{ Create the file, giving it the right Creator and File type.}
errCode := Create('MP TestFile', DefaultVolume, 'MPNT', 'PNTG');
IF errCode <> noErr THEN ExitToShell;

{ Open the data file to be written. }
errCode := FSOpen(dstFileName, DefaultVolume, dstFile};
IF errCode <> noErr THEN ExitToShell;

FOR I := 1 to HeaderSize DO { Write the header as all zeros. }
dstBuffer [I] := 0;

errCode := FSWrite(dstFile, HeaderSize, @dstBuffer};
IF errCode <> noErr THEN ExitToShell;

#86: MacPaint Document Format

•

•

Now go into a loop where we pack each line of data into the bUffer,
then write that data to the file. We are using the line count of 72
in order to make the file readable by MacPaint. Note that the
Pack/UnPackBits can be used for other purposes. }

srcPtr := theBitMap.baseAddr; { point at our picture BitMap }
FOR scanLine := 1 to 720 DO

BEGIN
dstPtr := @dstBuffer; (reset the pointer to bottom
PackBits(srcPtr, dstPtr, 72); { bumps both ptrs }
dstSize := ORD(dstPtr}-ORD(@dstBuffer}; {calc packed size}
errCode := FSWrite(dstFile, dstSize, @dstBuffer);
IF errCode <> noErr THEN ExitToShell;

END;

•
Developer Technical Support

errCode := FSClose(dstFile);
IF errCode <> noErr THEN ExitToShell;

END;

Further Reference:

June 1989

{ Close the file we just wrote. }

•

•

• Inside Macintosh, Volume 1-135, QuickDraw
• Inside Macintosh, Volume 1-465, Toolbox Utilities
• Inside Macintosh, Volume II-77, TheFile Manager
• Technical Note#219, New Memory Manager Glue Routines

MacPaint is a registered trademark of Claris Corporation.

#86: MacPaint Document Format 50f5

•

•

•

•
Macintosh Technical Notes

#87: Error in FCBPBRec

See also:

Written by:
Updated:

The File Manager

Jim Friedlander August 18, 1986
March 1, 1988

The declaration of a FCBPBRec is wrong in Inside Macintosh Volume IV and
early versions of MPW. This has been fixed in MPW 1.0 and newer.

An error was made in the declaration of an FCBPBRec parameter block that is used in
PBGetFCBInfo calls. The field ioFCBIndx was incorrectly listed as a LONG INT. The
following declaration (found in Inside Macintosh):

•

•

ioRefNum:
filler:
ioFCBIndx:
ioFCBFlNm:

should be changed to:

ioRefNum:
filler:
ioFCBIndx:
ioFCBFillerl:
ioFCBFlNm:

TechnicalNote #87

INTEGER;
INTEGER;
LONGINT;
LONGINT;

INTEGER;
INTEGER;
INTEGER;
INTEGER;
LONGINT;

page 1 of 1 Error in FCBPBRec

•

•

•

Macintosh Technical Notes

• #88: Signals

See also: Using Assembly Language (Mixing Pascal & Assembly)

Written by:
Updated:

Rick Blair August 1, 1986
March 1, 1988

•

•

Signals are a form of intra-program interrupt which can greatly aid clean,
inexpensive error trapping in stack frame intensive languages. A program
may invoke the S i g n a 1 procedure and immediately return to the last
invocation of CatchSignal, including the complete stack frame state at that
point.

Signals allow a program to leave off execution at one point and return control to a
convenient error trap location, regardless of how many levels of procedure nesting are
in between.

The example is provided with a Pascal interface, but it is easily adapted to other
languages. The only qualification is that the language must bracket its procedures (or
functions) with L INK and UNLK instructions. This will allow the signal code to clean up at
procedure exit time by removing CatchSignal entries from its internal queue. Note:
only procedures and/or functions that call CatchSignal need to be bracketed with LINK
and UNLK instructions.

Important: InitSignals must be called from the main program so that A6 can be set
up properly.

Note that there is no limit to the number of local CatchSignals which may occur within
a single routine. Only the last one executed will apply, of course, unless you call
FreeSignal. FreeSignal will "pop" off the last CatchSignal. If you attempt to Signal
with no CatchSignals pending, Signal will halt the program with a debugger trap.

InitSignals creates a small relocatable block in the application heap to hold the
signal queue. If CatchSignal is unable to expand this block (which it does 5 elements
at a time), then it will signal back to the last successful CatchSignal with code =200. A
Signal (0) acts as a NOP, so you may pass OSErrs, for instance, after making File
System type calls, and, if the OSErr is equal to NoErr, nothing will happen.

Technlcal Note #88 page 1 of 6 Signals

CatchSignal may not be used in an expression if the stack is used to evaluate that
expression. For example, you can't write:

c:= 3*CatchSignal;

"Gotcha" summary

1. Routines which call CatchSignal must have stack frames.
2. InitSignals must be called from the outermost (main) level.
3. Don't put the Cat chS igna 1 function in an expression. Assign the result to an

INTEGER variable; i.e. i:=CatchSignal.
4. It's safest to call a procedure to do the processing after CatchSignal returns. See

the Pascal example TestSignals below. This will prevent the use of a variable
which may be held in a register.

Below are three separate source files. First is the Pascal interface to the signaling unit,
then the assembly language which implements it in MPW Assembler format. Finally,
there is an example program which demonstrates the use of the routines in the unit.

{File ErrSignal.p}
UNIT ErrSignal;

INTERFACE

{Call this right after your other initializations (InitGraf, etc.)--in other
words as early as you can in the applicationl
PROCEDURE InitSignals;

{Until the procedure which encloses this call returns, it will catch
subsequent Signal calls, returning the code passed to Signal. When
CatchSignal is encountered initially, it returns a code of zero. These calls
may "nest"; i.e. you may have multiple CatchSignals in one procedure.
Each nested CatchSignal call uses 12 bytes of heap space 1
FUNCTION CatchSignal:INTEGER;

{This undoes the effect of the last CatchSignal. A Signal will then invoke
the CatchSignal prior to the last one.}
PROCEDURE FreeSignal;

{Returns control to the point of the last CatchSignal. The program will then
behave as though that CatchSignal had returned with the code parameter
supplied to Signal.}
PROCEDURE Signal(code:INTEGER);

END.
{End of ErrSignal.p}

•

•

•
Technical Note #88 page 2 of 6 Signals

•
Here's the assembly source for the routines themselves:

ErrSignal code w. InitSignal, CatchSignal,FreeSignal, Signal
defined

Version 1.0 by Rick Blair

PRINT
INCLUDE
INCLUDE
INCLUDE
INCLUDE
PRINT

CatchSigErr EQU
SigChunks EQU
FrameRet EQU
SigBigA6 EQU

OFF
'Traps.a'
'ToolEqu.a'
'QuickEqu.a'
'SysEqu.a'

ON

200
S
4
$FFFFFFFF

;"insufficient heap" message
;number of elements to expand by
;return addr. for frame (off A6)
;maximum positive A6 value

; A template in MPW Assembler describes the layout of a collection of data
; without actually allocating any memory space. A template definition starts
with a RECORD directive and ends with an ENDR directive.

To illustrate how the template type feature works, the following template
is declared and used. By using this, the assembler source appromixates very
closely Pascal source for referencing the corresponding information.

• ;template for our table
SigElement RECORD
SigSP DS.L
SigRetAddr OS. L
SigFRet OS. L
SigElSize EQU

ENDR

elements
a ;the zero is the template origin
1 ;the SP at the CatchSignal-(DS.L just like EQU)
1 ;the address where the CatchSignal returned
1 ;return addr. for encl. procedure
* ;just like EQU 12

The global data used by these routines follows. It is in the form of a
RECORD, but, unlike above, no origin is specified, which means that memory
space *will* be allocated.
This data is referenced through a WITH statement at the beginning of the
procs that need to get at this data. Since the Assembler knows when it is
referencing data in a data module (since they must be declared before they
are accessed), and since such data can only be accessed based on AS, there
is no need to explicitly specify AS in any code which references the data
(unless indexing is used). Thus, in this program we have omitted all AS
references when referencing the data.

SigGlobals RECORD

•
SigEnd
SigNow
SigHandle

DS.L
DS.L
DC.L
ENDR

1
1

a

;no origin means this is a data record
;not a template(as above)
;current end of table
;the MRU element
;handle to the table

Technical Note #88 page 3 of 6 Signals

;the above statement makes the template SigElement and the global data
;record SigGlobals available to this procedure

CatchSignal
SigElement,SigGlobals

InitSignals PROC

IMPORT
WITH

EXPORT ;PROCEDURE InitSignals;

•
MOVE.L #SigChunks*SigElSize,DO
_NewHandle ;try to get a table
BNE.S forget it ;we couldn't get that!?

forgetit

MOVE.L
MOVE.L
MOVE.L
MOVE.L
RTS
ENDP

AO,SigHandle ;save it
#-SigElSize,SigNow ;point "now" before start
#SigChunks*SigElSize,SigEnd ;save the end
#SigBigA6,A6 ;make A6 valid for Signal

CatchSignal PROC
IMPORT
WITH

EXPORT ;FUNCTION CatchSignal:INTEGER;
SiggySetup, Signal, SigDeath
SigElement,SigGlobals

MOVE.L
MOVE.L
BEQ
MOVE.L
MOVE.L
ADD.L
MOVE.L
CMP.L
BNE.S

(SP)+,Al
SigHandle,DO
SigDeath
DO,AO
SigNow,DO
#SigElSize,DO
DO,SigNow
SigEnd,DO
catchit

;grab return address
;handle to table
;if NIL then croak
;put handle in A-register

;save new position
;have we reached the end?
;no, proceed •

ADD.L #SigChunks*SigElSize,DO ;we'll try to expand
MOVE.L DO,SigEnd ;save new (potential) end

SetHandleSize
BEQ.S @O ; jump around if it worked!

;ditto for current position
(SP);we'll signal a "couldn't

catch" error
;never returns of course

;signals, we use 'em
MOVE.L
MOVE.L
SUB.L
MOVE.W

JSR

ourselves
SigNow,SigEnd
#SigElSize,DO
DO,SigNow
#catchSigErr,

Signal

;restore old ending offset

@O

catchit

MOVE.L

MOVE.L
ADD.L
MOVE.L
MOVE.L
CMP.L
BEQ.S
MOVE.L

SigNow,DO

(AO),AO ;deref.
DO,AO ;point to new entry
SP,SigSP(AO) ;save SP in entry
Al, SigRetAddr (AO) ;save return address there
#SigBigA6,A6 ;are we at the outer level?
@O ;yes, no frame or cleanup needed
FrameRet(A6),SigFRet(AO);save old frame return

address •
Technical Note #88 page 4 of6 Signals

;get pointer to element
;get proc's real return address•

@O

SiggyPop

LEA
MOVE.L
CLR.W
JMP

JSR
MOVE.L
SUB.L
MOVE.L
JMP
ENDP

SiggyPop,AO
AO, FrameRet (A6)
(SP)
(AI)

SiggySetup
SigFRet(AO),AO
#SigElSize,DO
DO,SigNow
(AO)

;set cleanup code address
;no error code (before its time)
;done setting the trap

;"pop" the entry
;gone

FreeSignal PROC
IMPORT
WITH
JSR
MOVE.L
SUB.L
MOVE.L
RTS
ENDP

EXPORT ;PROCEDURE FreeSignal;
SiggySetup
SigElement,SigGlobals
SiggySetup ;get pointer to current entry
SigFRet(AO),FrameRet(A6) ;"pop" cleanup code
#SigElSize,DO
DO, SigNow ; "pop" the entry

EXPORT ;PROCEDURE Signal(code:INTEGER);
SiggySetup,SigDeath
SigElement,SigGlobals
4(SP),DI ;get code
@O ;process the signal if code is non-zero
(SP),AO ;save return address
#6,SP ;adjust stack pointer
(AO) ;return to caller(code was 0)•

Signal

@O

PROC
EXPORT
WITH
MOVE.W
BNE.S
MOVE.L
ADDQ.L
JMP

JSR
BRA.S

SiggySetup
SigLoopl

;get pointer to entry

SigLoop
SigLoopl

UNLK
CMP.L
BLO.S
MOVE.L
MOVE.L
MOVE.W
JMP

A6 ;unlink stack by one frame
SigSP(AO),A6 ;is A6 beyond the saved stack?
SigLoop ;yes, keep unlinking
SigSP(AO),SP ;bring back our SP
SigRetAddr(AO),AO ;get return address
Dl, (SP) ;return code to CatchSignal
(AO) ;Houston, boost the Signal!
; (or Hooston if you're from the Negative Zone)

SiggySetup MOVE. L
MOVE.L
MOVE.L
BEQ.S
MOVE.L
BMI.S
ADD.L
RTS

SigHandle,AO
(AO) , AO

AO,DO
SigDeath
SigNow,DO
SigDeath
DO,AO

;deref.
;to set CCR
;nil handle means trouble
;grab table offset to entry
;if no entries then give up
;point to current element

•
SigDeath _Debugger

ENDP
END

;a signal sans catch is bad news

Technical Note #88 page 5 of6 Signals

Nowfor the example Pascal program:

PROGRAM TestSignals;
USES ErrSignal;

VAR i: INTEGER; •
PROCEDURE DoCatch(s:STR255;
BEGIN

IF code<>O THEN BEGIN
Writeln(s,code);
Exit(TestSignals);

END;
END; {DoCatch}

code: INTEGER) ;

{this won't be caught in Never}
{all local CatchSignals are freed when a procedure exits.}

PROCEDURE Easy;
PROCEDURE Never;

PROCEDURE DoCatch(s:STR255; code:INTEGER);
BEGIN

IF code<>O THEN BEGIN
Writeln(s,code) ;
Exit (Never) ;

END;
END; {DoCatch}

BEGIN {Never}
i:=CatchSignal;
DoCatch('Signal caught from Never, code i);

i:=CatchSignal;
IF i<>O THEN DoCatch('Should never get here! ',i);

FreeSignal; {"free" the last CatchSignal}
Signal(7); {Signal a 7 to the last CatchSignal}
END; {Never}

BEGIN {Easy}
Never;
Signal(69);
END; {Easy}

BEGIN {PROGRAM}
InitSignals; {You must call this early on!}

{catch Signals not otherwise caught by the program}
i:=CatchSignal;
IF i<>O THEN
DoCatch('Signal caught from main, code ',i);

Easy;
END.

The example program produces the following two lines of output:

Signal caught from Never, code = 7
Signal caught from main, code = 69

•

•
Technical Note #88 page 6 of6 Signals

•
Macintosh Technical Notes

#89: DrawPicture Bug

Written by:
Updated:

Ginger Jernigan August 16, 1986
March 1, 1988

•

•

Earlier versions of this note described a bug in DrawPicture. This bug never
occurred on 64K ROM machines, and has been fixed in System 3.2 and
newer. Use of Systems older than 3.2 on non-64K ROM machines is no
longer recommended.

Technical Note #89 page 1 of 1 DrawPicture Bug

•

•

•

Macintosh Technical Notes

• #90: SANE Incompatibilities

Written by:
Updated:

Mark Baumwell August 14, 1986
March 1, 1988

Earlier versions of this note described a problem with SANE and System 2.0.
Use of System 2.0 is only recommended for Macintosh 128 machines, which
contain the 64K ROMs. Information specific to 64K ROM machines has been
deleted from Macintosh Technical Notes for reasons of clarity.

•

•
Technical Note #90 page 1 of 1 SANE Incompatibilities

•

•

•

Macintosh Technical Notes

• #91 : Optimizing for the LaserWriter-Picture Comments

See also: The Print Manager
QuickDraw
Technical Note #72-

Optimizing for the LaserWriter-Techniques
Technical Note #27-MacDraw Picture Comments
PostScript Language Reference Manual, Adobe Systems
PostScript Language Tutorial and Cookbook,

Adobe Systems
LaserWriter Reference Manual

Written by:
Modified by:
Updated:

Ginger Jernigan
Ginger Jernigan

November 15, 1986
March 2, 1987
March 1, 1988

•

•

This technical note is a continuation of Technical Note #72. This technicalnote discusses the picture comments that the LaserWriter driver recognizes.

This technical note has been modified to include corrected descriptions ofthe SetLineWidth, PostScriptFile and ResourcePS comments and toinclude some additional warnings.

The implementation of QuickDraw's picComment facility by the LaserWriter driver allowsyou to take advantage of features (like rotated text) which are available in PostScript butmay not be available in QuickDraw.

Warning: Using PostScript-specific comments will make your code printer-dependentand may cause compatibility problems with non-PostScript devices, so don't use themunless you absolutely have to.

Some of the picture comments below are designed to be issued along with QuickDrawcommands that simulate the commented commands on the Macintosh screen. When thecomments are used, the accompanying QuickDraw comments are ignored. If you aredesigning a picture to be printed by the LaserWriter, the structure and use of thesecomments must be precise, otherwise nothing will print. If another printer driver (like theImageWriter 111/ driver) has not implemented these comments, the comments are ignoredand the accompanying QuickDraw commands are used.

Technical Note #91 page 1 of 18 LaserWriter Picture Comments

Below are the picture comments that the LaserWriter driver recognizes:

* PostScriptBegin 190

* PostScriptEnd 191

* PostScriptHandle 192

*t PostScriptFile 193

* TextIsPostScript 194

*t ResourcePS 195

Type

TextBegin
TextEnd

StringBegin

StringEnd

TextCenter

* LineLayoutOff

* LineLayoutOn

PolyBegin

PolyEnd

PolyIgnore

PolySmooth

picPlyClo

* DashedLine

* DashedStop

* SetLineWidth

**RotateBegin

**RotateEnd

**RotateCenter

Kind

150
151
152
153
154

155
156

160
161
163
164
165

180
181
182

200
201
202

Data Size

6

o
o
o
8

o
o

o
o
o
1

o

o
4

o
o

o
8

4

o
8

Data

TTxtPicRec

NIL
NIL
NIL
TTxtCenter

NIL
NIL

NIL
NIL
NIL
PolyVerb

NIL

TDashedLine

NIL
Point

NIL
NIL
PSData
FileName

NIL
Type!ID!Index

TRotation

NIL
Center

Description

Begin text function

End text function

Begin pieces of original string

End pieces of original string

Offset to center of rotation

Turns LaserWriter line layout off

Turns LaserWriter line layout on

Begin special polygon

End special polygon

Ignore following poly data

Close, Fill, Frame

Close the poly

Draw following lines as dashed

End dashed lines

Set fractional line widths

Set driver state to PostScript

Restore QuickDraw state

PostScript data in handle

FileName in data handle

QuickDraw text is sent as PostScript

PostScript data in a resource file

Begin rotated port

End rotation

Offset to center of rotation

•

•**FormsPrinting 210

**EndFormsPrinting 211

o
o

NIL
NIL

Don't clear print buffer after each page

End forms printing after PrClosePage

*
**

t

These comments are only implemented in LaserWriter driver 3.0 or later.

These comments are only implemented in LaserWriter driver 3.1 or later.

These comments are not available when background printing is enabled.

Each of these comments are discussed below in six groups: Text, Polygons, Lines,

PostScript, Rotation, and Forms. Code examples are given where appropriate. For other

examples of how to use picture comments for printing please see the Print example

program in the Software Supplement (currently available through APDA as "Macintosh

Example Applications and Sources 1.0").

Note: The examples used in the LaserWriter Reference Manual are incorrect. Please

use the examples presented here instead.

•
Technical Note #91 page 2 of 18 LaserWriter Picture Comments

tFlip: Byte;
tRot: INTEGER;
tLine: Byte;
t.cmnt : Byte;

END; { TTxtpicRec

•

•

•

Text

In order to support the What-You-See-Is-What-You-Get paradigm, the LaserWriter driver
uses a line layout algorithm to assure that the placement of the line on the printer closely
approximates the placement of the line on the screen. This means that the printer driver
gets the width of the line from QuickDraw, then tells PostScript to place the text in exactly
the same place with the same width.

The TextBegin comment allows the application to specify the layout and the orientation
of the text that follows it by specifying the following information:

TTxtpicRec = PACKED RECORD
tJus: Byte; {O,1,2,3,4 or greater => none, left, center, right, full

justification }
{O,1,2 => none, horizontal, vertical coordinate flip}
{O •. 360 => clockwise rotation in degrees}
{1,2,3 .. => single, 1-1/2, double .. spacing}
{Reserved }
}

Left, right or center justification, specified by tJust, tells the driver to maintain only the
left, right or center point, without recalculating the interword spacing. Full justification
specifies that both endpoints be maintained and interword spacing be recalculated. This
means that the driver makes sure that the specified points are maintained on the printer
without caring whether the overall width has changed. Full justification means that the
overall width of the line has been maintained. tF lip and tRot specify the orientation of
the text, allowing the application to take advantage of the rotation features of PostScript.
tLine specifies the interline spacing. When no TextBegin comment is used, the
defaults are full justification, no rotation and single-spaced lines.

String Reconstruction

The StringBegin and StringEnd comments are used to bracket short strings of text
that are actually sections of an original long string. MacDraw, for instance, breaks long
strings into shorter pieces to avoid stack overflow problems with QuickDraw in the 64K
ROM. When these smaller strings are bracketed by StringBegin and StringEnd, the
LaserWriter driver assumes that the enclosed strings are parts of one long string and will
perform its line layout accordingly. Erasing or filling of background rectangles should
take place before the StringBegin comment to avoid confusing the process of putting
the smaller strings back together.

Text Rotation

In order to rotate a text object, PostScript needs to have information concerning the
center of rotation. The TextCenter comment provides this information when a rotation
is specified in the TextBeg in comment. This comment contains the offset from the
present pen location to the center of rotation. The offset is given as the y-component,
then the x-component, which are declared as fixed-point numbers. This allows the
center to be in the middle of a pixel. This comment should appear after the TextBegin
comment and before the first following St r ingBeg in comment.

Technical Note #91 page 3 of 18 LaserWriterPicture Comments

The associated comment data looks like this:

TTxtCenter = RECORD
y,x: Fixed; {offset from current pen location to center of rotation}

END; { TTxtCenter } ~

Right after a TextBegin comment, the LaserWriter driver expects to see a TextCenter
comment specifying the center of rotation for any text enclosed within the text comment
calls. It will ignore all further CopyB its calls, and print all standard text calls in the
rotation specified by the information in TTxtP icRec. The center of rotation is the offset
from the beginning position of the first string following the TextCenter comment. The
printer driver also expects the string locations to be in the coordinate system of the
current QuickDraw port. The printer driver rotates the entire port to draw the text so it can
draw several strings with one rotation comment and one center comment. It is good
practice to enclose an entire paragraph or paragraphs of text in a single rotation
comment so that the driver makes the fewest number of rotations.

The printer driver can draw non-textual objects within the bounds of the text rotation
comments but it must unrotate to draw the object, then re-rotate to draw the next string of
text. To do this the printer driver must receive another TextCenter comment before
each new rotation. So, rotated text and unrotated objects can be drawn inter-mixed
within one TextBegin/TextEnd comment pair, but performance is slowed.

Note that all bit maps and all clip regions are ignored during text rotation so that clip
regions can be used to clip out the strings on printers that can't take advantage of these
comments. This has the unfortunate side effect of not allowing rotated text to be clipped.

Rotated text comments are not associated with landscape and portrait orientation of the
printer paper as selected by the Page Setup dialog. These are rotations with reference
to the current QuickDraw port only.

All of the above text comments are terminated by a TextEnd comment.

Turning Off Line Layout

If your application is using its own line layout algorithm (it uses its own character widths
or does its own character or word placement), the printer driver doesn't need to do it too.
To turn off line layout, you can use the LineLayoutOff comment. LineLayoutOn turns
it on again.

Turning on FractEnable for the 128K ROMs has the same effect as LineLayoutOff.
When the driver detects that FractEnable has been turned on, line layout is not
performed. The driver assumes that all text being printed is already spaced correctly for
the LaserWriter and just sends it as is.

~

~

Technical Note #91 page 4 of 18 LaserWriter Picture Comments

•

•

•

Polygons

The polygon comments are recognized by the LaserWriter driver because they are used
by MacDraw as an alternate method of defining polygons.

The PolyBegin and PolyEnd comments bracket polygon line segments, giving an
alternate way to specify a polygon. All StdLine calls between these two comments are
part of the polygon. The endpoints of the lines are the vertices of the polygon.

The picP lyClo comment specifies that the current polygon should be closed. This
comes immediately after PolyBegin, if at all. It is not sufficient to simply check for begPt
= endPt, since MacDraw allows you to create a "closed" polygon that isn't really closed.
This comment is especially critical for smooth curves because it can make the difference
between having a sharp corner or not in the curve.

These comments also work with the StdPoly call. If a FillRgn is encountered before
the PolyEnd comment, then the polygon is filled. Unlike QuickDraw polygons, comment
polygons do not require an initial MoveTo call within the scope of the polygon comment.
The polygon will be drawn using the current pen location at the time the polygon
comment is received. The pen must be set before the polygon comment is called.

Splines

A spline is a method used to determine the smallest number of points that define a
curve. In MacDraw, splines are used as a method for smoothing polygons. The vertices
of the underlying unsmoothed polygon are the control nodes for the quadratic B-spline
curve which is drawn. PostScript has a direct facility for cubic B-splines and the
LaserWriter translates the quadratic B-spline nodes it gets into the appropriate nodes for
a cubic B-spline that will exactly emulate the original quadratic B-spline.

The PolySmooth comment specifies that the current polygon should be smoothed. This
comment also contains data that provides a means of specifying which verbs to use on
the smoothed polygon (bits 7 through 3 are not currently assigned):

TPolyVerb = PACKED RECORD
f7, f6, fS, f4, f3, fPolyClose, fPolyFill, fPolyframe : Boolean;

END; { TPolyVerb }

Although the closing information is redundant with the picP lyClo comment, it is
included for the convenience of the LaserWriter.

The LaserWriter uses the pen size at the time the PolyBegin comment is received to
frame the smoothed polygon if framing is called for by the TPolyVerb information. When
the Poly Ignore comment is received by the LaserWriter driver, all further StdLine
calls are ignored until the PolyEnd comment is encountered. For polygons that are to be
smoothed, set the initial pen width to zero after the PolyBegin comment so that the
unsmoothed polygon will not be drawn by other printers not equipped to handle polygon
comments. To fill the polygon, call StdRgn with the fill verb and the appropriate pattern
set, as well as specifying fill in the PolySmooth comment.

Technical Note #91 page 5 of 18 LaserWriter Picture Comments

Lines

The DashedLine and DashedLineStop comments are used to communicate PostScript
information for drawing dashed lines.

The DashedLine comment contains the following additional data: •
TDashedLine = PACKED RECORD

offset: SignedByte;
centered: SignedByte;

dashed: Array[O .. l] of SignedByte;
END; { TDashedLine }

{Offset as specified by PostScript}
{Whether dashed line should be
centered to begin and end points}

{1st byte is # bytes following}

The printer driver sets up the PostScript dashed line command, as defined on page 214
of Adobe's PostScript Language Reference Manual, using the parameters specified in
the comment. You can specify that the dashed line be centered between the begin and
end points of the lines by making the centered field nonzero.

The SetLineWidth comment allows you to set the pen width of all subsequent objects
drawn. The additional data is a point. The vertical portion of the point is the numerator
and the horizontal portion is the denominator of the scaling factor that the horizontal and
vertical components of the pen are then multiplied by to obtain the new pen width. For
example, if you have a pen size of 1,2 and in your line width comment you use 2 for the
horizontal of the point and 7 for the vertical, the pen size will then be (7/2)*1 pixels wide
and (7/2)*2 pixels high.

Below is an example of how to use the line comments:

PROCEDURE LineTest;
{This procedure shows how to do dashed lines and how to change the line width}
CONST

DashedLine = 180;
DashedStop = 181;
SetLineWidth = 182;

•
TYPE

DashedHdl ADashedptr;
Dashedptr ATDashedLine;
TDashedLine = PACKED RECORD

offset: SignedByte;
Centered: SignedByte;
dashed: Array[O .. l] of SignedByte;

END; { TDashedLine }
widhdl = Awidptr;
widptr = Awidpt;
widpt = Point;

{ the Oth element is the length }

VAR
arect
Width
dashedln

recti
Widhdl;
DashedHd1; •

Technical Note #91 page 6 of 18 LaserWriter Picture Comments

•

•

•

BEGIN {LineTest}
Dashedln := dashedhdl(NewHandle(sizeof(tdashedline»);
DashedlnAA.offset := 0; { No offset}
DashedlnAA.centered := 0; { don't center}
Dashedln A A. dashed [0] . = 1; {this is the length }
DashedlnAA.dashed[l] := 8; { this means 8 points on, 8 points off}

Width := widhdl(NewHandle(sizeof(widpt»);
WidthAA.h .= 2; { denominator is 2}
WidthAA.V := 7; { numerator is 7}

myPic := OpenPicture(theWorld);
SetPen(1,2); { Set the pen size to 1 wide x 2 high}
ClipRect(theWorld);
MoveTo(20,20);
DrawString('Do line test');
PicComment(DashedLine,GetHandleSize(Handle(dashedln»,Handle(dashedln»;
PicComment(SetLineWidth,4,Handle(width»; {SetLinewidth}
SetRect(arect,lOO,lOO,SOO,SOO);
FrameRect(aRect);
MoveTo(SOO,SOO);
Lineto(lOO,lOO);
PicComment(DashedStop,O,nil); {DashedStop}

ClosePicture;
DisposHandle(handle(width»; {Clean up}
DisposHandle(handle(dashedln»;
PrintThePicture; {print it please}
KillPicture(MyPic);

END; {LineTest}

Technical Note #91 page 7 of 18 LaserWriter Picture Comments

PostScript

The PostScript comments tell the printer driver that the application is going to be
communicating with the LaserWriter directly using PostScript commands instead of •
QuickDraw. The driver sends the accompanying PostScript to the printer with no
preprocessing and no error checking. The application can specify data in the comment
handle itself or point to another file which contains text to send to the printer. When the
application is finished sending PostScript, the PostScriptEnd comment tells the printer
driver to resume normal QuickDraw mode.

Any Quickdraw drawing commands made by the application between the
PostScriptBegin and PostScriptEnd comments will be ignored by PostScript
printers. In order to use PostScript in a device independent way, you should always
include two representations of your document. The first representation should be a
series of Quickdraw drawing commands. The second representation of your document
should be a series of PostScript commands, sent to the Printing Manager via picture
comments. This way, when you are printing to a PostScript device, the picture comments
will be executed, and the Quickdraw commands ignored. When printing to a
non-PostScript device, the picture comments will be ignored, and the Quickdraw
commands will be executed. This method allows you to use PostScript, without having
to ask the device if it supports it. This allows your application to get the best results with
any printer, without being device dependent.

Here are some guidelines you need to remember:

• The graphic state set up during QuickDraw calls is maintained and is not affected by
PostScript calls made with these comments.

• The header has changed a number of parameters so sometimes you won't get the
results you expect. You may want to take a look at the header listed in The LaserWriter
Reference Manual available through APDA.

• The header changes the PostScript coordinate system so that the origin is at the
top-left corner of the page instead of at the bottom-left corner. This is done so that the
QuickDraw coordinates that are used don't have to be remapped into the standard
PostScript coordinate system. If you don't allow for this, all drawing is printed upside
down. Please see the PostScript Language Reference Manual for details about
transformation matrices.

• Don't call showpage. This is done for you by the driver. If you do, you won't be able to
switch back to QuickDraw mode and an additional page will be printed when you call
PrClosePage.

• Don't call exitserver. You may get very strange results.
• Don't call initgraphics. Graphics states are already set up by the header.

• Don't do anything that you expect to live across jobs.

• You won't be able to interrogate the printer to get information back through the driver.

•

•
Technical Note #91 page 8 of 18 LaserWriter Picture Comments

•

•

The PostScriptBegin comment sets the driver state to prepare for the generation of
PostScript by the application by calling gsave to save the current state. PostScript is
then sent to the printer by using comments 192 through 195. The QuickDraw state of the
driver is then restored by the PostScriptEnd comment. All QuickDraw operations that
occur outside of these comments are performed; no clipping occurs as with the text
rotation comments.

PostScript From a Text Handle

When the PostScriptHandle comment is used, the handle PSData points to the
PostScript commands which are sent. PSData is a generic handle that points to text,
without a length byte. The text is terminated by a carriage return. This comment is
terminated by a PostScriptEnd comment.

Note: Due to a bug in the 3.1 LaserWriter driver, PostScriptEnd will not restore the
QuickDraw state after the use of a PostScriptHandle comment. The workaround is to
only use this comment at the end of your drawing, after you have made all the
QuickDraw calls you need. This problem is fixed in more recent versions of the driver.

Here's an example of how to use this comment:

PROCEDURE PostHdl;
{this procedure shows how to use PostScript from a text Handle}
CONST

PostScriptBegin = 190;
PostScriptEnd = 191;
PostScriptHandle = 192;

VAR

MyString
tempstr
MyHandle
err

Str255;
String [1] ;
Handle;
OSErr;

{Clean up}
{print it please}

•

BEGIN { PostHdl }
MyString := '/Times-Roman findfont 12 scalefont set font 230 600 moveto

(Hello World) show';
tempstr:=' ';
tempstr[l] := chr(13); {has to be terminated by a carriage return}
MyString := Concat(MyString, tempstr); { in order for it to execute}
err := PtrToHand (Pointer(ord(@myString)+l), MyHandle, length(MyString»;
Mypic := OpenPicture(theWorld);

ClipRect(theWorld);
MoveTo(20,20);
DrawString('PostScript from a Handle');
PicComment(PostScriptBegin,O,nil); {Begin PostScript}
PicComment(PostScriptHandle,length(mystring),MyHandle);
PicComment(PostScriptEnd,O,nil); {PostScript End}

Closepicture;
DisposHandle(MyHandle);
PrintThePicture;
KiIIPicture(MyPic);

END; { PostHdl }

Technical Note #91 page 9 of18 LaserWriter Picture Comments

Defining PostScript as QuickDraw Text

All QuickDraw text following the Text IsPostScript comment is sent as PostScript. No

error checking is performed. This comment is terminated by a PostScriptEnd

comment.

Here is an example:

PROCEDURE PostText;
{Shows how to use PostScript in strings in a QuickDraw picture}

CONST
PostScriptBegin = 190;

PostScriptEnd = 191;

TextIsPostScript = 194;

•

BEGIN { PostTest }
MyPic := Openpicture(theWorld);

ClipRect(theWorld);

MoveTo(20,20);
DrawString('TextIsPostScript Comment');

PicComment(postScriptBegin,O,nil);

PicComment(TextIspostScript,O,nil);

DrawString('O 728 translate');

DrawString('l -1 scale');

{Begin PostScript}
{following text is PostScript}

{move the origin and rotate the}

{coordinate system}

DrawString('newpath');

DrawString('100 470 moveto');

DrawString('SOO 470 lineto');

DrawString('100 330 moveto');

DrawString('SOO 330 lineto');

DrawString('230 600 moveto');

DrawString('230 200 lineto');

DrawString('370 600 moveto');

DrawString('370 200 lineto');

DrawString('10 setlinewidth');

DrawString('stroke');

DrawString('/Times-Roman findfont 12 scalefont setfont');

DrawString('230 600 moveto');

DrawString(' (Hello World) show');

PicComment(postScriptEnd,O,nil); {PostScriptEnd}

ClosePicture;
PrintThePicture; {print it please}

KillPicture(MyPic);

END; { PostText }

•

•
Technical Note #91 page 100t 18 LaserWriter Picture Comments

•

•

•

PostScript From a File

The PostScriptFile and ResourcePS comments allow you to send PostScript to the
printer from a resource file. Before these comments are described there are some
restrictions you need to follow:

• Don't ever copy a picture containing these comments to the clipboard. If it is pasted
into another application and the specified file or resource is not available, printing will
be aborted and the user won't know what went wrong. This could be very confusing to
a user. If you want the PostScript information to be available when printed from
another application, use one of the other comments and include the information in the
picture.

• Don't keep the PostScript in a separate file from the actual data file. If the data file
ever gets moved without the PostScript file, when the picture is printed the data file
may not be found and the print job will be aborted, again without the user knowing
what went wrong. Keeping the data and PostScript in the same file will forestall many
headaches for you and the user.

Now, a description of the comments:

The PostScriptFile comment tells the driver to use the POST type resources
contained in the file FileNameString. FileNameString is declared as a Str255.

When this comment is encountered, the driver calls OpenResFile using the file name
specified in FileNameString. It then calls GetResource ('POST' ,theID);
repeatedly, where the I D begins at 501 and is incremented by one for each
GetResource call. If the driver gets a ResNotFound error, it closes the specified
resource file. If the first byte of the resource is a 3, 4, or 5 then the remaining data is sent
and the file is closed.

The format of the POST resource is as follows: The IDs of the resources start at 501 and
are incremented by one for each resource. Each resource begins with a 2 byte data field
containing the data type in the first byte and a zero in the second. The possible values
for the first byte are:

o ignore the rest of this resource (a comment)
1 data is ASCII text
2 data is binary and is first converted to ASCII before being sent
3 AppleTalk end of file. The rest of the data, if there is any, is interpreted as ASCII text

and will be sent after the EOF.
4 open the data fork of the current resource file and send the ASCII text there
5 end of the resource file

The second byte of the field must always be zero. Resources should be kept small,
around 2K. Text and binary should not be mixed in the same resource. Make sure you
include either a space or a return at the end of each PostScript string to separate it from
the following command.

Technical Note #91 page 110118 LaserWriter Picture Comments

Here's an example:

PROCEDURE postFile;
{This procedure shows how to use PostScript from a specified FILE}

CONST
PostScriptBegin = 190;

PostScriptFile = 193;

PostScriptEnd = 191;
•

VAR
MyString
MyHandle
err

Str255;
Handle;
OSErr;

BEGIN {PostFile}
{You should never do this in a real program. This is only a test.}

MyString := 'HardDisk:MPW:Print Examples:PSTestDoc';

err := PtrToHand(pointer(MyString),MyHandle,length(MyString) + 1);

MyPic := Openpicture(theWorld);

ClipRect(theWorld);

MoveTo(20,20);
DrawString('PostScriptFile Comment');

PicComment(postScriptBegin,O,nil); {Begin PostScript}

PicComment(postScriptFile,GetHandleSize(MyHandle),MyHandIe);

PicComment(PostScriptEnd,O,nil); {PostScriptEnd}

MoveTo(50,50);
DrawString('PostScriptEnd has terminated');

ClosePicture;
DisposHandle(MyHandle); {Clean up}

PrintthePicture; {print it please}

KillPicture(MyPic);
END; {postFile}

Here are the resources:

•
type 'POST' {

switch {
case Comment:

key bitstring [8]
fill byte;
string;

/* this is a comment */

0;

case ASCII: /* this is just ASCII text */

key bitstring [8] = 1;

fill byte;
string;

case Bin: /* this is binary */

key bitstring[8] = 2;

fill byte;
string;

case ATEOF: /* this is an AppleTalk EOF */

key bitstring[8] = 3;
fill byte;
string; •

Technical Note #91 page 120f 18 LaserWriter Picture Comments

case DataFork: /* send the text in the data fork */
key bitstring[8] = 4;
fill byte;

•
} ;

case EOF:
key bitstring[8]
fill byte;

} ;

/* no more */
= 5;

•

•

resource 'POST' (501) {
ASCII{"O 728 translate "}};

resource 'POST' (502) {
ASCII{"l -1 scale "}};

resource 'POST' (503)
ASCII{"newpath "}};

resource 'POST' (504)
ASCII{"100 470 moveto "}};

resource 'POST' (505)
ASCII{"500 470 lineto "}};

resource 'POST' (506)
ASCII{"100 330 moveto "}};

resource 'POST' (507)
ASCII{"500 330 lineto "}};

resource 'POST' (508)
ASCII{"230 600 moveto "}};

resource 'POST' (509)
ASCII{"230 200 lineto "}};

resource 'POST' (510)
ASCII{"370 600 moveto "}};

resource 'POST' (511)
ASCII{"370 200 lineto "}};

resource 'POST' (512) {
ASCII{"10 setlinewidth "}};

resource 'POST' (513)
ASCII{"stroke "}};

resource 'POST' (514) {
ASCII{"/Times-Roman findfont 12 scalefont set font "}};

resource 'POST' (515)
ASCII{"230 600 moveto "}};

resource 'POST' (516) (
ASCII{" (Hello World) show"}};

Technical Note #91 page 130118 LaserWriter Picture Comments

/* It will stop reading and close the file after 517 */

resource 'POST' (517) {

EOF
{ } } ;

/* it never gets here */
resource 'POST' (518) {

DataFork
{ } } ;

When the ResourceP S comment is encountered, the LaserWriter driver sends the text

contained in the specified resource as PostScript to the printer. The additional data is

defined as

•

PSRsrc RECORD
PSType
PSID
PSIndex:

END,·

ResType;
INTEGER;
INTEGER;

The resource can be of type STR or STR#. If the Type is STR then the index should be O.

Otherwise an index should be given.

This comment is essentially the same as the PrintF control call to the driver. The

imbedded command string it uses is '''r''n', which basically tells the driver to send the

string specified by the additional data, then send a newline. For more information about

printer control calls see the LaserWriter Reference Manual.

Here's an example:

PROCEDURE PostRSRC;

{This procedure shows how to get PostScript from a resource FILE}

CaNST
PostScriptBegin = 190;

PostScriptEnd = 191;

ResourcePS = 195;

TYPE
theRSRChdl = AtheRSRCptr;

theRSRCptr = AtheRSRC;

theRSRC = RECORD
theType: ResType;

theID: INTEGER;
Index: INTEGER;

END;

•

VAR
temp
TheResource
i, j
myport
err
atemp

Technical Note #91

Rect;
theRSRChdl;
INTEGER;
Gra f P't.z r

INTEGER;
Boolean;

page 140118 LaserWriter Picture Comments

•

•

•

•

BEGIN { PostRSRC }
TheResource := theRSRChdl(NewHandle(SizeOf(theRSRC)));
TheResourceAA.theID := 500;
TheResourceAA.Index := 0;
TheResourceAA.theType := 'STR ';
HLock(Handle(TheResource));
MyPic := openPicture(theWorld);
DrawString('ResourcepS Comment');
PicComment(PostScriptBegin,O,nil); {Begin PostScript}
PicComment(ResourcePS,8,Handle(TheResource)); {Send postscript}PicComment(PostScriptEnd,O,nil); {PostScriptEnd}
ClosePicture;
DisposHandle(Handle(TheResource)); {Clean up}
PrintthePicture; {print it please}
KillPicture(MyPic);

END; { PostRSRC

Here's the resource:

resource 'STR ' (500)
{"a 728 translate 1 -1 scale newpath 100 470 moveto 500 470 lineto 100 330moveto 500 330 lineto 230 600 moveto 230 200 lineto 370 600 moveto 370 200lineto 10 setlinewidth stroke /Times-Roman findfont 12 scalefont set font 230600 moveto (Hello World) show"
} ;

Technical Note #91 page 150118 LaserWriter Picture Comments

Rotation

The concept of rotation doesn't apply to text alone. PostScript can rotate any object. The

rotation comments work exactly like text rotation except that all objects drawn between •

the two comments are drawn in the rotated coordinate system specified by the center of

rotation comment, not just text. Also, no clipping of CopyB its calls occurs. These

comments only work on the 3.1 and newer LaserWriter drivers.

The RotateBegin comment tells the driver that the following objects will be drawn in a

rotated plane. This comment contains the following data structure:

Rotation = RECORD
Flip: INTEGER; {0,1,2 => none, horizontal, vertical coordinate flip}

Angle: INTEGER; {0 .. 360 => clockwise rotation in degrees}

END; { Rotation }

When you are finished, the RotateEnd comment returns the coordinate system to

normal, terminating the rotation.

The relative center of rotation is specified by the RotateCenter comment in exactly

the same manner as the TextCenter comments. The difference, however, is that this

comment must appear before the RotateBegin comment. The data structure of the

accompanying handle is exactly like that for the TextCenter comment.

Here's an example of how to use rotation comments:

PROCEDURE Test;
{This procedure shows how to do rotations}

CONST
RotateBegin = 200;
RotateEnd = 201;
RotateCenter = 202;

TYPE
rothdl = "rotptr;
rotptr = "trot;
trot = RECORD

flip : INTEGER;
Angle : INTEGER;

END; { trot }
centhdl = "centptr;

centptr = "cent;
Cent = PACKED RECORD

yInt: INTEGER;
yFrac: INTEGER;
xInt: INTEGER;
xFrac: INTEGER;

END; Cent}

•

VAR
arect
rotation
center

Technical Note #91

Rect;
rothdl;
centhdl;

page 160f 18 LaserWriter Picture Comments

•

{no flip}
{15 degree rotation}•

BEGIN { Test }
rotation := rothdl(NewHandle(sizeof(trot»);
rotationAA.flip := 0;
rotationAA.angle := 15;

center := centhdl(NewHandle(sizeof(cent»);
centerAA.xInt := 50;
centerAA.yInt := 50;
centerAA.xFrac := 0;
centerAA.yFrac := 0;

myPic := OpenPicture(theWorld);
ClipRect(theWorld);
MoveTo(20,20);
DrawString('Begin Rotation');

{center at 50,50}

{no fractional part}

•

•

{set the center of Rotation}
PicComment(RotateCenter,GetHandleSize(Handle(center»,Handle(center»;{Begin Rotation}

PicComment(RotateBegin,GetHandleSize(Handle(rotation»,Handle(rotation»;SetRect(arect,100,100,500,500);
FrameRect(aRect);
MoveTo(500,500);
Lineto(100,100);
PicComment(RotateEnd,O,nil); {RotateEnd}

ClosePicture;
DisposHandle(handle(rotation»; {Clean up}
DisposHandle(handle(center»;
PrintThePicture;

{printit please}
KillPicture(MyPic);

END; { Test }

Technical Note #91 page 170f 18 LaserWriter Picture Comments

Forms

The two form printing comments allow you to prepare a template to use for printing.

When the FormsBegin comment is used, the LaserWriter's buffer is not cleared after •

PrClosePage. This allows you to download a form then change it for each subsequent

page, inserting the information you want. FormsEnd allows the buffer to be cleared at

the next PrClosePage.

•

•
Technical Note #91 page 180118 LaserWriter Picture Comments

•
Macintosh Technical Notes

#92: The Appearance of Text

See also: The Printing Manager
The Font Manager
Technical Note #91-

Optimizing for the LaserWriter-Picture Comments

Written by:
Updated:

Ginger Jernigan November 15, 1986
March 1, 1988

•

•

This technical note describes why text doesn't always look the way you
expect depending on the environment you are in.

There are a number of Macintosh text editing applications where layout is critical.
Unfortunately, text on a newer machine sometimes prints differently than text on a 64K
ROM Macintosh. Let's examine some differences you should expect and why.

The differences we will consider here are only differences in the layout of text lines (line
layout), not differences in the appearance of fonts or the differences between different
printers. Differences in line layout may affect the position of line, paragraph and page
breaks. The four variables that can affect line layout are fonts, the printer driver, the font
manager mode, and ROMs.

Fonts

Every font on a Macintosh contains its own table of widths which tells QuickDraw how
wide characters are on the screen. For every style point size there is a separate table
which may contain widths that vary from face to face and from point size to point size.
Character widths can vary between point sizes of characters even in the same face. In
other words, fonts on the screen are not necessarily linearly scalable.

Non-linearity is not normally a problem since most fonts are designed to be as close to
linear as possible. A font face in 6 point has very nearly the same scaled widths of the
same font face in 24 point (plus or minus round-off or truncation differences).
QuickDraw, however, requires only one face of any particular font to be in the System
file to use it in any point size. If only a 10 point face actually exists, QuickDraw may scale
that face to 9, 18, 24 (or whatever point size) by performing a linear scale of the 10 point
face.

Technical Note #92 page 1 of3 The Appearanceof Text

This can cause problems. Suppose a document is created on one Macintosh containing

a font that only exists in that System file in one point size, say 9 point. The document is

then taken to another Macintosh with a System file containing that same font but only in

24 point. The document may, in fact, appear differently on the two screens, and when it •

is printed, will have line breaks (and thus paragraph and page breaks) occurring in ...

different places simply because of the differences in character widths that exist between

the 9 point and 24 point faces.

The Printer Driver

Even when the printer you are using has a much higher resolution than what the screen

can show, printer drivers perform line layout to match the screen layout as closely as

possible.

The line layout performed by printer drivers is limited to single lines of text and does not

change line break positions within multiple lines. The driver supplies metric information

to the application about the page size and printable area to allow the application to

determine the best place to make line and page breaks.

Printer driver line layout does affect word spacing, character spacing and even word

positioning within a line. This may affect the overall appearance of text, particularly

when font substitutions are made or various forms of page or text scaling are involved.

But print drivers NEVER change line, paragraph or page break positions from what the

application or screen specified. This means that where line breaks appear on the

screen, they will always appear in the same place on the printer regardless of how the •

line layout may affect the appearance within the line.

Operating System and ROMs

In this context, operating system refers to the ROM trap routines which handle fonts and

QuickDraw. Changes have occurred between the ROMs in the handling of fonts. Fonts

in the 64K ROMs contain width tables (as described above) which are limited to integer

values. Several new tables, however, have been added to fonts for the newer ROMs.

The newer ROMs add an optional global width table containing fractional or fixed point

decimal values. In addition, there is another optional table containing fractional values

which can be scaled for the entire range of point sizes for anyone face. There is also an

optional table which provides for the addition (or removal) of width to a font when its

style is changed to another value such as bold, outline or condensed. It is also possible,

under the 128K ROMs, to add fonts to the system with inherent style properties

containing their own width tables that produce different character widths from derived

style widths.

•
Technical Note #92 page 2 of 3 The Appearance of Text

•

•

•

One or all of the above tables mayor may not be invoked depending on, first, theirpresence, and second, the mode of the operating system. The Font Manager in thenewer ROMs allows the application to arbitrarily operate in either the fractional mode orinteger mode (determined, in most cases, by the setting of FractEnable) as it chooses,with the default being integer. There is one case where fractional widths will be used ifthey exist even though fractional mode is disabled. When FScaleDisable is usedfractional widths are always used if they exist regardless of the setting of FractEnable.

Differences in line layout (and thus line breaks) may be affected by any combination ofthe presence or absence of the optional tables, and the operating mode, either fractionalor integer, of the application. Any of the combinations can produce different results fromthe original ROMs (and from each other).

The integer mode on the newer ROMs is very similar to, but not exactly the same as, theoriginal 64K ROMs. When fonts with the optional tables present are used onMacintoshes with 64K ROMs, they continue to work in the old way with the integerwidths. However, on newer ROMs, even in the integer mode, there may be variations inline width from what is seen on the old ROMs. In the plain text style there is very little ifany difference (except if the global width table is present), but as various type styles areselected, line widths may vary more between ROMs.

Variations in the above options, by far, account for the greatest variation in theappearance of lines when a document is transported between one Macintosh andanother. Line breaks may change position when documents created on one system (saya Macintosh) are moved to another system (like a Macintosh Plus). Variations are morepronounced as the number and sizes of various type styles increase within a document.

In all cases, however, a printer driver will produce exactly the same line breaks asappear on the screen with any given system combination.

Technical Note #92 page 3 of3 The Appearance of Text

•

•

•
Macintosh Technical Notes

#93: MPW: {$LOAD}; _Datalnit;%_MethTables

See also:

Written by:
Modified by:
Updated:

MPW Reference Manuals

Jim Friedlander
Jim Friedlander

November 15, 1986
January 12, 1987
March 1, 1988

•

•

This technical note discusses the Pascal {$LOAD} directive as well as how to
unload the _DataInit and %_MethTables segments.

{$LOAD}

MPW Pascal has a {$LOAD} directive that can dramatically speed up compiles.

{$LOAD HD:MPW:PLibraries:PasSymDump}

will combine symbol tables of all units following this directive (until another {$LOAD}
directive is encountered), and dump them out to HD : MPW: PLibraries : PasSymDump. In
order to avoid using fully specified pathnames, you can use {$LOAD} in conjunction with
the - k option for Pascal:

Pascal -k "{PLibraries}" myfile

combined with the following lines in myfile:

USES
{$LOAD PasSymDump}

MemTypes,QuickDraw, OSIntf, ToolIntf, PackIntf,
{$LOAD} {This ~turns off" $LOAD for the next unit}

NonOptimized,
{$LOAD MyLibDump}

MyLib;

will do the following: the first time a program containing these lines is compiled, two
symbol table dump files (in this case PasSymDump and MyLibDump) will be created in
the directory specified by the -k option (in this case {PLibraries}). No dump file will
be generated for the unit NonOptimized. The compiler will compile MemTypes,
QuickDraw, OSIntf, Toollntf, Packlntf (quite time consuming) and dump those
units' symbols to PasSymDump and it will compile the interface to MyLib and dump its
symbols to MyLib. For subsequent compiles of this program (or any program that uses
the same dump file(s)), the interface files won't be recompiled, the compiler will simply
read in the symbol table.

Technical Note #93 page 1 of 3 MPW: {$LOAD} ;_Datalnit;%_MethTables

Compiling a sample five line program on a Macintosh Plus/HD20SC takes 62 seconds

without using the {$ LOAD} directive. The same program takes 10 seconds to compile

using the {$LOAD} directive (once the dump file exists). For further details about this

topic, please see the MPW Pascal Reference Manual.

Note: If any of the units that are dumped into a dump file change, you need to make

sure that the dump file is deleted, so that it can be regenerated by the Pascal compiler

with the correct information. The best way to do this is to use a makefile to check the

dump file against the files it depends on, and delete the dump file if it is out of date with

respect to any of the units that it contains. An excellent (and well commented) example

of doing this is in the MPW Workshop Manual.

The _Datalnit Segment

The Linker will generate a segment whose resource name is %A5Ini t for any program

compiled by the C or Pascal compilers. This segment is called by a program's main

segment. This segment is loaded into the application heap and locked in place. It is up

to your program to unload this segment (otherwise, it will remain locked in memory,

possibly causing heap fragmentation). To do this from Pascal, use the following lines:

PROCEDURE _DatalnitiEXTERNALi

BEGIN {main PROGRAM}

UnloadSeg(@_Datalnit)i

{remove data initialization code before any allocations}

From C, use the following lines:

extern _Datalnit()i

{ /* main */
UnloadSeg(_Datalnit)i

/*remove data initialization code before any allocations*/

For further details about Data Initialization, see the MPW Reference Manual.

•

•

•
Technical Note #93 page 2 of 3 MPW: {$LOAD} ;_Datalnit;%_MethTables

•

•

•

0/0 MethTables and 0/c» SelProcs

Object use in Pascal produces two segments which can cause heap problems. These
are % MethTables and % SelProcs which are used when method calls are made.- -
MacApp deals with them correctly, so this only applies to Object Pascal programs that
don't use MacApp. You can make the segments locked and preloaded (probably the
easiest route), so they will be loaded low in the heap, or you can unload them
temporarily while you are doing heap initialization. In the latter case, make sure there
are no method calls while they are unloaded. To reload % MethTables and
%_SelProcs, call the dummy procedure %_InitObj. %_InitObj loads %MethTables
-calling any method will then load % SelProcs.

Reminder: The linker is case sensitive when dealing with module names. Pascal
converts all module names to upper-case (unless a routine is declared to be a C
routine). The Assembler default is the same as the Pascal default, though it can be
changed with the CASE directive. C preserves the case of module names (unless a
routine is declared to be pascal, in which case the module name is converted to upper
case letters).

Make sure that any external routines that you reference are capitalized the same in both
the external routine and the external declaration (especially in C). If the capitalization
differs, you will get the following link error (library routine = f indme, program declaration
= extern FindMe () ;):

fff Link: Error Undefined entry, name: FindMe

Technical Note #93 page 3 013 MPW: {$LOAD} ;_Datalnit;%_MethTables

•

•

•

Macintosh Technical Notes

~ #94: Tags

See also:

Written by:
Updated:

The File Manager

Bryan Stearns November 15, 1986
March 1, 1988

~

~

Apple has decided to eliminate support for file-system tags on its future
products; this technical note explains this decision.

Some of Apple's disk products (and some third-party products) have the ability to store
532 bytes per sector, instead of the normal 512. Twelve of the extra bytes are used to
store redundant file system information, known as "tags", to be used by a scavenging
utility to reconstruct damaged disks.

Apple has decided to eliminate support for these tags on its products; this was decided
for several reasons:

1) Tags were implemented back when we had to deal with "Twiggy" drives on Lisa.
These drives were less reliable than current drives, and it was expected that tags would
be needed for data integrity.

2) We're working on a scavenging utility (Disk First Aid), and we've found that tags don't
help us in reconstructing damaged disks (ie, if we can't fix it without using tags, tags
wouldn't help us fix it). So, at least the first two versions of our scavenging utility will not
use tags, and a third version (which we've planned for, but will probably never
implement) can probably work without them.

3) 532-byte-per-sector drives and controllers tend to cost more, even at Apple's
volumes. Thus, the demise of tags saves us (and our customers) money. The Apple
Hard Disk 20SC currently supports tags; this may not always be the case, however; we'll
probably drop the large sectors when we run out of our current stock of drives.

The Hierarchical File System (HFS) documentation didn't talk about tags because the
writer had no information available about how they worked under HFS. Because of this
decision, it is unlikely that we'll ever have documentation on how to correctly implement
them under HFS.

Technical Note #94 page 1 of 1 Tags

•

•

•

•
Macintosh Technical Notes

#95: How To Add Items to the Print Dialogs

See also:

Written by:

Updated:

The Printing Manager
The Dialog Manager

Ginger Jernigan
Lew Rollins

November 15, 1986

March 1, 1988

•

•

This technical note discusses how to add your own items to the Printing
Manager's dialogs.

When the Printing Manager was initially designed, great care was taken to make the
interface to the printer drivers as generic as possible in order to allow applications to
print without being device-specific. There are times, however, when this type of
non-specific interface interferes with the flexibility of an application. An application may
require additional information before printing which is not part of the general Printing
Manager interface. This technical note describes a method that an application can use
to add its own items to the existing style and job dialogs.

Before continuing, you need to be aware of some guidelines that will increase your
chances of being compatible with the printing architecture in the future:

• Only add items to the dialogs as described in this technical note. Any other methods
will decrease your chances of survival in the future.

• Do not change the position of any item in the current dialogs. This means don't
delete items from the existing item list or add items in the middle. Add items only at
the end of the list.

• Don't count on an item retaining its current position in the list. If you depend on the
Draft button being a particular number in the ImageWriter's style dialog item list, and
we change the Draft button's item number for some reason, your program may no
longer function correctly.

• Don't use more than half the screen height for your items. Apple reserves the right to
expand the items in the standard print dialogs to fill the top half of the screen.

• If you are adding lots of items to the dialogs (Which may confuse users), you should
consider having your own separate dialog in addition to the existing Printing
Manager dialogs.

Technical Note #95 page 1 of 14 How To Add Items to the Print Dialogs

The Heart

Before we talk about how the dialogs work, you need to know this: at the heart of the
printer dialogs is a little-known data structure partially documented in the MacPrint •
interface file. It's a record called TPrDIg and it looks like this:

TPrDlg = RECORD {Print Dialog: The Dialog Stream object.}
dIg DialogRecord; {dialog window}
pFltrProc ProcPtr; {filter proc.}
pItemProc ProcPtr; {item evaluating proc.}
hPrintUsr THPrint; {user's print record.}
fDoIt BOOLEAN;
fDone BOOLEAN;
lUserl LONGINT; {four longs reserved by Apple}
lUser2 LONGINT;
lUser3 LONGINT;
lUser4 LONGINT;
iNumFst INTEGER; {numeric edit items for std filter}
iNumLst INTEGER;

{ ... plus more stuff needed by the particular printing dialog.}
END;
TPPrDlg = ~TPrDlg; {== a dialog ptr}

All of the information pertaining to a print dialog is kept in the TPrDlg record. This record
will be referred to frequently in the discussion below.

How the Dialogs Work

When your application calls PrStlDiaIog and PrJobDialog, the printer driver actually
calls a routine called P rDIgMain. This function is declared as follows:

FUNCTION PrDlgMain (hprint: THPrint; pDlgInit: ProcPtr): BOOLEAN;

PrDIgMain first calls the pDIglnit routine to set up the appropriate dialog (in DIg),
dialog hook (pltemProc) and dialog event filter (pFiIterProc) in the TPrDIg record
(shown above). For the job dialog, the address of PrJoblnit is passed to PrDIgMain.
For the style dialog, the address of PrStllnit is passed. These routines are declared
as follows:

FUNCTION PrJobInit (hPrint: THPrint): TPPrDlg;
FUNCTION PrStlInit (hPrint: THPrint): TPPrDlg;

After the initialization routine sets up the TPrDIg record, PrDIgMain calls Showwindow
(the window is initially invisible), then it calls ModalDialog, using the dialog event filter
pointed to by the pFItrProc field. When an item is hit, the routine pointed to by the
pltemProc field is called and the items are handled appropriately. When the OK button
is hit (this includes pressing Return or Enter) the print record is validated. The print
record is not validated if the Cancel button is hit.

•

•
Technical Note #95 page 2 of 14 How To Add Items to the Print Dialogs

•

•

How to Add Your Own Items

To modify the print dialogs, you need to change the TP rD 19 record before the dialog is
drawn on the screen. You can add your own items to the item list, replace the addresses
of the standard dialog hook and event filter with the addresses of your own routines and
then let the dialog code continue on its merry way.

For example, to modify the job dialog, first call PrJobInit. PrJobInit will fill in the
TPrDlg record for you and return a pointer to that record. Then call PrDlgMain directly,
passing in the address of your own initialization function. The example code's
initialization function adds items to the dialog item list, saves the address of the standard
dialog hook (in our global variable prPItemProc) and puts the address of our dialog
hook into the pItemProc field of the TPrDlg record. Please note that your dialog hook
must call the standard dialog hook to handle all of the standard dialog's items.

Note: If you wish to have an event filter, handle it the same way that you do a dialog
hook.

Now, here is an example (written in MPW Pascal) that modifies the job dialog. The same
code works for the style dialog if you globally replace 'Job' with 'Stl'. Also included is a
function (AppendDITL) provided by Lew Rollins (originally written in C, translated for this
technical note to MPW Pascal) which demonstrates a method of adding items to the item
list, placing them in an appropriate place, and expanding the dialog window's rectangle.

The MPW Pascal Example Program

PROGRAM ModifyDialogsi

USES
{$LOAD PasDump.dump}
MemTypes,QuickDraw,OSIntf,ToolIntf,PackIntf,MacPrint;

CONST
MyDITL = 256i
MyDFirstBox = Ii
MyDSecondBox = 2i

{Item number of first box in my DITL}

•

VAR
PrtJobDialog: TPPrDlgi {pointer to job dialog }
hPrintRec : THPrinti {Handle to print record }
FirstBoxValue, { value of our first additional box }
SecondBoxValue: Integer; { value of our second addtl. box
prFirstItem, { save our first item here }
prPIternProc : LongInti {we need to store the old itemProc here
itemType : Integeri {needed for GetDItem/SetDItem calls }
iternH : Handlei
iternBox : Recti
err OSErri
{--}

PROCEDURE _DataInit;
EXTERNALi

Technical Note #95 page 3 of 14 How To Add Items to the Print Dialogs

{--}

PROCEDURE CaIIIternHandler(theDialog: DialogPtr; theItem: Integer; theProc:

LongInt);
INLINE $205F,$4E90; MOVE.L (A7)+,AO

JSR (AD)

{ this code pops off theProc and then does a JSR to it, which puts the

real return address on the stack. }

{--}

FUNCTION AppendDITL(theDialog: DialogPtr; theDITLID: Integer): Integer;

{ version 0.1 9/11/86 Lew Rollins of Human-Systems Interface Group}

{ this routine still needs some error checking }

{ This routine appends all of the items of a specified DITL

onto the end of a specified DLOG - We don't even need to know the format

of the DLOG }

{ this will be done in 3 steps:

1. append the items of the specified DITL onto the existing DLOG

2. expand the original dialog window as required

3. return the adjusted number of the first new user item

}

TYPE
DITLItem = RECORD { First, a single item }

itrnHndl: Handle; { Handle or procedure pointer for this item

itmRect: Rect; { Display rectangle for this item}

itmType: SignedByte; { Item type for this item - 1 byte }

itmData: ARRAY [0 .. 0] OF SignedByte; { Length byte of data

END; {DITLItem}

•

•
pDITLItem
hDITLItem

"DITLItem;
"pDITLItem;

ItemList RECORD { Then, the list of items }

dlgMaxIndex: Integer; { Number of items minus 1 }

DITLItems: ARRAY [0 .. 0] OF DITLItem; { Array of items

END; {ItemList}

pItemList
hItemList

IntPtr

"ItemList;
"pItemList;

= "Integer;

VAR
offset : Point; {Used to offset rectangles of items being appended }

maxRect : Rect; {Used to track increases in window size }

hDITL hItemList; { Handle to DITL being appended }

pItem pDITLItem; { Pointer to current item being appended

hItems hItemList; { Handle to DLOG's item list}

firstItem Integer; { Number of where first item is to be appended

newItems, { Count of new items }

dataSize, { Size of data for current item }

i : Integer; { Working index }

USB RECORD {we need this because itmData[O] is unsigned}

CASE Integer OF •
Technical Note #95 page 4 of 14 How To Add Items to the Print Dialogs

• BEGIN

1:
(SBArray: ARRAY [O .. lJ OF SignedByte);

2:
(Int: Integer);

END; {USB}

{AppendDITL}

•

•

{

Using the original DLOG

1. Remember the original window Size.
2. Set the offset Point to be the bottom of the original window.
3. Subtract 5 pixels from bottom and right, to be added

back later after we have possibly expanded window.
4. Get working Handle to original item list.
5. Calculate our first item number to be returned to caller.
6. Get locked Handle to DITL to be appended.
7. Calculate count of new items.

}

maxRect := DialogPeek(theDialog)A.window.port.portRect;
offset.v := maxRect.bottom;
offset.h := 0;
maxRect.bottom := maxRect.bottom - 5;
maxRect.right := maxRect.right - 5;
hItems := hItemList(DialogPeek(theDialog)A.items);
firstItem := hItemsAA.dlgMaxIndex + 2;
hDITL := hItemList(GetResource('DITL',theDITLID»;
HLock(Handle(hDITL»;
newItems := hDITLAA.dlgMaxlndex + 1;

For each item,
1. Offset the rectangle to follow the original window.
2. Make the original window larger if necessary.
3. fill in item Handle according to type.

pItem := @hDITLAA.DITLItems;
FOR i := 1 TO newItems DO BEGIN

OffsetRect(pItemA.itmRect,offset.h,offset.v);
UnionRect(pItemA.itmRect,maxRect,maxRect);

USB.Int := 0; {zero things out}
USB.SBArray[l] := pItemA.itmData[OJ;

{ Strip enable bit since it doesn't matter here. }
WITH pItemA DO

CASE BAND(itmType,$7F) OF
userItem: {Can't do anything meaningful with user items. }

itmHndl := NIL;
ctrlItem + btnCtrl,ctrlItem + chkCtrl,ctrlItem + radCtrl:{build Control}

itmHndl := Handle(NewControl(theDialog, { theWindow }
itmRect, { boundsRect }
StringPtr(@itmData[OJ)A, title}
true, { visible }
0,0,1, { value, min, max }
BAND (itmType, $03) , { procID
0)); { refCon }

ctrlItem + resCtrl: BEGIN { Get resource based Control }

Technical Note#95 page 5 of14 How To Add Items tothe Print Dialogs

itmHndl := Handle(GetNewControl(IntPtr(@itmData[l])A, { controlID)
theDialog»; { theWindow)

ControIHandle(itmHndl)AA.contrIRect .= itmRect; {give it the right
rectangle)

{An actionProc for a Control should be installed here)
END; {Case ctrlltem + resCtrl)
statText,editText: { Both need Handle to a copy of their text.)

err := PtrToHand(@itmData[l], { Start of data)
itmHndl, { Address of new Handle)
USB.lnt); { Length of text)

iconltem: {Icon needs resource Handle.)
pltemA.itmHndl := Getlcon(IntPtr(@itmData[l])A); { ICON resID)

picltem: {Picture needs resource Handle.)
pltemA.itmHndl := Handle(GetPicture(IntPtr(@itmData[l])A»;{PICT resID)

OTHERWISE
itmHndl := NIL;

END; {Case)

dataSize := BAND(USB.lnt + 1,$FFFE);
{now advance to next item)
pltem := pDITLltem(Ptr(ord4(@pltemA) + dataSize + sizeof(DITLltem»);

END; {for)
err := PtrAndHand

(@hDITLAA.DITLltems,Handle(hltems),GetHandleSize(Handle(hDITL»);
hltemsAA.dlgMaxlndex := hltemsAA.dlgMaxlndex + newltems;
HUnlock(Handle(hDITL»;
ReleaseResource(Handle(hDITL»;
maxRect.bottom := maxRect.bottom + 5;
maxRect.right := maxRect.right + 5;
SizeWindow(theDialog,maxRect.right,maxRect.bottom,true);
AppendDITL := firstltem;

END; {AppendDITL)

{---_._-----------)

PROCEDURE MyJobltems(theDialog: DialogPtr; itemNo: Integer);
{

This routine replaces the routine in the pltemProc field in the
TPPrDIg record. The steps it takes are:
1. Check to see if the item hit was one of ours. This is done by "localizing"

the number, assuming that our items are numbered from O•• n
2. If it's one of ours then case it and Handle appropriately
3. If it isn't one of ours then call the old item handler
)

VAR
Myltem,firstltem: Integer;
thePt : Point;
thePart : Integer;
theValue Integer;
debugPart Integer;

BEGIN {MyJobltems)
first Item := prFirstltem; { remember, we saved this in myJobDlglnit)
Myltem := itemNo - firstltem + 1; { "localize" current item No)
IF Myltem > a THEN BEGIN { if localized item> 0, it's one of ours}

{ find out which of our items was hit }
GetDltem(theDialog,itemNo,itemType,itemH,itemBox);

•

•

•
Technical Note #95 page 6 of14 How To Add Items tothe Print Dialogs

item handler, whose address is saved

CASE MyItem OF
MyDFirstBox: BEGIN

{ invert value of FirstBoxValue and redraw it }
FirstBoxValue := 1 - FirstBoxValue;
SetCtIValue(ControIHandle(itemH),FirstBoxValue);

END; {case MyDFirstBox}
MyDSecondBox: BEGIN

{ invert value of SecondBoxValue and redraw it }
SecondBoxValue := 1 - SecondBoxValue;
SetCtIValue(ControIHandle(itemH),SecondBoxValue);

END; {case MyDSecondBox}
OTHERWISE

Debug;
END;

END
ELSE

{ OH OH - We got an item we didn't expect }
{Case}

{ if MyItem > 0 }
{ chain to standard
in prPItemProc }

CaIIItemHandler(theDialog,itemNo,prPItemProc);
END; { MyJobItems }

•

{--}

•

FUNCTION MyJobDlgInit(hPrint: THPrint): TPPrDIg;
{

This routine appends items to the standard job dialog and sets up the
user fields of the printing dialog record TPRDIg
This routine will be called by PrDIgMain
This is what it does:
1. First call PrJobInit to fill in the TPPrDIg record.
2. Append our items onto the old DITL. Set them up appropriately .
3. Save the address of the old item handler and replace it with ours.
4. Return the Fixed dialog to PrDIgMain.
}

VAR
firstItem Integer; { first new item number }

BEGIN
firstItem

{MyJobDlgInit}
.= AppendDITL(DialogPtr(PrtJobDialog),MyDITL);

prFirstItem := firstItem; { save this so MyJobItems can find it }

{ now we'll set up our DITL items - The "First Box" }
GetDItem(DialogPtr(PrtJobDialog),firstItem,itemType,itemH,itemBox);
SetCtIValue(ControIHandle(itemH),FirstBoxValue);

{ now we'll set up the second of our DITL items - The "Second Box" }
GetDItem(DialogPtr(PrtJobDialog),firstItem + 1,itemType,itemH,itemBox);
SetCtIValue(ControIHandle(itemH),SecondBoxValue);

•
{ Now comes the part where we patch in our item handler. We have to save
the old item handler address, so we can call it if one of the standard
items is hit, and put our item handler's address
in pItemProc field of the TPrDIg struct}

prPItemProc := LongInt(PrtJobDialogA.pItemProc);

{ Now we'll tell the modal item handler where our routine is

Technical Note#95 page 7 of14 How To Add Items tothe Print Dialogs

PrtJobDialogA.pItemProc := ProcPtr(@MyJobItems);

{ PrDlgMain expects a pointer to the modified dialog to be returned .. "" }
MyJobDlgInit := PrtJobDialog;

END; {myJobDlgInit} •{--}
FUNCTION Print: OSErr;

VAR
bool BOOLEAN;

BEGIN {Print}
hPrintRec .= THPrint(NewHandle(sizeof(TPrint)));
PrintDefault(hPrintRec);
bool := PrValidate(hPrintRec);
IF (PrError <> noErr) THEN BEGIN

Print := PrError;
Exit(Print);

END; {If}

{ call PrJobInit to get pointer to the invisible job dialog }
PrtJobDialog := PrJobInit(hPrintRec);
IF (PrError <> noErr) THEN BEGIN

Print := PrError;
Exit(Print);

END; {If}

{Here's the line that does it all!}
IF NOT (PrDlgMain(hPrintRec,@MyJobDlgInit)) THEN BEGIN

Print := cancel;
Exit(Print);

END; {If}

IF PrError <> noErr THEN Print "= PrError;

{ that's all for now

•
END; { Print

{--}

BEGIN {PROGRAM}

{ call the routine that does printing }

{remove data initialization code before anyUnloadSeg(@_DataInit);
allocations}

InitGraf(@thePort);
InitFonts;
FlushEvents(everyEvent,O);
InitWindows;
InitMenus;
TEInit;
InitDialogs(NIL);
InitCursor;

Technical Note #95 page 8 of 14 How To Add Items to the Print Dialogs

•

•
FirstBoxValue ;= 0; {value of our first additional box
SecondBoxValue ;= 0; {value of our second addtl. box}
PrOpen; { Open the Print Manager }
IF PrError = noErr THEN
err ;= Print { This actually brings up the modified Job dialog }

ELSE BEGIN
{tell the user that PrOpen failed}

END;

•

•

PrClose;
END .

{ Close the Print Manager and leave }

Technical Note #95 page 9 of14 How To Add Items tothe Print Dialogs

The Lightspeed C Example Program

/* NOTE: Apple reserves the top half of the screen (where the current DITL
items are located). Applications may use the bottom half of the
screen to add items, but should not change any items in the top half
of the screen. An application should expand the print dialogs only
as much as is absolutely necessary. •*/

/* Note: A global search and replace of 'Job' with 'Stl' will produce
code that modifies the style dialogs */

finclude <DialogMgr.h>
finclude <MacTypes.h>
finclude <Quickdraw.h>
finclude <ResourceMgr.h>
finclude <WindowMgr.h>
finclude <pascal.h>
finclude <printmgr.h>
fdefine nil OL

static TPPrDlg PrtJobDialog; /* pointer to job dialog */

/* This points to the following structure:

•
Apple Computer)

(The Dialog window)
(The Filter Proc.)
(The Item evaluating proc.
we'll change this)
(The user's print record.)hPrintUsr;

fDoIt;
fDone;

reserved by
IUserl;
IUser2;
IUser3;
IUser4;

DIg;
pFltrProc;
pItemProc;

struct {
DialogRecord
Procptr
Procptr

THPrint
Boolean
Boolean

(Four longs
long
long
long
long

} TPrDlg; *TPPrDlg;
*/

/* Declare 'pascal' functions
pascal Boolean PrDlgMain();
pascal TPPrDlg PrJobInit();
pascal TPPrDlg MyJobDlgInit();
pascal void MyJobItems();

and procedures */
/* Print manager's dialog handler */
/* Gets standard print job dialog. */
/* Our extent ion to PrJobInit */
/* Our modal item handler */

fdefine MyDITL 256 /* resource ID of my DITL to be spliced
on to job dialog */

THPrint hPrintRec;
short FirstBoxValue = 0;
short SecondBoxValue = 0;
long prFirstltem;
long prPItemProc;

/* handle to print record */
/* value of our first additional box */
/* value of our second addtl. box */
/* save our first item here */

/* we need to store the old itemProc here */ •
Technical Note #95 page 100114 HowTo Add Items tothe Print Dialogs

•
/*---*/

Windowptr MyWindow;
OSErr err;
Str255 myStr;

main ()
{

Rect myWRect;

•

•

InitGraf(&thePort);
InitFonts () ;
InitWindows () ;
InitMenus();
InitDialogs(nil);
InitCursor();
SetRect(&myWRect,50,260,350,340);

/* call the routine that does printing */
PrOpen () ;
err = Print () ;

PrClose () ;
} /* main */

/*--*
/

OSErr Print ()

/* call PrJoblnit to get pointer to the invisible job dialog */
hPrintRec = (THPrint) (NewHandle(sizeof(TPrint)));
PrintDefault(hPrintRec);
PrValidate(hPrintRec);
if (PrError() != noErr)

return PrError();

PrtJobDialog = PrJoblnit(hPrintRec);
if (PrError () ! = noErr)

return PrError();

if (!PrDIgMain(hPrintRec, &MyJobDlglnit)) /* this line does all the
stuff */

return Cancel;

if (PrError() != noErr)
return PrError();

/* that's all for now */

} /* Print */

/*--*
/

pascal TPPrDIg MyJobDlglnit (hPrint)
THPrint hPrint;

Technical Note #95 page 110f 14 How To Add Items to the Print Dialogs

/* this routine appends items to the standard job dialog and sets up the
user fields of the printing dialog record TPRDlg
This routine will be called by PrDlgMain */

short

short
Handle
Rect

firstItemi

itemTypei
itemHi
itemBoxi

/* first new item number */

/* needed for GetDItem/SetDItem call */ •
firstItem AppendDITL (PrtJobDialog, MyDITL)i /*call routine to do

this */

prFirstItem = firstItemi /* save this so MyJobItems can find it */

/* now we'll set up our DITL items -- The "First Box" */
GetDItem(PrtJobDialog,firstItem,&itemType,&itemH,&itemBoX) i
SetCtIValue(itemH,FirstBoxValue)i

/* now we'll set up the second of our DITL items -- The "Second Box" */
GetDItem(PrtJobDialog,firstItem+l,&itemType,&itemH,&itemBo X) i
SetCtIValue(itemH,SecondBoxValue)i

/* Now comes the part where we patch in our item handler. We have to save
the old item handler address, so we can call it if one of the
standard items is hit, and put our item handler's address
in pItemProc field of the TPrDlg struct

*/

prPItemProc = (long)PrtJobDialog->pItemProci

/* Now we'll tell the modal item handler where our routine is */
PrtJobDialog->pItemProc = (ProcPtr)&MyJobItemsi

/* PrDlgMain expects a pointer to the modified dialog to be returned */
return PrtJobDialogi

/*myJobDlgInit*/

/*---*/

/* here's the analogue to the SF dialog hook */

•

pascal void
TPPrDlg
short

MyJobItems(theDialog,itemNo)
theDialogi
itemNoi

prFirstItemi /* remember, we saved this in myJobDlgInit

{ /* MyJobItems
short
short

short
Handle
Rect

first Item
*/

*/
myItemi
firstItemi

itemTypei
itemHi
itemBoxi

/* needed for GetDItem/SetDItem call */

•
Technical Note #95 page 120f 14 How To Add Items tothe Print Dialogs

•

•

•

myltem = itemNo-firstltem+1; /* "localize" current item No */
if (myltem> 0) /* if localized item> 0, it's one of ours */
{

/* find out which of our items was hit */
GetDltem(theDialog,itemNo,&itemType,&itemH,&itemBox);
switch (myltem)
{

case 1:
/* invert value of FirstBoxValue and redraw it */
FirstBoxValue A= 1;
SetCtIValue(itemH,FirstBoxValue);
break;

case 2:
/* invert value of SecondBoxValue and redraw it */
SecondBoxValue A= 1;
SetCtlValue(itemH,SecondBoxValue);
break;

default: Debugger(); /* OH OH */
} /* switch */

} /* if (myltem > 0) */
else /* chain to standard item handler, whose address is saved in

prPltemProc */

CallPascal (theDialog, itemNo,prPltemProc) ;
}

} /* MyJobltems */

Technical Note #95 page 130f 14 How To Add Items tothe Print Dialogs

The Rez Source

finclude "types.r"

resource 'DITL' (256) {
{ /* array DITLarray: 2 elements */

/* [1] */
{B, 0, 24, 112},
CheckBox {

enabled,
"First Box"

} ;

/* [2] */
{B, 175, 24, 2B7},
CheckBox {

enabled,
"Second Box"

}

}

} ;

•

•

•
Technical Note #95 page 140f 14 How To Add Items to the Print Dialogs

Macintosh Technical Notes

• #96: SCSI Bugs

See also:

Written by:
Modified by:
Modified by:
Updated:

The SCSI Manager
SCSI Developer's Package

Steve Flowers
Bryan Stearns
B03b Johnson

October 1, 1986
November 15, 1986
July 1,1987
March 1, 1988

•

There are a number of problems in the SCSI Manager; this note lists the ones
we know about, along with an explanation of what we're doing about them.
Changes made for the 2/88 release are made to more accurately reflect the
state of the SCSI Manager. System 4.1 and 4.2 are very similar; one bug was
fixed in System 4.2.

There are several categories of SCSI Manager problems:

1. Those in the ROM boot code
(Before the System file has been opened, and hence, before any patches could possibly
fix them.)
2. Those that have been fixed in System 3.2
3. Those that have been fixed in System 4.1/4.2
4. Those that are new in System 4.1/4.2
5. Those that have not yet been fixed.

The problems in the ROM boot code can only be fixed by changing the ROMs. Most of
the bugs in the SCSI Manager itself have been fixed by the patch code in the System
3.2 file. There are a few problems, though, that are not fixed with System 3.2-most of
these bugs have been corrected in System 4.1/4.2. Any that are not fixed will be detailed
here. ROM code for future machines will, of course, include the corrections.

ROM boot code problems

•

• In the process of looking for a bootable SCSI device, the boot code issues a SCSI
bus reset before each attempt to read block 0 from a device. If the read fails for any
reason, the boot code goes on to the next device. SCSI devices which implement the
Unit Attention condition as defined by the Revision 17B SCSI standard will fail to
boot in this case. The read will fail because the drive is attempting to report the Unit
Attention condition for the first command it receives after the SCSI bus reset. The
boot code does not read the sense bytes and does not retry the failed command; it
simply resets the SCSI bus and goes on to the next device.

Technical Note #96 page 1 of 7 SCSI Bugs

•

•

If no other device is bootable, the boot code will eventually cycle back to the same

SCSI device 10, reset the bus (causing Unit Attention in the drive again), and try

to read block 0 (which fails for the same reason).

The 'new' Macintosh Plus ROMs that are included in the platinum Macintosh Plus

have only one change. The change was to simply do a single SCSI Bus Reset after

power up instead of a Reset each time through the SCSI boot loop. This was done to

allow Unit Attention drives to be bootable. It was an object code patch (affecting

approximately 30 bytes) and no other bugs were fixed. For details on the three

versions of Macintosh Plus ROMs, see Technical Note #154.

We recommend that you choose an SCSI controller which does not require the Unit

Attention feature-either an older controller (most of the SCSI controllers currently

available were designed before Revision 17B), or one of the newer

Revision-17B-compatible controllers which can enable/disable Unit Attention as

a formatting option (such as those from Seagate, Rodime, et al). Since the vast

majority of Macintosh Plus computers have the ROMs which cannot use Un it

Attention drives, we still recommend that you choose an SCSI controller that does

not require the Unit Attention feature.

If an SCSI device goes into the Status phase after being selected by the boot code,

this leads to the SCSI bus being left in the Status phase indefinitely, and no SCSI

devices can be accessed. The current Macintosh Plus boot code does not handle

this change to Status phase, which means that the presence of an SCSI device

with this behavior (as in some tape controllers we've seen) will prevent any SCSI

devices from being accessed by the SCSI Manager, even if they already had drivers

loaded from them. The result is that any SCSI peripheral that is turned on at boot

time must not go into St at us phase immediately after selection; otherwise, the

Macintosh Plus SCSI bus will be left hanging. Unless substantially revised ROMs are

released for the Macintosh Plus (highly unlikely within the next year or so), this

problem will never be fixed on the Macintosh Plus, so you should design for old

ROMs.

The Macintosh Plus would try to read 256 bytes of blocks 0 and 1, ignoring the extra

data. The Macintosh SE and Macintosh" try to read 512 bytes from blocks 0 and 1,

ignoring errors if the sector size is larger (but not smaller) than 512 bytes. Random

access devices (disks, tapes, CD ROMS, etc.) can be booted as long as the blocks

are at least 512 bytes, blocks 0, 1 and other partition blocks are correctly set up, and

there is a driver on it. With the new partition layout (documented in Inside Macintosh

volume V), more than 256 bytes per sector may be required in some partition map

entries. This is why we dropped support for 256-byte sectors. Disks with tag bytes

(532-byte sectors) or larger block sizes (1 K, 2K, etc.) can be booted on any

Macintosh with an SCSI port. Of course, the driver has to take care of data blocking

and de-blocking, since HFS likes to work with 512-byte sectors.

•

•

•
Technical Note #96 page 2 of 7 SCSI Bugs

•

•

•

Problems with ROM SCSI Manager routines

Note that the following problems are fixed after the System file has been opened; for a
device to boot properly, it must not depend on these fixes. The sample SCSI driver,
available from APDA, contains an example of how to find out if the fixes are in place.

• Prior to System file 3.2, blind transfers (both reads and writes) would not work
properly with many SCSI controllers. Since blind operation depends on the drive's
ability to transfer data fast enough, it is the responsibility of the driver writer to make
sure blind operation is safe for a particular device.

• Prior to System file 3.2, the SCSI Manager dropped a byte when the driver did
two or more SCSIReads or SCSIRBlinds in a row. (Each Read or RBlind has to
have a Transfer Information Block (TIB) pointer passed in.) The TIB itself can be as
big and complex as you want-it is the process of returning from one SCS IRead or
SCSIRBlind and entering another one (while still on the same SCSI command) that
causes the first byte for the other SCSIReads to be lost.

Note that this precludes use of file-system tags. Apple no longer recommends that
you support tags; see Technical Note #94 for more information.

• Prior to System file 3.2, SCS IStat didn't work; the new version works correctly.

• Running under System file 3.2, the SCSI Manager does not check to make sure
that the last byte of a write operation (to the peripheral) was handshaked while
operating in pseudo-DMA mode. The SCSI Manager writes the final byte to the NCR
5380's one-byte buffer and then turns pseudo-DMA mode off shortly thereafter
(reported to be 10-15 microseconds). If the peripheral is somewhat slow in actually
reading the last byte of data, it asserts REQ after the Macintosh has already turned off
pseudo-DMA mode and never gets an ACK. The CPU then expects to go into the
Status phase since it thinks everything went OK, but the peripheral is still waiting for
ACK. Unless the driver can recover from this somehow, the SCSI bus is 'hung' in the
Data Out phase. In this case, all successive SCSI Manager calls will fail until the
bus is reset.

• Running under System file 4.1/4.2, the SCSI Manager waits for the last byte of
a write operation to be handshaked while operating in pseudo-DMA mode; it checks
for a final DRQ (or a phase change) at the end of a SCSIWrite or SCSIWBlind before
turning off the pseudo-DMA mode. Drivers that could recover from this problem by
writing the last byte again if the bus was still in a Data Out phase will still work
correctly, as long as they were checking the bus state.

• Running under System file 3.2, the SCSI Manager does not time out if the
peripheral fails to finish transferring the expected number of bytes for polled reads
and writes. (Blind operation does poll for the first byte of each requested data transfer
in the Transfer Information Block.)

Technical Note #96 page 3 of7 SCSI Bugs

• Running under System file 4.1/4.2, SCSIRead and SCSIWrite return an error
to the caller if the peripheral changes the bus phase in the middle of a transfer, as
might happen if the peripheral fails to transfer the expected number of bytes. The
computer is no longer left in a hung state.

• Running under System file 3.2, the Selection timeout value is very short (900
microseconds). Patches to the SCSI Manager in System 4.1/4.2 ensure that this
value is the recommended 250 milliseconds.

• Running under System file 3.2, the SCSI Manager routine SCS IGet (which
arbitrates for the bus) will fail if the BSY line is still asserted. Some devices are a bit
slow in releasing BSY after the completion of an SCSI operation, meaning that BSY
may not have been released before the driver issues a SCSIGet call to start the next
SCSI operation. A work-around for this is to call SCSIGet again if it failed the first
time. (Rarely has it been necessary to try it a third time.) This assumes, of course, that
the bus has not been left 'hanging' by an improperly terminated SCSI operation
before calling SCSIGet.

• Running under System file 4.1/4.2, the SCSIGet function has been made more
tolerant of devices that are slow to release the BSY line after a SCSI operation. The
SCSI Manager now waits up to 200 milliseconds before returning an error.

Problems with the SCSI Manager that haven't been fixed yet

These problems currently exist in the Macintosh Plus, SE, and II SCSI Manager. We
plan to fix these problems in a future release of the System Tools disk, but in the mean •
time, you should try to work around the problems (but don't "require" the problems!).

• Multiple calls to SCS IRead or SCS IRBI ind after issuing a command and before
calling SCSIComplete may not work. Suppose you want to read some mode sense
data from the drive. After sending the command with SCSICmd, you might want to call
SCSIRead with a TIB that reads four bytes (typically a header). After reading the field
(in the four-byte header) that tells how many remaining bytes are available, you
might call SCSIRead again with a TIB to read the remaining bytes. The problem is
that the first byte of the second scs IRead data will be lost because of the way the
SCSI Manager handles reads in pseudo-DMA mode. The work-around is to issue
two separate SCSI commands: the first to read only the four-byte header, the second
to read the four-byte header plus the remaining bytes. We recommend that you not
use a clever TIB that contains two data transfers, the second of which gets the
transfer length from the first transfer's received data (the header). These two step
TIBs will not work in the future. This bug will probably not be fixed.

• On read operations, some devices may be slow in deasserting REQ after sending the
last byte to the CPU. The current SCSI Manager (all machines) will return to the
caller without waiting for REQ to be deasserted. Usually the next call that the driver
would make is SCSIComplete. On the Macintosh SE and II, the SCSIComplete call
will check the bus to be sure that it is in Status phase. If not, the SCSI Manager will
return a new error code that indicates the bus was in Data In/Data Out phase when •
SCSIComplete was called. The combination of the speed of the Macintosh II and a

Technical Note #96 page 4 of7 SCSI Bugs

•

•

•

slow peripheral can cause SCSIComplete to detect that the bus is still in Data Inphase before the peripheral has finally changed the bus to St at us phase. Thisresults in a false error being passed back by SCSIComplete .

• The scComp (compare) TIB opcode does not work in System 4.1 on the MacintoshPlus only. It returns an error code of 4 (bad parameters). This has been fixed inSystem 4.2.

Other SCSI Manager Issues

• At least one third-party SCSI peripheral driver used to issue SCSI commands from aVBL task. It didn't check to see if the bus was in the free state before sending thecommand! This is guaranteed to wipe out any other SCSI command that may havebeen in progress, since the SCSI Manager on the Macintosh Plus does not mask out(or use) interrupts.

We strongly recommend that you avoid calling the SCSI Manager from interrupthandlers (such as VBL tasks). If you must send SCSI commands from a VBL task (likefor a removable media system), do a SCSIStat call first to see if the bus is currentlybusy. If it's free (BSY is not asserted), then it's probably safe; otherwise the VBL taskshould not send the command. Note that you can't call SCSIStat before the Systemfile fixes are in place. Since SCSI operations during VBL are not guaranteed, youshould check all errors from SCSI Manager calls.

• A new SCSI Manager call will be added in the future. This will be a high-level call; itwill have some kind of parameter block in which you give a pointer to a commandbuffer, a pointer to your TIB, a pointer to a sense data buffer (in case something goeswrong, the SCSI Manager will automatically read the sense bytes into the buffer foryou), and a few other fields. The SCSI Manager will take care of arbitration, selection,sending the command, interpreting the TIB for the data transfer, and getting the statusand message bytes (and the sense bytes, if there was an error). It should make SCSIdevice drivers much easier to write, since the driver will no longer have to worry aboutunexpected phase changes, getting the sense bytes, and so on. In the future, this willbe the recommended way to use the SCSI Manager.

• The SCSI Manager (all machines) does not currently support interrupt-driven(asynchronous) operations. The Macintosh Plus can never support it since there is nointerrupt capability, although a polled scheme may be implemented by the SCSIManager. The Macintosh SE has a maskable interrupt for IRQ, and the Macintosh IIhas maskable interrupts for both IRQ and DRQ. Apple is working on an implementationof the SCSI Manager that will support asynchronous operations on the Macintosh IIand probably on the SE as well. Because the interrupt hardware will interactadversely with any asynchronous schemes that are polled, it is stronglyrecommended that third parties do not attempt asynchronous operations until the newSCSI Manager is released. Apple will not attempt to be compatible with any productsthat bypass some or all of the SCSI Manager. In order to implement software-based(polled) asynchronous operations it is necessary to bypass the SCSI Manager .

Technical Note #96 page 5 of7 SCSI Bugs

The SCSI Manager section of the alpha draft of Inside Macintosh volume V

documented the Disconnect and Reselect routines which were intended to be used

for asynchronous I/O. Those routines cannot be used. Those routines have been

removed from the manual. Any software that uses those routines will have to be

revised when the SCSI Manager becomes interrupt-driven. Drivers which send SCSI •

commands from VBL tasks may also have to be modified.

Hardware in the SCSI

There is some confusion on how many terminators can be used on the bus, and the best

way to use them. There can be no more than two terminators on the bus. If you have

more than one SCSI drive you must have two terminators. If you only have one drive,

you should use a single terminator. If you have more than one drive, the two terminators

should be on opposite ends of the chain. The idea is to terminate both ends of the wire

that goes through all of the devices. One terminator should be on the end of the system

cable that comes out of the Macintosh. The other terminator would be on the very end of

the last device on the chain. If you have an SE or II with an internal hard disk, there is

already one terminator on the front of the chain, inside the computer.

On the Macintosh SE and II, there is additional hardware support for the SCSI bus

transfers in pseudo-DMA mode. The hardware makes it possible to handshake the data

in Blind mode so that the Blind mode is safe for all transfers. On the Macintosh Plus, the

Blind transfers are heavily timing dependent and can overrun or underrun during the

transfer with no error generated. Assuring that Blind mode is safe on the Macintosh Plus

depends upon the peripheral being used. On the SE and II, the transfer is hardware •

assisted to prevent overruns or underruns.

Changes in SCSI for SE and II

The changes made to the SCSI Manager found in the Macintosh SE and Macintosh II

are primarily bug fixes. No new functionality was added. The newer SCSI Manager is

more robust and has more error checking. Since the Macintosh Plus SCSI Manager

only did limited error checking, it is possible to have code that would function (with bugs)

on the Macintosh Plus, but will not work correctly on the SE or II. The Macintosh Plus

could mask some bugs in the caller by not checking errors. An example of this is

sending or receiving the wrong number of bytes in a blind transfer. On the Macintosh

Plus, no error would be generated since there was no way to be sure how many bytes

were sent or received. On the SE and II, if the wrong number of bytes are transferred an

error will be returned to the caller. The exact timing of transfers has changed on the SE

and II as well, since the computers run at different speeds. Devices that are unwittingly

dependent upon specific timing in transfers may have problems on the newer

computers. To find problems of this sort it is usually only necessary to examine the error

codes that are passed back by the SCSI Manager routines. The error codes will

generally point out where the updated SCSI Manager found errors.

•
Technical Note #96 page 6 017 SCSI Bugs

•

•

•

To report other bugs or make suggestions
Please send additional bug reports and suggestions to us at the address in TechnicalNote #0. Let us know what SCSI controller you're using in your peripheral, and whetheryou've had any particularly good or bad experiences with it. We'll add to this note asmore information becomes available.

TechnicaJ Note #96 page 7 of7
SCSI Bugs

•

•

•

•
Macintosh Technical Notes

#97: PrSetError Problem

Written by:
Updated:

Mark Baumwell November 15, 1986
March 1, 1988

•

•

This note formerly described a problem in Lisa Pascal glue for thePrSetError routine. The glue in MPW (and most, if not all, third partycompilers) does not have this problem.

Technical Note #97 page 1 of 1 PrSetError Problem

•

•

•

•
Macintosh Technical Notes

#98: Short-Circuit Booleans in Lisa Pascal

Written by:
Updated:

Mark Baumwell November 15, 1986
March 1, 1988

•

•

This note formerly described problems with the Lisa Pascal compiler. Theseproblems have been fixed in the MPW Pascal compiler.

Technical Note #98 page 1 of 1 Short-Circuit Booleans in Lisa Pascal

•

•

•

•
Macintosh Technical Notes

#99: Standard File Bug in System 3.2

See also:

Written by:
Updated:

The Standard File Package

Jim Friedlander November 15, 1986
March 1, 1988

•

•

This note formerly described a bug in Standard File in System 3.2. This bughas been fixed in more recent Systems.

Technical Note #99 page 1 of 1 Standard File Bug in System 3.2

•

•

•

Macintosh Technical Notes

• #100: Compatibility with Large-Screen Displays

See also: Technical Note #2-Macintosh Compatibility Guidelines

Written by:
Updated:

Bryan Stearns November 15, 1986
March 1, 1988

•

•

A number of third-party developers have announced large-screen displayperipherals for Macintosh. One of them, Radius Inc., has issued a set ofgUidelines for developers who wish to remain compatible with their RadiusFPD; unfortunately, one of their recommendations can cause systemcrashes. This note suggests a more correct approach.

On the first page of the appendix to their guidelines, "How to be FPO Aware," Radiusrecommends the following:

"First, to detect the presence of a Radius FPO, you should check address $C00008 ..."

Unfortunately, this assumes that you're running on a Macintosh or Macintosh Plus; thistest will not work on Macintosh XL, nor on a Macintosh II. Since these displays weren'tdesigned to work with systems other than Macintosh and Macintosh Plus, you shouldmake sure you're running on one of these systems before addressing I/O locations(such as those for an add-on display).

Before testing for the presence of any large-screen display, you should first check themachine 10; it's the byte located at (ROMBASE) +8 (that is, take the long integer at thelow-memory location ROMBASE [$2AE], and add 8 to get the address of the machine 10byte. On a Macintosh or Macintosh Plus, this address will work out to be $400008;however, use the low-memory location, to be compatible with future systems that mayhave the ROM at a different address!).

The machine 10 byte will be $00 for all current Macintosh systems. If the value isn't $00,you can assume that no large-screen display is present, but don't forget to followTechnical Note #2's guidelines for screen size independence!

Note: If you are a developer of an add-on large-screen display, we'd be happy
to review your guidelines for developers in advance of distribution;
please send them to us at the address for comments in Technical Note#0. Future versions of this note may recommend general guidelines for
dealing with add-on large-screen displays.

Technical Note #100 page 1 of 1 Compatibility with Large-Screen Displays

•

•

•

•
Macintosh Technical Notes

#101: CreateResFile and the Poor Man's Search Path

See also: The File Manager
The Resource Manager
Technical Note #77-HFS Ruminations

Written by:
Updated:

Jim Friedlander January 12, 1987
March 1, 1988

•

•

CreateResFile checks to see if a resource file with a given name exists,
and if it does, returns a dupFNErr (-48) error. Unfortunately, to do this check,
CreateResFile uses a call that follows the Poor Man's Search Path (PMSP).

CreateResFile checks to see if a resource file with a given name exists, and if it does,
returns a dupFNErr (-48) error. Unfortunately, to do the check, CreateResFile calls
PBOpenRF, which uses the Poor Man's Search Path (PMSP). For example, if we have a
resource file in the System folder named 'MyFile' (and no file with that name in the
current directory) and we call CreateResFile ('MyFile'), ResError will return a
dupFNErr, since PBOpenRF will search the current directory first, then search the
blessed folder on the same volume. This makes it impossible to use CreateResFile to
create the resource file 'MyFile' in the current directory if a file with the same name
already exists in a directory that's in the PMSP.

To make sure that CreateResFile will create a resource file in the current directory
whether or not a resource file with the same name already exists further down the
PMSP, call_Create (PBCreate or Create) before calling CreateResFile:

err := Create('MyFile',O,myCreator,myType)i
{O for VRefNum means current volume/directory}

CreateResFile('MyFile')i
err := ResErrori {check for error}

In MPWC:

err = Create("\pMyFile",O,myCreator,myType)i
CreateResFile("\pMyFile")i
err = ResError()i

This works because _Create does not use the PMSP. If we already have 'MyFile' in
the current directory, _Create will fail with a dupFNErr, then, if 'MyFile' has an empty
resource fork, CreateResFile will write a resource map, otherwise, CreateResFile
will return dupFNErr. Ifthere is no file named 'MyFile' in the current directory, _Create
will create one and then CreateResFile will write the resource map.
Notice that we are intentionally ignoring the error from _Create, since we are calling it

Technical Note #101 page 1 of3 CreateResFile and the PMSP

only to assure that a file named 'MyFile' does exist in the current directory.

Please note that SFPutFile does not use the PMSP, but that FSDelete does.
SFPutFile returns the vRefNum/WDRefNum of the volume/folder that the user selected.
If your program deletes a resource file before creating one with the same name based •
on information returned from SFPutFile, you can use the following strategy to avoid
deleting the wrong file, that is, a file that is not in the directory specified by the
vRefNum/WDRefNum returned by SFPutFile, but in some other directory in the PMSP:

VAR

wher
reply
err
oldVol

Point;
SFReply;
OSErr;
Integer;

wher.h := 80; wher.v := 90;
SFPutFile(wher, ",' ',NIL,reply);
IF reply.good THEN BEGIN

err .= GetVol(NIL,oldVol); {So we can restore it later}
err := SetVol(NIL,reply.vRefNum);{for the CreateResFile call}

{Now for the Create!CreateResFile calls to create a resource file that
we know is in the current directory}

err := Create(reply.fName,reply.vRefNum,myCreator,myType);
CreateResFile(reply.fName); {we'll use the ResError from this ... }

CASE ResError OF
noErr:{the create succeeded, go ahead and work with the new

resource file -- NOTE: at this point, we don't know
what's in the data fork of the file!!} ;

dupFNErr: BEGIN {duplicate file name error}
{the file already existed, so, let's delete it. We're now
sure that we're deleting the file in the current directory}

err:= FSDelete(reply.fName,reply.vRefNum);

{now that we've deleted the file, let's create the new one,
again, we know this will be in the current directory}

err:= Create(reply.fName,reply.vRefNum,myCreator,myType);
CreateResFile(reply.fName);

END; {CASE dupFNErr}
OTHERWISE {handle other errors}

END; {Case ResError}
err SetVol(NIL,oldVol);{restore the default directory}

END; {If reply.good}

•

•
Technical Note #101 page 2 of3 CreateResFile and the PMSP

•
In MPWC:

Point
SFReply
OSErr
short

wher;
reply;
err;
oldVol;

wher.h = 80; wher.v = 90;
SFPutFile (wher, .tI., , nil, &reply) ;
if (reply.good)
{

err = GetVol(nil,&oldVol);
/*So we can restore it later*/
err = SetVol(nil,reply.vRefNum);/*for the CreateResFile call*/

/*Now for the Create/CreateResFile calls to create a resource filethat we know is in the current directory*/

err = Create(&reply.fName,reply.vRefNum,myCreator,myType);
CreateResFile(&reply.fName);
/*we'll use the ResError from this ... */

switch (ResError(»
{

•
case noErr:;/*the create succeeded, go ahead and work with the

new resource file -- NOTE: at this point, we don't
know what's in the data fork of the file! !*/

break; /* case noErr*/
case dupFNErr: /*duplicate file name error*/

/*the file already existed, so, let's delete it.
We're now sure that we're deleting the file in the
current directory*/

err= FSDelete(&reply.fName,reply.vRefNum);

/*now that we've deleted the file, let's create the
new one, again, we know this will be in the current
directory*/

the default directory*/

err= Create(&reply.fName,reply.vRefNum,
myCreator,myType);

CreateResFile(&reply.fName);
/*case dupFNErr*/

/*handle other errors*/

break;
default: ;
/* switch */

err = SetVol(nil,oldVol);/*restore
/*if reply.good*/

•
Note: OpenResFile uses the PMSP too, so you may have to adopt similar strategies tomake sure that you are opening the desired resource file and not some other file furtherdown the PMSP. This is normally not a problem if you use SFGetFile, since
SFGetFile does not use the PMSP, in fact, SFGetFile does not open or close files, soit doesn't run into this problem.

Technical Note #101 page 3 of3 CreateResFile and the PMSP

•

•

•

•
Macintosh Technical Notes

#102: HFS Elucidations

See also: The File Manager
Technical Note #77-HFS Ruminations

Written by:
Updated:

Bryan "B03b" Johnson January 12, 1987
March 1, 1988

•

•

This technical note will describe a few problems that can occur while usingHFS. It will also describe ways to avoid these problems.

This technical note will discuss the following problems:

1) It is very important to be careful about how files are opened and closed. There mustbe no more than one close for every open.

2) Don't use Driver names, like. Bout, . Print or . Sony, in place of file names or thefile system will become confused.

3) Be aware of the ioF 1 VersNum byte in all file calls. A number of pieces of theMacintosh system do not use, and may in fact ignore, files created with non-zeroioFlVersNums.

Each of these can lead to strange occurrences, as well as problems for the users. Doingany or all of these marginally illegal operations will not necessarily lead to a SystemError. In some cases the confusion generated may be worse than a System Error.

One Close is always enough

If a file is closed twice, it is possible to corrupt the file system on a disk. If a program hasbeen creating unreadable disks, this may be the cause.

One aspect of the file system that is not well documented is how it allocates accesspaths to files that are currently open. As a result of this, it is possible to get a rathercavalier attitude about opening and closing files. This discussion wi II explain why it isnecessary to be very careful about opening and closing files.

When the File Manager receives an Open call, it will look at the parameters passed inthe parameter block and create a new access path for the file that is being opened. Theaccess path is how the File Manager keeps track of where to send data that is written,and where to get data that is read from that file. An access path is nothing more than: 1)a buffer that the file system uses to read and write data, and 2) a File Control Block that

Technical Note #102 page 1 of 7 HFS Elucidations

describes how the file is stored on a disk.

A call like:

ErrStuff := FSOpen {'FirstFile', theVRefNum, FirstRefNum)i •
will create the access path as a buffer and a File Control Block (FCB) in the FCB queue.

Note: The following information is here for illustrative purposes only; dependence on it

may cause compatibility problems with future system software.

The structure of the queue can be visualized as:

Last FCB Record •

First FCB Record

Second FCB Record

Buffer Length0

2

gth

···

2+FCBLen

where FCBSPtr is a low-memory global (at $34E) that holds the address of a

nonrelocatable block. That block is the File Control Block buffer, and is composed of the

two byte header which gives the length of the block, followed by the FCB records

themselves. The records are of fixed length, and give detailed information about an

open file. As depicted, any given record can be found by adding the length of the

previous FCB records to the start of the block, adding 2 for the two byte header; giving

an offset to the record itself. The size of the block, and hence the number of files that can

be open at any given time, is determined at startup time. The call to open 'FirstFile'

above will pass back the File Reference Number to that file in F irstRefNurn. This is the

number that will be used to access that file from that point on. The File Manager passes

back an offset into the FCB queue as the Re fNurn. This offset is the number of bytes past

the beginning of the queue to that FCB record in the queue. That FCB record will

describe the file that was opened. An example of a number that might get passed back

as a RefNurn is $108. That also means that the FCB record is $108 bytes into the FCB

block.

•
Technical Note #102 page 2 of7 HFS Elucidations

•

•

A visual example of a record being in use, and how the RefNum is related is:

Base 0
-2--11------1

Base is merely the address of the nonrelocatable block that is the FCB buffer. FCBSPtrpoints to it. The RefNum (a number like $ID8) is added to Base, to give an address in theblock. That address is what the file system will use to read and write to an open file,which is why you are required to pass the RefNum to the PBRead and PBWrite calls.
Since that RefNum is merely an offset into the queue, let's step through a dangerousimaginary sequence and see what happens to a given record in the FCB Buffer. Here'sthe sequence we will step through:

ErrStuff "= FSOpen ('FirstFile', theVRefNum, FirstRefNum);
ErrStuff "= FSClose (FirstRefNum);
ErrStuff := FSOpen ('SecondFile', theVRefNum, SecondRefNum);
ErrStuff := FSClose (FirstRefNum); {the wrong file gets closed!!!}
{the above line will close 'SecondFile', not 'FirstFile', which is alreadyclosed}

Before any operations:
the record at $ID8 is not used.

•

Base

Base+Ref

0
2

···
Num

Technical Note#102 page 3 of7 HFS Elucidations

After thecall:
ErrStuff := FSOpen ('FirstFile', theVRefNum, FirstRefNum);

FirstRefNum = $108 and the record is in use.

Base o
2 •

•0
2

···
NumBase+Ref

Base

After the call:
ErrStuff .= FSClose (FirstRefNum);

FirstRefNum is still equal to $108, but the FCB record is unused.

•
Technical Note#102 page 4 of 7 HFS Elucidations

After the call:
ErrStuff := FSOpen ('SecondFile', theVRefNum, SecondRefNum);

SecondRefNum = $lD8, FirstRefNum = $lD8, and the record is reused.

• Base

Base+Ref

0
2

···
Num

'1IIIIIIIIIillillllliill~iililililll~~illlllll!I'IIII!I

the queue element is cleared. This happens, even though FirstFile was alreadyclosed. Actually, SecondFile was closed:

After the call:
ErrStuff := FSClose (FirstRefNum);

The FirstRefNum = $lD8, SecondRefNum = $lD8,

• Base

Base+Ref

0
2

···
Num

•

Note that the second close is using the old Re fNum. The second close will still close afile, and in fact will return n oE r r as its result. Any subsequent accesses to theSecondRefNum will return an error, since the file 'SecondFile' was closed. The FileControl Blocks are reused, and since they are just offsets, it is possible to get the samefile RefNum back for two different files. In this case, FirstRefNum = SecondRefNumsince 'FirstF ile' was closed before opening 'SecondF .i l.e ' and the same FCB recordwas reused for 'SecondFile'.

Technical Note#102 page 5 of7 HFS Elucidations

There are worse cases than this, however. As an example, think of what can happen if a

program were to close a file, then the user inserted an HFS disk. The FCB could be

reused for the Catalog File on that HFS disk. If the program had a generic error handler

that closed all of its files, it could inadvertently close "its" file again. If it thought "its" file

was still open it would do the close, which could close the Catalog file on the HFS disk.

This is catastrophic for the disk since the file could easily be closed in an inconsistent

state. The result is a bad disk that needs to be reformatted.

There are any number of nasty cases that can arise if a file is closed twice, reusing an

old RefNurn. A common programming practice is to have an error handler or cleanup

routine that goes through the files that a program creates and closes them all, even if

some may already be closed. If an FCB element was not reused, the Close will return

the expected fnOpnErr. If the FCB had been reused, then the Close could be closing

the wrong file. This can be very dangerous, particularly for all those paranoid hard disk

users.

How to avoid the problem:

A very simple technique is to merely clear the Re fNurn after each close. If the variable

that the program uses is cleared after each close, then there is no way of reusing a

RefNurn in the program. An example of this technique would be:

ErrStuff ;= FSOpen ('FirstFile', theVRefNum, FirstRefNum);

ErrStuff ;= FSClose (FirstRefNum);

FirstRefNum ;= 0; (We just closed it, so clear our refnum)

ErrStuff ;= FSOpen ('SecondFile', theVRefNum, SecondRefNum);

ErrStuff ;= FSClose (FirstRefNum); (returns an error)

This makes the second Close pass back an error. In this case, the second close will try

to close RefNurn = 0, which will pass back a fnOpnErr and do no damage. Note: Be

sure to use 0, which will never be a valid RefNurn, since the first FCB entry is beyond the

FCB queue length word. Don't confuse this with the 0 that the Resource Manager uses

to represent the System file.

Thus, if an error handler were cleaning up possibly open files, it could blithely close all

the files it knew about, since it would legitimately get an error back on files that are

already closed. This is not done automatically, however. The programmer must be

careful about the opening and closing of files. The problem can get quite complex if an

error is received halfway through opening a sequence of ten files, for example. By

merely clearing the Re fNurn that is stored after each close, it is possible to avoid the

complexities of trying to track which files are open and which are closed.

This .file name looks outrageous.

•

•

There is a potential conflict between file names and driver names. If a file name is

named something like. Bout, . Print or . Sony, then the file system will open the driver

instead of the file. Drivers have priority on the 128K ROMs, and will always be opened •

before a file of the same name. This may mean that an application will get an error back

Technical Note #102 page 6 of7 HFS Elucidations

•

•

•

when opening these types of files, or worse, it will get back a driver RefNum from the call.What the application thought was a file open call was actually a driver open call. If theprogram uses that access path as a file RefNum, it is possible to get all kinds of strangethings to happen. For example, if . Sony is opened, the Sony driver's RefNum would bepassed back, instead of a file RefNum. If the application does a Write call using that
RefNum, it will actually be a driver call, using whatever parameters happen to be in theparameter block. Disks may be searching for new life after this type of operation. If aprogram creates files, it should not allow a file to be created whose name begins with '.'.

This file's not my type.

This has been discussed in other places, but another aspect of the File Manager thatcan cause confusion is the ioF1 VersNum byte that is passed to the low-level FileManager calls. This is called ioFileType from Assembly, and should not be confusedwith ioFVersNum. This byte must be set to zero for normal Macintosh files. There are anumber of parts of the system that will not deal correctly with files that have the wrongversions: the Standard File package will not display any file with a non-zeroioF 1 VersNum; the Segment Loader and Resource Manager cannot open files thathave non-zero ioFlVersNums. It is not sufficient to ignore this byte when a file iscreated. The byte must be cleared in order to avoid this type of problem. Strictlyspeaking, it is not a problem unless a file is being created on an MFS disk. The currentsystem will easily allow the user to access 400K disks however, so it is better to be safethan confused.

Technical Note #102 page 7 of7 HFS Elucidations

•

•

•

•
Macintosh Technical Notes

#103: Using MaxApplZone and MoveHHi from Assembly Language

See also: Using Assembly Language
The Memory Manager
Technical Note #129-SysEnvirons

Written by:
Updated:

Bryan "Bo3b" Johnson January 12, 1987
March 1, 1988

•

When calling MaxApplZone and MoveHHi from assembly language, be sureto get the correct code.

MaxApplZone and MoveHHi were marked [Not in ROM] in Inside Macintosh, Volumes1-/1/ . They are ROM calls in the 128K ROM. Since they are not in the 64K ROM, if youwant your program to work on 64K ROM routines it is necessary to call the routines by a
JSR to a glue (library) routine instead of using the actual trap macro. The glue calls theROM routines if they are available, or executes its copy of them (linked into yourprogram) if not.

How to do it:

Whenever you need to use these calls, just call the library routine. It will check ROM85 todetermine which ROMs are running, and do the appropriate thing.

For MOS, include the Memory. ReI library in your link file and use:

XREF MoveHHi

JSR MoveHHi

we need to use this 'ROM' routine

jump to the glue routine that will check ROMaS for us

For MPW link with Interface. 0 and use:

IMPORT MoveHHi

JSR MoveHHi

we need to use this

jump to the glue routine that will check ROMaS for us

•
Avoid calling _MaxApplZone or _MoveHHi directly if you want your software to work onthe 64K ROMs, since that will assemble to an actual trap, not to a JSR to the library.

If your program is going to be run only on machines with the 128K ROM or newer, youcan call the traps directly. Be sure to check for the 64K ROMs, and report an error to theuser. You can check for old ROMs using the SysEnvirons trap as described inTechnical Note #129.

Technical Note #103 page 1 of 1 Using MaxApplZone and MoveHHi

• • •

•
Macintosh Technical Notes

#104: MPW: Accessing Globals From Assembly Language

See also:

Written by:
Updated:

MPW Reference Manual

Jim Friedlander January 12, 1987
March 1, 1988

•

This technical note demonstrates how to access MPW Pascal and MPW C
globals from the MPW Assembler.

To allow access of MPW Pascal globals from the MPW Assembler, you need to identify
the variables that you wish to access as external. To do this, use the {$2+} compiler
option. Using the {$2+} option can substantially increase the size of the object file due
to the additional symbol information (no additional code is generated and the symbol
information is stripped by the linker). If you are concerned about object file size, you can
"bracket" the variables you wish to access as external variables with {$ 2 +} and {$ 2 - } .
Here's a trivial example:

Pascal Source

PROGRAM MyPascal;
USES

MemTypes,QuickDraw,OSIntf,ToolIntf;

VAR
myWRect: Rect;

{$Z+} {make the following external}
myInt: Integeri

{$Z-} {make the following local to this file (not lexically local)}
err: Integer i

PROCEDURE MyAsm; EXTERNALi {routine doubles the value of myInt}

BEGIN {PROGRAM}
myInt:= 5;
MyAsmi {call the routine, myInt will be 10 now}
writeln('The value of myInt after calling myAsm is " myInt:1);

END. {PROGRAM}

Assembly Source for Pascal

•
CASE OFF

MyAsm PROC EXPORT
IMPORT myInt:DATA
ASL.W t1,myInt
RTS

Technical Note #104

;treat upper and lower case identically
iCASE OFF is the assembler's default
iwe need : DATA, the assembler assumes CODE
imultiply by two
iall done with this extensive routine, whew!

page 1 of2 Accessing Globals From Assembly Language

END

The variable mylnt is accessible from assembler. Neither myWRect nor err are

accessible. If you try to access myWRect, for example, from assembler, you will get the

following linker error:

ttt Link: Error

C Source

Undefined entry name: MYWRECT. •
In an MPW C program, one need only make sure that MyAsm is declared as an external

function, that mylnt is a global variable (capitalizations must match) and that the CASE

ON directive is used in the Assembler:

tinclude <types.h>

tinclude <quickdraw.h>

tinclude <fonts.h>

tinclude <windows.h>

tinclude <events.h>

tinclude <textedit.h>

tinclude <dialogs.h>

tinclude <stdio.h>

main ()
{

WindowPtr MyWindow;

Rect myWRect;

extern MyAsm();
short myInt;

/* assembly routine that doubles the value of myInt */

/* we'll change the value of this variable from MyAsm */

•
myInt = 5;
MyAsm();
printf(n The value of myInt after calling myAsm is %d\nn,myInt);

} /*main*/

Assembly source for C

MyAsm
CASE
PROC
IMPORT
ASL.W
RTS
END

ON
EXPORT
myInt:DATA
tl,myInt

;treat upper and lower case distinct

;this is how C treats upper and lower case

;we need :DATA, the assembler assumes CODE

;multiply by two

;all done with this extensive routine, whew!

•
Technical Note #104 page 2 of 2 Accessing Globals From Assembly Language

•
Macintosh Technical Notes

#105: MPW Object Pascal Without MacApp

See also: Technical Note #93-{$LOAD};_Datalnit;%_MethTables

Written by:
Updated:

Rick Blair January 12, 1987
March 1, 1988

•

•

Object Pascal must have a CODE segment named %_MethTables in order to accessobject methods. In MacApp this is taken care of "behind the scenes" so you don't have toworry about it . However, if you are doing a straight Object Pascal program, you mustmake sure that % MethTables is around when you need it. If it's unloaded when youcall a method, your Macintosh will begin executing wild noncode and die a gruesomeand horrible death.

The MPW Pascal compiler must see some declaration of an object in order to produce areference to the magic segment. You can achieve this cheaply by simply includingObjlntf.p in your Uses declaration. This must be in the main program, by the way. Thecompiler will produce a call to %_InitObj which is in %_MethTables.

If you're a more adventurous soul, you can call %_ In i t Ob j explicitly from theinitialization section of your main program (you must use the {$ %+} compiler directive toallow the use of "%" in identifiers). This will load the % MethTables segment. SeeTechnical Note #93 for ideas about locking down segments that are needed foreverwithout fragmenting the heap.

Technical Note#105 page 1 of 1 MPWObject Pascal Without MacApp

•

•

•

•
Macintosh Technical Notes

#106: The Real Story: VCBs and Drive Numbers

See also: The File Manager
Technical Note #36-Drive Queue Element Format

Written by:
Updated:

Rick Blair January 12, 1987
March 1, 1988

•

The top of page IV-178 in The File Manager chapter of Inside Macintosh in attempts toexplain the behavior of two fields in a volume control block when the corresponding diskis offline or ejected. Due to the fact that a little bit is left unsaid, this paragraph is rathermisleading. The two fields in question are vcbDrvNum and vcbDRefNum (referred to as
ioVDrvlnfo and ioVDRefNum in C and Pascal). PBHGetVlnfo can be used to accessthese fields.

Offline

When a mounted volume is placed offline, vcbDrvNum is cleared and vcbDRefNum isset to the two's complement of the drive number. Since drive numbers are assignedpositive values (starting with one), this will be a negative number. If vcbDrvNum is zeroand vcbDRefNum is negative, you know that the volume is offline.

Ejected

When a volume is ejected, vcbDrvNum is cleared and vcbDRefNum is set to the positivedrive number. If vCbDrvNum is zero and vcbDRefNum is positive, you know that thevolume is ejected. Ejection implies being offline. There is no such thing as "prematureejection".

Summary

vcbDrvNum
vcbDRefNum

online
>0 (DrvNum)
<0 (DRefNum)

offline
o
<0 (-DrvNum)

ejected
o
>0 (DrvNum)

Please refrain from assuming anything about a VCB queue element beyond what isdocumented in Inside Macintosh, and don't expect it to always be 178 bytes in size. Itgrew when we went from MFS to HFS, and it may grow again. It's safest to use calls like• PBHGetVlnfo to get the information that you need.

Technical Note#106 page 1 ot 1 The Real Story: VCBs and Drive Numbers

•

•

•

•
Macintosh Technical Notes

#107: Nulls in Filenames

See also:

Written by:
Updated:

The File Manager

Hick Blair March 2, 1987
March 1, 1988

•

•

Some applications (loosely speaking so as to include Desk Accessories, INITs, andwhat-have-you) generate or rename special files on the fly so that they are not explicitlynamed by the user via SFPutFile. Since the Macintosh file system is very liberal aboutfilenames and only excludes colons from the list of acceptable characters, this can leadto some difficulties, both for the end user and for writers of other programs which maysee these files.

Other programs which might be backing up your disk or something similar may getconfused. A program written in C will think it has found the end of a string when it hits anull (ASCII code 0) character, so nulls in filenames are especially risky.

As a rule, filenames should only include characters which the user can see and edit.The only reasonable exception might be invisible files, but it can be argued that they areof dubious value anyway. You can argue "but what about my help file, I don't want itrenamed" but we already have what we think is the best approach for that situation. Ifyou can't find a configuration or other file because the user has renamed or moved it,then call SFGetFile and let the user find it. If the user cancels, and you can't run withoutthe file, then quit with an appropriate message.

Please consider carefully before you put non-displaying characters in filenames!

Technical Note #107 page 1 of 1 Nulls in Filenames

•

•

•

•
Macintosh Technical Notes

#108: AddDrive, Drvrlnstall, and DrvrRemove- - -

See also: Technical Note #36, Drive Queue Elements
SCSI Development Package (APDA)

Written by:
Revised by:

Jim Friedlander
Pete Helme

March 2, 1987
December 1988

•

AddDrive, Drvrlnstall, and DrvrRernove are used in the sampleSCSI driver in the SCSI Development Package, which is available fromAPDA. This Technical Note documents the parameters for these calls.Changes since March 1, 1988: Updated the Drvrlnstall text toreflect the use of register AO, which should contain a pointer to the driverwhen called. Also added simple glue code for Drv r Ins tall andDrvrRernove since none is available in the MPW interfaces.

AddDrive

AddD rive adds a drive to the drive queue, and is discussed in more detail inTechnical Note #36, Drive Queue Elements:

FUNCTION AddDrive {DQE:DrvQElidriveNurn, refNurn:INTEGER) :OSErri

AO (input) ~
DO high word(input) ~
DO low word(input) ~
DO (output) f-

Drvrlnstall

pointer to DQE
drive number
driver Re fNurn
error code

noErr (always returned)

Drvrlnstall is used to install a driver. A DeE for the driver is created and its handleentered into the specified Unit Table position (-1 through -64). If the unit number is -4through -9, the corresponding ROM-based driver will be replaced:

FUNCTION DrvrInstall{drvrHandle:Handlei refNurn: INTEGER): OSErr;

•
AO (input)
DO (input)
DO (output)

Technical Note #108

pointer to driver
driver RefNurn (-1 through -64)
error code

noErr
badUnitErr

page 1 of 2 _AddDrive, _Drvrlnstall, and _DrvrRemove

DrvrRemove

DrvrRemove is used to remove a driver. A RAM-based driver is purged from the •

system heap (using ReleaseResource). Memory for the DeE is disposed:

FUNCTION DrvrRemove(refNum: INTEGER) :OSErr;

DO (input)
DO (output)

Interfaces

Driver RefNum
error code

noErr
qErr

Through a sequence of cataclysmic events, the glue code for _Drvrlnstall and

_DrvrRemove was never actually added to the MPW interfaces (Le., "We forgot."), so

we will include simple glue here at no extra expense to you.

It would be advisable to first lock the handle to your driver with HLock before making

either of these calls since memory may be moved. -

;---

; FUNCTION DRVRInstall (drvrHandle: Handle; refNum: INTEGER) : OSErr;

;---

DRVRInstall PROC
MOVEA.L
MOVE.W
MOVEA.L
MOVEA.L
DrvrInstall

MOVE.W
JMP
ENDPPROC

EXPORT
(SP)+, Al
(SP)+, DO
(SP)+, AO
(AO), AO

DO, (SP)
(AI)

pop return address

driver reference number

handle to driver
pointer to driver

$A03D

get error
& split

•
;------------------~-------------

--------------------- - - - - - - - - - -

; FUNCTION DRVRRemove(refNum:INTEGER) :OSErr;

;---

DRVRRemove PROC
MOVEA.L
MOVE.W

DrvrRemove
MOVE.W
JMP
ENDPPROC

EXPORT
(SP) +, Al
(SP)+, DO

DO, (SP)
(AI)

pop return address

driver reference number

$A03E

get error
& split

•
Technical Note #108 page 2 of 2 _AddDrive, _Drvrlnstall, and _DrvrRemove

Macintosh Technical Notes

• #109: Bug i,n MPW 1.0 Language Libraries

See also:

Written by:
Updated:

MPW Reference Manual

Scott Knaster March 2, 1987
March 1, 1988

This note formerly described a problem in the language libraries for MPW1.0. This bug is fixed in MPW 1.0.2, available from APDA.

•

•
Technical Note#109 page 1 of 1 BuginMPW 1.0Lang..aage Li:>raries

•

•

•

•
Macintosh
Technical Notes

Developer Technical Support

#110: MPW: Writing Stand-Alone Code
Revised by: Keith Rollin
Written by: Jim Friedlander

August 1990
March 1987

•

•

This Technical Note formerly discussed using MPW Pascal and C to write stand-alone code, suchas 'WDEF', 'LDEF', 'INIT', and 'FKEY' resources.
Changes since February 1990: Merged the contents of this Note into Technical Note #256,IStand-Alone Code, ad nauseam.

This Note formerly discussed using MPW Pascal and C to write stand-alone code. Thisinformation has been expanded and is now contained in Technical Note #256, Stand-Alone Code,ad nauseam.

#110: MPW: Writing Stand-Alone Code
1 of 1

•

•

•

•
Macintosh Technical Notes

#111: MoveHHi and SetResPurge

See also:

Written by:
Updated:

The Memory Manager
The Resource Manager

Jim Friedlander March 2, 1987
March 1, 1988

•

•

SetResPurge (TRUE) is called to make the Memory Manager call the ResourceManager before purging a block specified by a handle. If the handle is a handle to aresource, and its resChanged bit is set, the resource data will be written out (usingWriteResource).

When MoveHHi is called, even though the handle's block is not actually being purged,the resource data specified by the handle will be written out. An application can preventthis by calling SetResPurge (FALSE) before calling MoveHHi (and then calling
SetResPurge (TRUE) after the MoveHHi call).

Technical Note #111 page 1 of 1 MoveHHi and SetResPurge

•

•

•

•
Macintosh Technical Notes

#112: FindDltem

See also:

Written by:
Updated:

The Dialog Manager

Rick Blair March 2, 1987
March 1, 1988

•

•

FindDltem is a potentially useful call which returns the number of a dialog item given apoint in local coordinates and a dialog handle. It returns an item number of -1 if noitem's rectangle overlaps the point. This is all well and good, except you don't get backquite what you would expect.

The item number returned is zero-based, so you have to add one to the result:

theitem := FindDltem(theDialog, thePointl + 1;

Technical Note #112 page 1 of 1 FindDltem, win 0 prize

•

•

•

•
Macintosh Technical Notes

#113: Boot Blocks

See also:

Written by:
Updated:

The Segment Loader

B03b Johnson March 2, 1987
March 1, 1988

•

•

There are two undocumented features of the Boot Blocks. This note willdescribe how they currently work.

Warning: The format and functionality of the Boot Blocks will change in thefuture; dependence on this information may cause your program to fail onfuture hardware or with future System software.

The first two sectors of a bootable Macintosh disk are used to store information on howto start up the computer. The blocks contain various parameters that the system uses tostartup such as the name of the system file, the name of the Finder, the first applicationto run at boot time, the number of events to allow, etc.

Changing System Heap Size

The boot blocks dictate what size the system heap will be after booting. Any commonsector editing program will allow you to change the data in the boot blocks. Changingthe system heap size is accomplished by changing two parameters in the boot blocks:the long word value at location $ 86 in Block 0 indicates the size of the system heap; theword value at location $ 6 is the version number of the boot blocks. Changing the versionnumber to be greater than $14 ($15 is recommended) tells the ROM to use the value at$ 86 for the system heap size, otherwise the value at $ 86 is ignored. The $ 86 locationonly applies to computers with more than 128K of RAM.

Secondary Sound and Video Pages

Another occasionally useful feature of the boot blocks is the ability to specify that thesecondary sound and video pages be allocated at boot time. This is done before adebugger is loaded, so the debugger will load below the alternate screen. This is usefulfor debugging software that uses the alternate video page, like page-flipping demos orgames. To allocate the second video and sound buffers, change the two bytes starting atlocation $ 8 in the boot blocks. Change the value (normally 0) to a negative number
($FFFF) to allocate both video and sound buffers. Change the value to a positivenumber ($0001) to allocate only the secondary sound buffer.

Warning: MacsBug may not work properly if you allocate additional pages for soundand video.

Technical Note #113 page 1 of 1 Boot Blocks

•

•

•

•
Macintosh Technical Notes

#114: AppleShare and Old Finders

See also:

Written by:
Updated:

AppleShare User's Guide

Bryan Stearns March 2, 1987
March 1, 1988

•

•

A rumor has been spread that if you use a pre-AppleShare Finder on a workstation toaccess AppleShare volumes, you can bypass AppleShare's "access privilege"mechanisms.

This is not true. Access controls are enforced by the server, not by the Finder. If you usean older Finder, you are still prevented (by the server) from gaining access to protectedfiles and folders; however, you will not get the proper user-interface feedback that youwould if you were using the correct Finder: for instance, folders on the server will alwaysappear plain white (that is, without the permission feedback you'd normally get), anderror messages would not be as explanatory as those from Finders that "know" aboutAppleShare servers.

Technical Note #114 page 1 of 1 AppleShare and Old Finders

•

•

•

•
Macintosh Technical Notes

#115: Application Configuration with Stationery Pads

See also: The File Manager
Technical Note #116-AppleShare-able Applications
Technical Note #47-Customizing SFGetFile
Technical Note #48-Bundles
"Application Development in a Shared Environment"

Written by:
Updated:

Bryan Stearns March 2, 1987
March 1, 1988

•

•

With the introduction of AppleShare (Apple's file server) there are restrictions
on self-modification of application resource files and the placement of
configuration files. This note describes one way to get around the necessity
for configuration files.

Configuration Files

Some applications need to store information about configuration; others could benefit
simply from allowing users to customize default ruler settings, window placement, fonts,
etc.

There are applications which store this information as additional resources in the
application's resource file; when the user changes the configuration, the application
writes to itself to change the saved information.

AppleShare, however, requires that if an application is to be used by more than one
user at a time, it must not need write access to itself. This means that the above method
of storing configuration information cannot be used. (For more information about making
your application sharable, see Technical Note #116.)

Storing configuration in a special configuration file can be a problem; the user must
keep the file in the system folder or the application must search for it. This process has
design issues of its own.

An alternative to configuration files: Stationery Pads

A basis for one solution to this problem was a user-interface feature of the Lisa Office
System architecture. Lisa introduced the concept of "stationery pads", special
documents that created copies of themselves to allow users to save a pre-set-up
document for future use. On Lisa, this was the way Untitled documents were created.

Technical Note #115 page 1 of 2 Application Configuration with Stationery Pads

Your Macintosh application can provide the option of saving a document as a stationery
pad, to provide similar functionality. Here's how:

• You'll need to add a checkbox to your SFPutF ile dialog box (if you don't know •
how to do this, check out Technical Note #47); if the user checks this box, save
the document as you normally would, but use a different file type (the file type of a
document is usually set when the document is created, using the File Manager
Create procedure, or later using SetFilelnfo).

I
~E~ [i:!:Ei,i;i
~~ fi~.. ::.-:- -

A Document and its Stationery pad

• Be sure to use a different but similar icon for the stationery pad file. This is easy if
you differentiate between stationery and normal files solely by file type-the
Finder uses the type to determine which icon to display, see Technical Note #48
for help with the "bundle" mechanism used to associate a file type with an icon.

• When opening a stationery pad file, the window should come up named
"Untitled", with the contents of the stationery pad file.

• "Revert" should re-read the stationery pad file.

• Don't forget to add the stationery pad's file type to the file-types list that you pass
to Standard File, so that the new files will appear in the list when the user
chooses Open. This file type should be registered with Macintosh Developer •
Technical Support.

•
Technical Note #115 page 2 of 2 Application Configuration with Stationery Pads

•
Macintosh Technical Notes

#116: AppleShare-able Applications and the Resource Manager

See also: The Resource Manager
"Application Development in a Shared Environment"
Technical Note #4Q-Finder Flags

Written by:
Updated:

Bryan Stearns March 2, 1987
March 1, 1988

•

•

Normally, applications on an AppleShare server volume cannot be executedby more than one user at a time. This technical note explains why, and tellshow you can enable your application to be shared.

The Resource Manager versus Shared Files

Part of the explanation of why applications are not automatically sharable is based onthe design of the Resource Manager. The Resource Manager is a great little database.It was originally conceived as a way to keep applications localizable (a task it hasperformed admirably), and was found to be an excellent foundation for the SegmentLoader, Font Manager, and a large part of the rest of the Macintosh operating system.

However, it was never designed to be a multi-user database. When the ResourceManager opens a resource file (such as an application), it reads the file's resource mapinto memory. This map remains in memory until the resource file is closed by theSegment Loader, which regains control when the application exits. Sometimes it isnecessary to write the map out to disk; normally, this is only done by Upda teResF i Ieand CloseResFile.

If two users opened the same resource file at the same time, and one of them had writeaccess to the file and added a resource to it, the other user's Resource Managerwouldn't know about it; this would make the other user's copy of the file's originalresource map invalid. This could cause (at least) a crash; if both users had write access,it's not unlikely that the resource file involved would become corrupted. Also, althoughyou can tell the Resource Manager to write out an updated resource map, there's noway for another user to tell it to refresh the copy of the map in memory if the file changes.

Technical Note #116 page 1 of 3 AppleShare-able Applications

What does all this have to do with running my application twice?

Your application is stored as a resource file; code segments, alert and dialog templates,

etc., are resources. If you write to your application's resource file (for instance, to add

configuration information, like print records), your application can't be shared. •

In Apple's compatibility testing of existing applications (during development of

AppleShare), we found quite a few applications, some of them quite popular, that wrote

to their own resource files. So we decided, to improve the safety of using AppleShare, to

always launch applications using a combination of access privileges such that only one

user at a time could use a given application (these privileges will be discussed in a

future Technical Note). In fact, AppleShare opens all resource files this way, unless the

resource file is opened with OpenRFPerm and read-only permission is specified.

But my application doesn't write to itself!

We realize that many applications do not. However, there are other considerations

(covered in detail, with suggestions for fixes, in "Application Development in a Shared

Environment", available from APDA). In brief, here are the big ones we know about:

• Does your application create temporary files with fixed names in a fixed place (such

as the directory containing the application)? Without AppleShare's protection, two

applications trying to use the same temporary file could be disastrous.

• Is your application at least "conscious" of the fact that it may be in a multi-user

environment? For instance, does it work correctly if a volume containing an existing •

document is on a locked volume? Does it check all result codes returned from File

Manager calls, and ResError after relevant Resource Manager calls?

OK, I follow the rules. What do I do to make my application

sharable?

There is a flag in each file's Finder information (stored in the file's directory entry) known

as the "shared" bit. If you set this bit on your application's resource file, the Finder will

launch your application using read-only permissions; if anyone else launches your

application, they'll also get it read-only (their Finder will see the same "shared" bit set.).

Three important warnings accompany this information:

• The definition of the "shared" bit was incorrect in previous releases of information and

software from Apple. This includes the June 16, 1986 version of Technical Note #40

(fixed in the March 2, 1987 version), as well as all versions of ResEdit before and

including 1.1 b3 (included with MPW 2.0). For now, the most reliable way to set this bit

is to get the 1.1b3 version of ResEdit, use it to Get Info on your application, and check

the box labeled "cached" (the incorrect documentation upon which ResEdit ret al.] was

based called the real shared bit "cached"; the bit labeled as "shared" is the real •.

cached bit [a currently unused but reserved bit which should be left clear]).

Technical Note #116 page 2 of3 AppleShare-able Applications

•

•

•

• By checking this bit, you're promising (to your users) that your application will workentirely correctly if launched by more than one user. This means that you follow theother rules, in addition to simply not writing to your application's own resource file.See "Application Development for a Shared Environment," and test carefully!

• Setting this bit has nothing to do with allowing your application's documents to beshared; you must design this feature into your application (it's not something thatApple system software can take care of behind your application's back.). You shouldrealize from reading this note, however, that if you store your document's data inresource files, you won't be able to allow multiple users to access themsimultaneously.

Technical Note#116 page 3 of3 AppleShare-able Applications

•

•

•

•
Macintosh Technical Notes

#117: Compatibility: Why & How

See Also: Technical Note #2-Compatibility Guidelines
Technical Note #7-A Few Quick Debugging Tips

Written by:
Updated:

B03b Johnson February 9, 1987
March 1, 1988

•

•

While creating or revising any program for the Macintosh, you should be
aware of the most common reasons why programs fail on various versions of
the Macintosh. This note will detail some common failure modes, why they
occur, and how to avoid them.

We've tried to explain the issues in depth, but recognize that not everyone is interested
in every issue. For example, if your application is not copy protected, you're probably not
very interested in the section on copy protection. That's why we've included the outline
form of the technical note. The first two pages outline the problems and the solutions that
are detailed later. Feel free to skip around at will, but remember that we're sending this
enormous technical note because the suggestions it provides may save you hasty
compatibility revisions when we announce a new machine.

We know it's a lot, and we're here to help you if you need it. Our address (electronic and
physical) is on page three---eontact us with any questions-that's what we're here for!

Technical Note #117 page 1 of 28 Compatibility: Why & How

Compatibility: the outline

Don't assume the screen is a fixed size
To get the screen size:

• check the QuickDraw global screenBits . bounds

Don't assume the screen is in a fixed location
To get the screen location:

• check the QuickDraw global screenBits . baseAddr

Don't assume that rowBytes is equal to the width of the screen
To get the number of bytes on a line:

• check the QuickDraw global screenBits . rowBytes
To get the screen width:

• check the QuickDraw global screenBits .bounds. right
To do screen-size calculations:

• Use Longlnts

Don't write to or read from nil Handles or nil Pointers

Don't create or Use Fake Handles
To avoid creating or using fake handles:

• Always let the Memory Manager perform operations with handles
• Never write code that assigns something to a master pointer

Don't write code that modifies itself
Self modifying code will not live across incarnations of the 68000

Think carefully about code designed strictly as copy protection
To avoid copy protection-related incompatibilities:

• Avoid copy protection altogether
• Rely on schemes that don't require specific hardware
• Make sure your scheme doesn't perform illegal operations

Don't ignore errors
To get valuable information:

• Check all pertinent calls for errors
• Always write defensive code

Don't access hardware directly
To avoid hardware-related incompatibilities:

• Don't read or write the hardware
• If you can't get the support from the ROM, ask the system where the hardware is
• Use low-memory globals

Don't use bits that are reserved
To avoid compatibility problems when bit status changes:

• Don't use undocumented stuff
• When using low-memory globals, check only what you want to know

•

•

•
Technical Note #117 page 2 0128 Compatibility: Why & How

•

•

•

Summary
Minor bugs are getting harder and harder to get away with:

• Good luck
• We'll help
• AppleLink: MacDTS, Mel: MacDTS
• u.s. Mail: 20525MarianiAve.;MlS27-T;Cupertino.CA 95014

Technical Note #117 page 3 of 28 Compatibility: Why & How

What it Is

The basic idea is to make sure that your programs will run, regardless of which
Macintosh they are being run on. The current systems to be concerned with include:

• Macintosh 128K
• Macintosh 512K
• Macintosh XL

• Macintosh 512Ke
• Macintosh Plus
• Macintosh SE
• Macintosh /I

•
If you perform operations in a generic fashion, there is rarely any reason to know what
machine is running. This means that you should avoid writing code to determine which
version of the machine you are running on, unless it is absolutely necessary.

For the purposes of this discussion, the term "programs" will be used to describe any
code that runs on a Macintosh. This includes applications, INITs, FKEYs, Desk
Accessories and Drivers.

What the "Rules" mean

Compatibility across all Macintosh computers (which may sound like it involves more
work for you) may actually mean that you have less work to do, since it may not be
necessary to revise your program each time Apple brings out a new computer or System
file. Users, as a group, do not understand compatibility problems; all they see is that the
program does not run on their system.

The benefits of being compatible are many-fold: your customers/users stay happy, you
have less programming to do, you can devote your time to more valuable goals, there
are fewer versions to deal with, your code will probably be more efficient, your users will
not curse you under their breath, and your outlook on life will be much merrier.

Now that we know what being compatible is all about, recognize that nobody is
requiring you to be compatible with anything. Apple does not employ roving gangs of
thought police to be sure that developers are following the recommended guidelines.
Furthermore, when the guidelines comprise 1200 pages of turgid prose (Inside
Macintosh), you can be expected to miss one or two of the "rules." It is no sin to be
incompatible, nor is it a punishable offense. If it were, there would be no Macintosh
programs, since virtually all developers would be incarcerated. What it does mean,
however, is that your program will be unfavorably viewed until it steps in line with the
current system (which is a moving target). If a program becomes incompatible with a
new Macintosh, it usually requires rethinking the offending code, and releasing a new
version. You may read something like "If the developers followed Apple guidelines, they
would be compatible with the transverse-hinged diatomic quark realignment system."
This means that if you made any mistakes (you read all 1200 pages carefu lIy, right?),
you will not be compatible. It is extremely difficult to remain completely compatible,
particularly in a system as complex as the Macintosh. The rules haven't changed, but
what you can get away with has. There are, however, a number of things that you can do
to improve your odds-some of which will be explained here.

•

•
Technical Note #117 page 4 of 28 Compatibility: Why & How

•

•

•

It's your choice

It is still your choice whether you will be concerned with compatibility or not. Apple will
not put out a warrant for your arrest. However, if you are doing things that are specifically
illegal, Apple will also not worry about "breaking" your program.

Bad Things

The following list is not intended to be comprehensive, but these are the primary
reasons why programs break from one version of the system to the next. These are the
current top ten commandments:

I Thou shalt not assume the screen is a fixed size.
" Thou shalt not assume the screen is at a fixed location.
'" Thou shalt not assume that rowBytes is equal to the width of the screen.
IV Thou shalt not use nil handles or nil pointers.
V Thou shalt not create or use fake handles.
VI Thou shalt not write code that modifies itself.
VII Thou shalt think twice about code designed strictly as copy protection.
VIII Thou shalt check errors returned as function results.
IX Thou shalt not access hardware directly.
X Thou shalt not use any of the bits that are reserved (unused means reserved).

This has been determined from extensive testing of our diverse software base.

Technical Note #117 page 5 of 28 Compatibility: Why & How

Assuming the screen is a fixed size

Do not assume that the Macintosh screen is 512 x 342 pixels. Programs that do
generally have problems on (or special case for) the Macintosh XL, which has a wider
screen. Most applications have to create the bounding rectangle where a window can •
be dragged. This is the boundsRect that is passed to the call:

DragWindow (myWindowPtr, theEvent.where, boundsRect);

Some ill-advised programs create the boundsRect by something like:

SetRect (boundsRect, 0,0,342,512); {oops, this is hard-coded..}

Why it's Bad

This is bad because it is never necessary to specifically put in the bounding rectangle
for the screen. On a Macintosh XL for example, the screen size is 760x364 (and
sometimes 608x431 with alternate hardware). If a program uses the hard-coded
0,0,342,512 as a bounding rectangle, end users will not be able to move their windows
past the fictitious boundary of 512. If something similar were done to the GrowWindow
call, it would make it impossible for users to grow their window to fill the entire screen.
(Always a saddening waste of valuable screen real-estate.)

Assuming screen size makes it more difficult to use the program on Macintoshes with
big screens, by making it difficult to grow or move windows, or by drawing in strange
places where they should not be drawing (outside of windows). Consider the case of
running on a Macintosh equipped with one of the full page displays, or Ultra-Large •
screens. No one who paid for a big screen wants to be restricted to using only the
upper-left corner of it.

How to avoid becoming a screening fascist

Never hard code the numbers 512 and 342 for screen dimensions. You should avoid
using constants for system values that can change. Parameters like these are nearly
always available in a dynamic fashion. Programs should read the appropriate variables
while the program is running (at run-time, not at compile time).

Here's how smart programs get the screen dimensions:

InitGraf(@thePort); { QuickDraw global variables have to be initialized.}

boundsRect := screenBits.bounds; { The Real way to get screen size }

{ Use QuickDraw global variable. }

This is smart, because the program never has to know specifically what the numbers
are. All references to rectangles that need to be related to the screen (like the drag and
grow areas of windows) should use screenBits .bounds to avoid worrying about the
screen size.

•
Technical Note #117 page 6 of 28 Compatibility: Why & How

•

•

•

Note that this does not do anything remotely like assume that "if the computer is not a
standard Macintosh, then it must be an XL." Special casing for the various versions of
the Macintosh has always been suspicious at best; it is now grounds for breaking. (At
least with respect to screen dimensions.)

By the way, remember to take into account the menu bar height when using this
rectangle. On 128K ROMs (and later) you can use the low-memory global mBarHeight
(a word at $BAA). But since we didn't provide a low-memory global for the menu bar
height in the 64K ROMs, you'll have to hard code it to 20 ($14). (You're not the only ones
to forget the future holds changes.)

How to find fascist screenism in current programs

The easiest way is to exercise your program on one of the Ultra-Large screen
Macintoshes. There should be no restrictions on sizing or moving the windows, and all
drawing should have no problems. If there are any anomalies in the program's usage,
there is probably a lurking problem. Also, do a global find in the source code to see if the
numbers 512 or 342 occur in the program. If so, and if they are in reference to the
screen, excise them.

Technical Note #117 page 7 of 28 Compatibility: Why & How

Assuming the screen is at a fixed location

Some programs use a fixed screen address, assuming that the screen location will be
the same on various incarnations of the Macintosh. This is not the case. For example,
the screen is located at memory location $lA700 on a 128K Macintosh, at $7A700 on a •
512K Macintosh, at $F8000 on the Macintosh XL, and at $FA700 on the Macintosh Plus.

Why it's Bad

When a program relies upon the screen being in a fixed location, Murphy's Law dictates
that an unknowing user will run it upon a computer with the screen in a different location.
This usually causes the system to crash, since the offending program will write to
memory that was used for something important. Programs that crash have been proven
to be less useful than those that don't.

How to avoid being a base screener

Suffice it to say that there is no way that the address of the screen will remain static, but
there are rare occasions where it is necessary to go directly to the screen memory. On
these occasions, there are bad ways and not-as-bad ways to do it. A bad way:

myScreenBase := Pointer ($7A700); {not good. Hard-coded number.

myScreenBase := screenBits.baseAddr; {Good. Always works. }
{Yet another QuickDraw global variable}

A not-as-bad way:

InitGraf(@thePort); { do this only once in a program. }

•Using the latter approach is guaranteed to work, since QuickDraw has to know where to
draw, and the operating system tells QuickDraw where the screen can be found. When
in doubt, ask QuickDraw. This will work on Macintosh computers from now until forever,
so if you use this approach you won't have to revise your program just because the
screen moved in memory.

If you have a program (such as an INIT) that cannot rely upon QuickDraw being
initialized (via InitGraf), then it is possible to use the ScrnBase low-memory global
variable (a long word at $824). This method runs a distant second to asking QuickDraw,
but is sometimes necessary.

How to find base screeners

The easiest way to find base screeners is to run the offending program on machines that
have different screen addresses. If any addresses are being used in a base manner, the
system will usually crash. The offending program may also occasionally refuse to draw.
Some programs afflicted with this problem may also hang the computer (sometimes
known as accessing funny space). Also, do a global find on the source code to look for
numbers like $7A700 or $lA700. When found, exercise caution while altering the
offending lines.

•
Technical Note #117 page 8 of 28 Compatibility: Why & How

•

•

•

Assuming that rowbytes is equal to the width of the screen

According to the definition of a bitMap found in Inside Macintosh (p 1-144), you can see
that rowBytes is the number of actual bytes in memory that are used to determine the
bitMap. We know the screen is just a big hunk of memory, and we know that QuickDraw
uses that memory as a bitMap. rowBytes accomplishes the translation of a big hunk of
memory into a bitMap. To do this, rowBytes tells the system how long a given row is in
memory and, more importantly, where in memory the next row starts. For conventional
Macintoshes, rowBytes (bytes per Row) * 8 (Pixels per Byte) gives the final horizontal
width of the screen as Pixels per Row. This does not have to be the case. It is possible to
have a Macintosh screen where the rowBytes extends beyond what is actually visible
on the screen. You can think of it as having the screen looking in on a larger bitMap.
Diagrammatically, it might look like:

Big Hunk 0' Memory

..

With an Ultra-Large screen, the number of bytes used for screen memory may be in the
500,000 byte range. Whenever calculations are being made to find various locations in
the screen, the variables used should be able to handle larger screen sizes. For
example, a 16 bit Integer will not be able to hold the 500,000 number, so a Longlnt
would be required. Do not assume that the screen size is 21,888 bytes long. bitMaps
can be larger than 32K or 64K.

Why it's Bad

Programs that assume that all of the bytes in a row are visible may make bad
calculations, causing drawing routines to produce unusual, and unreadable, results.
Also, programs that use the rowBytes to figure out the width of the screen rectangle will
find that their calculated rectangle is not the real screenBi t s . Bounds. Drawing into
areas that are not visible will not necessarily crash the computer, but it will probably give
erroneous results, and displays that don't match the normal output of the program.

Programs that assume that the number of bytes in the screen memory will be less than
32768 may have problems drawing into Ultra-Large screens, since those screens will
often have more memory than a normal Macintosh screen. These particular problems
do not evidence themselves by crashing the system. They generally appear as loss of

Technical Note #117 page 9 of 28 Compatibility: Why & How

functionality (not being able to move a window to the bottom of the screen), or as
drawing routines that no longer look correct. These problems can prevent an otherwise
wonderful program from being used.

How to avoid being a row byter

In any calculations, the rowBytes variable should be thought of as the way to get to the
next row on the screen. This is distinct from thinking of it as the width of the screen. The
width should always be found from s ere en Bit s . b 0 u n d s . rig h t
screenBits.bounds.left.

It is also inappropriate to use the rectangle to decide how many bytes there are on a
row. Programs that do something like:

bytesLine .= screenBits.bounds.right DIV 8i {bad use of bounds
rightSide := screenBits.rowBytes * 8i { bad use of rowBytes }

will find that the screen may have more rowBytes than previously thought. The best
way to avoid being a row byter is to use the proper variables for the proper things.
Without the proper mathematical basis to the screen, life becomes much more difficult.
Always do things like:

bytesLine := screenBits.rowBytesi {always the correct number}
rightSide .= screenBits.bounds.righti {always the correct screen size

It is sometimes necessary to do calculations involving the screen. If so, be sure to use
Longlnts for all the math, and be sure to use the right variables (Le. use Longlnts) .
For example, if we need to find the address of the sooth row in the screen (500 lines
from the top):

•

•
VAR myAddress:

myRow:
myOffset:
bytesLine:

Longlnti
Long1nti
Longlnti
Longlnti

so the calculations don't round off.
could easily be over 32768 ... }

myAddress := ord4(screenBits.baseAddr)i {start withe real base address
myRow := SOOi {the row we want to address }
bytesLine := screenBits.rowBytesi {the real bytes per line}
myOffset := myRow * bytesLinei {lines * bytes per lines gives bytes }
myAddress := myAddress + myOffseti {final address of the sooth line }

This is not something you want to do if you can possibly avoid it, but if you simply must
go directly to the screen, be careful. The big-screen machines (Ultra-Large screens) will
thank you for it. If QuickDraw cannot be initialized, there is also the low-memory global
screenRow (a word at $106) that will give you the current rowBytes.

How to find row byters

To find current problems with row byter programs, run them on a machine equipped with •
Ultra-Large screens and see if any anomalies crop up. Look for drawing sequences that
don't work right, and for drawing that clips to an imaginary edge. For source-level

Technical Note #117 page 10 of 28 Compatibility: Why & How

•

•

•

inspection, look for uses of the rowBytes variables and be sure that they are being
used in a mathematically sound fashion. Be highly suspicious of any code that uses
rowBytes for the screen width. Any calculations involving those system variables
should be closely inspected for round-off errors and improper use. Search for the
number 8. If it is being used in a calculation where it is the number of bits per byte, then
watch that code closely for improper conceptualization. This is code that could leap out
and grab you by the throat at anytime. Be careful!

Technical Note#117 page 11 of 28 Compatibility: Why & How

Using nil Handles or nil Pointers

A nil pointer is a pointer that has a value of O. Recognize that pointers are merely
addresses in memory. This means that a nil pointer is pointing to memory location O. •
Any use of memory location 0 is strictly forbidden, since it is owned by Motorola.
Trespassers may be shot on sight, but they may not die until much later. Sometimes
trespassers are only wounded and act strangely. Any use of memory location 0 can be
considered a bug, since there are no valid reasons for Macintosh programs to read or
write to that memory. However, nil pointers themselves are not necessarily bad. It is
occasionally necessary to pass nil pointers to ROM routines. This should not be
confused with reading or writing to memory location O. A pointer normally points to
(contains the address of) a location in memory. It could look like this:

•

This is how a Pointer
works. The address of
the pointer variable itself
is $E9310 (@P) and is four
bytes long. The pointer points
to (contains the address of)
the block at $3E4DE (P).
That memory location is where
the actual data resides (P~).

$3E4DEP: $E9310:t::J~§=:r--,

P~: $3E4DE:

Memory 0

Higher Memory

Highest Memory

If a pointer has been cleared to nil, it will point to memory location O. This is OK as
long as the program does not try to read from or write to that pointer. An example of a
nil pointer could look like:

•

This is a nil Pointer.
Note that the memory that
it points to (the address)
is 0 (P~). This is wrong.
There is no valid data at
memory location O. Any
writing to or reading from
this pointer is a bug.

o

Memo~~~~ 1..-_-

P: $E9310:t:=:J==:r--,

Higher Memory

Highest Memory

Technical Note #117 page 12 of28 Compatibility: Why & How

nil handles are related to the problem, since a handle is merely the address of a
pointer (or a pointer to a pointer). An example of what a normal handle might look like
is:

This is how a Handle works.
The address of the handle
variable itself (H) is $E93l0.
That variable points (has the
address) to the master pointer
at location $2603C (H). That
variable is a pointer also, and
points to the real data found
at $3E4DE (HAA). The dark grey
block is a Master pointer block. It
is a group (usually 64) of Master
Pointers. One of them is the Master
Pointer at address $2603C (HA).

$2603CH: $E931 0:t::J~§=j----,

W: $2603C:

Memory 0

Higher Memory

Highest Memory•

When the first pointer (h) becomes nil, that implies that memory location 0 can be used
as a pointer. This is strictly illegal. There are no cases where it is valid to read from or
write to a nil handle. A pictorial representation of what a nil handle could look like:

This is a nil Handle.
Note that the Handle usually
points to a Master Pointer, but
in this case it points at (has
the value of) 0 (H A

) . This is wrong.
Using what is at memory location
o as a pointer is invalid, since
it is not known what will be there.

oH: $E93l0:l==:J===r----,

Higher Memory

Highest Memory

•
$3E4DE:

$2603C:

Memory 0
(W)

~"'~H·AA: Points someplace strange ...

•

If the memory at 0 contains an odd number (numerically odd), then using it as a pointer
will cause a system error with ID=2. This can be very useful, since that tells you exactly
where the program is using this illegal handle, making it easy to fix. Unfortunately, there
are cases where it is appropriate to pass ani 1 handle to ROM routines (such as
GetScrap). These cases are rare, and it is never legal to read from or write to a nil
handle.

Technical Note#117 page 13 of28 Compatibility: Why & How

There is also the case of an empty handle. An empty handle is one where the handle
itself (the first pointer) points to a valid place in memory; that place in memory is also a
pointer, and if it is nil the entire handle is termed empty. There are occasions where it
is necessary to use the handle itself, but using the nil pointer that it contains is not
valid. An example of an empty handle could be: •

This is an Empty Handle.
Note that the handle itself
has a valid Master Pointer
address in it $2603C (HAl. The
Master Pointer is nil however,
which is the address of location
o in memory. It is wrong to use
the Master Pointer in this case,
although there are cases where
using the Handle itself is valid.

$2603CH: $E9310:t:~~2S=:t----,

Higher Memory

Highest Memory

Fundamentally, any reading or writing to memory using a pointer or handle that is nil is
punishable by death (of your program).

Why it's Bad

The use of nil pointers can lead to the use of make-believe data. This make-believe
data often changes for different versions of the computer. This changing data makes it
difficult to predict what will happen when a program uses nil pointers. Programs may
not crash as a result of using ani 1 pointer, and they may behave in a consistent
fashion. This does not mean that there isn't a bug. This merely means that the program
is lucky, and that it should be playing the lottery, not running on a Macintosh. If a
program acts differently on different versions of the Macintosh, you should think "could
there be a nasty nil pointer problem here?" Use of a nil handle usually culminates in
reading or writing to obscure places in memory. As an example:

•

VAR myHandle: TEHandle;

myHandle := nil;

That's pretty straightforward, so what's the problem? If you do something like:

myHandle~~.viewRect := myRect; {very bad idea with myHandle = nil

memory location zero will be used as a pointer to give the address of a TextEdit record.
What if that memory location points to something in the system heap? What if it points to
the sound buffer? In cases like these, eight bytes of rectangle data will be written to •
wherever memory location 0 points.

Technical Note #117 page 14 of28 Compatibility: Why & How

•

•

Use of a ni 1 handle will never be useful. This memory is reserved and used by the
68000 for various interrupt vectors and Valuable Stuff. This Valuable Stuff is composed
of things that you definitely do not want to change. When changed, the 68000 finds out,
and decides to get back at your program in the most strange and wonderful ways.
These strange results can range from a System Error all the way to erasing hard disks
and destroying files. There really is no limit to the havoc that can be wreaked. This
tends to keep the users on the edge of their seat, but this is not really the desired effect.
As noted above, it won't necessarily cause traumatic results. A program can be doing
naughty things and not get caught. This is still a bug that needs to be fixed, since it is
nearly guaranteed to give different results on different versions of the Macintosh.
Programs exhibiting schizophrenia have been proven to be less enjoyable to use.

How to avoid being a Niller

Whenever a program uses pointers and handles, it should ensure that the pointer or
handle will not be nil. This could be termed defensive programming, since it assumes
that everyone is out to get the program (which is not far from the truth on the Macintosh).
You should always check the result of routines that claim to pass back a handle. If they
pass you back a nil handle, you could get in trouble if you use them. Don't trust the
ROM. The following example of a defensive use of a handle involves the Resource
Manager. The Resource Manager passes back a handle to the resource data. There
are any number of places where it may be forced to pass back a nil handle. For
example:

VAR myRezzie: MyHandle;

myRezzie := MyHandle (GetResource (myResType, myResNumber»; { could be missing...}
IF myRezzie = nil THEN ErrorHandler('We almost got Nilled')
ELSE myRezzieAA.myRect := newRect; { We know it is OK }

As another example, think of how handles can be purged from memory in tight memory
conditions. If a block is marked purgeable, the Memory Manager may throw it away at
any time. This creates an empty handle. The defensive programmer will always make
sure that the handles being used are not empty.

VAR myRezzie: myHandle;

myRezzie := myHandle (GetResource (myResType, myResNumber»; could be
missing...

IF myRezzie = nil THEN ErrorHandler('We almost got Nilled')
ELSE myRezzieAA.myRect := newRect; { We know it is OK }
tempHandle := NewHandle (largeBlock); {might dispose a purgeable myRezzie}
IF myRezzie A = nil THEN LoadResource(Handle(myRezzie»; {Re-load empty

handle}

Be especially careful of places where memory is being allocated. The NewHandle and
NewPtr calls will return a nil handle or pointer if there is not enough memory. If you
use that handle or pointer without checking, you will be guilty of being a Niller.•

IF ResError = noErr THEN
myRezzieAA.StatusField := OK; { guaranteed not empty, and actually

gets read back in, if necessary }

Technical Note#117 page 15 of 28 Compatibility: Why & How

How to find Nillers

The best way to find these nasty nil pointer problems is to set memory location zero to
be an odd number (a good choice is 'NIL!' = $4E4 94C21, which is numerically odd, as
well as personality-wise). Please see Technical Note #7 for details on how to do this. •

If you use TMON, you can use the extended user area with Discipline. Discipline will set
memory location 0 to 'NIL!' to help catch those nasty pointer problems. If you use
Macsbug, just type 8M 0 'NIL! and go. Realize of course, that if a program has made a
transgression and is actually using nil pointers, this may make the program crash with
an 10=2 system error. This is goodl This means that you have found a bug that may
have been causing you untold grief. Once you know where a program crashes, it is
usually very easy to use a debugger to find where the error is in the source code. When
the program is compiled, turn on the debugging labels (usually a $0+ option). Set
memory location 0 to be 'NIL!'. When the program crashes, look at where the program is
executing and see what routine it was in (from a disassembly). Go back to that routine in
the source code and remove the offending code with a grim smile on your face. Another
scurvy bug has been vanquished. The intoxicating smell of victory watts around your
head.

Another way to find problems is to use a debugger to do a checksum on the first four
bytes in memory (from 0 to 3 inclusive). If the program ever traps into the debugger
claiming that the memory changed, see which part of the program altered memory
location O. Any code that writes to memory location zero is guilty of high treason against
the state and must be removed. Remember to say, "bugs are not my friends."

•

•
Technical Note#117 page 16 of 28 Compatibility: Why & How

•
Creating or Using Fake Handles

A fake handle is one that was not manufactured by the system, but was created by the
program itself. An example of a fake handle is:

CONST aMem = $100;
VAR myHandle: Handle;

mypointer: Ptr;

myPointer := ptr (aMem);
myHandle := @myPointer;

{ the address of some memory }
{the address of the pointer variable. Very bad.}

•

•

The normal way to create and use handles is to call the Memory Manager NewHandle
function.

Why it's Bad

A handle that is manufactured by the program is not a legitimate handle as far as the
operating system is concerned. Passing a fake handle to routines that use handles is a
good way to discover the meaning of "Death by ROM." For example, think how confused
the operating system would get if the fake handle were passed to DisposHandle. What
would it dispose? It never allocated the memory, so how can it release it? Programs
that manufacture handles may find that the operating system is no longer their friend.

When handles are passed to various ROM routines, there is no telling what sorts of
things will be done to the handle. There are any number of normal handle manipulation
calls that the ROM may use, such as SetHandleSize, HLock, HNoPurge, MoveHHi and
so on. Since a program cannot guarantee that the ROM will not be doing things like this
to handles that the program passes in, it is wise to make sure that a real handle is being
used, so that all these type of operations will work as the ROM expects. For fake
handles, the calls like HLock and SetHandleSi ze have no bearing. Fake handles are
very easy to create, and they are very bad for the health of otherwise upstanding
programs. Whenever you need a handle, get one from the Memory Manager.

As a particularly bad use of a fake handle:

VAR myHandle: Handle;
myStuff: myRecord;

myHandle := NewHandle (SIZEOF(myStuff»; {create a new normal handle}
myHandle A := @myStuff; {YOW! Intended to make myHandle a handle to

the myStuff record. What it really does is
blow up a Master Pointer block, Heap corruption,
and death by Bad Heap. Never do this. }

This can be a little confusing, since it is fine to use your own pointers, but very bad to
use your own handles. The difference is that handles can move in memory, and
pointers cannot, hence the pointers are not dangerous. This does not mean you should
use pointers for everything since that causes other problems. It merely means that you
have to be careful how you use the handles.

The use of fake handles usually causes system errors, but can be somewhat mysterious

Technical Note #117 page 17 of 28 Compatibility: Why & How

in its effects. Fake handles can be particularly hard to track down since they often cause
damage that is not uncovered for many minutes of use. Any use of fake handles that
causes the heap to be altered will usually crash the system. Heap corruption is a
common failure mode. In clinical studies, 9 out of 10 programmers recommend
uncorrupted heaps to their users who use heaps. •

How to avoid being a fakir

The correct way to make a handle to some data is to make a copy of the data:

VAR myHandle: Handle;
myStuff: myRecord;

errCode := PtrToHand (@myStuff, myHandle, SIZEOF(myStuff));
IF errCode <> noErr THEN ErrorHandler ('Out of memory');

Always, always, let the Memory Manager perform operations with handles. Never write
code that assigns something to a master pointer, like:

VAR myDeath: Handle;

myDeath A := stuff; {Don't change the Master pointer. }

If there is code like this, it usually means the heap is being corrupted, or a fake handle is
being used. It is, however, OK to pass around the handle itself, like:

myCopyHandle := myHandle; {perfectly OK, nobody will yell about this. }

This is far different than using the A operator to accidentally modify things in the system. •
Whenever it is necessary to write code to use handles, be careful. Watch things
carefully as they are being written. It is much easier to be careful on the way in than it is
to try to find out why something is crashing. Be very careful of the @ operator. This
operator can unleash untold problems upon unsuspecting programs. If at all possible,
try to avoid using it, but if it is necessary, be absolutely sure you know what it is doing. It
is particularly dangerous since it turns off the normal type checking that can help you
find errors (in Pascal). In short, don't get crazy with pointer and handle manipulations,
and they won't get crazy with you.

How to find fakirs

Problems of this form are particularly insidious because it can be very difficult to find
them after they have been created. They tend to not crash immediately, but rather to
crash sometime long after the real damage has been done. The best way to find these
problems is to run the program with Discipline. (Discipline is a programmer's tool that
will check all parameters passed to the ROM to see if they are legitimate. Discipline can
be found as a stand-alone tool, but the most up-to-date version will be found in the
Extended User Area for the TMON debugger. The User Area is public domain, but
TMON itself is not. TMON has a number of other useful features, and is well worth the
price.) Discipline will check handles that are passed to the ROM to see if they are real
handles or not, and if not, will stop the program at the offending call. This can lead you
back to the source at a point that may be close to where the bad handle was created. If •
a program passes the Discipline test, it will be a healthy, robust program with drastically

Technical Note #117 page 18 of 28 Compatibility: Why & How

•

•

•

improved odds for compatibility. Programs that do not pass Discipline can sleep poorly
at night, knowing that they have broken at least one or two of the "rules."

A way to find programs that are damaging the heap is to use a debugger (TMON or
Macsbug) and turn on the Heap Check operation. This will check the heap for errors at
each trap call, and if the heap is corrupted will break into the debugger. Hopefully this
will be close to where the code is that caused the damage. Unfortunately, it may not be
close enough; this will force you to look further back.

Looking in the source code, look for all uses of the @ operator, and examine the code
carefully to see if it is breaking the rules. If it is, change it to step in line with the rest of
the happy programs here in happy valley. Also, look for any code that changes a master
pointer like the myHandle A : = stuff. Any code of this form is highly suspect, and
probably a member of the Anti-Productivity League. The APL has been accused of
preventing software sales and the rise of the Yen. These problems can be quite difficult
to find at times, but don't give up. These fake handles are high on the list of guilty
parties, and should never be trusted.

Technical Note #117 page 19 of 28 Compatibility: Why & How

Writing code that modifies itself

Self-modifying code is software that changes itself. Code that alters itself runs into two
main groupings: code that modifies the code itself and code that changes the block the •
code is stored in. Copy protection code often modifies the code itself, to change the way
it operates (concealing the meaning of what the code does). Changing the code itself is
very tricky, and also prone to having problems, particularly when the microprocessor
itself changes. There are third-party upgrades available that add a 68020 to a
Macintosh. Because of the 68020's cache, programs that modify themselves stand a
good chance of having problems when run on a 68020. This is a compatibility point that
should not be missed (nudge, nudge, wink, wink). Code that changes other code (or
itself) is prone to be incompatible when the microprocessor changes.

The second group is code that changes the block that the code is stored in. Keeping
variables in the CODE segment itself is an example of this. This is uncommon with
high-level languages, but it is easy to do in assembly language (using the DC directive).
Variables defined in the code itself should be read-only (constants). Code that modifies
itself has signed a tacit agreement that says "I'm being tricky, if I die, /'11 revise it."

Why it's Bad

There are now three different versions of the microprocessor, the 68000, 68010, and the
68020. They are intended to be compatible with each other, but may not be compatible
with code that modifies itself. As the Macintosh evolves, the system may have
compatibility problems with programs that try to "push the envelope."

How to avoid being an abuser

Well, the obvious answer is to avoid writing self-modifying code. If you feel obliged to
write self-modifying code, then you are taking an oath to not complain when you break
in the future. But don't worry about accidentally taking the oath: you won't do it without
knowing it. If you choose to abuse, you also agree to personal visits from the Apple
thought police, who will be hired as soon as we find out.

How to find abusers

Run the program on a 68020 system. If it fails, it could be related to this problem, but
since there are other bugs that might cause failures, it is not guaranteed to be a
self-modifying code problem. Self-modifying code is often used in copy protection,
which brings us to the next big topic.

•

•
Technical Note #117 page 20 of 28 Compatibility: Why & How

•

•

•

Code designed strictly as copy protection

Copy protection is used to make it difficult to make copies of a program. The basic
premise is to make it impossible to copy a program with the Finder. This will not be a
discussion as to the pros and cons of copy protection. Everyone has an opinion. This
will be a description of reality, as it relates to compatibility.

Why it's Bad

System changes will never be made merely to cause copy protection schemes to fail,
but given the choice between improving the system and making a copy protection
scheme remain compatible, the system improvement will always be chosen.

• Copy protection is number one on the list of why programs fail the compatibility test.
• Copy protection by its very nature tends to do the most "illegal" things.
• Programs that are copy protected are assumed to have signed a tacit agreement to

revise the program when the system changes.

Copy protection itself is not necessarily bad. What is bad is when programs that would
otherwise be fully compatible do not work due only to the copy protection. This is very
sad, since it requires extra work, revisions to the software, and time lost while the
revision is being produced. The users are not generally humored when they can no
longer use their programs. Copy protection schemes that fail generally cause system
errors when they are run. They also can refuse to run when they should.

How to avoid being a protectionist

The simple answer is to do without copy protection altogether. If you think of
compatibility as a probability game, if you leave out the copy protection, your odds of
winning skyrocket. As noted above, copy protection is the single biggest reason why
programs fail on the various versions of the Macintosh. For those who are required to
use copy protection, try to rely on schemes that do not require specific hardware and
make sure that the scheme used is not performing illegal operations. If a program runs,
an experienced Macintosh programmer armed with a debugger can probably make a
copy of it, (no matter how sophisticated the copy protection scheme) so a moderate
scheme that does not break the rules is probably a better compatibility bet. The trickier
and more devious the scheme, the higher the chance of breaking a rule. Tread lightly.

How to find protectionists

The easiest way to see if a scheme is being overly tricky is to run it on a Macintosh XL.
Since the floppy disk hardware is different this will usually demonstrate an unwanted
hardware dependency. Be wary of schemes that don't allow installation on a hard disk.
If the program cannot be installed on a hard disk, it may be relying upon things that are
prone to change. Don't use schemes that access the hardware directly. All Macintosh
software should go through the various managers in the ROM to maintain compatibility.
Any code that sidesteps the ROM will be viewed as having said "It's OK to make me
revise myself."

Technical Note #117 page 21 of 28 Compatibility: Why & How

Check errors returned as function results

All of the Operating System functions, as well as some of the Toolbox functions, will
return result codes as the value of the function. Don't ignore these result codes. If a •
program ignores the result codes, it is possible to have any number of bad things
happen to the program. The result code is there to tell the program that something went
wrong; if the program ignores the fact that something is wrong, that program will
probably be killed by whatever went wrong. (Bugs do not like to be ignored.) If a
program checks errors, an anomaly can be nipped in the bud, before something really
bizarre happens.

Why it's Bad

A program that ignores result codes is skipping valuable information. This information
can often prevent a program from crashing and keep it from losing data.

How to avoid becoming a skipper

Always write code that is defensive. Assume that everyone and everything is out to kill
you. Trust no one. An example of error checking is:

myRezzie := GetResource (myResType, myResId);
IF myRezzie = nil THEN ErrorHandler ('Who stole my resource ... ');

Another example:

fsErrCode := FSOpen ('MyFile', myVRefNum, myFileRefNum);
IF fsErrCode <> noErr THEN ErrorHandler (fsErrCode, 'File error');

And another:

myTPPrPort := PrOpenDoc (myTHPrint, nil, nil);
IF PRError <> noErr THEN ErrorHandler (PRError, 'Printing error');

Any use of Operating System functions should presume that something nasty can
happen, and have code to handle the nasty situations. Printing calls, File Manager
calls, Resource Manager calls, and Memory Manager calls are all examples of
Operating System functions that should be watched for returning errors. Always, always
check the result codes from Memory Manager calls. Big memory machines are pretty
common now, and it is easy to get cavalier about memory, but realize that someone will
always want to run the program under Switcher, or on smaller Macintoshes. It never
hurts to check, and always hurts to ignore it.

How to find skippers

•

This is easy: just do weird things while the program is running. Put in locked or
unformatted disks while the program is running. Use unconventional command
sequences. Run out of disk space. Run on 128K Macintoshes to see how the program
deals with running out of memory. Run under Switcher for the same reason. (Programs •
that die while running under Switcher are often not Switcher's fault, and are in fact due

Technical Note #117 page22 of 28 Compatibility: Why & How

•

•

•

to faulty memory management.) Print with no printer connected to the Macintosh. Pop
disks out of the drives with the Command-Shift sequence, and see if the program can
deal with no disk. When a disk-switch dialog comes up, press Command-period to pass
back an error to the requesting program (128K ROMs only). Torturing otherwise well
behaved programs can be quite enjoyable, and a number of users enjoy torturing the
program as much as the program enjoys torturing them. For the truly malicious, run the
debugger and alter error codes as they come back from various routines. Sure it's a
dirty low-down rotten thing to do to a program, but we want to see how far we can push
the program. (This is also a good way to check your error handling.) It's one thing to be
an optimist, but it's quite another to assume that nothing will go wrong while a program
is running.

Technical Note #117 page23 0128 Compatibility: Why & How

Accessing hardware directly

Sometimes it is necessary to go directly to the Macintosh hardware to accomplish a
specific task for which there is no ROM support. Early hard disks that used the serial •
ports had no ROM support. Those disks needed to use the SCC chip (the 8530
communication chip) in a high-speed clocked fashion. Although it is a valid function, it is
not something that is supported in the ROM. It was therefore necessary to go play with
the SCC chip directly, setting and testing various hardware registers in the chip itself.
Another example of a valid function that has no ROM support is the use of the alternate
video page for page-flipping animation. Since there is no ROM call to flip pages, it is
necessary to go play with the right bit in the VIA chip (6522 Versatile Interface Adapter).
Going directly to the hardware does not automatically throw a program into the
incompatible group, but it certainly lowers its odds.

Why it's bad

Going directly to the hardware poses any number of problems for enlightened programs
that are trying to maintain compatibility across the various versions of the Macintosh. On
the Macintosh XL for example, a lot of the hardware is found in different locations, and in
some cases the hardware doesn't exist. On the XL there is no sound chip. Programs
that go directly to the sound hardware will find they don't work correctly on an XL. If the
same program were to go through the Sound Manager, it would work fine, although the
sound would not be the same as expected. Since the Macintosh is heavily oriented to
the software side of things, expecting various hardware to always be available is not a
safe bet. Choosy programmers choose to leave the hardware to the ROM.

How to avoid having a hard attack

Don't read or write the hardware. Exhaust every possible conventional approach before
deciding to really get down and dirty. If there is a Manager in the ROM for the operation
you wish to perform, it is far better to use the Manager than to go directly to the
hardware. Compatibility at the hardware level can very rarely be maintained, but
compatibility at the Manager level is a prime consideration. If a program is down to the
last ditch effort, and cannot get the support from the ROM that is desired, then access the
hardware in an enlightened approach. The really bad way to do it:

VIA := Pointer ($EFE1FE); {sure it's the base address today...}
{ This is bad. Hard-coded number. }

The with-it, inspired programmer of the eighties does something like:

TYPE LongPointer = ALongInt;

VAR VIA: LongPointer;
VIABase: LongInt;

VIA := Pointer ($lD4); {the address of the low-memory global. }
VIABase := VIA A; { get the low-memory variable's value}

{ Now VIABase has the address of the chip

•

•
Technical Note #117 page 24 of 28 Compatibility: Why & How

•

•

•

The point here is that the best way to get the address of a hardware chip is to ask the
system where it currently is to be found. The system always knows where the pieces of
the system are, and will always know for every incarnation of the Macintosh. There are
low-memory global variables for all of the pieces of hardware currently found in the
Macintosh. This includes the VIA, the SCC, the Sound Chip, the IWM, and the video
display. Whenever you are stuck with going to the hardware, use the low-memory
globals. The fact that a program goes directly to the hardware means that it is risking
imminent incompatibility, but using the low-memory global will ensure that the program
has the best odds. It's like going to Las Vegas: if you don't gamble at all, you don't lose
any money; if you have to gamble, play the game that you lose the least on.

How to find hard attacks

Run the suspicious program on the Macintosh XL. Nearly all of the hardware is in a
different memory location on the XL. If a program has a hard-coded hardware address
in it, it will fail. It may crash, or it might not perform the desired task, but it won't work as
advertised. This unfortunately, is not a completely legitimate test, since the XL does not
have some of the hardware of other Macintoshes, and some of the hardware that is
there has the register mapping different. This means that it is possible to play by the rule
of using the low-memory global and still be incompatible.

Technical Note #117 page 25 of 28 Compatibility: Why & How

Don't use bits that are reserved

Occasionally during the life of a Macintosh programmer, there comes a time when it is
necessary to bite the bullet and use a low-memory global. These are very sad days,
since it has been demonstrated (by history) that low-memory global variables are a •
mysterious lot, and not altogether friendly. One fellow in particular is known as ROM85, a
word located at $28E. This particular variable has been documented as the way to
determine if a program is running on the 128K ROMs or not. Notably, the top most bit of
that word is the determining bit. This means that the rest of the bits in that word are
reserved, since nothing is described about any further bits. Remember, if it doesn't say,
assume it's reserved. If it's reserved, don't depend upon it. Take the cautious way out
and assume that the other bits that aren't documented are used for Switcher local
variables, or something equally wild. An example of a bad way to do the comparison is:

VAR Rom85Ptr: WordPtr;
RomsAre64: Boolean;

Rom85Ptr := Pointer ($28E); {point at the low-memory global
IF Rom85Ptr A = $7FFF THEN RomsAre64 := False {Bad test. }
ELSE RomsAre64 := True;

This is a bad test since the comparison is testing the value of all of the bits, not only the
one that is valid. Since the other bits are undocumented, it is impossible to know what
they are used for. Assume they are used for something that is arbitrarily random, and
take the safe way out.

How to avoid being bitten

VAR ROM85Ptr: Ptr

Rom85Ptr := Pointer ($28E); {point at the low-memory global }
IF BitTst(ROM85Ptr,0) THEN RomsAre64 := True {Good--tests only hi-bit}
ELSE RomsAre64 := False;

This technique will ensure that when those bits are documented, your program won't be
using them for the wrong things. Beware of trojan bits.

Don't use undocumented stuff. Be very careful when you use anything out of the
ordinary stream of a high-level language. For instance, in the ROM85 case, it is very
easy to make the mistake of checking for an absolute value instead of testing the actual
bit that encodes the information. Whenever a program is using low-memory globals, be
sure that only the information desired is being used, and not some undocumented (and
hence reserved) bits. It's not always easy to determine what is reserved and what isn't,
so conservative programmers always use as little as possible. Be wary of the strange
bits, and accept rides from none of them. The ride you take might cause you to revise
your program.

•

•
Technical Note#117 page 26 of 28 Compatibility: Why & How

•

•

•

How to find those bitten

Since there are such a multitude of possible places to get killed, there is no simple way
to see what programs are using illegal bits. As time goes by it will be possible to find
more of these cases by running on various versions of the Macintosh, but there will
probably never be a comprehensive way of finding out who is accepting strange rides,
and who is not. Whenever the use of a bit changes from reserved status to active, it will
be possible to find those bugs via extensive testing. From a source level, it would be
advisable to look over any use of low-memory globals, and eye them closely for
inappropriate bit usage. Do a global search for the $ (which describes those ubiquitous
hexadecimal numbers), and when found see if the use of the number is appropriate.
Trust no one that is not known. If they are documented, they will stay where they are,
and have the same meaning. Be very careful in realms that are undocumented. Bits
that suddenly jump from reserved to active status have been known to cause more than
one program to have a sudden anxiety attack. It is very unnerving to watch a program
go from calm and reassuring to rabid status. Users have been known to drop their
keyboards in sudden shock (which is bad on the keyboards).

Technical Note #117 page 27 of 28 Compatibility: Why & How

Summary

So what does all this mean? It means that it is getting harder and harder to get away
with minor bugs in programs. The minor bugs of yesterday are the major ones of today.
No one will yell at you for having bugs in your program, since all programs have bugs of •
one form or another. The goal should be to make the programs run as smoothly and
effortlessly as possible. The end-users will never object to bug-reduced programs.

What is the best way to test a program? A reasonably comprehensive test is to exercise
all of the program's functions under the following situations:

• Use Discipline to be sure the program does not pass illegal things to the ROM.
• Use heap scramble and heap purge to be sure that handles are being used

correctly, and that the memory management of the program is correct.
• Run with a checksum on memory locations 0...3 to see if the program writes to these

locations.
• Run on a 128K Macintosh, or under Switcher with a small partition, to see how the

program deals with memory-critical situations.
• Run on a 68020 system to see if the program is 68020-compatible and to make sure

that changing system speed won't confuse the program.
• Run on a Macintosh XL to be sure that the program does not assume too much about

the operating system, and to test screen handling.
• Run on an Ultra-Large screen to be sure that the screen handling is correct, and that

there are no hard-coded screen dimensions.
• Run on 64K ROM machines to be sure new traps are not being used when they don't

exist.
• Run under both HFS and MFS to be sure that the program deals with the file system •

correctly. (400K floppies are usually MFS.)

If a program can live through all of this with no Discipline traps, no checksum breaks, no
system errors, no anomalies, no data loss and still get useful work done, then you
deserve a gold medal for programming excellence. Maybe even an extra medal for
conduct above and beyond the call of duty. In any case, you will know that you have
done your job about as well as it can be done, with today's version of the rules, and
today's programming tools.

Sounds like a foreboding task, doesn't it? The engineers in Macintosh Technical
Support are available to help you with compatibility issues (we won't always be able to
talk about new products, since we love our jobs, but we can give you some hints about
compatibility with what the future holds).

Good luck.

•
Technical Note #117 page 28 of 28 Compatibility: Why & How

•
Macintosh
Technical Notes

Developer Technical Support

#118: How To Check and Handle Printing Errors
Revised by: Pete "Luke" Alexander
Written by: Ginger Jernigan

October 1990
May 1987

•

•

This Technical Note formerly described how to check and properly handle errors that occur during
printing with the Printing Manager.
Changes since March 1988: Merged contents into Technical Note #161.

This Note formerly described how to check and properly handle Printing Manager errors. This
information is now contained in Technical Note #161, A Printing Loop That Cares... , which also
includes a table ofPrinting Manager error codes

#118: HowToCheck andHandle Printing Eoors 10fl

•

•

•
Macintosh Technical Notes

#119: Determining If Color QuickDraw Exists

See: Technical Note #129-SysEnvirons

Written by:
Updated:

Jim Friedlander May 4,1987
March 1, 1988

•

•

This note formely described a way to determine if Color QuickDraw is present
on a particular machine. We now recommend that you call SysEnvirons to
find out, as described in Technical Note #129.

Technical Note #119 page 1 of 1 Determining IfColor QuickDraw Exists

•

•

•

• Macintosh
Technical Notes • ®

Developer Technical Support

#120: Principia Off-Screen Graphics Environments

Updated by:
Written by:
Inspired by:

Forrest Tanaka
Forrest Tanaka
Jim Friedlander, Rick Blair, and Rich Collyer

March 1992
October 1991

•

•

Using Color QuickDraw to draw off screen is a common requirement of applications and other
kinds of programs that run on the Macintosh. This Note discusses what Color QuickDraw needs in
a graphics environment and how to create one for off-screen drawing. A brief discussion of
GWorlds, which are off-screen graphics environments that are set up by the system, is given to
help you decide whether to use them or the do-it-yourself techniques described in this Note for
setting up an off-screen graphics environment. The author's intent is to provide concepts and
routines for creating an off-screen graphics environment, and also to explain why existing routines
for off-screen drawing act as they do.

Many, many thanks go to Guillermo Ortiz, Konstantin Othmer, Bruce Leak, and Jon Zap for all
their expertise on this subject, Rich Collyer, Rick Blair, and Jim Friedlander for paving the way,
and especially to all people who inspired this update by asking great off-screen drawing questions.

Changes since October 1991: A very embarrassing bug was found in CreateOffScreen and
UpdateOffScreen. If you try to create a 16- or 32-bit off-screen graphics environment, you '11 just
get a paramErr. It won't do that now.

Off-Screening

The Macintosh, as with every other CPU ever made by Apple, has memory-mapped video. That
is, what you see on the screen is just the visual representation of a part of memory that's reserved
for the video hardware (that's stretching the truth just a bit in the case of the text screens of the
original Apple computer, the Apple II line, and the Apple III because there's also a character
generator in those, but the overall process still looks roughly the same). If you change the contents
of a memory location in this part of memory, then you'll see the corresponding location on the
screen change when the video hardware draws the next frame or field of video. The resident raster
graphics package, QuickDraw in the case of the Macintosh, draws images by stuffing the right
values into the right places in the part of memory reserved for the video display. The resulting
image on the screen looks like a line or perhaps an oval if you asked QuickDraw to draw a line or
an oval, or it could be an entire complex image if you asked QuickDraw to draw one. This is
normal, on-screen drawing.

Because video memory is a part of RAM just like any other part of RAM in the memory map of the
Macintosh (or almost like; video memory might exist on a Nulsus'" video card, but it's still RAM),
QuickDraw can be told to draw into a part of memory that isn't reserved for the video hard ware,
maybe into a part of your own application's heap. When you tell QuickDraw to draw into a part of
memory that's not reserved for the video hardware, you can't see any of the results. This is off-

#120: Principia Off-Screen Graphics Environments 1 of 49

MacintoshTechnicalNotes

screen drawing. There are plenty of perfectly good reasons to do this, such as providing storage
for a paint-style document or to smoothly animate an image, but the assumption here is that you
have a perfectly good reason to do this so you're more interested in the "how" of it instead of the
"why" of it. If you need to know why, there are several books that cover off-screen drawing and
the perfectly good reasons to do such a thing. A good place to start is Scott Knaster's book,
Macintosh Programming Secrets, referenced at the end of this Note.

This Note is divided into these major sections:

• The introduction is the part that you're reading now.

• "The Building Blocks" provides an overview of the data structures that you need to tell Color
QuickDraw to draw off screen.

• "Building the Blocks" discusses the construction and initialization of these data structures.

• "Playing With Blocks" shows an example of the use of these structures to draw off screen.

• "Put That Checkbook Away!" discusses some variations of these techniques to handle off
screen drawing for special cases.

• "The GWorld Factor" provides a brief overview of GWorlds, how to use them, and how
they compare and contrast to the manual techniques that are described in most of this Note.

Those of you who aren't quite sure whether to use GWorlds or the do-it-yourself techniques might
want to skip ahead for a moment to "The GWorld Factor" just in case doing it yourself is a waste
of time. In any case, it's a good idea to read this whole Note because the concepts are mostly the
same whether you're using GWorlds or not. GWorlds just make the process a lot easier, and they
let you take advantage of the 8·24 GC video card. But, we're not in that section of the Note yet.

The Building Blocks

Before you can tell QuickDraw to draw off of the screen, you'll need to build three major data
structures: a CGrafPort, a PixMap, and a GDevice. You'll also need a couple oftables that defme
the colors involved with drawing to and copying from the off-screen image: the color table and the
inverse table. Of course, you'll need the pixel image itself, which is often called the "pixel buffer"
or the "image buffer" or the "off-screen buffer" or just "the buffer." It's always called the "pixel
image" in this Note. It doesn't necessarily buffer anything anyway.

The CGrafPort

A CGrafPort describes a drawing environment, and it's the color version of the GrafPort
structure that's described on pages 147 through 155 in the QuickDraw chapter of Inside Macintosh
Volume I. The drawing environment consists of, among other things, the size and location of the
graphics pen, the foreground and background colors to use when something is drawn, the pattern
to use, the region to clip all drawing to, and the portion of a pixel image that the CGrafPort
logically exists in. Any initialized CGrafPort or GrafPort can be set as the current port through
the _SetPort routine. The current port is a set of parameters that are implicitly passed to most
QuickDraw routines.

•

•

•2 of 49 #120: Principia Off-ScreenGraphicsEnvironments

The PixMap structure is described in the "Color QuickDraw" chapter of Inside Macintosh Volume
V, pages 52 through 55, and in the "Graphics Overview" chapter of Inside Macintosh Volume VI,
pages 16-11 through 16-12. The concept of direct-color and indexed-color pixels is described in
this same chapter on pages 16-16 through 16-18, and also in the "Color QuickDraw" chapter of the
same volume on pages 17-4 through 17-10.

The GDevice

The most important reason to build a new CGrafPort when you draw off screen rather than using
an existing CGrafPort is so that switching between drawing to an off-screen graphics environment
and drawing to one or more windows (each of which is an extended GrafPort or CGrafPort
structure) on the screen is very easy. Some people use just one CGrafPort to share between on
screen and off-screen graphics environments, and switch their P ixMap structures to switch
between drawing on screen and drawing off screen. That does work, but if the off-screen and on
screen graphics environments have a different clipRgn, visRgn, pen characteristic, portRect, or
any other characteristics that are different, then those must be switched at that time too. If you
instead create a CGrafPort that's dedicated to one graphics environment, then a simple call to
_Setport effectively switches all these things for you at once. That's why every window on the
screen comes with its own port. A simple call to _Setport switches between the characteristics of
each window even if each window has radically different drawing characteristics.

The CGrafPort data structure is more completely described in the "Color QuickDraw" chapter of
Inside Macintosh Volume V, pages 49 through 52, and in the "Graphics Overview" chapter of
Inside Macintosh Volume VI, pages 16-12 through 16-13.

The PixMap

A pixel image alone is just a formless blob of memory. Pixel maps, defined by the P ixMap
structure, describe pixel images, giving them a form and structure that's suitable for Color
QuickDraw to draw into them and copy from them. The PixMap structure tells you the dimensions
and location in memory of the pixel image, its coordinate system, and the depth and format of the
pixels. Pixel maps that describe indexed-color pixel images additionally describe the colors that are
represented by the values of the pixels in the pixel image. This is done through the color table, also
known as the color look-up table or CLUT. Color tables are attached to pixel maps through their
pmTable field. Direct-color pixel images have pixel values that describe their own colors, and so
color tables aren't needed for those .

Graphics devices, defined by the GDevice structure, describe color environments. They're the
most misunderstood data structure when it comes to off-screen graphics environments for three
major reasons: first, they're not originally documented as being relevant to humans; second, they
look as though they're only for screens; and third, it looks as though color tables describe color
environments. We can dispose of these myths here: graphics devices are documented as being
useful to humanity in this Note at least; they're critically important for both on-screen and off
screen drawing; and color tables describe the colors in pixel images, not color environments.

What's all this about color environments? In theory, there are virtually three hundred trillion colors
available with Color QuickDraw through the 48-bit RGBColor record. In reality, there are never this
many colors available, and in fact there might be only two. Color QuickDraw maps the theoretical
color that you specify to the pixel value of the closest available color in the current color
environment. This can be done with a color table, but that's not very efficient. Finding the closest
available color to an RGBColor in a color table means searching the entire color table for that one
closest color. If that's done just once, then performance isn't much of an issue, but if it's done
many times, the performance hit could be significant. A very bad case of this is CopyBits, where
every pixel value in the source image is converted to an RGBColor by looking it up in the color

•

•

•

Developer Technical Support

#120:PrincipiaOff-Screen Graphics Environments

March 1992

3 of 49

MacintoshTechnical Notes

table of the source PixMap. If the color table of the destination PixMap had to be searched to find
the closest available color for every pixel in the source PixMap, then the performance of even the
most straightforward _CopyBits call could be a lot slower than it has to be.

To avoid this performance hit, the current GDevice provides an inverse table and a device type
which are used to determine the available set of colors. Inverse tables are anticolor tables. Where
color tables give you a color for a given pixel value, inverse tables give you a pixel value for a
given color. Every conceivable color table has a corresponding conceivable inverse table, just as
every positive real number has a corresponding negative real number, or every Mr. Spock has a
corresponding Mr. Spock with a goatee. The device type specifies whether the color environment
uses the indexed-color, fixed-color, or direct-color model. In the direct-color model, the inverse
table is empty. Only the indexed-color and direct-color models are described in this Note.

When you specify a color in an indexed-color environment, Color QuickDraw takes the RGBColor
specification and converts it into a value that can be used as an index into the inverse table of the
current GDevice. To do this conversion, Color QuickDraw takes the top few significant bits of
each color component and combines them into part of a 16-bit word, blue bits in the least
significant bits, green bits right above it, and the red bits right above green bits. Any unused bits
are in the most significant bits of the 16-bit word. The resulting 16-bit word is used as an index
into the inverse table. The value in the inverse table at that index is the pixel value which best
represents that color in the current color environment. The number of bits of each component that
are used is determined by what's called the "resolution" of the inverse table. Almost always, the
resolution of an inverse table is four bits, meaning the most significant four bits of each component
are used to form the index into the inverse table. Figure 1 shows how an RGBColor record is
converted to an index into an inverse table when the inverse-table resolution is four.

RGBColor record

Inverse table index iiiW••

Figure 1 Conversion of RGBColor Record to Inverse-Table Index

The same process is used when _CopyBits is called with an indexed-color destination. Each pixel
in the source pixel image is converted to an RGBColor either by doing a table look-up of the source
pixel map's color table if the source pixel image uses indexed colors, or by expanding the pixel
value to an RGBColor record if the source pixel image uses direct colors. The resulting RGBColor
is then used to look up a pixel value in the inverse table of the current GDevice, and this pixel
value is put into the destination pixel image.

If you specify a color in a direct-color environment, then the resulting RGBColor is converted to a
direct pixel value by the processes that are shown on pages 17-6 through 17-9 of the "Color
QuickDraw" chapter of Inside Macintosh Volume VI.

•

•

•4 of 49 #120: Principia Off-Screen Graphics Environments

Usually, inverse-table look-up involves an extra step to find what are called "hidden colors" using
proprietary information that's stored at the end of the inverse table. With an inverse-table resolution
of four, only 16 shades of any particular component can be distinguished, and that's often not
enough. An inverse table with a resolution of five is much larger, but it still only gives you 32
shades of any component. Hidden colors are looked up after the normal inverse-table look-up to
give a much more accurate representation of the specified color in the current color environment
than the inverse-table look-up alone can produce. Sometimes, most notably when the arithmetic
transfer modes are used or ifdithering is used, the hidden colors are ignored.

•
DeveloperTechnicalSupport March 1992

When a new color table is assigned to a PixMap or when its existing color table is modified, then a
new corresponding inverse table should be generated for the GDevice that'll be used when
drawing into that environment. Normally, this happens automatically without you having to do any
more than inform Color QuickDraw of the change. This is described in more detail in "Changing
the Off-Screen Color Table" later in this Note.

Graphics devices are documented in the "Graphics Devices" chapter of Inside Macintosh Volume
VI which supersedes the "Graphics Devices" chapter of Inside Macintosh Volume V. They're also
discussed in the "Graphics Overview" chapter of Inside Macintosh Volume VI, pages 16-13
through 16-14. The inverse-table mechanism is described in the "Color Manager" chapter of Inside
Macintosh Volume V, pages 137 through 139.

All Together Now

There are a lot of different ways to put the three structures together, and this Note discusses the
architecture that's shown in Figure 2. This architecture is useful when you want a simple, atomic,
off-screen graphics environment.

• CGrafPort

r r

PixMap

GDevice

Color Table

Inverse Table

Figure 2 Relationships Between Structures for Off-Screen Drawing

Notice that there's no way to get to the GDevice from the CGrafPort, nor is there a way to get to
the CGrafPort from the GDevice, though the PixMap can be found through either one. Your
application must keep track of both the CGrafPort and the GDevice.

• #120: PrincipiaOff-ScreenGraphics Environmenrs 5 of 49

Macintosh Technical Notes

Building the Blocks •As with just about any algorithm, there are many ways to put the different structures together that
form an off-screen graphics environment. This section covers just one way to build the architecture
that's shown in Figure 2.

Building the CGrafPort

The CGrafPort structure is the easiest one to put together because the _OpenCPort routine
initializes so many of the fields of the CGrafPort structure for you. It also allocates and initializes
the structures that are attached to every CGrafPort, such as the visRgn, clipRgn, grafVars
handle, and so forth. Most of these are initialized with values that are fine for general purposes, but
the visRgn, clipRgn, and portRect fields should be set to the desired boundary rectangle of the
off-screen graphics environment. What follows is an overview of each of the fields that you have
to worry about when you're setting up a CGrafPort for drawing off screen.

•

•

handle to the off-screen PixMap. _OpenCPort initializes this field to a copy
of the PixMap that's attached to the gdPMap field of the current GDevice. An
overview of setting up this P ixMap for drawing off screen is given in
"Building the PixMap" later in this Note.

specifies the rectangular area of the associated pixel image that this
CGrafPort controls. This field should be set to the desired rectangular area
of the off-screen image because _OpenCPort doesn't necessarily initialize it
to this size. Usually, the top-left comer of this rectangle has the coordinates
(0, 0), but not necessarily so.

portPixMap

clipRgn

portRect

visRgn handle to the region that specifies the visible area into which you can draw.
OpenCPort doesn't necessarily initialize it to the size of the off-screen

linage, so it should be set to the same size and coordinates as the portRect
and left at that. This field is more important for windows because parts of
them can be hidden by other windows.

handle to the region that specifies the logical area into which you can draw.
_ OpenCPort initializes it to cover the entire QuickDraw coordinate plane.
It's usually a good idea to set it to the same size and coordinates as the
portRect to avoid problems if the clipRgn is scaled or translated, which
causes its signed integer coordinates to overflow and tum it into an empty
region. One of the most common cases of this occurs when a picture that's
created in this CGrafPort is drawn into a destination rectangle that's any
larger than or translated from the original picture frame. Everything in the
picture, including the clip region, is scaled to fit the destination rectangle. If
the clip region covers the entire QuickDraw coordinate plane, then its
coordinates overflow their signed integer bounds, and the clip region
becomes logically empty. The result is that nothing is drawn.

The CreateOffScreen routine in Listing 1 creates an off-screen graphics environment, given a
boundary rectangle, pixel depth, and color table, and it returns a new off-screen CGrafPort and
GDevice, along with an error code. The desired pixel depth in bits per pixel is given in the depth
parameter. If the pixel depth is eight or less, then an indexed-color graphics environment is created
and a color table is required in the colors parameter. If the pixel depth is 16 or 32 bits per pixel
and 32-Bit QuickDraw is available, then a direct-color graphics environment is created and the

6 of 49 # 120: Principia Off-Screen Graphics Environments

colors parameter is ignored. If 32-Bit QuickDraw isn't available, then a pixel depth of 16 or32
bitsperpixel results in CreateOffScreendoingnothing more than returning a parameter error. A
description of CreateOffScreen is givenfollowing the listing.

MPW Pascal Listing 1•
Developer Technical Support March 1992

FUNCTION CreateOffScreen(
bounds: Rect;
depth: Integer;
colors: CTabHandle;
VAR retPort: CGrafPtr;
VAR retGDevice: GDHandle
): OSErr;

{Bounding rectangle of off-screen}
{Desired number of bits per pixel in off-screen}
{Color table to assign to off-screen}
{Returns a pointer to the new CGrafPort}
{Returns a handle to the new GDevice}

CONST
kMaxRowBytes $3FFE; {Maximum number of bytes in a row of pixels}

VAR
newPort:
newPixMap:
newDevice:
qdVersion:
savedPort:
savedState:
bytesPerRow:
error:

CGrafPtr;
PixMapHandle;
GDHandle;
LongInt;
GrafPtr;
SignedByte;
Integer;
OSErr;

{Pointer to the new off-screen CGrafPort}
{Handle to the new off-screen PixMap}
{Handle to the new off-screen GDevice}
{Version of QuickDraw currently in use}
{Pointer to GrafPort used for save/restore}
{Saved state of color table handle}
{Number of bytes per row in the PixMap}
{Returns error code}

•
BEGIN

(* Initialize a few things before we begin *)
newPort := NIL;
newPixMap := NIL;
newDevice := NIL;
error := noErr;

(* Save the color table's current state and make sure it isn't purgeable *)
IF colors <> NIL THEN

BEGIN
savedState := HGetState(Handle(colors));
HNoPurge(Handle(colors));

END;

(* Calculate the number of bytes per row in the off-screen PixMap *)
bytesPerRow := «depth * (bounds. right - bounds. left) + 31) DIV 32) * 4;

(* Get the current QuickDraw version *)
error := Gestalt (gestaltQuickdrawVersion, qdVersion);
error : = noErr;

7 of 49

THEN

is provided if the depth is indexed *)

clut is NIL; is parameter error *)

of bytes per row is 16,382; make sure within range *)
kMaxRowBytes THEN

Make sure a color table
depth <= 8 THEN
IF colors = NIL THEN

(* Indexed depth and
error := paramErr;

Maximum number
bytesPerRow <=
BEGIN

(*
IF

END
ELSE

(* # of bytes per row is more than 16,382; is parameter error *)

(* Make sure depth is indexed or depth is direct and 32-Bit QD installed *)
IF (depth = 1) OR (depth = 2) OR (depth = 4) OR (depth = 8) OR

«((depth = 16) OR (depth = 32)) AND (qdVersion >= gestalt32BitQD))
BEGIN

(*
IF

#120: Principia Off-Screen Graphics Environments•

Macintosh Technical Notes

error .= paramErr;
END

ELSE
{* Pixel depth isn't valid; is parameter error *)
error := paramErr;

(* If sanity checks succeed, then allocate a new CGrafPort *)
IF error = noErr THEN

BEGIN
newPort := CGrafPtr(NewPtr(SizeOf (CGrafPort»));
IF newPort <> NIL THEN

BEGIN
(* Save the current port *)
GetPort(savedPort);

(* Initialize the new CGrafPort and make it the current port *)
OpenCPort(newPort);

(* Set portRect, visRgn, and clipRgn to the given bounds rect *)
newPortA.portRect := bounds;
RectRgn(newPortA.visRgn, bounds);
ClipRect(bounds);

(* Initialize the new PixMap for off-screen drawing *)
error := SetUpPixMap(depth, bounds, colors, bytesPerRow,

newPortA.portPixMap);
IF error = noErr THEN

BEGIN
(* Grab the initialized PixMap handle *)
newPixMap := newPort~.portPixMap;

(* Allocate and initialize a new GDevice *)
error .= CreateGDevice(newPixMap, newDevice);

END;

(* Restore the saved port *)
SetPort(savedPort);

END
ELSE

error .- MemError;
END;

(* Restore the given state of the color table *)
IF colors <> NIL THEN

HSetState (Handle (colors) , savedState);

(* One Last Look Around The House Before We Go... *)

IF error <> noErr THEN
BEGIN

(* Some error occurred; dispose of everything we allocated *)
IF newPixMap <> NIL THEN

BEGIN
DisposCTable(newPixMap~~.pmTable);

DisposPtr(newPixMapAA.baseAddr);
END;

IF newDevice <> NIL THEN
BEGIN

DisposHandle(Handle(newDevice~A.gdITable»);

DisposHandle(Handle(newDevice));
END;

IF newPort <> NIL THEN
BEGIN

CloseCPort(newPort);

•

•

•8 of 49 #120: Principia Off-Screen Graphics Environments

•
Developer Technical Support

DisposPtr(Ptr(newPort);
END;

END
ELSE

BEGIN
(* Everything's OK; return refs to off-screen CGrafPort and GDevice *)
retPort := newPort;
retGDevice := newDevice;

END;
CreateOffScreen "= error;

END;

MPW C Listing 1

#define kMaxRowBytes Ox3FFE /* Maximum number of bytes in a row of pixels */

OSErr CreateOffScreen(
Rect *bounds, /* Bounding rectangle of off-screen */
short depth, /* Desired number of bits per pixel in off-screen */
CTabHandle colors, /* Color table to assign to off-screen */
CGrafPtr *retPort, /* Returns a pointer to the new CGrafPort */
GDHandle *retGDevice) /* Returns a handle to the new GDevice */

March 1992

/* Initialize a few things before we begin */
newPort = nil;
newPixMap = nil;
newDevice = nil;
error = noErr;•

CGrafPtr
PixMapHandle
GDHandle
long
GrafPtr
SignedByte
short
OSErr

newPort;
newPixMap;
newDevice;
qdVersion;
savedPort;
savedState;
bytesPerRow;
error;

/* Pointer to the new off-screen CGrafPort */
/* Handle to the new off-screen PixMap */
/* Handle to the new off-screen GDevice */
/* Version of QuickDraw currently in use */
/* Pointer to GrafPort used for save/restore */
/* Saved state of color table handle */
/* Number of bytes per row in the PixMap */
/* Returns error code */

•

/* Save the color table's current state and make sure it isn't purgeable */
if (colors != nil)
{

savedState = HGetState((Handle)colors);
HNoPurge ((Handle) colors);

/* Calculate the number of bytes per row in the off-screen PixMap */
bytesPerRow = «depth * (bounds->right - bounds->left) + 31) » 5) « 2;

/* Get the current QuickDraw version */
(void)Gestalt(gestaltQuickdrawVersion, &qdVersion);

/* Make sure depth is indexed or depth is direct and 32-Bit QD installed */
if (depth = 1 I I depth == 2 I I depth 4 I I depth == 8 I I

«depth == 16 I I depth == 32) && qdVersion >= gestalt32BitQD))

/* Maximum number of bytes per row is 16,382; make sure within range w/
if (bytesPerRow <= kMaxRowBytes)
{

/* Make sure a color table is provided if the depth is indexed */
if (depth <= 8)

if (colors == nil)
/* Indexed depth and clut is NIL; is parameter error */
error = paramErr;

#120:Principia Off-Screen Graphics Environments 9 of 49

Macintosh Technical Notes

else
/* # of bytes per row is more than 16,382; is parameter error */
error = paramErr;

}

else
/* Pixel depth isn't valid; is parameter error */
error = paramErr;

1* If sanity checks succeed, then allocate a new CGrafPort */
if (error == noErr)
{

newPort = (CGrafPtr)NewPtr(sizeof (CGrafPort));
if (newPort != nil)
{

/* Save the current port */
GetPort(&savedPort);

/* Initialize the new CGrafPort and make it the current port */
OpenCPort(newPort);

/* Set portRect, visRgn, and clipRgn to the given bounds rect */
newPort->portRect = *bounds;
RectRgn(newPort->visRgn, bounds);
ClipRect(bounds);

/* Initialize the new PixMap for off-screen drawing */
error = SetUpPixMap(depth, bounds, colors, bytesPerRow,

newPort->portPixMap);
if (error == noErr)
{

/* Grab the initialized PixMap handle */
newPixMap = newPort->portPixMap;

/* Allocate and initialize a new GDevice */
error = CreateGDevice(newPixMap, &newDevice);

/* Restore the saved port */
SetPort(savedPort);

•

•
}

else
error MemError () ;

/* Restore the given state of the color table */
if (colors != nil)

HSetState((Handle) colors, savedState);

/* One Last Look Around The House Before We Go... */
if (error != noErr)
(

/* Some error occurred; dispose of everything we allocated */
if (newPixMap != nil)
(

DisposCTable((**newPixMap) .pmTable);
DisposPtr((**newPixMap).baseAddr);

}

if (newDevice != nil)
{

DisposHandle((Handle) (**newDevice) .gdITable);
DisposHandle((Handle)newDevice);

10of 49

}

if (newPort != nil)

#120:Principia Off-Screen Graphics Enviromnents •

•
DeveloperTechnical Suppon

CloseCPort(newPort);
DisposPtr ((Ptr) newPort i :

}

else
(

/* Everything's OK; return refs to off-screen CGrafPort and GDevice */
*retPort = newPort;
*retGDevice = newDevice;

return error;

March 1992

•

CreateOffScreen begins by making sure that the color table, if there is one, doesn't get purged
during the time that the off-screen graphics environment is created. Then, a sanity check is done
for the given depth, bounds, and color table. The depth must be either I, 2, 4, or 8 bits per pixel,
or additionally 16 or 32 bits per pixel if 32-Bit QuickDraw is available. If these conditions aren't
satisfied, then it's decided that there's an error in the parameter list, and CreateOffScreen does
nothing more. To determine whether 32-Bit QuickDraw is available or not, the _Gestalt routine is
used. If_Gestalt returns a value that's equal to or greater than the constant gestalt32BitQD,
then 32-Bit QuickDraw is available and depths of 16 and 32 bits per pixel are supponed. It's not
necessary to determine whether _Gestalt is available or not because it's implemented as glue code
in the Macintosh Programmer's Workshop.

A check is then done to determine whether the number of bytes in each row of the off-screen pixel
image is too much for QuickDraw to handle. Color QuickDraw can handle up to and including
16,382 ($3FFE) bytes in each row of any pixel image. If the required number of bytes per row
exceeds this amount, then CreateOffScreen decides that there's an error in the parameter list and
does nothing more. The minimum number of bytes in a row that's enough to cover the given
boundary rectangle at the given pixel depth is calculated with the formula:

bytesPerRow := «depth * (bounds.right - bounds.left) + 31) DIV 32) * 4;

As mentioned above, the _OpenCPort doesn't necessarily initialize the portRect, visRgn, and
clipRgn of the new CGrafPort to the areas that are needed for any particular off-screen graphics

This formula multiplies the number of pixels across the P ixMap by the pixel depth to get the
number of bits, and then this is divided by eight to get the number of bytes. This division by eight
looks very strange because the number of bytes per row must be even, so this formula takes
advantage of integer division and multiplication to make the result come out even. This particular
formula additionally makes sure that the number of bytes per row is a multiple of four. This helps
optimize the performance of Color QuickDraw operations because it allows Color QuickDraw to
refer to each row beginning on a long word boundary in memory.

The last sanity check is to make sure that a color table is given as a parameter if it's needed.
Indexed-color graphics environments need color tables, so if the given pixel depth is eight or less
(which implies an indexed-color graphics environment) and the given color table is NIL, then
CreateOffScreen decides that there's an error in the parameter list and does nothing more. If the
given pixel depth is 16 or 32 (which implies a direct-color graphics environment), then
CreateOffScreen ignores the given color table.

If all the sanity checks succeed, then the off-screen CGrafPort is allocated using a call to
_NewPtr, and then it's initialized and opened as a CGrafPort by passing the resulting pointer to
_OpenCPort. Because _OpenCPort makes the new CGrafPort the current pon, the current pon is
first saved so that it can be restored as the current pon when CreateOffScreen is done.

• #120: PrincipiaOff-Screen GraphicsEnvironments II of 49

Macintosh Technical Notes

environment. So, the given boundary rectangle is assigned to the portRect field, _RectRgn is
called to make the visRgn equal to the given boundary rectangle, and _ClipRect is called to set
the clipRgn so that it's equal to the given boundary rectangle.

The PixMap in the portPixMap field needs to be initialized for off-screen drawing, and that's
handled by the SetUpPixMap routine that's described and defmed in "Building the PixMap" later in
this Note. Similarly, the off-screen GDevice must be created and initialized. That's handled by the
CreateGDevice routine that's described and defined in "Building the GDevice" later in this Note.

Once these things are done, CreateOffScreen returns a pointer to the off-screen CGrafPort in the
retport parameter and a handle to the off-screen GDevice in the retGDevice parameter. The way
to use these references is described in "Playing With Blocks" later in this Note.

Building the PixMap

OpenCPort initializes the portPixMap field of the CGrafPort it's initializing with a copy of the
PixMap of the current GDevice. When the CreateOffScreen routine described earlier executes, the
current GDevice is unknown. So, all the fields of the PixMap that the new CGrafPort receives
must be initialized so that it can be used for drawing off screen.* What follows is an overview of
each of the P ixMap fields and how they should be initialized for off-screen drawing.

•

baseAddr

rowBytes

bounds

pmVersion

packType

pointer to the off-screen pixel image. The off-screen pixel image is allocated
as a nonrelocatable block in the heap. The size of this block of memory is
calculated from the rowBytes field, described next, multiplied by the
number of rows in the given boundary rectangle.

number of bytes in each row of the pixel image. This value is calculated
from the formula that's given in the CreateOffScreen routine. The most
significant bit of this field should be set so that Color QuickDraw knows
that this is a PixMap rather than a BitMap. The maximum value, ignoring
the most significant bit, is 16,382.

defmes the coordinate system and the dimensions of the pixel image. For
most off-screen drawing, this should be a rectangle that covers the entire
off-screen graphics environment.

set of internally and externally defined flags. As of 32-Bit QuickDraw 1.2,
only the baseAddr32 flag is defmed externally. This flag is described in
"Choosing Your Off-Screen Memory" later in this Note. For most off
screen drawing, this field is set to zero.

image compression scheme for pictures. The options for this field are
discussed in the "Graphics Overview" chapter of Inside Macintosh Volume
VI, pages 17-22 through 17-23. In this Note, image compression isn't
discussed so this field is set to zero.

•

* This part of these routines really bothers me because it feels impure to initialize all the Pix Map fields when
_ OpenCPort has initialized them already,just not in a way that's any good for off-screen drawing. I tried creating the
GDevice and PixMap first and then calling _OpencPort so that it initializes its PixMap for off-screen drawing, but
then you end up with two pixel maps and that makes this tougher to explain, or you have to dispose of one
PixMap which seems worse than the method I'm using.

•12 of 49 #120: Principia Off-Screen Graphics Environments

DeveloperTechnical Support

•

•

packSize

hRes

vRes

pixelType

pixelSize

cmpCount

cmpSize

planeBytes

pmTable

pmReserved

March 1992

internally used field. This field is always set to zero.

horizontal resolution of the pixel map. By default, the QuickDraw resolution
is 72 dots per inch,which is the value this Note uses. This is a fixed-point
field, so the actual value in this field is $00480000.

vertical resolution of the pixel map. See the hRes description.

format of the pixels. In indexed-color pixel maps, this field holds zero. In
direct-color pixel maps, this field holds the RGBDirect constant, which is
equal to 16.

number of bits in every pixel. For indexed-color pixels, this is 1, 2, 4, or 8
bits per pixel. For direct-color pixels, this is 16 or 32 bits per pixel.

number of components in every pixel. In indexed-color pixel maps, this
field is set to 1. In direct-color pixel maps, this field is set to 3. Sometimes
it's handy to set this field to 4 in 32-bit deep pixel maps when they're being
saved in a picture. See the "Color QuickDraw" chapter of Inside Macintosh
Volume VI, page 17-23, for details about this.

number of bits in each color component. In indexed-color pixel maps, this
field is set to the same value that's in the pixelSize field. In 16-bit deep
direct pixel maps, this field is set to 5. In 32-bit deep direct pixel maps, this
field is set to 8.

not currently defmed. This field is set to zero.

handle to the color table for indexed-color pixel maps. A method to create a
color table is given in "About That Creation Thing ..." later in this Note. In
direct-color pixel maps, this field contains a handle to a dummy color table,
and building one of these is shown in the SetUpPixMap routine in Listing
2.

not currently defmed. This field is set to zero.

The SetUpPixMap routine in Listing 2 initializes the PixMap that's passed to it in the aPixMap
parameter so that it can be used in an off-screen graphics environment. The depth, bounds, and
color parameters are the same as the ones passed to the CreateOffScreen routine. The
bytesPerRow parameter is the number of bytes in each row of the off-screen pixel image. A
description of SetUpPixMap follows the listing.

MPW Pascal Listing 2

•

FUNCTION SetUpPixMap(
depth: Integer;
bound: Rect;
colors: CTabHandle;
bytesPerRow: Integer;
aPixMap: PixMapHandle
i : OSErr;

CaNST

{Desired number of bits/pixel in off-screen}
{Bounding rectangle of off-screen}
(Color table to assign to off-screen)
{Number of bytes in each row of pixels}
{Handle to the PixMap being initialized}

#120: PrincipiaOff-ScreenGraphicsEnvironments 13 of 49

Macintosh Technical Notes

S00480000; (Default resolution is 72 DPI; Fixed type)kDefaultRes

VAA
newColors: CTabHandle;
offBaseAddr: Ptr;
error: OSErr;

BEGIN
error := noErr;
newColors := NIL;
offBaseAddr := NIL;

(Color table used for the off-screen PixMap}
{Pointer to the off-screen pixel image}
{Returns error code}

•

{Use given bounds}
(No special stuff}
{Default PICT pack}
(Always zero when in memory)
{72 DPI default resolution}
(72 DPI default resolution)
{Set number of bits/pixel}
{Not used}
{Not used}

(5 bits/component)

*)
(Indicates indexed)
{Have 1 component}
{Component size=depth}
{Handle to CLUT}

(* Clone the clut if indexed color; allocate a dummy clut if direct color *)
IF depth <= 8 THEN

BEGIN
newColors := colors;
error .- HandToHand(Handle(newColors));

END
ELSE

BEGIN
newColors := CTabHandle (NewHandle (SizeOf (ColorTable)

SizeOf(CSpecArray)));
error := MemError;

END;
IF error = noErr THEN

BEGIN
(* Allocate pixel image; long integer multiplication avoids overflow *)
offBaseAddr := NewPtr(LongInt(bytesPerRow) * (bound. bottom -

bound. top)) ;
IF offBaseAddr <> NIL THEN

WITH aPixMapAA DO
BEGIN

(* Initialize fields common to indexed and direct PixMaps *)
baseAddr := offBaseAddr; {Point to image}
rowBytes := BOR(bytesPerRow, {MSB set for PixMap}

S8000) ;
bounds := bound;
pmVersion := 0;
packType := 0;
packSize := 0;
hRes := kDefaultRes;
vRes := kDefaultRes;
pixelSize := depth;
planeBytes .- 0;
pmReserved := 0;

(* Initialize fields specific to indexed and direct PixMaps *)
IF depth <= 8 THEN

BEGIN
(* PixMap is indexed
pixelType := 0;
cmpCount : = 1;
cmpSize .- depth;
pmTable newColors;

END
ELSE

BEGIN
(* PixMap is direct *)
pixelType := RGBDirect; {Indicates direct)
cmpCount := 3; {Have 3 components}
IF depth = 16 THEN

cmpSize .- 5
ELSE

•

•14of 49 #120:Principia Off-Screen Graphics Environments

(* Initialize fields of the dummy color table *)
neWColorsAA.ctSeed := 3 * aPixMapAA.cmpSize;
newColorsAA.ctFlags := 0;
neWColorsAA.ctSize := 0;
pmTable .= newColors;

END;

•
Developer Technical Support

cmpSize := 8; {8 bits/component}

March 1992

•

•

END
ELSE

error := MemError;
END

ELSE
newColors NIL;

(* If no errors occurred, return a handle to the new off-screen PixMap *)
IF error <> noErr THEN

BEGIN
IF neWColors <> NIL THEN

DisposCTable{newColors);
END;

(* Return the error code *)
SetUpPixMap error;

END;

MPW C Listing 2

#define kDefaultRes Ox00480000 /* Default resolution is 72 DPI; Fixed type */

OSErr SetUpPixMap(
short depth, /* Desired number of bits/pixel in off-screen */
Rect *bounds, /* Bounding rectangle of off-screen */
CTabHandle colors, /* Color table to assign to off-screen */
short bytesPerRow, /* Number of bytes per row in the PixMap */
PixMapHandle aPixMap) /* Handle to the PixMap being initialized */

CTabHandle newColors; /* Color table used for the off-screen PixMap */
Ptr offBaseAddr; /* Pointer to the off-screen pixel image */
OSErr error; /* Returns error code */

error noErr;
newColors = nil;
offBaseAddr = nil;

/* Clone the clut if indexed color; allocate a dummy clut if direct color */
if (depth <= 8)
{

newColors = colors;
error = HandToHand((Handle *)&newColors);

}

else
{

newColors = (CTabHandle)NewHandle(sizeof (ColorTable)
sizeof (CSpecArrayJ J;

error = MemError();
}

if (error == noErr)
{

/* Allocate pixel image; long integer multiplication avoids overflow */
offBaseAddr = NewPtr((unsigned long)bytesPerRow * (bounds->bottom

bounds->top));
if (offBaseAddr != nil)
{

#120:Principia Off-Screen Graphics Environments 15of 49

Macintosh Technical Notes

/* Use given bounds */
/* No special stuff */
/* Default PICT pack */
/* Always zero in mem */
/* 72 DPI default res */
/* 72 DPI default res */
/* Set # bits/pixel */
/* Not used */
/* Not used */

/* Initialize fields common to indexed and direct PixMaps */
(**aPixMap).baseAddr = offBaseAddr; /* Point to image */
(**aPixMap).rowBytes = bytesPerRow I /* MSB set for PixMap */

Ox8000;
(**aPixMap) .bounds = *bounds;
(**aPixMap).pmVersion = 0;
(**aPixMap).packType = 0;
(**aPixMap) .packSize = 0;
(**aPixMap).hRes = kDefaultRes;
(**aPixMap) .vRes = kDefaultRes;
(**aPixMap).pixelSize = depth;
(**aPixMap) .planeBytes = 0;
(**aPixMap) .pmReserved = 0;

/* Initialize fields specific to indexed and direct PixMaps */
if (depth <= 8)
{

/* PixMap is indexed */
(**aPixMap) .pixelType = 0; /* Indicates indexed */
(**aPixMap).cmpCount = 1; /* Have 1 component */
(**aPixMap).cmpSize = depth; /* Component size=depth */
(**aPixMap) .pmTable = newColors; /* Handle to CLUT */

}

else
(

/* PixMap is direct */
(**aPixMap) .pixelType = RGBDirect; /* Indicates direct */
(**aPixMap).cmpCount = 3; /* Have 3 components */
if (depth == 16)

(**aPixMap) .cmpSize 5; /* 5 bits/component */
else

(**aPixMap) .cmpSize 8; /* 8 bits/component */
(**newColors) .ctSeed = 3 * (**aPixMap) .cmpSize;
(**newColors).ctFlags = 0;
(**newColors) .ctSize = 0;
(**aPixMap) .pmTable = newColors;

}

else
error MemError();

}

else
newColors nil;

/* If no errors occurred, return a handle to the new off-screen PixMap */
if (error != noErr)
(

if (newColors != nil)
DisposCTable(newColors);

/* Return the error code */
return error;

SetUpPixMap begins by copying thegivencolor table if an indexed-color graphics environment is
being built, orallocating a dummy colortable if a direct-color graphics environment is being built.
A copy of the color table is made because this allows the given color table and the off-screen
graphics environment's colortable to be manipulated independently without interfering with each
other, and thislets theoff-screen graphics environment routines manipulate thecolortable without
needing to worry about whether the color table is a 'clut' resource ornot. Thedummy color table is
made so that routines which assume that every PixMap has a color table won't do something

•

•

•16 of 49 #120:Principia Off-Screen Graphics Environments

catastrophic if they find a NIL color table. The off-screen pixel image is then allocated as a
nonrelocatable block in the application's heap.

Some of the fields of a PixMap have to be initialized differently depending upon whether the
indexed-color model or the direct-color model is being used. So, the fields that are the same
regardless of the color model that's being used are assigned first. Then the desired pixel depth is
compared to 8. If the depth is less than or equal to 8, then the rest of the fields are initialized for the
indexed-color model. Otherwise, the rest of the fields are initialized for the direct color model. In
the case of the direct-color model, the dummy color table is initialized to have no CSpecArray
entries and its ctSeed field is set to three times the component size. This dummy color table is then
installed into the PixMap.

Once SetUpPixMap completes, the PixMap of the new CGrafPort is ready to hold an off-screen
image. It's not quite ready to be drawn into with Color QuickDraw though. To do that, the off
screen GDevice is still needed; the construction and initialization of the GDevice are covered in the
next section.

•
Developer Technical Support March 1992

•

Building the GDevice

The _OpenCPort routine automatically allocates and initializes a PixMap, and the SetUpPixMap
routine reinitializes that existing PixMap. _OpenCPort doesn't allocate nor initialize a GDevice, so
one has to be created from scratch. Pages 21-20 through 21-21 of "The Graphics Devices
Manager" chapter of Inside Macintosh Volume VI describe the _NewGDevice routine. This routine
seems as though it's the ticket to getting a GDevice for off-screen drawing, but it always allocates
the new GDevice in the system heap. That's not so good because if your program unexpectedly
quits or if you just forget to dispose of the GDevice before you quit for real, the GDevice gets
orphaned in the system heap. To prevent this from happening, _NewGDevice should be ignored
and the off-screen GDevice should instead be allocated and initialized from scratch. What follows
is a description of how each field of the GDevice structure should be initialized.

•

gdRefNum

gdID

gdType

gdITable

gdResPref

gdSearchProc

reference number of video driver. Off-screen graphics environments don't
need to have video drivers because there's no video device associated with
them, so this field is set to zero.

used to identify specific GDevice structures from color-search procedures.
This isn't necessary for off-screen drawing, so this is normally set to zero.

type of GDevice. This field is set to the constant clutType (equal to zero)
for an indexed-color environment and set to the constant direct Type (equal
to 2) for a direct-color environment.

handle to the inverse table. Initially, this field is set to an arbitrarily small
handle. Later, the MakeITable routine is used to resize and initialize this
handle to a real inverse table.

inverse-table resolution. When _MakeITable is called by QuickDraw, the
value of this field is used as the inverse-table resolution. Almost all inverse
tables have a resolution of 4. There are some cases when a inverse-table
resolution of 5 is useful, particularly when the arithmetic transfer modes are
used with _CopyBits. See "The GDevice" earlier in this Note.

pointer to the color-search procedure. If a color-search procedure is needed,
this field can be set later by calling the _AddSearch routine (see the "Color

#120: Principia Off-Screen Graphics Environments 17 of 49

Macintosh Technical Notes

gdCompProc

gdFlags

gdPMap

gdRefCon

gdNextGD

gdRect

gdMode

gdCC ...

gdReserved

Manager" chapter of Inside Macintosh Volume V, pages 145 through 147).
Usually, this field is just set to NIL and left at that.

pointer to the color-complement procedure. If a color-complement
procedure is needed, this field can be set later by calling the _AddComp
routine (see the "Color Manager" chapter of Inside Macintosh Volume V,
pages 145 through 147). Usually, this field is set to NIL and left at that.

flags indicating certain states of the GDevice. This field should initially be
set to zeroes. After the GDevice has been built, these flags can be set with
the _SetDeviceAttrs routine (see the "Graphics Devices Manager" chapter
of Inside Macintosh Volume VI, pages 21-10 and 21-22).

handle to a PixMap. A handle to the PixMap of the CGrafPort that was
created earlier is put into this field.

miscellaneous data. CalcCMask and SeedCFill use this field as
described on pages 71 through 72 of InsideMacintosh Volume V. Initially,
this field is set to zero.

handle to next GDevice in the GDevice list. The system maintains a linked
list of GDevice records in which there's one GDevice for every screen, and
the links are kept in this field. Off-screen GDevice structures should never
be put into this list, so this field should be set to NIL.

rectangle of GDevice. Strictly speaking, this field is used only for screens,
but it should be the same as the bounds rectangle ofthe off-screen PixMap.

current video mode. This field is used by video drivers to keep track of the
current mode that the video device is in. For off-screen GDevice structures,
this field should beset to -1.

These four fields are used only with GDevice structures for screens. For
off-screen GDevice structures, these fields should be set to zero.

not currently defmed. This field is set to zero.

•

•
The CreateGDevice routine shown below in Listing 3 allocates and initializes a GDevice structure.
It takes the initialized off-screen PixMap in the basePixMap parameter and returns the initialized
GDevice in the retGDevice parameter. If any error occurs, any memory that's allocated is
disposed of and the result code is returned as a function result.

MPW Pascal Listing 3

FUNCTION CreateGDevice(
basePixMap: PixMapHandle; {Handle to the PixMap to base GDevice on}
VAR retGDevice: GDHandle {Returns a handle to the new GDevicel
i : OSErr;

CONST
kITabRes = 4; {Inverse-table resolution}

VAR
newDevice: GDHandle; {Handle to the new GDevice}
embryoITab: ITabHandle; {Handle to the embryonic inverse table} •18 of 49 #120: Principia Off-Screen Graphics Environments

BEGIN
(* Initialize a few things before we begin *)
error := noErr;
newDevice := NIL;
embryoITab := NIL;

Developer Technical Support

• error: OSErr: (Er ro r code}

March 1992

{Only used for screens}
{Won't normally use}
THEN
{Depth58: clut device}

{Depth>8; direct device}
(2-byte handle for now}
{Normal inv table res}
{No color-search proc}
{No complement proc}
{Will set these later}
{Reference our PixMap}
{Won't normally use}
(Not in GDevice list}
(Use PixMap dimensions}
{For nonscreens}
{Only used for screens}
(Only used for screens}
{Only used for screens}
{Only used for screens}
{Currently unused}

•

(* Allocate memory for the new GDevice *)
newDevice := GDHandle(NewHandle(SizeOf(GDevice»);
IF newDevice <> NIL THEN

BEGIN
(* Allocate the embryonic inverse table *)
embryoITab := ITabHandle(NewHandleClear(2»:
IF embryoITab <> NIL THEN

BEGIN
(* Initialize the new GDevice fields *)
WITH newDevice AA DO

BEGIN
gdRefNum := 0;
gdID := 0;
IF basePixMapAA.pixelSize <= 8

gdType .- clutType
ELSE

gdType := directType:
gdITable := embryoITab;
gdResPref := kITabRes;
gdSearchProc := NIL;
gdCompProc := NIL:
gdFlags := 0:
gdPMap := basePixMap:
gdRefCon := 0;
gdNextGD : = NIL;
gdRect := basePixMapAA.bounds;
gdMode := -1;
gdCCBytes .- 0;
gdCCDepth .- 0;
gdCCXData .- NIL;
gdCCXMask .- NIL;
gdReserved .= 0;

END;

(* Set color-device bit if PixMap isn't black & white *)
IF basePixMapAA.pixelSize > 1 THEN

SetDeviceAttribute(newDevice, gdDevType, true);

(* Set bit to indicate that the GDevice has no video driver *)
SetDeviceAttribute(newDevice, noDriver, true);

(* Initialize the inverse table *)
IF basePixMapAA.pixelSize <= 8 THEN

BEGIN
MakeITable(basePixMapAA.pmTable, newDeviceAA.gdITable,

newDeviceAA.gdResPref):
error .- QDError:

END;
END

ELSE
error MemError:

•
END

ELSE
error := MemError;

(* Handle any errors along the way *)
IF error <> noErr THEN

#120: Principia Off-Screen Graphics Environments 19 of 49

Macintosh Technical Notes

BEGIN
IF embryoITab <> NIL THEN

DisposHandle(Handle(embryoITab»;
IF newDevice <> NIL THEN

DisposHandle(Handle(newDevice»;
•

END
ELSE

retGDevice := newDevice;

(* Return a handle to the new GDevice *)
CreateGDevice .- error;

END;

MPW C Listing 3

#define kITabRes 4 /* Inverse-table resolution */

OSErr CreateGDevice(
PixMapHandle basePixMap, /* Handle to the PixMap to base GDevice on */
GDHandle *retGDevice) /* Returns a handle to the new GDevice */

GDHandle
I TabHandle
Rect
OSErr

newDevice;
embryoITab;
deviceRect;
error;

/* Handle to the new GDevice */
/* Handle to the embryonic inverse
/* Rectangle of GDevice */
/* Error code */

table */

/* Initialize a few things before we begin */
error = noErr;
newDevice = nil;
embryoITab = nil;

/* Allocate memory for the new GDevice */
newDevice = (GDHandle)NewHandle(sizeof (GDevice));
if (newDevice != nil)
{ •

/* Allocate the embryonic inverse table */
embryoITab = (ITabHandle)NewHandleClear(2);
if (embryoITab != nil)
{

/* Set rectangle of device to PixMap bounds */
deviceRect = (**basePixMap) .bounds;

/* Dept~8; clut device */

•

Depth>8; direct device */
2-byte handle for now */
Normal inv table res */
No color-search proc */
No complement proc */
Will set these later */
Reference our PixMap */
Won't normally use */
Not in GDevice list */
Use PixMap dimensions */
For nonscreens */
Only used for screens */
Only used for screens */
Only used for screens */
Only used for screens */

fields */
/* Only used for screens */
/* Won't normally use */

/* Initialize the new GDevice
(**newDevice) .gdRefNum = 0;
(**newDevice) .gdID = 0;
if ((**basePixMap) .pixelSize <= 8)

(**newDevice) .gdType clutType;
else

(**newDevice) .gdType directType; /*
{**newDevice).gdITable = embryoITab; /*
(**newDevice) .gdResPref = kITabRes; /*
(**newDevice) .gdSearchProc = nil; /*
(**newDevice) .gdCompProc = nil; /*
(**newDevice) .gdFlags = 0; /*
(**newDevice) .gdPMap = basePixMap; /*
(**newDevice) .gdRefCon = 0; /*
(**newDevice).gdNextGD = nil; /*
{**newDevice).gdRect = deviceRect; /*
(**newDevice) .gdMode = -1; /*
(**newDevice) .gdCCBytes 0; /*
(**newDevice) .gdCCDepth 0; /*
(**newDevice) .gdCCXData 0; /*
(**newDevice) .gdCCXMask 0; /*

20 of 49 #120: Principia Off-Screen Graphics Environments

/* Set color-device bit if PixMap isn't black & white */
if «**basePixMap) .pixelSize > 1)

SetDeviceAttribute(newDevice, gdDevType, true);•
Developer Technical Support

(**newDevice).gdReserved = 0; /* Currently unused */

March 1992

•

•

/* Set bit to indicate that the GDevice has no video driver */
SetDeviceAttribute(newDevice, noDriver, true);

/* Initialize the inverse table */
if «**basePixMap).pixelSize <= 8)
(

MakeITable((**basePixMap).pmTable, (**newDevice).gdITable,
(**newDevice) .gdResPref);

error = QDError();

}

else
error = MemError();

}

else
error = MemError();

/* Handle any errors along the way */
if (error != noErr)
{

if (embryoITab != nil)
DisposHandle((Handle)embryoITab);

if (newDevice != nil)
DisposHandle((Handle)newDevice);

}

else
*retGDevice = newDevice;

/* Return a handle to the new GDevice */
return error;

CreateGDevice begins by allocating the GDevice structure and an embryonic form of the inverse
table in the current heap. The inverse table is allocated as two zero bytes for now; it'll be resized
and initialized to be a real inverse table later in this routine. Then, each of the GDevice fields are
initialized as described earlier.

After all the fields have been initialized, the gdFlags field is set through _SetDeviceAttribute.
If the desired pixel depth is greater than 1, then the gdDevType bit is set. This indicates that the
GDevice is for a color graphics environment. This bit should be set even if a gray-scale color table
is used for this off-screen graphics environment. The noDriver bit is set because this is an off
screen GDevice and so there's no associated video device driver.

Finally, the inverse table is resized and initialized by calling the _MakeITable routine. A handle to
the two-byte embryonic inverse table that was created earlier in CreateGDevice is passed as a
parameter, as is a handle to the off-screen color table and the preferred inverse-table resolution.

All Fall Down

Now that we have a way to create an off-screen graphics environment, there has to be a way to get
rid of it too. The DisposeOffScreen routine shown in Listing 4 does this. The CreateOffScreen
routine returns an off-screen graphics environment that's represented by a CGrafPort and
GDevice. The DisposeOffScreen routine takes the off-screen CGrafPort and GDevice and

#120: Principia Off-Screen Graphics Environments 21 of 49

Macintosh Technical Notes

deallocates all thememory that's associated with them including the CGrafPort and its dependent
structures, the GDevice, the PixMap, the colortable, and the inverse table.

MPW Pascal Listing 4
•

PROCEDURE DisposeOffScreen(
doomedPort: CGrafPtr;
doomedGDevice: GDHandle
) ;

{Pointer to the CGrafPort we're getting rid of}
{Handle to the GDevice we're getting rid of}

VAR
currPort: CGrafPtr; (Pointer to the current port}
currGDevice: GDHandle; (Handle to the current GDevice}

BEGIN
(* Check to see whether the doomed CGrafPort is the current port *)
GetPort(GrafPtr(currPort));
IF currPort = doomedPort THEN

BEGIN
(* It is; set current port to Window Manager CGrafPort *)

GetCWMgrPort(currPort);
SetPort(GrafPtr(currPort));

END;

(* Check to see whether the doomed GDevice is the current GDevice *)
currGDevice := GetGDevice;
IF currGDevice = doomedGDevice THEN

(* It is; set current GDevice to the main screen's GDevice *)
SetGDevice(GetMainDevice);

(* Throw everything away *)
doomedGDeviceAA.gdPMap := NIL;
DisposGDevice(doomedGDevice);
DisposPtr(doomedPortA.portPixMapAA.baseAddr);
IF doomedPortA.portPixMapAA.pmTable <> NIL THEN

DisposCTable(doomedPortA.portPixMapAA.pmTable);
CloseCPort(doomedPort);
DisposPtr(Ptr(doomedPort));

END;

MPW C Listing 4

void DisposeOffScreen(
CGrafPtr doomedPort, /* Pointer to the CGrafPort to be disposed of */
GDHandle doomedGDevice) /* Handle to the GDevice to be disposed of */

CGrafPtr currPort; /* Pointer to the current port */
GDHandle currGDevice; /* Handle to the current GDevice */

/* Check to see whether the doomed CGrafPort is the current port */
GetPort((GrafPtr *)&currPort);
if (currPort == doomedPort)
{

/* It is; set current port to Window Manager CGrafPort */
GetCWMgrPort(&currPort);
SetPort ((GrafPtr) currPort);

/* Check to see whether the doomed GDevice is the current GDevice */
currGDevice = GetGDevice();
if (currGDevice == doomedGDevice)

/* It is; set current GDevice to the main screen's GDevice */

•

•22 of 49 #120: Principia Off-Screen Graphics Environments

•
Developer Technical Support

SetGDevice(GetMainDevice());

/* Throw everything away */
(**doomedGDevice) .gdPMap = nil;
DisposGDevice(doomedGDevice);
DisposPtr((**doomedPort->portPixMap) .baseAddr);
if «**doomedPort->portPixMap).pmTable != nil)

DisposCTable((**doomedPort->portPixMap).pmTable);
CloseCPort(doomedPort);
DisposPtr((Ptr)doomedPort);

March 1992

•

One mildly tricky aspect of this is that we shouldn't dispose of the current graphics environment.
To prevent this, the current pon is retrieved by a call to _ GetPort. If it returns a pointer to the
same pon that DisposeOffScreen is disposing, then the current pon is set to the Window
Manager's CGrafPort. That was an arbitrary choice, but it's the most neutral. Similarly, the
current GDevice is retrieved by a call to GetGDevice. If it returns a handle to the same GDevice
that DisposeOffScreen is disposing, then the current port is set to the main screen's GDevice.
Again, that's an arbitrary, neutral choice.

The inverse table, GDevice, pixel image, and color table are disposed of. Before disposing of the
color table, a check is first made to see whether it's NIL. That's because it's reasonable, though
not normal, for the PixMap not to have even a dummy color table if the direct-color model is being
used. Then the CGrafPort is closed which deallocates all the pieces associated with the
CGrafPort, including the PixMap. Once this is done, all the structures that were created by calling
CreateOffScreen are deallocated.

Playing With Blocks

Now that these four routines with two entry points can create and dispose of off-screen graphics
environments, how are they used? There are several phases to using an off-screen graphics
environment: creating it, drawing into it, switching between it and other off-screen and on-screen
graphics environments, copying images to and from it, and disposing of it. Listing 5 shows a
routine called ExerciseOffScreen which is a very basic example of all of these phases.

MPW Pascal Listing 5

PROCEDURE ExerciseOffScreen;

CONST
kOffDepth = 8; {Number of bits per pixel in off-screen environment}
rGrayClut = 1600; {Resource ID of gray-scale clut}
rColorClut = 1601; {Resource ID of full-color clut}

#120: Principia Off-Screen GraphicsEnvironments•

VAR
grayPort:
grayDevice:
colorPort:
colorDevice:
savedPort:
savedDevice:
offColors:
offRect:
circleRect:
count:
aColor:
error:

CGrafPtr;
GDHandle;
CGrafPtr;
GDHandle;
GrafPtr;
GDHandle;
CTabHandle;
Rect;
Rect;
Integer;
RGBColor;
OSErr;

{Graphics environment for gray off screen}
{Color environment for gray off screen}
{Graphics environment for color off screen}
(Color environment for color off screen)
{Pointer to the saved graphics environment}
{Handle to the saved color environment}
{Colors for off-screen environments)
{Rectangle of off-screen environments}
{Rectangles for circle-drawing}
{Generic counter}
{Color used for drawing off screen}
{Error return from off-screen creation}

23 of 49

Macintosh Technical Notes

BEGIN
(* Set up the rectangle for the off-screen graphics environments *)
SetRect(offRect, 0, 0, 256, 256);

(* Get the color table for the gray off-screen graphics environment *)
offColors := GetCTable(rGrayClut);

(* Create the gray off-screen graphics environment *)
error := CreateOffScreen(offRect, kOffDepth, offColors, grayPort,

grayDevice) ;

IF error = noErr THEN
BEGIN

(* Get the color table for the color off-screen graphics environment *)
offColors := GetCTable(rColorClut);

(* Create the color off-screen graphics environment *)
error := CreateOffScreen(offRect, kOffDepth, offColors, colorPort,

colorDevice) ;

IF error = noErr THEN
BEGIN

(* Save the current graphics environment *)
GetPort(savedPort);
savedDevice := GetGDevice;

(* Set the current graphics environment to the gray one *)
SetPort(GrafPtr(grayPort));
SetGDevice(grayDevice);

(* Draw gray-scale ramp into the gray off-screen environment *)
FOR count := a TO 255 DO

BEGIN
aColor.red := count * 257;
aColor.green := aColor.red;
aColor.blue := aColor.green;
RGBForeColor(aColor);
MoveTo(O, count);
LineTo(255, count);

END;

(* Copy gray ramp into color off-screen colorized with green *)
SetPort(GrafPtr(colorPort));
SetGDevice(colorDevice);
aColor.red := SOOOO; aColor.green := SFFFF; aColor.blue '= SOOOO;
RGBForeColor(aColor);
CopyBits(GrafPtr(grayPort)A.portBits,

GrafPtr(colorPort)A.portBits,
grayPortA.portRect,
colorPortA.portRect,
srcCopy + ditherCopy, NIL);

•

•

24 of 49

(* Draw red, green, and blue circles *)
PenSize(8, 8);
aColor.red := SFFFF; aColor.green := SOOOO; aColor.blue .- SOOOO;
RGBForeColor(aColor);
circleRect := colorPortA.portRect;
FrameOval(circleRect);
aColor.red := SOOOO; aColor.green .- SFFFF; aColor.blue SOOOO;
RGBForeColor(aColor);
InsetRect(circleRect, 20, 20);
FrameOval(circleRect);
aColor.red := SOOOO; aColor.green .- SOOOO; aColor.blue := SFFFF;

#120:Principia Off-Screen Graphics Environments •

•
Developer Technical SUpPOrt

RGBForeColor(aColor);
InsetRect(circleRect, 20, 20);
FrameOval(circleRect);

(* Copy the color off-screen environment to the current port *)
SetPort(savedPort);
SetGDevice(savedDevice);
CopyBits(GrafPtr(colorPort)h.portBits, savedPorth.portBits,

colorPorth.portRect, savedPortA.portRect,
srcCopy, NIL);

(* Dispose of the off-screen graphics environments *)
DisposeOffScreen(grayPort, grayDevice);
DisposeOffScreen(colorPort, colorDevice);

END;
END;

END;

MPW C Listing 5

#define kOffDepth 8 /* Number of bits per pixel in off-screen environment */
#define rGrayClut 1600 /* Resource ID of gray-scale clut */
#define rColorClut 1601 /* Resource ID of full-color clut */

March 1992

void ExerciseOffScreen()
(

•
CGrafPtr
GDHandle
CGrafPtr
GDHandle
GrafPtr
GDHandle
CTabHandle
Rect
Rect
short
RGBColor
OSErr

grayPort;
grayDevice;
colorPort;
colorDevice;
savedPort;
savedDevice;
offColors;
offRect;
circleRect;
count;
aColor;
error;

/* Graphics environment for gray off screen */
/* Color environment for gray off screen */
/* Graphics environment for color off screen */
/* Color environment for color off screen */
/* Pointer to the saved graphics environment */
/* Handle to the saved color environment */
/* Colors for off-screen environments */
/* Rectangle of off-screen environments */
/* Rectangles for circle-drawing */
/* Generic counter */
/* Color used for drawing off screen */
/* Error return from off-screen creation */

•

/* Set up the rectangle for the off-screen graphics environments */
SetRect(&offRect, 0, 0, 256, 256);

/* Get the color table for the gray off-screen graphics environment */
offColors = GetCTable(rGrayClut);

/* Create the gray off-screen graphics environment */
error = CreateOffScreen(&offRect, kOffDepth, offColors,

&grayPort, &grayDevice);

if (error == noErr)
(

/* Get the color table for the color off-screen graphics environment */
offColors = GetCTable(rColorClut);

/* Create the color off-screen graphics environment */
error = CreateOffScreen(&offRect, kOffDepth, offColors,

&colorPort, &colorDevice);

if (error == noErr)
(

/* Save the current graphics environment */
GetPort(&savedPort);
savedDevice = GetGDevice();

#120: Principia Off-Screen Graphics Environments 25 of 49

Macintosh TechnicalNotes

/* Set the current graphics environment to the gray one */
SetPort ((GrafPtr) grayPort);
SetGDevice(grayDevice);

/* Draw gray-scale ramp into the gray off-screen environment */
for (count = 0; count < 256; ++count)
(

aColor.red = aColor.green = aColor.blue count * 257;
RGBForeColor(&aColor);
MoveTo(0, count);
LineTo(255, count);

/* Copy gray ramp into color off-screen colorized with green */
SetPort((GrafPtr)colorPort);
SetGDevice(colorDevice);
aColor.red = OxOOOO; aColor.green = OxFFFF; aColor.blue OxOOOO;
RGBForeColor(&aColor);
CopyBits(&«GrafPtr)grayPort)->portBits,

&«GrafPtr)colorPort)->portBits,
&grayPort->portRect,
&colorPort->portRect,
srcCopy I ditherCopy, nil);

/* Draw red, green, and blue circles */
PenSize (8, 8);
aColor.red = OxFFFF; aColor.green = OxOOOO; aColor.blue OxOOOO;
RGBForeColor(&aColor);
circleRect = colorPort->portRect;
FrameOval(&circleRect);
aColor.red = OxOOOO; aColor.green OxFFFF; aColor.blue OxOOOO;
RGBForeColor(&aColor);
InsetRect(&circleRect, 20, 20);
FrameOval(&circleRect);
aColor.red = OxOOOO; aColor.green OxOOOO; aColor.blue OxFFFF;
RGBForeColor(&aColor);
InsetRect(&circleRect, 20, 20);
FrameOval(&circleRect);

/* Copy the color off-screen environment to the current port */
SetPort(savedPort);
SetGDevice(savedDevice);
CopyBits(&«GrafPtr)colorPort)->portBits, &savedPort->portBits,

&colorPort->portRect, &savedPort->portRect,
srcCopy, nil);

/* Dispose of the off-screen graphics environments */
DisposeOffScreen(grayPort, grayDevice);
DisposeOffScreen(colorPort, colorDevice);

•

•

Two off-screen graphics environments are created in the same way. A rectangle that's 256 pixels
wide by 256 pixels high and with its top-left coordinate at (0, 0) is created in the offRect local
variable. 'clut' resources are loaded from the application's resource fork to use as the colortables
of thetwo off-screen graphics environments; a gray-scale 'elut' in the first case and a full-color
'elut' in the second case. Then, CreateOffScreen is called with the rectangle, color table, and a
hard-coded pixeldepth of eight bits per pixel.

26 of 49 #120: Principia Off-Screen Graphics Environments •

If CreateOffScreen returns noErr in both cases, then the current graphics environment is saved so
that it can be restored later. Graphics environments consist of the current port and the current
GDevice. The current GrafPort or CGrafPort is saved with GetPort. The current GDevice is
saved with GetGDevice. -•
Developer Technical Support March 1992

•

•

The gray-scale off-screen graphics environment is set as the current graphics environment by
calling _SetPort with its CGrafPort and calling _SetGDevice with its GDevice. A vertical gray
ramp is drawn into this graphics environment with the usual set of QuickDraw calls. This graphics
environment's pixel image is then copied to the full-color off-screen graphics environment with
dithering and colorization with green (dithering requires 32-Bit QuickDraw and consistent
colorization requires system software version 7.0; both of these features are described in
Konstantin Othmer's article "QuickDraw's CopyBits Procedure: Bener Than Ever in System 7.0"
in Issue 6 of develop). Before this copy happens, the full-color off-screen graphics environment
must be set as the current one. Once this is done, _CopyBits can properly map colors from the
gray-scale off-screen graphics environment to the full-color one which gets a green ramp image.

Red, green, and blue concentric circles are drawn into the full-color off-screen graphics
environment over the green ramp. This image is then copied to the graphics environment that was
the current one when ExerciseOffScreen was called. To do this, the saved graphics environment is
set as the current one by what should now be the familiar calls to SetPort and SetGDevice.
The off-screen image is then copied to the saved graphics environment with _copyBlts.

Finally, the two off-screen graphics environments are disposed of by calling the DisposeOffScreen
routine that's defined in the section "All Fall Down" earlier in this Note.

Put That Checkbook Away!

The previous section covered the basics of creating and using off-screen graphics environments.
This is good enough for many, if not most, needs of off-screen drawing. But there are variations to
creating and maintaining an off-screen graphics environment for specific cases. This section
discusses a few of the more common cases.

About That Creation Thing . . •

The CreateOffScreen routine, defmed in Listing 1, takes three pieces of information: the boundary
rectangle, the desired pixel depth, and the desired color table. But there's much more to these
pieces than ExerciseOffScreen shows. This section describes these pieces in more detail.

The first parameter to CreateOffScreen is a rectangle which determines the size and coordinate
system of the off-screen graphics environment. Usually, the top-left comer of the rectangle has the
coordinate (0, 0) because it's usually easiest to draw everything using coordinates that can also be
thought of as the horizontal and vertical distance in pixels from the top-left comer of the graphics
environment. But in some cases, it's more convenient to have the (0, 0) coordinate somewhere
else, and passing CreateOffScreen a rectangle with a nonzero coordinate in the top-left comer is an
easy way to do this. The coordinate system can be translated after the off-screen graphics
environment is created by using the _SetOrigin routine that's described on pages 153 through
155 of Inside Macintosh Volume I.

Warning: As Inside Macintosh Volume I, page 154, notes, the clip region of the port
"sticks" to the coordinate system when you call _SetOrigin. If
_SetOrigin offsets the coordinate system by a large amount, then the clip
region might be moved completely outside of the port's drawing area, and

#120: Principia Off-Screen Graphics Environments 27 of 49

Macintosh Technical Notes

nothing can be drawn into that port. After calling _SetOrigin, you should
set the clip region so that you can continue drawing into the port.

The number of bits per pixel implies the maximum number of available colors in a graphics
environment, at least roughly speaking. The relationship between the number of bits per pixel and
the number of available colors is discussed in the "Graphics Overview" chapter of Inside
Macintosh Volume VI, pages 16-8 through 16-9.

If an indexed-color graphics environment is being made, then a color table must be passed to
CreateOffScreen. In ExerciseOffScreen, the color table is retrieved from a 'clut' resource that's in
the application's resource fork with a call to _GetCTable. Because CreateOffScreen clones this
color table, this 'clut' resource can be purgeable so that it can be thrown out if its memory is
needed for other purposes. _GetCTable can also be passed some special constants that tell it to
allocate various system color tables that can also be passed to CreateOffScreen. These special
constants are described on page 17-18 of the "Color QuickDraw" chapter of Inside Macintosh
Volume VI. GetCTable allocates memory for these system color tables, so they should be
disposed of after you're done with them.

A color table could also be built from scratch by allocating it with a call to _NewHandle and then
initializing it by hand. The ColorTable structure is documented on pages 48 through 49 of Inside
Macintosh Volume V. Here's what each of the fields should be set to:

•

ctSeed

28 of 49

identification value. This is an arbitrary value that should be changed any
time the contents of the color table change so that the inverse table can be
kept current. When Color QuickDraw draws anything, it compares the
ctSeed of the colortable of the PixMap of the current GDevice against the
i TabSeed field of the inverse table of the current GDevice. If they're the
same, then Color QuickDraw uses colors according to that inverse table. If
they're different, then Color QuickDraw first rebuilds the inverse table
according to the new color table's contents and its i TabSeed is set to the
value of the new color table's ctseed; then the rebuilt inverse table is used.

When CopyBits is called with the srcCopy transfer mode, the ctSeed
fields Of the source and destination pixel maps are compared. If they're the
same, then _CopyBits simply transfers the source pixels to the destination
with no mapping of colors. If they're different, then _CopyBits checks
each entry of the color tables to determine whether they have the same
colors for the same pixel values. If they do, then _CopyBits again simply
transfers the source pixels to the destination with no mapping of colors. If
they don't, then _CopyBit 5 maps colors in the source PixMap to the colors
in the current graphics environment according to the inverse table of the
current GDevice. The ctSeed field of a color table should be changed
whenever its contents are changed so that _CopyBi t 5 doesn't make the
wrong assumptions about the equality of the source and destination color
tables.

You can get a seed value for a new color table by assigning to it the result of
the _GetCTSeed routine, documented in the "Color Manager" chapter of
Inside Macintosh VolumeV, page 143. If the contents of an existing color
table are changed, then it should be passed to the _CTabChanged routine
which assigns a new value to its ctSeed field. If the _CTabChanged routine
isn't available(it's available with 32-Bit QuickDraw and is included with the

#120; Principia Off-Screen Graphics Environments

•

•

DeveloperTechnical Support

• ctFlags

March 1992

system beginning with system software version 7.0), then the ctSeed field
should be given a new value with another call to _GetCTSeed.

indicates the Boolean characteristics of a color table. If the most significant
bit of ctFlags is clear, then the value field of each ColorSpec entry in the
ctTable array is interpreted as the pixel value for the color that's specified
in the rgb field in the same ColorSpec entry. You can build a color table
with nonconsecutive pixel values this way. If this bit is set, then all the
value fields in the color table are ignored and the index of each ColorSpec
record in the ctTable array is that record's pixel value. It's your choice
whether to clear this bit and set the value fields or set this bit and ignore the
value fields; traditionally this bit is clear for off-screen color tables.

If the next most significant bit of ctFlags is set, then the value field of
each ColorSpec record in the ctTable array is used by CopyBits as an
index into the color palette that's attached to the destination-window, and the
rgb field is ignored. This is documented in the "Palette Manager" chapter of
InsideMacintosh Volume VI, page 20-17.

29 of 49

ctSize

ctTable

Warning:

#120: PrincipiaOff-Screen Graphics Environments

The other bits are reserved for future use. If you create a color table from
scratch, these other bits must be set to zero. If you use a color table that's
generated by the system, then these bits must be preserved.

the number of color table entries minus 1. Normally, this field is set to 1, 3,
15, or 255 for 1-,2-,4-, and 8-bits per pixel, respectively. In special cases,
it's reasonable to have less than the maximum number of entries for the
pixel depth. For example, a color table for an 8-bit per pixel graphics
environment could have just 150 entries, in which case the ctSize field
should hold 149. For this case, it's still important to allocate as much space
in the color table for the maximum number of entries for a pixel depth and
clear the entries you're not using to zero because some parts of Color
QuickDraw assume the size of a color table based on the pixel depth.

array of colors and pixel values. This table defines all the available colors in
the color table and their pixel values. The value field of each ColorSpec
record indicates that color's pixel value if the most significant bit of
ctFlags is clear. It's ignored if the most significant bit of ctFlags is set.
The value field is used as an index into a palette if the next most significant
bit of ct Flag s is set, in which case the rgb field is ignored. See the
discussion of the ctFlags field earlier in this Note for more details.

Color QuickDraw's text-drawing routines assume that the color table of the
destination graphics environment has the maximum number of colors for the
pixel depth of the graphics environment, and that white is the first entry in
the color table and black is the last entry. If these conditions aren't satisfied,
then the resulting image is unpredictable.

The code fragment in Listing 6 shows how to allocate a 256-entry color table from scratch. Color
tables have a variable size, so the NewHandle call has to calculate the size of the ColorTable
record plus the maximum number ofcolor table entries for the pixel depth multiplied by the size of
a ColorSpec record. kNurnColors - 1 is used in the calculation because the size of the ColorTable
record includes the size of one ColorSpec entry in most development environments .

•

•

Macintosh TechnicalNotes

MPW Pascal Listing 6 •CaNST
kNumColors 256; (Number of color table entries)

VAP.
newColors: CTabHandle; {Handle to the new color table}
index: Integer; {Index into the table of colors}

(* Allocate memory for the color table *)
newColors := CTabHandle(NewHandleClear(SizeOf (ColorTable) +

SizeOf(ColorSpec) * (kNumColors - 1»);
IF newColors <> NIL THEN

BEGIN
(* Initialize the fields *)
newColorsAA.ctSeed := GetCTSeed;
newColorsAA.ctFlags := 0;
newColorsAA.ctSize := kNumColors - 1;

(* Initialize the table of colors *)
FOR index := 0 TO kNumColors - 1 DO

BEGIN
newColorsAA.ctTable[indexj . value := index;
newColorsAA.ctTable[indexj .rgb.red := someRedValue;
newColorsAA.ctTable[index] .rgb.green := someGreenValue;
newColorsAA.ctTable[indexj.rgb.blue '= someBlueValue

END
END

MPW C Listing 6

#define kNumColors 256 /* Number of color table entries */

CTabHandle newColors; /* Handle to the new color table */
short index; /* Index into the table of colors */

/* Allocate memory for the color table */
newColors = (CTabHandle)NewHandleClear(sizeof (ColorTable) +

sizeof (ColorSpec) * (kNumColors - 1));
if (newColors 1= nil)
(

/* Initialize the fields */
(**newColors) .ctSeed = GetCTSeed();
(**newColors) .ctFlags = 0;
(**newColors).ctSize = kNumColors - 1;

/* Initialize the table of colors */
for (index = 0; index < kNumColors; index++)
{

(**newColors) .ctTable[index] .value = index;
(**newColors) .ctTable[index] .rgb.red = someRedValue;
(**newColors).ctTable[index].rgb.green = someGreenValue;
(**newColors) .ctTable[indexj .rgb.blue = someBlueValue;

Changing Your Environment

After you create an off-screen graphics environment with certain dimensions, you might later want
to change its size, depth, or color table without creating a completely new graphics environment
from scratch and without needing to redraw the existing image. The UpdateOffScreen routine in

•

•30 of 49 #120:PrincipiaOff-ScreenGraphicsEnvironments

Listing 7 shows just one way to do this. It takes the same parameters that CreateOffScreen (defmed
in Listing 1) does, but instead of creating a new CGrafPort and GDevice, it alters the ones that
you pass through the updPort and updGDevice parameters. If the newBounds parameter specifies
an empty rectangle, then the existing boundary rectangle for the off-screen graphics environment is
used. Similarly, if newDepth is zero, then the existing depth is used; and if the newColors
parameter is NIL, then the existing color table is used. UpdateOffScreen alters the given
CGrafPort and GDevice to the new settings, but it completely replaces the PixMap. After all the
alterations are made, the old PixMap'S image is copied to the new PixMap'S image, and then the
old PixMap and its image are disposed.

MPW Pascal Listing 7

•
Developer Technical Support

FUNCTION UpdateOffScreen(
newBounds: Rect;
newDepth: Integer;
newColors: CTabHandle;
updPort: OGrafPtr;
updGDevice: GDHandle
): OSErr;

(New bounding rectangle of off-screen)
{New number of bits per pixel in off-screen}
{New color table to assign to off-screen}
{Returns a pointer to the updated CGrafPort}
{Returns a handle to the updated GDevice}

March 1992

CONST
kMaxRowBytes S3FFE; {Maximum number of bytes per row of pixels}

•
VAA

newPixMap:
oldPixMap:
bounds:
depth:
bytesPerRow:
colors:
savedFore:
savedBack:
aColor:
qdVersion:
savedPort:
savedDevice:
savedState:
error:

PixMapHandle;
PixMapHandle;
Rect;
Integer;
Integer;
CTabHandle;
RGBColor;
RGBColor;
RGBColor;
LongInt;
GrafPtr;
GDHandle;
SignedByte;
OSErr;

{Handle to the new off-screen PixMap}
{Handle to the old off-screen PixMap}
{Boundary rectangle of off-screen}
{Depth of the off-screen PixMap}
{Number of bytes per row in the PixMap}
{Colors for the off-screen PixMap}
{Saved foreground color}
{Saved background color}
{Used to set foreground and background color}
{Version of QuickDraw currently in use}
{Pointer to GrafPort used for save/restore}
{Handle to GDevice used for save/restore}
{Saved state of color table handle}
{Returns error code}

•

BEGIN
{* Initialize a few things before we begin *)
newPixMap := NIL;
error : = noErr;

(* Keep the old bounds rectangle, or get the new one *)
IF EmptyRect(newBounds) THEN

bounds updPortA.portRect
ELSE

bounds := newBounds;

(* Keep the old depth, or get the old one *)
IF newDepth = a THEN

depth .- updPortA.portPixMapAA.pixeISize
ELSE

depth .= newDepth;

{* Get the old clut, or save new clut's state and make it nonpurgeable *)
IF newColors = NIL THEN

colors := updPortA.portPixMapAA.pmTable
ELSE

BEGIN
savedState := HGetState(Handle(newColors));

#120: Principia Off-Screen Graphics Environments 31 of 49

Macintosh Technical Notes

HNoPurge(Handle(newColors));
colors .- newColors;

END; •
(* Calculate the number of bytes per row in the off-screen PixMap *)

bytesPerRow := (depth * (bounds.right - bounds.left) + 31) DIV 32) * 4;

(* Get the current QuickDraw version *)
error .- Gestalt (gestaltQuickdrawVersion, qdVersion);
error := noErr;

of bytes per row is 16,382; make sure within range *)
kMaxRowBytes THEN

clut is NIL; is parameter error *)

is provided if the depth is indexed *)

direct and 32-Bit QD installed *)
4) OR (depth = 8) OR
(qdVersion >= gestalt32BitQD)) THEN

Maximum number
bytesPerRow <=
BEGIN

(* Make sure a color table
IF depth <= 8 THEN

IF colors = NIL THEN
(* Indexed depth and
error := paramErr;

(* Make sure depth is indexed or depth is
IF (depth = 1) OR (depth = 2) OR (depth =

((depth = 16) OR (depth = 32)) AND
BEGIN

(*
IF

END
ELSE

(* # of bytes per row is more than 16,382; is parameter error *)
error := paramErr;

END
ELSE

(* Pixel depth isn't valid; is parameter error *)
error := paramErr;

{* If sanity checks succeed, attempt to update the graphics environment *)
IF error = noErr THEN

BEGIN
(* Allocate a new PixMap *)
newPixMap := PixMapHandle(NewHandleClear(SizeOf(PixMap)));
IF newPixMap <> NIL THEN

BEGIN
(* Initialize the new PixMap for off-screen drawing *)
error := SetUpPixMap(depth, bounds, colors, bytesPerRow,

newPixMap) ;
IF error = noErr THEN

BEGIN
(* Save old PixMap and install new, initialized one *)
oldPixMap := updPortA.portPixMap;
updPortA.portPixMap := newPixMap;

•

(* Save current port & GDevice; set ones we're updating *)
GetPort(savedPort);
savedDevice := GetGDevice;
SetPort(GrafPtr(updPort));
SetGDevice(updGDevice);

(* Set portRect, visRgn, clipRgn to given bounds rect *)
updPortA.portRect := bounds;
RectRgn(updPortA.visRgn, bounds);
ClipRect(bounds);

(* Update the GDevice *)
IF newPixMapAA.pixelSize <= 8 THEN

updGDeviceAA.gdType .- clutType
ELSE

•32 of 49 #120: Principia Off-Screen Graphics Environments

•

•

•

Developer Technical Suppon

updGDeviceAA.gdType := directType;
updGDeviceAA.gdPMap .= newPixMap;
updGDeviceAA.gdRect := newPixMapAA.bounds;

(* Set color-device bit if PixMap isn't black & white *)
IF newPixMapAA.pixelSize > 1 THEN

SetDeviceAttribute(updGDevice, gdDevType, TRUE);
else

SetDeviceAttribute(updGDevice, gdDevType, FALSE);

(* Save current fore/back colors and set to B&W *)
GetForeColor(savedFore);
GetBackColor(savedBack);
aColor.red := 0; aColor.green .- 0; aColor.blue .= 0;
RGBForeColor(aColor);
aColor.red := SFFFF;
aColor.green := SFFFF;
aColor.blue := SFFFF;
RGBBackColor(aColor);

(* Copy old image to the new graphics environment *)
HLock(Handle(oldPixMap));
CopyBits(BitMapPtr(oldPixMapA)A, GrafPtr(updPort)A.portBits,

oldPixMapAA.bounds, updPortA.portRect,
srcCopy, NIL);

HUnlock(Handle(oldPixMap));

(* Restore the foreground/background color *)
RGBForeColor(savedFore);
RGBBackColor(savedBack);

(* Restore the saved port *)
SetPort(savedPort);
SetGDevice(savedDevice);

(* Get rid of the old PixMap and its dependents *)
DisposPtr(oldPixMapAA.baseAddr);
DisposeCTable(oldPixMapAA.pmTable);
DisposHandle(Handle(oldPixMap));

END;
END

ELSE
error .- MemError;

END;

(* Restore the given state of the color table *)
IF colors <> NIL THEN

HSetState(Handle(colors) , savedState);

(* One Last Look Around The House Before We Go... *)

IF error <> noErr THEN
BEGIN

IF newPixMap <> NIL THEN
BEGIN

IF newPixMapAA.pmTable <> NIL THEN
DisposCTable(newPixMapAA.pmTable);

IF newPixMapAA.baseAddr <> NIL THEN
DisposPtr(newPixMapAA.baseAddr);

DisposHandle(Handle(newPixMap));
END;

END;
UpdateOffScreen .= error;

END;

#120:Principia Off-Screen Graphics Environments

March 1992

33 of 49

Macintosh Technical Notes

MPW C Listing 7

#define kMaxRowBytes Ox3FFE /* Maximum number of bytes in a row of pixels */

OSErr UpdateOffScreen(
Rect *newBounds, /* New bounding rectangle of off-screen */
short newDepth, /* New number of bits per pixel in off-screen */
CTabHandle newColors, /* New color table to assign to off-screen */
CGrafPtr updPort, /* Returns a pointer to the updated CGrafPort */
GDHandle updGDevice) /* Returns a handle to the updated GDevice */

•
PixMapHandle
PixMapHandle
Rect
short
short
CTabHandle
RGBColor
RGBColor
RGBColor
long
GrafPtr
GDHandle
SignedByte
OSErr

newPixMap; /*
oldPixMap; /*
bounds; /*
depth; /*
bytesPerRow; /*
colors; /*
savedFore; /*
savedBack; /*
aColor; /*
qdVersion; /*
savedPort; /*
savedDevice; /*
savedState; /*
error; /*

Handle to the new off-screen PixMap */
Handle to the old off-screen PlxMap */
Boundary rectangle of off-screen */
Depth of the off-screen PixMap */
Number of bytes per row in the PixMap */
Colors for the off-screen PixMap */
Saved foreground color */
Saved background color */
Used to set foreground and background color */
Version of QuickDraw currently in use */
Pointer to GrafPort used for save/restore */
Handle to GDevice used for save/restore */
Saved state of color table handle */
Returns error code */

/* Initialize a few things before we begin */
newPixMap = nil;
error = noErr;

/* Keep the old bounds rectangle, or get the new one */
if (EmptyRect(newBounds))

bounds updPort->portRect;
else

bounds *newBounds;

/* Keep the old depth, or get the old one */
if (newDepth == 0)

depth (**updPort->portPixMap) .pixelSize;
else

depth newDepth;

/* Get the old clut, or save new clut's state and make it nonpurgeable */
if (newColors == nil)

colors = (**updPort->portPixMap) .pmTable;
else
{

savedState = HGetState((Handle)newColors);
HNoPurge((Handle)newColors);
colors = newColors;

/* Calculate the number of bytes per row in the off-screen PixMap */
bytesPerRow = «depth * (bounds.right - bounds.left) + 31) » 5) « 2;

/* Get the current QuickDraw version */
(void)Gestalt(gestaltQuickdrawVersion, &qdVersion);

/* Make sure depth is indexed or depth is direct and 32-Bit QD installed */
if (depth == 1 I I depth == 2 I I depth 4 I I depth == 8 I I

«depth == 16 I I depth == 32) && qdVersion >= gestalt32BitQD))

/* Maximum number of bytes per row is 16,382; make sure within range */

•

•34 of 49 #120: Principia Off-Screen Graphics Environments

•

•

•

DeveloperTechnical Support

if (bytesPerRow <= kMaxRowBytes)
{

/* Make sure a color table is provided if the depth is indexed */
if (depth <= 8)

if (colors == nil)
/* Indexed depth and clut is NIL; is parameter error */
error = paramErr;

}

else
/* # of bytes per row is more than 16,382; is parameter error */
error = paramErr;

}

else
/* Pixel depth isn't valid; is parameter error */
error = paramErr;

/* If sanity checks succeed, attempt to create a new graphics environment */
if (error == noErr)
(

/* Allocate a new PixMap */
newPixMap = (PixMapHandle)NewHandleClear(sizeof (PixMap));
if (newPixMap != nil)
{

/* Initialize the new PixMap for off-screen drawing */
error = SetUpPixMap(depth, &bounds, colors, bytesPerRow, newPixMap);
if (error == noErr)
{

/* Save the old PixMap and install the new, initialized one */
oldPixMap = updPort->portPixMap;
updPort->portPixMap = newPixMap;

/* Save current port & GDevice and set ones we're updating */
GetPort(&savedPort);
savedDevice = GetGDevice();
SetPort((GrafPtr)updPort);
SetGDevice(updGDevice);

/* Set portRect, visRgn, and clipRgn to the given bounds rect */
updPort->portRect = bounds;
RectRgn(updPort->visRgn, &bounds);
ClipRect(&bounds);

/* Update the GDevice */
if «**newPixMap) .pixelSize <= 8)

(**updGDevice) .gdType clutType;
else

(**updGDevice) .gdType = directType;
(**updGDevice) .gdPMap newPixMap;
(**updGDevice) .gdRect = (**newPixMapl .bounds;

/* Set color-device bit if PixMap isn't black & white */
if (**newPixMap).pixeISize > 1)

SetDeviceAttribute(updGDevice, gdDevType, true);
else

SetDeviceAttribute(updGDevice, gdDevType, false);

/* Save current foreground/background colors and set to B&W */
GetForeColor(&savedFore);
GetBackColor(&savedBack);
aColor.red = aColor.green aColor.blue 0;
RGBForeColor(&aColor);
aColor.red = aColor.green aColor.blue OxFFFF;
RGBBackColor(&aColor);

/* Copy old image to the new graphics environment */

#120: Principia Off-Screen Graphics Environments

March 1992

35 of 49

MacintoshTechnical Notes

HLock((Handle)oldPixMap);
CopyBits((BitMapPtr)*oldPixMap, &«GrafPtr) updPort)->portBits,

&(**oldPixMap).bounds, &updPort->portRect,
srcCopy, nil);

HUnlock ((Handle)oldPixMap);

/* Restore the foreground/background color */
RGBForeColor(&savedFore);
RGBBackColor(&savedBack);

/* Restore the saved port */
SetPort(savedPort);
SetGDevice(savedDevice);

/* Get rid of the old PixMap and its dependents */
DisposPtr((**oldPixMap).baseAddr);
DisposeCTable((**oldPixMap).pmTable) ;
DisposHandle((Handle)oldPixMap);

}

else
error = MemError();

/* Restore the given state of the color table */
if (colors != nil)

HSetState((Handle) colors, savedState);

/* One Last Look Around The House Before We Go... */
if (error != noErr)
{

/* Some error occurred; dispose of everything we allocated */
if (newPixMap != nil)
{

if «**newPixMap).pmTable)
DisposCTable((**newPixMap).pmTable);

if (**newPixMap) .baseAddr)
DisposPtr ((**newPixMapl.baseAddr);

DisposHandle((Handle)newPixMap);

}

return error;

UpdateOffScreen begins by checking the boundary rectangle, depth, or color table for emptiness,
zero, or NIT..., respectively. If any these satisfy that condition, then the existing characteristic is
used. Next, the same sanity check that CreateOffScreen uses is done. If this sanity check succeeds,
then a new PixMap is allocated, and then it's initialized by the SetUpPixMap routine that's given in
Listing 2 which gives the new PixMap a new pixel image and its own copy of the color table. This
new PixMap is installed into the CGrafPort after saving the reference to the old PixMap. Then, the
portRect, visRgn, and clipRgn of the CGrafPort are set to the new boundary rectangle, as is
the gdRect of the GDevice. The gdType of the GDevice is set either for the indexed-color or
direct-color model, the gdPMap is set to the new PixMap, and the device attributes are set according
to the pixel depth. Details about the settings for the CGrafPort and GDevice are in "Building the
CGrafPort" and "Building the GDevice," respectively, earlier in this Note.

At this point, the off-screen graphics environment is ready with its new characteristics, but it has
garbage for an image because nothing has been drawn into it yet. The old PixMap, pixel image,
and color table are still around, so _CopyBit s transfers the old image into the altered graphics
environment. _CopyBits handles the mapping from the old image's characteristics to the new

•

•

•36 of 49 #120:PrincipiaOff-ScreenGraphicsEnvironments

characteristics, so the altered graphics environment gets the best possible representation of the old
image according to its new characteristics.•
Developer Technical Support March 1992

•

•

Changing the Off-Screen Color Table

Sometimes, it's useful to change some or all of the colors in an off-screen color table, or to replace
the off-screen color table with another one, so that the existing image in an indexed-color graphics
environment appears with new colors. For example, if you had an off-screen image of a blue car
and wanted to see what it looked like in green, you could change all of the shades of blue in the
off-screen color table to green, and then _CopyBits the image to the screen. Notice that this is
different from calling the UpdateOffScreen routine in the previous section with a different color
table. That routine tries to reproduce the colors from the original image as best it can in the new set
of colors. This section discusses the case in which you want the image's colors to change.

The most obvious part of doing this is simply to get the color table from the off-screen pixel map's
pmTable field and modify the entries, or to dispose of the off-screen graphics environment's
current color table and assign the new one to it. There's one more step to complete the process
though. The discussion about GDevice records in "The Building Blocks" in this Note discusses
inverse tables and how they go hand-in-hand with color tables. If you alter or replace the color
table, you have to make sure that the inverse table of the off-screen drawing environment is rebuilt
according to the new colors because Color QuickDraw uses that inverse table to know what pixel
values to use for the specified color. You don't have to rebuild the inverse table explicitly as long
as you tell Color QuickDraw that the color table changed. To do this, all you have to do is make
sure that the ctSeed of the changed or altered color table is set to a new value. And to do this, you
can simply Call_CTabChanged, which is documented on page 17-26 of the "Color QuickDraw"
chapter of Inside Macintosh Volume VI. _CTabChanged is available beginning with 32-Bit
QuickDraw and it's available in system software version 7.0. If this routine isn't available, then
you can still tell Color QuickDraw that the color table has been changed by calling _Get CTSeedand
assigning its result directly to your new color table's ctSeed field.

The next time you draw into this off-screen drawing environment, Color QuickDraw checks the
ctSeed of the environment's color table against the iTabSeed of the inverse table of the
environment's GDevice. Because you changed the ctSeed of the color table either through
_CTabChanged or _GetCTSeed, these two seeds are different so Color QuickDraw automatically
rebuilds the inverse table of the current GDevice and then it copies the ctSeed of the color table to
the i TabSeed of the rebuilt inverse table. Then drawing continues normally.

Follow That Screen!

One common need of off-screen graphics environments is that they have a depth and color table
that matches a screen. The CreateOffScreen routine requires a color table for indexed-color
environments, and a pixel depth. Because there can be more than one screen attached to a
Macintosh system, you have to decide which screen's depth and color table you should use.
Typically, the depth and color table of the deepest screen that contains the area that you're
interested in (probably the area of a window) is used. Another option is to use the depth and color
table of the screen that has the largest area of intersection with the area that you're interested in. To
find the depth and color table of the screen on which you want to base an off-screen graphics
environment, you must use the list of graphics devices for all screens which is maintained by the
system. Every GDevice record for a screen has a handle to that screen's P ixMap, and you can find
the screen's depth and color table there.

Listing 8 shows a routine called CreateScreenOffScreen which creates an off-screen graphics
environment that has the depth and color table of a selected screen. The first parameter, bounds,
specifies the rectangular part of the screen area in which you're interested in global coordinates.

#120: Principia Off-Screen Graphics Environments 37 of 49

Macintosh Technical Notes

The screenOption parameter specifies how you want the screen to be chosen. If you pass
kDeepestScreen in this parameter, CreateScreenOffScreen creates the new off-screen graphics
environment with the depth and color table of the deepest screen that intersects the bounds
rectangle. If you instead pass kLargest ScreenArea, then the new off-screen graphics
environment is created with the depth and color table of the screen with the largest area of
intersection with thebounds rectangle.

MPW Pascal Listing 8

TYPE
ScreenOpt = (kDeepestScreen, kLargestAreaScreen);

FUNCTION CreateScreenOffScreen(
bounds: Rect; {Global rectangle of part of screen to save}
screenOption: ScreenOpt; {Use deepest or largest intersection area screen?}
VAR retPort: CGrafPtr; {Returns a pointer to the new CGrafPort}
VAR retGDevice: GDHandle (Returns a handle to the new GDevice)
): OSErr;

•

(* Different screen options require different algorithms *)
IF screenOption = kDeepestScreen THEN

(* Graphics Devices Manager tells us the deepest intersecting screen *)
baseGDevice := GetMaxDevice(bounds)

ELSE IF screenOption = kLargestAreaScreen THEN
BEGIN

(* Get a handle to the first GDevice in the GDevice list *)
aGDevice := GetDeviceList;

VAR
baseGDevice:
aGDevice:
basePixMap:
maxArea:
area:
commonRect:
normalBounds :
error:

BEGIN
error := noErr;

GDHandle;
GDHandle;
PixMapHandle;
LongInt;
LongInt;
Rect;
Rect;
Integer;

(GDevice to base off-screen on)
(Handle to each GDevice in the GDevice list)
(baseGDevice's PixMap)
(Largest intersection area found)
(Area of rectangle of intersection)
(Rectangle of intersection)
(bounds rectangle normalized to (0, O)}
(Error code)

•
(* Keep looping until all GDevices have been checked *)

maxArea := 0;
baseGDevice := NIL;
WHILE aGDevice <> NIL DO

BEGIN
(* Check to see whether screen rectangle and bounds intersect *)
IF SectRect(aGDeviceAA.gdRect, bounds, commonRect) THEN

BEGIN
(* Calculate area of intersection *)
area := LongInt(commonRect.bottom - commonRect.top) *

LongInt(commonRect.right - commonRect.left);

(* Keep track of largest area of intersection so far *)
IF area > maxArea THEN

BEGIN
maxArea := area;
baseGDevice aGDevice;

END;
END;

(* Go to the next GDevice in the GDevice list *) •38 of 49 #120:Principia Off-Screen Graphics Environments

•
Developer Technical Support

aGDevice .- GetNextDevice(aGDevice);
END;

END
ELSE

error ;= paramErr;

(* If no screens intersect the bounds, baseDevice is NIL *)
IF (baseGDevice <> NIL) AND (error = noErr) THEN

BEGIN
(* Normalize the bounds rectangle *)

normalBounds := bounds;
OffsetRect(normalBounds, -normaIBounds.left, -normaIBounds.top);

(* Create off-screen graphics environment w/ depth, clut of screen *)
basePixMap := baseGDevice~~.gdPMap;

error ;= CreateOffScreen(normaIBounds, basePixMap~~.pixeISize,

basePixMap~~.pmTable, retPort, retGDevice);
END;

CreateScreenOffScreen .- error;
END;

MPW C Listing 8

enum

kDeepestScreen,
kLargestAreaScreen,

};

March 1992

OSErr CreateScreenOffScreen(
Rect *bounds, /* Global rectangle of part of screen to save */
short screenOption, /* Use deepest or largest intersection area screen */
CGrafPtr *retPort, /* Returns a pointer to the new CGrafPort */
GDHandle *retGDevice) /* Returns a handle to the new GDevice */• GDHandle
GDHandle
PixMapHandle
long
long
Rect
Rect
short

baseGDevice; /*
aGDevice; /*
basePixMap; /*
maxArea; /*
area; /*
commonRect; /*
normalBounds; /*
error; / *

GDevice to base off-screen on */
Handle to each GDevice in the GDevice list */
baseGDevice's PixMap */
Largest intersection area found */
Area of rectangle of intersection */
Rectangle of intersection */
bounds rectangle normalized to (0, 0) */
Error code */

error noErr;

•

/* Different screen options require different algorithms */
if (screenOption == kDeepestScreen)

/* Graphics Devices Manager tells us the deepest intersecting screen */
baseGDevice = GetMaxDevice(bounds);

else if (screenOption == kLargestAreaScreen)
(

/* Get a handle to the first GDevice in the GDevice list */
aGDevice = GetDeviceList();

/* Keep looping until all GDevices have been checked */
maxArea = 0;
baseGDevice = nil;
while (aGDevice != nil)
(

/* Check to see whether screen rectangle and bounds intersect */
if (SectRect(&(**aGDevice) .gdRect, bounds, &commonRect »)
(

/* Calculate area of intersection */

#120: Principia Off-Screen Graphics Environments 39 of 49

MacintoshTechnical Notes

area = (long) (commonRect.bottom - commonRect.top) *
(long) (commonRect.right - commonRect.left);

/* Keep track of largest area of intersection found so far */
if (area > maxArea)
(

maxArea = area;
baseGDevice = aGDevice;

/* Go to the next GDevice in the GDevice list */
aGDevice = GetNextDevice(aGDevice);

}

else
error = paramErr;

/* If no screens intersect the bounds, baseDevice is NIL */
if (baseGDevice != nil && error == noErr)
{

/* Normalize the bounds rectangle */
normalBounds = *bounds;
OffsetRect(&normaIBounds, -normaIBounds.left, -normaIBounds.top);

/* Create off-screen graphics environment w/ depth, clut of screen */
basePixMap = (**baseGDevice) .gdPMap;
error = CreateOffScreen(&normaIBounds, (**basePixMap) .pixeISize,

(**basePixMap) .pmTable, retPort, retGDevice);
}

return error;

Finding the deepest screen that intersects an on-screen area is trivially easy because there's a
Graphics Devices Manager routine that finds it called _GetMaxDevice which is documented on
page 21-22 of the "Graphics Devices Manager" chapter of Inside Macintosh Volume VI. The
rectangle in global coordinates of the screen area you're interested in is passed to _Ge tMaxDevice,
and it returns a handle to the deepest screen that intersects that area, even if the area of intersection
is as small as one pixel. Ifno screens intersect that area, then _GetMaxDevice returns NIL.

Finding the GDevice of the screen that has the maximum area of intersection with the screen area
you're interested in isn't quite so easy because there's no single Graphics Devices Manager routine
to find this GDevice; you have to search the GDevice list yourself. You can get a handle to the first
GDevice in the list by calling _GetDeviceList, and you can get a handle to each successive
GDevice by calling _GetNextDevice. _GetDeviceList is documented on pages 21-21 through
21-22 of the "Graphics Devices Manager" chapter of Inside Macintosh Volume VI, and
_GetNextDevice is documented on page 21-22 of the same chapter. For each GDevice in the list,
the area of intersection between the bounds and the gdRect of the GDevice is calculated. If the
calculated area is the largest area of intersection found so far, then that area and the GDevice of that
screen are remembered.

Once a winning GDevice has been chosen, either by being the deepest intersecting GDevice or the
GDevice with the largest intersecting area, then CreateOffScreen routine is called with the pixel
depth and color table of the PixMap of the GDevice, and the bounds rectangle normalized so that
its top-left coordinate has the coordinates (0, 0). CreateOffScreen returns with the new off-screen
graphics environment, and CreateScreenOffScreen returns this to the caller.

•

•

•400£ 49 #120:PrincipiaOff-Screen GraphicsEnvironments

Choosing Your Orr-Screen Memory

The CreateOffScreen routine in Listing 1 creates an off-screen graphics environment with its pixel
image allocated as a nonrelocatable block in the application's heap. But this isn't the only way that
the pixel image can be allocated. Pixel images can be big, and big blocks of nonrelocatable memory
in your heap can be expensive in terms of performance, and they can cause a bad case of heap
fragmentation. Why not put the pixel image in a relocatable block of memory instead? If there isn't
much free memory in your heap and if MultiFinder or system software version 7.0 is running,
there's memory that's not being used by any open applications, called temporary memory
(formerly called Multiliinder temporary memory). Why not use this area of memory for the pixel
image? Some people have NuBus cards with plenty of memory on them. Why not move the pixel
image out of the heaps altogether and instead use NuBus memory for the pixel image? All of these
things can be done with simple modifications to what's been discussed in this Note, and these
modifications are discussed in the next few paragraphs.

How can pixel images be relocatable? After all, pixel images are referred to only by the baseAddr
field of a PixMap, and the baseAddr is a pointer, not a handle. It'S true that while QuickDraw is
being used to draw into a graphics environment, the pixel image had better not move or else
QuickDraw will start drawing over the area of memory that the pixel image used to be rather than
where it is. But if QuickDraw isn't doing anything with the graphics environment, then it doesn't
care what happens to the pixel image as long as the baseAddr points to it once QuickDraw starts
drawing into the graphics environment. This implies a strategy: allocate the pixel image as a
relocatable block and let it float in the heap; when QuickDraw is about to to draw into the graphics
environment or to copy from it, lock the pixel image and copy its master pointer into the baseAddr
field of the PixMap; when the drawing or copying is fmished, unlock the pixel image. There are
many ways to implement this, and Listing 9 shows a code fragment for one very simple method.

MPW Pascal Listing 9

•

•

Developer Technical Support March 1992

•

(* Allocate the pixel image; use long multiplication to avoid overflow *)
offBaseAddr := NewHandle(LongInt(bytesPerRow) * (bounds~.bottom

bounds:". top)) ;
IF offBaseAddr <> NIL THEN

BEGIN
(* Initialize fields common to indexed and direct PixMaps *)
aPixMapAA.baseAddr := Ptr(offBaseAddr); (* Reference the image *)

PROCEDURE LockOffScreen(
offScreenPort: CGrafPtr {Ptr to off-screen CGrafPort}
) ;

VAR
offImageHnd: Handle; {Handle to the off-screen pixel image}

BEGIN
(* Get the saved handle to the off-screen pixel image *)
offImageHnd := Handle(offScreenPort~.portPixMapA~.baseAddr);

(* Lock the handle to the pixel image *)
HLock(offImageHnd);

(* Put pixel image master pointer into baseAddr so that QuickDraw can use it *)
offScreenPort~.portPixMap~~.baseAddr := offlmageHnd A;

END;

#120: PrincipiaOff-ScreenGraphics Environments 41 of 49

Macintosh Technical Notes

PROCEDURE UnlockOffScreen(
offScreenPort: CGrafPtr {ptr to off-screen port}
) ;

VAA
offImagePtr: Ptr; {Pointer to the off-screen pixel image}
offImageHnd: Handle; {Handle to the off-screen pixel image}

BEGIN
(* Get the handle to the off-screen pixel image *)
offImagePtr := offScreenPortA.portPixMapAA.baseAddr;
offImageHnd := RecoverHandle(offImagePtr);

(* Unlock the handle *)
HUnlock(offImageHnd);

(* Save the handle back in the baseAddr field *)
offScreenPortA.portPixMapAA.baseAddr .- Ptr(offImageHnd);

END;

MPW C Listing 9

/* Allocate the pixel image; use long multiplication to avoid overflow */
offBaseAddr = NewHandle((unsigned 10ng)bytesPerRow * (bounds->bottom

bounds->top));
if (offBaseAddr 1= nil)
{

/* Initialize fields common to indexed and direct PixMaps */
(**aPixMap) .baseAddr = (Ptr)offBaseAddr; /* Reference the image */

void LockOffScreen(
CGrafPtr offScreenPort) /* Pointer to the off-screen CGrafPort */

Handle offImageHnd; /* Handle to the off-screen pixel image */

/* Get the saved handle to the off-screen pixel image */
offImageHnd = (Handle) (**offScreenPort->portPixMap) .baseAddr;

/* Lock the handle to the pixel image */
HLock(offImageHnd);

/* Put pixel image master pointer into baseAddr so that QuickDraw can use it */
(**offScreenPort->portPixMap) .baseAddr = *offlmageHnd;

void UnlockOffScreen(
CGrafPtr offScreenPort) /* Pointer to the off-screen CGrafPort */

Ptr offImagePtr; /* Pointer to the off-screen pixel image */
Handle offImageHnd; /* Handle to the off-screen pixel image */

/* Get the handle to the off-screen pixel image */
offImagePtr (**offScreenPort->portPixMap).baseAddr;
offImageHnd = RecoverHandle(offImagePtr);

/* Unlock the handle */
HUnlock (offlmageHnd);

/* Save the handle back in the baseAddr field */

•

•

•42 of 49 #120: Principia Off-Screen Graphics Environments

Listing 9 starts with a code fragment from the SetUpPixMap routine that's modified so that it
allocates a new handle for the off-screen pixel image instead of a new pointer. This handle is saved
in the baseAddr field for now. When you're about to draw into the off-screen graphics
environment or to copy from it, the LockOffScreen routine in Listing 9 should be called with a
pointer to the off-screen graphics environment's CGrafPort as the parameter. It takes the handle to
the pixel image from the baseAddr field of the off-screen graphics environment's PixMap and
passes it to _HLock which makes sure the pixel image can't move in the heap. Then, the pixel
image's handle is dereferenced to get the master pointer to the pixel image, and this master pointer
is copied into the baseAddr field. Now, QuickDraw can draw into or copy from the off-screen
graphics environment.

•
Developer Technical Support

(**offScreenPort->portPixMapl .baseAddr = (PtrlofflmageHnd;

March 1992

•

When you're finished drawing into the off-screen graphics environment, the pixel image should be
unlocked, and the UnlockOffScreen routine in Listing 9 does this. The baseAddr field of the
PixMap holds the pixel image's master pointer, so this is passed to _RecoverHandle to get the
pixel image's handle. This handle is passed to _HUnlock to let the pixel image float in the heap
again, and then this handle is saved in the baseAddr field.

One potentially useful addition to the LockOffScreen routine would be a call to _MoveHHi just
before the call to _HLock. This helps reduce heap fragmentation while the pixel image is locked by
moving it up as high in the heap as possible before locking it, allowing the other relocatable blocks
to move without tripping over it You have to be careful with _MoveHHi though because it not only
moves the handle as high in the heap as possible, it moves other relocatable blocks out of the top of
the heap to make room for the handle. This could involve moving huge amounts of memory, and
it's not unusual for MoveHHi to take several seconds to do this.

How do you make an off-screen graphics environment that uses temporary memory for the pixel
image? Temporary memory is allocated as handles, so there's almost no difference between using
temporary memory and using relocatable blocks in your own heap in the way that Listing 9 shows.
All you have to do is replace the calls to _NewHandle, _ HLock, and _HUnlock with calls to
_ TempNewHandle, _ TempHLock, and _TempHUnlock. If temporary memory handles are real, then
you don't even have to replace the _HLock and _HUnlock calls-they work properly with
temporary memory handles that are real.Youcan tell whether temporary memory handles are real or
not by calling _Gestalt with the gestaltOSAttr selector. If the gestaltRealTempMemory bit is
set, then all temporary memory handles are real. See the sections "About Temporary Memory" and
"Using Temporary Memory" of Inside Macintosh Volume VI, pages 28-33 through 28-40.

How do you make an off-screen graphics environment that stores the pixel image on a NuBus
memory card? The Macintosh Memory Manager doesn't keep track of heaps on NuBus memory
cards so it can't be used to allocate memory on those cards, but if applications can use that card's
memory at will, then an application can set up the off-screen graphics environment with its pixel
image in the NuBus card's memory simply by setting the address of the card's memory in the
baseAddr field of the off-screen graphics environment's PixMap instead of allocating anything.

If your NuBus memory card doesn't require 32-bit addressing mode to access its memory, then
setting the baseAddr to the address of the NuBus card's memory is all you have to do. Some
NuBus memory cards require its memory to be accessed in 32-bit addressing mode. Without 32
Bit QuickDraw, these memory cards can't be used for storing the pixel image of an off-screen
graphics environment because Color QuickDraw without 32-Bit QuickDraw always reads and
writes pixel images in 24-bit addressing mode regardless of whether the pixel image is in main
memory, on a NuBus video card, or on a NuBus memory card. With 32-Bit QuickDraw, Color
QuickDraw automatically switches to 32-bit addressing mode before reading or writing a pixel

• #120: Principia Off-Screen GraphicsEnvironments 43 of 49

Macintosh Technical Notes

image that's on a video card. It won't know to switch to 32-bit addressing mode if your off-screen
graphics environment uses a pixel image on a NuBus memory card that's not a video card, but you
can tell it to make this switch by setting bit 2 of the prnversion field of the PixMap for the off
screen graphics environment. This is normally done by logically ORing the prnVersion field with
the predefined constant baseAddr32. See "About 32-Bit Addressing" in Issue 6 of develop, page
36, for more details about how QuickDraw handles addressing modes.

The GWorld Factor

In May 1989, 32-Bit QuickDraw was introduced as an extension to the system. While it had a lot
of new features, the GWorld mechanism was the one that made the big news. GWorlds are off
screen graphics environments that you can have the system put together in one call. There's no
need for routines like CreateOffScreen, SetUpPixMap, or CreateGDevice-all of the off-screen
graphics environment is set up with _NewGWorld. You can change most of its characteristics with
_UpdateGworld, set the current off-screen graphics environment with _SetGWorld, and get rid of
the off-screen graphics environment with _DisposeGWorld. All the GWorld routines are described
in the "Graphics Devices Manager" chapter of Inside Macintosh Volume VI. As an example,
Listing 10 shows the same routine as the ExerciseOffScreen routine that's shown in Listing 5, but
Listing 10 uses GWorlds rather than the do-it-yourself routines that are defmed in this Note.

MPW Pascal Listing 10

•

PROCEDURE ExerciseOffScreen;

CONST
kOffDepth = 8;
rGrayClut = 1600;
rColorClut = 1601;

{Number of bits per pixel in off-screen environment}
{Resource 10 of gray-scale clut}
{Resource 10 of full-color clut} •VAR

grayPort:
colorPort:
savedPort:
savedDevice:
offColors:
offRect:
circleRect:
count:
aColor:
error:

GWorldPtr;
GWorldPtr;
GrafPtr;
GOHandle;
CTabHandle;
Rect;
Rect;
Integer;
RGBColor;
OSErr;

{Graphics environment for gray off screen}
{Graphics environment for color off screen}
{Pointer to the saved graphics environment}
{Handle to the saved color environment}
{Colors for off-screen environments}
{Rectangle of off-screen environments}
{Rectangles for circle-drawing}
{Generic counter}
{Color used for drawing off-screen}
{Error return from off-screen creation}

BEGIN
(* Set up the rectangle for the off-screen graphics environments *)
SetRect{offRect, 0, 0, 256, 256);

(* Get the color table for the gray off-screen graphics environment *)
offColors := GetCTable{rGrayClut);

(* Create the gray off-screen graphics environment *)
error := NewGWorld{grayPort, kOffDepth, offRect, offColors, NIL, [J);

IF error = noErr THEN
BEGIN

(* Get the color table for the color off-screen graphics environment *)
offColors := GetCTable(rColorClut);

(* Create the color off-screen graphics environment *)

•44 of 49 #120: Principia Off-Screen Graphics Environments

•

•

Developer Technical Support

error ;= NewGWorld(colorPort, kOffDepth, offRect, offColors, NIL, [J):

IF error = noErr THEN
BEGIN

(* Save the current graphics environment *)
GetGWorld(savedPort, savedDevice):

(* Set the current graphics environment to the gray one *)
SetGWorld(grayPort, NIL):

(* Draw gray-scale ramp into the gray off-screen environment *)
FOR count ;= 0 TO 255 DO

BEGIN
aColor.red := count * 257:
aColor.green := aColor.red:
aColor.blue := aColor.green:
RGBForeColor(aColor):
MoveTo(O, count):
LineTo(255, count):

END:

(* Copy gray ramp into color off-screen colorized with green *)
SetGWorld(colorPort, NIL):
aColor.red := SOOOO: aColor.green := SFFFF: aColor.blue := SOOOO:
RGBForeColor(aColor):
CopyBits (GrafPtr (grayPort)A.portBits,

GrafPtr(colorPort)A.portBits,
grayPortA.portRect,
colorPortA.portRect,
srcCopy + ditherCopy, NIL):

(* Draw red, green, and blue circles *)
PenSize(8, 8):
aColor.red ;= SFFFF: aColor.green := SOOOO: aColor.blue '= SOOOO:
RGBForeColor(aColor):
circleRect := colorPortA.portRect:
FrameOval(circleRect):
aColor.red := SOOOO: aColor.green .- SFFFF: aColor.blue '= SOOOO:
RGBForeColor(aColor):
InsetRect(circleRect, 20, 20):
FrameOval(circleRect):
aColor.red := SOOOO: aColor.green .- SOOOO: aColor.blue SFFFF:
RGBForeColor(aColor):
InsetRect(circleRect, 20, 20):
FrameOval(circleRect):

(* Copy the color off-screen environment to the current port *)
SetGWorld(savedPort, savedDevice):
CopyBits (GrafPtr (colorPort) A.portBits,

savedPortA.portBits,
colorPortA.portRect,
savedPortA.portRect,
srcCopy, NIL);

(* Dispose of the off-screen graphics environments *)
DisposeGWorld grayPort);
DisposeGWorld(colorPort):

END:
END:

END:

March 1992

#120:Principia Off-Screen Graphics Environments•
MPW C Listing 10

#define kOffDepth 8 /* Number of bits per pixel in off-screen environment */

45 of 49

Macintosh Technical Notes

#define rGrayClut 1600 /* Resource 1D of gray-scale clut */
#define rColorClut 1601 /* Resource 1D of full-color clut */ •void ExerciseOffScreen()
(

GWorldPtr
GWorldPtr
CGrafPtr
GDHandle
CTabHandle
Rect
Rect
short
RGBColor
OSErr

grayPort;
colorPort;
savedPort;
savedDevice;
offColors;
offRect;
circleRect;
count;
aColor;
error;

/* Graphics environment for gray off screen */
/* Graphics environment for color off screen */
/* Pointer to the saved graphics environment */
/* Handle to the saved color environment */
/* Colors for off-screen environments */
/* Rectangle of off-screen environments */
/* Rectangles for circle-drawing */
/* Generic counter */
/* Color used for drawing off-screen */
/* Error return from off-screen creation */

count * 257;

/* Set up the rectangle for the off-screen graphics environments */
SetRect(&offRect, 0, 0, 256, 256);

/* Get the color table for the gray off-screen graphics environment */
offColors = GetCTable(rGrayClut);

/* Create the gray off-screen graphics environment */
error = NewGWorld(&grayPort, kOffDepth, &offRect, offColors, nil, 0);

if (error == noErr)
(

/* Get the color table for the color off-screen graphics environment */
offColors = GetCTable(rColorClut);

/* Create the color off-screen graphics environment */
error = NewGWorld(&colorPort, kOffDepth, &offRect, offColors, nil, 0);

if (error == noErr)
(

/* Save the current graphics environment */
GetGWorld(&savedPort, &savedDevice);

/* Set the current graphics environment to the gray one */
SetGWorld(grayPort, nil);

/* Draw gray-scale ramp into the gray off-screen environment */
for (count = 0; count < 256; count++)
(

aColor.red = aColor.green = aColor.blue
RGBForeColor(&aColor);
MoveTo(0, count);
LineTo(255, count);

/* Copy gray ramp into color off-screen colorized with green */
SetGWorld(colorPort, nil);
aColor.red = OxOOOO; aColor.green = OxFFFF; aColor.blue = OxOOOO;
RGBForeColor(&aColor);
CopyBits(&«GrafPtr)grayPort)->portBits,

&«GrafPtr)colorPort)->portBits,
&grayPort->portRect,
&colorPort->portRect,
srcCopy I ditherCopy, nil);

•

#120:Principia Off-Screen Graphics Environments46 of 49

/* Draw red, green, and blue circles */
PenSize (8, 8);
aColor.red = OxFFFF; aColor.green = OxOOOO; aColor.blue OxOOOO;

•

•
Developer Technical Suppon

RGBForeColor(&aColor);
circleRect = colorPort->portRect;
FrameOval(&circleRect);
aColor.red = OxOOOO; aColor.green = OXFFFF; aColor.blue = oxOOOo;
RGBForeColor(&aColor);
InsetRect(&circleRect, 20, 20);
FrameOval(&circleRect);
aColor.red = OxOOOO; aColor.green = OxOOOO; aColor.blue = OxFFFF;
RGBForeColor(&aColor);
InsetRect(&circleRect, 20, 20);
FrameOval(&circleRect);

/* Copy the color off-screen environment to the current port */
SetGWorld(savedPort, savedDevice);
CopyBits(&«GrafPtr)colorPort)->portBits,

&«GrafPtr)savedPort)->portBits,
&colorPort->portRect,
&savedPort->portRect,
srcCopy, nil);

/* Dispose of the off-screen graphics environments */
DisposeGWorld(grayPort);
DisposeGWorld(colorPort);

March 1992

•

•

_NewGWorld creates an off-screen graphics environment by creating a CGrafPort, PixMap, and
GDevice-the same structures that you normally put together when you make an off-screen
graphics environment yourself. In this aspect, and in fact in most aspects, there's nothing magical
about GWorlds. Do GWorlds make the CreateOffScreen, DisposeOffScreen, and their dependents
useless? That depends on what your needs are. What follows are a few issues about off-screen
drawing and how that determines whether you use your own routines, such as CreateOffScreen, to
create and maintain off-screen graphics environments or whether you use GWorlds for the same
purpose.

I Want the Best Performance!

As mentioned in the last paragraph, there's nothing magical about GWorlds in most aspects. In one
major aspect, there certainly is: the version of Color QuickDraw that runs with the 8-24 GC video
card's acceleration on knows about GWorlds and can cache their CGrafPort, PixMap, GDevice,
inverse table, color table, and pixel image on the 8-24 GC card if there's enough memory on it.
When this is done, QuickDraw operations on the GWorld can be much faster than they'd normally
be because the image data can stay in the card's memory where the fast microprocessor is, and
image data doesn't have to move across NuBus in transfer operations between the GWorld and the
screen. Additionally, these operations are executed asynchronously which increases the overall
speed of your programs. For details about how the 8-24 GC card and GC QuickDraw work, see
Guillermo Ortiz's article, "Macintosh Display Card 8-24 GC: The Naked Truth," in Issue 5 of
develop.

8-24 GC QuickDraw doesn't know about the off-screen graphics environments that you create, so
it doesn't cache its structures. All QuickDraw commands that move image data between the off
screen graphics environment and the screen have to move the data across NuBus, and that slows
down the operation in comparison to keeping all the image data on the card.

If you want the highest possible drawing and copying performance with the 8-24 GC card, you
must use GWorlds for your off-screen graphics environments.

#120:PrincipiaOff-ScreenGraphicsEnvironments 47 of 49

Macintosh TechnicalNotes

I Want to Use a NuBus Memory Card for My GWorld's Off-Screen Pixel Image

One common desire is to use a NuBus memory card to hold a pixel image. Because GWorlds are
so easy to set up, and because GWorlds have all the same parts that you can make for an off-screen
graphics environment, it's tempting to make a GWorld and then point the baseAddr of the
GWorld's PixMap at the NuBus card's memory. But GWorlds are designed to be fairly atomic
structures, so they can't be changed in this way. You can change a GWorld's dimensions, depth,
and color table because there's a routine LUpdateGWorld) that is designed to change these things,
but you can't change the pixel image without risking future compatibility.

If you want to have an off-screen graphics environment use a NuBus video card to store the pixel
image, you should set up your own off-screen graphics environment rather than use GWorlds.
This is covered earlier in this Note in "Choosing Your Off-Screen Memory."

I Want My Program to Work on All System Software Releases

GWorlds have been around since 32-Bit QuickDraw was released (while system software version
6.0.3 was current). Until system software version 7.0, 32-Bit QuickDraw was an optional part of
the system, so you aren't guaranteed use of GWorlds even under recent system software releases.
Obviously, if GWorlds aren't available and your program still has to work with off-screen graphics
environments, then there's no choice but to use your own routines for creating, maintaining, and
disposing of off-screen graphics environments. What's usually done in these cases is to check via

Gestalt whether GWorlds are available or not. If they aren't, then you create your off-screen
graphics environment with your own routines. If they are, then you can use GWorlds without
having to take up memory with your code for creating off-screen graphics environments yourself.

Are We There Yet?

Reliable, understandable, and maintainable off-screen drawing routines means not taking short
cuts. The most common problems that people run into with off-screen drawing routines is the
appearance of strange colors and the gradual degradation of reliability as the program does more
off-screen drawing. Building an off-screen graphics environment out of a CGrafPort, GDevice,
and PixMap or by using GWorlds, combined with an understanding of how Color QuickDraw
uses off-screen graphics environments, helps get rid of these problems. Hopefully, this Note helps
you understand these things so that you can get better programs out the door faster.

Further Reference:

• Apple Computer, Inc., Inside Macintosh Volume I, Addison-Wesley, Reading, MA, 1985

• Apple Computer, Inc., Inside Macintosh Volume V, Addison-Wesley, Reading, MA, 1988.

• Apple Computer, Inc., Inside Macintosh Volume VI, Addison-Wesley, Reading, MA,
1991.

• Knaster, S., Macintosh Programming Secrets, Addison-Wesley, Reading, MA, 1988.

• Leak, B., "Realistic Color For Real-World Applications," develop, January 1990,4-21.

• Ortiz, G., "Braving Offscreen GWorlds," develop, January 1990,28-40.

•

•

•48 of 49 #120: PrincipiaOff-Screen GraphicsEnvironments

• Ortiz, G., "Deaccelerated _CopyBits & 8·24 GC QuickDraw," Macintosh Technical Note
#289, January 1991.

• Ortiz, G., "Macintosh Display Card 8·24 GC: The Naked Truth," develop, July 1990,
332-347.

•
Developer TechnicalSuppon March 1992

•

•

• Othmer, K., "QuickDraw's CopyBits Procedure: Better Than Ever in System 7.0,"
de vel 0 p , Spring 1991,23-42.

• Tanaka, F., "Of Time and Space and _CopyBits," Macintosh Technical Note #277, June
1990.

• Zap, J., F. Tanaka, J. Friedlander, and G. Jernigan, "Drawing Into an Off-Screen
Bitmap," Macintosh Technical Note #4/, June 1990.

NuBus is a trademark of Texas Instruments .

#120: Principia Off-ScreenGraphics Environments 49 of 49

•

•

•

•
Macintosh Technical Notes

#121: Using the High-Level AppleTalk Routines

See also:

Written by:
Updated:

The AppleTalk Manager
InsideAppleTalk
AppleTalk Manager Update

Fred A. Huxham May 4,1987
March 1, 1988

•

•

What you need to do in order to use high-level AppleTalk routines dependsupon the interfaces you are using. Some differences are outlined below.

MPW before 2.0

When calling the old high-level AppleTalk routines, many programmers get mysterious"resource not found" errors (-192) from such seemingly harmless routines as MPPOpen.The resource that is not being found is 'atpl', a resource that contains all the glue codeto the high-level routines. In order to use the high-level routines, your application musthave this resource in its resource fork. The 'atpl' resource is included in a file called"AppleTalk" with any compilers that use this outdated version of the AppleTalk interface.

MPW 2.0 and newer

A newer version of the alternate interfaces is available in MPW 2.0; it includes bug fixesand increased Macintosh" compatibility. With this version of the interface, the 'atpl'resource is no longer used. Glue code is now linked into your application.

This will be the final release of the current-style interface. It will be supported for sometime as the alternate interface. We have moved to a more straightforward and simplepreferred interface, which is also implemented in MPW 2.0 and newer, and isdescribed in the AppleTalk Manager chapter of Inside Macintosh vol. V. Developers arefree to continue to use the alternate interface, but in the long run it will be advantageousto move to the preferred interface.

Third Party Compilers

Third party compilers use interfaces that are built from Apple's MPW interfaces. Somecompilers may not have upgraded to the new interfaces yet. Contact the individualcompiler manufacturers for more information.

Technical Note #121 page 1 of 1 Using the High-Level AppleTalk Routines

• •

•
Macintosh Technical Notes

#122: Device-Independent Printing

See also:

Written by:
Updated:

The Printing Manager

Ginger Jernigan May 4,1987
March 1, 1988

•

•

The Printing Manager was designed to give Macintosh applications a deviceindependent method of printing, but we have provided device-dependent information,such as the contents of the print record. Due to the large number of printer-type driversbecoming available (even for non-printer devices) device independence is morenecessary than ever. What this means to you, as a developer, is that we will no longerbe providing (or supporting) information regarding the internal structure of the printrecord.

We realize that there are situations where the application may know the best method forprinting a particular document and may want to bypass our dialogs. Unfortunately, usingyour own dialogs or not using the dialogs at all, requires setting the necessary fields inthe print record yourself. There are a number of problems:

• Many of the fields in the print record are undocumented, and, as we change theinternal architecture of the Printing Manager to accommodate new devices, thoseundocumented fields are likely to change.

• Each driver uses the private, and many of the public, fields in the print recorddifferently. The implications are that you would need intimate knowledge of howeach field is used by each available driver, and you would have to set the fields inthe record differently depending on the driver chosen. As the number of availableprinter-type drivers increases, this can become a cumbersome task.

Summary

To be compatible with future printer-like devices, it is essential that your application printin a device-independent manner. Avoid testing undocumented fields, setting fields in theprint record directly and bypassing the existing print dialogs. Use the Printing Managerdialogs, PrintDefault and PrValidate to set up the print record for you.

Technical Note #122 page 1 of 1 Device-Independent Printing

• • •

•
Macintosh Technical Notes

#123: Bugs in LaserWriter ROMs

See also: The Printing Manager
PostScript Language Reference Manual, Adobe Systems

Written by:
Modified by:
Updated:

Ginger Jernigan
Ginger Jernigan

May 4,1987
July 1, 1987
March 1, 1988

•

•

These are LaserWriter bugs that your users may encounter when printingfrom any Macintosh application. These are for your information; you cannotcode around them. The bugs described here occur in the 1.0 and 2.0LaserWriter ROMs.

To determine which ROMs their LaserWriter contains, users can look at the test pagethat the LaserWriter prints at start-up time. In addition to other information (detailed in theLaserWriter user's manual), the ROM version is shown at the bottom of the line graph.The original LaserWriter contained version 1.0 ROMs. The currently shippingLaserWriter and those upgraded to the LaserWriter Plus contain version 2.0 ROMs.

These are some of the problems we know of:

1. If the level of paper in the paper tray is getting low, and the user prints a documentthat will cause the tray to become empty, a PostScript error may occur. This problemexists in both the 1.0 and 2.0 LaserWriter ROMs and will not be fixed in the nextROM version.

2. If a user prints more than 15 copies of a document, a timeout condition may occurcausing the print job to abort. With LaserShare, this problem can occur with as fewas 9 copies. This problem is a result of the LaserWriter turning AppleTalk off while itis printing. It doesn't send out any packets to tell the world it's still alive while it isprinting, so the connection times out after about 2 minutes. This problem exists inboth the 1.0 and 2.0 LaserWriter ROMs and will not be fixed in the next ROMversion.

3. When printing a document that contains more than 10 patterns, users may receiveintermittent PostScript errors. This usually occurs when trying to print a lot ofpatterns, and a bitmap image on the same page. The code for imaging patternsallocates almost all of the available RAM for itself, so when the bitmap imaging codetries to allocate space, and there isn't enough (and it doesn't know how to reclaimmemory from the previous operation), a 1 imi t check error occurs. This problemexists in 2.0 LaserWriter ROMs. It will be improved but not fixed in the next ROMversion.

Technical Note #123 page 1 of 2 Bugs in LaserWriter ROMs

4. If a user chooses US Letter or 85 paper and has a different sized tray in the printer,

and prints using manual feed, the LaserWriter will print assuming that the paper

being fed manually is the same size as that in the tray. For example, if they have a

US letter tray in the LaserWriter and print a document formatted for 85 letter using •

manual feed, the image will not be centered on the page. The printer assumes that

the manually fed paper is also US letter size and prints the image positioned

accordingly, despite the driver's instructions. This is a bug in the Note operator in

PostScript, which the driver uses for specifying the US letter and 85 letter paper

sizes. The workaround is to tell the user to put an 85 tray in the printer when printing

85 manually. This problem exists in the 1.0 and 2.0 ROMs and will not be fixed in

the next ROM version.

8y the way, an interesting, but annoying, occurance of this bug happens when

manually printing Legal sized documents with the 4.0 LaserWriter driver. When the

Larger Print Area option in the style dialog is deselected (which is the default) the

driver uses the Note operator to specify the page size. When the user prints the

document using manual feed, and has a US letter tray in the printer, the image is

shifted up on the page cutting off the top of the image. If you tell the user to turn on

the Larger Print Area option in the style dialog, the driver specifies the page size

using Legal instead of Note and the image is printed properly.

•

•
Technical Note #123 page 2 of 2 Bugs in LaserWriter ROMs

•
Macintosh Technical Notes

#124: Using Low-Level Printing Calls With AppleTalk ImageWriters

See also:

Written by:
Update by:
Updated:

The Printing Manager

Ginger Jernigan
Scott uzz" Zimmerman

May 4,1987
Febuary ?, 1988
March 1, 1988

•

•

When you use the low-level printer driver to print, you don't get the benefits of the errorchecking that is done when you use the high-level Printing Manager. So, if the userprints to an AppleTalk ImageWriter (including an AppleTalk ImageWriter LQ) that is busyprinting another job, the driver doesn't know whether the printer is busy, offline, ordisconnected. Because of this, PrError will return (and PrintErr will contain) abortErr.

Since there is no way to tell when you are printing to an AppleTalk ImageWriter, the onlyworkaround for this is to use high-level Printing Manager interface.

Technical Note #124 page 1 of 1 Low-Level Printing CallsWith the ATIW

•

•

•

•
Macintosh Technical Notes

#125: The Effect of Spool-a-page/Print-a-page on Shared Printers

c

See also: Printing Manager
Technical Note #72-

Optimizing for the LaserWriter-Techniques

Written by:
Updated:

Ginger Jernigan May 4,1987
March 1, 1988

This technical note discusses drawbacks of using the spool-a-pagelprint-a-page method of printing.

The "spool-a-page/print-a-page" method of printing prints each page of a document as aseparate job instead of calling PrPicFile to print the entire picture file. Manyapplications adopted this method of printing to avoid running out of disk space while theImageWriter driver was spooling the document to disk. As long as you are printing to adirectly connected ImageWriter, you're fine, but if you are printing to remote or shareddevices (like the AppleTalk ImageWriter and the LaserWriter), this method may create• significant problems for the user.

When a job is initiated by the application, the driver establishes a connection with theprinter via AppleTalk. When the job is completed, the driver closes the connection,allowing another job the opportunity to print. If each page is a job in itself, then theconnection is closed and reopened between each page, allowing another application toprint between the pages of the document, which, as you might imagine, could present asignificant problem. If two people are printing to the same AppleTalk ImageWriter at thesame time and their applications use the "spool-a-page/print-a-page" method of printing,the pages of each document will be interleaved at the printer.

Although there are good reasons for using this method of printing, it is only useful for adirectly connected printer. From a compatibility point of view, this method of printing isbuilt-in device dependence. Also, this method could create serious problems for othertypes of remote devices. Therefore, we are recommending that applications avoid usingthis method indiscriminately. You should check available disk space to see how muchroom you have before you print. If there isn't enough space for your entire document,then print as much as you can (to minimize the interleaving) before starting another job.Whenever possible, applications should use the print loop described on page 1/-155 inThe Printing Manager chapter of Inside Macintosh.

•
TechnicalNote #125 page 1 of 1 SpooVPrint on Shared Printers

•

•

•

•
Macintosh
Technical Notes

Developer Technical Support

#126: Sub(Launching) from a High-Level Language
Revised by:
Written by:

Rich Collyer & Mark Johnson
Rick Blair & Jim Friedlander

April 1989
May 1987

•

•

Note: Developer Technical Support takes the view that launching and sublaunching arefeatures which are best avoided for compatibility (and other) reasons, but we wantto make sure that when it is absolutely necessary to implement it, it is done in thesafest possible way.

This Technical Note discusses the "safest" method of calling Launch from a high-level languagethat supports inline assembly language with the option oflaunching or sublaunching anotherapplication.
Changes since August 1988: Incorporated Technical Note #52 on calling _La unch from ahigh-level language, changed the example to offer a choice between launching or sublaunching,added a discussion of the Launch trap under MultiFinder, and updated the MPW C code toinclude inline assembly language.

The Segment Loader chapter of Inside Macintosh II-53 states the following about the _Launchtrap:

"The routines below are providedfor advanced programmers; they can be calledonly from assembly language."

While this statement is technically true, it is easy to call_Launch from any high-level languagewhich supports inline assembly code, and this Note provides examples of calling _La unch inMPW Pascal and C.

Before calling _Launch, you need to declare the inline procedure, which takes a variable of typepLaunchStruct as a parameter. Since the compiler pushes a pointer to this parameter on thestack, you need to include code to put this pointer into AD. The way to do this is with a MOVE. L(SP) +,AO instruction, which is $205F in hexadecimal, so the first word after INLINE is$205F. This instruction sets up AO to contain a pointer to the filename and 4 (AO) to contain theconfiguration parameter, so the last part of the inline is the _Launch trap itself, which is $A9F2in hexadecimal. The configuration parameter, which is normally zero, determines whether theapplication uses alternate screen and sound buffers. Since not all Macintosh models support thesealternate buffers, you should avoid using them unless you have a specific circumstance whichrequires them.

The Finder does a lot of hidden cleanup and other tasks without user knowledge; therefore, it isbest if you do not try to replace the Finder with a "mini" or try to launch other programs and havethem return to your application. In the future, the Finder may provide better integration forapplications, and you will circumvent this if you try to act in its place by sublaunching otherprograms.

#126: Sub(Launching) From a High-Level Language lof6

Macintosh Technical Notes

If you have a situation where your application must launch another and have it return, and where

you are not worried about incompatibility with future System Software versions, there is a

"preferred" way of doing this which fits into the current system well. System file version 4.1 (or •

later) includes a mechanism for allowing a call to another application; we term this call a

"sublaunch." You can perform a sublaunch by adding a set of simple extensions to the parameter

block you pass to the Launch trap.

Launch and MultiFinder

Under MultiFinder, a sublaunch behaves differently than under the Finder. The application you

sublaunch becomes the foreground application, and when the user quits that application, the

system returns control to the next frontrnost layer, which will not necessarily be your application.

If you set both high bits of La un chF lags, which requests a sublaunch, your application will

continue to execute after the call to _Launch. Under MultiFinder, the actual launch (and suspend

of your application) will not happen in the _Launch trap, but rather after a call or more to

WaitNextEvent.

Under MultiFinder, Launch currently returns an error if there is not enough memory to launch

the desired application, if it cannot locate the desired application, or if the desired application is

already open. In the latter case, that application will not be made active. If you attempted to

launch, MuItiFinder will call_SysBeep, your application will terminate, and control will given to

the next frontmost layer. If you attempted to sublaunch, control will return to your application,

and it is up to you to report the error to the user.

Currently, Launch returns an error in register DO for a sublaunch, and you should check it for •

errors (DO<O) after any attempts at sublaunching. If DO>=O then your sublaunch was successful.

You should refer to the Programmer's Guide to MultiFinder (APDA) and Macintosh Technical

Notes #180, MultiFinder Miscellanea and #205, MultiFinder Revisited: The 6.0 System Release,

for further discussion of the _Launch trap under MultiFinder.)

Working Directories and Sublaunching With the Finder

Putting aside the compatibility issue for the moment, the only problem sublaunching creates under

the current system is one of Working Directory Control Blocks (WDCBs). Unless the

application you are launching is at the root directory or on an MFS volume, you must create a new

WDCB and set it as the current directory when you launch the application.

In the example which follows, the new working directory is opened (allocated) by Standard File

and its WDRefNum is returned in reply. vRefNum. If you do not use Standard File and cannot

assume, for instance, that the application was in the blessed folder or root directory, then you must

open a new working directory explicitly via a call to OpenWD. You should give the new WDCB

a WDProcID of 'ERIK', so the Finder (or another shell) would know to deallocate when it saw it

was allocated by a "sublaunchee."

Although the sublaunching process is recursive (i.e., programs which are sublaunched may, in

turn, sublaunch other programs), there is a limit of 40 on the number of WDCBs which can be

created. With this limit, you could run out of available WDCBs very quickly if many programs

were playing the shell game or neglecting to deallocate the WDCBs they had created. Make sure •

you check for all errors after calling PBOpenWD. A tMWDOErr (-121) means that all available

2of6 #126: Sub(Launching) From a High-Level Language

WDCBs have been allocated, and if you receive this error, you should alert the user that thesublaunch failed and continue as appropriate.•
Developer Technical Support April 1989

Warning:

MPW Pascal

Although the example included in this Note covers sublaunching,
Developer Technical Support strongly recommends that developers
not use this feature of the Launch trap. This trap will change in
the not-too-distant future.Iand when it does change, applicationswhich perform sublaunching will break. The only circumstance in
which you could consider sublaunching is if you are implementing
an integrated development system and are prepared to deal with thepossibility of revising it every time Apple releases a new version ofthe System Software.

•

{It is assumed that the Signals are caught elsewhere; see TechnicalNote t88 for more information on the Signal mechanism}

{the extended parameter block to _Launch}
TYPE

pLaunchStruct = ~LaunchStruct;

LaunchStruct RECORD
pfName Stringptr;
param INTEGER;
LC PACKED ARRAY[O .. IJ OF CHAR; {extended parameters:}
extBlockLen LONGINT; {number of bytes in extension = 6}
fFlags INTEGER; {Finder file info flags (see below) }
launchFlags LONGINT; {bit 31,30=1 for sublaunch, others reserved}END; {LaunchStruct}

FUNCTION LaunchIt{pLaunch: pLaunchStruct}: OSErr; {< 0 means error}
INLINE $205F, $A9F2, $3E80;

pops pointer into AO, calls Launch, pops DO error code into result:MOVE.L {A7}+,AO
Launch

MOVE.W DO, (A7) since it MAY return

PROCEDURE DoLaunch{subLaunch: BOOLEAN}; {Sublaunch if true and launch if false}

VAR
myLaunch
where
reply
myFileTypes
numFileTypes
myPB
dirNameStr

LaunchStruct;
Point;
SFReply;
SFTypeList;
INTEGER;
CInfoPBRec;
str255;

{launch structure}
{where to display dialog}
{reply record}
{we only want APPLs}

•

BEGIN
where.h := 20;
where.v := 20;
numFileTypes:= 1;
myFileTypes [OJ:= 'APPL'; {applications only!}

{Let the user choose the file to Launch}
SFGetFile(where, ", NIL, numFileTypes, myFileTypes, NIL, reply);

#126: Sub(Launching) From a High-Level Language 30f6

{Get the Finder flags}
WITH myPB DO BEGIN

ioNamePtr:= @dirNameStr;

ioVRefNum:= reply.vRefNum;

ioFDirIndex:= 0;
ioDirID:= 0;

END; {WITH}
Signal(PBGetCatInfo{@MyPB,FALSE}};

{Set the current volume to where the target application is}

Signal {SetVol (NIL, reply.vRefNum}};

Macintosh Technical Notes

IF reply.good THEN BEGIN

dirNameStr:= reply.fName; {initialize to file selected} •
{Set up the launch parameters}

WITH myLaunch DO BEGIN

pfName := @reply.fName; {pointer to our fileName}

param := 0; {we don't want alternate screen or sound buffers}

LC := 'LC'; {here to tell Launch that there is non-junk next}

extBlockLen := 6; {length of paramo block past this long word}

{copy flags; set bit 6 of low byte to 1 for RO access:}

fFlags := myPB.ioFlFndrInfo.fdFlags; {from GetCatInfo}

{launch; you might want to put up a dialog which explains that

the selected application couldn't be launched for some reason.}

Signal(LaunchIt{@myLaunch}};

END; {IF reply.good}

LaunchFlags accordingly}

40f6

{Test subLaunch and set
IF subLaunch THEN

LaunchFlags '=

ELSE
LaunchFlags .=

END; {WITH}

END; {DoLaunch}

$COOOOOOO

$00000000;

{set BOTH high bits for a sublaunch}

{Just launch then quit}

#126: Sub(Launching) From a High-Level Language

•

•

Developer Technical Support

MPWC

April 1989

/* pointer to the name of launchee */

/*extended parameters:*/
/*number of bytes in extension == 6*/
/*Finder file info flags (see below)*/
/*bit 31,30==1 for sUblaunch, others reserved*/

LaunchStruct {
*pfName;
param;
LC[2j;
extBlockLen;
fFlags;
launchFlags;

typedef struct
char
short int
char
long int
short int
long int

*pLaunchStruct;

•
pascal OSErr Launchlt(pLaunchStruct pLnch} /* < 0 means error */

= {Ox205F, OXA9F2, Ox3E80};

/* pops pointer into AO, calls Launch, pops DO error code into result:
MOVE.L (A7}+,AO

Launch
MOVE.W DO, (A7) since it MAY return */

myLaunch;
where; /*where to display dialog*/
reply; /*reply record*/
myFileTypes; /* we only want APPLs */
numFileTypes=l;
myPB;
*dirNameSt r;
err;

subLaunch;

•

OSErr DoLaunch(subLaunch)
Boolean

/* DoLaunch */
struct LaunchStruct
Point
SFReply
SFTypeList
short int
HFilelnfo
char
OSErr

where.h = 80;
where.v = 90;
myFileTypes[Oj = 'APPL';
/*Let the user choose the
SFGetFile(where, nn, nil,

/* Sublaunch if true and launch if false

/* we only want APPLs */
file to Launch*/
numFileTypes, myFileTypes, nil, &reply};

*/

if (reply.good)
{

dirNameStr = &reply.fName; /*initialize to file selected*/

/*Get the Finder flags*/
myPB.ioNamePtr= dirNameStr;
myPB.ioVRefNum= reply.vRefNum;
myPB.ioFDirlndex= 0;
myPB.ioDirID = 0;
err = PBGetCatlnfo«ClnfoPBPtr} &myPB,false};
if (err != noErr)

return err;

/*Set the current volume to where the target application is*/
err = SetVol(nil, reply.vRefNum);
if (err != noErr)

return err;

/*Set up the launch parameters*/
myLaunch.pfName = &reply.fName;
myLaunch.param = 0;

/*from _GetCatlnfo*/•
/*set

/*copy

/*pointer to our fileName*/
/*we don't want alternate screen

or sound buffers*/
up LC so as to tell Launch that there is non-junk next*/

myLaunch.LC[OJ = 'L'; myLaunch.LC[lj = 'C';
myLaunch.extBlockLen = 6; /*length of paramo block past

this long word*/
flags; set bit 6 of low byte to 1 for RO access:*/
myLaunch.fFlags = myPB.ioFIFndrlnfo.fdFlags;

#126: Sub(Launching) From a High-Level Language 50f6

Macintosh Technical Notes

/* Test subLaunch and set launchFlags accordingly */

if subLaunch)
myLaunch.launchFlags OxCOOOOOOO; /*set BOTH hi bits for a sublaunch */

else
myLaunch.launchFlags OxOOOOOOOO; /* Just launch then quit */ •
err = Launchlt(&myLaunch); /* call Launch

if (err < 0)
(

/* the launch failed, so put up an alert to inform the user */

LaunchFailed () ;
return err;

)

else
return noErr;

} /*if reply.good*/

/*DoLaunch*/

Further Reference:
• Inside Macintosh, Volumes 1-12, II-53, & IV-83, TheSegment Loader

• Programmer's Guide to MultiFinder (APDA)
• Technical Note #129, _SysEnvirons: System 6.0 and Beyond
• Technical Note#180, MultiFinder Miscellanea
• Technical Note#205, MultiFinder Revisited: The 6.0 System Release

*/

•

•
6of6 #126: Sub(Launching) From a High-Level Language

•
Macintosh Technical Notes

#127: TextEdit EOl Ambiguity

See also:

Written by:
Updated:

TextEdit

Rick Blair May 4,1987
March 1, 1988

TESetSelect may be used to position the insertion point at the end of a line.There is an ambiguity, though; should the insertion point appear at the end ofthe preceding line or the start of the following one? It is possible to determinewhat will happen, as you are about to see.

The following code can be used to force the insertion point to appear at the left of thefollowing line when it is positioned at the end of a line; in MPW Pascal:

There is an internal flag used by TextEdit to determine where the insertion point at theend of a line appears. This flag is part of the clikStuff field in the TERec. It is theremainly for the use of TEClick, but it is also used by TESetSelect (although it defaultsto the right side of the previous line).

• TEDeactivate(tH);
tHAA.clikStuff := 255;
TESetSelect(eolcharpos, eolcharpos, tH);
TEActivate(tH);

In MPWC:

TEDeactivate(tH);
(**tH) .clikStuff = 255;
TESetSelect(eolcharpos, eolcharpos, tH);
TEActivate(tH);

{position caret on left}
{ambiguous point}

/*position caret on left*/
/*ambiguous point*/

•

If you want to ensure that the caret is on the right side (to which it normally defaults) thensubstitute a zero for the 255.

Technical Note#127 page 1 of 1 TextEdit EOl Ambiguity

•

•

•

Macintosh Technical Notes

• #128: PrGeneral

See also: The Printing Manager
Technical Note #118-

How to Check and Handle Printing Errors

Written by:
Updated:

Ginger Jernigan May 4,1987
March 1, 1988

•

•

The Printing Manager architecture has been expanded to include a newprocedure called PrGeneral. The features described here are advanced,special-purpose features, intended to solve specific problems for thoseapplications that need them. The calls to determine printer resolutionintroduce a good deal of complexity into the application's code, and should beused only when necessary.

Version 2.5 (and later) of the ImageWriter driver and version 4.0 (and later) of theLaserWriter driver implement a generic Printing Manager procedure called PrGeneral.This procedure allows the Print Manager to expand in functionality, by allowing printerdrivers to implement various new functions. The Pascal declaration of PrGeneral is:

PROCEDURE PrGeneral (pData: Ptr);

The pData parameter is a pointer to a data block. The structure of the data block isdeclared as follows:

TGnlData = RECORD {1st 8 bytes are common for all PrGeneral calls)
iOpCode : INTEGER; {input)
iError : INTEGER; {output)
lReserved : LONGINT; {reserved for future use)
{more fields here, depending on particular call)

END;

The first field is a 2-byte opcode, iOpCode, which acts like a routine selector. Thecurrently available opcodes are described below.

The second field is the error result, iError, which is returned by the print code. Thiserror only reflects error conditions that occur during the P rGeneral call. For example, ifyou use an opcode that isn't implemented in a particular printer driver then you will get aOpNot Impl error.

Technical Note #128 page 1 of 7 PrGeneral

Here are the errors currently defined:

CONST
noErr = 0;
NoSuchRsl 1;
OpNotImpl = 2;

{everything's hunky}
{the resolution you chose isn't available}

{the driver doesn't support this opcode} •
After calling PrGeneral you should always check PrError. If noErr is returned, then

you can proceed. If ResNotFound is returned, then the current printer driver doesn't

support PrGeneral and you should proceed appropriately. See Technical Note #118 for

details on checking errors returned by the Printing Manager.

IError is followed by a four byte reserved field (that means don't use it). The contents of

the rest of the data block depends on the opcode that the application uses. There are

currently five opcodes used by the ImageWriter and LaserWriter drivers.

The Opcodes

Initially, the following calls are implemented via PrGeneral:

• GetRsIData (get resolution data): iOpCode = 4

• SetRsl (set resolution): iOpCode = 5

• DraftBi ts (bitmaps in draft mode): iOpCode = 6

• noDraftBits (no bitmaps in draft mode): iOpCode 7

• GetRotn (get rotation): iOpCode = 8

The GetRsIData and SetRsl allow the application to find out what physical resolutions •

the printer supports, and then specify a supported resolution. DraftBits and

noDraftBi t s invoke a new feature of the ImageWriter, allowing bitmaps (imaged via

CopyBits) to be printed in draft mode. GetRotn lets an application know whether

landscape has been selected. Below is a detailed description of how each routine works.

The GetRslData Call

GetRsIData (iOpCode = 4) returns a record that lets the application know what

resolutions are supported by the current printer. The application can then use SetRs 1

(description follows) to tell the printer driver which one it will use. This is the format of the

input data block for the GetRsIData call:

TRslRg = RECORD {used in TGetRslBlk}

iMin, iMax: Integer; {O if printer only supports discrete resolutions}

END;

TRslRec = RECORD {used in TGetRslBlk}

iXRsl, iYRsl: Integer; {a discrete, physical resolution}

END;

•
Technical Note #128 page 2 of7 PrGeneral

•

•

TGetRsIBlk = RECORD {data block for GetRsIData call}
iOpCode: Integer; {input; = getRsIDataOp}
iError: Integer; {output}
lReserved: LongInt; {reserved for future use}
iRgType: Integer; {output; version number}
XRsIRg: TRsIRg; {output; range of X resolutions}
YRsIRg: TRsIRg; {output; range of Y resolutions}
iRsIRecCnt: Integer; {output; how many RsIRecs follow}
rgRsIRec: ARRAY[1 .. 27] OF TRsIRec; {output; number filled depends on

printer type}
END;

The iRgType field is much like a version number; it determines the interpretation of the
data that follows. At present, a iRgType value of 1 applies both to the LaserWriter and to
the ImageWriter.

For variable-resolution printers like the LaserWriter, the resolution range fields XRs IRg
and YRs IRg express the ranges of values to which the X and Y resolutions can be set.
For discrete-resolution printers like the ImageWriter, the values in the resolution range
fields are zero.

Note: In general, X and Y in these records are the horizontal and vertical directions of
the printer, not the document! In landscape orientation, X is horizontal on the printer but
vertical on the document.

After the resolution range information there is a word which gives the number of
resolution records that contain information. These records indicate the physical
resolutions at which the printer can actually print dots. Each resolution record gives an X
value and a Y value.

When you call PrGeneral you pass in a data block that looks like this:

•
Technical Note #128

OpCode= 4

Error Code

Reserved

RangeType = 1

X Resolution Range:
min = 0, max = 0

Y Resolution Range:
min =0, max = 0

Hesolution Record Count =0

Resolution Record #1:
X=O,Y=O

Resolution Record #2..27

page 3 of7

1 word

1 word

2 words

1 word

2 words

2 words

1 word

2 words

PrGeneral

Below is the data block returned for the LaserWriter:

OpCode =4

Error Code (0 = okay)

Reserved

RangeType = 1

X Resolution Range:
min = 72, max = 1500

Y Resolution Range:
min = 72, max = 1500

Resolution Record Count = 1

Resolution Record #1:

X = 300, Y = 300

1 word

1 word •2 words

1 word

2 words

2 words

1 word

2 words

Note that all the resolution range numbers happen to be the same for this printer. There

is only one resolution record, which gives the physical X and Y resolutions of the printer

(300x300).

Below is the data block returned for the ImageWriter.

OpCode=4

Error Code (0 = okay)

Reserved

RangeType = 1

X Resolution Range:
min =0, max = 0

Y Resolution Range:

min = 0, max = 0

Resolution Record Count = 4

Resolution Record #1:

X = 72, Y = 72

Resolution Record #2:

X =144, Y = 144

Resolution Record #3:

X = 80, Y = 72

Resolution Record #4:

X = 160, Y = 144

1 word

1 word

2 words

1 word •2 words

2 words

1 word

2 words

2 words

2 words

2 words

All the resolution range values are zero, because only discrete resolutions can be

specified for this printer. There are four resolution records giving these discrete physical

resolutions.

Note that GetRslData always returns the same information for a particular printer

type-it is not dependent on what the user does or on printer configuration information.

•
Technical Note #128 page 4 of7 PrGeneral

•
The SetRsl Call

SetRsl (iOpCode = 5) is used to specify the desired imaging resolution, after usingGetRsIData to determine a workable pair of values. Below is the format of the datablock:

TSetRslBlk
iOpCode:
iError:
lReserved:
hPrint:
iXRsl:
iYRsl:

END;

RECORD
Integer;
Integer;
LongInt;
THPrint;
Integer;
Integer;

{data block for SetRsl call}
{input; = setRslOp}
{output}
{reserved for future use}
{input; handle to a valid print record}
{input; desired X resolution}
{input; desired Y resolution}

•

hP r in t should be the handle of a print record that has previously been passed toPrValidate. If the call executes successfully, the print record is updated with the newresolution; the data block comes back with 0 for the error and is otherwise unchanged.

However, if the desired resolution is notsupported, the error is set to noSuchRsl and theresolution fields are set to the printer's default resolution

Note that you can undo the effect of a previous call to SetRsl by making another call thatspecifies an unsupported resolution (such as OxO), forcing the default resolution.

The DraftBits Call

DraftBits (iOpCode = 6) is implemented on both the ImageWriter and the LaserWriter.(On the LaserWriter it does nothing, since the LaserWriter is always in draft mode andcan always print bitmaps.) Below is the format of the data block:

TDftBitsBlk
iOpCode:
iError:
lReserved:
hPrint:

END;

RECORD
Integer;
Integer;
LongInt;
THPrint;

{data block for DraftBits and NoDraftBits calls}
{input; = draftBitsOp or noDraftBitsOp}
{output}
{reserved for future use}
{input; handle to a valid print record}

hP r in t should be the handle of a print record that has previously been passed toP rValidate.

This call forces draft-mode (i.e., immediate) printing, and will allow bitmaps to be printedvia CopyBi t s calls. The virtue of this is that you avoid spooling large masses of bitmapdata onto the disk, and you also get better performance.

The following restrictions apply:

•
• This call should be made before bringing up the print dialogs because it affects theirappearance. On the ImageWriter, calling DraftBits disables the landscape icon inthe Style dialog, and the Best, Faster, and Draft buttons in the Job dialog.

Technical Note #128 page 5 of7 PrGeneral

• If the printer does not support draft mode, already prints bitmaps in draft mode, or

does not print bitmaps at all, this call does nothing.

•

•

Only text and bitmaps can be printed.

As in the normal draft mode, landscape format is not allowed. •
• Everything on the page must be strictly Y-sorted, i.e. no reverse paper motion

between one string or bitmap and the next. Note that this means you can't have two

or more objects (text or bitmaps) side by side; the top boundary of each object must

be no higher than the bottom of the preceding object.

The last restriction is important. If you violate it, you will not like the results. But note that if

you want two or more bitmaps side by side, you can combine them into one before

calling CopyBi t s to print the result. Similarly, if you are just printing bitmaps you can

rotate them yourself to achieve landscape printing.

The NoDraftBits Call

NoDraftBits (iOpCode = 7) is implemented on both the ImageWriter and the

LaserWriter. (On the LaserWriter it does nothing, since the LaserWriter is always in draft

mode and can always print bitmaps.) The format of the data block is the same as that for

the DraftBits call.

This call cancels the effect of any preceding DraftBits call. If there was no preceding

DraftB its call, or the printer does not support draft-mode printing anyway, this call •

does nothing.

The GetRotn Call

GetRotn (iOpCode = 8) is implemented on the ImageWriter and LaserWriter. Here is the

format of the data block:

TGetRotnBlk
iOpCode:
iError:
IReserved:
hPrint:
fLandscape:
bXtra:

END;

RECORD
Integer;
Integer;
LongInt;
THPrint;
Boolean;
SignedByte;

{data block for GetRotn call}

{input; = getRotnOp}

{output}
{reserved for future use}

{input; handle to a valid print record}

{output; Boolean flag}

{reserved}

hP r i n t should be the handle to a print record that has previously been passed to

PrValidate.

If landscape orientation is selected in the print record, then fLandscape is true.

•
Technical Note #128 page 6 of 7 PrGeneral

•

•

•

How To Use The PrGeneral Opcodes

The SetRsl and DraftBits calls may require the print code to suppress certain optionsin the Style and/or Job dialogs, therefore they should always be called before any call tothe Style or Job dialogs. An application might use these calls as follows:

• Get a new print record by calling PrintDefault, or take an existing one from adocument and call PrValidate on it.

• Call GetRslData to find out what the printer is capable of, and decide whatresolution to use. Check PrError to be sure the PrGeneral call is supported on thisversion of the print code; if the error is ResNotFound, you have older print code andmust print accordingly. But if the PrError return is 0, proceed:

• Call SetRs 1 with the print record and the desired resolution if you wish.

• Call DraftBits to invoke the printing of bitmaps in draft mode if you wish.

Note that if you call either SetRsl or DraftBits, you should do so before the user seeseither of the printing dialogs.

Technical Note #128 page 7 of7 PrGeneral

• • •

•
Macintosh
Technical Notes

Developer Technical Support

#129: _Gestalt & _SysEnvirons-a Never-Ending Story
Revised by:
Written by:

Dave Radcliffe
Jim Friedlander

May 1992
May 1987

•

•

This Technical Note discusses the latest changes and enhancements in the _ Ge s tal t and
_ SysEnvirons calls.

Changes since October 1991: Clarified information on Gestalt information for Macintosh
PowerBook computers and added information on the Macintosh LC II and the
gestaltHardwareAt t r selector.

Introduction

Previous versions of this Note provided the latest documentation on new information the
SysEnvirons trap could return. DTS will continue to revise this Note to provide this

Informauon: however, as the _Gestalt trap is now the preferred method for determining
information about a machine environment, this Note will also provide up-to-date information on

Ge s tal t selectors.

Gestalt

This Note now documents Ge s tal t selectors and return values added since the release of
Inside Macintosh Volume vI. Please note that this is supplemental information; for the complete
description of _ Gestal t and its use, please refer to Inside Macintosh Volume VI.

The Macintosh LC IT is identical to the Macintosh LC, except for the presence of an MC68030
processor, so it returns the same gestaltMachineType response as the Macintosh LC (i.e. 19).
Developers are reminded that the gestaltMachineType selector is for informational purposes only
and should not be used as a basis for programmatic decisions. As always, developers are
encouraged to test for the specific features they need and not to rely on any particular machine
having a particular set of features.

Note: The Macintosh PowerBook 100 Developer Notes and the Macintosh PowerBook 1401170
Developer Notes, available from APDA and on the Developer CD Series disc and
AppleLink, incorrectly document gestal tMachineType response values for the
Macintosh PowerBook computers. The following values are, and have always been, the
correct values.

#129: _Gestalt & _SysEnvirons-a Never-Ending Story 1 of 5

Macintosh Technical Notes

Additional Gestalt Response Values •
gestaltMachineType response values }

gestaltQuadra900
gestaltPowerBook170
gestaltQuadra700
gestaltClassicII
gestaltPowerBook100
gestaltPowerBook140

{ gestaltKeyboardType response values }
gestaltPwrBookADBKbd
gestaltPwrBookISOADBKbd

gestaltHardwareAttr Selector

= 20;
21;

= 22;
= 23;
= 24;
= 25;

12;
13;

Macintosh Quadra 900 }
Macintosh PowerBook 170
Macintosh Quadra 700 }
Macintosh Classic II }
Macintosh PowerBook 100
Macintosh PowerBook 140

PowerBook Keyboard }
PowerBook Keyboard (ISO) }

The gestaltHardwareAttr selector has been a source of confusion for developers since
originally documented in Inside Macintosh Volume VI . This section will try to reduce that
confusion and also introduce additional information returned by the selector. But be warned that
use of this selector for anything other than informational purposes should be deemed a
compatibility risk. In other words, if you are dependent on the information returned by this
selector to function on existing computers, you will almost certainly have problems on future
systems.

The reason for this is that gestaltHardwareAttr returns very low-level hardware
information. If you need to use this information, it implies you are too hardware dependent. So •
be very careful about using this information.

The principal source of confusion is bit 7, described as gestaltHasSCS 1. What this bit really
means is the machine is equipped with SCSI based on the 53C80 chip, which was introduced in
the Macintosh Plus. This bit will be zero on the Macintosh Ilfx and the Macintosh Quadra
computers because they have a different low-level SCSI implementation. The Macintosh IIfx has
a 53C80 compatible chip that also supports SCSI DMA. It reports this information using bit 6 of
the gestal tHardwareAttr response. The Macintosh Quadra computers have yet another
SCSI implementation based on the 53C96 chip and so report different information (see below).

Another source of confusion is bit 4 (gestal tHasSCC). The Macintosh Ilfx and Macintosh
Quadra 900 have intelligent I/O processors (lOPs) that normally isolate the hardware and make
direct access to the SCC impossible. Normally, these machines will report that they do not have
an SCC implying, correctly, that were you to attempt to access it directly, you would fail.
However, if the user has used the Compatibility Switch control panel to enable compatibility
mode, gestaltHasSCC will report true indicating you may access the SCC directly. But
remember that doing so means you are doing direct hardware access and that there may be a day
when you can't access the SCC under any circumstances.

New gestaltHardwareAttr Values for Macintosh Quadra Computers

Below are the new bits supported by the Macintosh Quadra computers. Any other bits remain
undocumented and subject to change.

2 of 5

gestaltHasSCSI961 = 21; { 53C96 SCSI controller on internal bus

#129: _Gestalt & _SysEnvirons-a Never-Ending Story •

•
Developer Technical SupPOrt

gestaltHasSCSI962

_SysEnvirons

May 1992

= 22; { 53C96 SCSI controller on external bus

•

_SysEnvirons was the standard way to determine the features available on a given machine.The preferred method to get this information is now Gest a 1 t; information on_SysEnvirons is now provided only for backward compatibility.

As originally conceived, _ SysEnvirons would check the versionRequested parameter todetermine what level of information you were prepared to handle, but this technique meansupdating SysEnvirons for every new hardware product Apple produces. With systemsoftware version 6.0, SysEnvirons introduced version 2 of environsVersion toprovide information about new hardware as we introduce it; this new version returns the sameSysEnvRec as version 1.

Beginning with system software version 6.0.1, Apple releases a new version ofSysEnvirons only when engineering makes changes to its structure (that is, when they addnew fields to SysEnvRec); all existing versions return accurate information about the machineenvironment even if part of that information was not originally defined for the version yourequest. For example, if you call SysEnvirons with versionRequested = 1 on aMacintosh I1fx, it returns a ma ch ine I'ype of envMacI Ifx even though this machine typeoriginally was not defined for version 1 of the call.

You should use version 2 of SysEnvirons until Apple releases a newer version. MPW 3.0defines a constant curSysEnvVers, which can be used to minimize the need for source coderevisions when SysEnvirons evolves. Regardless of the version used, however, yoursoftware should De prepared to handle unexpected values and should not make assumptionsabout functionality based on current expectations. For example, if your software currentlyrequires a Macintosh II, testing for machineType >= envMacI I may result in yoursoftware trying to run on a machine that does not support the features it requires, so test forspecific functionality (that is, hasFPU, hasColorQD, and so on).

Warning: This test for specific functionality is particularly true of FPUs (floating-pointunits). Some CPUs, such as the Macintosh I1si, may have optional, userinstalled FPUs; therefore, an application should not assume that any Macintoshwith a microprocessor greater than a 68000 (for example, 68020, 68030 or68040) has an FPU (68881/68882 or built-in for the 68040). If an applicationmakes a conditional branch to execute floating-point instructions directly, then itshould first explicitly check for the presence of the FPU.

You should always check the environsVersion when returning from _SysEnvironssince the glue always returns as much information as possible, with en v iron s Ve r s ionindicating the highest version available, even if the call returns an envSe 1 TooB ig (-5502)error.

Calling _SysEnvirons From a High-Level Language
Due to a documentation error in Inside Macintosh Volume V, DTS still receives questions abouthow to call SysEnvirons properly from Pascal and C. Inside Macintosh defines the Pascal• interface to .~)ysEnvirons as follows:

#129: _Gestalt & _SysEnvirons-a Never-Ending Story 3 of 5

Macintosh Technical Notes

FUNCTION SysEnvirons (versRequested: INTEGER; VAR theWorld: SysEnvRecPtr) : OSErr;

Because theWor ld is passed by reference (as a VAR parameter), it is not correct to pass a

SysEnvRecPtr in the second argument. Pascal would then generate a pointer to this pointer

and pass that to the _SysEnvirons trap in AD. (The assembly-language information is

essentially correct; _SysEnvirons really does want a pointer to a SysEnvRec in AD.) The

correct Pascal interface to SysEnvirons is therefore:

FUNCTION SysEnvirons (versionRequested: INTEGER; VAR theWorld: SysEnvRec) : OSErr;

In this case, Pascal pushes a pointer to theWorld on the stack. The Pascal interface glue then

pops this pointer off the stack directly into AD and calls SysEnvirons. Everything is

copacetic. -

C programmers should recognize their corresponding interface:

pascal OSErr SysEnvirons (short versionRequested, SysEnvRec *theWorld);

Inside Macintosh defines the type SysEnvPtr = "SysEnvRec. It also sometimes refers to

this type as SysEnvRecPtr. The inconsistency is insignificant because in reality MPW does

not define any such type, under either name; therefore, it is never needed.

Inside Macintosh also states that "all of the Toolbox Managers must be initialized before calling

SysEnvirons." This statement is not necessarily true. Startup documents (INITs), for instance,

may wish to call_SysEnvirons without initializing any of the Toolbox Managers. Keep in

mind that the atDrvrVersNum field returns a zero result if the AppleTalk drivers are not

initialized. The system version, machine type, processor type, and other key data return

normally.

Additional SysEnvirons Constants

The following are new SysEnvirons constants which are not documented in Inside

Macintos h; however, yOU should refer to Inside Macintosh Volume V-I, Compatibility

Guidelines, for the rest of the story.

•

•

4 of 5

machineType
envMacIIx
envMacIIcx
envSE30
envPortable
envMacIIci
envMacIIfx
envMacClassic
envMacIIsi
envMacLC
envMacQuadra900

envMacPowerBook170

envMacQuadra700

envMacClassicII
envMacPowerBook100

envMacPowerBook140

5 .,
6;
7 ;

8;
9;
11;
15;
16;
17;
18;
19;
20;
21;
22;
23;

Macintosh IIx }

Macintosh IIcx }

Macintosh SE/30 }

Macintosh Portable

Macintosh IIci }
Macintosh IIfx }

Macintosh Classic

Macintosh IIsi }

Macintosh LC }
Macintosh Quadra 900)

Macintosh PowerBook 170

Macintosh Quadra 700 }

Macintosh Classic II }

Macintosh PowerBook 100

Macintosh PowerBook 140

#129: _Gestalt & _SysEnvirons-a Never-Ending Story
•

•
Developer Technical Support

processor
env68030
env68040

keyBoardType
envPrtblADBKbd
envPrtblISOKbd
envStdISOADBKbd
envExtISOADBKbd

envADBKbdII
envADBISOKbdII
envPwrBkADBKbd
envPwrBkISOKbd

Further Reference:

4 ;

5;

6;
7;
8;
9;

10;
11;
12;
13;

MC68030 processor
MC68040 processor

Portable Keyboard)
Portable Keyboard (ISO)
Apple Standard Keyboard (ISO))
Apple Extended Keyboard (ISO)

Apple Keyboard II)
Apple Keyboard II (ISO)
PowerBook Keyboard)
PowerBook Keyboard (ISO))

May 1992

•

•

• Inside Macintosh, Volumes V and VI, Compatibility Guidelines

#129: _Gestalt & _SysEnvirons-a Never-Ending Story 50f5

• • •

•
Macintosh Technical Notes

#130: Clearing ioCompletion

See also:

Written by:
Updated:

The File Manager

Jim Friedlander May 4,1987
March 1, 1988

•

•

When making synchronous calls to the File Manager, it is not necessary to clearioCompletion field of the parameter block, since that is done for you.

Some earlier technotes explicitly cleared ioCompletion, with the knowledge that thiswas unnecessary, to try to encourage developers to fill in all fields of parameter blocksas indicated in Inside Macintosh.

By the way, this is true of all parameter calls-you only have to set fields that areexplicitly required.

Technical Note #130 page 1 of 1 Clearing ioCompletion

• • •

Macintosh Technical Notes

• #131: TextEdit Bugs in System 4.2

Written by:
Updated:

Chris Derossi June 1, 1987
March 1, 1988

•

•

This note formerly described the known bugs with the version of StyledTextEdit that was provided with System 4.1. Many of these bugs were fixed inSystem 4.2. This updated Technical Note describes the remaining knownproblems.

TEStylinsert

Calling TEStyllnsert while the TextEdit record is deactivated causes unpredictableresults, so make sure to only call TEStyllnsert when the TextEdit record is active.

TESetStyle

When using the doFace mode with TESetStyle, the style that you pass as a parameteris ORed into the style of the currently selected text. If you pass the empty set (no styles)though, TESetStyle is supposed to remove all styles from the selected text. ButTESetStyle checks an entire word instead of just the high-order byte of the tsFacefield. The style information is contained completely in the high-order byte, and thelow-order byte may contain garbage.

If the low-order byte isn't zero, TESetStyle thinks that the tsFace field isn't empty, so itgoes ahead and ORs it with the selected text's style. Since the actual style portion of thetsFace field is zero, no change occurs with the text. If you want to have TESetStyleremove all styles from the text, you can explicitly set the t sFace field to zero like this:

VAR
myStyle TextStyle;
anIntPtr ~Integer;

BEGIN

anIntPtr ;= @myStyle.tsFace;
anIntPtr~ := 0;
TESetStyle(doFace, myStyle, TRUE, textH);

END;

Technical Note #131 page 1 of2 TextEdit Bugs

TEStylNew

The line heights array does not get initialized when TEStylNew is called. Because of

this, the caret is initially drawn in a random height. This is easily solved by calling

TECalText immediately after calling TEStylNew. Extra calls to TECalText don't hurt •

anything anyway, so this will be compatible with future Systems.

An extra character run is placed at the beginning of the text which corresponds to the

font, size, and style which were in the grafPort when TESty INew was called. This can

cause the line height for the first line to be too large. To avoid this, call TextSize with

the desired text size before calling TEStylNew. If the text's style information cannot be

determined in advance, then call TextSize with a small value (like 9) before calling

TEStylNew.

TEScroll

The bug documented in Technical Note #22 remains in the new TextEdit. TEScroll

called with zero for both vertical and horizontal displacements causes the insertion point

to disappear. The workaround is the same as before; check to make sure that dV and dH

are not both zero before calling TEScroll.

Growing TextEdit Record

TextEdit is supposed to dynamically grow and shrink the LineStarts array in the

TERec so that it has one entry per line. Instead, when lines are added, TextEdit expands •

the array without first checking to see if it's already big enough. In addition, TextEdit

never reduces the size of this array.

Because of this, the longer a particular TextEdit record is used, the larger it will get. This

can be particularly nasty in programs that use a single TERe c for many operations

during the program's execution.

Restoring Saved TextEdit Records

Applications have used a technique for saving and restoring styled text which involves

saving the contents of all of the TextEdit record handles. When restoring, TESty INew is

called and the TextEdit record's handles are disposed. The saved handles are then

loaded and put into the TextEdit record. This technique should not be used for the

nullStyle handle in the style record.

Instead, when TEStylNew is called, the nullStyle handle from the style record should

be copied into the saved style record. This will ensure that the fields in the null-style

record point to valid data.

•
Technical Note #131 page 2 of2 TextEdit Bugs

Macintosh Technical Notes

#87: Error in FCBPBRec

See also:

Written by:
Updated:

The File Manager

Jim Friedlander August 18, 1986
March 1, 1988

The declaration of a FCBPBRec is wrong in Inside Macintosh Volume IV and
early versions of MPW. This has been fixed in MPW 1.0 and newer.

An error was made in the declaration of an FCBPBRec parameter block that is used in
PBGetFCBInfo calls. The field ioFCBIndx was incorrectly listed as a LONG INT. The
following declaration (found in Inside Macintosh):

ioRefNurn:
filler:
ioFCBIndx:
ioFCBFlNrn:

should be changed to:

ioRefNurn:
filler:
ioFCBIndx:
ioFCBFillerl:
ioFCBFlNrn:

Technical Note #87

INTEGER;
INTEGER;
LONGINT;
LONGINT;

INTEGER;
INTEGER;
INTEGER;
INTEGER;
LONGINT;

page 1 of 1 Error in FCBPBRec

_14•••-----------------------

Macintosh Technical Notes

#88: Signals

See also: Using Assembly Language (Mixing Pascal & Assembly)

Written by:
Updated:

Rick Blair August 1, 1986
March 1, 1988

Signals are a form of intra-program interrupt which can greatly aid clean,
inexpensive error trapping in stack frame intensive languages. A program
may invoke the S i g n a 1 procedure and immediately return to the last
invocation of CatchSignal, including the complete stack frame state at that
point.

Signals allow a program to leave off execution at one point and return control to a
convenient error trap location, regardless of how many levels of procedure nesting are
in between.

The example is provided with a Pascal interface, but it is easily adapted to other
languages. The only qualification is that the language must bracket its procedures (or
functions) with LINK and UNLK instructions. This will allow the signal code to clean up at
procedure exit time by removing CatchSignal entries from its internal queue. Note:
only procedures and/or functions that call CatchSignal need to be bracketed with LINK
and UNLK instructions.

Important: InitSignals must be called from the main program so that A6 can be set
up properly.

Note that there is no limit to the number of local CatchSignals which may occur within
a single routine. Only the last one executed will apply, of course, unless you call
FreeSignal. FreeSignal will "pop" off the last CatchSignal. If you attempt to Signal
with no CatchSignals pending, Signal will halt the program with a debugger trap.

InitSignals creates a small relocatable block in the application heap to hold the
signal queue. If CatchSignal is unable to expand this block (which it does 5 elements
at a time), then it will signal back to the last successful CatchSignal with code =200. A
Signal (0) acts as a NOP, so you may pass OSErrs, for instance, after making File
System type calls, and, if the OSErr is equal to NoErr, nothing will happen.

Technical Note #88 page 1 of 6 Signals

CatchSignal may not be used in an expression if the stack is used to evaluate that
expression. For example, you can't write:

c:= 3*CatchSignal;

"Gotcha" summary

1. Routines which call CatchSignal must have stack frames.
2. InitSignals must be called from the outermost (main) level.
3. Don't put the Cat chS i gn a 1 function in an expression. Assign the result to an

INTEGER variable; i.e. i:=CatchSignal.
4. It's safest to call a procedure to do the processing after CatchSignal returns. See

the Pascal example TestSignals below. This will prevent the use of a variable
which may be held in a register.

Below are three separate source files. First is the Pascal interface to the signaling unit,
then the assembly language which implements it in MPW Assembler format. Finally,
there is an example program which demonstrates the use of the routines in the unit.

{File ErrSignal.p}
UNIT ErrSignal;

INTERFACE

{Call this right after your other initializations (InitGraf, etc.)--in other
words as early as you can in the application}
PROCEDURE InitSignals;

{Until the procedure which encloses this call returns, it will catch
subsequent Signal calls, returning the code passed to Signal. When
CatchSignal is encountered initially, it returns a code of zero. These calls
may "nest"; i.e. you may have multiple CatchSignals in one procedure.
Each nested CatchSignal call uses 12 bytes of heap space }
FUNCTION CatchSignal:INTEGER;

{This undoes the effect of the last CatchSignal. A Signal will then invoke
the CatchSignal prior to the last one.}
PROCEDURE FreeSignal;

{Returns control to the point of the last CatchSignal. The program will then
behave as though that CatchSignal had returned with the code parameter
supplied to Signal.}
PROCEDURE Signal (code: INTEGER) ;

END.
{End of ErrSignal.p}

Technical Note #88 page 2 of 6 Signals

Here's the assembly source for the routines themselves:

ErrSignal code w. InitSignal, CatchSignal,FreeSignal, Signal
defined

Version 1.0 by Rick Blair

PRINT
INCLUDE
INCLUDE
INCLUDE
INCLUDE
PRINT

CatchSigErr EQU
SigChunks EQU
FrameRet EQU
SigBigA6 EQU

OFF
'Traps.a'
'ToolEqu.a'
'QuickEqu.a'
'SysEqu.a'

ON

200
S
4
$FFFFFFFF

;"insufficient heap" message
;number of elements to expand by
;return addr. for frame (off A6)
;maximum positive A6 value

; A template in MPW Assembler describes the layout of a collection of data
; without actually allocating any memory space. A template definition starts
with a RECORD directive and ends with an ENDR directive.

To illustrate how the template type feature works, the following template
is declared and used. By using this, the assembl~ source appromixates very
closely Pascal source for referencing the corresponding information.

;template for our table elements
SigElement RECORD 0 ; the zero is the template origin
SigSP DS.L 1 ;the SP at the CatchSignal-(DS.L just like EQU)
SigRetAddr DS.L 1 ;the address where the CatchSignal returned
SigFRet DS.L 1 ;return addr. for encl. procedure
SigE1Size EQU * ; just like EQU 12

ENDR

The global data used by these routines follows. Jt is in the form of a
RECORD, but, unlike above, no origin is specified, which means that memory
space *will* be allocated.
This data is referenced throu~ a WITH statement at the beginning of the
procs that need to get at this data. Since the Assembler knows when it is
referencing data in a data module (since they must be declared before they
are accessed), and since such data can only be accessed based on AS, there
is no need to explicitly specif7 A5 in any code which references the data
(unless indexing is used). Thus, in this program we have omitted all AS
references when referencing the data.

SigGlobals RECORD

SigEnd DS.L 1
SigNow DS.L 1
SigHandle DC.L 0

ENDR

;no origin means this is a data record
;not a template(as above)
;current end of table
;the MRU element
;handle to the table

Technical Note #88 page 3 of 6 Signals

_1#•••••••••••••••••••••••••--------------

InitSignals PROC EXPORT ;PROCEDURE InitSignals;

IMPORT
WITH

CatchSignal
SigElement,SigGlobals

;the above statement makes the template SigElement and the global data
;record SigGlobals available to this procedure

MOVE.L fSigChunks*SigEISize,DO
_NewHandle ;try to get a table
BNE.S forgetit ;we couldn't g€t that!?

forget it

MOVE.L
MOVE.L
MOVE.L
MOVE.L
RTS
ENDP

AO,SigHandle ;save it
f-SigEISize,SigNow ;point "now" before start
#SigChunks*SigEISize,SigEnd ;save the end
fSigBigA6,A6 ;make A6 valid for Signal

CatchSignal PROC
IMPORT
WITH

EXPORT ;FUNCTION CatchSignal:INTEGER;
SiggySetup,Signal,SigDeath
SigElement,SigGlobals

MOVE.L
MOVE.L
BEQ
MOVE.L
MOVE.L
ADD.L
MOVE.L
CMP.L
BNE.S

(SP)+,Al
SigHandle,DO
SigDeath
DO,AO
SigNow,DO
fSigEISize,DO
DO,SigNow
SigEnd,DO
catchit

;grab return address
;handle to table
;if NIL then croak
;put handle in A-register

;save new position
;have we reached the end?
;no, proceed

AnD.L fSigChunks*SigEISize,DO ;we'll try to expand
MOVE. L DO, SigEnd ; save new (potential) end

SetHandleSize
BEQ.S @O ;jump around if it worked!

;signals, we use 'em
MOVE.L
MOVE.L
SUB.L
MOVE.W

JSR

ourselves
SigNow,SigEnd
fSigEISize,DO
DO,SigNow
fcatchSigErr,

Signal

;restore old ending offset

;ditto for current position
(SP) ;we'll signal a "couldn't

catch" error
;never returns of course

@O MOVE.L SigNow,DO

catchit MOVE.L
ADD.L
MOVE.L
MOVE.L
CMP.L
BEQ.S
MOVE.L

(AO),AO ;deref.
DO,AO ;point to new e rrt ry
SP,SigSP(AO) ;save SP in entry
Al,SigRetAddr(AO) ;save return address there
#SigBigA6,A6 ;are we at the outer level?
@O ;yes, no frame or cleanup needed
FrameRet(A6),SigFRet(AO);save old frame return

address

Technical Note #88 page 4 of6 Signals

""------liliiii------_•••••••••••••••••••••••••••1._

@O

LEA
MOVE.L
CLR.W
JMP

SiggyPop,AO
AO, F rameRet (A6)
(SP)
(Al)

;set cleanup code address
;no error code (before its time)
;done setting the trap

SiggyPop JSR
MOVE.L
SUB.L
MOVE.L
JMP
ENDP

SiggySetup
SigFRet (AO) , AO
#SigE1Size,DO
DO,SigNow
(AO)

;get pointer to element
;get proc's real return address

; "pop" the -entry
;gone

FreeSignal PROC
IMPORT
WITH
JSR
MOVE.L
SUB.L
MOVE.L
RTS
ENDP

Signal PROC
EXPORT
WITH
MOVE.W
BNE.S
MOVE.L
ADDQ.L
JMP

EXPORT ;PROCEDURE Fr-eeSignal;
SiggySetup
SigElement,SigGlobals
SiggySetup ;get pointer to current entry
SigFRet(AO),FrameRet(A6) ;"pop" cleanup code
#SigE1Size,DO
DO,SigNow ;"pop" the entry

EXPORT ;PROCEDURE Signal (code: INTEGER) ;
SiggySetup,SigDeath
SigElement,SigGlobals
4(SP),Dl ;get code
~O ;process the signal if code is non-zero
(SP),AO ;save return address
#6,SP ;adjust stack pointer
(AO) ;return to caller(code was 0)

@O JSR
BRA.S

SiggySetup
SigLoopl

;get pointer to entry

SigLoop
SigLoopl

UNLK
CMP.L
BLO.S
MOVE.L
MOVE.L
MOVE.W
JMP

A6 ;unlink stack by one frame
SigSP(AO),A6 ;is A6 beyond the saved stack?
SigLoop ;yes, keep unlinking
SigSP(AO),SP ;bring back OUI SP
SigRetAddr(AO),AO ;get return address
Dl, (SP) ;return code to CatchSignal
(AO) ;Houston, boost the Signal!
; (or Hooston if you're from the Negative Zone)

SiggySetup MOVE.L
MOVE.L
MOVE.L
BEQ.S
MOVE.L
BMI.S
ADD.L
RTS

SigHandle,AO
(AO).AO
AD,DO
SigDeath
SigNow,DO
SigDeath
DO,AO

;deref.
;to set CCR
;nil handle means trouble
;grab table offset to entry
;if no entries then give up
;point to current element

SigDeath _Debugger

ENDP
END

;a signal sans catch is bad news

Technical Note #88

-
page 5 of6 Signals

Now for the example Pascal program:

PROGRAM TestSignals;

USES ErrSignal;

VAR i:INTEGER;

PROCEDURE DoCatch(s:STR255; code: INTEGER) ;

BEGIN
IF code<>O THEN BEGIN

Writeln(s,code) ;
Exit(TestSignals);

END;
END; {DoCatch}

PROCEDURE Easy;
PROCEDURE Never;

PROCEDURE DoCatch(s:STR255; code: INTEGER) ;

BEGIN
IF code<>O THEN BEGIN

Writeln(s,code) ;
Exit (Never) ;

END;
END; {DoCatch}

BEGIN {Never}
i:=CatchSignal;
DoCatch('Signal caught from Never, code i);

i:=CatchSignal;
IF i<>O THEN DoCatch('Should never get here! ',i);

{this won't be caught in Never}

{all local CatchSignals are freed when a procedure exits.}

FreeSignal; {"free" the last CatchSignal}

Signal(7); {Signal a 7 to the last CatchSignal}

END; {Never}
BEGIN {Easy}
Never;
Signal(69);
END; {Easy}

BEGIN {PROGRAM}
InitSignals; {You must call this early on!}

{catch Signals not otherwise caught by the program}

i:=CatchSignal;
IF i<>O THEN
DoCatch('Signal caught from main, code ',i);

Easy;
END.

The example program produces the following two lines of output:

Signal caught from Never, code = 7

Signal caught from main, code = 69

Technical Note #88 page 6 of 6 Signals

+1
--------..-------------•••••11••1••_

Macintosh Technical Notes

#89: DrawPicture Bug

Written by:
Updated:

Ginger Jernigan August 16, 1986
March 1, 1988

Earlier versions of this note described a bug in DrawP icture. This bug never
occurred on 64K ROM machines, and has been fixed in System 3.2 and
newer. Use of Systems older than 3.2 on non-64K ROM machines is no
longer recommended.

Technical Note #89 page 1 of 1 DrawPicture Bug

Macintosh Technical Notes

#90: SANE Incompatibilities

Written by:
Updated:

Mark Baumwell August 14, 1986
March 1, 1988

Earlier versions of this note described a problem with SANE and System 2.0.

Use of System 2.0 is only recommended for Macintosh 128 machines, which

contain the 64K ROMs. Information specific to 64K ROM machines has been

deleted from Macintosh Technical Notes for reasons of clarity.

Technical Note #90 page 1 of 1 SANE Incompatibilities

Macintosh Technical Notes

#91: Optimizing for the LaserWriter-Picture Comments

See also: The Print Manager
QuickDraw
Technical Note #72-

Optimizing for the LaserWriter-Techniques
Technical Note #27-MacDraw Picture Comments
PostScript Language Reference Manual, Adobe Systems
PostScript Language Tutorial and Cookbook,

Adobe Systems
LaserWriter Reference Manual

Written by:
Modified by:
Updated:

Ginger Jernigan
Ginger Jernigan

November 15, 1986
March 2, 1987
March 1, 1988

This technical note is a continuation of Technical Note #72. This technical
note discusses the picture comments that the LaserWriter driver recognizes.

This technical note has been modified to include corrected descriptions of
the SetLineWidth, PostScriptFile and ResourcePS comments and to
include some additional warnings.

The implementation of QuickDraw's picComment facility by the LaserWriter driver allows
you to take advantage of features (like rotated text) which are available in PostScript but
may not be available in QuickDraw.

Warning: Using PostScript-specific comments will make your code printer-dependent
and may cause compatibility problems with non-PostScript devices, so don't use them
unless you absolutely have to.

Some of the picture comments below are designed to be issued along with QuickDraw
commands that simulate the commented commands on the Macintosh screen. When the
comments are used, the accompanying QuickDraw comments are ignored. If you are
designing a picture to be printed by the LaserWriter, the structure and use of these
comments must be precise, otherwise nothing will print. If another printer driver (like the
ImageWriter 11/1 driver) has not implemented these comments, the comments are ignored
and the accompanying QuickDraw commands are used.

Technical Note #91 page 1 of 18 LaserWriter Picture Comments

Below are the picture comments that the LaserWriterdriver recognizes:

Type Kind Data Size Data Description

TextBegin 150 6 TTxtPicRec Begin text function
TextEnd 151 0 NIL End text function
StringBegin 152 0 NIL Begin pieces of original string
StringEnd 153 0 NIL End pieces of original string
TextCenter 154 8 TTxtCenter Offset to center of rotation

* LineLayoutOff 155 0 NIL Turns LaserWriter line layout off
* LineLayoutOn 156 0 NIL Turns LaserWriter line layo'Jt on

PolyBegin 160 0 NIL Begin special polygon
PolyEnd 161 0 NIL End special polygon
Poly Ignore 163 0 NIL Ignore following poly data
PolySmooth 164 1 PolyVerb Close, fill, frame
picPlyClo 165 0 NIL Close the poly

* DashedLine 180 TDashedLine Draw following lines as dashed
* DashedStop 181 0 NIL End dashed lines
* SetLineWidth 182 4 Point Set fractional line widths

* PostScript Begin 190 0 NIL Set driver state to PostScript
* PostScriptEnd 191 0 NIL Restore QuickDraw state
* PostScriptHandle192 PSData PostScript data in handle
*t PostScriptfile 193 fileName fileName in data handle
* TextIsPostScript194 0 NIL QuickDraw text is sent as PostScript
* t ResourcePS 195 8 TypelIDlIndex PostScript data in a resource file

**RotateBegin 200 4 TRotation Begin rotated port
**RotateEnd 201 0 NIL End rotation
**RotateCenter 202 8 Center Offset to center of rotation

**formsPrinting 210 0 NIL Don't clear print buffer after each page 4
**EndformsPrinting 211 0 NIL End forms printing after PrClosePage

*
**

t

These comments are only implemented in LaserWriter driver 3.0 or later.
These comments are only implemented in LaserWriter driver 3.1 or later.
These comments are not available when background printing is enabled.

Each of these comments are discussed below in six groups: Text, Polygons, Lines,
PostScript, Rotation, and Forms. Code examples are given where appropriate. For other
examples of how to use picture comments for printing please see the Print example
program in the Software Supplement (currently available through APDA as "Macintosh
Example Applications and Sources 1.0").

Note: The examples used in the LaserWriter Reference Manual are incorrect. Please
use the examples presented her€ instead.

Technical Note #91 page 2 of 18 LaserWriter Picture Comments

tFlip: Byte;
tRot: INTEGER;
tLine: Byte;
tCrnnt: Byte;

END; { TTxtpicRec

Text

In order to support the What-You-See-Is-What-You-Get paradigm, the LaserWriter driver
uses a line layout algorithm to assure that the placement of the line on the printer closely
approximates the placement of the line on the screen. This means that the printer driver
gets the width of the line from QuickDraw, then tells PostScript to place the text in exactly
the same place with the same width.

The TextBegin comment allows the application to specify the layout and the orientation
of the text that follows it by specifying the following information:

TTxtPicRec = PACKED RECORD
tJus: Byte; {0,1,2,3,4 or greater => none, left, center, right, full

justification)
{0,1,2 => none, horizontal, vertical coordinate flip)
{a .. 360 => clockwise rotation in degrees)
{1,2,3 .. => single, 1-1/2, double .. spacing)
{Reserved)
)

Left, right or center justification, specified by tJust, tells the driver to maintain only the
left, right or center point, without recalculating the interword spacing. Full justification
specifies that both endpoints be maintained and interword spacing be recalculated. This
means that the driver makes sure that the specified points are maintained on the printer
without caring whether the overall width has changed. Full justification means that the
overall width of the line has been maintained. tFlip and tRot specify the orientation of
the text, allowing the application to take advantage of the rotation features of PostScript.
tLine specifies the interline spacing. When no TextBegin comment is used, the
defaults are full justification, no rotation and single-spaced lines.

String Reconstruction

The StringBegin and StringEnd comments are used to bracket short strings of text
that are actually sections of an original long string. MacDraw, for instance, breaks long
strings into shorter pieces to avoid stack overflow problems with QuickDraw in the 64K
ROM. When these smaller strings are bracketed by StringBegin and StringEnd, the
LaserWriter driver assumes that the enclosed strings are parts of one long string and will
perform its line layout accordingly. Erasing or filling of background rectangles should
take place before the StringBegin comment to avoid confusing the process of putting
the smaller strings back together.

Text Rotation

In order to rotate a text object, PostScript needs to have information concerning the
center of rotation. The TextCenter comment provides this information when a rotation
is specified in the TextBeg in comment. This comment contains the offset from the
present pen location to the center of rotation. The offset is given as the y-component,
then the x-component, which are declared as fixed-point numbers. This allows the
center to be in the middle of a pixel. This comment should appear after the TextBegin
comment and before the first following StringBegin comment.

Technical Note #91 page 3 of 18 LaserWriter Picture Comments

The associated comment data looks like this:

TTxtCenter = RECORD
y,x: Fixed; (offset from current pen location to center of rotation)

END; { TTxtCenter)

Right after a TextBegin comment, the LaserWriter driver expects to see a TextCenter
comment specifying the center of rotation for any text enclosed within the text comment
calls. It will ignore all further CopyB its calls, and print all standard text calls in the
rotation specified by the information in TTxtP icRec. The center of rotation is the offset
from the beginning position of the first string following the TextCenter comment. The
printer driver also expects the string locations to be in the coordinate system of the
current QuickDraw port. The printer driver rotates the entire port to draw the text so it can
draw several strings with one rotation comment and one center comment. It is good
practice to enclose an entire paragraph or paragraphs of text in a single rotation
comment so that the driver makes the fewest number of rotations.

The printer driver can draw non-textual objects within the bounds of the text rotation
comments but it must unrotate to draw the object, then re-rotate to draw the next string of
text. To do this the printer driver must receive another TextCenter comment before
each new rotation. So, rotated text and unrotated objects can be drawn inter-mixed
within one TextBegin/TextEnd comment pair, but performance is slowed.

Note that all bit maps and all clip regions are ignored during text rotation so that clip
regions can be used to clip out the strings on printers that can't take advantage of these
comments. This has the unfortunate side effect of not allowing rotated text to be clipped.

Rotated text comments are not associated with landscape and portrait orientation of the 4
printer paper as selected by the Page Setup dialog. These are rotations with reference
to the current QuickDraw port only.

All of the above text comments are terminated by a TextEnd comment.

Turning Off Line Layout

If your application is using its own line layout algorithm (it uses its own character widths
or does its own character or word placement), the printer driver doesn't need to do it too.
To turn off line layout, you can use the LineLayoutOff comment. LineLayoutOn turns
it on again.

Turning on FractEnable for the 128K ROMs has the same effect as LineLayoutOff.
When the driver detects that F ractEnable has been turned on, line layout is not
performed. The driver assumes that all text being printed is already spaced correctly for
the LaserWriter and just sends it as is.

Technical Note #91 page 4 of 18 LaserWriter Picture Comments

Polygons

The polygon comments are recognized by the LaserWriter driver because they are used
by MacDraw as an alternate method of defining polygons.

The PolyBegin and PolyEnd comments bracket polygon line segments, giVing an
alternate way to specify a polygon. All StdLine calls between these two comments are
part of the polygon. The endpoints of the lines are the vertices of the polygon.

The picPlyClo comment specifies that the current polygon should be closed. This
comes immediately after PolyBegin, if at all. It is not sufficient to simply check for begPt
= endPt, since MacDraw allows you to create a "closed" polygon that isn't really closed.
This comment is especially critical for smooth curves because it can make the difference
between having a sharp corner or not in the curve.

These comments also work with the StdPoly call. If a F i llRgn is encountered before
the PolyEnd comment, then the polygon is filled. Unlike QuickDraw polygons, comment
polygons do not require an initial MoveTo call within the scope of the polygon comment.
The polygon will be drawn using the current pen location at the time the polygon
comment is received. The pen must be set before the polygon comment is called.

Splines

A spline is a method used to determine the smallest number of points that define a
curve. In MacDraw, splines are used as a method for smoothing polygons. The vertices
of the underlying unsmoothed polygon are the control nodes for the quadratic B-spline
curve which is drawn. PostScript has a direct facility for cubic B-splines and the
LaserWriter translates the quadratic B-spline nodes it gets into the appropriate nodes for
a cubic B-spline that will exactly emulate the original quadratic B-spline.

The PolySmooth comment specifies that the current polygon should be smoothed. This
comment also contains data that provides a means of specifying which verbs to use on
the smoothed polygon (bits 7 through 3 are not currently assigned):

TPolyVerb = PACKED RECORD
f7, f6, fS, f4, f3, fPolyClose, fPolyFill, fPolyframe : Boolean;

END; (TPolyVerb)

Although the closing information is redundant with the pi cP lyC 1 0 comment, it is
included for the convenience of the LaserWriter.

The LaserWriter uses the pen size at the time the PolyBegin comment is received to
frame the smoothed polygon if framing is called for by the TPolyVerb information. When
the PolyIgnore comment is received by the LaserWriter driver, all further StdLine
calls are ignored until the PolyEnd comment is encountered. For polygons that are to be
smoothed, set the initial pen width to zero after the PolyBegin comment so that the
unsmoothed polygon will not be drawn by other printers not equipped to handle polygon
comments. To fill the polygon, call StdRgn with the fill verb and the appropriate pattern
set, as well as specifying fill in the PolySmooth comment.

Technical Note #91 page 5 of 18 LaserWriter Picture Comments

J11iiJS1ie ;iit"'lIil'_ •••'.-----..------------IiIIIIIIIlIIIII----·."....

Lines

The DashedLine and DashedLineStop comments are used to communicate PostScript
information for drawing dashed lines.

The DashedLine comment contains the following additional data:

TDashedLine = PACKED RECORD
offset: SignedByte;
centered: SignedByte;

dashed: Array[O .. l] of SignedByte;
END; { TDashedLine)

{Offset as specified by PostScript}
{Whether dashed line should be
centered to begin and end points)

{1st byte is # bytes following)

The printer driver sets up the PostScript dashed line command, as defined on page 214
of Adobe's PostScript Language Reference Manual, using the parameters specified in
the comment. You can specify that the dashed line be centered between the begin and
end points of the lines by making the centered field nonzero.

The SetLineWidth comment allows you to set the pen width of all subsequent objects
drawn. The additional data is a point. The vertical portion of the point is the numerator
and the horizontal portion is the denominator of the scaling factor that the horizontal and
vertical components of the pen are then multiplied by to obtain the new pen width. For
example, if you have a pen size of 1,2 and in your line width comment you use 2 for the
horizontal of the point and 7 for the vertical, the pen size will then be (7/2)*1 pixels wide
and (7/2)*2 pixels high.

Below is an example of how to use the line comments:

PROCEDURE LineTest;
{This procedure shows how to do dashed lines and how to change the line width}
CONST

DashedLine = 180;
DashedStop = 181;
SetLineWidth = 182;

TYPE
DashedHdl ADashedPtr;
DashedPtr ATDashedLine;
TDashedLine = PACKED RECORD

offset: SignedByte;
Centered: SignedByte;
dashed: Array[O .. 1] of SignedByte;

END; { TDashedLine)
widhdl = Awidptr;
widptr = Awidpt;
widpt = Point;

{ the Oth element is the length)

VAR
arect rect;
Width widhdl;
dashedln DashedHdl;

Technical Note #91 page 6 of 18 LaserWriter Picture Comments

eM'.2-""""'------ 1illiB&&_&~&7&·-.&--~eee_II'__..••••••••••••••••••

BEGIN (LineTest)
Dashedln := dashedhdl(NewHandle(sizeof(tdashedline)));
DashedlnAA.offset := 0; { No offset)
DashedlnAA.centered := 0; { don't center)
DashedlnAA.dashed[O] := 1; {this is the length)
Dashedln

AA.dashed[l]
:= 8; {this means 8 points on, 8 points off)

Width := widhdl(NewHandle(sizeof(widpt)));
WidthAA.h .= 2; { denominator is 2)
WidthAA.V := 7; { numerator is 7)

myPic := OpenPicture(theWorld);
SetPen(1,2); { Set the pen size to 1 wide x 2 high)
ClipRect(theWorld);
MoveTo(20,20) ;
DrawString('Do line test');
PicComment(DashedLine,GetHandleSize(Handle(dashedln)),Handle(dashedln));
PicComment(SetLineWidth,4,Handle(width)); {SetLineWidth}
SetRect(arect,100,100,SOO,SOO);
FrameRect(aRect);
MoveTo(SOO,SOO) ;
Lineto(100,100) ;
PicComment(DashedStop,O,nil); {DashedStop)

ClosePicture;
DisposHandle(handle(width)); {Clean up)
DisposHandle(handle(dashedln));
PrintThePicture; {print it please)
KillPicture(MyPic) ;

END; {LineTest)

Technical Note #91 page 7 of 18 LaserWriter Picture Comments

PostScript

The PostScript comments tell the printer driver that the application is going to be

communicating with the LaserWriter directly using PostScript commands instead of

QuickDraw. The driver sends the accompanying PostScript to the printer with no

preprocessing and no error checking. The application can specify data in the comment

handle itself or point to another file which contains text to send to the printer. When the

application is finished sending PostScript, the PostScr iptEnd comment tells the printer

driver to resume normal QuickDraw mode.

Any Quickdraw drawing commands made by the application between the

PostScriptBegin and PostScriptEnd comments will be ignored by PostScript

printers. In order to use PostScript in a device independent way, you should always

include two representations of your document. The first representation should be a

series of Quickdraw drawing commands. The second representation of your document

should be a series of PostScript commands, sent to the Printing Manager via picture

comments. This way, when you are printing to a PostScript device, the picture comments

will be executed, and the Quickdraw commands ignored. When printing to a

non-PostScript device, the picture comments will be ignored, and the Quickdraw

commands will be executed. This method allows you to use PostScript, without having

to ask the device if it supports it. This allows your application to get the best results with

any printer, without being device dependent.

Here are some guidelines you need to remember:

• The graphic state set up during QuickDraw calls is maintained and is not affected by

PostScript calls made with these comments.

• The header has changed a number of parameters so sometimes you won't get the

results you expect. You may want to take a look at the header listed in The LaserWriter

Reference Manual available through APDA.

• The header changes the PostScript coordinate system so that the origin is at the

top-left corner of the page instead of at the bottom-left corner. This is done so that the

QuickDraw coordinates that are used don't have to be remapped into the standard

PostScript coordinate system. If you don't allow for this, all drawing is printed upside

down. Please see the PostScript Language Reference Manual for details about

transformation matrices.

• Don't call showpage. This is done for you by the driver. If you do, you won't be able to

switch back to QuickDraw mode and an additional page will be printed when you call

PrClosePage.

• Don't call exitserver. You may get very strange results.

• Don't call initgraphics. Graphics states are already set up by the header.

• Don't do anything that you expect to live across jobs.

• You won't be able to interrogate the printer to get information back through the driver.

Technical Note #91 page 8 of 18

rm: "f"-,'"

LaserWriter Picture Comments

-

The PostScriptBegin comment sets the driver state to prepare for the generation of
PostScript by the application by calling gsave to save the current state. PostScript is
then sent to the printer by using comments 192 through 195. The QuickDraw state of the
driver is then restored by the PostScr iptEnd comment. All QuickDraw operations that
occur outside of these comments are performed; no clipping occurs as with the text
rotation comments.

PostScript From a Text Handle

When the PostScriptHandle comment is used, the handle PSData points to the
PostScript commands which are sent. P SData is a generic handle that points to text,
without a length byte. The text is terminated by a carriage return. This comment is
terminated by a PostScriptEnd comment.

Note: Due to a bug in the 3.1 LaserWriter driver, PostScriptEnd will not restore the
QuickDraw state after the use of a PostScriptHandle comment. The workaround is to
only use this comment at the end of your drawing, after you have made all the
QuickDraw calls you need. This problem is fixed in more recent versions of the driver.

Here's an example of how to use this comment:

PROCEDURE PostHdl;
{this procedure shows how to use PostScript from a text Handle}
CONST

PostScriptBegin = 190;
PostScriptEnd = 191;
PostScriptHandle = 192;

VAR

MyString
tempstr
MyHandle
err

Str255;
String[l];
Handle;
OSErr;

{Clean up}
{print it please}

BEGIN { PostHdl }
MyString := '/Times-Roman findfont 12 scalefont set font 230 600 moveto

(Hello World) show';
tempstr:=' ';
tempstr[l] := chr(13); {has to be terminated by a carriage return}
MyString := Concat(MyString, tempstr); { in order for it to execute}
err := PtrToHand (Pointer(ord(@myString)+l), MyHandle, length(MyString));
MyPic := OpenPicture(theWorld);

ClipRect(theWorld);
MoveTo(20,20);
DrawString('PostScript from a Handle');
PicComrnent (PostScript.Begin, 0, nil) ; {Begin PostScript}
PicComrnent(PostScriptHandle,length(mystring),MyHandle);
PicComrnent(PostScriptEnd,O,nil); {PostScript End}

ClosePicture;
DisposHandle(MyHandle);
PrintThePicture;
KillPicture(MyPic);

END; { PostHdl }

Technical Note #91 page 9 of 18 LaserWriter Picture Comments

Defining PostScript as QuickDraw Text

All QuickDraw text following the TextIsPostScript comment is sent as PostScript. No
error checking is performed. This comment is terminated by a PostScriptEnd
comment.

Here is an example:

PROCEDURE PostText;
{Shows how to use PostScript in strings in a QuickDraw picture}
CONST

PostScriptBegin = 190;
PostScriptEnd = 191;
TextIsPostScript = 194;

BEGIN { PostTest }
MyPic := Openpicture(theWorld);

ClipRect(theWorld);
MoveTo(20,20);
DrawString('TextIsPostScript Comment');
PicComment(PostScriptBegin,O,nil);
PicComment(TextIspostScript,O,nil);

DrawString('O 728 translate');
DrawString('l -1 scale');

{Begin PostScript}
{following text is PostScript}

{move the origin and rotate the}
{coordinate system}

DrawString('newpath') ;
DrawString('100 470 moveto');
DrawString('SOO 470 lineto');
DrawString('100 330 moveto');
DrawString('SOO 330 lineto');
DrawString('230 600 moveto');
DrawString('230 200 lineto');
DrawString('370 600 moveto');
DrawString('370 200 lineto');
DrawString('10 setlinewidth');
DrawString('stroke')i
DrawString('/Times-Roman findfont 12 scalefont setfont');
DrawString('230 600 moveto');
DrawString(' (Hello World) show');

PicComment (PostScriptEnd, O,nil) ; {PostScriptEnd}
ClosePicture;
PrintThePicture; {print it please}
KillPicture(MyPic);

END; { PostText }

Technical Note #91 page 100f 18 LaserWriter Picture Comments

PostScript From a File

The PostScriptFile and ResourcePS comments allow you to send PostScript to the
printer from a resource file. Before these comments are described there are some
restrictions you need to follow:

• Don't ever copy a picture containing these comments to the clipboard. If it is pasted
into another application and the specified file or resource is not available, printing will
be aborted and the user won't know what went wrong. This could be very confusing to
a user. If you want the PostScript information to be available when printed from
another application, use one of the other comments and include the information in the
picture.

• Don't keep the PostScript in a separate file from the actual data file. If the data file
ever gets moved without the PostScript file, when the picture is printed the data file
may not be found and the print job will be aborted, again without the user knowing
what went wrong. Keeping the data and PostScript in the same file will forestall many
headaches for you and the user.

Now, a description of the comments:

The PostScriptFile comment tells the driver to use the POST type resources
contained in the file FileNameString. FileNameString is declared as a Str255.

When this comment is encountered, the driver calls OpenResF ile using the file name
specified in FileNameString. It then calls GetResource (' POST', theID) ;
repeatedly, where the I D begins at 501 and is incremented by one for each
GetResource call. If the driver gets a ResNotFound error, it closes the specified
resource file. If the first byte of the resource is a 3, 4, or 5 then the remaining data is sent
and the file is closed.

The format of the POST resource is as follows: The IDs of the resources start at 501 and
are incremented by one for each resource. Each resource begins with a 2 byte data field
containing the data type in the first byte and a zero in the second. The possible values
for the first byte are:

o ignore the rest of this resource (a comment)
1 data is ASCII text
2 data is binary and is first converted to ASCII before being sent
3 AppleTalk end of file. The rest of the data, if there is any, is interpreted as ASCII text

and will be sent after the EOF.
4 open the data fork of the current resource file and send the ASCII text there
5 end of the resource file

The second byte of the field must always be zero. Resources should be kept small,
around 2K. Text and binary should not be mixed in the same resource. Make sure you
include either a space or a return at the end of each PostScript string to separate it from
the following command.

Technical Note #91 page 110f 18 LaserWriter Picture Comments

L----------------------

Here's an example:

PROCEDURE PostFile;

{This procedure shows how to use PostScript from a specified FILE}

CONST
PostScriptBegin = 190;

PostScriptFile = 193;

PostScriptEnd = 191;

VAR
MyString
MyHandle
err

Str2SS;
Handle;
OSErr;

BEGIN {PostFile}

{You should never do this in a real program. This is only a test.}

MyString := 'HardDisk:MPW:Print Examples:PSTestDoc';

err := PtrToHand(pointer(MyString),MyHandle,length(MyString) + 1);

MyPic := OpenPicture(theWorld);

ClipRect(theWorld);

MoveTo(20,20);

DrawString('PostScriptFile Comment');

PicComment(PostScriptBegin,O,nil); {Begin PostScript}

PicComment(PostScriptFile,GetHandleSize(MyHandle),MyHandIe);

PicComment(PostScriptEnd,O,nil); {PostScriptEnd}

MoveTo(SO,SO);

DrawString('PostScriptEnd has terminated');

ClosePicture;
DisposHandle(MyHandle); {Clean up}

PrintthePicture; {print it please}

KillPicture(MyPic);

END; {PostFile}

Here are the resources:

type 'POST' {
switch {

case Comment:
key bitstring(8]

fill byte;
string;

/* this is a comment */
0;

case ASCII: /* this is just ASCII text */

key bitst ring (8] = 1;

fill byte;
string;

case Bin: /* this is binary */

key bitstring(8] = 2;

fill byte;
string;

case ATEOF: /* this is an AppleTalk EOF */

key bitstring(8] = 3;

fill byte;
string;

Technical Note #91 page 120f 18 LaserWriter Picture Comments

---------~----_ ..-.._------_.-

} ;

case DataFork:
key bitstring[8l
fill byte;

case EOF:
key bitstring[8l
fill byte;

} ;

/* send the text in the data fork */
= 4;

/* no more */
= 5;

resource 'POST' (SOl) {
ASCII{"O 728 translate "}};

resource 'POST' (S02) {
ASCII{"l -1 scale "}};

resource 'POST' (S03)
ASCII{"newpath "}};

resource 'POST' (S04)
ASCII{"100 470 moveto ffl};

resource 'POST' (50S)
ASCII{ffSOO 470 lineto "}};

resource 'POST' (S06)
ASCII{"100 330 moveto "}};

resource 'POST' (S07)
ASCII{ffSOO 330 lineto ffl};

resource 'POST' (S08)
ASCII{"230 600 moveto ff}};

resource 'POST' (S09)
ASCII{ff230 200 lineto ff}l;

resource 'POST' (S10)
ASCII{"370 600 moveto "}I;

resource 'POST' (Sll)
ASCII{"370 200 lineto ffl};

resource 'POST' (S12) {
ASCII{ff10 setlinewidth ff}};

resource 'POST' (S13)
ASCII{ffstroke ff}};

resource 'POST' (S14) {
ASCII{ff/Times-Roman findfont 12 scalefont set font ff}};

resource 'POST' (SlS)
ASCII{ff230 600 moveto ff}l;

resource 'POST' (S16) {
ASCII{ff{Hello World) show ff}l;

-
Technical Note #91 page 130f 18 laserWriter Picture Comments

/* It will stop reading and close the file after 517 */

resource 'POST' (517) {

EOF
{ } } ;

/* it never gets here */

resource 'POST' (518) {

DataFork
{ } } ;

When the ResourcePS comment is encountered, the LaserWriter driver sends the text

contained in the specified resource as PostScript to the printer. The additional data is

defined as

PSRsrc RECORD
PSType
PSID
PSIndex:

END;

ResType;
INTEGER;
INTEGER;

The resource can be of type STR or STR#. If the Type is STR then the index should be o.
Otherwise an index should be given.

This comment is essentially the same as the PrintF control call to the driver. The

imbedded command string it uses is 'ArAn', which basically tells the driver to send the

string specified by the additional data, then send a newline. For more information about

printer control calls see the LaserWriter Reference Manual.

Here's an example:

PROCEDURE PostRSRC;

{This procedure shows how to get PostScript from a resource FILE}

CONST
PostScriptBegin = 190;

PostScriptEnd = 191;

ResourcePS = 195;

TYPE
theRSRChdl = AtheRSRCptr;

theRSRCptr = AtheRSRC;

theRSRC = RECORD
theType: ResType;

theID: INTEGER;

Index: INTEGER;

END;

VAR
temp
TheResource
i, j
myport
err
atemp

Technical Note #91

Rect;
theRSRChdl;
INTEGER;
GrafPtr;
INTEGER;
Boolean;

page 140118 LaserWriter Picture Comments

eN ft·

BEGIN { PostRSRC }
TheResource := theRSRChdl(NewHandle(SizeOf(theRSRC)));
TheResourceAA.theID := 500;
TheResourceAA.Index := 0;
TheResourceAA.theType := 'STR ';
HLock(Handle(TheResource)) ;
MyPic := OpenPicture(theWorld);
DrawString('ResourcePS Comment');
PicComment(PostScriptBegin,O,nil); {Begin PostScript}
PicComment(ResourcePS,8,Handle(TheResource)); {Send postscript}
PicComment(PostScriptEnd,O,nil); {PostScriptEnd}
ClosePicture;
DisposHandle(Handle(TheResource)); {Clean up}
PrintthePicture; {print it please}
KillPicture(MyPic);

END; { PostRSRC

Here's the resource:

resource 'STR ' (500)
{"a 728 translate 1 -1 scale newpath 100 470 moveto 500 470 lineto 100 330
moveto 500 330 lineto 230 600 moveto 230 200 lineto 370 600 moveto 370 200
lineto 10 setlinewidth stroke /Times-Roman findfont 12 scalefont set font 230
600 moveto (Hello World) show"
} ;

Technical Note #91 page 150118 LaserWriter Picture Comments

Rotation

The concept of rotation doesn't apply to text alone. PostScript can rotate any object. The
rotation comments work exactly like text rotation except that all objects drawn between
the two comments are drawn in the rotated coordinate system specified by the center of ..
rotation comment, not just text. Also, no clipping of CopyB its calls occurs. These •
comments only work on the 3.1 and newer LaserWriter drivers.

The RotateBegin comment tells the driver that the following objects will be drawn in a
rotated plane. This comment contains the following data structure:

Rotation = RECORD
Flip: INTEGER; {O,1,2 => none, horizontal, vertical coordinate flip}
Angle: INTEGER; {O .. 360 => clockwise rotation in degrees}

END; { Rotation }

When you are finished, the RotateEnd comment returns the coordinate system to
normal, terminating the rotation.

The relative center of rotation is specified by the RotateCenter comment in exactly
the same manner as the TextCenter comments. The difference, however, is that this
comment must appear before the RotateBegin comment. The data structure of the
accompanying handle is exactly like that for the TextCenter comment.

Here's an example of how to use rotation comments:

PROCEDURE Test;
{This procedure shows how to do rotations}
CONST

RotateBegin= 200;
RotateEnd = 201;
RotateCenter = 202;

TYPE
rothdl = Arotptr;
rotptr = Atrot;
trot = RECORD

flip : INTEGER;
Angle : INTEGER;

END; { trot }
centhdl = Acentptr;
centptr = Acent;
Cent = PACKED RECORD

yInt: INTEGER;
yFrac: INTEGER;
xInt: INTEGER;
xFrac: INTEGER;

END; { Cent }

VAR
arect
rotation
center

Technical Note #91

Rect;
rothdl;
centhdl;

page 160f 18 LaserWriter Picture Comments

-

{no flip}
{IS degree rotation}

BEGIN { Test }
rotation := rothdl(NewHandle(sizeof(trot»);
rotationAA.flip := 0;
rotationAA.angle := 15;

center := centhdl(NewHandle(sizeof(cent»);
centerAA.xInt := 50;
centerAA.yInt := 50;
centerAA.xFrac .= 0;
centerAA.yFrac := 0;

{center at SO,SO}

{no fractional part}

myPic := OpenPicture(theWorld);
ClipRect(theworld);
MoveTo(20,20);
DrawString('Begin Rotation');

{set the center of Rotation}

PicComment(RotateCenter,GetHandleSize(Handle(center»,Handle(center»;
{Begin Rotation}

PicComment(RotateBegin,GetHandleSize(Handle(rotation»,Handle(rotation);
SetRect(arect,100,100,SOO,SOO);
FrameRect(aRect) ;
MoveTo(SOO,SOO) ;
Lineto (100,100);
PicComment(RotateEnd,O,nil); {RotateEnd}

ClosePicture;
DisposHandle(handle(rotation»; {Clean up}
DisposHandle(handle(center»;
PrintThePicture; {print

it please}
KillPicture(MyPic) ;

END; { Test }

Technical Note #91 page 170f 18 LaserWriter Picture Comments

Forms

The two form printing comments allow you to prepare a template to use for printing.

When the FormsBeg in comment is used, the LaserWriter's buffer is not cleared after

P rClosePag€. This allows you to download a form then change it for each subsequent

page, inserting the information you want. FormsEnd allows the buffer to be cleared at

the next PrClosePage.

Technical Note #91

•

page 180f 18 LaserWriter Picture Comments

Macintosh Technical Notes

#92: The Appearance of Text

See also: The Printing Manager
The Font Manager
Technical Note #91-

Optimizing for the LaserWriter-Picture Comments

Written by:
Updated:

Ginger Jernigan November 15, 1986
March 1, 1988

This technical note describes why text doesn't always look the way you
expect depending on the environment you are in.

There are a number of Macintosh text editing applications where layout is critical.
Unfortunately, text on a newer machine sometimes prints differently than text on a 64K
ROM Macintosh. Let's examine some differences you should expect and why.

The differences we will consider here are only differences in the layout of text lines (line
layout), not differences in the appearance of fonts or the differences between different
printers. Differences in line layout may affect the position of line, paragraph and page
breaks. The four variables that can affect line layout are fonts, the printer driver, the font
manager mode, and ROMs.

Fonts

Every font on a Macintosh contains its own table of widths which tells QuickDraw how
wide characters are on the screen. For every style point size there is a separate table
which may contain widths that vary from face to face and from point size to point size.
Character widths can vary between point sizes of characters even in the same face. In
other words, fonts on the screen are not necessarily linearly scalable.

Non-linearity is not normally a problem since most fonts are designed to be as close to
linear as possible. A font face in 6 point has very nearly the same scaled widths of the
same font face in 24 point (plus or minus round-off or truncation differences).
QuickDraw, however, requires only one face of any particular font to be in the System
file to use it in any point size. If only a 10 point face actually exists, QuickDraw may scale
that face to 9, 18, 24 (or whatever point size) by performing a linear scale of the 10 point
face.

-
Technical Note #92 page 1 of 3 The Appearance of Text

This can cause problems. Suppose a document is created on one Macintosh containing
a font that only exists in that System file in one point size, say 9 point. The document is
then taken to another Macintosh with a System file containing that same font but only in
24 point. The document may, in fact, appear differently on the two screens, and when it
is printed, will have line breaks (and thus paragraph and page breaks) occurring in t
different places simply because of the differences in character widths that exist between
the 9 point and 24 point faces.

The Printer Driver

Even when the printer you are using has a much higher resolution than what the screen
can show, printer drivers perform line layout to match the screen layout as closely as
possible.

The line layout performed by printer drivers is limited to single lines of text and does not
change line break positions within multiple lines. The driver supplies metric information
to the application about the page size and printable area to allow the application to
determine the best place to make line and page breaks.

Printer driver line layout does affect word spacing, character spacing and even word
positioning within a line. This may affect the overall appearance of text, particularly
when font substitutions are made or various forms of page or text scaling are involved.
But print drivers NEVER change line, paragraph or page break positions from what the
application or screen specified. This means that where line breaks appear on the
screen, they will always appear in the same place on the printer regardless of how the
line layout may affect the appearance within the line.

Operating System and ROMs

In this context, operating system refers to the ROM trap routines which handle fonts and
QuickDraw. Changes have occurred between the ROMs in the handling of fonts. Fonts
in the 64K ROMs contain width tables (as described above) which are limited to integer
values. Several new tables, however, have been added to fonts for the newer ROMs.
The newer ROMs add an optional global width table containing fractional or fixed point
decimal values. In addition, there is another optional table containing fractional values
which can be scaled for the entire range of point sizes for anyone face. There is also an
optional table which provides for the addition (or removal) of width to a font when its
style is changed to another value such as bold, outline or condensed. It is also possible,
under the 128K ROMs, to add fonts to the system with inherent style properties
containing their own width tables that produce different character widths from derived
style widths.

Technical Note #92 page 2 of 3

••

The Appearance of Text

•

One or all of the above tables mayor may not be invoked depending on, first, their
presence, and second, the mode of the operating system. The Font Manager in the
newer ROMs allows the application to arbitrarily operate in either the fractional mode or
integer mode (determined, in most cases, by the setting of FractEnable) as it chooses,
with the default being integer. There is one case where fractional widths will be used if
they exist even though fractional mode is disabled. When FScaleDisable is used
fractional widths are always used if they exist regardless of the setting of FractEnable.

Differences in line layout (and thus line breaks) may be affected by any combination of
the presence or absence of the optional tables, and the operating mode, either fractional
or integer, of the application. Any of the combinations can produce different results from
the original ROMs (and from each other).

The integer mode on the newer ROMs is very similar to, but not exactly the same as, the
original 64K ROMs. When fonts with the optional tables present are used on
Macintoshes with 64K ROMs, they continue to work in the old way with the integer
widths. However, on newer ROMs, even in the integer mode. there may be variations in
line width from what is seen on the old ROMs. In the plain text style there is very little if
any difference (except if the global width table is present), but as various type styles are
selected, line widths may vary more between ROMs.

Variations in the above options, by far, account for the greatest variation in the
appearance of lines when a document is transported between one Macintosh and
another. Line breaks may change position when documents created on one system (say
a Macintosh) are moved to another system (like a Macintosh Plus). Variations are more
pronounced as the number and sizes of various type styles increase within a document.

In all cases, however, a printer driver will produce exactly the same line breaks as
appear on the screen with any given system combination.

Technical Note #92 page 3 of3 The Appearance of Text

t Hij& iiiLIW*_____________~ ..""""_~"';,I,.I!IIlI...IIi/h;iIllillilllilllllllllill.lllllliIIlIIlII.lIlIllIlIII.lli\!I1II111l1ll1ll1ll••IIIIII1I1I1I11I1I1lIlIlIl•••1I1I1I1ll11111111

Macintosh Technical Notes

#93: MPW: {$LOAD}; _Datalnit;D,Io_MethTables

See also:

Written by:
Modified by:
Updated:

MPW Reference Manuals

Jim Friedlander
Jim Friedlander

November 15, 1986
January 12, 1987
March 1, 1988

This technical note discusses the Pascal {$ LOAD} directive as well as how to
unload the _Datalnit and %_MethTables segments.

{$LOAD}

MPW Pascal has a {$LOAD} directive that can dramatically speed up compiles.

{SLOAD HD:MPW:PLibraries:PasSymDump}

will combine symbol tables of all unfits following this directive (until another {$ LOAD}
directive is encountered), and dunn,p them out to HD : MPW: PLibraries : PasSymDump. In
order to avoid using fully specifietil pathnames, you can use {$LOAD} in conjunction with
the - k option for Pascal:

Pascal -k " {PLibraries}" mwfile

combined with the following lines :i'f!l rnyfile:

USES
{SLOAD PasSymDump}

MemTypes,QuickDra~n DSlntf, Toollntf, Packlntf,
{SLOAD} {This "turns ;CT.f" SLOAD :for the next unit}

NonOptimized,
{SLOAD MyLibDump}

MyLib;

will do the following: the'fir'St time a program containing these lines is compiled, two
symbol table dump files (in this case PasSymDump and MyLibDump) will be created in
the directory specified by the -k option (in this case {PLibrar ies }) . No dump file will
be generated for the unit NonOptimized. The compiler will compile MemTypes,
QuickDraw, OSIntf, Toollntf? Packlntf (quite time consuming) and dump those
units' symbols to PasSymDump and it wilt compile the interlace to MyLib and dump its
symbols to MyLib. FaT subsequent compiles of this program (or any program that uses
the same dump file(s)), the interface files won't be recompiled, the compiler will simply
read in the symbol table.

Compiling a sample fiV€ line program on a Macintosh PiusIHD20SC takes 62 seconds

-
Technical Note #93 page 1 013 MPW: {$LOAD} ;_Datalnit;%_MethTables

without using the {$LOAD} directive. The same program takes 10 seconds to compile
using the {$ LOAD} directive (once the dump file exists). For further details about this
topic. please see the MPW Pascal Reference Manual.

Note: If any of the units that are dumped into a dump file change. you need to make t
sure that the dump file is deleted, so that it can be regenerated by the Pascal compiler
with the correct information. The best way to do this is to use a makefile to check the
dump file against the files it depends on, and delete the dump file if it is out of date with
respect to any of the units that it contains. An excellent (and well commented) example
of doing this is in the MPW Workshop Manual.

The _Datalnit Segment

The Linker will generate a segment whose resource name is %AS Ini t for any program
compiled by the C or Pascal compilers. This segment is called by a program's main
segment. This segment is loaded into the application heap and locked in place. It is up
to your program to unload this segment (otherwise. it will remain locked in memory,
possibly causing heap fragmentation). To do this from Pascal, use the following lines:

PROCEDURE _DataInit;EXTERNAL;

BEGIN {main PROGRAM}
UnloadSeg(@_Datalnit);
{remove data initialization code before any allocations}

From C, use the following lines:

extern _Datalnit();

(/* main */
UnloadSeg(_Datalnit);
/*remove data initialization code before any allocations*/

For further details about Data Initialization, see the MPW Reference Manual.

Technical Note #93 page 2 of 3 MPW: {$LOAD} ;_Datalnit;%_MethTables

% MethTables and %_SelProcs

Object use in Pascal produces two segments which can cause heap problems. These
are % MethTables and % SelProcs which are used when method calls are made.- -
MacApp deals with them correctly, so this only applies to Object Pascal programs that
don't use MacApp. You can make the segments locked and preloaded (probably the
easiest route), so they will be loaded low in the heap, or you can unload them
temporarily while you are doing heap initialization. In the latter case, make sure there
are no method calls while they are unloaded. To reload %_MethTables and
% SelProcs, call the dummy procedure % InitObj. % InitObj loads %MethTables
-":-calling any method will then load %_SelP~ocs. -

Reminder: The linker is case sensitive when dealing with module names. Pascal
converts all module names to upper-case (unless a routine is declared to be a C
routine). The Assembler default is the same as the Pascal default, though it can be
changed with the CASE directive. C preserves the case of module names (unless a
routine ;s declared to be pascal, in which case the module name is converted to upper
case letters).

Make sure that any external routines that you reference are capitalized the same in both
the external routine and the external declaration (especially in C). If the capitalization
differs, you will get the following link error (library routine = f indme, program declaration
=extern FindMe () ;):

#tt Link: Error Undefined entry, name: FindMe

Technical Note #93

'M 2

page 3 of 3 MPW: {$LOAD} ;_Datalnit:%_MethTables

Macintosh Technical Notes

#94: Tags

See also:

Written by:
Updated:

The File Manager

Bryan Stearns November 15, 1986
March 1, 1988

Apple has decided to eliminate support for file-system tags on its future
products; this technical note explains this decision.

Some of Apple's disk products (and some third-party products) have the ability to store
532 bytes per sector, instead of the normal 512. Twelve of the extra bytes are used to
store redundant file system information, known as ''tags'', to be used by a scavenging
utility to reconstruct damaged disks.

Apple has decided to eliminate support for these tags on its products; this was decided
for several reasons:

1) Tags were implemented back when we had to deal with "Twiggy" drives on Lisa.
These drives were less reliable than current drives, and it was expected that tags would
be needed for data integrity.

2) We're working on a scavenging utility (Disk First Aid), and we've found that tags don't
help us in reconstructing damaged disks (ie, if we can't fix it without using tags, tags
wouldn't help us fix it). So, at least the first two versions of our scavenging utility will not
use tags, and a third version (which we've planned for, but will probably never
implement) can probably work without them.

3) 532-byte-per-sector drives and controllers tend to cost more, even at Apple's
volumes. Thus, the demise of tags saves us (and our customers) money. The Apple
Hard Disk 20SC currently supports tags; this may not always be the case, however; we'll
probably drop the large sectors when we run out of our current stock of drives.

The Hierarchical File System (HFS) documentation didn't talk about tags because the
writer had no information available about how they worked under HFS. Because of this
decision, it is unlikely that we'll ever have documentation on how to correctly implement
them under HFS.

Technical Note #94 page 1 of 1 Tags

ttll.". , Ttinw

Macintosh Technical Notes

#95: How To Add Items to the Print Dialogs

See also:

Written by:

Updated:

The Printing Manager
The Dialog Manager

Ginger Jernigan
Lew Rollins

November 15, 1986

March 1, 1988

This technical note discusses how to add your own items to the Printing
Manager's dialogs.

When the Printing Manager was initially designed, great care was taken to make the
interface to the printer drivers as generic as possible in order to allow applications to
print without being device-specific. There are times, however, when this type of
non-specific interface interferes with the flexibility of an application. An application may
require additional information before printing which is not part of the general Printing
Manager interface. This technical note describes a method that an application can use
to add its own items to the existing style and job dialogs.

Before continuing, you need to be aware of some guidelines that will increase your
chances of being compatible with the printing architecture in the future:

• Only add items to the dialogs as described in this technical note. Any other methods
will decrease your chances of survival in the future.

• Do not change the position of any item in the current dialogs. This means don't
delete items from the existing item list or add items in the middle. Add items only at
the end of the list.

• Don't count on an item retaining its current position in the list. If you depend on the
Draft button being a particular number in the ImageWriter's style dialog item list, and
we change the Draft button's item number for some reason, your program may no
longer function correctly.

• Don't use more than half the screen height for your items. Apple reserves the right to
expand the items in the standard print dialogs to fill the top half of the screen.

• If you are adding lots of items to the dialogs (which may confuse users), you should
consider having your own separate dialog in addition to the existing Printing
Manager dialogs.

Technical Note #95 page 1 of 14 How To Add Items to the Print Dialogs

__I IIIiIIIilIIIlI _

The Heart

Before we talk about how the dialogs work, you need to know this: at the heart of the

printer dialogs is a little-known data structure partially documented in the MacPrint

interface file. It's a record called TP rD 19 and it looks like this: t
TPrDlg = RECORD (Print Dialog: The Dialog Stream object.)

dIg DialogRecord; (dialog window)

pFltrProc ProcPtr; {filter proc.}

pItemProc ProcPtr; (item evaluating proc.)

hPrintUsr THPrint; (user's print record.)

fDoIt BOOLEAN;

fDone BOOLEAN;

IUserl LONGINT; (four longs reserved by Apple)

IUser2 LONGINT;

IUser3 LONGINT;

IUser4 LONGINT;

iNumFst INTEGER; {numeric edit items for std filter}

iNumLst INTEGER;

{ ... plus more stuff needed by the particular printing dialog.}

END;
TPPrDlg = ATPrDlg; (== a dialog ptr)

All of the information pertaining to a print dialog is kept in the TPrDlg record. This record

will be referred to frequently in the discussion below.

How the Dialogs Work

When your application calls PrStlDialog and PrJobDialog, the printer driver actually

calls a routine called PrDlgMain. This function is declared as follows:

FUNCTION PrDlgMain (hprint: THPrint; pDlgInit: ProcPtr): BOOLEAN;

PrDlgMain first calls the pDlglnit routine to set up the appropriate dialog (in Dlg),

dialog hook (pltemProc) and dialog event filter (pFilterProc) in the TPrDlg record

(shown above). For the job dialog, the address of PrJoblnit is passed to PrDlgMain.

For the style dialog, the address of P rSt 1 Ini t is passed. These routines are declared

as follows:

FUNCTION PrJobInit (hPrint: THPrint): TPPrDlg;

FUNCTION PrStlInit (hPrint: THPrint): TPPrDlg;

After the initialization routine sets up the TP rD 19 record, P rDlgMain calls ShowWindow

(the window is initially invisible), then it calls ModalDialog, using the dialog event filter

pointed to by the pFltrProc field. When an item is hit, the routine pointed to by the

pltemProc field is called and the items are handled appropriately. When the OK button

is hit (this includes pressing Return or Enter) the print record is validated. The print

record is not validated if the Cancel button is hit.

Technical Note #95 page 2 of 14 How To Add Items to the Print Dialogs

j,' Milii. Wi 2

How to Add Your Own Items

To modify the print dialogs, you need to change the TPrDlg record before the dialog isdrawn on the screen. You can add your own items to the item list, replace the addressesof the standard dialog hook and event filter with the addresses of your own routines andthen let the dialog code continue on its merry way.

For example, to modify the job dialog, first call PrJoblnit. PrJoblnit will fill in theTPrDlg record for you and return a pointer to that record. Then call PrDlgMain directly,passing in the address of your own initialization function. The example code'sinitialization function adds items to the dialog item list, saves the address of the standarddialog hook (in our global variable prPltemProc) and puts the address of our dialoghook into the pltemProc field of the TPrDlg record. Please note that your dialog hookmust call the standard dialog hook to handle all of the standard dialog's items.

Note: If you wish to have an event filter, handle it the same way that you do a dialoghook.

Now, here is an example (written in MPW Pascal) that modifies the job dialog. The samecode works for the style dialog if you globally replace 'Job' with 'Stl'. Also included is afunction (AppendDITL) provided by Lew Rollins (originally written in C, translated for thistechnical note to MPW Pascal) which demonstrates a method of adding items to the itemlist, placing them in an appropriate place, and expanding the dialog window's rectangle.

The MPW Pascal Example Program

PROGRAM ModifyDialogs;

USES
{$LOAD PasDurnp.dump}
MemTypes,QuickDraw,OSIntf,ToolIntf,PackIntf,MacPrint;

CONST
MyDITL = 256;
MyDFirstBox = 1;
MyDSecondBox = 2;

{Item number of first box in my DITL}

VAR
PrtJobDialog: TPPrDlg; {pointer to job dialog }
hPrintRec : THPrint; {Handle to print record }
FirstBoxValue, { value of our first additional box }
SecondBoxValue: Integer; { value of our second addtl. box
prFirstltem, { save our first item here }
prPItemProc : LongInt; {we need to store the old itemProc hereitemType : Integer; {needed for GetDItem/SetDItem calls }itemH : Handle;
i temBox : Rect;
err OSErr;
{--}

PROCEDURE _DataInit;
EXTERNAL;

Technical Note #95 page 3 of 14 How To Add Items to the Print Dialogs

(--)

PROCEDURE CallItemHandler(theDialog: DialogPtr; theItem: Integer; theProc:

LongInt) ;
INLINE $205F,$4E90; MOVE.L (A7)+,AO

JSR (AD)

(this code pops off theProc and then does a JSR to it, which puts the

real return address on the stack.)

{--)

FUNCTION AppendDITL(theDialog: DialogPtr; theDITLID: Integer): Integer;

{ version 0.1 9/11/86 Lew Rollins of Human-Systems Interface Group)

{ this routine still needs some error checking)

{ This routine appends all of the items of a specified DITL

onto the end of a specified DLOG - We don't even need to know the format

of the DLOG)

{ this will be done in 3 steps:

1. append the items of the specified DITL onto the existing DLOG

2. expand the original dialog window as required

3. return the adjusted number of the first new user item

)

TYPE
DITLItem = RECORD { First, a single item)

itmHndl: Handle; { Handle or procedure pointer for this item

itmRect: Rect; (Display rectangle for this item)

itmType: SignedByte; (Item type for this item - 1 byte)

itmData: ARRAY [0 .. 0] OF SignedByte; { Length byte of data

END; (DITLItem)

pDITLItem
hDITLItem

"DITLItem;
"pDITLItem;

ItemList RECORD { Then, the list of items)

dlgMaxIndex: Integer; { Number of items minus 1)

DITLItems: ARRAY [0 .. 0] OF DITLItem; { Array of items

END; {ItemList)

pItemList
hItemList

"ItemList;
"pItemList;

Intptr = "Integer;

VAR
offset : Point; (Used to offset rectangles of items being appended)

maxRect : Rect; (Used to track increases in window size)

hDITL hItemList; Handle to DITL being appended)

pItem pDITLItem; Pointer to current item being appended

hItems hItemList; Handle to DLOG's item list)

firstItem Integer; { Number of where first item is to be appended

newrtems, (Count of new items)

dataSize, (Size of data for current item)

i Integer; (Working index)

USB RECORD (we need this because itmData[O] is unsigned)

CASE Integer OF

Technical Note #95 page 4 of 14 How To Add Items to the Print Dialogs

,-
-------------------.._ 7

1 :
(SBArray: ARRAY [0 .. 1] OF SignedByte);

2 :
(Int: Integer);

END; {USB)

BEGIN (AppendDITL)
(

Using the original DLOG

1. Remember the original window Size.
2. Set the offset Point to be the bottom of the original window.
3. Subtract 5 pixels from bottom and right, to be added

back later after we have possibly expanded window.
4. Get working Handle to original item list.
5. Calculate our first item number to be returned to caller.
6. Get locked Handle to DITL to be appended.
7. Calculate count of new items.

)

maxRect := Dialogpeek(theDialog)~.window.port.portRect;

offset.v := maxRect.bottom;
offset.h := 0;
maxRect.bottom := maxRect.bottom - 5;
maxRect.right := maxRect.right - 5;
hItems := hItemList(DialogPeek(theDialog)~.items);

firstItem := hItems~~.dlgMaxIndex + 2;
hDITL := hItemList(GetResource('DITL',theDITLID));
HLock(Handle(hDITL»;
newItems := hDITLAA.dlgMaxIndex + 1;

For each item,
1. Offset the rectangle to follow the original window.
2. Make the original window larger if necessary.
3. fill in item Handle according to type.

pItem := @hDITL~~.DITLItems;

FOR i := 1 TO newItems DO BEGIN
OffsetRect(pItem~.itmRect,offset.h,offset.v);

UnionRect(pItem~.itmRect,maxRect,maxRect) ;

USB.Int := 0; (zero things out)
USB.SBArray[l] := pItem~.itmData[O];

{ Strip enable bit since it doesn't matter here.)
WITH p t t.em" DO

CASE BAND(itmType,$7F) OF
userItem: (Can't do anything meaningful with user items.)

itmHndl := NIL;
ctrlItem + btnCtrl,ctrlItem + chkCtrl,ctrlItem + radCtrl:{build Control}

itmHndl := Handle(NewControl(theDialog, (theWindow)
itmRect, { boundsRect)
StringPtr(@itmData[O])~, title)
true, { visible)
0, 0, 1, { va1ue, min, max)
BAND(itmType,$03), { procID
0)); (refCon)

ctrlItem + resCtrl: BEGIN { Get resource based Control }

Technical Note #95 page 5 of 14 How To Add Items to the Print Dialogs

..-..------------------

itmHndl := Handle(GetNewControl(IntPtr(@it
mData[l])~,{ controlID }

theDialog»; { theWindow }

ControlHandle(itmHndl)~~.contrlR
ect := itmRect; {give it the right

rectangle}

{An actionProc for a Control should be installed here}

END; {Case ctrlltem + resCtrl}

statText,editText: { Both need Handle to a copy of their text. }

err := PtrToHand(@itmData[l], { Start of data}

itmHndl, { Address of new Handle }

USB.lnt); { Length of text}

iconItem: {Icon needs resource Handle. }

pltemA.itmHndl := Getlcon(IntPtr(@itmData[l])~); { ICON resID }

picltem: {Picture needs resource Handle. }

pltem~.itmHndl := Handle(GetPicture(IntPtr(@itmD
ata[l])~»;{PICT resID}

OTHERWISE
itmHndl := NIL;

END; {Case}

dataSize := BAND(USB.lnt + 1,$FFFE);

{now advance to next item}

pltem := pDITLltem(Ptr(ord4(@pltem~)+ dataSize + sizeof(DITLltem»);

END; {for}

err := PtrAndHand
(@hDITL~A.DITLltems,Handle(h

ltems),GetHandleSize(Handle(
hDITL»);

hltems~A.dlgMaxlndex := hltems~A.dlgMaxlndex + newltems;

HUnlock(Handle(hDITL»;

ReleaseResource(Handle(hDITL»;

maxRect.bottom := maxRect.bottom + 5;

maxRect.right := maxRect.right + 5;

SizeWindow(theDialog,maxRect.right,maxRect.bottom,true) ;

AppendDITL := first Item;

END; {AppendDITL}

{--}

PROCEDURE MyJobltems(theDialog: DialogPtr; itemNo: Integer);

{

This routine replaces the routine in the pltemProc field in the

TPPrDlg record. The steps it takes are:

1. Check to see if the item hit was one of ours. This is done by "localizing"

the number, assuming that our items are numbered from O•• n

2. If it's one of ours then case it and Handle appropriately

3. If it isn't one of ours then call the old item handler

}

VAR
Myltem,firstltem: Integer;

thePt : Point;

thePart : Integer;

theValue Integer;

debugPart Integer;

BEGIN {MyJobltems}

first Item := prFirstItem; { remember, we saved this in myJobDlglnit }

Myltem := itemNo - firstltem + 1; { "localize" current item No }

IF Myltem > a THEN BEGIN { if localized item> 0, it's one of ours}

{ find out which of our items was hit }

GetDltem(theDialog,itemNo,itemType,itemH,itemBox);

Technical Note #95 page 6 of 14 How To Add Items to the Print Dialogs

il i?itIl'WMtW i8 iM~---~·-----""'-----i'i!i-"iIIILIIlIlIIiiil'lil'lImM!1'iB!·!I,~IlIl·Il··~_ilJ·.II·
•••••••••••••11111111•••••

item handler, whose address is saved

CASE MyItem OF
MyDFirstBox: BEGIN

{ invert value of FirstBoxValue and redraw it }
FirstBoxValue := 1 - FirstBoxValue;
SetCtlValue(ControlHandle(itemH),FirstBoxValue);

END; {case MyDFirstBox}
MyDSecondBox: BEGIN

{ invert value of SecondBoxValue and redraw it }
SecondBoxValue := 1 - SecondBoxValue;
SetCtlValue(ControlHandle(itemH),SecondBoxValue) ;

END; {case MyDSecondBox}
OTHERWISE

Debug;
END;

END
ELSE

{ OH OH - We got an item we didn't expect}
{Case}

{ if MyItem > 0 }
{ chain to standard
in prPItemProc }

CallItemHandler(theDialog,itemNo,prPItemProc);
END; { MyJobItems }

{--}
FUNCTION MyJobDlgInit(hPrint: THPrint): TPPrDlg;

{

This routine appends items to the standard job dialog and sets up the
user fields of the printing dialog record TPRDlg
This routine will be called by PrDlgMain
This is what it does:
1. First call PrJobInit to fill in the TPPrDlg record.
2. Append our items onto the old DITL. Set them up appropriately.
3. Save the address of the old item handler and replace it with ours.
4. Return the Fixed dialog to PrDlgMain.
}

VAR
firstItem Integer; { first new item number }

BEGIN
first Item

{MyJobDlgInit}
.= AppendDITL(DialogPtr(PrtJobDialog),MyDITL);

prFirstItem := firstItem; { save this so MyJobItems can find it }

{ now we'll set up our DITL items - The "First Box" }
GetDItem(DialogPtr(PrtJobDialog) ,firstItem, itemType, itemH,itemBox);
SetCtlValue(ControlHandle(itemH),FirstBoxValue) ;

{ now we'll set up the second of our DITL items - The "Second Box" }
GetDItem(DialogPtr(PrtJobDialog),firstItem + 1,itemType,itemH,itemBox);
SetCtlValue(ControlHandle(itemH),SecondBoxValue);

{ Now comes the part where we patch in our item handler. We have to save
the old item handler address, so we can call it if one of the standard
items is hit, and put our item handler's address
in pItemProc field of the TPrDlg struct}

prPItemProc := LongInt(PrtJobDialogA.pItemProc);

{ Now we'll tell the modal item handler where our routine is

Technical Note #95 page 7 of 14 How To Add Items to the Print Dialogs

PrtJobDialogA.pIternProc := ProcPtr(@MyJobItems);

(PrDlgMain expects a pointer to the modified dialog to be returned)

MyJobDlgInit := PrtJobDialog;

END; (myJobDlgInit)

{--)

FUNCTION Print: OSErr;

VAR
bool BOOLEAN;

BEGIN (Print)

hPrintRec .= THPrint(NewHandle(sizeof(TPrint)));

PrintDefault(hPrintRec);

bool := PrValidate(hPrintRec);

IF (PrError <> noErr) THEN BEGIN

Print := PrError;

Exit(Print);

END; (If)

(call PrJobInit to get pointer to the invisible job dialog)

PrtJobDialog := PrJobInit(hPrintRec);

IF (PrError <> noErr) THEN BEGIN

Print := PrError;

Exit(Print);

END; (If)

(Here's the line that does it all!)

IF NOT (PrDlgMain(hPrintRec,@MyJobDlgInit)) THEN BEGIN

Print := cancel;

Exit (Print) ;

END; (If)

IF PrError <> noErr THEN Print .= PrError;

{ that's all for now

END; { Print

{--}

BEGIN (PROGRAM)

UnloadSeg(@_DataInit); (remove data initialization code before any

allocations)
InitGraf(@thePort);

InitFonts;
FlushEvents(everyEvent,O) ;

InitWindows;

InitMenus;
TEInit;
InitDialogs(NIL);

InitCursor;

(call the routine that does printing)

Technical Note #95 page 8 of 14

'P'II

How To Add Items to the Print Dialogs

•

FirstBoxValue := 0; {value of our first additional box
SecondBoxValue := 0; {value of our second addtl. box)
PrOpen; {Open the Print Manager)
IF PrErrer = noErr THEN
err := Print (This actually brings up the modified Job dialog)

ELSE BEGIN
{tell the user that PrOpen failed)

END;

PrClese;
END.

{ Close the P~~nt Manager and leave)

Technical Note #95 page 9 of 14 How To Add Items to the Print Dialogs

The Lightspeed C Example Program

/* NOTE: Apple reserves the top half of the screen (where the current DITL
items are located). Applications may use the bottom half of the
screen to add items, but should not change any items in the top half
of the screen. An application should expand the print dialogs only
as much as is absolutely necessary.

*/

/* Note: A global search and replace of 'Job' with 'Stl' will produce
code that modifies the style dialogs */

#include <DialogMgr.h>
#include <MacTypes.h>
#include <Quickdraw.h>
#include <ResourceMgr.h>
#include <WindowMgr.h>
#include <pascal.h>
#include <printmgr.h>
#define nil OL

static TPPrDlg PrtJobDialog; /* pointer to job dialog */

/* This points to the following structure:

Apple Computer)

(The Dialog window)
(The Filter Proc.)
(The Item evaluating proc.
we'll change this)
(The user's print record.)hPrintUsr;

fDolt;
fDone;

reserved by
IUserl;
IUser2;
IUser3;
IUser4;

DIg;
pFltrProc;
pltemProc;

struct {
DialogRecord
ProcPtr
ProcPtr

THPrint
Boolean
Boolean

(Four longs
long
long
long
long

} TPrDlg; *TPPrDlg;
*/

/* Declare 'pascal' functions
pascal Boolean PrDlgMain();
pascal TPPrDlg PrJoblnit();
pascal TPPrDlg MyJobDlglnit();
pascal void MyJobltems();

and procedures */
/* Print manager's dialog handler */
/* Gets standard print job dialog. */
/* Our extent ion to PrJoblnit */
/* Our modal item handler */

#define MyDITL 256 /* resource ID of my DITL to be spliced
on to job dialog */

THPrint hPrintRec;
short FirstBoxValue = 0;
short SecondBoxValue = 0;
long prFirstltem;
long prPltemProc;

/* handle to print record */
/* value of our first additional box */
/* value of our second addtl. box */
/* save our first item here */

/* we need to store the old itemProc here */

Technical Note #95 page 1Oof 14 How To Add Items to the Print Dialogs

¥ gin

/*---*/
WindowPtr MyWindow;
OSErr err;
Str255 myStr;

main ()
{

Rect myWRect;

InitGraf(&thePort);
InitFonts () ;
InitWindows () ;
InitMenus();
InitDialogs(nil) ;
InitCursor();
SetRect(&myWRect,50,260,350,340) ;

/* call the routine that does printing */
PrOpen();
err = Print();

PrClose();
} /* main */

/*--*
/

OSErr Print ()

/* call PrJoblnit to get pointer to the invisible job dialog */
hPrintRec = (THPrint) (NewHandle (sizeof (TPrint)));
PrintDefault(hPrintRec);
PrValidate(hPrintRec) ;
if (PrError() != noErr)

return PrError();

PrtJobDialog = PrJoblnit(hPrintRec);
if (PrError() != noErr)

return PrError();

if (!PrDlgMain(hPrintRec, &MyJobDlglnit)) /* this line does all the
stuff */

return Cancel;

if (PrError () != noErr)
return PrError();

/* that's all for now */

} /* Print */

/*--*
/

pascal TPPrDlg MyJobDlglnit (hPrint)
THPrint hPrint;

Technical Note #95 page 11 of 14 How To Add Items to the Print Dialogs

/* this routine appends items to the standard job dialog and sets up the

user fields of the printing dialog record TPRDIg

This routine will be called by PrDIgMain */

short

short
Handle
Rect

first Item;

itemType;
itemH;
itemBox;

/* first new item number */

/* needed for GetDItem/SetDItem call */

first Item AppendDITL (PrtJobDialog, MyDITL); /*call routine to do

this */

prFirstItem = firstItem; /* save this so MyJobItems can find it */

/* now we'll set up our DITL items -- The "First Box" */

GetDItem(PrtJobDialog,firstItem,&itemType,&itemH,&itemBox);

SetCtIValue(itemH,FirstBoxValue) ;

/* now we'll set up the second of our DITL items -- The "Second Box" */

GetDItem(PrtJobDialog,firstItem+l,&itemType,&itemH,&itemBox);

SetCtIValue(itemH,SecondBoxValue);

/* Now comes the part where we patch in our item handler. We have to save

the old item handler address, so we can call it if one of the

standard items is hit, and put our item handler's address

in pItemProc field of the TPrDIg struct

*/

prPItemProc = (long)PrtJobDialog->pItemProc;

/* Now we'll tell the modal item handler where our routine is */

PrtJobDialog->pItemProc = (ProcPtr)&MyJobItems;

/* PrDIgMain expects a pointer to the modified dialog to be returned */

return PrtJobDialog;

/*myJobDlgInit*/

/*---*/

/* here's the analogue to the SF dialog hook */

pascal void MyJobItems(theDialog,itemNo)

TPPrDIg theDialog;

short itemNo;

{ /* MyJobltems */
short myItem;

short first Item;

short
Handle
Rect

itemType;
itemH;
itemBox;

/* needed for GetDItem/SetDItem call */

first Item
*/

prFirstItem; /* remember, we saved this in myJobDlgInit

Technical Note #95 page 120f 14 HowTo Add Items to the-Print Dialogs

myltem = itemNo-firstltem+1; /* "localize" current item No */
if (myltem> 0) /* if localized item> 0, it's one of ours */

/* find out which of our items was hit */
GetDltem(theDialog,itemNo,&itemType,&itemH,&itemBox) ;
switch (myltem)
{

case 1:
/* invert value of FirstBoxValue and redraw it */
FirstBoxValue ~= 1;
SetCtIValue(itemH,FirstBoxValue) ;
break;

case 2:
/* invert value of SecondBoxValue and redraw it */
SecondBoxValue ~= 1;
SetCtIValue(itemH,SecondBoxValue) ;
break;

default: Debugger(); /* OH OH */
} /* switch */

} /* if (myltem > 0) */
else /* chain to standard item handler, whose address is saved in

prP ItemP roc * /

CaIIPascal(theDialog,itemNo,prPltemProc) ;
}

} /* MyJobltems */

Technical Note #95 page 130f 14 How To Add Items to the Print Dialogs

The Rez Source

#include "types.r"

resource 'DITL' (256) {
{ / * array DITLarray: 2 elements */
/* [1] */.
{8, 0, 24, 112},
CheckBox {

enabled,
"First Box"

} ;

/* [2] */
{8, 175, 24, 287},
CheckBox {

enabled,
"Second Box"

}

}

} ;

Technical Note #95 page 140f 14 How To Add Items to the Print Dialogs

Macintosh Technical Notes

#96: SCSI Bugs

(j

See also:

Written by:
Modified by:
Modified by:
Updated:

The SCSI Manager
SCSI Developer's Package

Steve Flowers
Bryan Stearns
B03b Johnson

October 1, 1986
November 15, 1986
July 1, 1987
March 1, 1988

There are a number of problems in the SCSI Manager; this note lists the ones
we know about, along with an explanation of what we're doing about them.
Changes made for the 2/88 release are made to more accurately reflect the
state of the SCSI Manager. System 4.1 and 4.2 are very similar; one bug was
fixed in System 4.2.

There are several categories of SCSI Manager problems:

1. Those in the ROM boot code
(Before the System file has been opened, and hence, before any patches could possibly
fix them.)
2. Those that have been fixed in System 3.2
3. Those that have been fixed in System 4.1/4.2
4. Those that are new in System 4.114.2
5. Those that have not yet been fixed.

The problems in the ROM boot code can only be fixed by changing the ROMs. Most of
the bugs in the SCSI Manager itself have been fixed by the patch code in the System
3.2 file. There are a few problems, though, that are not fixed with System 3.2-most of
these bugs have been corrected in System 4.1/4.2. Any that are not fixed will be detailed
here. ROM code for future machines will, of course, include the corrections.

ROM boot code problems

• In the process of looking for a bootable SCSI device, the boot code issues a SCSI
bus reset before each attempt to read block 0 from a device. If the read fails for any
reason, the boot code goes on to the next device. SCSI devices which implement the
Unit Attention condition as defined by the Revision 17B SCSI standard will fail to
boot in this case. The read will fail because the drive is attempting to report the Unit
Attention condition for the first command it receives after the SCSI bus reset. The
boot code does not read the sense bytes and does not retry the failed command; it
simply resets the SCSI bus and goes on to the next device.

Technical Note #96 page 1 of 7

z

SCSI Bugs

If no other device is bootable, the boot code will eventually cycle back to the same

SCSI device 10, reset the bus (causing Unit Attention in the drive again), and try

to read block 0 (which fails for the same reason).

The 'new' Macintosh Plus ROMs that are included in the platinum Macintosh Plus I
have only one change. The change was to simply do a single SCSI Bus Reset after

power up instead of a Reset each time through the SCSI boot loop. This was done to

allow Unit At tent ion drives to be bootable. It was an object code patch (affecting

approximately 30 bytes) and no other bugs were fixed. For details on the three

versions of Macintosh Plus ROMs, see Technical Note #154.

We recommend that you choose an SCSI controller which does not require the Uni t

At tent ion feature-either an older controller (most of the SCSI controllers currently

available were designed before Revision 17B), or one of the newer

Revision-17B-compatible controllers which can enable/disable Unit Attention as

a formatting option (such as those from Seagate, Rodime, et al). Since the vast

majority of Macintosh Plus computers have the ROMs which cannot use Un it

Attention drives, we still recommend that you choose an SCSI controller that does

not require the Unit Attention feature.

• If an SCSI device goes into the Status phase after being selected by the boot code,

this leads to the SCSI bus being left in the Status phase indefinitely, and no SCSI

devices can be accessed. The current Macintosh Plus boot code does not handle

this change to Status phase, which means that the presence of an SCSI device

with this behavior (as in some tape controllers we've seen) will prevent any SCSI

devices from being accessed by the SCSI Manager, even if they already had drivers

loaded from them. The result is that any SCSI peripheral that is turned on at boot

time must not go into Status phase immediately after selection; otherwise, the 4
Macintosh Plus SCSI bus will be left hanging. Unless substantially revised ROMs are

released for the Macintosh Plus (highly unlikely within the next year or so), this

problem will never be fixed on the Macintosh Plus, so you should design for old

ROMs.

• The Macintosh Plus would try to read 256 bytes of blocks 0 and 1, ignoring the extra

data. The Macintosh SE and Macintosh II try to read 512 bytes from blocks 0 and 1,

ignoring errors if the sector size is larger (but not smaller) than 512 bytes. Random

access devices (disks, tapes, CD ROMS, etc.) can be booted as long as the blocks

are at least 512 bytes, blocks 0, 1 and other partition blocks are correctly set up, and

there is a driver on it With the new partition layout (documented in Inside Macintosh

volume V), more than 256 bytes per sector may be required in some partition map

entries. This is why we dropped support for 256-byte sectors. Disks with tag bytes

(532-byte sectors) or larger block sizes (1 K, 2K, etc.) can be booted on any

Macintosh with an SCSI port. Of course, the driver has to take care of data blocking

and de-blocking, since HFS likes to work with 512-byte sectors.

Technical Note #96 page 2 of 7

iltt}· 32@# 4

SCSI Bugs

I

Problems with ROM SCSI Manager routines

Note that the following problems are fixed after the System file has been opened; for a
device to boot properly, it must not depend on these fixes. The sample SCSI driver,
available from APDA, contains an example of how to find out if the fixes are in place.

• Prior to System file 3.2, blind transfers (both reads and writes) would not work
properly with many SCSI controllers. Since blind operation depends on the drive's
ability to transfer data fast enough, it is the responsibility of the driver writer to make
sure blind operation is safe for a particular device.

• Prior to System file 3.2, the SCSI Manager dropped a byte when the driver did
two or more SCSIReads or SCSIRBlinds in a row. (Each Read or RBlind has to
have a Transfer Information Block (TIB) pointer passed in.) The TIB itself can be as
big and complex as you want-it is the process of returning from one SCS IRead or
SCSIRBlind and entering another one (while still on the same SCSI command) that
causes the first byte for the other SCSIReads to be lost.

Note that this precludes use of file-system tags. Apple no longer recommends that
you support tags; see Technical Note #94 for more information.

• Prior to System file 3.2, SCSIStat didn't work; the new version works correctly.

• Running under System file 3.2, the SCSI Manager does not check to make sure
that the last byte of a write operation (to the peripheral) was handshaked while
operating in pseudo-DMA mode. The SCSI Manager writes the final byte to the NCR
5380's one-byte buffer and then turns pseudo-DMA mode off shortly thereafter
(reported to be 10-15 microseconds). If the peripheral is somewhat slow in actually
reading the last byte of data, it asserts REQ after the Macintosh has already turned off
pseudo-DMA mode and never gets an ACK. The CPU then expects to go into the
Status phase since it thinks everything went OK, but the peripheral is still waiting for
ACK. Unless the driver can recover from this somehow, the SCSI bus is 'hung' in the
Data Out phase. In this case, all successive SCSI Manager calls will fail until the
bus is reset.

• Running under System file 4.1/4.2, the SCSI Manager waits for the last byte of
a write operation to be handshaked while operating in pseudo-DMA mode; it checks
for a final DRQ (or a phase change) at the end of a SCSIWrite or SCSIWBlind before
turning off the pseudo-DMA mode. Drivers that could recover from this problem by
writing the last byte again if the bus was still in a Data Ou t phase will still work
correctly, as long as they were checking the bus state.

• Running under System file 3.2, the SCSI Manager does not time out if the
peripheral fails to finish transferring the expected number of bytes for polled reads
and writes. (Blind operation does poll for the first byte of each requested data transfer
in the Transfer Information Block.)

Technical Note #96 page 3 of7

AJWM

SCSI Bugs

• Running under System file 4.1/4.2, SCSIRead and SCSIWrite return an error
to the caller if the peripheral changes the bus phase in the middle of a transfer, as
might happen if the peripheral fails to transfer the expected number of bytes. The
computer is no longer left in a hung state.

• Running under System file 3.2, the Selection timeout value is very short (900 4
microseconds). Patches to the SCSI Manager in System 4.1/4.2 ensure that this
value is the recommended 250 milliseconds.

• Running under System file 3.2, the SCSI Manager routine SCSIGet (which
arbitrates for the bus) will fail if the BSY line is still asserted. Some devices are a bit
slow in releasing BSY after the completion of an SCSI operation, meaning that BSY
may not have been released before the driver issues a SCSIGet call to start the next
SCSI operation. A work-around for this is to call scs IGet again if it failed the first
time. (Rarely has it been necessary to try it a third time.) This assumes, of course, that
the bus has not been left 'hanging' by an improperly terminated SCSI operation
before calling scs IGet.

• Running under System file 4.1/4.2, the scs IGet function has been made more
tolerant of devices that are slow to release the BSY line after a SCSI operation. The
SCSI Manager now waits up to 200 milliseconds before returning an error.

Problems with the SCSI Manager that haven't been fixed yet

These problems currently exist in the Macintosh Plus, SE, and II SCSI Manager. We
plan to fix these problems in a future release of the System Tools disk, but in the mean
time, you should try to work around the problems (but don't "require" the problems!). 4
• Multiple calls to SCS IRead or SCS IRBI ind after issuing a command and before

calling SCSIComplete may not work. Suppose you want to read some mode sense
data from the drive. After sending the command with SCSICmd, you might want to call
SCSIRead with a TIS that reads four bytes (typically a header). After reading the field
(in the four-byte header) that tells how many remaining bytes are available, you
might call SCSIRead again with a TIS to read the remaining bytes. The problem is
that the first byte of the second scs IRead data will be lost because of the way the
SCSI Manager handles reads in pseudo-DMA mode. The work-around is to issue
two separate SCSI commands: the first to read only the four-byte header, the second
to read the four-byte header plus the remaining bytes. We recommend that you not
use a clever TIS that contains two data transfers, the second of which gets the
transfer length from the first transfer's received data (the header). These two step
TISs will not work in the future. This bug will probably not be fixed.

• On read operations, some devices may be slow in deasserting REQ after sending the
last byte to the CPU. The current SCSI Manager (all machines) will return to the
caller without waiting for REQ to be deasserted. Usually the next call that the driver
would make is SCSIComplete. On the Macintosh SE and II, the SCSIComplete call
will check the bus to be sure that it is in Status phase. If not, the SCSI Manager will
return a new error code that indicates the bus was in Data In/Data Out phase when
scs IComplete was called. The combination of the speed of the Macintosh II and a 4

Technical Note #96

2iiii

page 4 of7

.,.

SCSI Bugs

slow peripheral can cause SCSIComplete to detect that the bus is still in Data In
phase before the peripheral has finally changed the bus to Stat u s phase. This
results in a false error being passed back by SCSIComplete.

• The scComp (compare) TIB opcode does not work in System 4.1 on the Macintosh
Plus only. It returns an error code of 4 (bad parameters). This has been fixed in
System 4.2.

Other SCSI Manager Issues

• At least one third-party SCSI peripheral driver used to issue SCSI commands from a
VBL task. It didn't check to see if the bus was in the free state before sending the
command! This is guaranteed to wipe out any other SCSI command that may have
been in progress, since the SCSI Manager on the Macintosh Plus does not mask out
(or use) interrupts.

We strongly recommend that you avoid calling the SCSJ Manager from interrupt
handlers (such as VBL tasks). If you must send SCSI commands from a VBL task (like
for a removable media system), do a SCSIStat call first to see if the bus is currently
busy. If it's free (BSY is not asserted), then it's probably safe; otherwise the VBL task
should not send the command. Note that you can't call SCSIStat before the System
file fixes are in place. Since SCSI operations during VBL are not guaranteed, you
should check all errors from SCSI Manager calls.

• A new SCSI Manager call will be added in the tuture. This wm be a high-level call; it
will have some kind of parameter block in which you give a pointer to a command
buffer, a pointer to your TIB, a pointer to a sense data buffer (in case something goes
wrong, the SCSI Manager will automatically read the sense bytes into the buffer for
you), and a few other fields. The SCSI Manager will take care of arbitration, selection,
sending the command, interpreting the TIB for the data transfer, and getting the status
and message bytes (and the sense bytes, if there was an error). It should make SCSI
device drivers much easier to write, since the driver will no longer have to worry about
unexpected phase changes, getting the sense bytes, and so on. In the future, this will
be the recommended way to use the SCSI Manager.

• The SCSI Manager (all machines) does not currently support interrupt-driven
(asynchronous) operations. The Macintosh Plus can never support it since there is no
interrupt capability, although a polled scheme may be implemented by the SCSI
Manager. The Macintosh SE has a maskable interrupt for IRQ, and the Macintosh II
has maskable interrupts for both IRQ and DRQ. Apple is working on an implementation
of the SCSI Manager that will support asynchronous operations on the Macintosh II
and probably on the SE as well. Because the interrupt hardware will interact
adversely with any asynchronous schemes that are polled, it is strongly
recommended that third parties do not attempt asynchronous operations until the new
SCSI Manager is released. Apple will not attempt to be compatible with any products
that bypass some or all of the SCSI Manager. In order to implement software-based
(polled) asynchronous operations it is necessary to bypass the SCSI Manager.

Technical Note #96

iilL

page 5 of 7

tW ,

SCSI Bugs

The SCSI Manager section of the alpha draft of Inside Macintosh volume V
documented the Disconnect and Reselect routines which were intended to be used
for asynchronous I/O. Those routines cannot be used. Those routines have been
removed from the manual. Any software that uses those routines will have to be
revised when the SCSI Manager becomes interrupt-driven. Drivers which send SCSI t
commands from VBL tasks may also have to be modified.

Hardware in the SCSI

There is some confusion on how many terminators can be used on the bus, and the best
way to use them. There can be no more than two terminators on the bus. If you have
more than one SCSI drive you must have two terminators. If you only have one drive,
you should use a single terminator. If you have more than one drive, the two terminators
should be on opposite ends of the chain. The idea is to terminate both ends of the wire
that goes through all of the devices. One terminator should be on the end of the system
cable that comes out of the Macintosh. The other terminator would be on the very end of
the last device on the chain. If you have an SE or II with an internal hard disk, there is
already one terminator on the front of the chain, inside the computer.

On the Macintosh SE and II, there is additional hardware support for the SCSI bus
transfers in pseudo-DMA mode. The hardware makes it possible to handshake the data
in Blind mode so that the Blind mode is safe for all transfers. On the Macintosh Plus, the
Blind transfers are heavily timing dependent and can overrun or underrun during the
transfer with no error generated. Assuring that Blind mode is safe on the Macintosh Plus
depends upon the peripheral being used. On the SE and II, the transfer is hardware
assisted to prevent overruns or underruns. ~

Changes in SCSI for SE and II

The changes made to the SCSI Manager found in the Macintosh SE and Macintosh II
are primarily bug fixes. No new functionality was added. The newer SCSI Manager is
more robust and has more error checking. Since the Macintosh Plus SCSI Manager
only did limited error checking, it is possible to have code that would function (with bugs)
on the Macintosh Plus, but will not work correctly on the SE or II. The Macintosh Plus
could mask some bugs in the caller by not checking errors. An example of this is
sending or receiving the wrong number of bytes in a blind transfer. On the Macintosh
Plus, no error would be generated since there was no way to be sure how many bytes
were sent or received. On the SE and II, if the wrong number of bytes are transferred an
error will be returned to the caller. The exact timing of transfers has changed on the SE
and II as well, since the computers run at different speeds. Devices that are unwittingly
dependent upon specific timing in transfers may have problems on the newer
computers. To find problems of this sort it is usually only necessary to examine the error
codes that are passed back by the SCSI Manager routines. The error codes will
generally point out where the updated SCSI Manager found errors.

Technical Note #96 page 6 of 7 SCSI Bugs

To report other bugs or make suggestions

Please send additional bug reports and suggestions to us at the address in Technical
Note #0. Let us know what SCSI controller you're using in your peripheral, and whether
you've had any particularly good or bad experiences with it. We'll add to this note as
more information becomes available.

•
Technical Note #96 page 7 of 7

-,
SCSI Bugs

Macintosh Technical Notes

#97: PrSetError Problem

Written by:
Updated:

Mark Baumwell November 15,1986
March 1, 1988

This note formerly described a problem in Lisa Pascal glue for the
PrSetError routine. The glue in MPW (and most, if not all, third party
compilers) does not have this problem.

Technical Note #97 page 1 of 1 PrSetError Problem

•

Macintosh Technical Notes

#98: Short-Circuit Booleans in Lisa Pascal

Written by:
Updated:

Mark Baumwell November 15, 1986
March 1, 1988

This note formerly described problems with the Lisa Pascal compiler. These
problems have been fixed in the MPW Pascal compiler.

Technical Note #98

. t

page 1 of 1 Short-Circuit Booleans in Lisa Pascal

'ii1i 1ft; ill it

NI

Macintosh Technical Notes

#99: Standard File Bug in System 3.2

See also:

Written by:
Updated:

The Standard File Package

Jim Friedlander November 15, 1986
March 1, 1988

This note formerly described a bug in Standard File in System 3.2. This bug
has been fixed in more recent Systems.

•

Technical Note #99 page 1 of 1 Standard File Bug in System 3.2

Macintosh Technical Notes

#100: Compatibility with Large-Screen Displays

See also: Technical Note #2-Macintosh Compatibility Guidelines

Written by:
Updated:

Bryan Stearns November 15, 1986
March 1, 1988

A number of third-party developers have announced large-screen display
peripherals for Macintosh. One of them, Radius Inc., has issued a set of
guidelines for developers who wish to remain compatible with their Radius
FPD; unfortunately, one of their recommendations can cause system
crashes. This note suggests a more correct approach.

On the first page of the appendix to their guidelines, "How to be FPO Aware," Radius
recommends the following:

"First, to detect the presence of a Radius FPO, you should check address $C00008

Unfortunately, this assumes that you're running on a Macintosh or Macintosh Plus; this
test will not work on Macintosh XL, nor on a Macintosh II. Since these displays weren't
designed to work with systems other than Macintosh and Macintosh Plus, you should
make sure you're running on one of these systems before addressing //0 locations
(such as those for an add-on display).

Before testing for the presence of any large-screen display, you should first check the
machine 10; it's the byte located at (ROMBASE) +8 (that is, take the long integer at the
low-memory location ROMBASE [$2AE), and add 8 to get the address of the machine 10
byte. On a Macintosh or Macintosh Plus, this address will work out to be $ 4 00008;
however, use the low-memory location, to be compatible with future systems that may
have the ROM at a different address!).

The machine 10 byte will be $00 for all current Macintosh systems. If the value isn't $00,
you can assume that no large-screen display is present, but don't forget to follow
Technical Note #2's guidelines for screen size independence!

Note: If you are a developer of an add-on large-screen display, we'd be happy
to review your guidelines for developers in advance of distribution;
please send them to us at the address for comments in Technical Note
#0. Future versions of this note may recommend general guidelines for
dealing with add-on large-screen displays.

• Tn

Technical Note #100 page 1 of 1 Compatibility with Large-Screen Displays

•

Macintosh Technical Notes

#101: CreateResFile and the Poor Man's Search Path

See also: The File Manager
The Resource Manager
Technical Note #77-HFS Ruminations

Written by:
Updated:

Jim Friedlander January 12, 1987
March 1, 1988

CreateResFile checks to see if a resource file with a given name exists,
and if it does, returns a dupFNErr (-48) error. Unfortunately, to do this check,
CreateResFile uses a call that follows the Poor Man's Search Path (PMSP).

CreateResFile checks to see if a resource file with a given name exists, and if it does,
returns a dupFNErr (-48) error. Unfortunately, to do the check, CreateResFile calls
PBOpenRF, which uses the Poor Man's Search Path (PMSP). For example, if we have a
resource file in the System folder named 'MyFi le' (and no file with that name in the
current directory) and we call CreateResFile ('MyFile'), ResError will return a
dupFNE r r, since PBOpenRF will search the current directory first, then search the
blessed folder on the same volume. This makes it impossible to use CreateResFile to
create the resource file 'MyFi le' in the current directory if a file with the same name
already exists in a directory that's in the PMSP.

To make sure that CreateResFile will create a resource file in the current directory
whether or not a resource file with the same name already exists further down the
PMSP, call_Create (PBCreate or Create) before calling CreateResFile:

err := Create('MyFile',a,myCreator,myType);
{a for VRefNum means current volume/directory}

CreateResFile('MyFile') ;
err := ResError; {check for error}

In MPWC:

err = Create("\pMyFile",a,myCreator,myType);
CreateResFile("\pMyFile");
err = ResError();

This works because _Create does not use the PMSP. If we already have 'MyFile' in
the current directory, Create will fail with a dupFNErr, then, if 'MyFile' has an empty
resource fork, CreateResFile will write a resource map, otherwise, CreateResFile
will return dupFNErr. If there is no file named 'MyF ile' in the current directory, _Create
will create one and then CreateResFile will write the resource map.
Notice that we are intentionally ignoring the error from Create, since we are calling it
only to assure that a file named 'MyF i le' does exist in the current directory.

Technical Note #101 page 1 of 3 CreateResFile and the PMSP

,g

Please note that SFPutFile does not use the PMSP, but that FSDelete does.
SFPutFile returns the vRefNum/WDRefNum of the volume/folder that the user selected.
If your program deletes a resource file before creating one with the same name based
on information returned from SFPutF ile, you can use the following strategy to avoid •
deleting the wrong file, that is, a file that is not in the directory specified by the •
vRefNum/WDRefNum returned by SFPutFile, but in some other directory in the PMSP:

VAR
wher
reply
err
oldVol

Point;
SFReply;
OSErr;
Integer;

wher.h := 80; wher.v := 90;
SFPutFile(wher, ",' ',NIL,reply);
IF reply.good THEN BEGIN

err := GetVol(NIL,oldVol); {So we can restore it later}
err := SetVol(NIL,reply.vRefNum); {for the CreateResFile call}

{Now for the Create!CreateResFile calls to create a resource file that
we know is in the current directory}

err := Create(reply.fName,reply.vRefNum,myCreator,myType);
CreateResFile(reply.fName); {we'll use the ResError from this ... }

CASE ResError OF
noErr:{the create succeeded, go ahead and work with the new

resource file -- NOTE: at this point, we don't know
what's in the data fork of the file!!} ;

dupFNErr: BEGIN {duplicate file name error}
(the file already existed, so, let's delete it. We're now
sure that we're deleting the file in the current directoryl

err:= FSDelete (reply.fName, reply.vRefNum) ;

{now that we've deleted the file, let's create the new one,
again, we know this will be in the current directory}

err:= Create (reply.fName, reply.vRefNum,myCreator,myType) ;
CreateResFile(reply.fName) ;

END; {CASE dupFNErr}
OTHERWISE {handle other errors}

END; {Case ResError}
err := SetVol (NIL, oldVol) ; {restore the default directory}

END; {If reply.good}

Technical Note #101 page 2 of 3 CreateResFile and the PMSP

In MPWC:

Point
SFReply
OSErr
short

wher;
reply;
err;
oldVol;

wher.h = 80; wher.v = 90;

SFPutFile(wher,"","",nil,&reply);

if (reply.good)
(

err = GetVol (nil, &oldVol) ;

/*So we can restore it later*/

err = SetVol (nil, reply.vRefNum) ;/*for the CreateResFile call*/

/*Now for the Create/CreateResFile calls to create a resource file

that we know is in the current directory*/

err = Create (&reply.fName, reply.vRefNum,myCreator,myType) ;

CreateResFile(&reply.fName) ;

/*we'll use the ResError from this ... */

switch (ResError())
(

case noErr:;/*the create succeeded, go ahead and work with the

new resource file -- NOTE: at this point, we don't

know what's in the data fork of the file! !*/

break; /* case noErr*/

case dupFNErr: /*duplicate file name error*/

/*the file already existed, so, let's delete it.

We're now sure that we're deleting the file in the

current directory*/

err= FSDelete (&reply.fName, reply.vRefNum) ;

/*now that we've deleted the file, let's create the

new one, again, we know this will be in the current

directory*/

err= Create(&reply.fName,reply.vRefNum,
myCreator,myType) ;

CreateResFile(&reply.fName) ;

/*case dupFNErr*/
/*handle other errors*/

break;
default: ;
/* switch */

err = SetVol(nil,oldVol) ;/*restore

/*if reply.good*/
the default directory*/

Note: OpenResFile uses the PMSP too, so you may have to adopt similar strategies to

make sure that you are opening the desired resource file and not some other file further

down the PMSP. This is normally not a problem if you use SFGetFile, since

SFGetF ile does not use the PMSP, in fact, SFGetF ile does not open or close files, so

it doesn't run into this problem.

Technical Note #101 page 3 of 3 CreateResFile and the PMSP

•

Macintosh Technical Notes

#102: HFS Elucidations

See also: The File Manager
Technical Note #77-HFS Ruminations

Written by:
Updated:

Bryan "Bo3b" Johnson January 12, 1987
March 1, 1988

This technical note will describe a few problems that can occur while using
HFS. It will also describe ways to avoid these problems.

This technical note will discuss the following problems:

1) It is very important to be careful about how files are opened and closed. There must
be no more than one close for every open.

2) Don't use Driver names, like. Bout, . Print or . Sony, in place of file names or the
file system will become confused.

3) Be aware of the i of 1 Ve r s Num byte in all file calls. A number of pieces of the
Macintosh system do not use, and may in fact ignore, files created with non-zero
ioF1VersNums.

Each of these can lead to strange occurrences, as well as problems for the users. Doing
any or all of these marginally illegal operations will not necessarily lead to a System
Error. In some cases the confusion generated may be worse than a System Error.

One Close is always enough

If a file is closed twice, it is possible to corrupt the file system on a disk. If a program has
been creating unreadable disks, this may be the cause.

One aspect of the file system that is not well documented is how it allocates access
paths to files that are currently open. As a result of this, it is possible to get a rather
cavalier attitude about opening and closing files. This discussion will explain why it is
necessary to be very careful about opening and closing files.

When the File Manager receives an Open call, it will look at the parameters passed in
the parameter block and create a new access path for the file that is being opened. The
access path is how the File Manager keeps track of where to send data that is written,
and where to get data that is read from that file. An access path is nothing more than: 1)
a buffer that the file system uses to read and write data, and 2) a File Control Block that
describes how the file is stored on a disk.

Technical Note #102 page 1 of 7 HFS Elucidations

A call like:

ErrStuff := FSOpen ('FirstFil€', theVRefNum, FirstRefNum);

will create the access path as a buffer and a File Control Block (FCB) in the FCB queue.

Note: The following information is here for illustrative purposes only; dependence on it
may cause compatibility problems with future system soitware.

The structure of the queue can be visualized as:

First FCB Record

Second FCB Record

Buffer Length0

2

gth

···

2+FCBLen

Last FCB Record

where FCBSPtr is a low-memory global (at $34E) that holds the address of a
nonrelocatable block. That block is the File Control Block buffer, and is composed of the
two byte header which gives the length of the block, followed by the FCB records
themselves. The records are of fixed length, and give detailed information about an
open file. As depicted, any given record can be iound by adding the length of the
previous FCB records to the start of the block, adding 2 for the two byte header; giving
an offset to the record itself. The size of the block, .and hence the number of files that can
be open at any given time, is determined at startup time, The call to open 'FirstFile'
above will pass back the File Reference Number to that file in FirstRefNum. This is the
number that will be used to access that file 1rom that point on. The File Manager passes
back an offset into the FCB queue as the RefNum. This offset is the number of bytes past
the beginning of the queue to that FCB record in 1he queue. That FCB record will
describe the file that was opened. An example of a number that might get passed back
as a RefNum is $lD8. That also means that1he FCB record is $lD8 bytes into the FeB
block.

Technical Note #102 .page 2 017 HFS Elucidations

A visual example of a record being in use, and how the RefNurn is related is:

Base 0
"":"2--+-----~

Base is merely the address of the nonrelocatable block that is the FCB buffer. FCBSPtr

points to it. The RefNurn (a number like $lD8) is added to Base, to give an address in the
block. That address is what the file system will use to read and write to an open file,
which is why you are required to pass the Re fNurn to the PBRead and PBWrite calls.

Since that Re fNurn is merely an offset into the queue, let's step through a dangerous
imaginary sequence and see what happens to a given record in the FCB Buffer. Here's
the sequence we will step through:

ErrStuff := FSOpen ('FirstFile', theVRefNum, FirstRefNum);

ErrStuff .= FSClose (FirstRefNum);

ErrStuff := FSOpen ('SecondFile', theVRefNum, SecondRefNum);

ErrStuff .= FSClose (FirstRefNum); {the wrong file gets closed!!!}
{the above line will close 'SecondFile', not 'FirstFile', which is already
closed}

Before any operations:
the record at $lD8 is not used.

0
2

···
NumBase+Ref

Base

Technical Note #102 page 3 017 HFS Elucidations

.

After the call:
ErrStuff := FSOpen ('FirstFile', theVRefNum, FirstRefNum);

FirstRefNum = $lD8 and the record is in use.

Base 0
~2-+------1

After the call:
ErrStuff .= FSClose (FirstRefNum);

FirstRefNum is still equal to $lD8, but the FeB record is unused.

0
2

··
•

Num

Base

Base+Ref

Technical Note #102 page 4 of7 HFS Elucidations

hM ij t '1 , til

After the call:
ErrStuff ;= FSOpen ('SecondFile', theVRefNum, SecondRefNum);

SecondRefNum = $lD8, FirstRefNum = $lD8, and the record is reused.

Base 0
-2:--'11------1

After the call:
ErrStuff ;= FSClose (FirstRefNum);

The FirstRefNum = $lD8, SecondRefNum = $lD8,

the queue element is cleared. This happens, even though FirstFile was already
closed. Actually, SecondFile was closed:

0
2

···
NumBase+Ref

Base

Note that the second close is using the old Re fNurn. The second close will still close a
file, and in fact will return n oE r r as its result. Any subsequent accesses to the
SecondRefNurn will return an error, since the file 'SecondF ile' was closed. The File
Control Blocks are reused, and since they are just offsets, it is possible to get the same
file RefNurn back for two different files. In this case, FirstRefNurn = SecondRefNurn
since 'FirstFile' was closed before opening 'SecondFile' and the same FeB record
was reused for 'SecondFile'.

Technical Note #102 page 5 of7 HFS Elucidations

There are worse cases than this, however. As an example, think of what can happen if a
program were to close a file, then the user inserted an HFS disk. The FCB could be
reused for the Catalog File on that HFS disk. If the program had a generic error handler
that closed all of its files, it could inadvertently close "its" file again. If it thought "its" file
was still open it would do the close, which could close the Catalog file on the HFS disk. _
This is catastrophic for the disk since the file could easily be closed in an inconsistent
state. The result is a bad disk that needs to be reformatted.

There are any number of nasty cases that can arise if a file is closed twice, reusing an
old RefNum. A common programming practice is to have an error handler or cleanup
routine that goes through the files that a program creates and closes them all, even if
some may already be closed. If an FCB element was not reused, the Close will return
the expected fnOpnErr. If the FCB had been reused, then the Close could be closing
the wrong file. This can be very dangerous, particularly for all those paranoid hard disk
users.

How to avoid the problem:

A very simple technique is to merely clear the RefNum after each close. If the variable
that the program uses is cleared after each close, then there is no way of reusing a
RefNum in the program. An example of this technique would be:

ErrStuff := FSOpen ('FirstFile', theVRefNum, FirstRefNum);
ErrStuff := FSClose (FirstRefNum);
FirstRefNum := 0; { We just closed it, so clear our refnum }
ErrStuff := FSOpen ('SecondFile', theVRefNum, SecondRefNum);
ErrStuff := FSClose (FirstRefNum); { returns an error }

This makes the second Close pass back an error. In this case, the second close will try
to close RefNum = 0, which will pass back a fnOpnErr and do no damage. Note: Be
sure to use 0, which will never be a valid RefNum, since the first FCB entry is beyond the
FCB queue length word. Don't confuse this with the °that the Resource Manager uses
to represent the System file.

Thus, if an error handler were cleaning up possibly open files, it could blithely close all
the files it knew about, since it would legitimately get an error back on files that are
already closed. This is not done automatically, however. The programmer must be
careful about the opening and closing of files. The problem can get quite complex if an
error is received halfway through opening a sequence of ten files, for example. By
merely clearing the Re fNum that is stored after each close, it is possible to avoid the
complexities of trying to track which files are open and which are closed.

This .file name looks outrageous.

There is a potential conflict between file names and driver names. If a file name is
named something like. Bout, . Print or . Sony, then the file system will open the driver
instead of the file. Drivers have priority on the 128K ROMs, and will always be opened
before a file of the same name. This may mean that an application will get an error back 4

Technical Note #102 page 6 of7

Ie

HFS Elucidations

1M

when opening these types of files, or worse, it will get back a driver RefNum from the call.
What the application thought was a file open call was actually a driver open call. If the
program uses that access path as a file RefNum, it is possible to get all kinds of strange
things to happen. For example, if . Sony is opened, the Sony driver's RefNum would be
passed back, instead of a file Re fNum. If the application does a Wr it e call using that
RefNum, it will actually be a driver call, using whatever parameters happen to be in the
parameter block. Disks may be searching for new life after this type of operation. If a
program creates files, it should not allow a file to be created whose name begins with '.'.

This file's not my type.

This has been discussed in other places, but another aspect of the File Manager that
can cause confusion is the ioF1VersNum byte that is passed to the low-level File
Manager calls. This is called ioF i leType from Assembly, and should not be confused
with ioFVersNum. This byte must be set to zero for normal Macintosh files. There are a
number of parts of the system that will not deal correctly with files that have the wrong
versions: the Standard File package will not display any file with a non-zero
ioF 1VersNum; the Segment Loader and Resource Manager cannot open files that
have non-zero ioF1VersNums. It is not sufficient to ignore this byte when a file is
created. The byte must be cleared in order to avoid this type of problem. Strictly
speaking, it is not a problem unless a file is being created on an MFS disk. The current
system will easily allow the user to access 400K disks however, so it is better to be safe
than confused.

Technical Note #102 page 7 of 7

·'ei

HFS Elucidations

Macintosh Technical Notes

#103: Using MaxApplZone and MoveHHi from Assembly Language

See also: Using Assembly Language
The Memory Manager
Technical Note #129-SysEnvirons

Written by:
Updated:

Bryan "Bo3b" Johnson January 12, 1987
March 1, 1988

When calling MaxApplZone and MoveHHi from assembly language, be sure
to get the correct code.

MaxApplZone and MoveHHi were marked [Not in ROM] in Inside Macintosh, Volumes
I-III . They are ROM calls in the 128K ROM. Since they are not in the 64K ROM, if you
want your program to work on 64K ROM routines it is necessary to call the routines by a
JSR to a glue (library) routine instead of using the actual trap macro. The glue calls the
ROM routines if they are available, or executes its copy of them (linked into your
program) if not.

How to do it:

Whenever you need to use these calls, just call the library routine. It will check ROM85 to
determine which ROMs are running, and do the appropriate thing.

For MOS, include the Memory. ReI library in your link file and use:

XREF MoveHHi

JSR MoveHHi

we need to use this 'ROM' routine

jump to the glue routine that will check ROM8S for us

For MPW link with Interface. 0 and use:

IMPORT MoveHHi

JSR MoveHHi

we need to use this

jump to the glue routine that will check ROM8S for us

Avoid calling _MaxApplZone or _MoveHHi directly if you want your software to work on
the 64K ROMs, since that will assemble to an actual trap, not to a JSR to the library.

If your program is going to be run only on machines with the 128K ROM or newer, you
can call the traps directly. Be sure to check for the 64K ROMs, and report an error to the
user. You can check for old ROMs using the SysEnvirons trap as described in
Technical Note #129.

Technical Note #103 page 1 of 1 Using MaxApplZone and MoveHHi

I

Macintosh Technical Notes

#104: MPW: Accessing Globals From Assembly Language

See also:

Written by:
Updated:

MPW Reference Manual

Jim Friedlander January 12, 1987
March 1, 1988

This technical note demonstrates how to access MPW Pascal and MPW C
globals from the MPW Assembler.

To allow access of MPW Pascal globals from the MPW Assembler, you need to identify
the variables that you wish to access as external. To do this, use the {$z+} compiler
option. Using the {$ Z+} option can substantially increase the size of the object file due
to the additional symbol information (no additional code is generated and the symbol
information is stripped by the linker). If you are concerned about object file size, you can
"bracket" the variables you wish to access as external variables with {$ Z+} and {$ Z- }.
Here's a trivial example:

Pascal Source

PROGRAM MyPascal;
USES

MemTypes,QuickDraw,OSIntf,TooIIntf;

VAR

myWRect: Recti
($Z+) (make the following external)

myInt: Integer;
($Z-) {make the following local to this file (not lexically local))

err: Integer;

PROCEDURE MyAsmi EXTERNAL; (routine doubles the value of myInt)

BEGIN (PROGRAM)
myInt:= 5;
MyAsmi {call the routine, myInt will be 10 now}
writeln('The value of myInt after calling myAsm is , myInt:1)i

END. (PROGRAM)

Assembly Source for Pascal

CASE OFF
MyAsm PROC EXPORT

IMPORT myInt:DATA
ASL.W #l,myInt
RTS
END

Technical Note #104

itreat upper and lower case identically
iCASE OFF is the assembler's default
iwe need : DATA, the assembler assumes CODE
imultiply by two
iall done with this extensive routine, whew!

page 1 of 2 Accessing Globals From Assembly Language

The variable mylnt is accessible from assembler. Neither myWRect nor err are
accessible. If you try to access myWRect, for example, from assembler, you will get the
following linker error:

Link: Error

C Source

Undefined entry name: MYWRECT.

In an MPW C program, one need only make sure that MyAsm is declared as an external
function, that mylnt is a global variable (capitalizations must match) and that the CASE
ON directive is used in the Assembler:

#include <types.h>
#include <quickdraw.h>
#include <fonts.h>
#include <windows.h>
#include <events.h>
#include <textedit.h>
#include <dialogs.h>
#include <stdio.h>

extern MyAsm();
short myInti

/* assembly routine that doubles the value of myInt */
/* we'll change the value of this variable from MyAsm */

main ()
{

WindowPtr MyWindow;
Rect myWRect;

myInt = 5;
MyAsm () ;
printf(" The value of myInt after calling myAsm is %d\n",myInt);
} /*main*/

Assembly source for C

MyAsm
CASE
PROC
IMPORT
ASL.W
RTS
END

ON
EXPORT
myInt:DATA
#l,myInt

;treat upper and lower case distinct
ithis is how C treats upper and lower case
;we need :DATA, the assembler assumes CODE
imultiply by two
iall done with this extensive routine, whew!

Technical Note #104 page 2 of 2 Accessing Globals From Assembly Language

Macintosh Technical Notes

#105: MPW Object Pascal Without MacApp

See also: Technical Note #93-{$LOAD};_Datalnit;%_MethTables

Written by:
Updated:

Rick Blair January 12, 1987
March 1, 1988

Object Pascal must have a CODE segmem named %_MethTables in order to access
object methods. In MacApp this is taken care of "benind the scenes" so you don't have to
worry about it . However, if you are doing a straight Object Pascal program, you must
make sure that %_MethTables is around when you need it. 1f it's unloaded when you
call a method, your Macintosh will begin executing wild noncode and die a gruesome
and horrible death.

The MPW Pascal compiler must see some declaration of an object in order to produce a
reference to the magic segment. You can achieve this cheaply by simply including
Objlntf.p in your Uses declaration. This must be in the main program, by the way. The
compiler will produce a call to %_InitObj which is in %_MethTables.

If you're a more adventurous soul, you can call %_ In it Ob j explicitly from the
initialization section of your main program (you must use the {$%+} compiler directive to
allow the use of u%" in identifiers). This will load the %_MethTables segment. See
Technical Note #93 for ideas about locking down segments that are needed forever
without fragmenting tneneap.

Technical Note #105

, or M

page 1 of 1

"

MPW Object Pascal Without MacApp

Ii

Macintosh Technical Notes

#106: The Real Story: VCBs and Drive Numbers

See also: The File Manager
Technical Note #36-Drive Queue Element Format

Written by:
Updated:

Rick Blair January 12,1987
March 1, 1988

The top of page IV-178 in The File Manager chapter of Inside Macintosh in attempts to
explain the behavior of two fields in a volume control block when the corresponding disk
is offline or ejected. Due to the fact that a little bit is left unsaid, this paragraph is rather
misleading. The two fields in question are vcbDrvNum and vcbDRefNum (referred to as
ioVDrvInfo and ioVDRefNum in C and Pascal). PBHGetVInfo can be used to access
these fields.

Offline

When a mounted volume is placed offline, vcbDrvNum is cleared and vcbDRefNum is
set to the two's complement of the drive number. Since drive numbers are assigned
positive values (starting with one), this will be a negative number. If vcbDrvNum is zero
and vcbDRefNum is negative, you know that the volume is offline.

Ejected

When a volume is ejected, vcbDrvNum is cleared and vcbDRefNum is set to the positive
drive number. If vcbDrvNum is zero and vcbDRe fNum is positive, you know that the
volume is ejected. Ejection implies being offline. There is no such thing as "premature
ejection".

Summary

vcbDrvNum
vcbDRefNum

online
>0 (DrvNum)
<0 (DRefNum)

offline
o
<0 (-DrvNum)

ejected
o
>0 (DrvNum)

Please refrain from assuming anything about a VCB queue element beyond what is
documented in Inside Macintosh, and don't expect it to always be 178 bytes in size. It
grew when we went from MFS to HFS, and it may grow again. It's safest to use calls like
PBHGet VInfo to get the information that you need.

Technical Note #106 page 1 of 1 The Real Story: VCBs and Drive Numbers

75?'_ _-------------------------

Macintosh Technical Notes

#107: Nulls in Filenames

See also:

Written by:
Updated:

The File Manager

Rick Blair March 2, 1987
March 1, 1988

Some applications (loosely speaking so as to include Desk Accessories, INITs, and
what-have-you) generate or rename special files on the fly so that they are not explicitly
named by the user via SFPutFile. Since the Macintosh file system is very liberal about
filenames and only excludes colons from the list of acceptable characters, this can lead
to some difficulties, both for the end user and for writers of other programs which may
see these files.

Other programs which might be backing up your disk or something similar may get
confused. A program written in C will think it has found the end of a string when it hits a
null (ASCII code 0) character, so nulls in filenames are especially risky.

As a rule, filenames should only include characters which the user can see and edit.
The only reasonable exception might be invisible files, but it can be argued that they are
of dubious value anyway. You can argue "but what about my help file, I don't want it
renamed" but we already have what we think is the best approach for that situation. If
you can't find a configuration or other file because the user has renamed or moved it,
then call SFGetFile and let the user find it. If the user cancels, and you can't run without
the file, then quit with an appropriate message.

Please consider carefully before you put non-displaying characters in filenames!

Technical Note #107 page 1 of 1 Nulls in Filenames

..

Ie
Macintosh Technical Notes

#108: _AddDrive, _Drvrlnstall, and _DrvrRemove

See also: Technical Note #36, Drive Queue Elements
SCSI Development Package (APDA)

Written by:
Revised by:

Jim Friedlander
Pete Helme

March 2, 1987
December 1988

AddDrive, Drvrlnstall, and DrvrRernove are used in the sample
SCSI driver in the SCSI Development Package, which is available from
APDA. This Technical Note documents the parameters for these calls.
Changes since March 1, 1988: Updated the Drv r Ins t a 11 text to
reflect the use of register AO, which should contaif a pointer to the driver
when called. Also added simple glue code for Drv r Ins t a 11 and

DrvrRernove since none is available in the MPW interfaces.

AddDrive

_AddDr i ve adds a drive to the drive queue, and is discussed in more detail in
Technical Note #36, Drive Queue Elements:

FUNCTION AddDrive(DQE:DrvQE1;driveNum,refNum:INTEGER) :OSErr;

AO (input) ~

DO high word(input) ~

DO low word(input) ~

DO (output) ~

Drvrlnstall

pointer to DQE
drive number
driver RefNum
error code

noErr (always returned)

Drvrlnstall is used to install a driver. A DeE for the driver is created and its handle
entered into the specified Unit Table position (-1 through -64). If the unit number is -4
through -9, the corresponding ROM-based driver will be replaced:

FUNCTION Drvrlnstall(drvrHandle:Handle; refNum: INTEGER): OSErr;

AO (input)
DO (input)
DO (output)

Technical Note #108

pointer to driver
driver RefNum (-1 through -64)
error code

noErr
badUnitErr

page 1 of 2 _AddDrive, _Drvrlnstall, and _DrvrRemove

DrvrRemove

DrvrRemove is used to remove a driver. A RAM-based driver is purged from the

system heap (using ReleaseResource). Memory for the DeE is disposed:

FUNCTION DrvrRemove(refNum: INTEGER) :OSErr;

DO (input)
DO (output)

Interfaces

Driver RefNum
error code

noErr
qErr

Through a sequence of cataclysmic events, the glue code for _Drvrlnstall and

DrvrRemove was never actually added to the MPW interfaces (Le., "We forgot."), so

we will include simple glue here at no extra expense to you.

It would be advisable to first lock the handle to your driver with _HLock before making

either of these calls since memory may be moved.

--,
; FUNCTION DRVRInstall(drvrHandle:Handle; refNum:INTEGER) :OSErr;

--,

DRVRInstall PROC

MOVEA.L
MOVE.W
MOVEA.L
MOVEA.L
DrvrInstall

MOVE.W
JMP
ENDPPROC

EXPORT
(SP) +, Al
(SP)+, DO
(SP)+, AD
(AD), AD

DO, (SP)
(AI)

pop return address

driver reference number

handle to driver

pointer to driver

$A03D

get error
& split

--,
; FUNCTION DRVRRemove(refNum:INTEGER) :OSErr;

._--
,

DRVRRemove PROC

MOVEA.L
MOVE.W

DrvrRemove
MOVE.W
JMP
ENDPPROC

EXPORT

(SP) +, Al
(SP) +, DO

DO, (SP)
(AI)

pop return address

driver reference number

$A03E
get error
& split

Technical Note #108 page 2 of 2 _AddDrive, _Drvrlnstall, and _DrvrRemove

""t.M: rnA

Macintosh Technical Notes

#109: Bug in MPW 1.0 Language Libraries

See also:

Written by:
Updated:

MPW Reference Manual

Scott Knaster March 2, 1987
March 1, 1988

This note formerly described a problem in the language libraries for MPW1.0. This bug is fixed in MPW 1.0.2, available from APDA.

Technical Note #109 page 1 of 1 Bug in MPW 1.0 Language Libraries

_••-------------------------

Ntt'm M -

Macintosh
Technical Notes•

#110:

Developer Technical Support

MPW: Writing Stand-Alone Code
Revised by: Keith Rollin
Written by: Jim Friedlander

February 1990
March 1987

•

•

MPW Pascal and C can be used to write stand-alone code such as 'WDEF', 'LDEF', , INIT',and 'FKEY' resources. This Technical Note, which is not intended to be a complete discussion ofthe issues involved in writing stand-alone code resources, shows how to produce such stand-alonecode using the MPW Pascal and C compilers and the linker, and includes an example of an, INIT' and a shell for making a 'WDEF'.
Changes since March 1988: Added a note about the 32K size limit on stand-alone coderesources; included an example of how to load and execute stand-alone code from an application;- and added references to Technical Note #256, Globals in Stand-Alone Code, concerning the use ofglobal variables, and Technical Note #240, Using MPW for Non-Macintosh 68000 Systems,concerning breaking the 32K limit. .

Size Does Matter

There is a somewhat hard size limit of 32K bytes on code segments, including 'CODE' resourcesin an application and stand-alone code such as 'XCMD', 'FKEY', 'DRVR', and' WDEF 'resources. This limitation exists because Macintosh code has to be relocatable, requiring the use ofPC-relative instructions. Unfortunately, the 68000 supports only 16-bit signed offsets for thepurpose. These offsets limit code to a maximum jump of 32K bytes either forward or backward.For a procedure at the beginning of a code segment to branch to a procedure at the very end, thatprocedure cannot be more than 32K bytes away.

This limitation applies to all code segments, including those that comprise an application. All thosewhizzy 790K word processors and spreadsheets are actually composed of many, many' CODE'resources, all of which are smaller than 32K. However, special support is available forapplications in the form of a jump table. This jump table keeps track of the entry points withinthese code segments, so that there is a way to branch from one to another. Unfortunately, youcannot do the same thing for stand-alone code resources, as the system doesn't support the use ofmore than one jump table. For more information on the jump table, see Inside Macintosh,Volume II, The Segment Loader.

The reason why this 32K limit is only a "somewhat hard" limit is because, if you are reallydetermined, you can break this limit. If you can write your code in such a way that you don't everneed to make a jump that is longer than 32K bytes, then you should be able to get away withstretching the limit. For more of the gory details, see the section "Segmenting and the Jump Table"in Technical Note #240, Using MPW for Non-Macintosh 68000 Systems.

#110: MPW: Writing Stand-Alone Code lof9

Macintosh Technical Notes

Calling Stand-Alone Code From An Application

Assume that you are writing an application and would like to support external routines in the form
of stand-alone code. Applications like HyperCard and Apple File Exchange support such a
mechanism. How do you go about putting in this functionality?

The first thing to do is establish some standard means for communicating. This is shown with
HyperCard 'XCMD' resources, where a clearly defined parameter block is passed between
HyperCard and the 'XCMD'.

XCmdBlock = RECORD
paramCount:
params:
returnValue:
passFlag:
entryPoint:
request:
result:
inArgs:
outArgs:
END;

XCmdPtr = AXCmdBlock;

INTEGER;
ARRAY [1 •. 16] OF Handle;
Handle;
BOOLEAN;
ProcPtr; {to call back to HyperCard}
INTEGER;
INTEGER;
ARRAY [1 .• 8] OF LONGINT;
ARRAY [1 .. 4] OF LONGINT;

When HyperCard calls an 'XCMD', it passes a pointer to this parameter block. The entry point to
such an 'XCMD' could be declared as follows:

PROCEDURE XStringWidth(paramPtr: XCmdPtr);

To call the' XCMD', you need to load it into memory, lock it down, fill in a parameter block, and
then call the 'XCMD'. When you are done, you need to remove the 'XCMD' from memory:

h := Get1NamedResource('XCMD', 'XStringWidth');
HLock (h) ;
WITH parameterBlock DO BEGIN

< fill it in >
END;
CallXCMD{@parameterBlock, h);
HUnlock(h);

CallXCMD is some in-line code that takes the Handle h and executes the necessary machine
language commands to jump to it. It does this by taking the handle off of the stack, turning it into
a pointer to the stand-alone code, and performing a JSR to it. In this way, the parameter block is
left on the stack for the stand-alone code to access:

PROCEDURE CallXCMD(pb: XCMDPtr; XCMD: Handle);
INLINE $20SF, {MOVE.L {A1)+,AO }

$2050, {MOVE.L (AO},AO)
$4E90; {JSR (AO) }

20f9 #110: MPW: Writing Stand-Alone Code

An 'INIT' resource is stand-alone code that is executed on startup in the manner specified in theSystem Resource File and Startup Manager chapters of InsideMacintosh. 'INIT' resources arecommonly written is assembly language, but can also be written in high-level languages such asPascal and C. Following is the source for a simple, but nonetheless highly obnoxious, 'INIT'written in MPW Pascal:

•
Developer Technical Support

Writing an 'INIT' in Pascal

February 1990

•

UNIT MyInit; {stand-alone code is written as a UNIT}

INTERFACE

USES
MemTypes, QuickDraw, OSIntf, ToolIntf;

PROCEDURE BeepTwice;

IMPLEMENTATION

PROCEDURE BeepTwice;

VAR finalTicks: LongInt;

BEGIN {BeepTwice}
SysBeep(l);
Delay(120, finaITicks); (Delay two seconds, this'll annoy 'em!)SysBeep (l) ;

END; {BeepTwice}

END. (UNIT)

-That's all there is to the Pascal. Now you can compile and link the code to produce a stand-alonemodule. Following are the commands that you use:

pascal Init.p

Compile the unit to output file Init.p.o.

link a
-rt INIT=O a
-ra -16
-m BEEPTWICE a
Init.p.o a
"(Libraries}"Interface.o a
-0 MyInit

t resource type and ID
t INITs must be locked
t Pascal generates uppercase module names
t Link this object file first!!! Then
t need this for the glue for Delay()
t output to this file

•

This links the INIT, puts it in the file MyInit and gives the INIT the resource type 'INIT', 10 =O. You should also set the "locked" bit in the resource attributes of the INIT (' INIT ' resourcesmust be marked locked because INIT 31 does not lock them). The main entry point is specified bythe -m option. Pascal Units do not have a main entry point, and, since you are linking with"{Libraries}"Interface.o (you need the glue for _Delay), you need to tell the linker what to stripagainst. You could link this without the -m option, but then all the code for"{Libraries} "Interface.o would wind up in the 'INIT', making it much larger than it needs to be.Notice also that you need to capitalize BEEPTWICE, since Pascal converts module names to uppercase.

Next you specify the files with which you wish to link. Since the linker links files in the orderthey are specified, you need to list Init.p.o first, otherwise the first instruction for your code is not

#110: MPW: WritingStand-Alone Code 30f9

Macintosh Technical Notes

BeepTwice, but rather the glue for Delay (which is disastrous). 'IN IT' resources are

entered at the beginning, regardless of where the main entry point is.

Ifyou have any doubts about what the entry point is (and you can read assembler) you can use the

command DumpCode MyInit -rt INIT to look at the code. In this case, the first code that is

executed should be:

LINK A6, tSFFFC ; make room for the local var 'long'

If you had incorrectly specified It{Libraries}"Interface.o first, the first code executed would have

been the following glue for Delay (and the code for the' INIT' would never have been

executed): -

MOVE.L (A7)+,DO
MOVE.L (A7)+,Al

_Delay
MOVE.L DO, (AI)
RTS
LINK A6, tSFFFC

execute ourselves
address of VAR parameter
finish getting ready for Delay
do the Delay
the VAR parameter
return - but to where???
the correct code, but it'll never

be executed

SetFile MyInit -t INIT -c JAFI " a
duplicate -y MyInit "{SystemFolder}"

This command sets the file type of MyInit to "INIT' (so that the INIT 31 mechanism runs it) and

the creator to "JAF1". (Yes, JAF1 is registered with Developer Technical Support. Is your file

type?) If the SetFile succeeds, you then courageously duplicate the INIT into the system

folder, so it is executed the next time the system is rebooted.

That's all there is to it.

Now for a couple of caveats. First of all, you cannot easily use globals in stand-alone code. If

you put the line VAR gLong: Longint; right after the keyword INTERFACE, the code

compiles and links okay, and probably executes okay. You get no warning that you are using

someone else's global space. Ifyou use the statement gLong : = 4; the long word value four is

placed at -4 (AS) , thus destroying whatever was there (generally, the start of the application's

globals). This is not really a problem with' INIT' resources (it definitely is a problem in the

, WDEF' example below), but, in general, you should not use globals in stand-alone code.

Another limitation of stand-alone code is that it cannot use other globals such as QuickDraw

globals. For example, if you try to make a QuickDraw call such as SetPort (@thePort) ;

(which uses the QuickDraw global variable thePort) you are informed about your transgression:

ttt link: Error Undefined entry, name: QUICKDRAW

Referenced from: BEEPTWICE in file: Init.p.o

You can access QuickDraw globals from stand-alone code by using AS (available from high-level

languages in the low-memory global CurrentAS (a long word at $904» which is a pointer to a

pointer to thePort (@thePort = (AS». Some of the standard Pascal library routines require

the use of globals, you get similar linker errors if you use these routines.

If something isn't working correctly, you might look for inadvertent use of globals. If your use of

globals is intentional, then make sure you are using them in accordance with Technical Note #256,

Globals in Stand-Alone Code.

4of9 #110: MPW: Writing Stand-Alone Code

•
Developer Technical Support

Writing an 'INIT' in C

Following is the source for the same I INIT I in MPW C:

'include <OSUtils.h>

void BeepTwice()
(

long int final Ticks;

SysBeep(l);
Delay{120,&finalTicks);
SysBeep(l);

The link instruction for Cis:

link a

February 1990

-rt INIT-O a
-ra =16 a
-m BeepTwice a
TNllOInit .c.o a
"(CLibraries}"CInterface.o a
-0 tnllOINIT

Writing a 'WDEF' in Pascal

resource type
INITs must be locked
note that C is case sensitive
link this object file first!!! then
need this for the glue for Delay()
output to this file

Writing a I WDEF I is like writing an I INIT I, except that I WDEF' resources have standardheaders that are incorporated into the code. In this example, the 'WD EF' is the PascalMyWindowDef. To create the header, you use an assembly language stub:

MAIN EXPORT
IMPORT MyWindowDef• StdWDEF

@O

BRA.S
DC.W
DC.B
DC.W
DC.W
JMP
END

@O
o
'WDEF'
3
o
MyWindowDef

this will be the entry point
name of Pascal FUNCTION that is the WDEF
we IMPORT externally referenced routines
from Pascal (in this case, just this one)
branch around the header to the actual code
flags word
type
ID number
version
this calls the Pascal WDEF

•

Now for the Pascal source for the 'WDEF'. Only the shell of what needs to be done is listed, theactual code is left as an exercise for the reader (for further information about writing a I WDEF I,see InsideMacintosh, Volume I, The Window Manager (pp. 297-302).

UNIT WDef;

INTERFACE

USES MemTypes, QuickDraw, OSIntf, ToolIntf;

{this is the only external routine}
FUNCTION MyWindowDef(varCode: Integer; theWindow: WindowPtr; message: Integer;param: LongInt): LongInt; {As defined in IM p. I-299}

IMPLEMENTATION

-
#110: MPW: WritingStand-Alone Code

trIM] t+

50f9

Macintosh Technical Notes

FUNCTION MyWindowDef(varCode: Integer; theWindow: WindowPtr; message: Integer;
param: LongInt): LongInt;

TYPE
RectPtr = ARect;

VAR
aRectPtr : RectPtr;

(here are the routines that are dispatched to by MyWindowDef)

PROCEDURE DoDraw(theWind: WindowPtr; DrawParam: LongInt);
BEGIN (DoDraw)

{Fill in the code!}
END; {DoDraw}

FUNCTION DoHit(theWind: WindowPtr; theParam: LongInt): LongInt;
BEGIN {DoHit}

{Code for this FUNCTION goes here}
END; {DoHit}

PROCEDURE DoCalcRgns(theWind: WindowPtr);
BEGIN {DoCalcRgns}

{Code for this PROCEDURE goes here}
END; {DoCalcRgns}

PROCEDURE DoGrow(theWind: WindowPtr; theGrowRect: Rect);
BEGIN {DoGrow}

{Code for this PROCEDURE goes here}
END; {DoGrow}

PROCEDURE DoDrawSize(theWind: WindowPtr);
BEGIN {DoDrawSize}

{Code for this PROCEDURE goes here}
END; {DoDrawSize}

{now for the main body to MyWindowDef}
BEGIN {MyWindowDef}
{case out on the message and jump to the appropriate routine}

MyWindowDef := 0; {initialize the function result}

CASE message OF

wDraw: {draw window frame}
DoDraw(theWindow,param);

wHit: {tell what region the mouse was pressed in}
MyWindowDef := DoHit(theWindow,param);

wCalcRgns: { calculate structRgn and contRgn}
DoCalcRgns(theWindow);

wNew: {do any additional initialization}
we don't need to do any}

wDispose:{ do any additional disposal actions}
{ we don't need to do any}

wGrow: {draw window's grow image}
BEGIN

aRectPtr := RectPtr(param);
DoGrow(theWindow,aRectPtr A);

END; {CASE wGrow}

60f9 #110: MPW: Writing Stand-Alone Code

------------_...._--_.-

•
Developer Technical Support

wDrawGIcon:{ draw Size box in content region}
DoDrawSize{theWindow);

END; {CASE}
END; (MyWindowDef)

END. (of UNIT)

Following are the MPW shell commands necessary to build this 'WDEF':

pascal MyWDEF.p
asm MyWDEF.a
link -rt WDEF-3 a

MyWDEF.a.o a t MUST link with this first
MyWDEF.p.o a
"(Libraries) "Interface.o a
-0 MyWDEF3

February 1990

•

Notice that you do not need the -rn option; since MyWDEF.a.o contains the main entry point, thelinker knows what to strip against.

That's all there is to it.

Writing a 'WDEF' in C

Writing a 'WDEF' in MPW C is very similar to writing one in Pascal. You can use the sameassembly language header, and all you need to-make sure of is that the main dispatch routine (inthis case: MyWindowDef) is first in your source file. Here's the same 'WDEF' shell in MPW C:
/* first, the mandatory includes */
tinclude <types.h>
#include <quickdraw.h>
#include <resources.h>
tinclude <fonts.h>
tinclude <windows.h>
#include <menus.h>
#include <textedit.h>
tinclude <events.h>

/* declarations */
void DoDrawSize();
void DoGrow();
void DoCalcRgns();
long int DoHit();
void DoDraw() ;

/*---------------------- Main Proc within WDEF ----------------------*/pascal long int MyWindowDef{varCode,theWindow,message,param)short int varCode;
WindowPtr theWindow;
short int message;
long int param;

/* MyWindowDef */

•
Rect
long int

*aRectPtr;
theResult=O; /*this is what the function returns, init to 0 */

#110: MPW: Writing Stand-Alone Code 7of9

Macintosh Technical Notes

switch (message)
I

/* draw window frame*/

/* calculate structRgn and contRgn*/

/* draw Size box in content region*/

/* do any additional initialization*/
/* nothing here */
/* do any additional disposal actions*/
/* we don't need to do any*/
/* draw window's grow image*/

case wDraw:
DoDraw(theWindow,param);
break;

case wHit: /* tell what region the mouse was pressed in*/
theResult - DoHit(theWindow,param);
break;

case wCalcRgns:
DoCalcRgns(theWindow);
break;

case wNew:
break;

case wDispose:
break;

case wGrow:
aRectPtr - (Rect *)param;
DoGrow(theWindow,*aRectPtr);
break;

case wDrawGlcon:
DoDrawSize(theWindow);
break;

} /* switch */
return theResult;

/* MyWindowDef */

1* here are the routines that are dispatched to by MyWindowDef

/*--------------------------- DoDraw function -----------------------------*/
void DoDraw(WindToDraw,DrawParam)
WindowPtr WindToDraw;
long int DrawParam;

/* DoDraw */
/* code for DoDraw goes here */

/* DoDraw */

/*--------------------------- DoHit function -----------------------------*/
long int DoHit(WindToTest,theParam)
WindowPtr WindToTest;
long int theParam;

/* DoHit */
/* code for DoHit goes here */

/* DoHit */

/*------------------------ DoCalcRgns procedure --------------------------*/
void DoCalcRgns(WindToCalc)
WindowPtr WindToCalc;

/* DoCalcRgns */
/* code for DoCalcRgns goes here */

/* DoCalcRgns */

/*-------------------------- DoGrow procedure ----------------------------*/
void DoGrow(WindToGrow,theGrowRect)
WindowPtr WindToGrow;
Rect theGrowRect;

/* DoGrow */
/* code for DoGrow goes here */

/* DoGrow */

8of9 #110: MPW: Writing Stand-Alone Code

--------------_......_-

Developer Technical Support February 1990

•

•

/*------------------------ DoDrawSize procedure --------------------------*/void DoDrawSize(WindToDraw)
WindowPtr WindToDraw;

/* DoDrawSize */
/* code for DoDrawSize goes here */

/* DoDrawSize */

To link this 'WDEF', you can use the following link command:

Link -rt WDEF-3 a
tnllO.WDEFHeader.a.o a t must link with this first
tnllO.wdef.c.o a
"{CLibraries)"Clnterface.o a
-0 tnllO. wdef

Further Reference:
• Inside Macintosh, Volume I, The Window Manager
• Inside Macintosh, Volume Il, The Segment Loader
• Inside Macintosh, Volume Il, The System Resource File• InsideMacintosh, Volume V, The Start Manager
• MPWReference Manual
• Technical Note #240, Using MPW for Non-Macintosh 68000 Systems• Technical Note #256, Globals in Stand-Alone Code?

#110: MPW: WritingStand-Alone Code 90f9

Macintosh Technical Notes

#111: MoveHHi and SetResPurge

See also:

Written by:
Updated:

The Memory Manager
The Resource Manager

Jim Friedlander March 2, 1987
March 1, 1988

SetResPurge (TRUE) is called to make the Memory Manager call the ResourceManager before purging a block specified by a handle. If the handle is a handle to aresource, and its resChanged bit is set, the resource data will be written out (usingWriteResource).

When MoveHHi is called, even though the handle's block is not actually being purged,the resource data specified by the handle will be written out. An application can preventthis by calling SetResPurge (FALSE) before calling MoveHHi (and then callingSetResPurge (TRUE) after the MoveHHi call).

Technical Note #111 page 1 of 1 MoveHHi and SetResPurge

-----------_-._-----

•

Macintosh Technical Notes

#112: FindDltem

See also:

Written by:
Updated:

The Dialog Manager

Rick Blair March 2, 1987
March 1, 1988

FindDltem is a potentially useful call which returns the number of a dialog item given apoint in local coordinates and a dialog handle. It returns an item number of -1 if noitem's rectangle overlaps the point. This is all well and good, except you don't get backquite what you would expect.

The item number returned is zero-based, so you have to add one to the result:
theitem := FindDltem(theDialog, thePoint> + 1;

Technical Note #112 page 1 of 1 FindDltem, win 0 prize

Macintosh Technical Notes

#113: Boot Blocks

See also:

Written by:
Updated:

The Segment Loader

B03b Johnson March 2, 1987
March 1, 1988

There are two undocumented features of the Boot Blocks. This note willdescribe how they currently work.

Warning: The format and functionality of the Boot Blocks will change in thefuture; dependence on this information may cause your program to fail onfuture hardware or with future System software.

The first two sectors of a bootable Macintosh disk are used to store information on howto start up the computer. The blocks contain various parameters that the system uses tostartup such as the name of the system file, the name of the Finder, the first applicationto run at boot time, the number of events to allow, etc.

Changing System Heap Size

The boot blocks dictate what size the system heap will be after booting. Any commonsector editing program will allow you to change the data in the boot blocks. Changingthe system heap size is accomplished by changing two parameters in the boot blocks:the long word value at location $ 86 in Block 0 indicates the size of the system heap; theword value at location $ 6 is the version number of the boot blocks. Changing the versionnumber to be greater than $14 ($15 is mcommended) tells the ROM to use the value at$ 86 for the system heap size, otherwise the value at $ 86 is ignored. The $ 8 6 locationonly applies to computers with more than 128K of RAM.

Secondary Sound and Video Pages

Another occasionally useful feature of the boot blocks is the ability to specify that thesecondary sound and video pages be allocated at boot time. This is done before adebugger is loaded, so the debugger will load below the alternate screen. This is usefulfor debugging software that uses the aJternate video page, like page-flipping demos orgames. To allocate the second video and sound buffers, change the two bytes starting atlocation $ 8 in the boot blocks. Change the value (normally 0) to a negative number($FFFF) to allocate both video and sound buffers. Change the value to a positivenumber ($0001) to allocate only the secondary sound buffer.
Warning: MacsBug may not work properly if you allocate additional pages for soundand video.

Technical Note #113 page 1 of 1
Boot Blocks

Macintosh Technical Notes

#114: AppleShare and Old Finders

See also:

Written by:
Updated:

AppleShare User's Guide

Bryan Stearns March 2, 1987
March 1, 1988

A rumor has been spread that if you use a pre-AppleShare Finder on a workstation toaccess AppleShare volumes, you can bypass AppleShare's "access privilege"mechanisms.

This is not true. Access controls are enforced by the server, not by the Finder. If you usean older Finder, you are still prevented (by the server) from gaining access to protectedfiles and folders; however, you will not get the proper user-interface feedback that youwould if you were using the correct Finder: for instance, folders on the server will alwaysappear plain white (that is, without the permission feedback you'd normally get), anderror messages would not be as explanatory as those from Finders that "know" aboutAppleShare servers.

Technical Note #114 page 1 of 1 App/eShare and Old Finders

Macintosh Technical Notes

#115: Application Configuration with Stationery Pads

See also: The File Manager
Technical Note #116-AppleShare-able Applications

Technical Note #47-Customizing SFGetFile
Technical Note #48-Bundles
"Application Development in a Shared Environment"

Written by:
Updated:

Bryan Stearns March 2, 1987
March 1, 1988

With the introduction of AppleShare (Apple's file server) there are restrictions

on self-modification of application resource files and the placement of

configuration files. This note describes one way to get around the necessity

for configuration files.

Configuration Files

Some applications need to store information about configuration; others could benefit

simply from allowing users to customize default ruler settings, window placement, fonts,

etc.

There are applications which store this information as additional resources in the

application's resource file; when the user changes the configuration, the application

writes to itself to change the saved information.

AppleShare, however, requires that if an application is to be used by more than one

user at a time, it must not need write access to itself. This means that the above method

of storing configuration information cannot be used. (For more information about making

your application sharable, see Technical Note #116.)

Storing configuration in a special configuration file can be a problem; the user must

keep the file in the system folder or the application must search for it. This process has

design issues of its own.

An alternative to configuration files: Stationery Pads

A basis for one solution to this problem was a user-interface feature of the Lisa Office

System architecture. Lisa introduced the concept of "stationery pads", special

documents that created copies of themselves to allow users to save a pre-set-up

document for future use. On Lisa, this was the way Untitled documents were created.

Technical Note #115 page 1 of 2 Application Configuration with Stationery Pads

Your Macintosh application can provide the option of saving a document as a stationerypad, to provide similar functionality. Here's how:

• You'll need to add a checkbox to your SFPutF ile dialog box (if you don't knowhow to do this, check out Technical Note #47); if the user checks this box, savethe document as you normally would, but use a different file type (the file type of adocument is usually set when the document is created, using the File Manager
Create procedure, or later using SetFiIelnfo).

[D
~1:; ~!§1_ . [i~1:;~!§1~'::..- ...
~~~ lsi::'

A Document and its Stationery pad

• Be sure to use a different but similar icon for the stationery pad file. This is easy ifyou differentiate between stationery and normal files solely by file type-theFinder uses the type to determine which icon to display, see Technical Note #48for help with the "bundle" mechanism used to associate a file type with an icon.

• When opening a stationery pad file, the window should come up named"Untitled", with the contents of the stationery pad file.

• "Revert" should re-read the stationery pad file.

• Don't forget to add the stationery pad's file type to the file-types list that you passto Standard File, so that the new files will appear in the list when the userchooses Open. This file type should be registered with Macintosh DeveloperTechnical Support.

Technical Note #115 page 2 of 2 Application Configuration with Stationery Pads



Macintosh Technical Notes

#116: AppleShare-able Applications and the Resource Manager

See also: The Resource Manager
"Application Development in a Shared Environment"
Technical Note #4Q-Finder Flags

Written by:
Updated:

Bryan Stearns March 2, 1987
March 1, 1988

Normally, applications on an AppleShare server volume cannot be executed
by more than one user at a time. This technical note explains why, and tells
how you can enable your application to be shared.

The Resource Manager versus Shared Files

Part of the explanation of why applications are not automatically sharable is based on
the design of the Resource Manager. The Resource Manager is a great little database.
It was originally conceived as a way to keep applications localizable (a task it has
performed admirably), and was found to be an excellent foundation for the Segment
Loader, Font Manager, and a large part of the rest of the Macintosh operating system.

However, it was never designed to be a multi-user database. When the Resource
Manager opens a resource file (such as an application), it reads the file's resource map
into memory. This map remains in memory until the resource file is closed by the
Segment Loader, which regains control when the application exits. Sometimes it is
necessary to write the map out to disk; normally, this is only done by UpdateResFile
and CloseResFile.

If two users opened the same resource file at the same time, and one of them had write
access to the file and added a resource to it, the other user's Resource Manager
wouldn't know about it; this would make the other user's copy of the file's original
resource map invalid. This could cause (at least) a crash; if both users had write access,
it's not unlikely that the resource file involved would become corrupted. Also, although
you can tell the Resource Manager to write out an updated resource map, there's no
way for another user to tell it to refresh the copy of the map in memory if the file changes.

Technical Note #116 page 1 of3 AppleShare-able Applications



What does all this have to do with running my application twice?

Your application is stored as a resource file; code segments, alert and dialog templates,
etc., are resources. If you write to your application's resource file (for instance, to add ~

configuration information, like print records), your application can't be shared.

In Apple's compatibility testing of existing applications (during development of
AppleShare), we found quite a few applications, some of them quite popular, that wrote
to their own resource files. So we decided, to improve the safety of using AppleShare, to
always launch applications using a combination of access privileges such that only one
user at a time could use a given application (these privileges will be discussed in a
future Technical Note). In fact, AppleShare opens all resource files this way, unless the
resource file is opened with OpenRFPerm and read-only permission is specified.

But my application doesn't write to itself!

We realize that many applications do not. However, there are other considerations
(covered in detail, with suggestions for fixes, in "Application Development in a Shared
Environment", available from APDA ). In brief, here are the big ones we know about:

• Does your application create temporary files with fixed names in a fixed place (such
as the directory containing the application)? Without AppleShare's protection, two
applications trying to use the same temporary file could be disastrous.

• Is your application at least "conscious" of the fact that it may be in a multi-user
environment? For instance, does it work correctly if a volume containing an existing 4
document is on a locked volume? Does it check all result codes returned from File
Manager calls, and ResError after relevant Resource Manager calls?

OK, I follow the rules. What do I do to make my application
sharable?

There is a flag in each file's Finder information (stored in the file's directory entry) known
as the "shared" bit. If you set this bit on your application's resource file, the Finder will
launch your application using read-only permissions; if anyone else launches your
application, they'll also get it read-only (their Finder will see the same "shared" bit set.).

Three important warnings accompany this information:

• The definition of the "shared" bit was incorrect in previous releases of information and
software from Apple. This includes the June 16, 1986 version of Technical Note #40
(fixed in the March 2, 1987 version), as well as all versions of ResEdit before and
including 1.1 b3 (included with MPW 2.0). For now, the most reliable way to set this bit
is to get the 1.1b3 version of ResEdit, use it to Get Info on your application, and check
the box labeled "cached" (the incorrect documentation upon which ResEdit [et al.] was
based called the real shared bit "cached"; the bit labeled as "shared" is the real
cached bit [a currently unused but reserved bit which should be left clear]).

Technical Note #116 page 2 of 3 AppleShare-able Applications



• By checking this bit, you're promising (to your users) that your application will work
entirely correctly if launched by more than one user. This means that you follow the
other rules, in addition to simply not writing to your application's own resource file.
See "Application Development for a Shared Environment," and test carefully!

• Setting this bit has nothing to do with allowing your application's documents to be
shared; you must design this feature into your application (it's not something that
Apple system software can take care of behind your application's back.). You should
realize from reading this note, however, that if you store your document's data in
resource files, you won't be able to aI/ow multiple users to access them
simultaneously.

Technical Note #116 page 3 of 3 AppleShare-able Applications



•



Macintosh Technical Notes

#117: Compatibility: Why & How

See Also: Technical Note #2-Compatibility Guidelines
Technical Note #7-A Few Quick Debugging Tips

Written by:
Updated:

Bo3b Johnson February 9, 1987
March 1, 1988

While creating or revising any program for the Macintosh, you should be
aware of the most common reasons why programs fail on various versions of
the Macintosh. This note will detail some common failure modes, why they
occur, and how to avoid them.

We've tried to explain the issues in depth, but recognize that not everyone is interested
in every issue. For example, if your application is not copy protected, you're probably not
very interested in the section on copy protection. That's why we've included the outline
form of the technical note. The first two pages outline the problems and the solutions that
are detailed later. Feel free to skip around at will, but remember that we're sending this
enormous technical note because the suggestions it provides may save you hasty
compatibility revisions when we announce a new machine.

We know it's a lot, and we're here to help you if you need it. Our address (electronic and
physical) is on page three-contact us with any questions-that's what we're here for!

Technical Note #117 page 1 of 28 Compatibimy: Why & How



Compatibility: the outline

Don't assume the screen is a fixed size
To get the screen size:

• check the QuickDraw global screenBits . bounds

Don't assume the screen is in a fixed location
To get the screen location:

• check the QuickDraw global screenBits .ba.se.addx

Don't assume that rowBytes is equal to the wid1h of the screen
To get the number of bytes on a line:

• check the QuickDraw global scre-enBits. rowByt-es
To get the screen width:

• check the QuickDraw global screenBits .bounds. right
To do screen-size calculations:

• Use Longlnts

Don't write to or read from nil Handles or nil Pointers

Don't create or Use Fake Handles
To avoid creating or using fake handles:

• Always let the Memory Mana.ger......pe.....,.;1fFr.O""nn'" 0lJeratioHs with handles
• Never write code that assigns something to a master pointer

Don't write code that modifies itself
Self modifying code will not live across incarnations of the 68000

Think carefully about code designed strictly as copy protection
To avoid copy protection-related incompatibilities:

• Avoid copy protection altogether
• Rely on schemes that don't require specific hardware
• Make sure your scheme doesn't perform illegal operations

Don't ignore errors
To get valuable information:

• Check all pertinent calls for errors
• Always write defensive code

Don't access hardware directly
To avoid hardware-related incompatibilities:

• Don't read or write the hardware
• If you can't get the support from the ROM, ask the system where the hardware is
• Use low-memory globals

Don't use bits that are reserved
To avoid compatibility problems when bit status changes:

• Don't use undocumented stuff
• When using low-memory globals, check only what you want to know

Technical Note #117 page 2 of 28 Compatibility: Why & How



Summary
Minor bugs are getting harder and harder to get away with:

• Good luck
• We'll help
• AppleLink: MacDTS, MCI: MacDTS
• U.S. Mail: 20525MarianiAve.;M/S27-T;Cupertino.CA 95014

Technical Note #117 page 3 of 28 Compatibil~y: Why & How



What it Is

The basic idea is to make sure that your programs will run, regardless of which
Macintosh they are being run on. The current systems to be concerned with include:

• Macintosh 128K
• Macintosh 512K
• Macintosh XL

• Macintosh 512Ke
• Macintosh Plus
• Macintosh SE
• Macintosh II

If you perform operations in a generic fashion, there is rarely any reason to know what
machine is running. This means that you should avoid writing code to determine which
version of the machine you are running on, unless it is absolutely necessary.

For the purposes of this discussion, the term "programs" will be used to describe any
code that runs on a Macintosh. This includes applications, INITs, FKEYs, Desk
Accessories and Drivers.

What the "Rules" mean

Compatibility across all Macintosh computers (which may sound like it involves more
work for you) may actually mean that you have less work to do, since it may not be
necessary to revise your program each time Apple brings out a new computer or System
file. Users, as a group, do not understand compatibility problems; all they see is that the
program does not run on their system.

The benefits of being compatible are many-fold: your customers/users stay happy, you ~
have less programming to do, you can devote your time to more valuable goals, there
are fewer versions to deal with, your code will probably be more efficient, your users will
not curse you under their breath, and your outlook on life will be much merrier.

Now that we know what being compatible is all about, recognize that nobody is
requiring you to be compatible with anything. Apple does not employ roving gangs of
thought police to be sure that developers are following the recommended guidelines.
Furthermore, when the guidelines comprise 1200 pages of turgid prose (Inside
Macintosh), you can be expected to miss one or two of the "rules." It is no sin to be
incompatible, nor is it a punishable offense. If it were, there would be no Macintosh
programs, since virtually all developers would be incarcerated. What it does mean,
however, is that your program will be unfavorably viewed until it steps in line with the
current system (which is a moving target). If a program becomes incompatible with a
new Macintosh, it usually requires rethinking the offending code, and releasing a new
version. You may read something like "If the developers followed Apple guidelines, they
would be compatible with the transverse-hinged diatomic quark realignment system."
This means that if you made any mistakes (you read all 1200 pages carefully, right?),
you will not be compatible. It is extremely difficult to remain completely compatible,
particularly in a system as complex as the Macintosh. The rules haven't changed, but
what you can get away with has. There are, however, a number of things that you can do
to improve your odds-some of which will be explained here.

Technical Note #117 page 4 of 28 Compatibility: Why & How



It's your choice

It is still your choice whether you will be concerned with compatibility or not. Apple will
not put out a warrant for your arrest. However, if you are doing things that are specifically
illegal, Apple will also not worry about "breaking" your program.

Bad Things

The following list is not intended to be comprehensive, but these are the primary
reasons why programs break from one version of the system to the next. These are the
current top ten commandments:

I Thou shalt not assume the screen is a fixed size.
II Thou shalt not assume the screen is at a fixed location.
III Thou shalt not assume that rowBytes is equal to the width of the screen.
IV Thou shalt not use nil handles or nil pointers.
V Thou shalt not create or use fake handles.
VI Thou shalt not write code that modifies itself.
VII Thou shalt think twice about code designed strictly as copy protection.
VIII Thou shalt check errors returned as function results.
IX Thou shalt not access hardware directly.
X Thou shalt not use any of the bits that are reserved (unused means reserved).

This has been determined from extensive testing of our diverse software base.

Technical Note #117 page 5 of 28 Compatibility: Why & How



Assuming the screen is a fixed size

Do not assume that the Macintosh screen is 512 x 342 pixels. Programs that do
generally have problems on (or special case for) the Macintosh XL, which has a wider
screen. Most applications have to create the bounding rectangle where a window can 4
be dragged. This is the boundsRect that is passed to the call:

DragWindow (myWindowPtr, theEvent.where, boundsRect);

Some ill-advised programs create the boundsRect by something like:

SetRect (boundsRect, 0,0,342,512); (oops, this is hard-coded.. )

Why it's Bad

This is bad because it is never necessary to specifically put in the bounding rectangle
for the screen. On a Macintosh XL for example, the screen size is 760x364 (and
sometimes 608x431 with alternate hardware). If a program uses the hard-coded
0,0,342,512 as a bounding rectangle, end users will not be able to move their windows
past the fictitious boundary of 512. If something similar were done to the GrowWindow
call, it would make it impossible for users to grow their window to fill the entire screen.
(Always a saddening waste of valuable screen real-estate.)

Assuming screen size makes it more difficult to use the program on Macintoshes with
big screens, by making it difficult to grow or move windows, or by drawing in strange
places where they should not be drawing (outside of windows). Consider the case of
running on a Macintosh equipped with one of the full page displays, or Ultra-Large 4
screens. No one who paid for a big screen wants to be restricted to using only the
upper-left corner of it.

How to avoid becoming a screening fascist

Never hard code the numbers 512 and 342 for screen dimensions. You should avoid
using constants for system values that can change. Parameters like these are nearly
always available in a dynamic fashion. Programs should read the appropriate variables
while the program is running (at run-time, not at compile time).

Here's how smart programs get the screen dimensions:

InitGraf(@thePort); { QuickDraw global variables have to be initialized.)

boundsRect := screenBits.bounds; The Real way to get screen size )
( Use QuickOraw global variable. )

This is smart, because the program never has to know specifically what the numbers
are. All references to rectangles that need to be related to the screen (like the drag and
grow areas of windows) should use screenBits .bounds to avoid worrying about the
screen size.

Technical Note #117 page 6 of 28 Compatibil~y: Why & How



Note that this does not do anything remotely like assume that "if the computer is not a
standard Macintosh, then it must be an XL." Special casing for the various versions of
the Macintosh has always been suspicious at best; it is now grounds for breaking. (At
least with respect to screen dimensions.)

By the way, remember to take into account the menu bar height when using this
rectangle. On 128K ROMs (and later) you can use the low-memory global mBarHeight
(a word at $BAA). But since we didn't provide a low-memory global for the menu bar
height in the 64K ROMs, you'll have to hard code it to 20 ($14). (You're not the only ones
to forget the future holds changes.)

How to find fascist screenism in current programs

The easiest way is to exercise your program on one of the Ultra-Large screen
Macintoshes. There should be no restrictions on sizing or moving the windows, and all
drawing should have no problems. If there are any anomalies in the program's usage,
there is probably a lurking problem. Also, do a global find in the source code to see if the
numbers 512 or 342 occur in the program. If so, and if they are in reference to the
screen, excise them.

Technical Note #117 page 7 of 28 Compatibility: Why & How



Assuming the screen is at a fixed location

Some programs use a fixed screen address, assuming that the screen location will be
the same on various incarnations of the Macintosh. This is not the case. For example,
the screen is located at memory location $lA700 on a 128K Macintosh, at $7A700 on a ~

512K Macintosh, at $F8000 on the Macintosh XL, and at $FA700 on the Macintosh Plus.

Why it's Bad

When a program relies upon the screen being in a fixed location, Murphy's Law dictates
that an unknowing user will run it upon a computer with the screen in a different location.
This usually causes the system to crash, since the offending program will write to
memory that was used for something important. Programs that crash have been proven
to be less useful than those that don't.

How to avoid being a base screener

Suffice it to say that there is no way that the address of the screen will remain static, but
there are rare occasions where it is necessary to go directly to the screen memory. On
these occasions, there are bad ways and not-as-bad ways to do it. A bad way:

myScreenBase := Pointer ($7A700); (not good. Hard-coded number.

A not-as-bad way:

InitGraf(@thePort); ( do this only once in a program. )

myScreenBase := screenBits.baseAddr; (Good. Always works. ) ~

(Yet another QuickDraw global variable) •

Using the latter approach is guaranteed to work, since QuickDraw has to know where to
draw, and the operating system tells QuickDraw where the screen can be found. When
in doubt, ask QuickDraw. This will work on Macintosh computers from now until forever,
so if you use this approach you won't have to revise your program just because the
screen moved in memory.

If you have a program (such as an INIT) that cannot rely upon QuickDraw being
initialized (via InitGraf), then it is possible to use the ScrnBase low-memory global
variable (a long word at $824). This method runs a distant second to asking QuickDraw,
but is sometimes necessary.

How to find base screeners

The easiest way to find base screeners is to run the offending program on machines that
have different screen addresses. If any addresses are being used in a base manner, the
system will usually crash. The offending program may also occasionally refuse to draw.
Some programs afflicted with this problem may also hang the computer (sometimes
known as accessing funny space). Also, do a global find on the source code to look for
numbers like $ 7 A700 or $lA700. When found, exercise caution while altering the
offending lines.

Technical Note #117 page 8 of 28 Compatibil~y: Why & How



Assuming that rowbytes is equal to the width of the screen

According to the definition of a bitMap found in Inside Macintosh (p 1-144), you can see
that rowByt es is the number of actual bytes in memory that are used to determine the
bitMap. We know the screen is just a big hunk of memory, and we know that QuickDraw
uses that memory as a bi tMap. rowBytes accomplishes the translation of a big hunk of
memory into a bi tMap. To do this, rowBytes tells the system how long a given row is in
memory and, more importantly, where in memory the next row starts. For conventional
Macintoshes, rowBytes (bytes per Row) * 8 (Pixels per Byte) gives the final horizontal
width of the screen as Pixels per Row. This does not have to be the case. It is possible to
have a Macintosh screen where the rowBytes extends beyond what is actually visible
on the screen. You can think of it as having the screen looking in on a larger bi tMap.
Diagrammatically, it might look like:

Big Hunk 0' Memory

....

~ screenBits .Bounds "':'"...................
'" '" '" '" '" '" ,; '" '" '" '" '" '" '"... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
'" ,; '" ,; '" '" '" '" '" '" ,; '" '" '"... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
'" ,; '" '" '" '" '" '" '" '" '" '" ,; ,;... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
'" '" '" '" '" '" '" '" '" '" '" '" '" '"... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
'" '" '" ,; '" ,; '" ,; '" '" '" '" ,; '"... ... ... ... ... ... ... ... ... ... ... ... ... ... ...'" '" '" ' , , , , , , , ,; '" '"

"'~"'';''. Visible Area .~ ~ ~ ...
... ... ... ~ ~ ~ , , , , , , ...

'" '" '" '" '" '" '" '" '" '" '" '" ,; ,;... ... ... ... ... ... ... ... ... ... ... ... ...
BaseAddr: ,"' ; ,'".'/"':"'~"'~'~"':"':"':'~ "',"',

......

With an Ultra-Large screen, the number of bytes used for screen memory may be in the
500,000 byte range. Whenever calculations are being made to find various locations in
the screen, the variables used should be able to handle larger screen sizes. For
example, a 16 bit Integer will not be able to hold the 500,000 number, so a Long Int
would be required. Do not assume that the screen size is 21,888 bytes long. bitMaps
can be larger than 32K or 64K.

Why it's Bad

Programs that assume that all of the bytes in a row are visible may make bad
calculations, causing drawing routines to produce unusual, and unreadable, results.
Also, programs that use the rowBytes to figure out the width of the screen rectangle will
find that their calculated rectangle is not the real screenBi ts . Bounds. Drawing into
areas that are not visible will not necessarily crash the computer, but it will probably give
erroneous results, and displays that don't match the normal output of the program.

Programs that assume that the number of bytes in the screen memory will be less than
32768 may have problems drawing into Ultra-Large screens, since those screens will
often have more memory than a normal Macintosh screen. These particular problems
do not evidence themselves by crashing the system. They generally appear as loss of

Technical Note #117 page 9 of 28 Compatibimy: Why & How

--------------------



functionality (not being able to move a window to the bottom of the screen), or as
drawing routines that no longer look correct. These problems can prevent an otherwise
wonderful program from being used.

How to avoid being a row byter

In any calculations, the rowBytes variable should be thought of as the way to get to the
next row on the screen. This is distinct from thinking of it as the width of the screen. The
width should always be found from s ere en Bit s . b 0 un d s . rig h t 
screenBits.bounds.left.

It is also inappropriate to use the rectangle to decide how many bytes there are on a
row. Programs that do something like:

bytesLine .= screenBits.bounds.right DIV 8; {bad use of bounds
rightSide .= screenBits.rowBytes * 8; { bad use of rowBytes )

will find that the screen may have more rowBytes than previously thought. The best
way to avoid being a row byter is to use the proper variables for the proper things.
Without the proper mathematical basis to the screen, life becomes much more difficult.
Always do things like:

bytesLine .= screenBits.rowBytes; {always the correct number)
rightSide .= screenBits.bounds.right; {always the correct screen size

It is sometimes necessary to do calculations involving the screen. If so, be sure to use
Longlnts for all the math, and be sure to use the right variables (i.e. use Longlnts)...
For example, if we need to find the address of the sooth row in the screen (500 lines ,.
from the top):

VAR myAddress;
myRow;
myOffset;
bytesLine;

LongInt;
LongInt;
LongInt;
LongInt;

so the calculations don't round off.
could easily be over 32768 .. , )

myAddress ;= ord4(screenBits.baseAddr); {start w!the real base address
myRow ;= 500; {the row we want to address
bytesLine ;= screenBits.rowBytes; {the real bytes per line)
myOffset ;= myRow * bytesLine; {lines * bytes per lines gives bytes )
myAddress ;= myAddress + myOffset; {final address of the sooth line )

This is not something you want to do if you can possibly avoid it, but if you simply must
go directly to the screen, be careful. The big-screen machines (Ultra-Large screens) will
thank you for it. If QuickDraw cannot be initialized, there is also the low-memory global
screenRow (a word at $106) that will give you the current rowBytes.

How to find row byters

To find current problems with row byter programs, run them on a machine equipped with
Ultra-Large screens and see if any anomalies crop up. Look for drawing sequences that ~

don't work right, and for drawing that clips to an imaginary edge. For source-level

Technical Note #117 page 10 of 28 Compatibility: Why & How

'oore 8 \"
--_IIIIIl!B _



inspection, look for uses of the rowBytes variables and be sure that they are being
used in a mathematically sound fashion. Be highly suspicious of any code that uses
rowBytes for the screen width. Any calculations involving those system variables
should be closely inspected for round-off errors and improper use. Search for the
number 8. If it is being used in a calculation where it is the number of bits per byte, then
watch that code closely for improper conceptualization. This is code that could leap out
and grab you by the throat at anytime. Be careful!

Technical Note #117 page 11 of 28 Compatibility: Why & How



Using nil Handles or nil Pointers

Ani 1 pointer is a pointer that has a value of o. Recognize that pointers are merely
addresses in memory. This means that a nil pointer is pointing to memory location o.
Any use of memory location 0 is strictly forbidden, since it is owned by Motorola.
Trespassers may be shot on sight, but they may not die until much later. Sometimes
trespassers are only wounded and act strangely. Any use of memory location 0 can be
considered a bug, since there are no valid reasons for Macintosh programs to read or
write to that memory. However, nil pointers themselves are not necessarily bad. It is
occasionally necessary to pass nil pointers to ROM routines. This should not be
confused with reading or writing to memory location O. A pointer normally points to
(contains the address of) a location in memory. It could look like this:

Highest Memory

P: SE9310

Higher Memory

P~: S3E4DE

: S3E4DE

Re a 1
Dat a ....: ......

-

This is how a Pointer
works. The address of
the pointer variable itself
is SE9310 (@Pl and is four
bytes long. The pointer points
to (contains the address ofl
the block at S3E4DE (Pl.
That memory location is where
the actual data resides (P~).

Memory 0

If a pointer has been cleared to nil, it will point to memory location o. This is OK as
long as the program does not try to read from or write to that pointer. An example of a
nil pointer could look like:

This is a nil Pointer.
Note that the memory that
it points to (the address)
is 0 (P~l. This is wrong.
There is no valid data at
memory location O. Any
writing to or reading from
this pointer is a bug.

: 0

Rea 1
Dat a

- ....
--

S3E4DE.

P: SE9310

Higher Memory

Highest Memory

Technical Note #117 page 12 of 28 Compatibility: Why & How



nil handles are related to the problem, since a handle is merely the address of a
pointer (or a pointer to a pointer). An example of what a normal handle might look like
is:

Highest Memory

H: SE9310

Higher Memory

H~~: S3E4DE

H~: S2603C

: S2 603C

Rea 1

Dat a ..:

:::::;:::::::;::.;:;:;::.;::::.:.::;:;:;:::;:;:;::.;::.:::::::.:.::::::: ....
: S3E4DE - --1~~~~~[1~~II~~jj~jjI~~~~1]~~~~j~Ij~ffi~

This is how a Handle works.
The address of the handle
variable itself (H) is SE9310.
That variable points (has the
address) to the master pointer
at location S2603C (H). That
variable is a pointer also, and
points to the real data found
at S3E4DE (H~~). The dark grey
block is a Master pointer block. It
is a group (usually 64) of Master
Pointers. One of them is the Master
Pointer at address S2603C (H~I.

Memory 0

When the first pointer (h) becomes nil, that implies that memory location 0 can be used
as a pointer. This is strictly illegal. There are no cases where it is valid to read from or
write to a nil handle. A pictorial representation of what a nil handle could look like:

This is a nil Handle.
Note that the Handle usually
points to a Master Pointer, but
in this case it points at (has
the value of) 0 (H~). This is wrong.
Using what is at memory location
o as a pointer is invalid, since
it is not known what will be there.

oH: SE9310: t=::JC==l-----,

Higher Memory

Highest Memory

Real
Data

S3E4 DE: .- --1

S2603C:

Memory 0
(H~)

,....~H~~: Points someplace strange ...

If the memory at 0 contains an odd number (numerically odd), then using it as a pointer
will cause a system error with 10=2. This can be very useful, since that tells you exactly
where the program is using this illegal handle, making it easy to fix. Unfortunately, there
are cases where it is appropriate to pass ani 1 handle to ROM routines (such as
GetScrap). These cases are rare, and it is never legal to read from or write to a nil
handle.

Technical Note #117 page 13 of 28 Compatibil~y: Why & How



There is also the case of an empty handle. An empty handle is one where the handle
itself (the first pointer) points to a valid place in memory; that place in memory is also a
pointer, and if it is nil the entire handle is termed empty. There are occasions where it
is necessary to use the handle itself, but using the nil pointer that it contains is not
valid. An example of an empty handle could be: ~

Highest Memory

H: $E9310

Higher Memory

$3E4DE

HA
: $2603C

: $2 60 3C

Pu rged
Dat a

:

~::.:::::::::::::::::::.:::::::::=:::.:::::::::::::::::::::::::-::::::: ...: 0

~~~~~~~~ili~f:~jili~I~j~fjj1f~111~111~~~~11~ij~~~~f~11~i1~~~ ...

This is an Empty Handle.
Note that the handle itself
has a valid Master Pointer
address in it $2603C (W). The
Master Pointer is nil however,
which is the address of location
o in memory. It is wrong to use
the Master Pointer in this case,
although there are cases where
using the Handle itself is valid.

Fundamentally, any reading or writing to memory using a pointer or handle that is nil is
punishable by death (of your program),

Why it's Bad

The use of nil pointers can lead to the use of make-believe data. This make-believe
data often changes for different versions of the computer. This changing data makes it
difficult to predict what will happen when a program uses nil pointers. Programs may
not crash as a result of using ani 1 pointer, and they may behave in a consistent
fashion. This does not mean that there isn't a bug. This merely means that the program
is lucky, and that it should be playing the lottery, not running on a Macintosh. If a
program acts differently on different versions of the Macintosh, you should think "could
there be a nasty nil pointer problem here?" Use of a nil handle usually culminates in
reading or writing to obscure places in memory. As an example:

VAR rnyHandle: TEHandle;

rnyHandle := nil;

That's pretty straightforward, so what's the problem? If you do something like:

rnyHandleAA.viewRect := rnyRect; {very bad idea with rnyHandle = nil

memory location zero will be used as a pointer to give the address of a TextEdit record.
What if that memory location points to something in the system heap? What if it points to
the sound buffer? In cases like these, eight bytes of rectangle data will be written to
wherever memory location a points. t

Technical Note #117 page 14 of 28 Compatibility: Why & How

Use of ani 1 handle will never be useful. This memory is reserved and used by the
68000 for various interrupt vectors and Valuable Stuff. This Valuable Stuff is composed
of things that you definitely do not want to change. When changed, the 68000 finds out,
and decides to get back at your program in the most strange and wonderful ways.
These strange results can range from a System Error all the way to erasing hard disks
and destroying files. There really is no limit to the havoc that can be wreaked. This
tends to keep the users on the edge of their seat, but this is not really the desired effect.
As noted above, it won't necessarily cause traumatic results. A program can be doing
naughty things and not get caught. This is still a bug that needs to be fixed, since it is
nearly guaranteed to give different results on different versions of the Macintosh.
Programs exhibiting schizophrenia have been proven to be less enjoyable to use.

How to avoid being a Niller

Whenever a program uses pointers and handles, it should ensure that the pointer or
handle will not be nil. This could be termed defensive programming, since it assumes
that everyone is out to get the program (which is not far from the truth on the Macintosh).
You should always check the result of routines that claim to pass back a handle. If they
pass you back a nil handle, you could get in trouble if you use them. Don't trust the
ROM. The following example of a defensive use of a handle involves the Resource
Manager. The Resource Manager passes back a handle to the resource data. There
are any number of places where it may be forced to pass back ani 1 handle. For
example:

VAR myRezzie: MyHandle;

myRezzie := MyHandle (GetResource (myResType, myResNumber)); { could be missing...}
IF myRezzie = nil THEN ErrorHandler('We almost got Nilled')
ELSE myRezzieAA.myRect := newRect; { We know it is OK }

As another example, think of how handles can be purged from memory in tight memory
conditions. If a block is marked purgeable, the Memory Manager may throw it away at
any time. This creates an empty handle. The defensive programmer will always make
sure that the handles being used are not empty.

VAR myRezzie: myHandle;

myRezzie := myHandle (GetResource (myResType, myResNumber)); could be
missing...

IF myRezzie = nil THEN ErrorHandler('We almost got Nilled')
ELSE myRezzieAA.myRect := newRect; {We know it is OK }
tempHandle := NewHandle (largeBlock); {might dispose a purgeable myRezzie}
IF myRezzie A = nil THEN LoadResource(Handle(myRezzie)); {Re-load empty

handle}
IF ResError = noErr THEN

myRezzieAA.StatusField OK; { guaranteed not empty, and actually
gets read back in, if necessary }

Be especially careful of places where memory is being allocated. The NewHandle and
NewPt r calls will return a ni 1 handle or pointer if there is not enough memory. If you
use that handle or pointer without checking, you will be guilty of being a Niller.

Technical Note #117 page 15 of 28 Oornpatloiutv: Why & How

How to find Nillers

The best way to find these nasty nil pointer problems is to set memory location zero to
be an odd number (a good choice is 'NILl' = $4E4 94C21, which is numerically odd, as
well as personality-wise). Please see Technical Note #7 for details on how to do this. 4
If you use TMON, you can use the extended user area with Di:::'cipline. Discipline will set
memory location 0 to INILl' to help catch those nasty pointer problems. If you use
Macsbug, just type 8M 0 'NIL! and go. Realize of course, that if a program has made a
transgression and is actually using nil pointers, this may make the program crash with
an 10=2 system error. This is good! This means that you have found a bug that may
have been causing you untold grief. Once you know where a program crashes, it is
usually very easy to use a debugger to find where the error is in the source code. When
the program is compiled, turn on the debugging labels (usually a $0+ option). Set
memory location 0 to be 'NILl'. When the program crashes, look at where the program is
executing and see what routine it was in (from a disassembly). Go back to that routine in
the source code and remove the offending code with a grim smile on your face. Another
scurvy bug has been vanquished. The intoxicating smell of victory wafts around your
head.

Another way to find problems is to use a debugger to do a checksum on the first four
bytes in memory (from 0 to 3 inclusive). If the program ever traps into the debugger
claiming that the memory changed, see which part of the program altered memory
location O. Any code that writes to memory location zero is guilty of high treason against
the state and must be removed. Remember to say, "bugs are not my friends."

Technical Note #117 page 16 of 28 Compatibility: Why & How

Creating or Using Fake Handles

A fake handle is one that was not manufactured by the system, but was created by the
program itself. An example of a fake handle is:

CaNST aMem = $100;
VAR myHandle: Handle;

myPointer: Ptr;

myPointer := ptr (aMem);
myHandle := @myPointer;

{ the address of some memory }
{the address of the pointer variable. Very bad.}

The normal way to create and use handles is to call the Memory Manager NewHandle

function.

Why it's Bad

A handle that is manufactured by the program is not a legitimate handle as far as the
operating system is concerned. Passing a fake handle to routines that use handles is a
good way to discover the meaning of "Death by ROM." For example, think how confused
the operating system would get if the take handle were passed to DisposHandle. What
would it dispose? It never allocated the memory, so how can it release it? Programs
that manufacture handles may find that the operatin9 system is no longer their friend.

When handles are passed to various ROM routines, there is no telling what sorts of
things will be done to the handle. There are any number of normal handle manipulation
calls that the ROM may use, such as SetHandleSize, HLock, HNoPurge, MoveHHi and
so on. Since a program cannot guarantee that the ROM will not be doing things like this
to handles that the program passes in, it is wise to make sure that a real handle is being
used, so that all these type of operations will work as the ROM expects. For fake
handles, the calls like HLock and SetHandleSize have no bearing. Fake handles are
very easy to create, and they are very bad for the health of otherwise upstanding
programs. Whenever you need a handle, get one from the Memory Manager.

As a particularly bad use of a fake handle:

VAR myHandle:
myStuff:

Handle;
myRecord;

myHandle := NewHandle (SIZEOF(myStuff)); {create a new normal handle
myHandle~ := @myStuff; {YOW! Intended to make myHandle a handle to

the myStuff record. What it really does is
blow up a Master Pointer block, Heap corruption,
and death by Bad Heap. Never do this. }

This can be a little confusing, since it is fine to use your own pointers, but very bad to
use your own handles. The difference is that handles can move in memory, and
pointers cannot, hence the pointers are not dangerous. This does not mean you should
use pointers for everything since that causes other problems. It merely means that you
have to be careful how you use the handles.

Technical Note #117 page 17 of 28 C:ompatibility: Why & How

The use of fake handles usually causes system errors, but can be somewhat mysterious
in its effects. Fake handles can be particularly hard to track down since they often cause
damage that is not uncovered for many minutes of use. Any use of fake handles that
causes the heap to be altered will usually crash the system. Heap corruption is a .4
common failure mode. In clinical studies, 9 out of 10 programmers recommend ~

uncorrupted heaps to their users who use heaps.

How to avoid being a fakir

The correct way to make a handle to some data is to make a copy of the data:

VAR myHandle: Handle;
myStuff: myRecord;

errCode := PtrToHand (@myStuff, myHandle, SIZEOF(myStuff));
IF errCode <> noErr THEN ErrorHandler ('Out of memory');

Always, always, let the Memory Manager perform operations with handles. Never write
code that assigns something to a master pointer, like:

VAR myDeath: Handle;
myDeath A := stuff; {Don't change the Master pointer. }

If there is code like this, it usually means the heap is being corrupted, or a fake handle is
being used. It is, however, OK to pass around the handle itself, like:

myCopyHandle := myHandle; { perfectly OK, nobody will yell about this. }

This is far different than using the A operator to accidentally modify things in the system.
Whenever it is necessary to write code to use handles, be careful. Watch things
carefully as they are being written. It is much easier to be careful on the way in than it is
to try to find out why something is crashing. Be very careful of the @ operator. This
operator can unleash untold problems upon unsuspecting programs. If at all possible,
try to avoid using it, but if it is necessary, be absolutely sure you know what it is doing. It
is particularly dangerous since it turns off the normal type checking that can help you
find errors (in Pascal). In short, don't get crazy with pointer and handle manipulations,
and they won't get crazy with you.

How to find fakirs

Problems of this form are particularly insidious because it can be very difficult to find
them after they have been created. They tend to not crash immediately, but rather to
crash sometime long after the real damage has been done. The best way to find these
problems is to run the program with Discipline. (Discipline is a programmer's tool that
will check all parameters passed to the ROM to see if they are legitimate. Discipline can
be found as a stand-alone tool, but the most up-to-date version will be found in the
Extended User Area for the TMON debugger. The User Area is public domain, but
TMON itself is not. TMON has a number of other useful features, and is well worth the
price.) Discipline will check handles that are passed to the ROM to see if they are real
handles or not, and if not, will stop the program at the offending call. This can lead you ~
back to the source at a point that may be close to where the bad handle was created. If

TechnicaI Note #117 page 18 of 28 Compatlblllty: Why & How

a program passes the Discipline test, it will be a healthy, robust program with drastically
improved odds for compatibility. Programs that do not pass Discipline can sleep poorly
at night, knowing that they have broken at least one or two of the "rules."

A way to find programs that are damaging the heap is to use a debugger (TMON or
Macsbug) and turn on the Heap Check operation. This will check the heap for errors at
each trap call, and if the heap is corrupted will break into the debugger. Hopefully this
will be close to where the code is that caused the damage. Unfortunately, it may not be
close enough; this will force you to look further back.

Looking in the source code, look for all uses of the @ operator, and examine the code
carefully to see if it is breaking the rules. If it is, change it to step in line with the rest of
the happy programs here in happy valley. Also, look for any code that changes a master
pointer like the myHandle" : = stuff. Any code of this form is highly suspect, and
probably a member of the Anti-Productivity League. The APL has been accused of
preventing software sales and the rise of the Yen. These problems can be quite difficult
to find at times, but don't give up. These fake handles are high on the list of guilty
parties, and should never be trusted.

Technical Note #117 page 19 of 28 Compatibility: Why & How

Writing code that modifies itself

Self-modifying code is software that changes itself. Code that alters itself runs into two
main groupings: code that modifies the code itself and code that changes the block the
code is stored in. Copy protection code often modifies the code itself, to change the way t
it operates (concealing the meaning of what the code does). Changing the code itself is
very tricky, and also prone to having problems, particularly when the microprocessor
itself changes. There are third-party upgrades available that add a 68020 to a
Macintosh. Because of the 68020's cache, programs that modify themselves stand a
good chance of having problems when run on a 68020. This is a compatibility point that
should not be missed (nudge, nudge, wink, wink). Code that changes other code (or
itself) is prone to be incompatible when the microprocessor changes.

The second group is code that changes the block that the code is stored in. Keeping
variables in the CODE segment itself is an example of this. This is uncommon with
high-level languages, but it is easy to do in assembly language (using the DC directive).
Variables defined in the code itself should be read-only (constants). Code that modifies
itself has signed a tacit agreement that says "I'm being tricky, if I die, I'll revise it."

Why it's Bad

There are now three different versions of the microprocessor, the 68000, 68010, and the
68020. They are intended to be compatible with each other, but may not be compatible
with code that modifies itself. As the Macintosh evolves, the system may have
compatibility problems with programs that try to "push the envelope."

How to avoid being an abuser

Well, the obvious answer is to avoid writing self-modifying code. If you feel obliged to
write self-modifying code, then you are taking an oath to not complain when you break
in the future. But don't worry about accidentally taking the oath: you won't do it without
knowing it. If you choose to abuse. you also agree to personal visits from the Apple
thought police, who will be hired as soon as we find out.

How to find abusers

Run the program on a 68020 system. If it fails, it could be related to this problem, but
since there are other bugs that might cause failures, it is not guaranteed to be a
self-modifying code problem. Self-modifying code is often used in copy protection,
which brings us to the next big topic.

Technical Note #117

pe.

page 20 of 28 Compatlbluty: Why & How

Code designed strictly as copy protection

Copy protection is used to make it difficult to make copies of a program. The basic
premise is to make it impossible to copy a program with the Finder. This will not be a
discussion as to the pros and cons of copy protection. Everyone has an opinion. This
will be a description of reality, as it relates to compatibility.

Why it's Bad

System changes will never be made merely to cause copy protection schemes to fail,
but given the choice between improving the system and making a copy protection
scheme remain compatible, the system improvement will always be chosen.

• Copy protection is number one on the list of why programs fail the compatibility test.
• Copy protection by its very nature tends to do the most "illegal" things.
• Programs that are copy protected are assumed to have signed a tacit agreement to

revise the program when the system changes.

Copy protection itself is not necessarily bad. What is bad is when programs that would
otherwise be fully compatible do not work due only to the copy protection. This is very
sad, since it requires extra work, revisions to the software, and time lost while the
revision is being produced. The users are not generally humored when they can no
longer use their programs. Copy protection schemes that fail generally cause system
errors when they are run. They also can refuse to run when they should.

How to avoid being a protectionist

The simple answer is to do without copy protection altogether. If you think of
compatibility as a probability game, if you leave out the copy protection, your odds of
winning skyrocket. As noted above, copy protection is the single biggest reason why
programs fail on the various versions of the Macintosh. For those who are required to
use copy protection, try to rely on schemes that do not require specific hardware and
make sure that the scheme used is not performing illegal operations. If a program runs,
an experienced Macintosh programmer armed with a debugger can probably make a
copy of it, (no matter how sophisticated the copy protection scheme) so a moderate
scheme that does not break the rules is probably a better compatibility bet. The trickier
and more devious the scheme, the higher the chance of breaking a rule. Tread lightly.

How to find protectionists

The easiest way to see if a scheme is being overly tricky is to run it on a Macintosh XL.
Since the floppy disk hardware is different this will usually demonstrate an unwanted
hardware dependency. Be wary of schemes that don't allow installation on a hard disk.
If the program cannot be installed on a hard disk, it may be relying upon things that are
prone to change. Don't use schemes that access the hardware directly. All Macintosh
software should go through the various managers in the ROM to maintain compatibility.
Any code that sidesteps the ROM will be viewed as having said "It's OK to make me
revise myself."

Technical Note #117 page 21 of 28 Compatibility: Why & How

Check errors returned as function results

All of the Operating System functions, as well as some of the Toolbox functions, will
return result codes as the value of the function. Don't ignore these result codes. If a
program ignores the result codes, it is possible to have any number of bad things
happen to the program. The result code is there to tell the program that something went
wrong; if the program ignores the fact that something is wrong, that program will
probably be killed by whatever went wrong. (Bugs do not like to be ignored.) If a
program checks errors, an anomaly can be nipped in the bud, before something really
bizarre happens.

Why it's Bad

A program that ignores result codes is skipping valuable information. This information
can often prevent a program from crashing and keep it from losing data.

How to avoid becoming a skipper

Always write code that is defensive. Assume that everyone and everything is out to kill
you. Trust no one. An example of error checking is:

myRezzie := GetResource (myResType, myResId);
IF myRezzie = nil THEN ErrorHandler ('Who sto~e my resource ... ');

Another example:

fsErrCode := FSOpen ('MyFile', myVRefNum, myFileRefNum);
IF fsErrCode <> noErr THEN ErrorHandler (fsErrCode, 'File error');

And another:

myTPPrPort := PrOpenDoc (myTHPrint, nil, nil);
IF PRError <> noErr THEN ErrorHandler (PRError, 'Printing error ') ;

Any use of Operating System functions should presume that something nasty can
happen, and have code to handle the nasty situations. Printing calls, File Manager
calls, Resource Manager calls, and Memory Manager calls are all examples of
Operating System functions that should be watched for returning errors. Always, always
check the result codes from Memory Manager calls. Big memory machines are pretty
common now, and it is easy to get cavalier about memory, but realize that someone will
always want to run the program under Switcher, or on smaller Macintoshes. It never
hurts to check, and always hurts to ignore it.

How to find skippers

This is easy: just do weird things while the program 1S running. Put in locked or
unformatted disks while the program is running. Use unconventional command
sequences. Run out of disk space. Run on 128K Macintoshes to see how the program
deals with running out of memory. Run under Switcher for the same reason. (Programs 4
that die while running under Switcher are often not Switcher's fault, and are in fact due

Technical Note #117 page 22 of 28 Cornpatibitity: Why & How

to faulty memory management.) Print with no printer connected to the Macintosh. Pop
disks out of the drives with the Command-Shift sequence, and see if the program can
deal with no disk. When a disk-switch dialog comes up, press Command-period to pass
back an error to the requesting program (128K ROMs only). Torturing otherwise well
behaved programs can be quite enjoyable, and a number of users enjoy torturing the
program as much as the program enjoys torturing them. For the truly malicious, run the
debugger and alter error codes as they come back from various routines. Sure it's a
dirty low-down rotten thing to do to a program, but we want to see how far we can push
the program. (This is also a good way to check your error handling.) It's one thing to be
an optimist, but it's quite another to assume that nothing will go wrong while a program
is running.

Technical Note #117 page 23 of 28 Compatibility: Why & How

Accessing hardware directly

Sometimes it is necessary to go directly to the Macintosh hardware to accomplish a
specific task for which there is no ROM support. Early hard disks that used the serial ~

ports had no ROM support. Those disks needed to use the SCC chip (the 8530 ~

communication chip) in a high-speed clocked fashion. Although it is a valid function, it is
not something that is supported in the ROM. It was therefore necessary to go play with
the SCC chip directly, setting and testing various hardware registers in the chip itself.
Another example of a valid function that has no ROM support is the use of the alternate
video page for page-flipping animation. Since there is no ROM call to flip pages, it is
necessary to go play with the right bit in the VIA chip (6522 Versatile Interface Adapter).
Going directly to the hardware does not automatically throw a program into the
incompatible group, but it certainly lowers its odds.

Why it's bad

Going directly to the hardware poses any number of problems for enlightened programs
that are trying to maintain compatibility across the various versions of the Macintosh. On
the Macintosh XL for example, a lot of the hardware is found in different locations, and in
some cases the hardware doesn't exist. On the XL there is no sound chip. Programs
that go directly to the sound hardware will find they don't work correctly on an XL. If the
same program were to go through the Sound Manager, it would work fine, although the
sound would not be the same as expected. Since the Macintosh is heavily oriented to
the software side of things, expecting various hardware to always be available is not a
safe bet. Choosy programmers choose to leave the hardware to the ROM.

How to avoid having a hard attack

Don't read or write the hardware. Exhaust every possible conventional approach before
deciding to really get down and dirty. If there is a Manager in the ROM for the operation
you wish to perform, it is far better to use the Manager than to go directly to the
hardware. Compatibility at the hardware level can very rarely be maintained, but
compatibility at the Manager level is a prime consideration. If a program is down to the
last ditch effort, and cannot get the support from the ROM that is desired, then access the
hardware in an enlightened approach. The really bad way to do it:

VIA := Pointer ($EFE1FE); sure it's the base address today...}
{ This is bad. Hard-coded number.

The with-it, inspired programmer of the eighties does something like:

TYPE LongPointer = ALongInt;

VAR VIA: LongPointer;
VIABase: LongInt;

VIA := Pointer ($lD4); {the address of the low-memory global. }
VIABase := VIA A; { get the low-memory variable's value}

{ Now VIABase has the address of the chip

Technical Note #117 page 24 of 28 Compatibility: Why & How

The point here is that the best way to get the address of a hardware chip is to ask the
system where it currently is to be found. The system always knows where the pieces of
the system are, and will always know for every incarnation of the Macintosh. There are
low-memory global variables for all of the pieces of hardware currently found in the
Macintosh. This includes the VIA, the SCC, the Sound Chip, the IWM, and the video
display. Whenever you are stuck with going to the hardware, use the low-memory
globals. The fact that a program goes directly to the hardware means that it is risking
imminent incompatibility, but using the low-memory global will ensure that the program
has the best odds. It's like going to Las Vegas: if you don't gamble at all, you don't lose
any money; if you have to gamble, play the game that you lose the least on.

How to find hard attacks

Run the suspicious program on the Macintosh XL. Nearly all of the hardware is in a
different memory location on the XL. If a program has a hard-coded hardware address
in it, it will fail. It may crash, or it might not perform the desired task, but it won't work as
advertised. This unfortunately, is not a completely legitimate test, since the XL does not
have some of the hardware of other Macintoshes, and some of the hardware that is
there has the register mapping different. This means that it is possible to play by the rule
of using the low-memory global and still be incompatible.

Technical Note #117 page 25 of 28 Compatibility: Why & How

Don't use bits that are reserved

Occasionally during the life of a Macintosh programmer, there comes a time when it is
necessary to bite the bullet and use a low-memory global. These are very sad days,
since it has been demonstrated (by history) that low-memory global variables are a 4
mysterious lot, and not altogether friendly. One fellow in particular is known as ROM85, a
word located at $28E. This particular variable has been documented as the way to
determine if a program is running on the 128K ROMs or not. Notably, the top most bit of
that word is the determining bit. This means that the rest of the bits in that word are
reserved, since nothing is described about any further bits. Remember, if it doesn't say,
assume it's reserved. If it's reserved, don't depend upon it. Take the cautious way out
and assume that the other bits that aren't documented are used for Switcher local
variables, or something equally wild. An example of a bad way to do the comparison is:

VAR Rom85Ptr: WordPtr;
RomsAre64: Boolean;

Rom85Ptr := Pointer ($28E); (point at the low-memory global
IF Rom85Ptr A = $7FFF THEN RomsAre64 .= False (Bad test. }
ELSE RomsAre64 := True;

This is a bad test since the comparison is testing the value of all of the bits, not only the
one that is valid. Since the other bits are undocumented, it is impossible to know what
they are used for. Assume they are used for something that is arbitrarily random, and
take the safe way out.

How to avoid being bitten

VAR ROM85Ptr: Ptr

Rom85Ptr := Pointer ($28E); (point at the low-memory global }
IF BitTst(ROM85Ptr,O) THEN RomsAre64 := True (Good--tests only hi-bit}
ELSE RomsAre64 := False;

This technique will ensure that when those bits are documented, your program won't be
using them for the wrong things. Beware of trojan bits.

Don't use undocumented stuff. Be very careful when you use anything out of the
ordinary stream of a high-level language. For instance, in the ROM85 case, it is very
easy to make the mistake of checking for an absolute value instead of testing the actual
bit that encodes the information. Whenever a program is using low-memory globals, be
sure that only the information desired is being used, and not some undocumented (and
hence reserved) bits. It's not always easy to determine what is reserved and what isn't,
so conservative programmers always use as little as possible. Be wary of the strange
bits, and accept rides from none of them. The ride you take might cause you to revise
your program.

Technical Note #117 page 26 of 28 Compatibil~y: Why & How

How to find those bitten

Since there are such a multitude of possible places to get killed, there is no simple way

to see what programs are using illegal bits. As time goes by it will be possible to find

more of these cases by running on various versions of the Macintosh, but there will

probably never be a comprehensive way of finding out who is accepting strange rides,

and who is not. Whenever the use of a bit changes from reserved status to active, it will

be possible to find those bugs via extensive testing. From a source level, it would be

advisable to look over any use of low-memory globals, and eye them closely for

inappropriate bit usage. Do a global search for the $ (Which describes those ubiquitous

hexadecimal numbers), and when found see if the use of the number is appropriate.

Trust no one that is not known. If they are documented, they will stay where they are,

and have the same meaning. Be very careful in realms that are undocumented. Bits

that suddenly jump from reserved to active status have been known to cause more than

one program to have a sudden anxiety attack. It is very unnerving to watch a program

go from calm and reassuring to rabid status. Users have been known to drop their

keyboards in sudden shock (Which is bad on the keyboards).

Technical Note #117 page 27 of 28 Compatibility: Why & How

n]!!,'7••••••••••••I'I'I.IP.1713.1••

Summary

So what does all this mean? It means that it is getting harder and harder to get away
with minor bugs in programs. The minor bugs of yesterday are the major ones of today.
No one will yell at you for having bugs in your program, since all programs have bugs of
one form or another. The goal should be to make the programs run as smoothly and
effortlessly as possible. The end-users will never object to bug-reduced programs.

What is the best way to test a program? A reasonably comprehensive test is to exercise
all of the program's functions under the following situations:

•
•

•

•

•

•

•

•

•

Use Discipline to be sure the program does not pass illegal things to the ROM.
Use heap scramble and heap purge to be sure that handles are being used
correctly, and that the memory management of the program is correct.
Run with a checksum on memory locations 0...3 to see if the program writes to these
locations.
Run on a 128K Macintosh, or under Switcher with a small partition, to see how the
program deals with memory-critical situations.
Run on a 68020 system to see if the program is 68020-compatible and to make sure
that changing system speed won't confuse the program.
Run on a Macintosh XL to be sure that the program does not assume too much about
the operating system, and to test screen handling.
Run on an Ultra-Large screen to be sure that the screen handling is correct, and that
there are no hard-coded screen dimensions.
Run on 64K ROM machines to be sure new traps are not being used when they don't
exist.
Run under both HFS and MFS to be sure that the program deals with the file system ~

correctly. (400K floppies are usually MFS.)

If a program can live through all of this with no Discipline traps, no checksum breaks, no
system errors, no anomalies, no data loss and still get useful work done, then you
deserve a gold medal for programming excellence. Maybe even an extra medal for
conduct above and beyond the call of duty. In any case, you will know that you have
done your job about as well as it can be done, with today's version of the rules, and
today's programming tools.

Sounds like a foreboding task, doesn't it? The engineers in Macintosh Technical
Support are available to help you with compatibility issues (we won't always be able to
talk about new products, since we love our jobs, but we can give you some hints about
compatibility with what the future holds).

Good luck.

technical Note #117 page 28 of 28 Compatibility: Why & How

Macintosh Technical Notes

#118: How to Check and Handle Printing Errors

See also:

Written by:
Updated:

The Printing Manager

Ginger Jernigan May 4,1987
March 1, 1988

This technical note describes how to check and properly handle errors that

occur during printing with the high-level printing calls.

Most people are aware of the need for checking File Manager errors, Resource

Manager errors, and the like, but sometimes Printing Manager errors get neglected; you

should always check for error conditions while printing. This can be done by calling

PrError. Errors returned by PrError will include any Printing Manager errors (and

some AppleTalk and as errors) that occur during printing.

The best place to start is with the code fragment on page 155 ofinside Macintosh, vol. II:

myPrPort := PrOpenDoc (prRecHdl, NIL, NIL); {open printing grafPort}

FOR pg := 1 TO mypgCount DO {page loop: ALL pages of document)

IF PrError = noErr THEN
BEGIN
PrOpenPage(myPrPort,NIL); {start new page}

IF PrError = noErr THEN
MyDrawingProc(pg); {draw page with QuickDraw}

PrClosePage(myPrPort); {end current page}

END;
PrCloseDoc(myPrPort);
IF prRecHdl~~.prJob.bJDocLoop= bSpoolLoop AND PrError = noErr THEN

BEGIN
MySwapOutProc; {swap out code and data}

PrPicFile(prRecHdl,NIL,NIL,NIL,myStRec); {print spooled document}

END;
IF PrError <> noErr THEN MyPrErrAlertProc; {report any errors}

Here are some error-handling guidelines:

• You should avoid calling PrError within your Prldle procedure; errors that occur

while it is executing are usually temporary and serve only as internal flags for

communication within the printer driver-they are not intended for the application. If

you absolutely must call P rError within your idle procedure, and an error occurs,

never abort printing within the idle procedure itself. Wait until the last called printing

procedure returns and then check to see if the error still remains. Attempting to abort

printing within an idle procedure is a guarantee of certain death.

Technical Note #118 page 1 of 2 How to Check and Handle Printing Errors

• If you detect that an error has occurred after 1he completion of a printing routine, just
stop where you are, i. e. stop drawing. Proceed to the next print procedure to close
any open calls you have made. For example, if you called P rOpenDoc and received
an error, skip to the next PrCloseDoc. Or if you called PrOpenPage and got an
error, skip to the next PrClosePage and PrCloseDoc. Remember that if some
P rOpen procedure has been called, 1hen you must call the corresponding
P rClose procedure to ensure that printing closes properly and that all temporary
memory allocations are released and returned 10 the heap.

• Do not raise any alerts or dialogs to report an error until the end of the print loop. At
the end of the print loop, check for the error again; if there is no error assume that
printing completed normally. If it's still there, you can raise an alert.

This is important for two reasons. First, if an alert is raised in the middle of the print
loop, it can cause errors that will terminate an otherwise normal job. For example, if
the printer is an AppleTalk printer, the connection can be terminated abnormally.
While your alert is sitting there waiting for a response from the user, the driver is
unable to respond to AppleTalk requests coming in from the printer. If the printer
doesn't hear from the Macintosh within a short time period (30 seconds) then it will
timeout, assuming that the Macintosh is no longer there. This results in the
connection being broken prematurely causing another error that the application has
to respond to.

The driver may also have already put up its own alert in response to the error. In
this instance, the driver will post an error to let your application know that something
went wrong and that it's time to abort printing. For example, when the driver detects
that the version of Laser Prep that has been downloaded to the LaserWriter is _
different from the version that the user is trying to print with, the LaserWriter driver
raises the appropriate alert telling thsussrttrat the printer was initialized with an
incompatible version of the driver and gives the option of reinitializing. If the user
chooses to cancel, the driver posts an error to let the application know that it needs
to abort, but since the driver has already taken care of the error by putting up an
alert, the error is reset to zero before the printing loop is complete. The application
should check for the error again at the end of the printing loop and if it still indicates
an error, it should raise an alert.

Technical Note #118 page 2 of 2 How to Check and Handle Printing Errors

Macintosh Technical Notes

#119: Determining If Color QuickDraw Exists

AU

See: Technical Note #129-SysEnvirons

Written by:
Updated:

Jim Friedlander May 4,1987
March 1, 1988

This note formely described a way to determine if Color QuickDraw is present
on a particular machine. We now recommend that you call SysEnvirons to
find out, as described in Technical Note #129.

Technical Note #119 page 1 of 1 Determining If Color QuickDraw Exists

Macintosh
Technical Notes

Developer Technical Support

#120: Drawing Into an Off-Screen Pixel Map
Revised by:
Written by:

Rich Collyer
Jim Friedlander.& Rick Blair

April 1989
May 1987

This Technical Note provides <R$imple example of drawing to, then copying from, an off-screen
pixel map.
Changes since October 1'B8: Made changes to the code which convert GDevice color
look-up tables (elut) to pi~'l map color look-up tables so _ CopyB its will copy the color
information correctly. This;innmnation is especially important for color printing.

The following example demonstrates how to draw something in an off-screen pixel map, and then
use _ CopyBits to GCl)p70/ iitfhack to the screen. It handles the case of multiple screens with
different pixel depths. Before making any calls to Color QuickDraw, you must make sure it is
present (refer to TechnicalNsne #129, _SysEnvirons: System 6.0 and Beyond).

MPW Pascal

CONST
OffLeft
OffTop
OffBottom
OffRight

= 2£;;

= '130;;
= :25,0';
= ,~llD;;

(These constantB ~~rr r~ffi bounds of the off-screen PixMap are chosen because we
know what the exbmlt. o'fthe drawing will be and we want to restrict the size of
the map as much il;a; ',possi.iible.}

TYPE
BitMapPtr {for type coercion in the _CopyBits call}

VAR
offRowBytes
sizeOfOff
myBits
destRect
globRect
bRect
theDepth
i
err
myCGrafPort
myCGrafPtr
ourCMHandle
theMaxDevice
oldDevice

" LONGINT;
.. LONGINT;
.. Ptr;

Rect;
Rect;
Rect;
INTEGER;
INTEGER;
INTEGER;
CGrafPort;
CGrafPtr;
CTabHandle;
GDHandle;
GDHandle;

#120: Drawing Into an Off-Screen Pixel Map 1 of7

•••••••II•••••••••••I&IMf.··iI~.IlI·!l!I"~ii;"i"""'T'_.•SIlFiiiiXIl·, 2lIIIII! """""""'"

Macintosh Technical Notes

First you create a color window, then you need to determine the device with the maximum depth to

which you will copy the off-screen image with _ CopyBits.

myCWindow := GetNewCWindow(SomeID,NIL,WindowPtr(-lll;

SetPort(myCWindow); (set to this port for the 10calToGlobals that follow}

SetRect(bRect,OffLeft,OffTop,OffRight,OffBottom};

IF NOT SectRect(myCWindowA.portRect,bRect,globRect) THEN

NothingToCopy; {nothing to do, clean up and EXIT}

{still here, 50 let's convert to globals}

LocalToGlobal(globRect.topLeft};

LocalToGlobal(globRect.botRight};

{figure out how mUGh space we need for our pixel image.

we will call GetMaxDevice and get the pixel map from that

we do this to cover the case where the pixel image that we wish

to CopyBits to spans multiple devices (of possibly different depths)}

theMaxDevice:= GetMaxDevice(globRect};{get the maxDevice}

You need to set theGDevice to the device with the maximum pixel depth (the one you found in

the last step), so the pixel map of the new CGrafPort will be copied from one of the proper

depth. Now you should open a new CGrafPort to use for your off-screen drawing.

oldDevice := GetGDevice;

SetGDevice(theMaxDevice};
{save theGDevice 50 we can restore it later}

{Set to the maxdevice}

myCGrafPtr := @myCGrafPort; {initialize this guy}

OpenCPort(myCGrafPtr}; {open a new color port - this calls InitCPort}

theDepth:= myCGrafPtrA.portPixMap~A.pixel
Size;

You are now ready to calculate the size of the pixel image you will need, then you can set the

location-specific and size-specific information of the pixel map. Since Color QuickDraw

distinguishes between a bitmap and a pixel map by checking the high bit of rowBytes, you need

to add $8000 to OffRowBytes as shown.

{similar formula to Technical Note *41, except we must include pixel depth}

offRowBytes := ««theDepth * (OffRight - OffLeft}} + 15» DIV 16) * 2;

{make sure LONGINT math is done on the next line!}

sizeOfOff := LONGINT(OffBottom - OffTop) * offRowBytes;

OffSetRect(bRect, - OffLeft, - OffTop): {adjust for local coordinates}

(Set up baseAddr, rowBytes,bounds and pixelSize of the PixMap in our fresh, new CPort)

myBits := NewPtr(sizeOfOff); {allocate space for the pixel image}

{real programs do error checking here}

20f7

WITH myCGrafPtr~.portPixMapAA DO BEGIN

baseAddr := myBits;

rowbytes := offRowBytes + $8000:

bounds := bRect;

END;

{remember to be a PixMap}

{with}

#120: Drawing Into an Off-Screen Pixel Map

III
, :2

Developer Technical Support April 1989

Next you can clone the color table of the maxDevice and put it into your off-screen pixel map.

ourCMHandle := theMaxDevice~~.gdPMap~~.pmTable;

err := HandToHand(Handle(ourCMHandle»; (clone it)
{real programs do error checking here)
FOR i := ° TO ourCMHandle~~.ctSize DO

ourCMHandle~~.ctTable[il .value := i;
ourCMHandle~~.ctFlags := BAnd (ourCMHandle~~.ctFlags ,$7fff);
ourCMHandle~~.ctSeed := GetCTSeed();
{ This code is necessary for converting GDevice cluts to Pixmap cluts)

{put the cloned, correctly set-up Color Table into the off-screen map)
myCGrafPtr~.portPixMap~~.pmTable:= ourCMHandle;
{Set the port to the off-screen port)
SetPort(G~afPtr(myCGrafPtr»;

Now you can call Drawlt (which in turn calls FilllnColor) to draw an image in the off
screen port.

FUNCTION FiIIInColor(r,g,b: Integer): RGBColor;
{small utility routine to return an RGBColor)

VAR
theColor : RGBColor;

BEGIN {FiIIInColor)
WITH theColor DO BEGIN

red := r;
green := g;
blue := b;

END;
FillInColor := theColor;

END; {FiIIInColor)

PROCEDURE DrawIt;

VAR
OvalRect
myRed,myBlue, myWhite,
myGreen, myBlack

Rect;

RGBColor;

BEGIN {DrawIt)
{get our colors set up)
myRed := FiIIInColor(-l,O,O);
myBlue := FillInColor(O,O,-l);
myGreen := FiIIInColor(O,-l,O);
myWhite := FillInColor(-l,-l,-l);
myBlack := FiIIInColor(O,O,O);
PenMode(PatCopy);
RGBBackColor(myBlue);
EraseRect(thePort~.portRect);

RGBBackColor(myWhite);

RGBForeColor(myRed);
SetRect(OvaIRect,30,30,l90,l50);
PaintOval(OvaIRect) ;

InsetRect(OvaIRect,l,20);
EraseOval(OvalRect);

{set the backcolor of the current port)
{blue it out)
{set back to white)

(set the forecolor of the current port}

{erase oval to white}

END;

RGBForeColor(myGreen);
InsetRect(OvalRect,40,l);
PaintOval(OvaIRect) ;
RGBForeColor(myBlack);
{ DrawIt)

{draw the final oval in green)

#120: Drawing Into anOff-Screen PixelMap 30f7

Macintosh Technical Notes

Since you are done drawing, you need to set thePort and theGDevice back to their former
values, and then you can draw the image on the screen by calling _ CopyBits to copy the bits
from the portPix of the off-screen pixel map to the portPix of MyCWindow.

SetPort(MyCWindow);
SetGDevice(oldDevice);

destR€ct := bReet;
OffSetR€et(destRect.OffLeft.OffTop); (adjust for coordinates)
CopyBits(BitMapPtr(MyCGrafPtrA.portPixMapA)A, MyCWindowA.portBits,

bRect, destRect. 0, NIL);

Finally, you clean up after yourself by closing the CGrafPort you created, freeing the space you
reserved for the pixel image of the off-screen pixel map, and disposing of the color table you
allocated.

CloseCPort(myCGrafPtr);
DisposPtr(MyBits);
DisposHandle(Handle(ourCMHandle»;

MPWC

(Close our port)
(clean up)
(get rid of color table we cloned)

You should note that most of the Pascal comments also apply to this C code, so if you are not sure
what the C code is doing, try referring to the equivalent Pascal code and comments to gain a better
understanding.

/* Define
lIdefine
lIdefine
lIdefine
#define

constants for the
OffLeft
OffTop
OffBottom
OffRight

Off-Screen
30
30
250
400

Rect * /

/* typedef BitMapPtr for use during CopyBits operation */
typedef BitMap *BitMapPtr;

long
Ptr
Rect
int
CGrafPort
CGrafPtr
CTabHandle
GDHandle
Point

offRowBytes, sizeOfOff;
myBits;
destRect. globRect, bRect:
theDepth. i, err;
myCGrafPort;
myCGrafPtr;
ourCMHandle;
theMaxDevice. oldDevic€;
tempP;

Create a color window on screen. In MPW C~ myWindow is declared as a WindowPtr, not a
CWindowPtr~ which is contrary to the way Inside Macintosh, Volume V documents it.

myWindow = GetNewCWindow(SomeID,nil. (WindowPtr) -1);

/* set to this port for the localToGlobals that follow */
SetPort «WindowPtr) myWindow) ;

SetRect(&bRect,OffLeft.OffTop,OffRight,OffBottom);
if (!SectRect (& (*myWindow) .portRect.&bRect,&globRect))

ExitToShell(); /*nothing to do, clean up and EXIT*/

40f7 #120: Drawing Into an Off-Screen Pixel Map

f! 't""

Developer Technical Support April 1989

Since MPW does not have topLeft or botRight elements for Rect structures, you need to set
the tempPoint, call_LocalToGlobal, then reset globRect.

tempP.v = globRect.top;
tempP.h = globRect.left;
LocalToGlobal(&tempP);
globRect.top = tempP.v;
globRect.left = tempP.h;

tempP.v = globRect.bottom;
tempP.h = globRect.right;
LocalToGlobal(&tempP);
globRect.bottom = tempP.v;
globRect.right = tempP.h;

theMaxDevice = GetMaxDevice(&globRect);

oldDevice = GetGDevice();

SetGDevice<theMaxDevice);

Now you can set up the off-screen pixel map.

/*get the maxDevice*/

/*save theGDevice so we can
restore it later*/

/*Set to the maxdevice*/

myCGrafPtr = &myCGrafPort;
OpenCPort(myCGrafPtr);

/*initialize
/*open a new

this calls
theDepth = (**(*myCGrafPtr) .portPixMap) .pixelSize;

/* Bitshift and adjust for local coordinates */
offRowBytes = «(theDepth * (OffRight - OffLeft)) + 15)
sizeOfOff = (long) (OffBottom - OffTop) * offRowBytes;
OffsetRect(&bRect, - OffLeft, - OffTop);

myBits = NewPtr(sizeOfOff);

this guy*/
color port,
InitCPort * /

» 4) « 1;

/* Remember to be a PixMap */
(**(*myCGrafPtr) .portPixMap) .baseAddr = myBits;
(**(*myCGrafPtr) .portPixMap) .rowBytes = offRowBytes + OxBOOO;
(**(*myCGrafPtr) .portPixMap) .bounds = bRect;

ourCMHandle = (**(**theMaxDevice) .gdPMap) .pmTable;
err = HandToHand(&«Handle) ourCMHandle));
/* Real programs do error checking here */
for (i = 0; i <= (**ourCMHandle) .ctSize; ++i)

(**ourCMHandle) .ctTable[il.value = i;
(**ourCMHandle) .ctFlags &= Ox?fff;
(**ourCMHandle) .ctSeed = GetCTSeed();
/* This code is necessary for converting GDevice cluts to Pixmap cluts */

(**(*myCGrafPtr) .portPixMap) .pmTable = ourCMHandle;
SetPort«GrafPtr) myCGrafPtr);

#120: Drawing Into an Off-Screen Pixel Map 5 of 7

Macintosh Technical Notes

/**/

1*
1*
1*

function for setting the wanted color
*1
*1
*1

/***********************.******~*****************/

RGBColor FilllnColor(r.g,b)
int r,g,b;

I*FilllnColor*1

RGBColor theColor;

theColor.red = r;
theColor.green = g;
theColor.blue = b;
return (theColor);

/*** * 1
1* *1
1* Drawing routine which makes the background blue *1
1* then draws a red oval, white oval, and green oval *1
1* After drawing to the off-screen it CopyBits to the *1
1* screen *1
1* *1
/*** * 1
void DrawIt ()

Rect
RGBColor

OvalRect;
myRed, myBlue,rnyWhite., myGreen, myBlack;

6 of7

myRed = FilllnColor(-l,O,O);
myBlue = FilllnColor(O,O,-l);
myGreen FilllnColor(O,-l,O);
myWhite = FilllnColor(-l,-l,-l);
myBlack = FilllnColor(O,O,O);
PenMode(patCopy);
RGBBackColor(&myBlue);
EraseRect(&(*qd.thePort).portRect);
RGBBackColor(&myWhite);
RGBForeColor(&rnyRed);
SetRect(&OvalRect,30,30,190,150);
PaintOval(&OvalRect);

InsetRect(&OvalRect,l,20);
EraseOval(&OvalRect);

RGBForeColor(&myGreen);
InsetRect(&OvalRect,40,l);
PaintOval(&OvalRect);
RGBForeColorl&rnyBlack);

SetPort«WindowPtr) myWindowI:
SetGDevice(oldDevice);

destRect = bRect;
OffsetRect(&destRect,OffLeft,OffTop);
CopyBits({BitMapPtr) *(*rnyCGrafPtr).portPixMap,

&(*myWindow) .portBits.&bRect. &destRect. 0, nil);

return;

.#120: Drawing Into an Off-Screen Pixel Map

Developer Technical Support

Once again, you clean up after yourself.

CloseCPort(myCGrafPtr);
DisposPtr(myBits);
DisposHandle«Handle) ourCMHandle);

April 1989

Note: For optimal performance, you want to make sure that the source and destination
pixel maps are aligned.

Further Reference:
• Inside Macintosh, Volumes 1-11 & IV-23, QuickDraw
• Inside Macintosh, Volume V-39, Color QuickDraw
• Technical Note #41, Drawing Into an Off-Screen Bitmap
• Technical Note #129, _SysEnvirons: System 6.0 and Beyond

#120: Drawing Into an Off-Screen Pixel Map 70f7

Macintosh Technical Notes

#121: Using the High-Level AppleTalk Routines

See also:

Written by:
Updated:

The AppleTalk Manager
Inside AppleTalk
AppleTalk Manager Update

Fred A. Huxham May 4,1987
March 1, 1988

What you need to do in order to use high-level AppleTalk routines depends
upon the interfaces you are using. Some differences are outlined below.

MPW before 2.0

When calling the old high-level AppleTalk routines, many programmers get mysterious
"resource not found" errors (-192) from such seemingly harmless routines as MPPOpen.

The resource that is not being found is 'atpl', a resource that contains all the glue code
to the high-level routines. In order to use the high-level routines, your application must
have this resource in its resource fork. The 'atpl' resource is included in a file called
"AppleTalk" with any compilers that use this outdated version of the AppleTalk interface.

MPW 2.0 and newer

A newer version of the alternate interfaces is available in MPW 2.0; it includes bug fixes
and increased Macintosh II compatibility. With this version of the interface, the 'atpl'
resource is no longer used. Glue code is now linked into your application.

This will be the final release of the current-style interface. It will be supported for some
time as the alternate interface. We have moved to a more straightforward and simple
preferred interface, which is also implemented in MPW 2.0 and newer, and is
described in the AppleTalk Manager chapter of Inside Macintosh vol. V. Developers are
free to continue to use the alternate interface, but in the long run it will be advantageous
to move to the preferred interface.

Third Party Compilers

Third party compilers use interfaces that are built from Apple's MPW interfaces. Some
compilers may not have upgraded to the new interfaces yet. Contact the individual
compiler manufacturers for more information.

Technical Note #121 page 1 of 1 Using the High-Level AppleTalk Routines

2111

Macintosh Technical Notes

#122: Device-Independent Printing

See also:

Written by:
Updated:

The Printing Manager

Ginger Jernigan May 4,1987
March 1, 1988

The Printing Manager was designed to give Macintosh applications a device
independent method of printing, but we have provided device-dependent information,
such as the contents of the print record. Due to the large number of printer-type drivers
becoming available (even for non-printer devices) device independence is more
necessary than ever. What this means to you, as a developer, is that we will no longer
be providing (or supporting) information regarding the internal structure of the print
record.

We realize that there are situations where the application may know the best method for
printing a particular document and may want to bypass our dialogs. Unfortunately, using
your own dialogs or not using the dialogs at all, requires setting the necessary fields in
the print record yourself. There are a number of problems:

• Many of the fields in the print record are undocumented, and, as we change the
internal architecture of the Printing Manager to accommodate new devices, those
undocumented fields are likely to change.

• Each driver uses the private, and many of the public, fields in the print record
differently. The implications are that you would need intimate knowledge of how
each field is used by each available driver, and you would have to set the fields in
the record differently depending on the driver chosen. As the number of available
printer-type drivers increases, this can become a cumbersome task.

Summary

To be compatible with future printer-like devices, it is essential that your application print
in a device-independent manner. Avoid testing undocumented fields, setting fields in the
print record directly and bypassing the existing print dialogs. Use the Printing Manager
dialogs, PrintDefault and PrValidate to set up the print record for you.

Technical Note #122 page 1 of 1 Device-Independent Printing

Macintosh Technical Notes

#123: Bugs in LaserWriter ROMs

See also: The Printing Manager
PostScript Language Reference Manual, Adobe Systems

Written by:
Modified by:
Updated:

Ginger Jernigan
Ginger Jernigan

May 4,1987
July 1, 1987
March 1, 1988

These are LaserWriter bugs that your users may encounter when printing
from any Macintosh application. These are for your information; you cannot
code around them. The bugs described here occur in the 1.0 and 2.0
LaserWriter ROMs.

To determine which ROMs their LaserWriter contains, users can look at the test page
that the LaserWriter prints at start-up time. In addition to other information (detailed in the
LaserWriter user's manual), the ROM version is shown at the bottom of the line graph.
The original LaserWriter contained version 1.0 ROMs. The currently shipping
LaserWriter and those upgraded to the LaserWriter Plus contain version 2.0 ROMs.

These are some of the problems we know of:

1. If the level of paper in the paper tray is getting low, and the user prints a document
that will cause the tray to become empty, a PostScript error may occur. This problem
exists in both the 1.0 and 2.0 LaserWriter ROMs and will not be fixed in the next
ROM version.

2. If a user prints more than 15 copies of a document, a timeout condition may occur
causing the print job to abort. With LaserShare, this problem can occur with as few
as 9 copies. This problem is a result of the LaserWriter turning AppleTalk off while it
is printing. It doesn't send out any packets to tell the world it's still alive while it is
printing, so the connection times out after about 2 minutes. This problem exists in
both the 1.0 and 2.0 LaserWriter ROMs and will not be fixed in the next ROM
version.

3. When printing a document that contains more than 10 patterns, users may receive
intermittent PostScript errors. This usually occurs when trying to print a lot of
patterns, and a bitmap image on the same page. The code for imaging patterns
allocates almost all of the available RAM for itself, so when the bitmap imaging code
tries to allocate space, and there isn't enough (and it doesn't know how to reclaim
memory from the previous operation), a 1 imi t check error occurs. This problem
exists in 2.0 LaserWriter ROMs. It will be improved but not fixed in the next ROM
version.

Technical Note #123

m

page 1 of 2 Bugs in LaserWriter ROMs

4. If a user chooses US Letter or 85 paper and has a different sized tray in the printer,
and prints using manual feed, the LaserWriter will print assuming that the paper
being fed manually is the same size as that in the tray. For example, if they have a
US letter tray in the LaserWriter and print a document formatted for 85 letter using
manual feed, the image will not be centered on the page. The printer assumes that ~

the manually fed paper is also US letter size and prints the image positioned
accordingly, despite the driver's instructions. This is a bug in the Note operator in
PostScript, which the driver uses for specifying the US letter and 85 letter paper
sizes. The workaround is to tell the user to put an 85 tray in the printer when printing
85 manually. This problem exists in the 1.0 and 2.0 ROMs and will not be fixed in
the next ROM version.

8y the way, an interesting, but annoying, occurance of this bug happens when
manually printing Legal sized documents with the 4.0 LaserWriter driver. When the
Larger Print Area option in the style dialog is deselected (which is the default) the
driver uses the Note operator to specify the page size. When the user prints the
document using manual feed, and has a US letter tray in the printer, the image is
shifted up on the page cutting off the top of the image. If you tell the user to turn on
the Larger Print Area option in the style dialog, the driver specifies the page size
using Legal instead of Note and the image is printed properly.

Technical Note #123 page 2 of 2 Bugs in LaserWrtter ROMs

"Wi 5"1

Macintosh Technical Notes

#124: Using Low-Level Printing Calls With AppleTalk ImageWriters

See also:

Written by:
Update by:
Updated:

The Printing Manager

Ginger Jernigan
Scott "ZZ" Zimmerman

May 4,1987
Febuary ?, 1988
March 1, 1988

When you use the low-level printer driver to print, you don't get the benefits of the error
checking that is done when you use the high-level Printing Manager. So, if the user
prints to an AppleTalk ImageWriter (including an AppleTalk ImageWriter LQ) that is busy
printing another job, the driver doesn't know whether the printer is busy, offline, or
disconnected. Because of this, PrError will return (and PrintErr will contain) abortErr.

Since there is no way to tell when you are printing to an AppleTalk ImageWriter, the only
workaround for this is to use high-level Printing Manager interface.

Technical Note #124 page 1 of 1 Low-Level Printing Calls With the ATIW

.,'I"M.

.ZEd 'eM

Macintosh Technical Notes

#125: The Effect of Spool-a-page/Print-a-page on Shared Printers

See also: Printing Manager
Technical Note #72-

Optimizing for the LaserWriter-Techniques

Written by:
Updated:

Ginger Jernigan May 4,1987
March 1, 1988

This technical note discusses drawbacks of using the spool-a-page/

print-a-page method of printing.

The "spool-a-page/print-a-page" method of printing prints each page of a document as a

separate job instead of calling P rP i cF i 1 e to print the entire picture file. Many

applications adopted this method of printing to avoid running out of disk space while the

ImageWriter driver was spooling the document to disk. As long as you are printing to a

directly connected ImageWriter, you're fine, but if you are printing to remote or shared

devices (like the AppleTalk ImageWriter and the LaserWriter), this method may create

significant problems for the user.

When a job is initiated by the application, the driver establishes a connection with the

printer via AppleTalk. When the job is completed, the driver closes the connection,

allowing another job the opportunity to print. If each page is a job in itself, then the

connection is closed and reopened between each page, allowing another application to

print between the pages of the document, which, as you might imagine, could present a

significant problem. If two people are printing to the same AppleTalk ImageWriter at the

same time and their applications use the "spool-a-page/print-a-page" method of printing,

the pages of each document will be interleaved at the printer.

Although there are good reasons for using this method of printing, it is only useful for a

directly connected printer. From a compatibility point of view, this method of printing is

built-in device dependence. Also, this method could create serious problems for other

types of remote devices. Therefore, we are recommending that applications avoid using

this method indiscriminately. You should check available disk space to see how much

room you have before you print. If there isn't enough space for your entire document,

then print as much as you can (to minimize the interleaving) before starting another job.

Whenever possible, applications should use the print loop described on page 11-155 in

The Printing Manager chapter of Inside Macintosh.

Technical Note #125 page 1 of 1 SpooVPrint on Shared Printers

Macintosh
Technical Notes

Developer Technical Support

#126: Sub(Launching) from a High-Level Language

Revised by:
Written by:

Rich Collyer & Mark Johnson
Rick Blair & Jim Friedlander

April 1989
May 1987

Note: DeveloperTechnical Support takes the view that launching and sublaunching are

features which are best avoided for compatibility Xandother) reasons, but we want

to make sure that when it is absolutely necessary to implement it, it is done in the

safest possible way.

This Technical Note discusses the "safest" method of calling Launch from a high-level language

that supports inline assembly language with the option lofIaunching or sublaunching another

application.
Changes since August 1988: Incorporated Technical Note #52 on calling Launch from a

high-level language, changed the example to offer a choice between launchingor sublaunching,

added a discussion of the Launch trap under Multifimder; and updated the MPW C code to

include inline assembly language.

The Segment Loader chapter of Inside Macintosh II-53atates the following about the _Launch

trap:

'The routines below are providedfor advanced pnogrammers; they can be called

only from assembly language."

While this statement is technically true, it is easy to call .Launch from any high-level language

which supports inline assembly code, and this Note prrn;Ides examples of calling _Launch in

MPW Pascal and C.

Before calling _Launch, you need to declare the inlinejprocedure, which takes a variable of type

pLaunchStruct as a parameter. Since the compiler pushes a pointer to this parameter on the

stack, you need to include code to put this pointer into AD. The way to do this is with a MOVE. L

(SP) +,AO instruction, which is $205F in hexadecimal, so the first word after INLINE is

$ 20 SF. This instruction sets up AO to contain a pointer tID the filename and 4 (AO) to contain the

configuration parameter, so the last part of the inline is the _Launch trap itself, which is $A 9F 2

in hexadecimal. The configuration parameter, which is normally zero, determines whether the

application uses alternate screen and sound buffers. Since not all Macintosh models support these

alternate buffers, you should avoid using them unless yonhave a specific circumstance which

requires them.

The Finder does a lot of hidden cleanup and other tasks without user knowledge; therefore, it is

best if you do not try to replace the Finder with a "mini" or try to launch other programs and have

them return to your application. In the future, the Finder may provide better integration for

applications, and you will circumvent this if you try to act in its place by sublaunching other

programs.

#126: Sub(Launching) From a High-Level Language 1 of 6

Macintosh Technical Notes

If you have a situation where your application must launch another and have it return, and whereyou are not worried about incompatibility with future System Software versions, there is a"preferred" way of doing this which fits into the current system well. System file version 4.1 (orlater) includes a mechanism for allowing a call to another application; we term this call a"sublaunch." You can perform a sublaunch by adding a set of simple extensions to the parameterblock you pass to the _Launch trap.

Launch and MultiFinder

Under MuItiFinder, a sublaunch behaves differently than under the Finder. The application yousublaunch becomes the foreground application, and when the user quits that application, thesystem returns control to the next frontmost layer, which will not necessarily be your application.

If you set both high bits of LaunchF lags, which requests a sublaunch, your application willcontinue to execute after the call to Launch. Under MultiFinder, the actual launch (and suspendof your application) will not happen in the _Laun ch trap, but rather after a call or more toWai tNextEvent.

Under MultiFinder, Launch currently returns an error if there is not enough memory to launchthe desired application, if it cannot locate the desired application, or if the desired application isalready open. In the latter case, that application will not be made active. If you attempted tolaunch, MultiFinder will call SysBeep, your application will terminate, and control will given tothe next frontmost layer. If you attempted to sublaunch, control will return to your application,and it is up to you to report the error to the user.

Currently, _Launch returns an error in register DO for a sublaunch, and you should check it forerrors (DO<O) after any attempts at sublaunching. If DO>=O then your sublaunch was successful.
You should refer to the Programmer's Guide to MultiFinder (APDA) and Macintosh TechnicalNotes #180, MultiFinder Miscellanea and #205, MultiFinder Revisited: The 6.0 System Release,for further discussion of the _Launch trap under MultiFinder.)

Working Directories and Sublaunching With the Finder
Putting aside the compatibility issue for the moment, the only problem sublaunching creates underthe current system is one of Working Directory Control Blocks (WDCBs). Unless theapplication you are launching is at the root directory or on an MFS volume, you must create a newWDCB and set it as the current directory when you launch the application.

In the example which follows, the new working directory is opened (allocated) by Standard Fileand its WDRefNum is returned in reply. vRefNum. If you do not use Standard File and cannotassume, for instance, that the application was in the blessed folder or root directory, then you mustopen a new working directory explicitly via a call to OpenWD. You should give the new WDCBa WDProcID of 'ERIK', so the Finder (or another shell) would know to deallocate when it saw itwas allocated by a "sublaunchee."

Although the sublaunching process is recursive (i.e., programs which are sublaunched may, inturn, sublaunch other programs), there is a limit of 40 on the number of WDCBs which can becreated. With this limit, you could run out of available WDCBs very quickly if many programswere playing the shell game or neglecting to deallocate the WDCBs they had created. Make sureyou check for all errors after calling _PBOpenWD. A tMWDOErr (-121) means that all available

20f6 #126: Sub(Launching) From a High-Level Language

Developer Technical Support
April 1989

WDCBs have been allocated, and if you receive this error, you should alert the user that the

sublaunch failed and continue as appropriate.

Warning:

'1\iP\V Pascal

Although the example included in this Note covers sublaunching,

Developer Technical Support strongly recommends that developers

not use this feature of the Launch trap. This trap will change in

the not-too-distant future.Iand when it does change, applications

which perform sublaunching will break. The only circumstance in

which you could consider sublaunching is if you are implementing

an integrated development system and are prepared to deal with the

possibility of revising it every time Apple releases a new version of

the System Software.

{It is assumed that the Signals are caught elsewhere; see Technical

Note iBB for more information on the Signal mechanism}

{the extended parameter block to Launch}

TYPE
pLaunchStruct = ~LaunchStruct;

LaunchStruct RECORD

pfName StringPtr;

param INTEGER;

LC PACKED ARRAY[0.. 11 OF CHAR; {extended parameters:}

extBlockLen LONGINT; {number of bytes in extension = 6}

fFlags INTEGER; {Finder file info flags (see below) }

launchFlags LONGINT; {bit 31,30=1 for sublaunch, others reserved}

END; {LaunchStruct)

FUNCTION LaunchIt(pLaunch: pLaunchStruct): OSErr; {< 0 means error}

INLINE $205F, $A9F2, $3EBO;

pops pointer into AO, calls Launch, pops DO error code into result:

MOVE.L (A7)+,AO

Launch
MOVE.W DO, (A7) since it MAY return

PROCEDURE DoLaunch(subLaunch: BOOLEAN); {Sublaunch if true and launch if false}

VAR
myLaunch
Where
reply
myFileTypes
numFileTypes
myPB
dirNameStr

LaunchStruct;
Point;
SFReply;
SFTypeList;
INTEGER;
CInfoPBRec;
str255;

{launch structure}
{where to display dialog)

{reply record}
{we only want APPLs}

BEGIN
where.h := 20;
where.v := 20;
numFileTypes:= 1;

myFileTypes[O):= 'APPL'; {applications only!}

{Let the user choose the file to Launch}

SFGetFile(where, ", NIL, numFileTypes, myFileTypes, NIL, reply);

#126: Sub(Launching) From a High-Level Language 3 of 6

Macintosh Technical Notes

IF reply.good THEN BEGIN
dirNameStr:= reply.fName; {initialize to file selected}

{Get the Finder flags}
WITH myPB DO BEGIN

ioNamePtr:= @dirNameStr;
ioVRefNum:= reply.vRefNum;
ioFDirIndex:= 0;
ioDirID:= 0;

END; {WITH}
Signal(PBGetCatInfo(@MyPB,FALSE»;

{Set the current volume to where the target application is}
Signal (SetVol (NIL, reply.vRefNum});

{Set up the launch parameters}
WITH myLaunch DO BEGIN

pfName :~ @reply.fName; {pointer to our fileName}
param := 0; {we don't want alternate screen or sound buffers}
LC := 'LC'; {here to tell Launch that there is non-junk next}
extBlockLen := 6; {length of paramo block past this long word}
{copy flags; set bit 6 of low byte to 1 for RO access:}
fFlags := myPB.ioF1FndrInfo.fdFlags; {from GetCatInfo}

LaunchFlags accordingly}{Test subLaunch and set
IF subLaunch THEN

LaunchFlags ,=
ELSE

LaunchFlags '=
END; {WITH}

$COOOOOOO

$00000000;

{set BOTH high bits for a sublaunch}

{Just launch then quit}

4 0[6

{launch; you might want to put up a dialog which explains that
the selected application couldn't be launched for some reason.}

Signal(LaunchIt(@myLaunch»;
END; {IF reply.good}

END; {DoLaunch}

#126: Sub(Launching) From a High-Level Language

I

Developer Technical Support April 1989

MPWC

/* pointer to the name of launchee */

/*extended parameters:*/
/*number of bytes in extension ~= 6*/
/*Finder file info flags (see below)*/
/*bit 31,30==1 for sublaunch, others reserved*/

LaunchStruct {
*pfName;
param;
LC [2];
extBlockLen;
fFlags;
launchFlags;

typedef struct
char
short int
char
long int
short int
long int

*pLaunchStruct;

pascal OSErr Launchlt(pLaunchStruct pLnch) /* < 0 means error */
= {Ox20SF, OxA9F2, Ox3E80};

/* pops pointer into AO, calls Launch, pops DO error code into result:
MOVE.L (A7)+,AO

Launch
MOVE.W DO, (A7) since it MAY return */

myLaunch;
where; /*where to display dialog*/
reply; /*reply record*/
myFileTypes; / * we only want APPLs * /
numFileTypes=l;
myPB;
*dirNameStr;
err;

OSErr DoLaunch(subLaunch}
Boolean

/* DoLaunch */
struct LaunchStruct
Point
SFReply
SFTypeList
short int
HFilelnfo
char
OSErr

subLaunch; /* Sublaunch if true and launch if false */

where.h = 80;
where.v = 90;
myFileTypes[O] = 'APPL';
/*Let the user choose the
SFGetFile(where, "", nil,

/* we only want APPLs */
file to Launch*/
numFileTypes, myFileTypes, nil, &reply);

if (reply.good)
{

dirNameStr ~ &reply.fName; /*initialize to file selected*/

/*Get the Finder flags*/
myPB.ioNamePtr= dirNameStr;
myPB.ioVRefNum= reply.vRefNum;
myPB.ioFDirIndex= 0;
myPB.ioDirID = 0;
err = PBGetCatlnfo«ClnfoPBPtr) &myPB,false);
if (err != noErr)

return err;

/*Set the current volume to where the target application is*/
err ~ SetVol(nil, reply.vRefNum);
if (err l= noErr)

return err;

/*Set up the launch parameters*/
myLaunch.pfName = &reply.fName; /*pointer to our fileName*/
myLaunch.param = 0; /*we don't want alternate screen

or sound buffers*/
/*set up LC so as to tell Launch that there is non-junk next*/

myLaunch.LC[O] ~ 'L'; myLaunch.LC[l] = 'C';
myLaunch.extBlockLen = 6; /*length of p3ra~. block past

this long word*/
/*copy flags; set bit 6 of low byte to 1 for RO access:*/

myLaunch.fFlags = myPB.ioFlFndrlnfo.fdFlags; /*from GetCatlnfo*/

#126: Sub(Launching) From a High-Level Language 5 of 6

Macintosh Technical Notes

/* Test subLaunch and set launchFlags accordingly */
if subLaunch)

myLaunch.launchFlags OxCOOOOOOO; /*set BOTH hi bits for a sublaunch */
else

myLaunch.launchFlags OxOOOOOOOO; /* Just launch then quit

err = LaunchIt(&myLaunch); /* call Launch
if (err < 0)
{

/* the launch failed, so put up an alert to inform the user */
LaunchFailed();
return err;

}

else
return noErr;

) /*if reply.good~/.

/*DoLaunch*/

Further Reference:
• Inside Macintosh, Volumes 1-12, II-53, & IV-83, The Segment Loader
• Programmer's Guide to MultiFinder (APDA)
• Technical Note #129, _SysEnvirons: System 6.0 and Beyond
• Technical Note #180, MuItiFinderMiscellanea
• Technical Note #205, MuItiFinder Revisited: The 6.0 System Release

*/

*/

60f6 #126: Sub(Launching) From a High-Level Language

Macintosh Technical Notes

#127: TextEdit EOl Ambiguity

See also:

Written by:
Updated:

TextEdit

Rick Blair Yay 4,1987
;March 1, 1988

TESetSelect may be used to position the insartlimm point at the end of a line.

There is an ambiguity, though; should the insertmm po,int appear at the end of

the preceding line or the start of the following G'I1'e? ;I~ lis possible to determine

what will happen, as you are about to see.

There is an internal flag used b,,1I"'€lxtEdit to determim:e \wme'l'B the insertion point at the

end of a line appears. This flag is part of the clikSt1IilJf:ff ffie/d in the TERec. It is there

mainly for the use of TEClick, but it is also used by TJF~i1::Select (although it defaults

to the right side of the previous Una;).

The following code can be used .to force the insertlom ;pmin! 10 appear at the left of the

following line when it is positi~edat the end of a line;iTl MlPW Pascal:

TEDeactivate(tH);

tHAA.clikStuff := 255;

.TESetSelectke.o.lcharpos, eo2'Charpos.,t.H~;

TEActivate(tH);

In MPWC:

TEDeactivate(tH);

(**tH) .clikStuff = 255;

TESetSelect (eolcharpos, eo],t:l!n:arpos / tH);

TEActivate(tH);

l~ition caret on left)

J~~guous point)

J~sition caret on left*!

)""ambiguous point*!

If you want to ensure that the caret is (On the right side~ \1ll1hich it normally defaults) then

substitute a zero for the 255.

Technical Note #127 page 1 of 1 TextEdit EOl Ambiguity

-

~------.-

Macintosh Technical Notes

#128: PrGeneral

See also: The Printing Manager
Technical Note #118-

How to Check and Handle Printing Errors

Written by:
Updated:

Ginger Jernigan May 4,1987
March 1, 1988

The Printing Manager architecture has been expanded to include a new

procedure called PrGeneral. The features described here are advanced,

special-purpose features, intended to solve specific problems for those

applications that need them. The calls to determine printer resolution

introduce a good deal of complexity into the application's code, and should be

used only when necessary.

Version 2.5 (and later) of the ImageWriter driver and version 4.0 (and later) of the

LaserWriter driver implement a generic Printing Manager procedure called PrGeneral.

This procedure allows the Print Manager to expand in functionality, by allowing printer

drivers to implement various new functions. The Pascal declaration of PrGeneral is:

PROCEDURE PrGeneral (pData: Ptr);

The pDa ta parameter is a pointer to a data block. The structure of the data block is

declared as follows:

TGnlData = RECORD (1st 8 bytes are common for all PrGeneral calls)

iOpCode : INTEGER; {input}

iError : INTEGER; {output}

lReserved : LONGINT; {reserved for future use}

{more fields here, depending on particular call}

END;

The first field is a 2-byte opcode, iOpCode, which acts like a routine selector. The

currently available opcodes are described below.

The second field is the error result, iError, which is returned by the print code. This

error only reflects error conditions that occur during the PrGeneral call. For example, if

you use an opcode that isn't implemented in a particular printer driver then you will get a

OpNot Impl error.

Technical Note #128 page 1 of 7 PrGeneral

Here are the errors currently defined:

CONST
noErr = 0;
NoSuchRsl 1;
OpNotImpl = 2;

{everything's hunky}
{the resolution you chose isn't available}
{the driver doesn't support this opcode}

After calling PrGeneral you should always check PrError. If noErr is returned, then
you can proceed. If ResNotFound is returned, then the current printer driver doesn't
support P rGeneral and you should proceed appropriately. See Technical Note #118 for
details on checking errors returned by the Printing Manager.

IError is followed by a four byte reserved field (that means don't use it). The contents of
the rest of the data block depends on the opcode that the application uses. There are
currently five opcodes used by the ImageWriter and LaserWriter drivers.

The Opcodes

Initially, the following calls are implemented via P.rGeneral:

• GetRslData (get resolution data): iOpCode = 4
• SetRsl (set resolution): iOpCode = 5
• DraftBits (bitmaps in draft mode): iOpCode =6
• noDraftBits (no bitmaps in draft mode): iOpCode 7
• GetRotn (get rotation): iOpCode = 8

The GetRslData and SetRsl allow the application to find out what physical resolutions 4
the printer supports, and then specify a supported resolution. DraftBits and
noDraftBits invoke a new feature of the ImageWriter, allowing bitmaps (imaged via
CopyBi t s) to be printed in draft mode. GetRotn lets an application know whether
landscape has been selected. Below is a detailed description of how each routine works.

The GetRslData Call

GetRslData (iOpCode = 4) returns a record that lets the application know what
resolutions are supported by the current printer. The application can then use SetRs 1
(description follows) to tell the printer driver which one it will use. This is the format of the
input data block for the GetRslData call:

TRslRg = RECORD {used in TGetRslBlk}
iMin, iMax: Integer; {O if printer only supports discrete resolutions}

END;

TRslRec RECORD {used in TGetRslBlk}
iXRsl, iYRsl: Integer; {a discrete, physical resolution}

END;

Technical Note #128 page 2 of7 PrGeneral

TGetRslBlk - RECORD {data block for GetRslData call}
iOpCode: Integer; {input; = getRslDataOp}
iError: Integer; {output}
lReserved: LongInt; {reserved for future use}
iRgType: Integer; {output; version number}
XRslRg: TRslRg; {output; range of X resolutions}
YRslRg: TRslRg; {output; range of Y resolutions}
iRslRecCnt: Integer; {output; how many RslRecs follow}
rgRslRec: ARRAY[l .. 27] OF TRslReci {output; number filled depends on

printer type}
END;

The iRgType field is much like a version number; it determines the interpretation of the
data that follows. At present, a iRgType value of 1 applies both to the LaserWriter and to
the ImageWriter.

For variable-resolution printers like the LaserWriter, the resolution range fields XRs lRg
and YRs lRg express the ranges of values to which the X and Y resolutions can be set.
For discrete-resolution printers like the ImageWriter, the values in the resolution range
fields are zero.

Note: In general, X and Y in these records are the horizontal and vertical directions of
the printer, not the document! In landscape orientation, X is horizontal on the printer but
vertical on the document.

After the resolution range information there is a word which gives the number of
resolution records that contain information. These records indicate the physical
resolutions at which the printer can actually print dots. Each resolution record gives an X
value and a Y value.

When you call PrGeneral you pass in a data block that looks like this:

Technical Note #128

OpCode=4

Error Code

Reserved

RangeType = 1

X Resolution Range:
min = 0, max = 0

Y Resolution Range:
min =0, max = 0

Resolution Record Count =0

Resolution Record #1:
X=O, Y=O

Resolution Record #2..27

page 3 of 7

1 word

1 word

2 words

1 word

2 words

2 words

1 word

2 words

PrGeneral

Below is the data block returned for the LaserWriter:

OpCode-4

Error Code (0 - okay)

Reserved

RangeType - 1

X Resolution Range:
min ... 72, max - 1500

Y Resolution Range:
min ...72, max ... 1500

Resolution Record Count - 1

Resolution Record #1:
X = 300, Y = 300

1 word

1 word

2 words

1 word

2 words

2 words

1 word

2 words

Note that all the resolution range numbers happen to be the same for this printer. There
is only one resolution record, which gives the physical X and Y resolutions of the printer
(300x300).

Below is the data block returned for the ImageWriter.

OpCode-4

Error Code (0 ... okay)

Reserved

RangeType - 1

X Resolution Range:
min ...0, max - 0

Y Resolution Range:
min - 0, max ... 0

Resolution Record Count ... 4

Resolution Record #1:
X = 72, Y = 72

Resolution Record #2:
X =144, Y = 144

Resolution Record #3:
X = 80, y ... 72

Resolution Record #4:
X = 160, Y = 144

1 word

1 word

2 words

1 word

2 words

2 words

1 word

2 words

2 words

2 words

2 words

All the resolution range values are zero, because only discrete resolutions can be
specified for this printer. There are four resolution records giving these discrete physical
resolutions.

Note that GetRslData always returns the same information for a particular printer
type-it is not dependent on what the user does or on printer configuration information.

Technical Note #128 page 4 017 PrGeneral

The SetRsl Call

SetRsl (iOpCode = 5) is used to specify the desired imaging resolution, after using
GetRs lData to determine a workable pair of values. Below is the format of the data
block:

TSetRslBlk =
iOpCode:
iError:
lReserved:
hPrint:
iXRsl:
iYRsl:

END;

RECORD
Integer;
Integer;
LongInt;
THPrint;
Integer;
Integer;

{data block for SetRsl call}
{input; = setRslOp}
{output}
{reserved for future use}
{input; handle to a valid print record}
{input; desired X resolution}
{input; desired Y resolution}

hP r in t should be the handle of a print record that has previously been passed to
PrValidate. If the call executes successfully, the print record is updated with the new
resolution; the data block comes back with 0 for the error and is otherwise unchanged.

However, if the desired resolution is not supported, the error is set to noSuchRsl and the
resolution fields are set to the printer's default resolution

Note that you can undo the effect of a previous call to SetRsl by making another call that
specifies an unsupported resolution (such as OxO), forcing the default resolution.

The DraftBits Call

DraftBi t s (iOpCode =6) is implemented on both the ImageWriter and the LaserWriter.
(On the LaserWriter it does nothing, since the LaserWriter is always in draft mode and
can always print bitmaps.) Below is the format of the data block:

TDftBitsBlk =
iOpCode:
iError:
lReserved:
hPrint:

END;

RECORD
Integer;
Integer;
LongInt;
THPrint;

{data block for DraftBits and NoDraftBits calls}
{input; - draftBitsOp or noDraftBitsOp}
{output}
{reserved for future use}
{input; handle to a valid print record}

hP r int should be the handle of a print record that has previously been passed to
P rValidate.

This call forces draft-mode (Le., immediate) printing, and will allow bitmaps to be printed
via CopyBi t s calls. The virtue of this is that you avoid spooling large masses of bitmap
data onto the disk, and you also get better performance.

The following restrictions apply:

• This call should be made before bringing up the print dialogs because it affects their
appearance. On the ImageWriter, calling DraftBi t s disables the landscape icon in
the Style dialog, and the Best, Faster, and Draft buttons in the Job dialog.

Technical Note #128 page 5 of 7 PrGeneral

• If the printer does not support draft mode, already prints bitmaps in draft mode, or
does not print bitmaps at all, this call does nothing.

• Only text and bitmaps can be printed.

• As in the normal draft mode, landscape format is not allowed.

• Everything on the page must be strictly Y-sorted, i.e. no reverse paper motion
between one string or bitmap and the next. Note that this means you can't have two
or more objects (text or bitmaps) side by side; the top boundary of each object must
be no higher than the bottom of the preceding object.

The last restriction is important. If you violate it, you will not like the results. But note that if
you want two or more bitmaps side by side, you can combine them into one before
calling CopyBits to print the result. Similarly, jf you are just printing bitmaps you can
rotate them yourself to achieve landscape printing.

The NoDraftBits Call

NoDraftBits (iOpCode = 7) is implemented on both the ImageWriter and the
LaserWriter. (On the LaserWriter it does nothing, since the LaserWriter is always in draft
mode and can always print bitmaps.) The format of the data block is the same as that for
the DraftBits call.

This call cancels the effect of any preceding DraftBits call. If there was no preceding
Dra ftB its call, or the printer does not support draft-mode printing anyway, this call ~

does nothing. ,.

The GetRotn Call

GetRotn (iOpCode = 8) is implemented on the ImageWriter and LaserWriter. Here is the
format of the data block:

TGetRotnBlk
iOpCode:
iError:
lReserved:
hPrint:
fLandscape:
bXtra:

END;

RECORD
Integer;
Integer;
LongInt;
THPrint;
Boolean;
SignedByte;

{data block for GetRotn callI
{input; = getRotnOpl
{output}
{reserved for future use}
{input; handle to a valid print record}
{output; Boolean flag}
{reserved}

hP r in t should be the handle to a print record that has previously been passed to
PrValidate.

If landscape orientation is selected in the print record, then fLandscape is true.

Technical Note #128

£JU: L"11 4 1i4 -,

page 6 of 7 PrGeneral

How To Use The PrGeneral Opcodes

The SetRsl and DraftBi t s calls may require the print code to suppress certain options
in the Style and/or Job dialogs, therefore they should always be called before any call to
the Style or Job dialogs. An application might use these calls as follows:

• Get a new print record by calling PrintDefault, or take an existing one from a
document and call PrValidate on it.

• Call GetRslData to find out what the printer is capable of, and decide what
resolution to use. Check PrError to be sure the PrGeneral call is supported on this
version of the print code; if the error is ResNotFound, you have older print code and
must print accordingly. But if the PrError return is 0, proceed:

• Call SetRs 1 with the print record and the desired resolution if you wish.

• Call DraftBits to invoke the printing of bitmaps in draft mode if you wish.

Note that if you call either SetRsl or DraftBits, you should do so before the user sees
either of the printing dialogs.

Technical Note #128 page 7 of 7 PrGeneral

•
Macintosh
Technical Notes

Developer Technical Support

#129: SysEnvirons: System 6.0 and Beyond
Revised by:
Written by:

Guillermo Ortiz & Dave Radcliffe
Jim Friedlander

October 1989
May 1987

•

•

This Technical Note discusses changes and enhancements in the _ SysEnvirons call in SystemSoftware 6.0 and later.
Changes since April 1989: Added rnachineType constants for the Macintosh Portable andTIcL Also added keyBoardType constants for the Portable and ISO keyboards.

_SysEnvirons and New Machines

SysEnvirons is the standard way to determine the features available on a given machine, andIts main characteristic is that it continually evolves to provide the necessary information as newmachines and System Software appear. As originally conceived, _SysEnvirons would checkthe versionRequested parameter to determine what level of information you were prepared tohandle, but this technique means updating SysEnvirons for every new hardware productApple produces. With System Software-6.0, SysEnvirons introduced version 2 ofenvironsVersion to provide information about new hardware as we introduce it; this newversion returns the same SysEnvRec as version 1.

Beginning with System Software 6.0.1, Apple only releases a new version of SysEnvironswhen engineering make changes to its structure (i.e., when they add new fields to SysEnvRec);all existing versions will return accurate information about the machine environment even ifpart ofthat information was not originally defined for the version you request. For example, if you callSysEnvirons with versionRequested = 1 on a Macintosh IIx, it will return arnachineType of envMacI Ix even though this machine type originally was not defined forversion 1 of the call.

You should use version 2 of SysEnvirons until Apple releases a newer version. Regardlessof the version used, however.your software should be prepared to handle unexpected values andshould not make assumptions about functionality based on current expectations. For example, ifyour software currently requires a Macintosh II, testing for rnachineType >= envMacI I mayresult in your software trying to run on a machine which will not support the features it requires,so test for specific functionality (i.e., hasFPU, hasColorQD, etc.).

You should always check the environsVersion when returning from SysEnvirons sincethe glue always returns as much information as possible, with environsVersion indicating thehighest version available, even if the call returns an envSelTooBig (-5502) error.

#129: _SysEnvirons: System 6.0andBeyond lof2

{Macintosh IIx}
{Macintosh IIcx}
{Macintosh SE/30}
{Macintosh Portable}
{Macintosh IIci}

Macintosh Technical Notes

New Constants

The following are new SysEnvirons constants which are not documented in Inside Macintosh;

however, you should refer to Inside Macintosh, Volume V-I, Compatibility Guidelines, for the

rest of the story.

machineType
envMacIIx = 5
envMacIIcx = 6
envSE30 = 7
envPortable = 8
envMacIIci = 9

processor
env68030 = 4

keyBoardType
envPortADBKbd = 6
envPortISOADBKbd = 7
envStdISOADBKbd 8
envExtISOADBKbd = 9

Further Reference:

{MC68030 processor}

{Portable Keyboard}
{Portable Keyboard (ISO)}
{Apple Standard Keyboard (ISO)}
{Apple Extended Keyboard (ISO)}

• Inside Macintosh, Volume V-I, Compatibility Guidelines

20f2 #129: _SysEnvirons: System 6.0 and Beyond

Macintosh Technical Notes

e, #130: Clearing ioCompletion

A
U

See also:

Written by:
Updated:

The File Manager

Jim Friedlander May 4,1987
March 1, 1988

When making synchronous calls to the File Manager, it Is not necessary to clear
ioCompletion field of the parameter block, since that is done for you.

Some earlier technotes explicitly cleared ioCompletion, with the knowledge that this
was unnecessary, to try to encourage developers to fill in all fields of parameter blocks
as indicated in Inside Macintosh.

8 Y the way, this is true of all parameter calls-you only have to set fields that are
explicitly required.

Technical Note #130 page 1 of 1 Clearing ioCompletion

e.

Macintosh Technical Notes

#131 : TextEdit Bugs in System 4.2

Written by:
Updated:

Chris Derossi June 1, 1987
March 1, 1988

This note formerly described the known bugs with the version of Styled
TextEdit that was provided with System 4.1. Many of these bugs were fixed in
System 4.2. This updated Technical Note describes the remaining known
problems.

TEStylinsert

Calling TEStyl Insert while the TextEdit record is deactivated causes unpredictable
results, so make sure to only call TEStyl Insert when the TextEdit record is active.

TESetStyle

When using the doFace mode with TESetStyle, the style that you pass as a parameter
is ORed into the style of the currently selected text. If you pass the empty set (no styles)
though, TESetStyle is supposed to.remove all styles from the selected text. But
TESetStyle checks an entire word instead of just the high-order byte of the tsFace
field. The style information is contained completely in the high-order byte, and the
low-order byte may contain garbage.

If the low-order byte isn't zero, TESetStyle thinks that the tsFace field isn't empty, so it
goes ahead and ORs it with the selected text's style. Since the actual style portion of the
tsFace field is zero, no change occurs with the text. If you want to have TESetStyle
remove all styles from the text, you can explicitly set the t sFace field to zero like this:

VAR

myStyle TextStylei
anIntPtr AIntegeri

BEGIN

anIntPtr := @myStyle.tsFacei
anIntPtr A := Oi
TESetStyle(doFace, myStyle, TRUE, textH) i

ENDi

Technical Note #131 page 1 of2 TextEdit Bugs

t! •111••• • 111---. II!!'lImill!'~"';~1ll0.······~..iI···<II'.'llIwilleliiillllA'!II' _

TEStylNew

The line heights array does not get initialized when TESt y lNew is called. Because of
this, the caret is initially drawn in a random height. This is easily solved by calling
TECalText immediately after calling TESty lNew. Extra calls to TECalText don't hurt 4
anything anyway, so this will be compatible with future Systems.

An extra character run is placed at the beginning of the text which corresponds to the
font, size, and style which were in the grafPort when TESty lNew was called. This can
cause the line height for the first line to be too large. To avoid this, call TextSize with
the desired text size before calling TESt y lNew. If the text's style information cannot be
determined in advance, then call TextSize with a small value (like 9) before calling
TEStylNew.

TEScroll

The bug documented in Technical Note #22 remains in the new TextEdit. TEScroll
called with zero for both vertical and horizontal displacements causes the insertion point
to disappear. The workaround is the same as before; check to make sure that dV and dH
are not both zero before calling TEScroll.

Growing TextEdit Record

TextEdit is supposed to dynamically grow and shrink the L ineSt a rt s array in the
TERec so that it has one entry per line. Instead, when lines are added, TextEdit expands 4
the array without first checking to see if it's already big enough. In addition, TextEdit
never reduces the size of this array.

Because of this, the longer a particular TextEdit record is used, the larger it will get. This
can be particularly nasty in programs that use a single TERec for many operations
during the program's execution.

Restoring Saved TextEdit Records

Applications have used a technique for saving and restoring styled text which involves
saving the contents of all of the TextEdit record handles. When restoring, TEStylNew is
called and the TextEdit record's handles are disposed. The saved handles are then
loaded and put into the TextEdit record. This technique should not be used for the
nullStyle handle in the style record.

Instead, when TEStylNew is called, the nullStyle handle from the style record should
be copied into the saved style record. This will ensure that the fields in the null-style
record point to valid data.

it III

Technical Note #131 page 2 of 2 TextEdit Bugs

Macintosh Technical Notes

#132: AppleTalk Interface Update

See also: The AppleTalk Manager
Inside AppleTalk (for ZIP information)
Technical Note #121-

Using the High-Level AppleTalk Routines

Written by:
Updated:

Bryan Stearns July 1, 1987
March 1, 1988

Technical Note #121 announced that we would be moving to a simplified
AppleTalk Manager interface. That interface is available now, as part of MPW
2.0 and newer.

Documentation for this new interface is contained in the AppleTalk Manager
chapter of Inside Macintosh Volume V. This technical note contains some of
the preliminary documentation for this interface and some useful points
about information about it, and AppleTafk-in general.

The original AppleTalk Pascal Interfaces, known as ABPasIntf, were designed to
simplify use of AppleTalk from high-level languages. Instead, they've caused us a few
compatibility problems. We've decided,1o~,encourage use of the same interface that
assembly-language AppleTalk uses, a parameter-block interface in the same style as
the low-level interfaces to the File and Device Managers.

The original calls are still supported (and will be for a while) as an "alternate" interface,
but we suggest that you consider moving to the new "preferred" calls. Be warned that
use of the original calls may cause compatibi:hi1y problems with future system software.
Also, new protocols (like ASP, the AppleTalk Session Protocol) are only provided with
the new interfaces.

The new interface uses parameter blocks Dike those used by the File and Device
Managers; you fill out the call-specific fields off the b!lock, and a small amount of glue
code (provided with development environments milke MPW) turns the parameter block
into a Cont rol call to the appropriate AppleTalk miver.

Most calls have an interface like:

FUNCTION PSomeCall(thePBPtr: ATPPBptr; asyncFlag: BOOLEAN): OSErr;

The glue fills in the fields csCode and ioRefNurm w.it!h the appropriate value for the call
you're making.

Technical Note #132 page 1 012 AppleTalk Pascal Interface Update

Synchronous and Asynchronous calls

You can still make calls synchronously ("do it now") or asynchronously ("start it now,
finish it soon"). If you choose to make a call asynchronously, be sure to provide a
completion routine in the ioCornpletion field (to be called when the call finally
finishes), or poll the ioResult field of the parameter block (the call is done if ioResult
is less than or equal to 0).

You must not move or dispose of a parameter block before the call finishes; when the
call does complete, you are responsible for throwing the parameter block away (if you
allocated it using Memory Manager routines).

Note that the alternate interfaces generated a network event on completion of an
asynchronous call; this service is not provided by the preferred interfaces, partly
because of future compatibility problems. See Technical Note #142 for background
information.

Packed data structures

Several of the data structures used by the new interfaces are packed; Pascal doesn't
deal well with these structures. Special calls are provided for building LAP and opp
write-data structures, NBP names-table elements, and ATP buffer data structures.

For example, when registering a name (using PRe g i s terN arne) , you'll use a
NarnesTableEntry structure. This structure consists of a few unpacked fields, followed
by an entity-name: three strings (representing the object, type, and zone fields of the 4
name) packed together. You can call NBP Se t NTE to pack the strings into the
NarnesTableEntry structure. When you remove the name (PRernoveNarne), you'll use
the entity-name by itself; you can use NBPSetEnti ty to pack it in.

Zone Interface Protocol

A function, GetBridgeAddress, is provided to obtain the node 10 of a bridge, for use in
ZIP transactions (zero is returned if no bridge is present on your network). You make ZIP
calls using ATP requests, as described in the Inside AppleTalk chapter on ZIP.

Technical Note #132 page 2 of 2 AppleTalk Pascal Interface Update

Macintosh Technical Notes

#133: Am I Talking To A Spooler?

See also: PostScript Language Reference Manual
Adobe Systems Document Structuring Conventions

Written by:
Updated:

Ginger Jernigan July 1,1987
March 1, 1988

When the LaserShare spooler is on an AppleTalk network, it acts like a LaserWriter-type
device, which can be chosen and communicated with much like a real LaserWriter.
Some applications, however, must communicate with a LaserWriter directly, not a
spooler. If this is true for your application, you can check whether you are actually talking
to a real LaserWriter by sending to the LaserWriter the following query:

%!PS-Adobe-l.2 Query
%%Title: Query to Spooler/Non-Spooler status
%%?BeginSpoolerQuery
(0) = flush
%%?EndSpoolerQuery 1
%%EOF

(The query has to be sent using the Printer Access Protocol (PAP). The object code for
PAP is available from Licensing.) If the string returned begins with a '%%' then it is a
status string and you can ignore it and wait for another string. If the LaserWriter is
actually a LaserShare spooler, then the string that is returned will be '1'. If the
LaserWriter is a real LaserWriter then the string returned will be '0'.

Technical Note #133 page 1 of 1

lee'

Am I Talking To A Spooler?

Ii 'r

Macintosh Technical Notes

#134: Hard Disk Medic & Booting Camp

See also: Hard Disk Users Manual
Technical Note 154-Macintosh Plus ROMs
Technical Note 113-Boot Blocks
Technical Note 67-Finding the 'Blessed Folder'

Written by:
Updated:

B03b Johnson July 1, 1987
March 1, 1988

The death of a hard disk with megabytes worth of data can be exceedingly

traumatic. This technical note will describe techniques for recovering a hard

disk and the data that is on it. The discussion will also include some tips on

how to avoid problems.

You should never need this information. However, software problems can wreak havoc

upon otherwise functional disks. When they have the equivalent of a heart attack, there

are a number of steps that can be taken to try to recover the disk. There are occasions

when the disk itself is not bad, and it may be possible to correct the disk without having

to reformat the disk and restore the data from a backup. This note will describe some of

the steps that can be used with Apple Hard Disks, but most of the information pertains to

all hard disks. For example, the HD SC Setup program is specific to the Apple drives,

but there is probably a similar utility for every hard disk. This is primarily a discussion of

what to do from the user standpoint, but there are a few suggestions on ways of

retrieving data via programmatic means.

This discussion will focus on the SCSI disks since they are more complex in terms of the

booting sequence. For other hard disks, like the standard HD-20, most of the information

still applies, but SCSI-specific sequences can be ignored. For example, the standard

HD-20 also has an installer program, although it is different than HD SC Setup.

Attack of the Nasties

There are a number of unusual conditions that a hard disk may get itself in:

1) The data is intact, but the hard disk won't boot.

2) The SCSI disk won't boot and only shows up after running HD SC Setup.

3) The disk will boot but hangs part way through the boot process.

4) There are data errors while the disk is running.

5) The disk is very slow returning to the Finder.

6) The computer crashes or hangs when returning to the Finder.

7) The disk appears in a "This disk is bad" dialog.

Technical Note #134

m·

page 1 of 12 Hard Disk Medic & Booting Camp

8) The disk never shows up at all.
These problems can develop from a number of sources, including system crashes,
rebooting at bad times, power fluctuations, malicious software, old software, buggy
software, etc. In general, these problems will be software-related, since the hardware
itself is very rarely defective.

This technical note will discuss:

1) The normal stages in the booting process.
2) Results of errors during the various stages in the booting process.
3) A step-by-step procedure to follow in order to maximize your chances of recovering

the disk and the data.

A Boot to the Head

This discussion will detail a normal boot process of a Macintosh with a single hard disk
attached. For clarity, this section will deliberately ignore potential problems and the
complexities involved in different configurations. The following sections will detail some
errors that may occur, and give more information in terms of what the ROM will do to
boot the system. A SCSI disk can be thought of in the following fashion:

The Physical Disk

TheM~ Volume

ory

stems

BlockO. SCSIpartition informanon

BlockBlock Block . . . BlockBlock Block Block . . . BlockBlock . . .
0 1 2 N N+1 N+2 N+3 N+M X

\.. / \...... ./• v
Often the Rest of Disk:
SCSI Driver Block N+2: Macintosh Other Operating Sy

Master Directory Block or otherpartitions

Block N+1: znc Macintosh boot block.

BlockN: Firstblock of HFSvolume Last block on Volume:
Macintosh bootblock. Copy of Master Direct

Block..

The important thing to note from this diagram is that the Macintosh volume is a subset of
the entire SCSI Disk. There can be more than one Macintosh volume on a given disk, or
even other volumes that are not Macintosh volumes.

Technical Note #134 page 2 of 12 Hard Disk Medic & Booting Camp

1) Check the SCSI port:

Immediately after the RAM check, the system looks at the SCSI port to see if there are

any drives connected. If a SCSI drive is found the system reads the SCSI partition

information in block O. This block is specific to SCSI drives and is always found at block

o of the disk. The SCSI Manager then reads in the SCSI driver from the disk. Once the

driver is loaded into memory, the system will use the driver to read and write blocks from

the disk, instead of the ROM boot code. The driver reads and writes blocks relative to the

beginning of the Macintosh volume on the SCSI drive, which can start anywhere on the

physical disk.

2) Decide which disk is to be the startup disk:

The Macintosh then looks at the floppy disks to see if there is a disk that it should try to

use. If so, it will always boot from the floppy. If there are no floppy disks, the startup hard

disk is chosen. The Macintosh boot blocks are read off of the chosen disk to determine if

the volume is bootable. The two Macintosh boot blocks (same boot blocks as those

found on floppies) are read using the SCSI Driver. The Macintosh boot blocks are found

as the first two blocks on the Macintosh volume, but are much higher in terms of where

they are found on the disk itself. See the figure for the difference between the

Macintosh volume and the SCSI disk. The driver cannot normally read the SCSI

partition information, or any blocks outside of the Macintosh volume.

3) Execute the Macintosh boot blocks:

The boot blocks are composed of strings and parameters which determine various

system functions, and code that finishes the job of booting the system.

The hard disk is mounted as a volume, using the PBMountVol call. The volume has the

two Macintosh boot blocks, as well as the volume header. The PBMountVol will use the

driver to read the volume header and other information from the disk. Once the volume

is mounted, there are only volume reads and writes, and the driver is responsible for the

actual SCSI disk reads.

The System file is opened on the volume. The patch code for the current ROM is read

into the system, including the patches to the SCSI Manager.

The Finder is launched.

4) The Finder uses the Desktop file on the volume to draw the desktop.

The Icons that make up the desktop representation of the Macintosh volume are stored

in the Desktop file. The Desktop file is invisible and used only by the Finder.

That is a rather simplistic view of the boot process. There are a number of complications

that arise due to the wild variety of devices that can be attached to a Macintosh. The full

boot process is essentially a series of special cases, leading to the final booted System

at the Finder's desktop (or in the startup application). The following section will go into

painstaking detail in order to give you enough information to determine what step in the

boot process failed.

Technical Note #134 page 3 of 12 Hard Disk Medic & Booting Camp

Tough Boots

To further explain the boot process:

1) Check the SCSI port:
a) Before starting the boot process, the screen will be filled with a grey pattern.b) Before the Macintosh will check for any SCSI devices, it will first reset the SCSIbus using a SCSIReset. This is to make sure the bus was not left in a bad state.c) The Macintosh will then start a cycle through all 7 SCSI IDs (from 6..0) to seewhich disks are connected, and keeps a table of all disks that are connected.d) For each disk that is connected to the Macintosh, the ROM boot code will use theSCSI Manager to read in the SCSI partition information to find where the driver islocated on the disk. The signature of the SCSI partition information is alsochecked to be sure that the device is valid.
e) The SCSI Manager will then be used to read the driver into memory. Once thedriver is loaded for a given disk; the driver is called to install itself. The driver willusually post a Disk Inserted event to have its volume mounted by the Finder.f) Steps d and e are repeated for each disk connected. At this point, there may be anumber of drivers in memory, but there are no volumes, since none have beenmounted yet. Generally there is one driver per disk, but some drivers can handlemore than one disk at a time.

2) Decide which disk is to be the startup disk:
a) The next stage is to determine which volume will become the startup disk. If thereis a floppy available it will always be the startup disk. During this process the diskchosen as the startup disk is not known to be valid. The System file and bootblocks are checked later. 4b) The standard HD-20 is connected to the system in a fashion that is very similar to afloppy, so if a bootable HD-20 is connected it will be the startup disk.
c) There is no search for floppy devices like there is for SCSI disks since the driverfor the floppies will post a Disk Inserted event when it detects a floppy in the drive.The first floppy device that is found will be used as the startup disk. If there aremultiple floppy devices, the others will be mounted by the Finder, not at boot time.The SCSI devices that are online are not mounted at this time, either. There is apending Disk Inserted event for each disk that will be handled by the Finder.d) At boot time, there is only one volume that is mounted (during execution of theMacintosh boot blocks). The others will be mounted when their Disk Inserted eventis processed at a GetNextEvent call.
e) On the new Control Panel there is a Control Device (cdev) called the StartupDevice. This Startup Device cdev allows the user to choose which device thesystem should try to boot from first. This can only be used on the Macintosh" andSE. The drive number, driver reference number, and driver OS type are stored inparameter RAM to allow a chosen device to be the boot disk. The floppy drives willstill have precedence over the SCSI devices. The standard HD-20 can be chosenas the Startup Device as well, since it uses a different driver reference number. Ifthe drive number that is stored as the Startup Device is invalid, or had a read/writeerror, then another disk in the chain will be chosen as the next bootable candidate.Remember that there is only one boot/startup/system disk, and it is the only onethat is explicitly mounted at boot time. All other devices in the system will be Ihandled once the system is booted.

Technical Note #134 page 4 of 12 Hard Disk Medic & Booting Camp

3) Execute the Macintosh bmd ~s:
a) Once the Startup Disk has haem Df:msen (whether floppy, SCSI or other disk) then

it is time to read the Macintosh bDdt !blocks off of blocks 0 and 1 of the volume.

Those boot blocks determine v.alinus ;parameters in the system, such as whether a

Macsbug-Iike debugger will he :~d, .the name of the startup program (not

always the Finder), how bi91 mmmake the event queue, how big to make the system

heap, and so on. They also~rm a sigrmature identifying them as Macintosh boot

blocks, and a version number to diffif:er.erndliate between different boot blocks.

b) After the boot blocks are 'read and~ sia:nature verified, the smiling Macintosh is

displayed on the screen. The smr~blii.l1l1JJ Macintosh basically means that valid

Macintosh boot blocks weTe ifoonGi.

c) On 64K ROMs the boot b~ are u'e'CllilttOO by jumping to the code that follows the

header information in boot !bjko:dk. D. Om ttihe newer Macintoshes the boot block

version number is checked, amdif iitt iis "t)ld' the boot blocks will be skipped. The

same code that would ha~e been :fr.DxuM iin the boot blocks is found in the ROM

itself. Regardless of which -kiifild 'of Ma'dLmmsh it is, the following steps apply. For the

newer Macintoshes the b1:l:<cltt lblocks am usually used only for the parameters

stored in the header.
d) Do the PBMountVol on 1Ilme enosen str2irtup volume. If PBMountVol fails, the

process starts over at th:e IJDmL1iItt wher€ a startup disk is being chosen (step 2

above). The failing volume is mlI\in!k.eIilout of the list of candidates so that it won't be

used again.
e) Find the System file and creB're'a 'Working Directory, if needed, for the System

folder. This is only done for iHFS volumes of course, and the directory 10 is set to

the blessed folder. The blessed folder is saved in the volume header as part of the

Finderlnfo field. See Techmirc:al Note #67 for more information on the blessed

folder. If the directory ,10 is wf.cm:9, the System file won't be found, causing it to start

over again (at step 2 aboves.. n the Working Directory was created successfully,

1hat'WDRefNumisset<as'1he:delallllt'Volume with SetVo.l. ~

f) The System file is opened w~ DpenResF ile. If the file could not be opened, the

process starts over again at tthe point where a suitable boot device is being

chosen (step 2 again).
g) The Startup Screen is loaded ai'md,displayed. If there was no Startup Screen, the

normal "Welcome to MacintoStn" mmessage will be displayed. The Startup Screen or

"Welcome..." means that _ S~'1/m1 file was found and opened successfully. On

the Macintosh Plus and i64~ OO'M mnachines, the Startup Screen is displayed

before the System file is o~edL (~~a'lSe steps f and.9)

h) The debugger and disassemT.l!tJ)kcl!r ca.me iirmstalled if foumd. The names of the debugger

and disassembler are fourm! liml t~ ltneader of the boot blocks and are usually

Macsbug and Disassembler ~Wf.el~.

i) The data fork of the System mile 1$~d anclexecuted. The data fork contains

code to read in the PTCH 'rresmwl!COeS ui:cm patch the ROM.

j) The INITs that are in the S~mm fme:arne e:x,ecuted. The last INIT is INIT 31 which

then looks in the System fiJl_ m.rmher mN:ITs to be executed.

k) The file speciiied by the boot :b1kIDtii$ 'as the startup application (Set Startup at the

Finder) is found on the volJinine" \jj$ing another field in the Finderlnfo field of the

volume header in order to gEttw DVred.ory 10. If the file exists, it is launched. If not,

the Finder is launched. !f the !hrril1:ter is not found, SysError is called with error

code of 41 which is the "Cam'lt l\a.w:T:rdh Finder" alert.

Technical Note #134

"

Hard Disk Medic & Booting Camp

4) The Finder uses the Desktop file on the volume to draw the desktop.

If the startup application was the Finder, it opens the Desktop file on the startup volume
in order to draw the desktop. When it finishes with the startup volume, it calls
GetNextEvent. If there are any pending Disk Inserted events, the volume specified is
mounted (by the ROM) and the result passed to the Finder. If PBMountVol failed for any
reason, the bad result will be passed to the Finder. At that point the Finder would put up
the ''This disk is damaged" alert and ask if the volume should be initialized or ejected. If
ejected, the driver for that volume still exists, but the volume is unmounted. For each
volume that the Finder sees, it opens the Desktop file on the volume to get the
information that it needs to build the desktop. If the Desktop file was not found on a
volume, it is created. If there are any errors while creating or using the Desktop file, the
Finder will display the "This disk needs minor repairs" message. If the OK button is
clicked, the Finder will delete the old file and create a new one. If that fails, the volume is
unmounted and deemed unusable by the Finder. This happens if the disk is locked, or
too full to add a Desktop file. If that was the startup volume, the computer is rebooted
since it was forced to unmount the startup volume, and cannot run if there is no startup
volume.

If you follow the previous sequence closely, you can predict what errors are causing a
given end result. For example, if you have the effect where the smiley Macintosh
appears, but immediately goes away and the disk does not boot, you can look through
the sequence to see what might be going wrong. In this case, we know that the boot
blocks were found on our startup volume, since the smiley Macintosh was displayed. We
know that the System file was not found, or failed to open, since we never got the
Welcome message. This usually calls for throwing away all of the System Folders on the
volume, and starting again with a new System Folder to fix the problem. If there is more
than one System Folder on a volume it is possible to confuse the system.

Other tidbits of information that may be useful (in no particular order) some which will be
mentioned in the step-by-step operation below:
1) The SCSI cables have a lot of wires in them, and are rather bulky because of it. It is

best to avoid bending the cables too much or too often, since the wires inside will
break if overstressed. Don't put wild kinks in the cable in order to make it fit behind
the Macintosh.

2) If there is no default volume stored in the parameter RAM with the Startup Device
cdev, then the first drive that is in the drive queue will be the Startup Device. Since
SCSI drives are added in highest ID order, that means the larger SCSI IDs will have
a higher 'priority', Macintosh lis will default to the internal hard disk.

3) If the parameter RAM is trashed for some reason, the boot process can fail since a
driver OS type is stored as well. If the OS type is wrong, the ROM will skip that driver,
making the disk unbootable. On the Macintosh IIISE, the battery is no longer
removable to fix parameter RAM problems. To correct this problem the Control
Panel now has a feature that will allow you to clear parameter RAM. Holding down
the Option-Command-Shift keys while opening the Control Panel will reset
parameter RAM, forcing it to be rebuilt and therefore losing all of your settings, but
possibly fixing some booting problems.

Technical Note #134 page 6 of 12 Hard Disk Medic & Booting Camp

4) The Macintosh II and SE both have a new feature that will allow you to skip having
the any hard disk mounted. Holding down the Option-Command-Shift-Delete
combination will have the startup code skip the SCSI hard disks on the system. This
can be useful if you are booting an old System file that does not understand HFS
disks (like System 2.0/Finder 4.1), and want to avoid having your hard disks on line
while you do something shaky. With external hard disks it is easier to just turn them
off, but with internal disks it is not so easy.

5) Since the parameter RAM can be trashed in a manner that makes it impossible to
boot a volume (looking for the wrong OS type), a new feature was added to the HD
SC Setup program to have it fix this problem as well. If you have version 1.3 or
greater, the parameter RAM bytes that determine booting will be reset to fix some
boot problems that occur. The parameter RAM is fixed when the Update button is
clicked. This does not invalidate the rest of parameter RAM, it merely fixes the bytes
used for the Startup Device.

6) When the Finder copies a new-System Folder onto a disk that does not already
have a System Folder, that new folder will become the blessed folder. Its Directory
ID will be saved in the volume header. In addition, the Macintosh boot blocks will be
copied from the current startup device to the destination device. This is the best way
to fix System Folder or Macintosh boot block problems. In order for the blessed
folder to be set correctly, all System Folders on the volume should be deleted before
copying the new folder there.

7) If the Desktop file is damaged for whatever reason, it can be deleted with a number
of programs. This will force the Finder to rebuild it from scratch. You can also have
the Finder rebuild the Desktop file by holding down the Option-Command keys
when the Finder is launched. When the Desktop file is rebuilt you lose the Finder
Comments in the Get Info boxes.

8) On the 64K ROMs, whenever something goes wrong during booting (like System file
not found, bad boot blocks, and so on) the Sad Mac Icon is displayed. Starting with
the 128K ROMs, whenever something goes wrong the ROM jumps back to the start
to try to find another disk to use.

Bo3b's Boot Repair

This section will detail step-by-step processes that can be used to fix some common
booting and volume problems. It is not intended to cover every possible case. The
purpose of the preceding sections was to give you the information that will allow you to
figure out what might be going wrong.

For most hard disk users, it is not sufficient to merely have the device running. It is
generally a good idea to make the system as robust as possible in order to avoid some
of the problems that might cause a volume to become Wholly unreadable. The ultimate
fix is to reinitialize the volume from scratch and rebuild the volume with the Finder or a
restore operation that uses the File Manager. This is guaranteed to fix anything except
hardware problems, and will give you the most solid system. If your system is acting
funny, you can try the following sequence that is the next best thing to initializing the
disk. This sequence will not make you rebuild the disk, but can be fooled by some disk
problems. If everything passes, then the disk is in good shape; maybe not perfect, but
good.

Technical Note #134 page 7 of 12 Hard Disk Medic & Booting Camp

"MdJ
iii y N--------·····••••••••••••"1·1_.

1) Power down the entire system, including the hard disk that is suspect.
2) Run the HD SC Setup program (or equivalent) and Update the drivers on the disk.

For HD SC, this also fixes the parameter RAM. For non-Apple drives, the parameter
RAM can be reset with the Control Panel.

3) Run the Test Disk option in HD SC Setup (or equivalent). If the test fails, reinitialize
the volume, since it is not worth risking future problems.

4) Run the Disk First Aid utility. This utility will work on all HFS volumes. Have it check
the volume for consistency. If it reports any errors, you can have it fix the problem, but
the safest tack is to reinitialize. There are some problems that Disk First Aid won't
catch. If Disk First Aid says the volume cannot be verified, it is time to reinitialize.

5) Rebuild the Desktop file by holding down Option-Command when returning to the
Finder.

If you can successfully perform all of these steps, the volume will be as solid as it can get
without reinitializing the disk. If things are still funny, it is time to take the last recourse,
reinitialize. .

Based on the previous sections, it is now time to go through all of the Nasties to give a
step-by-step sequence for fixing these problems.

1) The data is intact, but the hard disk won't boot.

This is for the case where the volume won't boot, but if the computer is booted with a
floppy disk the volume shows up at the desktop and can run normally. For this case, we
know that the driver is being loaded and working, since the volume shows up at the
desktop. The volume is also mountable, since it shows up with no problem. This implies _
that the Macintosh boot blocks are wrong, or the blessed folder is wrong. Clues such as
the smiling Macintosh can tell you how far the process got before it failed. For example,
if the smiling Macintosh never appeared, we know that Macintosh boot blocks were not
read successfully. When the volume is fixed and bootable, it would be a good idea to go
through the steps above to make the volume as solid as possible.

The sequence to follow:
a) Power down the entire computer, including the hard disk. Try to boot again. If it

works, you are done.
b) Use the Control Panel's Startup Device to set the hard disk as the Startup Device.

This will also reset some of the bytes in parameter RAM. Try rebooting to see if it
has fixed the problem.

c) Run HD SC Setup (or equivalent) and perform the Update Drivers procedure. In
the HD SC Setup case this will also rewrite the parameter RAM. If you are not
using HD SC Setup, blast the parameter RAM with the Control Panel. Try
rebooting.

d) Delete all System Folders from the hard disk. Using Find File or something
similar, be sure that there are no stray copies of the System or Finder buried in
some long lost folder. Copy a new System Folder to the volume, using the Finder.
This process will fix bad boot blocks, as well as a bad blessed folder. Try
rebooting.

e) If it still won't boot, there is something very strange happening. Whenever things
get too weird it is usually time to start over: reinitialize. t

Technical Note #134 page 8 of 12 Hard Disk Medic & Booting Camp

2) The disk won't boot and only shows up after running HD SC Setup.

The disk does not even show up at the Finder when the system is booted with a floppy.
After running the HD SC Setup (or equivalent) the volume will appear on the desktop
and be usable. The HD SC Setup and most similar utilities will do an explicit
PBMountVol of the volume in order to make the volume usable. Since the volume does
not show up at the Finder at first, this implies that the driver itself is not getting loaded or
is working improperly, since there was no Disk Inserted Event for the Finder to use.

The sequence:
a) Power down completely, including the hard disk.
b) Run HD SC Setup (or equivalent) and Update the Drivers. For non-Apple drives,

update the drivers on the volume (this rewrites the SCSI partition information as
well) using the utility that came with the disk. Reset the parameter RAM using the
Control Panel.

c) If it still cannot be booted or does not show up at the Finder after booting with a
floppy, the volume is too weird and should be reinitialized.

3) The disk will boot but hangs part way through the boot process.

This is when you can see the volume is being accessed by the run light (LED) on the
front panel, and the booting seems to work but never makes it to the Finder. This implies
that all is well until the System tries to actually launch the Finder or Startup Application.
It could also be that the System file is causing something to hang.

The sequence:
a) Power down completely.
b) Boot with a floppy so that the floppy is the startup disk and the volume in question

can be seen at the Finder.
c) Delete all System Folders on the hard disk. Put a new System Folder on the disk.

This will presumably fix a corrupted System file.
d) If still funky, show the disk who's boss.

4) There are data errors while the disk is running.

This case usually evidences itself by messages at the Finder when trying to copy files.
Messages like "The file "0 could not be read and was skipped" usually mean that the
drive is passing back I/O errors. This usually means that there is a hardware failure, but
it can occasionally be caused by bad sectors on the disk itself. If the sectors are actually
bad, it is generally necessary to reinitialize the volume.

The sequence:
a) Power down completely. Reboot and see if the same file gives the same error.
b) Run the HD SC Setup (or utility that came with your drive) and perform the Test

operation. This will fail if there are bad blocks on the device. If there are bad
blocks, it is necessary to reinitialize the volume.

c) Check the SCSI terminators to be sure they are plugged in correctly. There can be
no more than two terminators on the bus. If you have more than one SCSI drive
you must have two terminators. If you only have one drive, use a single terminator.
If you have more than one drive, the two terminators should be on opposite ends
of the chain. The idea is to terminate both ends of this wire that goes through all of
the devices. If you have a Macintosh II or SE with an internal drive, that drive will
already have a terminator inside the Macintosh at the front of the cable.

Technical Note #134 page 9 of 12 Hard Disk Medic & Booting Camp

-_...._-----------

d) Make sure the SCSI cables you are using are OK, by swapping them with known
good ones. If the problem disappears, the cable is suspect.

e) Swap the terminators in use with known good ones to be sure they are OK.
f) Try the drive and cable on a different Macintosh to be sure the Macintosh is OK.

5) The disk is very slow returning to the Finder.

If the computer has gotten slower with age, it is probably due to a problem with the
Desktop file. If a volume has been used for a long time, the Desktop file can grow to be
very large (Hundreds of K). Reading and using a file that big can slow down the Finder
when it is drawing the desktop. If you have a large number of files in the root directory,
this will also slow the computer down. A large number (500-1000) of files in a given
folder can cause performance problems as well. If a volume has been used for a long
time, it can also have become fragmented.

The sequence:
a) Rebuild the Desktop file and see if it gets faster.
b) Look for large numbers of files in a given directory and break them up into other

folders if needed.
c) Run Disk First Aid to be sure the volume is not damaged.
d) Reinitialize the volume and restore the data using File Manager calls to fix a

fragmentation problem. Using the Finder, or a backup program that reads and
writes files is a way to use only File Manager calls. You cannot fix a fragmentation
problem by doing an image backup and restore.

6) The computer crashes or hangs when returning to the Finder.

This can happen if the Desktop file becomes corrupted. There are occasions when this 4
can happen if the HFS structures on the volume are damaged.

The sequence:
a) Rebuild the Desktop file.
b) Run Disk First Aid to be sure the volume is not damaged; a boot floppy with the Set

Startup set to Disk First Aid can allow you to test a volume that cannot be
displayed at the Finder.

c) The path of ultimate recourse if nothing else seems wrong with the volume.

7) The disk appears in a "This disk is bad" dialog.

This is the worst of the possible errors that generally happen to hard disks. If the
message is "This disk is bad" or "This is not a Macintosh disk", the HFS structures on the
volume have been damaged. In particular, the Master Directory block on the volume has
been damaged. The driver and SCSI partition information are probably OK, since this
dialog shows up when the Finder tries to mount a damaged volume. This means that the
PBMountVol call failed. Don't click the Initialize button unless you are sure you want the
volume to be erased. In these cases, it is nearly always better to just reinitialize the
volume after you have saved whatever information you can.

Technical Note #134

-
page 1Oof 12 Hard Disk Medic & Booting Camp

The sequence:
a) Power down completely. Occasionally the controller in the hard disk itself can

crash.
b) Run Disk First Aid. For these cases, it is usually necessary to create a boot floppy

with Set Startup set to Disk First Aid. When the floppy is booted, Disk First Aid will

be run before the Disk Inserted events are processed. When Disk First Aid sees

the Disk Inserted event it will check the result from the PBMountVol and still allow

you to test the volume, even if it can't be mounted.

c) If Disk First Aid cannot repair the disk, it might be worth writing a simple program to

call the driver to read and write blocks. There is a copy of the Master Directory

Block on the end of the volume, and the volume can sometimes be fixed by

copying that block over a damaged block in sector 2. You can write a program that

will find out how big the volume is by looking in the Drive Queue Element for the

volume, reading the block that is one sector from the end (N-1), and writing that

copy over sector 2. At this point, the volume is probably inconsistent, but it may

allow you to use it long enough to get information off of it. tt rs sometimes possible

to have Disk First Aid repair the volume at this point as well. Copying the sectors

can also be done with sector edit utilities, if you can get them to recognize the

volume at all.
d) If making a new copy of sector 2 does not work, but the driver is still being loaded

at boot time, it is possible to write a program that will read sectors from the disk

looking for information that you might need. You can have a reader program go

through blocks looking for a specific pattern, like a known file name. This is usually

done in desperation, but sometimes there is no other choice. If the data desired

can be found in some form, it can sometimes be massaged back to a useful form

much easier than recreating it.

e) Sometimes the volume will be so badly damaged that the SCSI partition

information is also damaged and cannot be fixed with the Update in the hard disk

utility. In this case, it is usually still possible to perform direct SCSI reads, without

going through the driver. Using the driver is preferable, since it knows how to talk

to the drive better than you would, but sometimes the criver is not available. Using

direct SCSI reads should be a last ditch effort since the SCSI Manager can be

very challenging to use. This should only be used if there is irreplaceable data on

the volume that cannot be read by any other means.

f) Even if the volume is recovered, it still should be reinitialized (after the data is

recovered) to be sure that any hidden damage is repaired.

8) The disk never shows up at all.

The disk appears to be missing. The volume does not show up at the Finder, and does

not show up in HO SC Setup. At boot time the access light (LED) does not flash. This is

usually a hardware problem as well. The drive is not responding to SCSI requests at all,

so the system cannot tell a drive is attached.

The sequence:
a) Power down the system, including the hard disk.

b) Make sure that the SCSI 10 on the drive does not conflict with any other in the

system, including the Macintosh, which is 10 7. (If you have an internal hard drive,

it should be 10 0.)

Technical Note #134 page 110f 12 Hard Disk Medic & Booting Camp

c) Check the SCSI terminators to be sure they are plugged in correctly. There can be
no more than two terminators on the bus. If you have more than one SCSI drive
you must have two terminators. Jf you only have one drive, you should use a single
terminator. If you have more than one drive. the two terminators should be on
opposite ends of the chain. The idea is to terminate both ends of this wire that
goes through all of the devices. If you have a Macintosh II or SE with an internal
drive, that drive will already have one terminator inside the Macintosh at the front
of the cable.

d) Make sure the SCSI cables you are using are OK, by swapping them with known
good ones.

e) Swap the terminators in use with known good ones to be sure they are OK.
f) Try the drive and cable on a different Macintosh to be sure the Macintosh is OK.

These boots are made for wokking

Remember, the goal here is to make the system be as stable as possible. If things are
acting strange, it doesn't hurt to go through the entire process of testing -the drive. The
test procedure takes a little time but is non-destructive for the data that is there. If
something catastrophic has happened to the disk, it is better to spend some time
backing up the data, initializing the volume, and restoring the data than it is to lose some
work later on due to some other permutation of the same problem. Unless you are sure
that the volume is in an undamaged state, you are better off using a file-by-file backup
operation than an image backup. smee1he;magebackup wilJ copy any damage as well
as the data.

If there are situations that you run into that are not covered by this technical note, please
let us know so that they can added.

If this technical note helps even one person save some data that would otherwise be
lost, it will have been worthwhile. Hope it helps.

Technical Note #134 page 120112 Hard Disk Medic & Booting Camp

Macintosh Technical Notes

#135: Getting through CUSToms

See also: Technical Note #88-Signals

Technical Note #11 O-MPW: Writing Standalone Code

Written by: Rick Blair
Updated:

July 1, 1987
March 1, 1988

This technical note provides a way for developers to allow sophisticated

users to add code to an off-the-shelf application. Using this scheme, the user

can easily install the code module; the application has to know how to call it

and, optionally, be able to respond to a set of predefined calls from the

custom package.

Note

The following code makes heavy use of features of the Macintosh Programmer's

Workshop. It also assumes a basic familiarity with the standard Sample program

included with MPW. The Pascal code (which is here only as an example implementation

of the mechanism) is presented as only those sections which differ from Sample.p. The

assembly language code also includes MPW-only features, such as record templates.

Some of these are explained in Technical Note #88, "Signals."

In addition, since the order in which parameters to various routines are passed is critical,

special care will have to be taken in writing interfaces for use with C. It is probably best

to declare them as Pascal in the C source.

Concepts

Basically, we create a code resource of type CUST with an entry point at the beginning

which takes several parameters on the stack; this code is reached via a dispatching

routine which is written in assembly language.

The data passed on the stack to this dispatcher includes:

• a selector (to specify the operation desired)

• the address of a section of application globals (for communication back and forth

between the application and the module when the stack parameters are insufficient)

• a handle which references the custom code resource on the stack.

Technical Note #135 page 1 of 14 Getting through CUSToms

Other parameters may be added (as long as they are pushed on the stack before therequired ones) if desired. Since these extra parameters would always have to beincluded in any calls to a given package. it might be more convenient to use theapplication global space area which is accessed through the appaddr parameter.

Template

Your application must contain the following global data and procedure declarations tosupport this model:

VAR
custhandle: Handle;

{the following globals constitute the data known to the custom code}appdispatch: ProcPtr; {address of dispatch routine custom code can call}{examples of further application globals for the custom package:}
(*
paramptr: Ptr; {general pointer used as paramo to appdispatch code}paramwordl: INTEGER;
paramword2: INTEGER;
CUSTerr: INTEGER;
*)
{any other globals the module should get at}

{the two assembly language glue routines which are linked into theapplication}
PROCEDURE CustomInit(resID: INTEGER; VAR custhandle: Handle);
EXTERNAL; {the routine used to set up the custhandle resource handle}

PROCEDURE CustomCall({application & package-specific paramters}
selector: INTEGER; appaddr: UNIV Ptr; ourhandle: Handle);EXTERNAL; {this is the code dispatcher} I

{this is called by the custom package to perform a service which is moreeasily provided by the application; since we pass a pointer to it to thepackage, CustDispatch must be at the outermost nesting level in the mainsegment}
PROCEDURE CustDispatch(selector: INTEGER':

BEGIN
CASE selector OF

{ .

. }

END; {CASE}
END; {CustDispatch}

{your initialization code should contain the following:}

{Custom package initialization stuff}
appdispatch := @CustDispatch; {put pointer where the package can see it}CustomInit(69,custhandle); lour CUST r€source has ID = 69}

{then whenever you want to invoke the package you use CustomCall} I
Technical Note #135 page 2 of 14 Getting through CUSToms

You must also assemble Customlnit and CustomCal1 and link them with into your

application. The custom package itself can be written in any language which can

produce stand-alone code. See Technical Note #110 for how to write stand-alone code

in MPW Pascal.

The example

CustomCall is only referenced once in this example. When a variety of unrelated

functions are provided, however, it is more convenient to provide a separate interfacing

procedure to invoke each one and have them make their own CustomCall calls.

Note that this example is somewhat contrived; you probably wouldn't "externalize" the

code for finding a word or sequence of characters like this. This is an idealized situation.

More realistic uses would be: to add-on special routines to a database to perform

custom calculations or the like; allow for localization when code is required (and hooks

aren't already provided); let documents carry around code which may vary among

software versions, etc. so that older documents would be able to work alongside the

new ones, etc.

What it does

We simply add a new menu to the sample program which allows Find by characters or

word. We just pass the menu item to the package and let it do the finding; it then calls

back to the application dispatch routine to highlight text or display the "not found"

message.

The Pascal source for the example application appears first:

{$R- }
{$D+ }
PROGRAM P;

USES
($LOAD ::PInterfaces:most.dump}

Memtypes,Quickdraw,OSIntf,ToolIntf,PackIntf {,MacPrint}

{$LOAD}
, {$U ErrSignal.p} ErrSignal;

CONST
appleID = 128; {resource IDs/menu IDs for Apple, File and Edit menus}

fHeID 129;

editID 130;

findID 131;

appleM = 1; {index for each menu in myMenus (array of menu handles)}

fileM = 2;

editM = 3;

findM = 4;

menuCount = 4; {total number of menus}

Technical Note #135 page 3 of 14 Getting through CUSToms

windowID = 128; {resource ID for application's window}

undoCommand = 1; {menu item numbers identifying commands in Edit menu}cutCommand = 3;
copyCommand = 4;
pasteCommand 5;
clearCommand = 6;

findcharsCommand = 1; {menu items for Custom menu}
findwordCommand = 2;

aboutMeCommand = 1; {menu item in apple menu for About sample item}

aboutMeDLOG = 128;
findDLOG 129;
infoDLOG = 130;

{application dispatching code selectors}
hilightSel = 0;
notifySel = 1;

VAR

errCode: INTEGER;
dlogString: Str255;
custhandle: Handle;

{here is the area known to the custom code}
appdispatch: ProcPtr; {address of dispatch routine custom code can call}{examples of further application globals for the custom package}paramptr: Ptr; {general pointer used as paramo to appdispatch code}paramword1: INTEGER;
paramword2: INTEGER;
{any other globals the module should get at}

PROCEDURE CustomInit(resID: INTEGER; VAR custhandle: Handle);
EXTERNAL; {the routine used to set up the custhandle resource handle}

PROCEDURE CustomCall(text: Ptr; count: INTEGER; findstr: StringPtr;selector: INTEGER; appaddr: UNIV Ptr; ourhandle: Handle);EXTERNAL; {this is the code dispatcher}

{this will do the "about" dialog and the info dialog requested by thecustom pack. }

PROCEDURE ShowADialog(meDlog: INTEGER);

CONST
okButton = 1;
authorItem = 2;
languageItem = 3;
infoItem = 2;

Technical Note #135 page 4 of14 Getting through CUSToms

I

VAR
itemHit,itemType: INTEGER;
itemHdl: Handle;
itemRect: Rect;
theDialog: DialogPtr;

BEGIN
theDialog := GetNewDialog{meDlog,NIL,WindowPtr{ - 1»;

CASE meDlog OF
aboutMeDLOG: BEGIN
GetDitem{theDialog,authorItem,itemType,itemHdl,itemRect) ;

SetIText{itemHdl, 'Ming The Vaseless');
GetDitem{theDialog,languageItem,itemType,itemHdl,itemRect);
SetIText{itemHdl, 'Pascal et al');

END;

infoDLOG: BEGIN {display the message requested by the custom
package I

GetDitem{theDialog,infoItem,itemType,itemHdl,itemRect) ;
SetIText{itemHdl,StringPtr{paramptr)A);

END;
END; {CASE I

REPEAT
ModalDialog{NIL,itemHit)

UNTIL (itemHit = okButton);

CloseDialog{theDialog);
END; {of ShowADialogl

{this will put up the Find dialog to allow the user to type in the
characters to search forI
FUNCTION DoCustomDialog: BOOLEAN;

CONST
okButton = 1;
cancelButton = 2;
fixedItem = 3;
edit Item = 4;

VAR
itemHit,itemType: INTEGER;
itemHdl: Handle;
itemRect: Rect;
theDialog: DialogPtr;

BEGIN
theDialog := GetNewDialog{findDLOG,NIL,WindowPtr{ - 1»;
GetDitem{theDialog,editItem,itemType,itemHdl,itemRect) ;
SetIText{itemHdl,dlogString);
TESetSelect{O,MAXINT,DialogPeek{theDialog)A.textH) ;

Technical Note #135 page 5 of14 Getting through CUSToms

tt't, r~I'IIIi1I!fI-II'lillil'IIMI···_.I·lm••IHilM•••II••••••••1I11i•••••••••••••••

REPEAT
ModaIDialog(NIL,itemHit)

UNTIL (itemHit IN [okButton,canceIButton]);
GetIText(itemHdl,dlogString) ;
DoCustomDialog := itemHit = okButton;

CloseDialog(theDialog);
END; {of DoCustomDialog}

PROCEDURE DoCommand(mResult: LONGINT);

(* partial procedure fragment *)

{here is one of the case sections for the DoCommand procedure}

findID:
IF DoCustomDialog THEN

BEGIN
MoveHHi(Handle(textH)); {stop it from fragmenting the heap}
WITH textH AA DO BEGIN

HLock (hText); {since we don't know what the package might
be up to}

{now call the package to find characters or words}
CustomCal1 (POINTER(ORD (hText A) + seIEnd),
teLength - selEnd, @dlogString, theItem, @appdispatch,
custhandle);

HUnLock(textHAA.hText) ;
END; {WITH}
END;

END; {OF menu CASE} {to indicate completion of command,}
HiliteMenu(O); {call Menu Manager to unhighlight }
{menu title (highlighted by)
(MenuSelect) }

END; {OF DoCommand}

{this is called by the custom package to set the new selection or display a
message; it rrust be in CODE 1 at the outermost lexical level}

PROCEDURE CustDispatch(selector: INTEGER);

BEGIN
CASE selector OF

hilightSel: {hilight the characters selected by the custom pack.}
{paramptr=pointer to text to select, paramwordl¶mword2=start,end

chars}
WITH textH AA DO
{we'll subtract the start of text from paramptr to get the base

offset...}
TESetSelect(ORD(paramptr) - StripAddress (ORD(hText A)) +

paramwordl, ORD(paramptr) - StripAddress (ORD(hText A
))

+ paramword2,textH);

Technical Note #135 page 6 of14 Getting through CUSToms

notifySel: {put up message per request from custom pack.)
(paramptr points to string to display)

ShowADialog(infoDLOG);

END; {CASE)
END; {CustDispatch)

BEGIN {main program)
{ Initialization)
InitGraf(@thePort); (initialize QuickDraw)
InitFonts; {initialize Font Manager)
FlushEvents(everyEvent - diskMask,O); {callOS Event Mgr to discard

non-disk-inserted events)
InitWindows; {initialize Window Manager)
InitMenus; {initialize Menu Manager)
TEInit; {initialize TextEdit)
InitDialogs(NIL); {initialize Dialog Manager)
InitCursor; {call QuickDraw to make cursor (pointer) an arrow)

InitSignals;
errCode := CatchSignal;
IF errCode <> 0 THEN BEGIN

Debugger;
Exit (P) ;

END;

SetUpMenus; {set up menus and menu bar)
UnLoadSeg(@SetUpMenus); {remove the once-only code)

{Custom package initialization stuff)
appdispatch := @CustDispatch;
CustomInit(69,custhandle); {should test

the user)
custhandle for NIL and alert

dlogString := , I •,

{etc. with the rest of initialization and the main event loop)
END.

now for the assembly language code
first, the dispatching and initializing code that must be linked into
the application
CustomCalling
Custom packages initializing and dispatching

Rick Blair

PRINT
INCLUDE
INCLUDE
INCLUDE
INCLUDE
PRINT

LOAD

May, 1987

OFF
'Traps.a'
'ToolEqu.a'
'QuickEqu.a'
'SysEqu.a'
ON

'most. drop' ; fram a dump of the fi.les above

appdata

Technical Note #135

EQU 12

page 7 of14 Getting through CUSToms

;Initialize a custom module
Pascal call format:

CustomInit(resID:INTEGER;VAR custhandle:Handle);

This will load the CUST module with the given resource ID, install a
handle to it in custhandle, and set the module's appdata pointer to
point to the address appaddr.

resID EQU
custhandle EQU

8
4

CustomInit PROC EXPORT
SUBQ.L #4,A7 ;make room for handle from GetResource
MOVE.L #'CUST',-(A7)
MOVE.W resID+8(A7),-(A7) ; resource ID

GetResource
MOVE.L (A7)+,AO.
MOVE.L custhandle(A7),Al
MOVE.L AO, (Al) ;store handle in app's custhandle global

; (return with nil handle if GR failed)
MOVE.L (A7),AO ;get return address
ADD.L #lO,A7 ;strip everything
JMP (AO) ;adieu

;Call a custom module
;Pascal format:

CustomCall({parameters as desired} selector: INTEGER; appaddr: Ptr;
module: Handle);

;This will call the code whose handle is passed on the stack. If the
;application was written in assembly language you would just
;dereference the handle and call it directly (you wouldn't need this at

all) .

iget handle

iif hasna' been purged, ga' ahead
;push handle

CustomCall

; we don't
later) ,

@O

PROC EXPORT
IMPORT Signal
MOVE.L 4(A7),AO
MOVE.L (AO),DO
BNE.S @O
MOVE.L AO,-(A7)

LoadResource
MOVE.W ResErr,-(A7)
JSR Signal ;Signal is a NOP if a zero is passed to it
MOVE.L 4(A7),AO ;handle again
lock the handle here (we can't save it so we can unlock it
so it's up to the package to lock/unlock itself
MOVE.L (AO),AO ; dereference
JMP (AO) ;call CUST code

END

Technical Note #135 page 8 of14 Getting through CUSToms

here is the module for the custom package itself

CustomPack
Example custom code package

Rick Blair May, 1987

This demonstrates the recommend structure of a code module which a
sophisticated user could add to an existing application which supported
this mechanism. Aside from allowing for multiple routines within the
module (via a selector), provision is made for calling a routine
dispatcher within the application itself.

;Finding text
;We support a call to find a string anywhere within a block of text

(selector-O), and one to find the string only as a separate "word"
; with spaces around it (selector=l).
;PROCEDURE CustomCall(text:Ptr; count: INTEGER; findstr:~STRING;

selector: INTEGER; appaddr: UNIV Ptr; ourhandle:Handle);
;Rather than return a result indicating whether they succeeded or not,
;these routines take whatever action is appropriate (the application
;may not even know what these routines actually do) .
;Once a call succeeds or fails, it then takes action by making a call to
;one of the services provided by the application. In this case the two
;functions provided are just what we need; the ability to select text and
;the ability to put up a message saying "Text not found".

STRING ASIS

PRINT OFF
INCLUDE 'Traps.a'
INCLUDE 'ToolEqu.a'
INCLUDE 'QuickEqu.a'
INCLUDE 'SysEqu.a'
PRINT ON

LOAD 'most.drop'

CustPack PROC EXPORT

BRA.S Entry

DC.W 0
DC.B 'CUST'
DC.W 69

DC.W $10

from a dump of the files above

;skip header

;flags
;custom add-on code module
;resource ID (picked by Mr. Peabody &
; Sherman)
;version 1.0

text
count
findstr

StackFrame RECORD (A6Linkj,DECR
paramsize EQU *-8

call-specific parameters... (optional)
DS.L 1 ;pointer to text block
DS.W 1 ;word count of characters in text
DS.L 1 ;pointer to p-string to find

selector (word, optional - you might only have 1 call)
selector DS.W 1

..... Technical Note #135 page 9 0'14 Getting through CUSToms

for "find characters"
for "find word"

; selector
; selector

globals (long)

return
;the stack
A6Link
LocalSize

appaddr

fcharsCmd EQU 1
fwordCmd EQU 2

pointer to app.
DS.L 1

handle to this resource (long)
ourhandle DS.L 1

TOS:return address (long)
DS.L 1
link is built off the origin of the saved old A6 on the stack

DS.L 1

EQU *
ENDR

;offsets into our
AppGlobals RECORD
appdispatch DS. L
paramptr DS.L
paramwordl DS.W
paramword2 DS. W
;CUSTerr DS.W

ENDR

application globals area
{appdispatch},DECR
1

1
1
1
1 ;if we had possible errors

Entry
WITH StackFrame,AppGlobals
LINK A6,#LocaISize
MOVEM.L ;we'd save any non-trashable regs here

; first lock us down...
MOVE.L ourhandle(A6),AO

HLock

MOVE.W selector(A6),DO
CMP.W #fcharsCmd,DO
BEQ.S charfind ;go find characters
CMP.W #fwordCmd,DO
BEQ.S wordfind ;go find a word

;well, M. App didn't call us with a selector we know, so...

;restore any registers here

address
parameters

A6
(A7)+,AO ; return
#paramsize,A7;strip
(AO)

;unlock ourselves, clean up, return
(if we wanted to return an error code we could stuff it into the app.

global area)
duhn MOVE.L ourhandle(A6),AO

HUnLock
MOVEM.L
UNLK
MOVE.L
ADD.L
JMP

;selector
hilight
notify

codes for calls to
EQU 0
EQU 1

application
;highlight characters,
;beep a little

please

;find the string "findstr" anywhere in the block "text"
charfind

didfind

JSR
BEQ.S
JSR
MOVE.L

findchars ;see if findstr is anywhere in text
nofind ;if not then skip
calcsels ;compute selstart and selend
appaddr(A6),AO ;get pointer to appl. globals area

Technical Note #135 page 10 of 14 Getting through CUSToms

" 7
,

goapp

MOVE.L
MOVE.W
MOVE.W
MOVE.W
MOVE.L
JSR
BRA.S

text(A6),paramptr(AO) ;setup text pointer and...
DO,paramword1(AO) ;start character position,
D1,paramword2(AO) ;end character position
fhilight,-(A7) ;pass proper selector
appdispatch(AO),AO ;get dispatch address
(AO) ;call the application to select the range
duhn ;return to application (deja vu)

nofind MOVE.L
LEA
MOVE.L
MOVE.W
BRA.S

appaddr(A6),AO ;get pointer to appl. globals area
oopstring,A1 ;get pointer to "Not found" message
A1,paramptr(AO) ;put string pointer in "paramptr"
fnotify,-(A7) ;tell app. to display message
goapp

;compute last char. pos. for select

and selend
DO ;negate f characters unskipped in text
f1,DO ;include 1st character
count(A6),DO;compute 1st character position for select
findstr(A6),A1
(A1),D1 ;get length of string

D1
DO,D1

;figure selstart
calcsels NEG.W

SUBQ.W
ADD.W
MOVE.L
MOVE.B
EXT.W
ADD.W
RTS

;find the characters, but only if surrounded by space (including end or
; beg.)
;we could extend the test to check for other delimiters (.. ; .. , ,etc.)
wordfind

wloop

@O

JSR
BEQ.S
MOVE.W
JSR
MOVE.L
TST.W
BEQ.S
CMP.B
BNE.S
CMP.W
BEQ.S
CMP.B
BEQ.S

findchars
nofind
DO,D2 ;save count of text remaining
calcsels ;figure start and end offsets
text(A6),A1 ;point to text
DO ;start=beginning of text?
@O ;yep, so it passes
#' ',-1(A1,DO) ;preceded by a space?
@1 ;nope, keep looking
count(A6),D1 ;D1=length of text?
didfind ;yep, so it passes
#' " (A1,D1) ;followed by a space?
didfind ;yes, so we've found it

;this
@1

wasn't paydirt, so keep
MOVE.W D2,DO
BMI.S nofind
JSR bigloop
BRA.S wloop

panning
;restore chars remaining count
;forget it if we ran out of text
;keep looking

(skip , em)

;enter loop if length<>O
;strip findchar's return address
;return having done nothing

;this code
findchars

bigloop

will find the string if it lies anywhere in the text
MOVE.L text(A6),AO ;point AO to chars to search
MOVE.W count(A6),DO;size of text block
MOVE.L findstr(A6),A1;point A1 to chars to find
MOVE.W (A1)+,D1 ;get length byte and 1st char.
CMP.W #255,D1
BGT.S @1
ADDQ.L #4,A7
BRA duhn

Technical Note #135 page 11 of 14 Getting through CUSToms

••••••••••••••••••••••••••••1111'191

;search for first character
@O CMP.B (AO)+,D1 ;this one match 1st character?
@1 DBEQ DO,@O ;branch until found or done 'em all

BNE.S cnofind ;skip out if no match on 1st character

MOVE.B -2 (AI) ,D1 ; length of findstr
EXT.W D1
SUBQ.W #1,D1 ; length sans 1st character
BEQ.S cfound ;if Length(findstr)=l, we're done
CMP.W D1,DO
BLT.S cnofind ;fail if findstr is longer than text left
MOVE.L AO,D2 ;save this character position
CMP.W D1,D1 ;force EQuality
BRA.S @3 ;enter loop

@2 CMP.B (AO)+,(A1)+ ;match so far?
@3 DBNE D1,@2 ;check until mismatch or end of findstr

MOVEA.L D2,AO ;restore position (cc's unaffected)
BNE.S bigloop ;it no match then keep looking

cfound MOVEQ #1,D1 ; return TRUE
RTS

cnofind SUB.W D1,D1 ;return FALSE
RTS

oopstring
STRING
DC.B

END

PASCAL
'Pattern not found.'

#additions to the resource file

resource 'DLOG' (129, "Find dialog")
(72, 64, 164, 428),
dBoxProc,
visible,
noGoAway,
OxO,
129,
"Find"

) ;

resource 'DLOG' (130, "Info")
(66, 102, 224, 400),
dboxproc, visible, nogoaway, OxO, 130, ""

} ;

Technical Note #135 page 12 of 14 Getting through CUSToms

resource 'DITL' (130)
{

/* 1 */ {l30, 205, 150, 2B4},
button {

enabled,
"OK already"

} ;

/* 2 */ {B, 32, 120, 296),
/* info */
statictext {

disabled,
nn

} ;

resource 'DITL' (129) {
/* array DITLarray: 4 elements */

/* [1] */
{64, 4B, B4, 121},
Button {

enabled,
"OK"

} ;

/* [2] */
{64, 231, B4, 304},
Button {

enabled,
"Cancel"

} ;

/* [3] */
{B, B, 24, 352},
StaticText {

disabled,
"Find what?"

} ;

/* [4] */
{32, B, 4B, 352},
EditText {

disabled,

""

} ;

resource 'MENU' (131, "Custom", preload)
131, textMenuProc, Ox3, enabled, "Custom",

{
"Find Chars.;" ,

noicon, "F", nomark, plain;
"Find Word.," ,

noicon, "W", nomark, plain

} ;

Technical Note #135 page 13 of 14 Getting through CUSToms

type 'CTST' as 'STR ';

resource 1 CTST' (0) (
"Custom Application - Version 1.0"

) ;

include "CustomPack.code";

This makefile puts the program together incl. the CUST pack.

CustomTest ff CustomCalling.a.o CustomTest.p.o ErrSignal.a.o
the predefined rule for assembly will build CustomCalling.a.o,
CustomPack.code

Link CustomTest.p.o CustomCalling.a.o ErrSignal.a.o a
"(Libraries}"Interface.o a
"(Libraries}"Runtime.o a
"(PLibraries}"Paslib.o a
-0 CustomTest

CustomPack. code f CustomPack. a. 0

Link CustomPack.a.o -rt CUST=69 -0 CustomPack.code
Put the resource file together (including the custom code resource)
CustomTest ff CustomTest.r CustomPack.code

Rez CustomTest.r -a -0 CustomTest

Technical Note #135 page 14 of 14 Getting through CUSToms

Macintosh Technical Notes

#136: Register AS Within GrowZone Functions

See also: The Memory Manager
Technical Note #2S-Register AS Within Trap Patches

Written by:
Updated:

Chris Derossi July 1,1987
March 1, 1988

If you have a grow zone function, it may get called when a system routine is trying to
allocate memory. Because this can happen, you can't be guaranteed that register AS will
be correct.

If your grow zone function depends on AS, you should save register AS, load AS from the
low-memory global CurrentAS (a long word at $904), and restore the caller's AS before
you exit.

From high-level languages, you can also use the Operating System Utility calls
SetUpAS and RestoreAS (page 386 of Inside Macintosh Volume I~. SetUpAS stores the
'old' AS on the stack and puts the value stored at CurrentAS into AS. Make sure to call
RestoreAS when you're done so that it can pop the saved value of AS off the stack.

Your grow zone function depends on AS if it does any of the following:

• Accesses your application's global variables (which are stored at negative offsets
from AS).

• Accesses the QuickDraw globals. (AS contains the address of a pointer to the
QuickDraw global variables.)

• Makes any ROM trap calls.

• Makes any intersegment calls to routines in your application.

To do any of these, AS needs to contain the value from CurrentAS. Please note that this
is different than the method for calling the ROM from trap patches, where AS should
retain the value it had upon entry to your patch.

Technical Note #136 page 1 of 1 RegisterA5 Within GrowZone Functions

Macintosh Technical Notes

#137: AppleShare 1.1 Server FPMove Bug

See also:

Written by:
Modified by:
Updated:

AppleTalk Filing Protocol

Rich Andrews
Bryan Stearns

June 16, 1987
July 1,1987
March 1, 1988

A bug has been discovered in AppleShare 1.1's implementation of the
AppleTalk Filing Protocol FPMove call. This bug only affects developers
implementing custom workstation access code that will access AppleShare
1.1 servers from non-Macintosh systems (such as MS-DOS systems); if the
guidelines below are not followed, data loss may result.

The AppleShare file server supports an AFP call known as FPMove, used to move a file
or directory tree from one place to another on an AppleShare volume. In addition to
moving, the caller can specify a new name for the file or directory being moved; in
essence, a move and a rename can be accomplished by a single call.

The AppleShare 1.1 server implements this call as follows: the file is moved from the
source directory to an invisible holding directory, renamed, then moved to the
destination directory. The problem occurs when a locked file is moved and renamed in
this manner: the initial move succeeds, the rename fails, and the file is left in the holding
directory (essentially lost, as it will be deleted when the server is shut down).

Macintosh AppleShare 1.1 workstation software never uses the move-and-rename
combination, so this problem cannot occur on a Macintosh; however, if you're
implementing your own workstation-access software for some other machine or
operating system, and wish to use this feature, you must follow this procedure:

When a move and rename call comes from the native file system, issue an
FPGetFileDirParms call to see if the object is a locked file. If it is, issue an
FPSetFileParms call to unlock the file. Then issue the FPMove call, followed by
another FPSetF ileParms call to lock the file again.

AFP does not allow locked files to be renamed, whereas some native file systems (such
as MS-DOS) do. You must therefore preflight for this condition to maintain
transparency.

This problem will be corrected in a future version of the AppleShare server software.

•
Technical Note #137 page 1 of 1 AppleShare 1.1 Server FPMove Bug

Macintosh Technical Notes

#138: Using KanjiTalk with a non-Japanese Macintosh Plus

See also: KanjiTalk Usage Notes
Script Manager Developers Package

Written by:
Updated:

Priscilla Oppenheimer July 1,1987
March 1, 1988

This Technical Note describes the minor differences between using
KanjiTalk with the Japanese Macintosh Plus and KanjiTalk with a standard
Macintosh Plus.

There are two differences between the Japanese Macintosh Plus and the standard
Macintosh Plus: The Japanese Macintosh Plus has the Kanji 12 and 18 point fonts in
ROM and it is shipped with the Kana keyboard. It is not necessary to have this keyboard
in order to use KanjiTalk. (See the KanjiTalk Usage Notes for details on how to use it
with a non-Kana keyboard.) It is, however, necessary to have 12 point Kanji in order to
use KanjiTalk; the 18 point Kanji is optional.

When using KanjiTalk with a standard (non-Japanese) Macintosh, the user supplies
these fonts on disk and the Macintosh loads them into RAM. At boot time, the Macintosh
looks for the 12 point Kanji font file in the system folder of the boot disk. If it cannot find
the font, it will look through the root directory of all mounted volumes. (The font has to be
at the root level; it cannot be in a folder.) If it still doesn't find the font, it will prompt the
user to insert a disk with the font file in the root directory. Once KanjiTalk finds the 12
point font, it will go through the same process looking for the 18 point font. The user can
cancel this search if the optional 18 point font is not necessary.

When KanjiTalk finds the fonts, it loads them into memory. The 12 point font takes up
approximately 100K of memory and the optional 18 point font takes up approximately
250K of memory. The KanjiTalk code itself takes up about 180K of memory. Because the
fonts take up quite a bit of memory, many applications will not work on a Macintosh
512K with the Kanji fonts installed.

Accessing the fonts from ROM is faster, but we have not noticed any significant speed
problems when the fonts are accessed from RAM. There is, however, a noticeable
difference in speed when the Macintosh is booted. It takes a couple of seconds to load
the 12 point font and about 6 seconds to load the 18 point font.

Note that the Japanese Macintosh is unique; Apple has not produced other foreign
versions of the Macintosh for different scripts. The introduction of the Arabic Interface
System, for example, did not include an Arabic ROM version.

Technical Note #138 page 1 of 1 KanjiTalk with a non-Japanese Macintosh Plus

eM tt'IIIVE75 rs ,.:::. ..

Macintosh Technical Notes

#139: Macintosh Plus ROM Versions

Written by:
Updated:

Cameron Birse July 1,1987
March 1, 1988

Readers Digest condensed version of Macintosh Plus ROM history, or the truth
according to soaboar the everpresent:

1st version (Lonely Hearts, checksum 4D lE EE s r):

Bug in the SCSI driver; won't boot if external drive is turned off. We only produced about
one and a half months worth of these.

2nd version (Lonely Heifers, checksum 4D lE EA El):

Fixed boot bug. This version is the vast majority of beige Macintosh Pluses.

3rd version (Loud Harmonicas, checksum 4D IF 81 72):

Fixed bug for drives that return Unit Attention on power up or reset. Basically took the
SCSI bus Reset command out of the boot sequence loop, so it will only reset once
during boot sequence. This version shipped with the platinum Macintosh Pluses.

And Boabdar saith: "Thou shalt not rev them damn ROMs no moral"

Later that same day...

B03bdar Saith Also:

Lonely Heifer was about a 2 byte change,
Loud Harmonica was about 30 byte change.
No other bug fixes in SCSI or elsewhere.
Modified object code directly.
Not possible to get a specific ROM since they are all the same part number.
Shouldn't rely on a specific ROM, there will be no upgrade.
B03b B03b a boola, a wiff Ba2m B010m.

Technical Note #139

ze=w ,

page 1 of 1 Macintosh Plus ROMs

SWLLLJ&S&

Macintosh Technical Notes

#140: Why PBHSetVol is Dangerous

See also:

Written by:
Updated:

The File Manager

Chris Derossi July 1, 1987
March 1, 1988

This note explains PBHSetVol, and why its use is not recommended.

PBHSetVol, like SetVol and PBSetVol, allows you to set the current default volume

and directory to be used with subsequent File Manager calls. Unlike Set Vo 1 and

PBSetVol, though, PBHSetVol lets you specify the volume and the directory separately,

using the ioVRefNum and ioWDDirID fields.

PBHSetVol lets you specify a WDRefNum for the ioVRefNum in addition to a partial

pathname in ioNamePtr. PBHSetVol will start at the specified working directory and

use the partial pathname to determine the final directory. This directory might not

correspond to an already existing working directory, so the File Manager cannot refer to

this directory with a WDRefNum. Instead it must use the actual volume refNum and the

'dirID number (which is assigned when the directory is created, and doesn't change).

The net effect of all of this is, if you call PBHSetVol, the File Manager stores the actual

volume Re fNum as the default volume, and the default DirID separately. This happens

on all calls to PBHSetVol. Subsequent calls to GetVol or PBGetVol will return only the

volume RefNum in the ioVRefNum field of the parameter block. If any code tries to use

the RefNum returned by GetVol, it will be accessing the root of the volume, andnot the

current default directory as expected.

This is particularly nasty for desk accessories because they don't know that your code

has called PBHSetVol and they don't get what they expect if they call GetVol.

It is therefore recommended that you avoid using PBHSetVol because of this side effect.

None of the other 'H' calls that allow you to specify a Dir ID do this, so they're still OK.

Technical Note #140 page 1 of 1 Why PBHSetVol is Dangerous

..

Macintosh Technical Notes

#141 : Maximum Number of Resources in a File

See also:

Written by:
Updated:

The Resource Manager

Cameron Birse July 1, 1987
March 1, 1988

This note describes the limitation of the number of resources in a single

resource file.

There is a limit to the number of the resources in a single resource file. This limitation is

imposed by the resource map. There are two bytes at the end of the resource map which

are the offset from the beginning of the resource map to the beginning of the resource

names list. If there is only one type of resource, then the overhead, from the beginning of

the resource map to the beginning of the reference list, is 38 bytes. Since the offset is a

two byte value, and is a signed number, its highest possible value is 32767. This is the

limitation. If you subtract 38 bytes for the overhead, and divide the difference by 12 (the

number of bytes for each reference) you get about 2727.4-the limit to the number of

resources in a single file is 2727.

The Resource Manager was not intended to manage large numbers of resources, and

as a result, its performance is particularly bad with many resources. Because of these

restrictions, we recommend that developers avoid using the Resource Manager as a

data basetool.'

Technical Note #141 page 1 of 1 Maximum Number of Resources in a File

•

Macintosh Technical Notes

#142: Avoid Use of Network Events

See also:

Written by:
Updated:

AppleTalk Manager

Bryan Stearns July 1,1987
March 1, 1988

Future System software enhancements will not support network events. This

note gives hints on weaning your application from the use of network events.

What are network events?

When the Event Manager was designed, an event number was reserved for future

support of "network events". Later, when the AppleTalk Pascal Interfaces were written, a

completion routine was created that, when an asynchronous AppleTalk operation

finished, would post an event using networkEvt in the evtNum field.

Only the AppleTalk Pascal Interfaces generate network events. Assembly-language

users of the AppleTalk drivers (and those who called the AppleTalk drivers directly from

high-level languages, using PBControl calls) either provide a completion routine of

their own, or poll the ioResult field of the parameter block passed with the call (when

ioResult became negative or zero, the call is complete).

Why not use network events?

In some cases, network events can be lost. If the Event Manager finds that the queue is

full while posting an event, it discards the oldest event. In a situation (such as a server)

where multiple asynchronous ATP requests may complete at once, there is a chance

that events may be dropped off the end of the queue. This is more likely if the same

machine is also handling user-interface events (like keypresses and mouse actions).

Also, in developing improvements to our operating system, it has become apparent that

to continue support of network events, we would have to compromise future

enhancements to our system. So, future versions of the Macintosh operating system

may ignore network events instead of passing them to the application.

Technical Note #142 page 1 of2 Avoid Use of Network Events

How can I tell that my calls have completed without using network
events?

As described on page 11-275 of Inside Macintosh, you can poll the abResul t field of the
call's ABusRecord; when this value becomes negative or zero, the call has completed.
You can do this in your main event loop.

With this technique, you can ignore any network events returned by GetNextEvent,
since the AppleTalk Pascal Interfaces will be posting events anyway. If your application
starts enough asynchronous operations, it's possible that their network events will cause
other non-network events to be lost. To prevent this, you should call
F 1 u shz verrt s (net workMask, 0) frequently to purge any accumulated network events
from the event queue.

You may also consider using the new preferred high-level interface calls; see Technical
Note #132 for more information.

Technical Note #142 page 2 of 2 Avoid Use of Network Events

Macintosh Technical Notes

#143: Don't Call ADBReinit on the SE with System 4.1

See also:

Written by:
Updated:

The Apple Desktop Bus

Mark Baumwell July 1,1987
March 1, 1988

Because of a bug (which causes auto-repeat) in the ROM version of the Macintosh SE

keyboard driver, a patch was placed in System 4.~. If ADBRe Ini t is called, the ROM

version of the keyboard driver will be reloaded, and the RAM version of the driver with

the patches will not be used. Therefore, it is recommended that ADBRe In it not be

called on the Macintosh SE until the problem is fixed. (There is no need to call

ADBRe In it.) This problem will not occur with the Macintosh 31 ROM version of the

keyboard driver.

Technical Note #143 page 1 of 1 Don't Call ADBReinit

•

•
Macintosh
Technical Notes

Developer Technical Support

#144: Macintosh II Color Monitor Connections
Revised by: Wayne Correia
Written by: Mark Baumwell

February 1990
July 1987

This Technical Note describes how to connect the Macintosh II Video Card to third-party monitors.
Changes since March 1988: Updated for newer Macintosh II Video Cards, including the
Macintosh ITci On-Board Video (OBV).

5,12
7
9
10
8,15

Signal Name
1,6,11,13,14
2
3
4

Following are the pinout descriptions of the Macintosh II Video Cards and the Macintosh Ilci On
Board Video (OBV):

Macintosh II
Video Card Pin

•
Note: The Macintosh II High-Resolution Display Video Card is the newer replacement for

the original four- and eight-bit Macintosh IT Video Card (M0211 and M5640). This
new card is sold in four- and eight-bit configurations (M0322 and M0324,
respectively).

Note: The newer Macintosh II Video Cards and Macintosh IIci OBV require that pin 4
(Monitor ill, Bit 1) be connected to Ground to signal the connection of a 640 x 480
monitor. Do not connect pins 7 or 10 as they are unused on original Macintosh II
Video Cards and there are built-in pullup resistors on the newer Macintosh IT Video
Card and Macintosh Ilci to terminate these pins when not in use.

#144: Macintosh II Color Monitor Connections lof2

em- • 1M 4

Macintosh Technical Notes

Sony Multiscan (CPD·1302)

To connect a Macintosh IT to a Sony Multiscan monitor, you need to make an adapter cable from
the video card to the monitor (which has a 9-pin D-type connector). Following is the pinout
description for the adapter cable (using the automatic sync-on-green configuration):

Ground
Red
Ground
Green (sync)
Blue

Signal Name
1
3
1
4
5

Sony
Pin

Macintosh II
Video Card Pin
1
2
4
5
9

NEC MultiSync (JC·140IP3A)

To connect a Macintosh IT to a NEC MultiSync monitor, you need to make an adapter cable from
the video card to the monitor (which has a 9-pin D-type connector). Following is the pinout
description for the adapter cable (using the automatic sync-on-green configuration):

Macintosh II
Video Card Pin
1
2
4
5
9

NEC
Pin
6,7,8,9
1
6,7,8,9
2
3

Signal Name

The monitor must be set to Analog mode and Manual mode. This adaptor cable also works with an
equivalent monitor such as the Taxan Super Vision 770.

2of2 #144: Macintosh II Color Monitor Connections

, me

Macintosh Technical Notes

#145: DebuggerFKEY

Written by:
Updated:

Mark Baumwell July 1,1987
March 1, 1988

It is often more convenient to enter the debugger using the keyboard rather
than having to reach around to press the interrupt switch. This technical note
shows how to make a simple FKEY that wiJJ trap to the debugger.

This technical note shows how to make a simple FKEY that will trap to the debugger. It is
written in MPW Assembler. The assembler source is given below.

MPW Assembler source file listing:

File: DebugKey.a

An FKEY to invoke the debugger via command-shift-8

To build this:
Asm DebugKey.a
Link DebugKey.a.o -0 n{SystemFolder}Systemn -rt FKEY=6

DebugKey MAIN

BRA.S CallDB ;Invoke the debugger

;standard header

DC.W $0000 ;flags
DC.L 'FKEY' ; 'FKEY' is 464B4559 hex
DC.W $0008 ;FKEY Number
DC.W $0000 ;Version number

CallDB DC.W $A9FF ;Debugger trap
RTS

END

Technical Note #145 page 1 of 1 Debugger FKEY

fWt?"

-

Macintosh Technical Notes

#146: Notes on MPW Pascal's -mc68881 Option

See also:

Written by:
Updated:

Apple Numerics Manual
MPW Pascal Reference

Bryan Stearns July 1,1987
March 1, 1988

For improved performance, the MPW Pascal compiler (version 2.0 and
newer) represents Extended values in 96 bits (instead of 80, as with
software SANE) when the -mc68881 option is used. This can cause problems
when using non-SANE system calls that expect so-bit Extended values.

The Pascal Compiler and Extended values

The MPW 2.0 Pascal compiler provides a command-line option, -mc68881, to generate
inline code to use the Motorola 68881 Floating-Point Coprocessor (included with
Macintosh II). This allows you to sacrifice compatibility with other Macintosh systems
(those not equipped with the 68020/68881 combination) in exchange for
much-increased numeric performance.

(.:.

When this option is used, the compiler stores all Extended values in the 96-bit format
used by the 68881, instead of the 80-bit software SANE format:

79 78 63 o

1-bit 15-bit 64-bit
sign exponent mantissa

80-bit Software SANE Format

95 94 79 63 o

t-bit 15-bit
sign exponent

96-bit 68881 Format

64-bit
mantissa

This affects all procedures that accept floating-point values as arguments, since all
floating-point arguments are converted to Extended before being passed, no matter
how they're declared (that is, Real, Single, Double, or Camp).
You must link with a special SANELib library file ("SANE881Lib.o") when compiling with

Technical Note #146 page 1 of 3 MPW Pascal's -mc68881 Option

this option; the interface source file "SANE.p" contains conditional-compilation

statements to make sure that the correct library's interface is compiled. In this situation,

SANE procedures are used for certain transcendental functions only (see note below),

and these functions (in "SANE881 Lib.o") expect their Extended parameters in 96-bit •

format.
•

However, numeric routines that are not compiled by Pascal (such as any

assembly-language routines that you've written) have no way of finding out that their

parameters will be in 96-bit format. If you don't wish to (or can't) rewrite these routines

for 96-bit values, you can use the SANELib routines X96ToX80 and X80ToX96 to

convert back and forth; it might be simplest to define a new interface routine to make the

conversions happen automatically:

{An assembly-language function that accepts)

{an 80-bit Extended parameter and returns an)

{80-bit result (We've changed the types to)

{reflect that these are not 96-bit values). }

FUNCTION FPFunc(x: Extended80): Extended80; EXTERNAL;

{Given that we're compiling in -mc68881 mode,)

{call our assembly-language function. Note }

{that the compiler thinks that Extended)

{values are 96 bits long, but FPFunc wants an)

{80-bit parameter and produces an 80-bit)

{result; we convert.)

FUNCTION FPFunc96(x: Extended): Extended; {x is a 96-bit extended!)

BEGIN
{convert our argument, call the function, then convert the result)

MyFPFunc .= X80ToX96(FPFunc(X96ToX80(x))); {call the real FPFunc)

END;

It's best to avoid compiling some parts of an application with the -me 68881 option on,

and other parts with it off; very strange bugs can occur if you try this. Note that 80-bit

code and 96-bit code cannot reference the same Extended variables. There is no way

to tell whether a given stored value is in 80-bit format or 96-bit format.

SANE on Macintosh II

The version of SANE provided in the Macintosh II ROM recognizes the presence of the

68881 and uses it for most calculations automatically. SANE still expects (and

produces) 80-bit-format Extended values; it converts to and from 96-bit format internally

when using the 68881.

Technical Note #146 page 2 of 3 MPW Pascal's -mc68881 Option

'j

A Note about 68881 Accuracy and Numeric Compatibility

SANE is more accurate than the 68881 when calculating results of certain functions
(Sin, Cos, Arctan, Exp, Ln, Tan, Exp1, Exp2, Ln1, and Log2). To maintain this accuracy,
SANE doesn't use 68881 instructions to directly perform these functions. Thus, the
results you'll get from SANE calculations will still be identical on all Macintosh systems.

To preserve this numeric compatibility with other SANE implementations, MPW Pascal
normally doesn't generate inline 68881 calls to the above functions, even when the
-me68881 option is used; instead, it generates SANE calls to accomplish them. If you're
willing to sacrifice numeric compatibility to gain extra speed, you can override this
compiler feature with the compile-time variable E lems 881; include the option u_ d
E lems 8 81=TRUE" on the compiler command line to cause the compiler to generate
direct 68881 instructions.

For certain other transcendental functions provided by the 68881 that aren't provided by
SANE, MPW Pascal will generate direct 68881 calls if the -me 6 8 8 81 option is on,
independent of the setting of the Elems 8 81 variable. These operations are Arctanh,
Cosh, Sinh, Tanh, Log10, Exp10, Arccos, Arcsin, and Sincos.

Technical Note #146 page 3 of 3 MPW Pascal's -mc68881 Option

Macintosh Technical Notes

#147: Finder Notes: "Get Info" Default & Icon Masks

See also:

Written by:
Updated:

Technical Note #48-Bundles

Bryan Stearns July 1,1987
March 1, 1988

The Finder has undergone a couple of changes you should keep in mind
when creating the "bundle" information for your application.

Creator String will be the default "Get Info" comment text

The "creator" (or "signature") string (contained in a resource whose type is your
application's four-character creator type, and whose 10 is 0) will be used as the default
for the comment text displayed by the Finder's "Get Info" command. Thus, you should set
up this string (when you build your application) to contain the name of your program and
a version number and date.

Icon Masks should match their icons

Your application's BND L ("bundle") resource ties the file types that it uses for its
documents with the icons to be displayed for those documents. For each icon, a "mask"
icon is also provided; this mask is used to punch a hole in the gray desktop before
drawing the icon.

Some applications use a cleverly-modified mask to provide an "action icon" that looks
different when it's selected. This causes problems; it is important that the mask be what
it's supposed to be (a solid black copy of the icon).

Technical Note #147 page 1 of 1 Finder Notes: "Get Info" Default & Icon Masks

Macintosh Technjcal Notes

#148: Suppliers for Macintosh II Board Developers

See also: Designing Cards and Drivers
for the Macintosh /I and Macintosh SE

Written by:
Updated:

Mark Baumwell July 1, 1987
March 1, 1988

This note lists suppliers of parts that may be helpful for Macintosh II board
developers. If your company supplies these parts, but is not listed here,
please send a message to us (at the address on Technical Note #0) and we'll
include you in the next revision of this technical note.

This is a list of companies that SLJpply the Macintosh II expansion port cover (pin
805-5064-05) (Foldout 2 in DesigiT!/ing Cards and Drivers or the Macintosh 1/ and
Macintosh SE). It is not intended to be an endorsement or an indication of quality; it is
just our list of known suppliers.

Galgon Industries, Inc.
37399 Centralmont Place
Fremont, CA 94536
Attn: Ron Haddox-G:eneral Sales
(415) 792-8211

Vector Electronics
12460 Gladstone Ave
Sylmar, CA 91342
(818) 365-9661
FAX# 818-356-5718
Attn: Norm Brunell

North American Tool and Die
999 Beecher Street
San Leandro, CA 94577
(415) 632-9263
Attn: Glenn Erikson

In addition to supplying the expansion port cover, Vector EleetTDrnics supplies Macintosh
II NuBus extender boards and prototypirq boards.

Technical Note #148 page 1 of 1 Suppliers for !Macintosh II Board Developers

t

"

Macintosh Technical Notes

#149: Document Names and the Printing Manager

See also: The Printing Manager
Technical Note #122-Device-lndependent Printing

Written by:
Updated:

Bryan Stearns July 1, 1987
March 1, 1988

Our compatibility testing for LaserShare (Apple's LaserWriter spooler) has
turned up a number of applications that do not provide the Printing Manager
with a document name; although this feature is not required, it is nice for
users that share printers.

Some printers (usually those that are shared between many users, like the LaserWriter)
can provide the names of the users who are printing and the documents that are being
printed to others interested in using the printer.

If the chosen printer uses a document name, the Printing Manager gets the name from
the frontmost window's title. If there is no front window, or if the window's title is empty,
the Printing Manager defaults to "unknown."

This method was chosen because it works most transparently to applications; however,
it won't work if your application doesn't display windows when printing (for instance,
many applications that use windows for their documents do not open their documents
when printing in response to a Finder "Print" command).

As a general solution to this problem, you can put up a window containing a message
like "Press ~-. to cancel printing", and give it the document's title. If the window is one
that doesn't have a title bar (like dBoxP roc), this title will not be displayed. MacApp
takes this approach. If for some reason you don't want to put up a visible window, you
can create a tiny window and hide it behind the menu bar: for instance, global
coordinates of (1,1,2,2). Make sure you use a plainDBox, so that no title will be drawn
(otherwise, in the unlikely case that a user is using a Macintosh II with two stacked
screens, main screen on the bottom, the title might be visible on the upper screen).

Since the Printing Manager checks the name at PrValidate time, call PrValidate
after P rCloseDoc and before the next P rOpenDoc, if you want unique names.

A number of applications set the document name in the print record directly. You should
not do this because a) not all printers support this field, and b) none are guaranteed to
support it in the future. (Apple does not guarantee that internal fields of the Printing
Manager's data structures will remain the same; the Printing Manager is targeted for
substantial internal change!)

Technical Note #149 page 1 of 1 Document Names and the Printing Manager

Macintosh Technical Notes

#150: Macintosh SE Disk Driver Bug

Written by:
Updated:

Mark Baumwell July 1, 1987
March 1, 1988

~'
.~.

A bug in the Macintosh SE ROMs causes the top drive to be slower than the
bottom one in two-drive machines. This bug is fixed in System 4.2 and newer.

Technical Note #150 page 1 of 1 Macintosh SE Disk Driver Bug

Macintosh Technical Notes

#151: System Error 33, "zcbFree has gone negative"

See also:

Written by:
Updated:

The Memory Manager

Bryan Stearns July 1,1987
March 1, 1988

System 3.2 introduced a new system error, 10=33, generated by the Memory
Manager when it notices that a heap had been corrupted in a certain way.
This error is listed in the file "SysErr.a" as "negZcbFreeErr".

The Memory Manager will trigger an "10=33" system error when, during some operation
which scans the objects in the heap, it sees that its running count of free bytes
(zcbFree, an internal value) has become negative (an impossible feat in normal
operation). This is nearly always caused by writing zeros past the end of one of the
Memory Manager's heap blocks (overwriting and corrupting the next block's header,
making it appear to be a free block).

If you get this error, use a debugger (like Macsbug or TMON) when you attempt to
reproduce the error, to check the consistency of the heap up to the point where the error
occurs. You may need to do this repeatedly until you isolate the operation that is
corrupting the heap.

Note that although the heap may become corrupted during a system call, this doesn't
mean you've found a bug in the ROM; your code could be passing incorrect or invalid
parameters to this or a previous system call, or could have corrupted a data structure
used by a system call. More debugging is usually in order in this case; tools like
Discipline (included in TMON; also available from users' groups and electronic services)
can help detect invalid parameters in system calls. Also, there is a Macsbug command,
AH, that can check the consistency of the heap on every system call. See the
documentation that came with your debugger to see what special features it offers.

A note about "SysErr.a"

Technical Support is often asked for an up-to-date list of error codes. In general, this is
provided in "SysErr.a", the file of error numbers shipped with the most current version of
MPW. Admittedly, the documentation value of "SysErr.a" is sometimes low (as in the
case of neg2CBFreeErr) , but it may give you a clue as to what the error might mean.

Technical Note #151

Iii *'.':7"1

page 1 of 1 System Error 33, "zcbFree has gone negative"

•
Macintosh
Technical Notes

Developer Technical Support

#67: How to Bless a Folder to Be the System Folder
Rewritten by: Colleen K. Delgadillo
Updated by: Jim Friedlander
Written by: Jim Friedlander

May 1992
March 1988

January 1986

•

•

This Technical Note describes how to determine which folder on an HFS volume is the blessed
folder, that is, the folder that contains both the System file and the Finder.

Changes since January 1986: The information about how to find the "Blessed Folder" has
been deleted from this technical note. The FindFolder function can now be used to find the
"Blessed Folder" and is documented in Inside Macintosh Volume VI, pages 9-42 to 9-44. This
note now includes information about how to bless a folder to the new system folder.

Note: The following information may be affected by future changes to system software. If you
choose to use this information, you must do so at your own risk.

The way to bless a folder is by taking the longword which is the directory ID of the blessed folder
and putting it into the Master Directory Block (MDB). This can be accomplished by using the HFS
call PBS e t V I n f o. You should not attempt to change this block directly. First call
PBHGetVInfo and set ioVFnderInfo[l] to the directory ID of the the new folder to be
blessed. Then call PBSetVInfo to save this information. Once you have done this, you will
find that the Finder takes a little while to realize that you have blessed the folder. Therefore, the
icon will take a little while to change. Exactly how long you will have to wait to see the new icon is
unknown.

Forcing the icon to change sooner is not a difficult task. The best way for you to see the icon
change more quickly is to change the modification date of the directory into which you are copying
the new System Folder. Doing this will cause the Finder to reexamine the window and its contents.
When the Finder notices that the volume's modification date has changed, it begins scanning for
changes in all the open folders. This scanning process takes place about once every 10 seconds.
You can change the last modification date for that volume and the System Folder's directory ill for
that volume using PBSetVInfo. Changing the file's FndrInfo or renaming the file does not
change the modification date. When you call PBSetVInfo you will need to put the System
Folder's directory ID in the longword at ioVfndrInfo. This longword will be the first four
bytes of this directory ID. (As usual, whenever you make a change to a field of a structure you
need to first do a P BGet Cat In f 0, change what you are going to change, and then do
PBSetCatInfo. This ensures that you change only the portion of the volume that you intended,
in this case a longword, and not the whole structure.)

Further Reference:
• Master Directory Block: Inside Macintosh Volume IV on page 166.

#67: Finding the "Blessed Folder" 1 of 1

•

•

•

•
Macintosh
Technical Notes • ®

Developer Technical Support

#68: Searching Volumes-Solutions and Problems
Revised by:
Written by:

Jim Luther
Jim Friedlander and Rick Blair

January 1992
December 1985 - October 1988

•

•

This Technical Note discusses the PBCatSearch function and tells why it should be used. It also
provides simple algorithms for searching both MFS and HFS volumes and discusses the problems
with indexed search routines.
Changes since October 1988: Includes information on PBCa t Search and notes the
problems with indexed search routines. Source code examples have been added and revised.
Thanks to John Norstad at Northwestern University for pointing out some of the shortcomings of
the indexed search routines. Thanks to the System 7 engineering team for adding PBCatSearch.

It may be necessary to search the volume hierarchy for files or directories with specific
characteristics. Generally speaking, your application should avoid searching entire volumes
because searching can be a very time-consuming process on a large volume. Your application
should rely instead on files being in specific directories (the same directory as the application, or in
one of the system-related folders that can be found with F indFolder) or on having the user find
files with Standard File.

Searching MFS Volumes

Under MFS, indexed calls to PBGetFlnfo return information about all files on a given volume.
Under HFS, the same technique returns information only about files in the current directory.
Here's a short code snippet showing how to use PBGetFlnfo to list all files on an MFS volume:

PROCEDURE EnumMFS (theVRefNum: Integer);
{ search the MFS volume specified by theVRefNum)

VAR
pb: ParamBlockRec;
itemName: Str255;
index: Integer;
err: OSErr;

BEGIN
WITH pb DO

BEGIN
ioNamePtr := @itemName;
ioVRefNum := theVRefNum;
ioFVersNum := 0;

END;
index := 1;
REPEAT

pb.ioFDirIndex := index;
err := PBGetFInfoSync(@pb);
IF err = noErr THEN

BEGIN
{ do something useful with the file information in pb)

#68: Searching Volumes-Solutions and Problems lof8

Macintosh Technical Notes

END;
index := index + 1;

UNTIL err <> noErr;
END;

As noted in Macintosh Technical Note #66, a directory signature of $D2D7 means a volume is an
MFS volume, while a directory signature of $4244 means the volume is an HFS volume.

Searching HFS Volumes

Fast, Reliable Searches Using PBCatSearch

The fastest and most reliable way to search an HFS volume's catalog is with the File Manager's
PBCatSearch function. PBCatSearch returns a list of FSSpec records to files or directories
that match the search criteria specified by your application. However, PBCatSearch is not
available on all volumes or under all versions of the File Manager. Volumes that support
PBCatSearch can be identified using the PBHGetVolParms function. (See the following
code.) Versions of the File Manager that support PBCatSearch can be identified with the
gestaltFSAttr Gestalt selector and gestaltFullExtFSDispatching bit as shown in
the following code:

FUNCTION HasCatSearch (vRefNum: Integer): Boolean;
(See if volume specified by vRefNum supports PBCatSearch

VAR
pb: HParamBlockRec;
infoBuffer: GetVolParmsInfoBuffer;
attrib: LongInt;

BEGIN
HasCatSearch := FALSE; (default to no PBCatSearch support }
IF GestaltAvailable THEN (See Inside Macintosh Volume VI, Chapter 3 }

IF Gestalt (gestaltFSAttr, attrib) = noErr THEN
IF BTst(attrib, gestaltFullExtFSDispatching) THEN

BEGIN (this version of the File Manager can call PBCatSearch
WITH pb DO

BEGIN
ioNamePtr := NIL;
ioVRefNum := vRefNum;
ioBuffer := @infoBuffer;
ioReqCount := sizeof(infoBuffer);

END;
IF PBHGetVolParmsSync(@pb) = noErr THEN

IF BTST(infoBuffer.vMAttrib, bHasCatSearch) THEN
HasCatSearch := TRUE; { volume supports PBCatSearch

END;
END;

Note: File servers that support the AppleTalk Filing Protocol (AFP) version 2.1 support
PBCatSearch. That includes volumes and directories shared by System 7 File
Sharing and by the AppleShare 3.0 file server. Although AFP version 2.1 supports
PBCatSearch, the fsSBNegate bit is not supported in the ioSearchBits
field. Using PBCatSearch to ask the file server to perform the search is usually
faster than using the recursive indexed search described in the next section.

PBCatSearch should be used if it is available because it is usually much faster than a recursive
search. For example, the search time for finding all files and directories on a recent Developer CD

•

•

•
2 of8 #68: Searching Volumes-Solutions and Problems

was around 18 seconds with PBCatSearch. It took 6 minutes and 36 seconds with a recursive
indexed search. How long do you want the users of your application to wait?

PBCatSearch can be used to collect a list of FSSpec records to all items on a volume by setting
ioSearchBits in the parameter block to O.•
Developer Technical SupPOrt January 1992

•

•

Recursive Indexed Searches Using PBGetCatlnfo

When PBCatSearch is not available, an application must resort to a recursive indexed search.
There are a couple of potential problems with a recursive indexed search; a recursive indexed
search can use up a lot of stack space and the volume directory structure can change in the multi
user/multiprocess Macintosh environment. The example code in this note addresses the stack space
problem, but for reasons explained later, does not address problems caused by multiple users or
processes changing the volume directory structure during a recursive search.

The default stack space on the Macintosh can be as small as 8K; therefore, the recursive indexed
search example shown in this Note encloses the actual recursive routine in a shell that can hold
most of the variables needed, which dramatically reduces the size of the stack frame. This example
uses only 26 bytes of stack space each time the routine recurses. That is, it could search 100 levels
deep (pretty unlikely) and use only 2600 bytes of stack space.

Please notice that when the routine comes back from recursing, it has to clear the nonlocal variable
err to noErr, since the reason the routine came back from recursing is that PBGetCatlnfo
returned an error:

EnumerateCatalog(myCPB.ioDrDirID);
err := noErr; {clear error return on way back)

Please notice also that you must set myCPB. ioDrDirld each time you call PBGetCatlnfo,
because if PBGetCatlnfo gets information about a file, it returns iOF1Num (the file number) in
the same location that ioDrDirID previously occupied.

Be sure to check bit 4, the fifth least significant bit, when you check the file attributes bit to see if
you've got a file or a folder. The following routine uses MPW Pascal's BTST function to check
that bit. If you use the Toolbox bit manipulation routines (e.g., BitTst), remember to order the
bits in reverse order from standard 68000 notation.

Here is the routine in MPW Pascal:

PROCEDURE EnumerShell (vRefNumToSearch: Integer; the vRefNum to search)
dirIDToSearch: LongInt); the dirID to search)

VAR
itemName: Str63;
myCPB: CInfoPBRec;
err: OSErr;

{-----)

PROCEDURE EnumerateCatalog (dirIDToSearch: LongInt);
CONST

ioDirFlgBit = 4;
VAR

index: Integer;
BEGIN { EnumerateCatalog

index := 1;
REPEAT

WITH myCBP DO

#68: Searching Volumes-Solutions and Problems 30f8

Macintosh Technical Notes

BEGIN
ioFDirIndex := index;
ioDrDirID := dirIDToSearch; { we need to do this every)

{ time through)
filler2 := 0; Clear the ioACUser byte if search is

interested in it. Nonserver volumes)
won't clear it for you and the value
returned is meaningless.)

END;
err := PBGetCatInfo(@myCPB, FALSE);
IF err = noErr THEN

IF BTST(myCPB.ioF1Attrib, ioDirFlgBit) THEN
BEGIN { we have a directory)

do something useful with the directory information)
in myCPB)

EnumerateCatalog(myCPB.ioDrDirID);
err .= noErr; {clear error return on way back)

END
ELSE

BEGIN we have a file)

do something useful with the file information)
in myCPB)

END;
index := index + 1;

UNTIL (err <> noErr);
END; {EnumerateCatalog)

{-----)

BEGIN { EnumerShell
WITH myCPB DO

BEGIN
ioNamePtr '= @itemName;
ioVRefNum .= vRefNumToSearch;

END;
EnumerateCatalog(dirIDToSearch);

END; { EnumerShell)

InMPWC:

•

•
/* the following variables are
HFileInfo gMyCPB;
Str63 gItemName;
OSErr gErr;

globals */
/* for the PBGetCatInfo call */
/* place to hold file name */
/* the usual */

/*---*/
void EnumerateCatalog (long int dirIDToSearch)
{ /* EnumerateCatalog */

short int
do

index=l;

*/
*/
*/

gMyCPB.ioFDirIndex= index;
gMYCPB.ioDirID= dirIDToSearch; /* we need to do this every time

/* through, since GetCatInfo
/* returns iOF1Num in this field */

gMyCPB.filler2= 0; /* Clear the ioACUser byte if search is
/* interested in it. Nonserver volumes won't
/* clear it for you and the value returned is
/* meaningless. */

*/
*/

40f8 #68: Searching Volumes-Solutionsand Problems

•
Developer Technical Support

gErr= PBGetCatlnfo(&gMyCPB,false);
if (gErr == noErr)
{

if «gMyCPB.ioF1Attrib & ioDirMask) != 0)
/* we have a directory */
/* do something useful with the directory information */
/* in gMyCPB */

EnumerateCatalog(gMyCPB.ioDirID); /* recurse */
gErr = noErr; /* clear error return on way back */

)

else
/* we have a file */

/* do something useful with the file information */
/* in gMyCPB */

++index;
) while (gErr == noErr);
/* EnumerateCatalog */

/*---*/
EnumerShell(short int vRefNumToSearch, long int dirIDToSearch)

January 1992

•

•

/* EnumerShell */
gMyCPB.ioNamePtr = gItemName;
gMyCPB.ioVRefNum = vRefNumToSearch;
EnumerateCatalog(dirIDToSearch};
/* EnumerShell */

Please make sure that you are running under HFS before you use this routine (see Technical Note
#66). You can search the entire volume by specifying a starting directory ill of fsRtDirID, the
root directory constant. You can do partial searches of a volume by specifying a starting directory
ill other than fsRtDirID.

Searching in a Multi-user/Multiprocess Environment

Volumes can be shared by multiple users accessing a file server or multiple processes running on a
single Macintosh. Each user or process with access to such a shared volume may be able to make
changes to the volume's catalog at any time. Changes in a volume's catalog in the middle of a
search can cause two problems:

• Files and directories renamed or moved by another user or process can be entirely missed or
found multiple times by a search routine.

• A search routine can easily lose track of its position within the hierarchical directory structure
when files or directories are created, deleted, or renamed by another user or process.

A volume searched with a single call to PBCatSearch ensures that all parts of the volume are
searched without another user or process changing the volume's catalog. However, a single call to
PBCat Search may not be possible or practical because of the number of matches you expect, or
because you may want to set a time limit on the search so that the user can cancel a long search.
PBCatSearch returns a catChangedErr (-1304) and no matches when the catalog of a
volume is changed by another user or process in a way that might affect the current search. The
search can be continued with the CatPositionRec returned with the catChangedErr error,
but at the risk of missing catalog entries or fmding duplicate catalog entries.

#68: Searching Volumes-Solutions and Problems 50f8

Macintosh Technical Notes

Things aren't so nice for search routines based on indexed File Manager calls. The File Manager
won't notify you when a volume's catalog has changed. In fact, there are several ways the catalog
can change that are very difficult to detect and correct for. Since methods that attempt to
resynchronize an indexed search and find all catalog entries that might be missed or found multiple
times when the catalog changes do not work for all cases, those methods are not discussed in this
Technical Note. The following paragraphs describe why some changes are very difficult to detect.

There are three changes you can make to the contents of a directory that change the list of files and
directories returned by an indexed search: creating, deleting, and renaming. Directories of an HFS
volume are always sorted alphabetically, so when a file or subdirectory is deleted from a directory,
any directory entries after it bubbles up to fill the vacated entry position; when a file or subdirectory
is created, it is inserted into the list and all entries after it bubbles down one position. When a file
or subdirectory is renamed, it is removed from its current position and moved into its alphabetically
correct position. The first two changes, creating and deleting, can be detected only at the parent
directory level. That's because a creation or deletion changes only the modification date of the
parent directory but not the modification date of any of the parent directory's ancestors. Renaming
a file or subdirectory does not change the modification date of the file or subdirectory renamed or
the modification date its parent directory, but it does change the order of files and subdirectories
found by an indexed search.

With this in mind, here are a couple of examples that are very difficult to detect

•

The first example shows a file, Dashboard, moved (by another user or process) with PBCatMove
from the CDevs subdirectory to the Control Panels subdirectory. (See figures 1 and 2.) At the time
of the move, the search routine has just finished recursively looking through the Development
directory and is ready to recursively search the Games directory. After the move, two directories,
CDevs and Control Panels, have new modification dates but no change is seen at the root directory
of My Disk. There is nothing to immediately tell the search routine something has changed (except •
for the volume modification date which mayor may not mean the directory structure has changed),
so the search will see Dashboard twice. If the move were in the opposite direction, from Control
Panels to CDevs, Dashboard would be missed by the search routine.

~oem

CDevs

Objectto~ n
move ~ __

Dashboard

Dropper Kibitz r... Control Panels

Figure 1 Before Dashboard Is Moved With PBCatMove

•
60f8 #68: Searching Volumes-Solutions and Problems

January 1992

SY3~r

Control Panels

n ~ ObjeetthatU moved

Dashboard

Modification
date same

f
[0

~~~~r-- C;De2Jem dameb
CDevs Dropper Kibitz

~
Modification

date changed

Developer Technical Support

•

•
Figure 2 After Dashboard Is Moved With PBCatMove

The second example (see Figures 3 and 4) shows a directory, Toys, renamed (by another user or
process) with PBHRename to Games. At the time of the move, the search routine has seen the files
Aardvark and Letter and is looking at the third object in the directory, the file Resume. After the
move, the index pointer is still pointing at the third object but now the third object is the file Letter,
a file that has already been seen by the search. This change cannot be detected by looking at the
parent directory's modification date because PBHRename does not change any modification dates.
However, this change can be detected by checking to see if the index pointer still points to the same
file or directory. The search routine could re-index through the directory to find the Resume file
again and start searching from there, but what about the directory that was renamed? The search
routine either must miss it (and its contents) or it must repeat the search of the entire directory to
ensure nothing is missed.

Aardvark Letter Resume Toys

4

•
Index Object to rename

Figure 3 Before Toys Is Renamed With PBHRename

#68: SearchingVolumes-Solutions and Problems 70f8



Macintosh Technical Notes

•
Aardvark Games Letter Resume

4 4
Renamed object Index

Figure 4 After Toys Is Renamed to Games With PBHRename

As these examples show, a change during a search of a hierarchical directory structure with
indexed File Manager calls involves the risk of missing catalog entries or finding duplicate catalog
entries. If your application depends on seeing all items on a volume at least once and only once,
you should make the users of your application aware of the problems associated with indexed
searches and suggest to them ways to make sure the volume's catalog is not changed during the
indexed search. Here's a good suggestion you could make to the user: do not use other programs
during the search. Other programs may create, delete, or rename files during the search.

Conclusion

You should always use PBCatSearch to search a volume if it is available. If PBCatSearch
isn't available and you must use an indexed search, be aware that it is difficult to ensure that you
do not miss some catalog entries or see some catalog entries multiple times during your search. •

Further Reference:
• Inside Macintosh, Volume IV, The File Manager
• Inside Macintosh, Volume V, File Manager Extensions in a Shared Environment
• Inside Macintosh, Volume VI, The Finder Interface
• Inside Macintosh, Volume VI, The File Manager
• Technical Note #66, Determining Which File System Is Active
• Technical Note #305, PBShare, PBUnshare, and PBGetUGEntry

•
80f8 #68: Searching Volumes-Solutions and Problems



•
Macintosh Technical Notes

#69: Setting ioFDirlndex in PBGetCatlnfo Calls

See also: The File Manager
Technical Note #24-Available Volumes and Files
Technical Note #67-Finding the Blessed Folder

Written by:
Updated:

Jim Friedlander February 15, 1986
March 1, 1988

•

This technical note describes how to set ioFDirIndex for PBGetCat Info.

The File Manager chapter of Inside Macintosh volume IV is not very specific in
describing how to use ioFDirIndex when calling PBGetCat Info. It correctly says that
ioFDirIndex should be positive if you are making indexed calls to PBGetCat Info
(analogous to making indexed calls to PBGetVInfo as described in Technical Note
#24). However, the statement "If ioFDirIndex is negative or 0, the File Manager returns
information about the file having the name in ioNamePtr. .. " is not specific enough.

If ioFDirIndex is 0, you will get information about files or directories, depending on
what is specified by ioNamePtr".

If ioFDirIndex is -1, you will get information about directories only. The name in
ioNamePtr" is ignored. For example, given the following tree structure (with sample
DirIDs for the directories):

OJ Root

•

lJ1]Sys

ffi
D D D

System Finder Filel

Technical Note #69 page 1 of 4

lJ1)MyFiles2-,
D em SubFiles

File2 I
D

File3

Setting ioFDirlndex in PBGetCatlnfo Calls



Calling PBGetCatInfo

We will now make calls to PBGetCatInfo of the form:

err:= PBGetCatInfo(@myCInfoPBRec,FALSE);

Note: We will assume that we just have a WDRefnum and a file name-the information
that SFGetFile returns.

Setting up the parameter block

We will use the following fields in the parameter block. Before the call, ioCompletion
will always be set to NIL, Lo'NarneP t r- will always point at a str255, ioVRefNum will
always contain a WDRefNum that references the directory 'SubFiles', and offset 48
(dirID/flNum) will always contain a zero:

•

Offset in
parameter block

12
18

22
28
48
100

Variable name(s)
ioCompletion
ioNamePtr

ioVRefNum
ioFDirIndex
ioDi rID/ioFLNum/ioD rD i rID
ioDrParID/ioFlParID •

Sample calls to PBGetCat Info

The first example will call PBGetCat Info for the file 'File3'-we will get information
about the file (ioFDirIndex = 0):

Before the call
ioNamePtr": 'File3'
ioFDirIndex: 0

After the call
ioNamePtr": 'File3'
Offset 48(ioFLNum): a file number
Offset 100(parID): 57

Now we will get information about the directory that is specified by the iovRe fNum
(ioFDirIndex = -1). Notice that ioNamePtr" is ignored:

Before the call
ioNamePt r ":
ioFDirIndex:

ignored
-1

After the call
ioNamePtr" :
Offset 48(dirID):
Offset 1OO(parID):

'SubFiles'
57
37

•
Technical Note #69 page 2 of 4 Setting ioFDirlndex in PBGetCatinfo Calls



•
Notice that, since ioNamePtr" is ignored, Offset 48 contains the dirID of the directory
specified by the iovRefNum that we passed in and that Offset 100 contains the parent ID
of that directory.
Notice that if we try to get information about the directory SubFiles by calling
PBGetCat Info with ioFDirIndex set to 0, we will get an error -43 (File not found
error) back because there is neither a file nor a directory with the name 'SubFiles' in the
directory that ioVRefNum refers to.

If you specify a full pathname in ioNamePt r", then the call returns information about
that path, whether it is a directory or a file. The ioVRefNum is ignored:

Before the call
ioNamePtr" :
ioFDirIndex:
ioVRefNum:

'RootSys'
o
refers to 'SubFiles'

After the call
ioNamePtr": 'RootSys'
Offset 48 (dirID): 17
Offset 100 (parID): 2

Or, if the full pathname specifies a file, the iovRefNum is overridden:

Before the call
ioNamePtr" :
ioFDirIndex:
ioVRefNum:

'RootSys:Finder'
o
refers to 'SubFiles'

After the call
ioNamePtr" :
Offset 48 (flNum):
Offset 100 (parID):

'Root:Sys:Finder'
fileNumber
17

Or, given an ioVRefNum that refers to MyFiles2 and a partial pathname in ioNamePtr",
we'll get information about the directory 'SubFiles':

• Before the call
ioNamePtr" :
ioFDirIndex:
ioVRefNum:

'SubFiles'
o
refers to 'MyFiles2'

After the call
ioNamePtr": 'SubFiles'
Offset 48 (dirID): 57
Offset 100 (parID): 37

PBGetCatinfo and The Poor Man's Search Path (PMSP)

If no ioDirID is specified (ioDirID is set to zero), calls to PBGetCatInfo will return
information about a file in the specified directory, but, if no such file is found, will
continue searching down the Poor Man's Search Path. Note: the PMSP is not used if
ioFDirIndex is non-zero ( either -1 or >0). The default PMSP includes the directory
specified by ioVRefNum (or, if ioVRefNum is 0, the default directory) and the directory
that contains the System File and the Finder-the blessed folder. So for example:

You must be careful when using PBGetCat Info in this way to make sure that the file
you're getting information about is in the directory that you think it is, and not in a
directory further down the Poor Man's Search Path. Of course, this does not present a
problem if you are using the fName and the vRe fNum that SFGetF i le returns.•

Before the call
ioNamePtr" :
ioFDirIndex:

Technical Note #69

'System'
o

page 3 of4

After the call
ioNamePtr": 'System'
Offset 48 (ioFLNum): a file number
Offset 100 (parID): 17

Setting ioFDirlndex in PBGetCatlnfo Calls



If you want to specifically look at a file in the blessed folder, please use the technique
described in technical note #67 to get the dirID of the 'blessed folder' and then use that
dirID as input in the ioDirID field of the parameter block (offset 48).

Summary (OirIO = 0 in all the following):
If ioFDirlndex is set to 0:

1) Information will be returned about files.
2) Information will be returned about directories as follows:

A) If a partial pathname is specified by ioNamePtr" then the volume
and directory will be taken from ioVRefNum.

B) If a full pathname is specified by ioNamePtr". In this case,
ioVRefNum is ignored.

If ioFDirlndex is set to -1 :
1) Only information about directories will be returned.
2) The name pointed to by Lo'NamePti r is ignored.
3) If DirID and ioVRefNum are 0, you'll get information about the default

directory.

•

•

•
Technical Note #69 page 4 of4 Setting ioFDirlndex in PBGetCatinfo Calls



Macintosh Technical Notes

• #70: Forcing Disks to be Either 400K or 800K

See also:

Written by:
Updated:

The Disk Driver
The Disk Initialization Package

Rick Blair February 13, 1986
March 1, 1988

•

This document explains how to initialize a disk as either single- or double
sided. It only applies to 800K drives, of course.

You can call the disk driver to initialize a disk and determine programmatically whether it
should be initialized as single- (MFS) or double- (HFS) sided. All you have to do is call
the. Sony driver directly to do the formatting then the Disk Initialization Package to write
the directory information.

Note: This is not the way you should normally format disks within an application. If the
user puts in an unformatted disk, you should let her or him decide whether it becomes
single- or double-sided via the Disk Initialization dialog. This automatically happens
when you call DIBadMount or the user inserts a disk while in Standard File. The intent of
this technical note is to provide a means for specific applications to produce, say, 400K
disks. An example might be a production disk copying program.

From MPW Pascal:

VAR
error: OSErr;
IPtr: AINTEGER;
paramBlock: ParamBlockRec; {needs OSIntf}

{do the call}

{.Sony driver}
{drive number}
{format control code}
{pretend it's an INTEGER}
{number of sides}

•

WITH paramBlock DO BEGIN
ioRefNum := -5;
ioVRefNum := 1;
csCode := 6;
IPtr:=@csParam;
IPtrA:=l;

END;
error:=PBControl(@paramBlock, FALSE);
IF error=ControlErr THEN
{you are under MFS, which doesn't support control
{would always get formatted single-sided anyway.}
{other errors are possible: ioErr, etc.}
END;

code 6, but it}

Technical Note #70 page 1 of 2 Forcing Disks to be Either 400K or aOOK



From MPWC:

OSErr
CntrlParam

error;
paramBlock; •paramBlock.ioCRefNum = -5;

paramBlock.ioVRefNum = 1;
paramBlock.csCode = 6;
paramBlock.csParam[O] =1;

/*.Sony driver*/
/*drive number*/
/*format control code*/
/*for single sided,2 for double-sided*/

error=PBControl(&paramBlock, false);/*do the call*/
if (error==controlErr) ;
/*you are under MFS, which doesn't support control code 6, but it*/
/*would always get formatted single-sided anyway.*/
/*other errors are possible: ioErr, etc.*/

You then call DIZero to write a standard (MFS or HFS) directory. It will produce MFS if
you formatted it single-sided, and HFS if you formatted double-sided.

•

•
Technical Note#70 page 2 of2 Forcing Disks to be Either 400K or800K



•
Macintosh Technical Notes

#71: Finding Drivers in the Unit Table

See also:

Written by:
Updated:

The Device Manager

Rick Blair February 4, 1986
March 1, 1988

•

This note will explain how code can be written to determine the reference
number of a previously installed driver when only the name is known.
Changes since 2/86: Since the driver can be purged and the DCE still be
allocated, the code now tests for dCtlDriver being NIL as well.

You should already be familiar with The Device Manager chapter of Inside Macintosh
before reading this technical note.

The Pascal code at the end of this note demonstrates how to obtain the reference
number of a driver that has been installed in the Unit Table. The reference number may
then be used in subsequent calls to the Device Manager such as Open, Control and
Prime.

One thing to note is that the dRAMBased bit really only tells you whether dCtlDriver is
a pointer or a handle, not necessarily whether the driver is in ROM or RAM. SCSI
drivers, for instance, are in RAM but not relocatable; their DeE entries contain pointers
to them.

From MPW Pascal:

PROCEDURE GetDrvrRefNum(driverName: Str255; VAR drvrRefNum: INTEGER);

•

TYPE
Wordptr

CaNST
UTableBase
UnitNtryCnt

dRAMBased
drvrName

VAR
negCount
DCEH
driveptr
s

"INTEGER;

$l1C;
$lD2;

6;
$12;

INTEGER;
DCtlHandle;
Ptr;
Str255;

{low memory globals}

{bit in dCtlFlags that indicates ROM/RAM}
{length byte and name of driver [string]}

Technical Note #71 page 1 of3 Finding Drivers in the Unit Table



BEGIN
UprString(driverName, FALSE); {force same case for compare}

negCount := - WordPtr(UnitNtryCnt)~; {get -(table size)}

{Check to see that driver is installed, obtain refNum.}
{Assumes that an Open was done previously -- probably by an INIT.}
{Driver doesn't have to be open now, though.}

drvrRefNum := - 12 + 1; {we'll start with driver refnum -12,
right after .ATP entry}

{Look through unit table until we find the driver or reach the end.}

REPEAT
drvrRefNum := drvrRefNum - 1; {bump to next refnum}
DCEH := GetDCtlEntry(drvrRefNum); {get handle to DCE}

•

s := , r ,, {no driver, no name}

IF DCEH <> NIL THEN
WITH DCEH~~ DO BEGIN {this is safe -- no chance of heap moving

before dCtlFlags/dCtlDriver references}
IF (dCtlDriver <> NIL) THEN BEGIN

IF BTST(dCtlFlags, dRAMBased) THEN
driveptr .= Handle(dCtlDriver)~ {zee dereference}

ELSE
driveptr := Ptr(dCtlDriver);

IF driveptr <> NIL THEN BEGIN
s := StringPtr(ORD4(drivePtr) + drvrName)~;

UprString(s,FALSE); {force same case for compare}
END;

END; {IF}
END; {WITH}

UNTIL (s = driverName) OR (drvrRefNum = negCount);

{Loop until we find it or we've just looked at the last slot.}

IF s <> driverName THEN drvrRefNum := 0; {can't find driver}
END;

From MPWC:

•

short
char

GetDrvrRefNum(driverName)
*driverName[256];

/* GetDrvrRefNum */

fdefine UnitNtryCnt Ox1d2

/*bit in
fdefine
/*length
fdefine

Technical Note #71

dCtlFlags that indicates ROM/RAM*/
dRAMBased 6

byte and name of driver [string]*/
drvrName Ox12

page 2 of3 Finding Drivers in the Unit Table

•



•
short
DCtlHandle
char

negCount

negCount, dRef;
DCEH;
*drivePtr,*s;

-*(short *) (UnitNtryCnt); /*get -(table size)*/

•

•

/*Check to see that driver is installed, obtain refNum.*/
/*Assumes that an Open was done previously -- probably by an INIT.*/
/*Driver doesn't have to be open now, though.*/

dRef = -12 + 1; /*we'll start with driver refnum == -12,
right after .ATP entry*/

/*Look through unit table until we find the driver or reach the
end.*/

do
{

dRef -= 1; /*bump to next refnum*/
DCEH = GetDCtlEntry(dRef); /*get handle to DCE*/

S = ""i

if «DCEH != nil) && ( (**DCEH) .dCtlDriver != nil)
{

if «(**DCEH) .dCtlFlags » dRAMBased) & 1)
/* test dRamBased bit */

driveptr = * (Handle) (**DCEH) .dCtlDriver;
/*zee dereference*/

else
drivePtr = (**DCEH) .dCtlDriver;

if (drivePtr != nil)
s = drivePtr + drvrName;

}

} while (EqualString(s,driverName,O,O) && (dRef != negCount));
/*Loop until we find it or we've just looked at the last slot.*/

if (EqualString(s,driverName,O,O))
return dRef;

else
return 0; /*can't find driver*/

}/* GetDrvrRefNum */

That's all there is to locating a driver and picking up the reference number.

Technical Note #71 page 3 013 Finding Drivers in the Unit Table



•

•

•



•
Macintosh
Technical Notes

Developer Technical Support

#72: Optimizing For The LaserWriter-Techniques
Revised by:
Written by:

Pete "Luke" Alexander
Ginger Jernigan

October 1990
February 1986

•

•

This Technical Note discusses techniques for optimizing code for printing on the LaserWriter.
Changes since March 1988: Updated the "Printable Paper Area" and "Memory
Considerations" sections as well as the printer IDs, moved the error messages from the end of the
Note to Technical Note #161, A Printing Loop That Cares... , and removed the "Spool-A
Page/Print-A-Page" section because Technical Note #125, Effect of Spool-A-Page/Print-A-Page on
Shared Printers, already thoroughly covers this topic.

Introduction

Although the Printing Manager was originally designed to allow application code to be printer
independent, there are some things about the LaserWriter that, in some cases, have to be addressed
in a printer dependent way. This Note describes what the LaserWriter can and cannot do, memory
considerations, speed considerations, as well as other things you need to watch out for if you want
to make your printing more efficient on the LaserWriter.

How To Determine The Currently Selected Printer

With the addition of new picture comments and the PrGeneral procedure, an application should
never need to know the type of device to which it is connected. However, some developers feel
their application should be able to take advantage of all of the features provided by a particular
device, not just those provided by the Printing Manager, and in doing so, these developers produce
device-dependent applications, which can produce unpredictable results third-party and new Apple
printing devices. For this reason, Apple strongly recommends that you use only the features
provided by the Printing Manager, and do not try to use unsupported device features.

Even though there is no supported method for determining a device's type, there is one method
described in the original InsideMacintosh that still works for ImageWriter and LaserWriter printer
drivers. This method is not supported, meaning that at some point in the future it will no longer
work. H you use this method in your application, it is up to you to weigh the value of the feature
against the compatibility risk. The following method works for all ImageWriter, ImageWriter II,
and LaserWriter (original, Plus, UNT, IINTX)drivers. Since all new devices released from Apple
and third-party developers have their own unique ID, it is up to you to decide what to do with an
ID that your application does not recognize.

H you are using the high-level Printing Manager interface, first call PrValidate to make sure
you have the correct print record. Look at the high byte of the wdev word in the TPrStl
subrecord of the print record. Note that if you have your own driver and want to have your own
number, please let DTS know, and DTS can register it.

In: Optimizing F<X' The La.serWriter-Techniques lofS



Macintosh TechnicalNotes

Following is the current list of printer IDs:

Printer
ImageWriter I, ImageWritern
LaserWriter, LaserWriter Plus,
LaserWriter lINT, LaserWriter IINTX, and
Personal LaserWriter NT
LaserWriter rrsc, Personal LaserWriter SC
ImageWriter LQ

wDev
1

3
4
5

•
If you are using the low-level Printing Manager interface, there is no dependable way of getting the
wDev information. You should not attempt to determine the device ID when using the low-level
Printing Manager interface.

Using QuickDraw With the LaserWriter

When you print to the LaserWriter, all of the QuickDraw calls you make are translated (via
QuickDraw bottlenecks) into PostScript~, which is in the LaserWriter ROM. Most of the
operations available in QuickDraw are available in PostScript, with a few exceptions. The
LaserWriter driver does not support the following:

• XOR and NotXOR transfer modes.
• The grafverb invert.
• SetOrigin calls within PrOpenPage and PrClosePage calls. Use

- OffsetRect instead. (This is fixed in version 3.0 and later of the driver.)
• Regions are ignored. You can simulate regions using polygons or bitmaps. Refer

to Technical Note #41, Drawing Into An Off-Screen Bitmap, for how to create off
screen bitmaps.

• Clip regions should be limited to rectangles.
• There is a small difference in character widths between screen fonts and printer

fonts. Only the end points of text strings are the same.

What You See Is Not Always What You Get

Unfortunately, what you see on the screen is not always what you get. If you are using standard
graphic objects, like rectangles, circles, etc., the object is the same size on the LaserWriter as it is
on the screen. There are, however, two types of objects where this is not the case: text and
bitmaps.

The earlier noted difference between the widths of characters on the screen and the widths of
characters on the printer is due to the difference in resolution. However, to maintain the integrity
of line breaks, the driver changes the word and character spacing to maintain the end points of the
lines as specified. What this all means is that you cannot count on the positions or the widths of
printed characters being exactly the same as they are on the screen. This is why in the original
MacDraw~, for example, if one carefully places text and a rectangle and prints it, the text
sometimes extends beyond the bounds of the rectangle on the printed page. If an application does
its own line layout (i.e., positions the words on the line itself), then it may want to disable the
LaserWriter's line layout routines. To disable these routines, use the LineLayoutOff picture
comment described in the LaserWriter Reference Manual and Technical Note #91, Optimizing for
the LaserWriter-PictuIe Comments.

•

•
20f5 #72: Optimizing For The LaserWriter-Techniques



Developet Technical Supp<!1 October 1990

•

•

•

The sole exception to this rule is if an application is running on 128K ROMs or later. The 128K
ROM Font Manager supports the specification of fractional pixel widths for screen fonts,
increasing the screen to printer accuracy. This fractional width feature is disabled by default. To
enable it, an application can use _SetFractEnable, aftercalling_InitFonts.

Applications can use picture comments to left-, right-, or center-justify text. Only the left, right, or
center end points are accurate. If the text is fully justified, both end points are accurate. Technical
Note #91, Optimizing for the LaserWriter-Picture Comments, discusses these picture comments.

Memory Considerations

To print to the LaserWriter, you need to make sure that you have enough memory available to load
the driver's code. The best way to do this is to have all the code you need for printing in a separate
segment and unload everything else. When you print to the LaserWriter you are only able to print
in Draft mode. You are not able to spool (as the ImageWriter does in the standard or high-quality
settings), and your print code, data, and the driver code have to be resident in memory.

In terms of memory requirements, there is not any magic number that always works with all printer
drivers (including third-party printer drivers) that are available for the Macintosh. To make sure
there is enough memory available during print time, you should make your printing code a separate
segment and swap out all unwanted code and data before you call_PrOpen.

Printable Paper Area

On the LaserWriter there is a 0.45-inch border that surrounds the printable area of the paper (this is
assuming an 8.5" x 11" paper). If you select the "Larger Print Area" option in the Page Setup
dialog box, the border changes to 0.25 of an inch. This printable area is different than the available
print area of the ImageWriter. An application cannot print a larger area because of the memory
PostScript needs to image a page. PostScript takes the amount of memory available in the printer
and centers it on the paper, and there is not enough RAM in the LaserWriter to image an entire
sheet of paper.

Page Sizes

Many developers have expressed a desire to support page sizes other than those provided by the
Apple printer drivers. Even though some devices can physically support other page sizes, there is
no way for an application to tell the driver to use this size. With the ImageWriter driver, it is
possible to modify certain fields in the print record and expand the printable area of the page.
However, each of the Apple drivers implements the page sizes in a different way. No one method
works for all drivers. Because of this difference, it is strongly recommended that applications do
not attempt to change the page sizes provided in the "Style" dialog box. If your application
currently supports page sizes other than those provided by the printer driver, you are taking a
serious compatibility risk with future Apple and third-party printer drivers.

##72: Optimizing ForThe LaserWriter-Techniques 30rs



Macintosh Technical Notes

Speed Considerations

Although the LaserWriter is relatively fast, there are some techniques an application can use to •
ensure its maximum performance.

• Try to avoid using the QuickDraw Erase calls (e.g., _ Era s eRe c t ,
EraseOval, etc.). It takes a lot of time to handle the erase function because

every bit (90,000 bits per square inch) has to be cleared. Erasing is unnecessary
because the paper does not need to beerased the way thescreen does.

• Printing patterns takes time, since the bitmap for the pattern has to be built. The
patterns black, white, and all the gray patterns have been optimized to use the
PostScript gray scales. If you use a different pattern it works, but it just takes
longer than usual. In addition, the patterns in driver version 3.0 are rotated; they
are not rotated in version 1.0.

• Try to avoid frequently changing fonts. PostScript has to build each character it
needs either by using the drawing commands for the built-in LaserWriter fonts or
by resizing bitmaps downloaded from screen fonts on the Macintosh. As each
character is built, it is cached (if there's room), so if that character is needed again
PostScript gets if from the cache. When the font changes, the characters have to be
built from scratch in the new font, which takes time. If the font is not in the
LaserWriter, it takes time to download it from the Macintosh. If the user has the
option of choosing fonts, you have no control over this variable; however, if you
control which fonts to use, keep this in mind

• Avoid using TextBox. It makes calls to EraseRect, which slows the
printer, for every line of text it draws. You might want to use a different method of
displaying text (e.g., _DraWString or _DrawText) or write your own version
of _TextBox. If an application is currently calling TextBox, changing to
another method of displaying text can improve speed on iiie order of five to one.

• Because of the way rectangle intersections are determined, if your clip region falls
outside of the rPage rectangle, you slow down the printer substantially. By
making sure your clip region is entirely within the rPage rectangle, you can get a
speed improvement of approximately four to one.

• Do not use spool-a-page/print-a-page as some applications do when printing on the
ImageWriter. It slows things down considerably because of all of the preparation
that has to bedone when a job is initiated. Refer to Technical Note #125, Effect of
Spool-A-PagelPrint-A-Page on Shared Printers, for more information.

• Using _DrawChar to place every character to print can take a lot of time. One
reason, of course, is because it has to go through the bottlenecks for every character
that is drawn. The other is that the printer driver does its best to do line layout,
making the character spacing just right. Ifyou are trying to position characters and
the driver is trying to position characters too, there is conflict, and printing takes
much longer than necessary. In version 3.0 of the driver, there are picture
comments that turn off the line layout optimization, alleviating some of the problem.
Refer to Technical Note #91, Optimizing for the LaserWriter-Picture Comments,
for more information.

•

•
40fS ##72: Optimizing ForThe LaserWriteJ'-Techniques



Clipping Within Text Strings

When clipping characters out of a string, make sure that the clipping rectangle or region is greater
than the bounding box of the text you want to clip. The reason is that ifyou clip part of a character
(e.g., a descender), the clipped character has to be rebuilt, which takes time. In addition, because
of the difference between screen fonts and printer fonts, chances are that you cannot accurately clip
the right characters unless you are running on the 128K ROMs and have fractional pixel widths
enabled.

•
Developer Technical Suppon October 1990

•

•

When to Validate the Print Record

To validate the print record, call PrValidate. You need validation to check to see if all of the
fields are accurate according to the current printer selected and the current version of the driver.
You should call PrValidate when you have allocated a new print record or whenever you need
to access information from the print record (i.e., when you get rPage). The routines
PrStlDialog and PrJobDialog call PrValidate when they are called, so you do not have
to worry about it ifyou use these calls.

Empty QuickDraw Objects

QuickDraw objects that are empty (i.e., they have no pixels in them) and are filled but not framed,
do not print on the ImageWriter and do not show up on the screen; however, on the LaserWriter
they arereal objects and do print.

Further Reference:
• InsideMacintosh, Volume I, QUickDraw
• InsideMacintosh, Volume IT, The Printing Manager
• LaserWriterReference Manual
• Technical Note #41, Drawing Into An Off-Screen Bitmap
• Technical Note #91, Optimizing for the LaserWriter-Pieture Comments
• Technical Note #125, Effect of Spool-A-PagelPrint-A-Page on Shared Printers
• Technical Note #161, A Printing Loop That Cares ...
• PostScript Language Reference, Adobe Systems, Incorporated
• PostScript Language Tutorial and Cookbook, Adobe Systems, Incorporated

MacDraw is a registered trademark of Oaris Corporation.
PostScript is a registered trademark of Adobe Systems, Incorporated.

#72: Optimizing Fc:r The LaserWritCl'-Techniques 50f5



•

•

•



Macintosh Technical Notes

• #73: Color Printing

See also: QuickDraw
The Printing Manager
PostScript Language Reference Manual,

Adobe Systems

Written by:
Modified by:
Updated:

Ginger Jernigan
Scott "ZZ" Zimmerman

February 3, 1986
January 1, 1988
March 1, 1988

•

•

This discusses color printing in a Macintosh application.

Whereas the original eight-color model of QuickDraw was sufficient for printing in color
on the ImageWriter II, the introduction of Color QuickDraw has created the need for more
sophisticated printing methods.

The first section describes using the eight~color QuickDraw model with the ImageWriter
II and ImageWriter LQ drivers. Since the current Print Manager does not support Color
GrafPorts, the eight-color model is the only method available for the ImageWriters.

The next section describes a technique that can be used for printing halftone images
using PostScript (when it is available). Also described is a device independent
technique for sending the PostScript data. This technique can be used on any
LaserWriter driver 3.0 or later. It will work with all LaserWriters except the the
LaserWriter IISC.

It is very likely that better color support will be added to the Print Manager in the future.
Until then, these are the best methods available.

Technical Note #73 page 1 of4 Color Printing



Part 1, ImageWriters

The ImageWriter drivers are capable of generating each of the eight standard colors
defined in QuickDraw by the following constants:

whiteColor
blackColor
redColor
greenColor
blueColor
cyanColor
magentaColor
yellowColor

To generate color all you need to do is set the foreground and background colors before
you begin drawing (initially they are set to blackColor foreground and whiteColor
background). To do this you call the QuickDraw routines ForeColor and BackColor as
described in Inside Macintosh. If you are using QuickDraw pictures, make sure you set
the foreground and background colors before you call CloseP icture so that they are
recorded in the picture. Setting the colors before calling DrawP icture doesn't work.

The drivers also recognize two of the transfer modes: srcCopy and srcOr. The effect of
the other transfer modes is not well defined and has not been tested. It may be best to
stay away from them.

Caveats

•

When printing a large area of more than one color you will encounter a problem with the •
ribbon. When you print a large area of one color, the printer's pins pick up the color from
the back of the ribbon. When another large area of color is printed, the pins deposit the
previous color onto the back of the ribbon. Eventually the first color will come through to
the front of the ribbon, contaminating the second color. You can get the same kind of
effect if you set, for example, a foreground color of yellow and a background color of
blue. The ribbon will pick up the blue as it tries to print yellow on top of it. This problem is
partially alleviated in the 2.3 version of the ImageWriter driver by using a different
printing technique.

The ribbon goes through the printer rather quickly when printing large areas. When the
ribbon comes through the second time the colors don't look too great.

•
Technical Note #73 page 2 of4 Color Printing



•

•

•

Part 2, LaserWriters

Using the PostScript 'image' Operator to Print Halftones

About 'image'

The PostScript image operator is used to send Bitmaps or Pixmaps to the LaserWriter.
The image operator can handle depths from 1 to 8 bits per pixel. Our current
LaserWriters can only image about twenty shades of gray, but the printed page will look
like there's more. Being that the image operator is still a PostScript operator, it expects
its data in the form of hexidecimal bytes. The bytes are represented by two ASCII
characters(0-9,A-F). The image operator takes these parameters:

width height depth matrix image-data

The first three are the width, height, and depth of the image, and the matrix is the
transformation matrix to be applied to the current matrix. See the PostScript Language
Reference Manual for more information. The image data is where the actual hex data
should go. Instead of inserting the data between the first parameters and the image
operator itself, it is better to use a small, PostScript procedure to read the data starting
from right after the image operator. For example:

640 480 8 [640 0 0 480 0 0]
{currentfile picstr readhexstring pop}
image
FF 00 FF 00 FF 00 FF 00 ...

In the above example, the width of the image is 640, the height is 480, and the depth is
8. The matrix (enclosed in brackets) is setup to draw the image starting at QuickDraw's
0,0 (top left of page), and with no scaling. The PostScript code (enclosed in braces) is
not executed. Instead, it is passed to the image operator, and the image operator will
call it repeatedly until it has enough data to draw the image. In this case, it will be
expecting 640*480 bytes. When the image operator calls the procedure, it does the
following:

1. Pushes the current file which in this case is the stream of data coming to the
LaserWriter over AppleTalk. This is the first parameter to readhexstring.

2. Next picstr is pushed. picstr is a string variable defined to hold one row of hex
data. The PostScript to create the picstr is:

/picstr 640 def

3. Now readhexstring is called to fill picstr with data from the current file. It begins
reading bytes which are the characters following the image operator.

4. Since readhexstring leaves both the string we want, and a boolean that we
don't want on the stack, we do one pop to kill of the boolean. Now the string is
left behind for the image operator to use.

Technical Note #73 page 3 of4 Color Printing



So using the above PostScript code you can easily print an image. Just fill in the width
height and depth, and send the hex data immediately following the PostScript code.

Setting Up for 'image'

Most of the users of this technique are going to want to print a Color QuickDraw PixMap.
Although the image command does a lot of the work for you, there are still a couple of
tricks that are recommended for performance.

Assume the Maximum Depth

Since the current version of the image operator has a maximum depth of 8 bits/pixel, it is
wise to convert the source image to the same depth before imaging. This can be done
very simply by using an offscreen GrafPort that is set to 8 bits/pixel, and then using
CopyBits to do the depth conversion for you. This will do a nice job of converting lower
resolution images to 8 bits/pixel.

Build a Color Table

•

An 8 bit deep image can only use 256 colors. Since the image that you are starting with
is probably color, and the image you get will be grayscale, you need to convert the
colors in the source color table into PostScript grayscale values. This is actually easy to
do using the Color Manager. First create a table that can hold 512 bytes. This is 2 bytes
for each color value from 0 to 255. Since PostScript wants the values in ASCII, you need
two characters for each pixel. Now loop through the colors in the color table. Call
Index2Coior to get the real RGB color for that index, and then call RGB2HSL to convert •
the RGB color into a luminance value. This value will be expressed as a SmallFract
which can then be scaled into a value from 0 to 255. This value should then be
converted to ASCII, and stored at the appropriate location in the table. When you are
done, you should be able to use a pixel value as an index into your table of PostScript
color values. For each pixel in the image, send two characters to the LaserWriter.

Sending the Data

Once you have set up the color table, all that left to do is to loop through all of the pixels,
and send their PostScript representation to the LaserWriter. There are a couple of ways
to do this. First is to use the low-level Print Manager interface and stream the PostScript
using the stdBuf PrCtlCal1. Although this seems like it would be the fastest way, the latest
version of the LaserWriter driver (5.0) converts all low-level calls to their high level
equivalent before executing them. Because of this, the low-level interface is no longer
faster than the high level. In an FKEY I have written, I use the high-level Print Manager
interface, and send the data via the PostScriptHandle PicComment. This way, I can
buffer a large amount of data, before actually sending it. Using this technique, I have
been able to image a Mac II screen in about 5 minutes on a LaserWriter Plus, and about
1.5 minutes on a LaserWriter II NTX.

•
Technical Note #73 page 4 of4 Color Printing



Macintosh Technical Notes

• #74: Don't Use the Resource Fork for Data

See also: The Resource Manager
Technical Note #62-Resource Header Application Bytes

Written by:
Updated:

Bryan Stearns March 13, 1986
March 1, 1988

Don't use the resource fork of a file for non-resource data. Parts of the system (including
the File Manager and the Finder) assume that if this fork exists, it will contain valid
Resource Manager information.

PBOpenRF was provided to allow copying of the resource fork of a file in its entirety,
without Resource Manager interpretation. Do not use it to open "another data fork."

The File Manager assumes that the first block of the resource fork of a file will be part of
the resource header, and puts information there to aid in scavenging. Note that this
means that if you copy a resource file (opened with PBOpenRF). the duplicate may not be
exactly like the original.

•

•
Technical Note #74 page 1 of 1 Don't Usethe Resource Forkfor Data



•

•

•



•
Macintosh
Technical Notes

Developer Technical Support

®

#75: Apple's Multidisk Installer

Revised by:
Written by:

Rich Kubota
scott douglass

January 1992
March 1986

•

•

This Technical Note documents Apple's Multidisk Installer, and it is in addition to separate
Installer documentation which provides the details of writing scripts.
Changes since September 1991: Revised information on the use of Installer version 3.1 to
version 3.2. Revised information on the use of ScriptCheck version 3.2.1 with Installer version
3.2. Added Common Questions and Answers relating to the use of the Installer.

Apple's Multidisk Installer is intended to make it easy for Macintosh users to add or update
software. It is a very useful tool for adding third-party software, and Apple recommends that you
use the Installer unless your software installation is simple. Apple also recommends that you use
version 3.2 of the Installer.

The Multidisk Installer has the following features, as of version 3.2:

• "Easy Install" mode where the Installer script writer can determine the appropriate
installation based upon examination of the target environment and provide the user
with "One-Button Installation"

• An optional "Custom Install" mode where power users can customize their
installation

• "Live" installation to the currently booted and active system; thus it is no longer
necessary to ship the Installer on a bootable disk with a System Folder

• Ability to install from an AppleShare server ("Network Install")
• Ability to install from multiple source disks
• Installation of software to folders other than the System Folder as well as creation

of new folders as necessary
• Runs under System 4.2 and later versions
• "User Function" support; this feature provides linkage to developer-defined code

segments during Easy Install, so script writers can customize the process of
determining what software to install and how to install it

• "Action Atom" support; this feature provides linkage to developer-defined code
segments that are called before or after the installation takes place; script writers can
use this feature to extend the capabilities of the Installer

• Audit Records; this feature provides the script writer with the ability to record
details about an installation so that future installations can be more intelligent

The I indm' (default map) resource of Installer 3.0.1 is no longer supported in Installer 3.1 and
later versions. This was used by script writers to implement Easy InstalL It is replaced by 'infr'
(framework) and I inrl' (rule) resources.

Note: If the user opens the Installer document rather than the Installer, the wrong Installer
may be launched (depending upon the contents of their mounted volumes). This is
only a problem between versions 3.1 and 3.0.x. If you are developing a 3.1 script,

#75: Apple's Multidisk Installer 10f4



Macintosh Technical Notes

you may want to add an 'indm' resource that puts up a warning dialog box. If you
are developing a 3.0.x script, you may want to add an 'infr' and 'inrl' resource
that puts up a reportSysError dialog box. This problem is resolved in Installer
3.2. With version 3.2, the file type and creator are both 'bjbc' as opposed to the
use of 'cfbj' with versions 3.0.1 and 3.1.

IInstaller version 3.2 is available as a complete reference suite which includes the following:

• Installer 3.2 Scripting Guide (dated December 1, 1991, on the cover)
• Installer ScriptCheck 3.2b7 User's Manual
• Installer 3.2 application
• ScriptCheck 3.2.1 (MPW Tool)
• InstallerTypes.r (MPW Rez interface me)
• ActionAtomIntf.a, .h,.p (Action Atom interface files for Assembler, C, and Pascal)

The reference suite for Multidisk Installer 3.2 is available on the latest Developer CD and on
AppleLink in the Developer Services Bulletin Board. The Multidisk Installer was also provided on
the System 7 Golden Master CD-ROM: however, that package included the b7 release of the MPW
ScriptCheck tool.

Multidisk Installer version 3.2 contains a few minor improvements that will make it easier to write
scripts that work on both System 6.0.x and 7.0. Installer 3.1 had minimal testing with System 7.0.
If you are expecting to install software onto machines running System 7.0, you should consider
upgrading. Script changes should be minimal.

Common Question and Answers
Q How can I check for a minimum system version?

A Use the checkF ileversion clause as part of the 'inrl' Rules Framework resource. The
format of the minimal-version parameter is shown in the InstallerTypes.r file as '*define
Version'. The most common difficulties are in remembering that BCD values are required
and in dealing with two-digit version numbers. Some samples follow.

Assuming that the target-filespec resource, 'infs', for the System file is 1000, use the
following clause to check for System version 6.0.5:

checkFileVersion{lOOO, 6, 5, release, O};

Assuming that the target-filespec resource, 'infs', for the Finder file is 1001, use the
following clause to check for Finder version 6.1.5:

checkFileVersion{lOOl, 6, OxlS, release, O};

Assuming that the target-filespec resource, 'inf s " for the AppleTalk resource file is
1002, use the following clause to check for AppleTalk version 53:

checkFileVersion{l002, OxS3, 0, release, O};

•

•

Q My Installer script installs a desk accessory. Under System 6, each time I run the script, a
new copy of the DA appears as a DRVR resource in the System file, Why?

A

20f4

Unfortunately, this is a symptom when the' deleteWhenlnstalling' flag is used in
conjunction with the 'updateExisting' flag. The Installer 3.1 & 3.2 Scripting Guide
indicates that resources marked with the' dontDeleteWhenlnstalling' flag can be

#75: Apple's Multidisk Installer

•



replaced with a new resource. The guide also indicates that the Installer will overwrite a
preexisting resource in the target file if the 'updateExisting' flag is set. Given these two
flag settings, and the use of the replace' byName' (noByID) flag, the Installer does not
delete the DA. Instead a new DRVR resource is created with the same name but a new
resource 10.•

Developer Technical SuPPOrt January 1992

A

•

The correct Installer action is accomplished by setting the 'deleteWhenlnstalling' flag
in conjunction with the 'updateExisting' flag. Alternatively, use the
'dontDeleteWhenlnstalling' flag with the 'keepExisting' flag.

Q How can I include the current volume name in a reportVolError alert as many of the
installation scripts from Apple do?

A The volume name can be included by inserting "J\()" in the desired location of the Pascal
string passed to the reportVolError error reporting clause.

Q. I set the searchForFile flag in my 'infs' resource, however, the Installer acts as if it's
unable to find the file. Why?

A. The likely reason for this problem is that the desired file is within a folder by the same
name. When the searchForFile flag is set, the Installer will also find a match on a
folder. The Installer will not replace a folder with a file, nor will it add a resource to a
folder. The Installer continues as if the search failed.

Q What is the 'incd' resource about?

When the MPW ScriptCheck tool is used, it reads the script's file creation date/time stamp
and converts it into a long word with the Date2Secs procedure. ScriptCheck stores this
long word in the 'incd' resource for use with verifying files when a network installation
is performed. See the following questions for a discussion of this resource.

Q What checks are made by the Installer when preflighting an installation? Occasionally the
alert "Could not find a required file ..." occurs and the installation is aborted. .

A The Installer compiles a list of the source file specifications from each of the resource
I inra 1 and file 'infa 1 atoms specified among the package' inpk' atoms included for
installation. Each source file specification includes a complete path name. As each source
file is accessed, a check is made of the file's creation date/time stamp with the date/time
stamp recorded in the corresponding' infs' resource. If the date/time stamps do not
match, the alert results and the installation is aborted. The creation date/time stamp in the
, infs 1 resource can be

• entered manually into the script file so long as the value is not 1 or 0,
• filled in by ScriptCheck automatically, if a value of 1 is entered in the date field,
• forced to be updated, if the -d switch is used with ScriptCheck.

•

Q

A

What are some of the considerations when configuring a network installation setup?

Under Installer 3.1/3.2, network software installations are made possible by setting up an
installation folder on the server volume. This folder will contain the Installer application,
the Script file, and a folder(s) matching the names of the required disk(s). Within the disk
folder(s) are the corresponding contents of the disk(s).

A problem can occur when a workstation is used to create the server installation folder and
the system date and time differ significantly between the two systems. Under such

#75: Apple's Multidisk Installer 30f4



Macintosh Technical Notes

condition, files copied from the workstation to the server may have their creation and
modification date time/stamps altered. If a modification is made, the "delta" is constant for
both the creation and modification date/time stamp and for all files copied at that time. •

As indicated in the previous question, the Installer preflights a file by comparing its creation
date/time stamp with the value stored in the corresponding 'infs' resource in the script file.
To compensate for the fact that a server may alter a file's creation date/time stamp, the
Installer implements the I incd I resource. After the user selects the Install button, the
Installer reads the 'incd' resource and compares it with the script file's creation date/time
stamp. The difference is stored as the "delta." On a normal disk installation, the "delta" is
always zero. As the Installer finds each required source file, the file's creation date/time
stamp is converted to a long word and adjusted by the "delta." The modified date/time
stamp is then compared with that stored in the script file. If the values match, the file is
considered found and the installation proceeds. On network installations, the delta may be
nonzero. If so, it indicates that the file's creation date/time stamps were modified when
copied to the server. Thus the 'incd' resource gives the Installer a way to maintain file
verification even though the date/time stamp may be altered.

A specific problem can occur when an installation is set up on some systems running older
versions of Novell Server software. Under specific conditions, files copied to some Novell
servers have their creation time stamp altered to 12:00 A.M. regardless of the original time
stamp. This includes the creation time stamp of the script file. This condition wreaks havoc
with the Installer's preflight mechanism. The "delta" determined between the I incd I

resource and the Script file's creation date/time stamp may not be consistent with the
creation date/time stamp stored in the infs resource and the corresponding file's time stamp
now at 12:00 A.M.

A work-around solution for this problem is to set the Creation time stamp for all files on the
installation disk to 12:00 A.M. , BEFORE running the ScriptCheck tool. Use the MPW •
tool SetFile to perform this function. Here's a sample MPW script for performing this
function:

SetFile -d "1/1/92 12:00AM" 'files -r -s -f =:'

This script assumes that the current directory is set to the root of the Installation disk. For
multiple disks, run this script on each disk. Use the '-f switch with ScriptCheck to ensure
that the date/time stamps are updated on scripts previously checked.

Installation of software is a nontrivial process. Apple recommends that you reserve time for
development and testing to ensure that the installation process proceeds smoothly on all target
machine configurations.

To ship the Installer with your product you must contact Apple's Software Licensing Department
(AppleLink: SW.LICENSE) and license the Installer alone or with the system software package
that includes the version of the Installer you intend to use. Software Licensing also supplies you
with a copy of the Installer that you may ship.

Further Reference:
• Installer 3.2 Reference Suite

•
40f4 #75: Apple's Multidisk Installer



•
Macintosh Technical Notes

#76: The Macintosh Plus Update Installation Script

Written by:
Updated:

scott douglass February 24, 1986
March 1, 1988

•

•

Earlier versions of this note described the Macintosh Plus Update installation
script, because it was the first script created for the Installer. Since then,
many versions of this script have been created which no longer match what
was described here. In addition, many other scripts now exist.

Technical Note #76 page 1 of 1 The Macintosh Plus Update Script



•

•

•



•
Macintosh Technical Notes

#77: HFS Ruminations

See also: The File Manager
Technical Note #66-

Determining Which File System is Active
Technical Note #67-Finding the "Blessed Folder"
Technical Note #68-

Searching All Directories on an HFS Volume

Written by:
Updated:

Jim Friedlander June 7,1986
March 1, 1988

This technical note contains some thoughts concerning HFS.

HFS numbers

A drive number is a small positive word (e.g. 3).

• A VRefNum (as opposed to a wDRefNum) is a small negative word (e.g. $FFFE).

A WDRefNum is a large negative word (e.g. $8033).

A DirID is a long word (e.g. 38). The root directory of an HFS volume always has a
dirID of 2.

Working Directories

Normally an application doesn't need to open working directories (henceforth WD s )
using PBOpenWD, since SFGetFile returns a WDRefnum if the selected file is in a
directory on a hierarchical volume and you are running HFS. There are times, however,
when opening a WD is desirable (see the discussion about BootDrive below).

If you do open a WD, it should be created with an ioWDProcID of 'ERIK' ($4552494B)
and it will be deallocated by the Finder. Note that under MultiFinder, ioWDProclD will be
ignored, so you should only use 'ERIK'.

•
SFGetFile also creates WDs with an ioWDProcID of 'ERIK'. If SFGetFile opens two
files from the same directory (during the same application), it will only create one
working directory .

Tnchnical Note #77 page 1 of 6 HFS Ruminations



There are no WDRefnurns that refer to the root-the root directory of a volume is always
referred to by a vRefNurn.

When you can use HFS calls

All of the HFS 'H' calls, except for PBHSet VInfo, can be made without regard to file
system as long as you pass in a pointer to an HFS parameter block. PBHGet Vol,
PBHSetVol (see the warnings in the File Manager chapter of Inside Macintosh),
PBHOpen,PBHOpenRF,PBHCreate,PBHDelete,PBHGetFInfo,PBHSetFInfo,
PBHSetFLock, PBHRstFLock and PBHRenarne differ from their MFS counterparts only in
that a dirID can be passed in at offset $30.

The only difference between, for example, PBOpen and PBHOpen is that bit 9 of the trap
word is set, which tells HFS to use a larger parameter block. MFS ignores this bit, so it
will use the smaller parameter block (not including the dirID). Remember that all of
these calls will accept a WDRefNurn in the ioVRefNurn field of the parameter block.

PBHGetVInfo returns more information than PBGetVInfo, so, if you're counting on
getting information that is returned in the HFS parameter block, but not in the MFS
parameter block, you should check to see which file system is active.

•

HFS-specific calls can only be made if HFS is active. These calls are: PBGetCat Info,
PBSetCatInfo,PBOpenWD,PBCloseWD,PBGetFCBInfo,PBGetWDInfO,PBCatMove
and PBDirCreate. PBHSetVInfo has no MFS equivalent. If any of these calls are made
when MFS is running, a system error will be generated. If PBCatMove or PBDirCreate •
are called for an MFS volume, the function will return the error code -123 (wrong
volume type). If PBGetCatInfo or PBSetCatInfo are called on MFS volumes, it's just
as if PBGetFInfo and PBSetFInfo were called.

Default volume

If HFS is running, a call to GetVol (before you've made any SetVol calls) will return the
WDRe fNurn of your application's parent directory in the vRe fNurn parameter. If your
application was launched by the user clicking on one or more documents, the
WDRefNurns of those documents' parent directories are available in the vRefNurn field of
the AppFile record returned from GetAppFiles.

If MFS is running, a call to GetVol (before you've made any SetVol calls) will return the
vRe fNurn of the volume your application is on in the vRe fNurn parameter. If your
application was launched by the user clicking on one or more documents, the vRe fNurn

of those documents' volume are available in the vRefNurn field of the AppFile record
returned from GetAppFiles.

•
Technical Note #77 page 2 of 6 HFS Ruminations



•
BootDrive

If your application or desk accessory needs to get the WORefNurn of the "blessed folder"
of the boot drive (for example, you might want to store a configuration file there), it can
not rely on the low-memory global BootOrive (a word at $210) to contain the correct
value. If your application is the startup application, Boot 0 rive will contain the
WORefNurn of the directory/volume that your application is in (not the WORefNurn of the
"blessed folder"); Your application could have been _Launched from an application that
has modified BootOrive; if you are a desk accessory, you might find that some
applications alter BootOrive.

To get the "real" WORe fNurn of the "blessed folder" that contains the currently open
System file, you should call SysEnvirons (discussed in Technical Note #129). If that is
impossible, you can do something like this (Note: if you are running under MFS,
Boot 0 rive always contai ns the vRe fNurn of the volume on which the currently open
System file is located):

CONST

"Integer;• TYPE

SysWDProcID
BootDrive
FSFCBLen

SysMap

Wordptr

$4552494B;
$210;
$3F6;

$A58;

{"ERIK"}
{address of Low-Mem global BootDrive}
{address of Low-Mem global to
distinguish file systems }

{address of Low-Mem global that contains
system map reference number}

(Pointer to a word(2 bytes) }

FUNCTION HFSExists: BOOLEAN;

Begin {HFSExists}
HFSExists := WordPtr(FSFCBLen)" > 0;

End; {HFSExists}

FUNCTION GetRealBootDrive: INTEGER;

VAR
MyHPB
MyWDPB
err
sysVRef

HParamBlockRec;
WDPBRec;
OSErr;
integer; {will be the vRefNum of open system's vol}

Begin {GetRealBootDrive}
if HFSExists then Begin {If we're running under HFS ... }

•
Technical Note#77

{get the VRefNum of the volume that }
{contains the open System File }
err:= GetVRefNum(WordPtr(SysMap)",sysVRef);

page 3 of6 HFS Ruminations



with MyHPB do Begin
{Get the "System" vRefNum and "Blessed" dirID}

ioNamePtr .= NILi
ioVRefNum .= sysVRefi {from the GetVrefNum call}
ioVolIndex := Oi

Endi {with}
err := PBHGetVInfo(@MyHPB, FALSE)i

with myWDPB do Begin {Open a working directory there}
ioNamePtr .= NILi
ioVRefNum .= sysVRefi
ioWDProcID -= SysWDProcIDi {Using the system proc ID}
ioWDDirID := myHPB.ioVFndrInfo[l]i{ see TechNote 67}

Endi {with}
err := PBOpenWD(@myWDPB, FALSE)i

•

Endi

GetRealBootDrive := myWDPB.ioVRefNumi
{We've got the real WD}

End Else {we're running MFS}
GetRealBootDrive := WordPtr(BootDrive)Ai
{BootDrive is valid under MFSI

{GetRealBootDrive}

From MPWC:

/*"ERIK"*/
#define
#define
/*address
#define
#define
#define

SysWDProcID Ox4552494B
BootDrive Ox210

of Low-Mem global that contains system map reference number*/
SysMap OxA58
FSFCBLen Ox3F6
HFSIsRunning «*(short int *) (FSFCBLen)) > 0) •

OSErr GetRealBootDrive(BDrive)
short int *BDrivei

/*GetRealBootDrive*/

/*three different
HVolumeParam
FCBPBRec
WDPBRec
OSErr
short int

if (HFSIsRunning)

parameter blocks are used here for clarity*/
myHPBi
myFCBReci
myWDPBi
erri
sysVRefi /*will be the vRefNum of open system's

vol*/

{ /*if we're running under HFS. _. */

/*get the vRefNum of the volume that contains the open System File*/
myFCBRec.ioNamePtr= nili
myFCBRec.ioVRefNum = Oi
myFCBRec.ioRefNum = *(short int *) (SysMap)i
myFCBRec.ioFCBIndx = Oi

err = PBGetFCBInfo(&myFCBRec,false)i
if (err != noErr) return(err)i

/*now we need the dirID of the "Blessed Folder" on this volume*/ •
Technical Note#77 page 4 016 HFS Ruminations



•

•

•

myHPB.ioNamePtr = nil;
myHPB.ioVRefNum = myFCBRec.ioFCBVRefNum;
myHPB.ioVollndex = 0;

err = PBHGetVlnfo(&myHPB,false);
if (err != noErr) return(err);

/*we can now open a WD for the directory that contains the open
system file one will most likely already be open, so PBOpenWD will
just return that WDRefNum*/

myWDPB.ioNamePtr = nil;
myWDPB.ioVRefNum = myHPB.ioVRefNum;
myWDPB.ioWDProcID = SysWDProcID; /*'ERIK'*/
myWDPB.ioWDDirID = myHPB.ioVFndrlnfo[Ol; /* see Technote # 67

[c has O-based arraysl*/

err = PBOpenWD(&myWDPB,false);
if (err != noErr) return err;

*BDrive = myWDPB.ioVRefNum; /*that's all!*/
} /* if (HFSlsRunning) */
else

*BDrive = * (short int *) (BootDrive);
/*BootDrive is valid under MFS*/

return noErr;
/*GetRealBootDrive*/

The Poor Man's Search Path (PMSP)

If HFS is running, the PMSP is used for any file system call that can return a file-not
found error, such as PBOpen, PBClose, PBDelete, PBGetCat Info, etc. It is not used for
indexed calls (that is, where ioFDirIndex is positive) or when a file is created
(PBCreate) or when a file is being moved between directories (PBCatMove). The PMSP
is also not used when a non-zero dirID is specified.

Here's a brief description of how the default PMSP works.

1) The directory that you specify (specified by WDRefNum or pathname) is searched; if the
specified file is not found, then

2) the volume/directory specified by BootDrive (low-memory global at $210) is
searched IF it is on the same volume as the directory you specified (see #1 above); if the
specified file is not found, or the directory specified by BootDr i ve is not on the same
volume as the directory that you specified, then

3) if there is a "blessed folder" on the same volume as the directory you specified (see
#1 above), it is searched. Please note that if #2 above specifies the same directory as
#3, then that directory is not searched twice. If no file is found, then

4) fnfErr is returned.

Technical Note #77 page 5 of 6 HFS Ruminations



ioOirld and ioFINum

Two fields of the HPararnBlockRec record share the same location. ioDirID and
i of INurn are both at offset $ 3 0 from the start of the parameter block. This causes a
problem, since, in some calls (e.g. PBGetCat Info), a dirID is passed in and a file
number is returned in the same field.

Future versions of Apple's HFS interfaces will omit the ioF INurn designator, so, if you
need to get the file number of a file, it will be in the ioD ir ID of the parameter block
after you have made the call. If you are making successive calls that depend on
ioDirID being set correctly, you must "reset" the ioDirID field before each call. The
program fragment in Technical Note #68 does this.

PBHGetVlnfo

Normally, PBHGetVlnfo will be called specifying a vRefNurn. There are times, however,
when you may make the call and only specify a volume name. If this is so, there are a
couple of things to look out for.

Let's say that we have two volumes mounted: "Vol 1 ." (the default volume) and "Vo12 .".
We also have a variable of type HParamBlockRec called MyHPB. We want to get
information about Vo 12 :, so we put a pointer to a string (let's call it fN ame) in
MyHPB. ioNamePtr. The string fName is equal to "Vo12" (Please note the missing
colon). We also initialize MyHPB. ioVRefNum to O. Then we make the call. We are very
surprised to find out that we are returned an error of 0 (noErr) and that the ioVRefNum
that we get back is not the vRefNum of Vo12 :, but rather that of Voll:.

Here's what's happening: PBHGetVlnfo looks at the volume name, and sees that it is
improper (it is missing a colon). So, being a forgiving sort of call, it goes on to look at the
ioVRefNum field that you passed it (see pp. 99 of Inside Macintosh, vol. II). It sees a 0
there, so it returns information about the default volume.

If you want to get information about a volume, and you just have its name and you are
not sure that the name is a proper one, you should set MyHPB. ioVRefNum to -32768
($8000). No vRefNum or WDRefNum can be equal to $8000. By doing this, you are
forcing PBHGetVlnfo to use the volume name and, if that name is invalid, to return a
-35 error (nsvErr), "No such volume."

PBGetWOlnfo and Register 01

There was a problem with PBGetWDInfo that sometimes caused the call to inaccurately
report the dirID of a directory. It is fixed in System 3.2 and later. To be absolutely sure
that you won't get stung by this, clear register D 1 (CLR. L D1) before a call to
PBGet WD Info. You can do this either with an INLINE (Lisa Pascal and most C's) or with
a short assembly-language routine before the call to PBGetWDlnfo.

•

•

•
Technical Note #77 page 6 of 6 HFS Ruminations



Macintosh Technical Notes

• #78: Resource Manager Tips

See also: The Resource Manager
The Memory Manager
The Menu Manager
Technical Note #129-SysEnvirons

Written by:
Updated:

Jim Friedlander June 8,1986
March 1, 1988

•

•

This note discusses some problems with the Resource Manager and how to
work around them.

OpenResFile Bug

This section of the note formerly described a bug in OpenRe sF i le on 64K ROM
machines. Information specific to 64K ROM machines has been deleted from Macintosh
Technical Notes for reasons of clarity.

GetMenu and ResErrProc

If your application makes use of Re sE rrP roc (a pointer to a procedure stored in
low-memory global $AF2) to detect resource errors, you will get unexpected calls to your
ResErrProc procedure when calling GetMenu on 128K ROMs. The Menu Manager call
GetMenu makes a call to GetReslnfo, requesting resource information about MDEF O.
Unfortunately, ROMMaplnsert is set to FALSE, so this call fails, setting ResErr to -192
(resNotFound). This in turn will cause a call to your ResErrProc, procedure even
though the GetMenu call has worked correctly. This is only a problem if you are using
ResErrProc.

The workaround is to:
1) save the address of your ResErrProc procedure
2) clear ResErrProc

3) do a GetResource call on the MENU resource you want to get
4) check to see if you get a nil handle back, if you do, you can handle the error in
whatever way is appropriate for your application

5) call GetMenu, and
6) when you are done calling GetMenu, restore ResErrProc

Technical Note #78 page 1 of 2 Resource Manager Tips



SetResAttrs on read-only resource maps

SetResAttrs does not return an error if you are setting the resource attributes of a
resource in a resource file that has a read-only resource map. The workaround is to •
check to see if the map is read-only and proceed from there:

CONST
MapROBit = 8; {Toolbox bit ordering for bit 7 of low-order byte)

BEGIN

attrs:= GetResFileAttrs(refNum);
IF BitTst(@attrs,MapROBit) THEN ... {write-protected map)

•

•
Technical Note #78 page 2 of 2 Resource Manager Tips



•
Macintosh
Technical Notes

Developer Technical Support

#79:

Revised by:
Written by:

ZoomWindow
Craig Prouse
Jim Friedlander

April 1990
June 1986

•

•

This Technical Note contains some hints about using ZoomWindow.
Changes since February 1990: Fixed a bug in DoWZoom which caused crashes if the content
of a window did not intersect with any device's gdRect. Also made DoWZoom more robust by
making savePort a local variable and checking for off-screen and inactive GDevice records.
(One variable name has changed.) Additional minor changes: Corrected original sample code to
use EraseRect before zooming and added references to Human Interface Note #7, Who's
Zooming Whom? for more subtle and application-specific considerations.

Basics

ZoomWindow allows a window to be toggled between two states (where "state" means size and
Iocarion): a default state and a user-selectable state. The default state stays the same unless the
application changes it, while the user-selectable state is altered when the user changes the size or
location of a zoomable window. The code to handle zoomable windows in a main event loop
would look something like the examples which follow.

Note: _ ZoomWindow assumes that the window that you are zooming is the current
GrafPort. If thePort is not set to the window that is being zoomed, an
address error is generated.

MPW Pascal

CASE myEvent.what OF
mouseDown: BEGIN

partCode:= FindWindow(myEvent.where, whichWindow);
CASE partCode OF

inZoomIn, InZoomOut:
IF TrackBox(whichWindow, myEvent.where, partCode) THEN

BEGIN
GetPort(oldPort);
SetPort(whichWindow);
EraseRect(whichWindowA.portRect);
ZoomWindow(whichWindow, partCode, TRUE);
SetPort(oldPort);

END; {IF)
.•• {and so on)

END; (CASE)
END; {mouseDown)

•.. {and so on)
END; {CASE)

#79: _ZoomWindow 1 of 5



Macintosh Technical Notes

MPWC

switch (myEvent.what) {
case mouseDown:

partCode = FindWindow(myEvent.where, &whichWindow);
switch (partCode) (

case inZoomln:
case inZoomOut:

if (TrackBox(whichWindow, myEvent.where, partCode) (
GetPort(&oldPort);
SetPort(whichWindow);
EraseRect(whichWindow->portRect);
ZoomWindow(whichWindow, partCode, true);
SetPort(oldPort);
) /* if * /

break;
... /* and so on */
/* switch */
/* and so on */

/* switch */

If a window is zoomable, that is, if it has a window definition ID = 8 (using the standard
I WDEF '), WindowRecord. dataHandle points to a structure that consists of two rectangles.

The user-selectable state is stored in the first rectangle, and the default state is stored in the second
rectangle. An application can modify either of these states, though modifying the user-selectable
state might present a surprise to the user when the window is zoomed from the default state. An
application should also be careful to not change either rectangle so that the title bar of the window
is hidden by the menu bar.

•

Before modifying these rectangles, an application must make sure that DataHandle is not NIL.
If it is NIL for a window with window definition ID = 8, that means that the program is not •
executing on a system or machine that supports zooming windows.

One need not be concerned about the use of a window with window definition ID = 8 making an
application machine-specific-if the system or machine that the application is running on doesn't
support zooming windows, _FindWindow never returns inZoomIn or inZoomOut, so neither

TrackBox nor ZoomWindow are called.

If DataHandle is not NIL, an application can set the coordinates of either rectangle. For
example, the Finder sets the second rectangle (default state) so that a zoomed-out window does not
cover the disk and trash icons.

For the More Adventurous (or Seeing Double)

Developers should long have been aware that they should make no assumptions about the screen
size and use screenBit s . bounds to avoid limiting utilization of large video displays. Modular
Macintoshes and Color QuickDraw support multiple display devices, which invalidates the use of
screenBits . bounds unless the boundary of only the primary display (the one with the menu
bar) is desired. When dragging and growing windows in a multi-screen environment,
developers are now urged to use the bounding rectangle of the GrayRgn. In most cases, this is
not a major modification and does not add a significant amount of code. Simply define a variable

desktopExtent := GetGrayRgn~~.rgnBBox;

•
20f5 #79: _ZoomWindow



and use this in place of screenBit s . bounds. When zooming a document window, however,
additional work is required to implement a window-zooming strategy which fully conforms with
Apple's Human Interface Guidelines.•
Developer Technical Support April 1990

One difficulty is that when a new window is created with NewWindowor GetNewWindow, its
default stdState rectangle (the rectangle determining the size and position of the zoomed
window) is set by the Window Manager to be the gray region of the main display device inset by
three pixels on each side. If a window has been moved to reflect a position on a secondary
display, that window still zooms onto the main device, requiring the user to pan across the desktop
to follow the window. The preferred behavior is to zoom the window onto the device containing
the largest portion of the unzoomed window. This is a perfect example of a case where it is
necessary for the application to modify the default state rectangle before zooming.

DoWZoom is a Pascal procedure which implements this functionality. It is a good example of how
to manipulate both a WStateData record and the Color QuickDraw device list. On machines
without Color QuickDraw (e.g., Macintosh Plus, Macintosh SE, Macintosh Portable) the
stdState rectangle is left unmodified and the procedure reduces to five instructions, just like it is
illustrated under "Basics." If Color QuickDraw is present, a sequence of calculations determines
which display device contains most of the window prior to zooming. That device is considered
dominant and is the device onto which the window is zoomed. A new stdState rectangle is
computed based on the gdRect of the dominant GDevice. Allowances are made for the
window's title bar, the menu bar if necessary, and for the standard three-pixel margin. (Please
note that DoWZoom only mimics the behavior of the default ZoomWindow trap as if it were
implemented to support multiple displays. It does not accountTor the "natural size" of a window
for a particular purpose. See Human Interface Note #7, Who's Zooming Whom?, for details on
what constitutes the natural size of a window.) It is not necessary to set stdState prior to

•
calling ZoomWindow when zooming back to userState, so the extra code is not executed in
this case.

DoWZoom is too complex to execute within the main event loop as shown in "Basics," but if an
application is already using a similar scheme, it can simply add the DoWZoom procedure and
replace the conditional block of code following

IF TrackBox...

with

DoWZoom(whichWindow, partCode);.

Happy Zooming.

•
#79: _ZoomWindow 30f5



Macintosh Technical Notes

PROCEDURE DoWZoom (theWindow: WindowPtr; zoomDir: INTEGER);
VAR

windRect, theSect, zoomRect : Rect;
nthDevice, dominantGDevice : GDHandle;
sectArea, greatestArea : LONGINT;
bias : INTEGER;
sectFlag BOOLEAN;
savePort : GrafPtr;

BEGIN
{ theEvent is a global EventRecord from the main event loop }
IF TrackBox(theWindow,theEvent.where,zoomDir) THEN

BEGIN
GetPort(savePort};
SetPort(theWindow);
EraseRect(theWindowA.portRect); {recommended for cosmetic reasons}

If there is the possibility of multiple gDevices, then we
must check them to make sure we are zooming onto the right
display device when zooming out. )

{ sysConfig is a global SysEnvRec set up during initialization
IF (zoomDir = inZoomOut) AND sysConfig.hasColorQD THEN

BEGIN
( window's portRect must be converted to global coordinates
windRect := theWindowA.portRect;
LocalToGlobal(windRect.topLeft);
LocalToGlobal(windRect.botRight);
( must calculate height of window's title bar)
bias:= windRect.top - 1

WindowPeek(theWindow)A.strucRgnAA.rgnBBox.top;
windRect.top := windRect.top - bias; (Thanks, Wayne!)
nthDevice := GetDeviceList;
greatestArea := 0;
{ This loop checks the window against all the gdRects in the
{ gDevice list and remembers which gdRect contains the largest
( portion of the window being zoomed. )
WHILE nthDevice <> NIL DO

IF TestDeviceAttribute(nthDevice,screenDevice) THEN
IF TestDeviceAttribute(nthDevice,screenActive) THEN

BEGIN
sectFlag := SectRect(windRect,nthDeviceAA.gdRect,theSect);
WITH theSect DO

sectArea := LONGINT(right - left) * (bottom - top);
IF sectArea > greatestArea THEN

BEGIN
greatestArea := sectArea;
dominantGDevice := nthDevice;

END;
nthDevice := GetNextDevice(nthDevice};

END; (of WHILE)
{ We must create a zoom rectangle manually in this case.
{ account for menu bar height as well, if on main device
IF dominantGDevice = GetMainDevice THEN

bias := bias + GetMBarHeight;
WITH dominantGDevice~~.gdRect DO

SetRect{zoomRect,left+3,top+bias+3,riqht-3,bottom-3};
{ Set up the WStateData record for this window. I
WStateDataHandle(WindowPeek{theWindow)A.dataHandle}A~.stdState := zoomRect;

END; {of Color QuickDraw conditional stuff}

ZoomWindow(theWindow,zoomDir,TRUE);
SetPort(savePort);

END;
END;

•

•

•
4of5 #79: _ZoomWindow



In an attempt to avoid declaring additional variables, the original version of this document was
flawed. In addition, the assignment statement responsible for setting the stdState rectangle is
relatively complex and involves two type-casts. The following may look like C, but it really is
Pascal. Trust me.•
Developer Technical Support

WStateDataHandle(WindowPeek(theWindow)~"dataHandle)~~"stdState "= zoomRect;

It could be expanded into a more readable form such as:

VAR
theWRec : WindowPeek;
zbRec : WStateDataHandle;

theWRec := windowPeek(theWindow);
zbRec := WStateDataHandle(theWRecA.dataHandle);
zbRec~~.stdState := zoomRect;

Further Reference:

April 1990

•

•

• Inside Macintosh, Volume IV, The Window Manager (pp. 49-52)
• Inside Macintosh, Volume V, Graphics Devices (p. 124), The Window Manager (p. 210)
• Human Interface Note #7, Who's Zooming Whom?

#79: _ZoomWindow 50f5



•

•

•



Macintosh Technical Notes

• #80: Standard File Tips

See also:

Written by:
Updated:

The Standard File Package

Jim Friedlander June 7, 1986
March 1, 1988

•

SFSaveDisk and CurDirStore

Low-memory location $214 (SFSaveDisk-a word) contains -1 * the vRefNurn of the
volume that SF is displaying (MFS and HFS). It never contains -1 * a WDRefNurn.

Low-memory location $398 (CurDirStore-a long word) contains the dirID of the
directory that SF is displaying (HFS only).

This information can be particularly useful at hook time, when the vRe fNurn field of the
reply record has not yet been filled in. Note: reply. fNarne is filled in correctly at hook
time if a file has been selected. If a directory has been selected, reply. fType is
non-zero (it contains the dirID of the selected directory). If neither a file nor a directory
is selected, both reply. fNarne [0] and reply. fType are O.

Setting Standard File's default volume and directory

If you want SFGetFile or SFPutFile to display a certain volume when it draws its
dialog, you can put -1 * the vRe fNurn of the volume you wish it to display into the
low-memory global SFSaveDisk (a word at $214).

In Pascal, you would use something like:

TYPE
WordPtr = AINTEGER;

CONST
SFSaveDisk = $214;

VAR

SFSaveVRef: WordPtr;
myVRef INTEGER;

BEGIN

{pointer to a two-byte location}

{location of low-memory global}

•
{myVRef gets assigned here}

SFSaveVRef := WordPtr(SFSaveDisk); {point to SFSaveDisk}
SFSaveVRef A: = -1 * myVRef; {"stuff" the value in}
SFGetFile( ...

Technical Note #80 page 1 of 2 Standard File Tips



In C you would use something like this (where a variable of type "short" occupies 2
bytes):

*define SFSaveDisk (*(short *)Ox214)

short myVRef;

/* myVRef gets assigned here */

SFSaveDisk = -1 * myVRef; /* "stuff H the value in */
SFGetFile ( ...

If you are running HFS and would like to have Standard File display a particular
directory as well as a particular volume, you can't just put a WDRefNum into SFSaveDisk.
If you do put a WDRefNum into SFSaveDisk, Standard File will display the root directory
of the default volume. Instead, you must put -1 * the vRefNum into SFSaveDisk (see
above) and put the d i rID of the directory that you wish to have displayed in
CurDirStore. If you put an invalid dirID into CurDirStore, Standard File will display
the root level of the volume referred to by SFSaveDisk. To change CurDirStore you
can use a technique similar to the above, but remember that CurDirStore is a four-byte
value. If your application is running under MFS, Standard File ignores CurDirStore, so
you can use the same code regardless of file system.

•

•

•
Technical Note #80 page 2 012 Standard File Tips



Macintosh Technical Notes

• #81: Caching

See also: The File Manager
The Device Manager
Technical Note #14-The INIT 31 Mechanism

Written by:
Updated:

Rick Blair June 17, 1986
March 1, 1988

•

•

This technical note describes disk and File System caching on the
Macintosh, with particular emphasis on the high-level File System cache. Of
the three caches used for file I/O, this is the one which could have the most
impact on your program. Note: This big File System cache is not available on
64K ROM machines.

A term

In this note I will use the term "HFS" to mean the Hierarchical File System and the Sony
driver which can access the BOOK drives. Both RAM-based HFS (Hard Disk 20 file) and
the 12BK ROM version include the second-generation Sony driver.

There's always a cache (type 1)

The first type of cache used by the File System has been around since the days of the
Macintosh File System. Under MFS, each volume has a one-block buffer for all
file/volume data. This prevents a read of two bytes followed by a read (at the next file
position) of 4 bytes from causing actual disk I/O. The volume allocation map also gets
saved in the system heap but it's not really part of the cache.

This type of caching is still used by HFS, which includes MFS-format volumes which
may be mounted while running HFS. With HFS, the cache is a little bigger: each volume
gets 1 block of buffering for the bitmap, 2 blocks for volume (including file) data, and 16
blocks for HFS B*-tree control buffering.

This cache lives in the system heap (unless HFS is using the new File System caching
mechanism, in which case things become more complicated. See "type 3" below).

Technical Note #81 page 1 of 3 Caching



Cache track fever (type 2)

The track cache, only present with the enhanced Sony driver, will cache the current
track (up to twelve blocks) so that subsequent reads to that track may use the cache. The
track cache is "write through"; all writes go to both the cache and the Sony disk so •
flushing is never required.

Track caching only takes place for synchronous I/O calls; when an application makes
asynchronous calls it expects to use the time while the disk is seeking, etc. to execute
other code.

The track cache gets its storage space from the system heap.

Cache me if you can (type 3)

The last type of cache to be discussed is only available under the 128K and greater
ROMs. This user-controlled cache is not "write-through".

Based on how much space the user has allocated via the control panel, the File System
will set up a cache which can accommodate a certain number of blocks. This storage
will come from the application heap in the space above BufPt r (see technical note #14
and below). This is really the space above the jump table and the "AS world", not
technically part of the application heap. However, moving BufPtr down will cause a
corresponding reduction in the space available to the application heap.

The installation code will also grab the space used by the old File System cache (type 1) •
since all types of disk blocks can be accommodated by this new cache.

The bulk of the caching code used for this RAM cache is also loaded above BufPtr at
application launch time. This is accomplished by the INIT 35 resource which is installed
in the system heap and initialized at boot time. At application launch time, INIT 35
checks the amount of cache allocated via the control panel and moves BufPtr down
accordingly before bringing in the balance of the caching code. The RAM caching code
is in the 'CACH' 1 resource in the System File.

The caching code always makes sure there is room for 128K of application heap and
32K of cache. If the user-requested amount would reduce the heap/cache below these
values then the cache space is readjusted accordingly.

Up to 36 separate files may be buffered by the cache. Each queue is a list of blocks
cached for that file. Information is kept about the "age" of each block and the blocks are
also kept in a list in the order in which they occur in the file. The aging information tells
which blocks were least recently used; these are the first to be released when new
blocks become eligible for caching. The file order information is useful for flushing the
cache to the disk in an efficient manner, Le. the file order approximates disk order.

•
Technical Note #81 page 2 of 3 Caching



•
Assuming this cache has been enabled by the user, all files which are read from or
written to by File System (HFS) calls are subject to caching under the current
implementation. The cache is not "write through" like the track cache. When a File
System write (PBWrite, WriteResource, etc.) is done, the block is buffered until the
block is released (age discrimination), a volume flush is done or the application
terminates.

It may be useful to an application to prevent this process of reading and writing "in
place". The Finder disables caching of newly read/written blocks while doing file copies
since it would be silly to cache files that the Finder was reading into memory anyway.
Copy protection schemes may also need this capability. Disabling reading and writing in
place is accomplished by setting a bit in a low memory flag byte, CacheCom (see below).
When you set this flag, no new candidates for caching will be accepted. Blocks already
saved may still be read from the cache, of course.

CacheCom is at $39C. Bit 7 is the bit to set to disable subsequent caching, as follows:

MOVE.B CacheCom,saveTemp isave away the old value
BSET.B #7,CacheCom itell caching code to stop R/W I.P.

BTST.B #7,saveTemp
BNE.S @69
BCLR.B #7,CacheCom

icheck saved value

iclear it if it was cleared before

•

•

@69

Bit 6 contains another flag which can force all I/O to go to the disk. If that flag is set then
every time even one byte is requested from the File System the disk will be hit. I can
think of no good reason to use this except to test the system code itself. The other bits
should likewise be left alone.

Please don't use this feature unnecessarily; the user should retain control over caching.
Important: if your program doesn't have enough space to run due to caching you
should ask the user to disable (or reduce) it with the control panel and then relaunch
your application. This may be the subject of a future technical note.

BufPtr

The RAM-resident caching software arbitrates Bu fPt r in the friendliest manner
possible. It saves the old value away before changing it, and then when it is time to
release its space it looks at it again. If BufPtr has been moved again, it knows that it
can't restore the old value it saved until Bu fPt r is put back to where it left it. In this
manner any subsequent code or data put up under Bu fPt r is assured of not being
obliterated by the caching routines.

A final note

To avoid problems with data in the cache not getting written out to disk, call FlushVol
after each time you write a file to disk. This ensures that the cache is written, in case a
crash occurs soon thereafter.

Technical Note #81 page 3 of3 Caching



•

•

•



•
Macintosh Technical Notes

#82: TextEdit: Advice & Descent

See also: TextEdit
Technical Note #22-TEScroll Bug
Technical Note #127-TextEdit EOl Ambiguity
Technical Note #131-TextEdit Bugs

Written by:
Updated:

Rick Blair June 21, 1986
March 1, 1988

•

•

This technical note will point out some bugs (and possible workarounds), and
other items of interest for the TextEdit programmer.

TESelRect

Multiple line selections are often more complex shapes than simple rectangles. If this is
the case, the teSelRect field of the TERec is set to the last (bottommost) rectangle in
the selection. The teHiHook is called to invert each line of the selection.

The ROM limits the selection range (l.s. the lines that get set into teSelRect) to only
those lines which will fit into the viewRect. This means that teSelRect will be left at the
last visible line. (The old 64K ROMs made all the calls for the complete selection and
just let clipping take care of the rest.)

TEDoText

The parameters of this special hook into TextEdit need a little additional explanation. D3

and D4 are described on page 391 of Inside Macintosh Volume I as being the first and
last characters to be redrawn. This is true but specific to the -1 "Dobr aw" case. In fact, all
the calls to TEDoText are interested in these first and last character positions. They
determine the selection for a (1) highlight call, the caret position for a (-2) DoCaret call
(where D4 is ignored as it's assumed to equal D3), etc.

Note that the DoCaret (-2) call behaves differently than described in Inside Macintosh,
as well. Good old page 391 says it sets up the pen position for caret drawing. Since an
InvertRect call is used to draw the caret if you use the default teCarHook, the ROMs
just set up teSelRect, they don't bother with the QuickDraw pen.

Technical Note #82 page 1 of 2 TextEdit: Advice & Descent



TEScrpLength

Inside Macintosh describes TEScrpLength as a long integer; indeed, four bytes are
reserved for this value with the intent of someday using that range of values. However, •
the ROMs use word operations in their accesses to TEScrpLength and make word
calculations with it. This means that the high word of TEScrpLength is used for
calculations. This is something to watch out for.

CharWidth

Inside Macintosh says that CharWidth takes stylistic variations into account when
determining the width of a character. In fact, for italic and (Q)1UI~~ilTi1~d1 styles the extra width
is not taken into account. TextEdit relies on CharWidth for positioning of the caret, etc. If
you have chosen to use, for instance, italic style in your TE record you will find that as
you type the caret actually overlaps the character to the left and so when the caret is
erased some of that character will get erased, too. This is somewhat disconcerting to the
user but the program will still function correctly.

Clikloops

If you add your own click loop and try to do something like update scroll bars you may
run into trouble. Before your routine gets called, TextEdit will have set clipping down to
just the viewRe ct. You will have to save away the old clipping region, set it out to
sufficient size (-32767, -32767, 32767, 32767 is probably OK), do your drawing, then •
restore TextEdit's clipping area so that it can function properly.

•
Technical Note #82 page 2 012 TextEdit: Advice & Descent



Macintosh Technical Notes

• #83: System Heap Size Warning

See also:

Written by:
Updated:

The Memory Manager

Jim Friedlander June 21, 1986
March 1, 1988

Earlier versions of this note pointed out that, due to varying system heap
sizes, the application heap does not always start at $ CB ao. The start of the
application heap has not been fixed for some time now; programs that
depend on it never work on the Macintosh SE or the Macintosh II.

•

•
Technical Note #83 page 1 of 1 System Heap Size Warning



•

•

•



•
Macintosh Technical Notes

#84: Edit File Format

Written by:
Modified by:
Updated:

Harvey Alcabes
Bryan Johnson

April 11, 1985
August 15, 1986
March 1, 1988

•

•

This technical note describes the format of the files created by Edit. It has
been verified for versions 1.x and 2.0.

Edit, a text editor licensed by Apple and included in the Consulair 68000 Development
System, can read any text-only file whose file type is TEXT. Files created by Edit have a
creator 10 of EDIT. Edit is a disk-based editor so the file length is not limited by available
memory. Files created or modified by Edit, have the format described below; if they are
not too long they can be read by any application which can read TEXT files (eg:
MacWrite, Microsoft Word, or the APOA example program File).

The data fork contains text (ASCII characters). Carriage return characters indicate
line breaks; tab characters are displayed as described below. No other
characters have special significance.

The resource fork contains resources of type ETAB and EFNT. If Edit opens a
text-only file that does not have these resources it will add them.

The ETAB (Editor TAB) resource, resource 10 1004, contains two integers. The
first is the number of pixels to display for each space within a tab (not necessarily
the same as for the space character). The second integer is the number of these
spaces which will be displayed for each tab character.

The EFNT (Editor FoNT) resource, resource 10 1003, contains an integer followed
by a Pascal string (length byte followed by characters). The integer is the point
size of the document's font. The string contains the font name. If the string size
(inclUding the length byte) is odd, an extra byte is added so that the resource size
is even.

For more information about Edit, contact:

Consulair Corp.
140 Campo Drive
Portola Valley, CA 94025
(415) 851-3272

Technical Note #84 page 1 of 1 Edit File Format



•

•

•



•
Macintosh Technical Notes

#85: GetNextEvent; Blinking Apple Menu

See also:

Written by:
Updated:

The Menu Manager
The Toolbox Event Manager
The Desk Manager

Rick Blair August 14, 1986
March 1, 1988

•

Wherein arcane mysteries are unraveled so you can make the Alarm Clock
(or a similar desk accessory) blink the Apple menu at the appointed second.
Also, why GetNextEvent is a good thing.

The obvious

Don't disable interrupts within an application! There will almost certainly come a time (or
Macintosh) where you won't be able to change the interrupt mask because the
processor is running in user mode. The one-second interrupt is used to blink the apple.

The not-so-obvious

You must call GetNextEvent periodically. GetNextEvent uses a filter (GNE filter)
which allows for a routine to be installed which overrides (or augments) the behavior of
the system. The GNE filter is installed by pointing the low-memory global jGNEFilter

(a long word at $29A) to the routine. After all other GNE processing is complete, the
routine will be called with Al pointing to the event record and DO containing the
boolean result. The filter may then modify the event record or change the function result
by altering the word on the stack at 4 (A7) . This word will match DO initially, of course.

Technical Note #85 page 1 of 2 GetNextEvent; Blinking '* Menu



A GNE filter is used to do the blinking when the interrupt handler has announced that
the moment is at hand. GetOSEvent won't do. If you don't have a standard main event
loop, it is generally a good idea to give GetNextEvent (and SystemTask, too) a call
whenever you have any idle time. GetNextEvent "extra" services include, but aren't •
limited to, the following:

1. Calling the GNE filter.
2. Removing lingering disk-switched windows (uncommon unless memory is tight).
3. Making Window Manager activate, deactivate and update events happen.
4. Getting various events from a journaling driver when one is playing.
5. Giving SystemEvent a chance at each event.
6. Running command-shift function key routines (e.g. command-shift-4 to print the

screen to an ImageWriter).

The more subtle

When the (default) GNE filter sees that the interrupt handler has set the "time to blink"
flag, it looks at the first menu in MenuList. The title of that menu must consist solely of
the "apple" character or no blinking will occur. It really just looks at the first word of the
string to see if it is $ 0 114. This is a Pascal string which has only the $14 "apple"
character in it. So you musn't have any spaces or any other characters in the title of your
first menu or you'll get no blinkin' results.

•

•
Technical Note #85 page 2 of 2 GetNextEvent; Blinking '* Menu



•
Macintosh
Technical Notes

Developer Technical Support

#86: MacPaint Document Format
Revised by:
Written by:

Jim Reekes
Bill Atkinson

June 1989
1983

•

This Technical Note describes the internal format of a MacPaint® document, which is a standard
used by many other programs. This description is the same as that found in the "Macintosh
Miscellaneous" section of early InsideMacintosh versions.
Changes since October 1988: Fixed bugs in the example code.

MacPaint documents are easy to read and write, and they have become a standard interchange
format for full-page images on the Macintosh. This Note describes the MacPaint internal
document format to help developers generate and interpret files in this format.

MacPaint documents have a file type of "PNTG," and since they use only the data fork, you can
ignore the resource fork. The data fork contains a 512-byte header followed by compressed data
which represents a single bitmap (576 pixels wide by 720 pixels tall). At a resolution of 72 pixels
per inch, this bitmap occupies the full 8 inch by 10 inch printable area of a standard ImageWriter
printer page.

Header

The first 512 bytes of the document form a header of the following format:

• 4-byte version number (default = 2)
• 38*8 =304 bytes of patterns
• 204 unused bytes (reserved for future expansion)

As a Pascal record, the document format could look like the following:

MPHeader = RECORD
Version:
PatArray:
Future:

END;

LONGINT;
ARRAY [1 .. 38] of Pattern;
PACKED ARRAY [1 .• 204] of SignedByte;

•

If the version number is zero, the document uses default patterns, so you can ignore the rest of the
header block, and if your program generates MacPaint documents, you can write 512 bytes of zero
for the document header. Most programs which read MacPaint documents can skip the header
when reading.

Bitmap

Following the header are 720 compressed scan lines of data which form the 576 pixel wide by 720
pixel tall bitmap. Without compression, this bitmap would occupy 51,840 bytes and chew up disk
space pretty fast; typical MacPaint documents compress to about 10K using the PackBits

#86: MacPaint Document Format 1 of 5



Macintosh Technical Notes

procedure to compress runs of equal bytes within each scan line. The bitmap part of a MacPaint
document is simply theoutput of _PackBits called720 times, with 72 bytesof input eachtime.

To determine the maximum size of a MacPaint file, it is worth noting whatInside Macintosh says
about PackBits:

"The worst case would be when Pa ckBi t s adds one byte to the row of bytes
when packing." -

If we include an extra 512 bytes for the file header information to the size of an uncompressed
bitmap (51,840), then the total number of bytes would be 52,352. If we take into account theextra
720 "potential" bytes (one foreachrow) to theprevious total, themaximum size of a MacPaint file
becomes 53,072 bytes.

Reading Sample

•

PROCEDURE ReadMPFile;
{ This is a small example procedure written in Pascal that demonstrates

how to read MacPaint files. As a final step, it takes the data that
was read and displays it on the screen to show that it worked.
Caveat: This is not intended to be an example of good programming
practice, in that the possible errors merely cause the program to exit.
This is VERY uninformative, and there should be some sort of error handler
to explain what happened. For simplicity, and thus clarity, those types
of things were deliberately not included. This example will not work
on a 128K Macintosh, since memory allocation is done too simplistically.

CONST

VAR

DefaultVolume = 0;
HeaderSize = 512;
MaxUnPackedSize = 51840;

size of MacPaint header in bytes
maximum MacPaint size in bytes }
720 lines * 72 bytes/line } •

BEGIN

srcptr:
dstPtr:
saveDstPtr:
lastDestPtr:
srcFile:
srcSize:
errCode:
scanLine:
aPort:
theBitMap:

Ptr;
Ptr;
Ptr;
Ptr;
INTEGER;
LONGINT;
INTEGER;
INTEGER;
GrafPort;
BitMap;

errCode := FSOpen{'MP TestFile', DefaultVolume, srcFile); { Open the file. }
IF errCode <> noErr THEN ExitToShell;

errcode := SetFPos{srcFile, fsFromStart, HeaderSize);
IF errCode <> noErr THEN ExitToShell;

( Skip the header. )

errCode := FSRead{srcFile, srcSize, srcPtr); { Read the data into the buffer.
IF errCode <> noErr THEN ExitToShell; File marker is past header. }

errCode := GetEOF{srcFile, srcSize);
IF errCode <> noErr THEN ExitToShell;

srcsize := srcSize - HeaderSize ;
srcptr := NewPtr{srcSize);
IF srcPtr = NIL THEN ExitToShell;

Find out how big the file is,
and figure out source size. )

Remove the header from count. )
Make buffer just the right size.

•
20f5 #86: MacPaint Document Format



•
Developer Technical Support

errCode := FSClose(srcFile);
IF errCode <> noErr THEN ExitToShell;

( Create a buffer that will be used for
dstptr := NewPtrClear(MaxUnPackedSize);
IF dstPtr = NIL THEN ExitToShell;
saveDstptr := dstPtr;

June 1989

( Close the file we just read. I

the Destination BitMap. )
(MPW library routine, see TN 219)

•

Unpack each scan line into the buffer. Note that 720 scan lines are
guaranteed to be in the file. (They may be blank lines.) In the
UnPackBits call, the 72 is the count of bytes done when the file was
created. MacPaint does one scan line at a time when creating the file.
The destination pointer is tested each time through the scan loop.
UnPackBits should increment this pointer by 72, but in the case where
the packed file is corrupted UnPackBits may end up sending bits into
uncharted territory. A temporary pointer "lastDstptr" is used for testing
the result.)

FOR scanLine := 1 TO 720 DO BEGIN
lastDstPtr := dstptr;
UnPackBits(srcPtr, dstPtr, 72); ( bumps both pointers
IF ORD4(lastDstPtr) + 72 <> ORD4(dstPtr) THEN ExitToShell;

END;

( The buffer has been fully unpacked. Create a port that we can draw into.
You should save and restore the current port.

OpenPort(@aPort);

( Create a BitMap out of our saveDstptr that can be copied to the screen.
theBitMap.baseAddr := saveDstPtr;
theBitMap.rowBytes := 72; width of MacPaint picture
SetPt(theBitMap.bounds.topLeft, 0, 01;
SetPt(theBitMap.bounds.botRight, 72*8, 720); (maximum rectangle)

( Now use that BitMap and draw the piece of it to the screen.
Only draw the piece that is full screen size (portRect).

CopyBits(theBitMap, aPort.portBits, aPort.portRect,
aPort.portRect, srcCopy, NIL);

•

( We need to dispose of the
dispose of the destPtr if

DisposPtr(srcPtr);
DisposPtr(dstPtr);

END;

#86: MacPaint Document Format

memory we've allocated. You would not
you wish to edit the data. )

( dispose of the source buffer )
( dispose of the destination buffer

30fS



Macintosh Technical Notes

Writing Sample

PROCEDURE WriteMPFile;
( This is a small example procedure written in Pascal that demonstrates how

to write MacPaint files. It will use the screen as a handy BitMap to be
written to a file.

CONST

•
VAR

DefaultVolume = 0;
HeaderSize = 512;
MaxFileSize = 53072;

size of MacPaint header in bytes
maximum MacPaint file size. )

srcPtr:
dstPtr:
dstFile:
dstsize:
errCode:
scanLine:
aPort:
dstBuffer:
I:
picturePtr:
tempPtr:
theBitMap:

Ptr;
Ptr;
INTEGER;
LONGINT;
INTEGER;
INTEGER;
GrafPort;
PACKED ARRAY[l .. HeaderSize] OF BYTE;
LONGINT;
Ptr;
BigPtr;
BitMap;

40f5

BEGIN
( Make an empty buffer that is the picture size. )
picturePtr := NewPtrClear(MaxFileSize}; (MPW library routine, see TN 219)
IF pictureptr = NIL THEN ExitToShell;

( Open a port so we can get to the screen's BitMap easily. You should save
and restore the current port. )

OpenPort(@aPort};

{ Create a BitMap out of our dstptr that can be copied to the screen. }
theBitMap.baseAddr := picturePtr;
theBitMap.rowBytes := 72; width of MacPaint picture
SetPt(theBitMap.bounds.topLeft, 0, O};
SetPt(theBitMap.bounds.botRight, 72*8, 720}; (maximum rectangle)

( Draw the screen over into our picture buffer. )
CopyBits(aPort.portBits, theBitMap, aPort.portRect,

aPort.portRect, srcCopy, NIL};

( Create the file, giving it the right Creator and File type.)
errCode := Create('MP TestFile', DefaultVolume, 'MPNT', 'PNTG'};
IF errCode <> noErr THEN ExitToShell;

{ Open the data file to be written. }
errCode := FSOpen(dstFileName, DefaultVolume, dstFile};
IF errCode <> noErr THEN ExitToShell;

FOR I := 1 to HeaderSize DO { Write the header as all zeros. }
dstBuffer[I] := 0;

errCode := FSWrite(dstFile, HeaderSize, @dstBuffer};
IF errCode <> noErr THEN ExitToShell;

#86: MacPaint Document Format

•

•



Now go into a loop where we pack each line of data into the buffer,
then write that data to the file. We are using the line count of 72
in order to make the file readable by MacPaint. Note that the
Pack/UnPackBits can be used for other purposes. }

srcPtr := theBitMap.baseAddr; ( point at our picture BitMap }
FOR scanLine := 1 to 720 DO

BEGIN
dstPtr := @dstBuffer; ( reset the pointer to bottom
PackBits(srcPtr, dstPtr, 72); ( bumps both ptrs )
dstSize := ORD(dstPtr)-ORD(@dstBuffer); (calc packed size)
errCode := FSWrite(dstFile, dstSize, @dstBuffer);
IF errCode <> noErr THEN ExitToShell;

END;

•
Developer Technical Support

errCode := FSClose(dstFile);
IF errCode <> noErr THEN ExitToShell;

END;

Further Reference:

June 1989

( Close the file we just wrote. )

•

•

• Inside Macintosh, Volume 1-135, QuickDraw
• Inside Macintosh, Volume 1-465, Toolbox Utilities
• Inside Macintosh, Volume 11-77, TheFile Manager
• Technical Note#219, New Memory Manager Glue Routines

MacPaint is a registered trademark of Claris Corporation.

#86: MacPaint Document Format 50f5



•

•

•



•
Macintosh Technical Notes

#87: Error in FCBPBRec

See also:

Written by:
Updated:

The File Manager

Jim Friedlander August 18, 1986
March 1, 1988

The declaration of a FCBPBRec is wrong in Inside Macintosh Volume IV and
early versions of MPW. This has been fixed in MPW 1.0 and newer.

An error was made in the declaration of an FCBPBRec parameter block that is used in
PBGetFCBInfo calls. The field ioFCBIndx was incorrectly listed as a LONG INT. The
following declaration (found in Inside Macintosh):

•

•

ioRefNum:
filler:
ioFCBIndx:
ioFCBFlNm:

should be changed to:

ioRefNum:
filler:
ioFCBIndx:
ioFCBFillerl:
ioFCBFlNm:

TechnicalNote #87

INTEGER;
INTEGER;
LONGINT;
LONGINT;

INTEGER;
INTEGER;
INTEGER;
INTEGER;
LONGINT;

page 1 of 1 Error in FCBPBRec



•

•

•



•
Macintosh Technical Notes

#88: Signals

See also: Using Assembly Language (Mixing Pascal & Assembly)

Written by:
Updated:

Rick Blair August 1, 1986
March 1, 1988

•

•

Signals are a form of intra-program interrupt which can greatly aid clean,
inexpensive error trapping in stack frame intensive languages. A program
may invoke the S i g n a 1 procedure and immediately return to the last
invocation of CatchSignal, including the complete stack frame state at that
point.

Signals allow a program to leave off execution at one point and return control to a
convenient error trap location, regardless of how many levels of procedure nesting are
in between.

The example is provided with a Pascal interface, but it is easily adapted to other
languages. The only qualification is that the language must bracket its procedures (or
functions) with L INK and UNLK instructions. This will allow the signal code to clean up at
procedure exit time by removing CatchSignal entries from its internal queue. Note:
only procedures and/or functions that call CatchSignal need to be bracketed with LINK
and UNLK instructions.

Important: InitSignals must be called from the main program so that A6 can be set
up properly.

Note that there is no limit to the number of local CatchSignals which may occur within
a single routine. Only the last one executed will apply, of course, unless you call
FreeSignal. FreeSignal will "pop" off the last CatchSignal. If you attempt to Signal
with no CatchSignals pending, Signal will halt the program with a debugger trap.

InitSignals creates a small relocatable block in the application heap to hold the
signal queue. If CatchSignal is unable to expand this block (which it does 5 elements
at a time), then it will signal back to the last successful CatchSignal with code =200. A
Signal (0) acts as a NOP, so you may pass OSErrs, for instance, after making File
System type calls, and, if the OSErr is equal to NoErr, nothing will happen.

Technical Note #88 page 1 of 6 Signals



CatchSignal may not be used in an expression if the stack is used to evaluate that
expression. For example, you can't write:

c:= 3*CatchSignal;

"Gotcha" summary

1. Routines which call CatchSignal must have stack frames.
2. Ini tSignals must be called from the outermost (main) level.
3. Don't put the CatchSignal function in an expression. Assign the result to an

INTEGER variable; i.e. i:=CatchSignal.
4. It's safest to call a procedure to do the processing after CatchSignal returns. See

the Pascal example TestSignals below. This will prevent the use of a variable
which may be held in a register.

Below are three separate source files. First is the Pascal interface to the signaling unit,
then the assembly language which implements it in MPW Assembler format. Finally,
there is an example program which demonstrates the use of the routines in the unit.

{File ErrSignal.p}
UNIT ErrSignal;

INTERFACE

{Call this right after your other initializations (InitGraf, etc.)--in other
words as early as you can in the application}
PROCEDURE InitSignals;

{Until the procedure which encloses this call returns, it will catch
sUbsequent Signal calls, returning the code passed to Signal. When
CatchSignal is encountered initially, it returns a code of zero. These calls
may "nest"; i.e. you may have multiple CatchSignals in one procedure.
Each nested CatchSignal call uses 12 bytes of heap space }
FUNCTION CatchSignal:INTEGER;

{This undoes the effect of the last CatchSignal: A Signal will then invoke
the CatchSignal prior to the last one.}
PROCEDURE FreeSignal;

{Returns control to the point of the last CatchSignal. The program will then
behave as though that CatchSignal had returned with the code parameter
supplied to Signal.}
PROCEDURE Signal(code:INTEGER);

END.
{End of ErrSignal.p}

•

•

•
Technical Note #88 page 2 of6 Signals



•
Here's the assembly source for the routines themselves:

ErrSignal code w. InitSignal, CatchSignal,FreeSignal, Signal
defined

version 1.0 by Rick Blair

PRINT
INCLUDE
INCLUDE
INCLUDE
INCLUDE
PRINT

CatchSigErr EQU
SigChunks EQU
FrameRet EQU
SigBigA6 EQU

OFF
'Traps.a'
'ToolEqu.a'
'QuickEqu.a'
'SysEqu.a'
ON

200
S
4
$FFFFFFFF

;"insufficient heap" message
;number of elements to expand by
;return addr. for frame (off A6)
;maximum positive A6 value

; A template in MPW Assembler describes the layout of a collection of data
; without actually allocating any memory space. A template definition starts
with a RECORD directive and ends with an ENDR directive.

To illustrate how the template type feature works, the following template
is declared and used. By using this, the assembler source appromixates very
closely Pascal source for referencing the corresponding information.

• ;template for our table
SigElement RECORD
SigSP DS. L
SigRetAddr DS. L

SigFRet DS. L

SigE1Size EQU
ENDR

elements
o ; the zero is the template origin
1 ;the SP at the CatchSignal-(DS.L just like EQU)
1 ;the address where the CatchSignal returned
1 ;return addr. for encl. procedure
* ;just like EQU 12

The global data used by these routines follows. It is in the form of a
RECORD, but, unlike above, no origin is specified, which means that memory
space *will* be allocated.
This data is referenced through a WITH statement at the beginning of the
procs that need to get at this data. Since the Assembler knows when it is
referencing data in a data module (since they must be declared before they
are accessed), and since such data can only be accessed based on AS, there
is no need to explicitly specify AS in any code which references the data
(unless indexing is used). Thus, in this program we have omitted all AS
references when referencing the data.

SigGlobals RECORD

•
SigEnd
SigNow
SigHandle

DS.L
DS.L
DC.L
ENDR

1
1

o

;no origin means this is a data record
;not a template(as above)
;current end of table
;the MRU element
;handle to the table

Technical Note #88 page 3 of 6 Signals



;the above statement makes the template SigElement and the global data
; record SigGlobals available to this procedure

CatchSignal
SigElement,SigGlobals

InitSignals PROC

IMPORT
WITH

EXPORT ;PROCEDURE InitSignals;

•
MOVE.L #SigChunks*SigElSize,DO

NewHandle ;try to get a table
BNE.S forgetit ;we couldn't get that!?

forgetit

MOVE.L
MOVE.L
MOVE.L
MOVE.L
RTS
ENDP

AO,SigHandle ;save it
#-SigElSize,SigNow ;point "now" before start
#SigChunks*SigElSize,SigEnd ;save the end
#SigBigA6,A6 ;make A6 valid for Signal

CatchSignal PROC
IMPORT
WITH

EXPORT ;FUNCTION CatchSignal:INTEGER;
SiggySetup,Signal,SigDeath
SigElement,SigGlobals

MOVE.L
MOVE.L
BEQ
MOVE.L
MOVE.L
ADD.L
MOVE.L
CMP.L
BNE.S

(SP)+,Al
SigHandle,DO
SigDeath
DO,AO
SigNow,DO
#SigElSize,DO
DO,SigNow
SigEnd,DO
catchit

;grab return address
;handle to table
;if NIL then croak
;put handle in A-register

;save new position
;have we reached the end?
;no, proceed •

ADD.L #SigChunks*SigElSize,DO ;we'll try to expand
MOVE.L DO,SigEnd ;save new (potential) end

SetHandleSize
BEQ.S @O ; jump around if it worked!

;ditto for current position
(SP);we'll signal a "couldn't

catch" error
;never returns of course

;signals,

@O

we use 'ern
MOVE.L
MOVE.L
SUB.L
MOVE.W

JSR

MOVE.L

ourselves
SigNow,SigEnd
#SigElSize,DO
DO,SigNow
#catchSigErr,

Signal

SigNow,DO

;restore old ending offset

catchit MOVE.L
ADD.L
MOVE.L
MOVE.L
CMP.L
BEQ.S
MOVE.L

(AO),AO ;deref.
DO,AO ;point to new entry
SP,SigSP(AO) ;save SP in entry
Al, SigRetAddr (AO) ;save return address there
#SigBigA6,A6 ;are we at the outer level?
@O ;yes, no frame or cleanup needed
FrameRet(A6),SigFRet(AO);save old frame return

address

Technical Note#88 page 4 of6 Signals



;get pointer to element
;get proc's real return address•

@O

Siggypop

LEA
MOVE.L
CLR.W
JMP

JSR
MOVE.L
SUB.L
MOVE.L
JMP
ENDP

Siggypop,AO
AO, FrameRet (A6)
(SP)
(AI)

SiggySetup
SigFRet(AO),AO
#SigElSize,DO
DO,SigNow
(AO)

;set cleanup code address
;no error code (before its time)
;done setting the trap

;"pop" the entry
;gone

FreeSignal PROC
IMPORT
WITH
JSR
MOVE.L
SUB.L
MOVE.L
RTS
ENDP

EXPORT ;PROCEDURE FreeSignal;
SiggySetup
SigElement,SigGlobals
SiggySetup ;get pointer to current entry
SigFRet(AO),FrameRet(A6) ;"pop" cleanup code
#SigElSize,DO
DO,SigNow ;"pop" the entry

EXPORT ;PROCEDURE Signal(code:INTEGER);
SiggySetup,SigDeath
SigElement,SigGlobals
4(SP),DI ;get code
@O ;process the signal if code is non-zero
(SP),AO ;save return address
#6,SP ;adjust stack pointer
(AO) ; return to caller (code was 0)•

Signal

@O

PROC
EXPORT
WITH
MOVE.W
BNE.S
MOVE.L
ADDQ.L
JMP

JSR
BRA.S

SiggySetup
SigLoopl

;get pointer to entry

SigLoop
SigLoopl

UNLK
CMP.L
BLO.S
MOVE.L
MOVE.L
MOVE.W
JMP

A6 ;unlink stack by one frame
SigSP(AO),A6 ;is A6 beyond the saved stack?
SigLoop ;yes, keep unlinking
SigSP(AO),SP ;bring back our SP
SigRetAddr(AO),AO ;get return address
Dl, (SP) ;return code to CatchSignal
(AO) ;Houston, boost the Signal!
; (or Hooston if you're from the Negative Zone)

SiggySetup MOVE.L
MOVE.L
MOVE.L
BEQ.S
MOVE.L
BMI.S
ADD.L
RTS

SigHandle,AO
(AO) ,AO

AO,DO
SigDeath
SigNow,DO
SigDeath
DO,AO

;deref.
;to set CCR
;nil handle means trouble
;grab table offset to entry
;if no entries then give up
;point to current element

•
SigDeath _Debugger

ENDP
END

;a signal sans catch is bad news

Technical Note #88 page 5 of 6 Signals



Nowfor the example Pascal program:

PROGRAM TestSignals;
USES ErrSignal;

VAR i: INTEGER; •
PROCEDURE DoCatch(s:STR255;
BEGIN

IF code<>O THEN BEGIN
Writeln(s,code);
Exit (TestSignals);

END;
END; {DoCatch}

code: INTEGER) ;

{this won't be caught in Never}
{all local CatchSignals are freed when a procedure exits.}

PROCEDURE Easy;
PROCEDURE Never;

PROCEDURE DoCatch(s:STR255; code:INTEGER);
BEGIN

IF code<>O THEN BEGIN
Writeln(s,code);
Exit (Never) ;

END;
END; {DoCatch}

BEGIN {Never}
i:=CatchSignal;
DoCatch('Signal caught from Never, code i );

i:=CatchSignal;
IF i<>O THEN DoCatch('Should never get here! ',i);

FreeSignal; {"free" the last CatchSignal}
Signal(7); {Signal a 7 to the last CatchSignal}
END; {Never}

BEGIN {Easy}
Never;
Signal(69);
END; {Easy}

BEGIN {PROGRAM}
InitSignals; {You must call this early on!}

{catch Signals not otherwise caught by the program}
i:=CatchSignal;
IF i<>O THEN
DoCatch('Signal caught from main, code ',i);

Easy;
END.

The example program produces the following two lines of output:

Signal caught from Never, code = 7
Signal caught from main, code = 69

•

•
Technical Note #88 page 6 of6 Signals



•
Macintosh Technical Notes

#89: DrawPicture Bug

Written by:
Updated:

Ginger Jernigan August 16, 1986
March 1, 1988

•

•

Earlier versions of this note described a bug in DrawPicture. This bug never
occurred on 64K ROM machines, and has been fixed in System 3.2 and
newer. Use of Systems older than 3.2 on non-64K ROM machines is no
longer recommended.

Technical Note #89 page 1 of 1 DrawPicture Bug



•

•

•



Macintosh Technical Notes

• #90: SANE Incompatibilities

Written by:
Updated:

Mark Baumwell August 14, 1986
March 1, 1988

Earlier versions of this note described a problem with SANE and System 2.0.
Use of System 2.0 is only recommended for Macintosh 128 machines, which
contain the 64K ROMs. Information specific to 64K ROM machines has been
deleted from Macintosh Technical Notes for reasons of clarity.

•

•
Technical Note #90 page 1 of 1 SANE Incompatibilities



•

•

•



Macintosh Technical Notes

• #91: Optimizing for the LaserWriter-Picture Comments

See also: The Print Manager
QuickDraw
Technical Note #72-

Optimizing for the LaserWriter-Techniques
Technical Note #27-MacDraw Picture Comments
PostScript Language Reference Manual, Adobe Systems
PostScript Language Tutorial and Cookbook,

Adobe Systems
LaserWriter Reference Manual

Written by:
Modified by:
Updated:

Ginger Jernigan
Ginger Jernigan

November 15, 1986
March 2, 1987
March 1, 1988

•

•

This technical note is a continuation of Technical Note #72. This technicalnote discusses the picture comments that the LaserWriter driver recognizes.

This technical note has been modified to include corrected descriptions ofthe SetLineWidth, PostScriptFile and ResourcePS comments and toinclude some additional warnings.

The implementation of QuickDraw's picComment facility by the LaserWriter driver allowsyou to take advantage of features (like rotated text) which are available in PostScript butmay not be available in QuickDraw.

Warning: Using PostScript-specific comments will make your code printer-dependentand may cause compatibility problems with non-PostScript devices, so don't use themunless you absolutely have to.

Some of the picture comments below are designed to be issued along with QuickDrawcommands that simulate the commented commands on the Macintosh screen. When thecomments are used, the accompanying QuickDraw comments are ignored. If you aredesigning a picture to be printed by the LaserWriter, the structure and use of thesecomments must be precise, otherwise nothing will print. If another printer driver (like theImageWriter 1/11 driver) has not implemented these comments, the comments are ignoredand the accompanying QuickDraw commands are used.

Technical Note #91 page 1 of 18 LaserWriter Picture Comments



Below are the picture comments that the LaserWriter driver recognizes:

* PostScriptBegin 190

* PostScriptEnd 191

* PostScriptHandle 192

* t PostScriptFile 193

* TextIsPostScript 194

*t ResourcePS 195

Type

TextBegin
TextEnd

StringBegin

StringEnd

TextCenter

* LineLayoutOff

* LineLayoutOn

PolyBegin

PolyEnd

PolyIgnore

PolySmooth

picPlyClo

* DashedLine

* DashedStop

* SetLineWidth

**RotateBegin

**RotateEnd

**RotateCenter

Kind

150
151
152
153
154

155
156

160
161
163
164
165

180
181
182

200
201
202

Data Size

6

o
o
o
8

o
o

o
o
o
1

o

o
4

o
o

o
8

4

o
8

Data

TTxtpicRec

NIL
NIL
NIL
TTxtCenter

NIL
NIL

NIL
NIL
NIL
PolyVerb

NIL

TDashedLine

NIL
Point

NIL
NIL
PSData

FileName

NIL
Type/ID/Index

TRotation

NIL
Center

Description

Begin text function

End text function

Begin pieces of original string

End pieces of original string

Offset to center of rotation

Turns LaserWriter line layout off

Turns LaserWriter line layout on

Begin special polygon

End special polygon

Ignore following poly data

Close, Fill, Frame

Close the poly

Draw following lines as dashed

End dashed lines

Set fractional line widths

Set driver state to PostScript

Restore QuickDraw state

PostScript data in handle

FileName in data handle

QuickDraw text is sent as PostScript

PostScript data in a resource file

Begin rotated port

End rotation

Offset to center of rotation

•

•**FormsPrinting 210

**EndFormsPrinting 211

o
o

NIL
NIL

Don't clear print buffer after each page

End forms printing after PrClosePage

*
**

t

These comments are only implemented in LaserWriter driver 3.0 or later.

These comments are only implemented in LaserWriter driver 3.1 or later.

These comments are not available when background printing is enabled.

Each of these comments are discussed below in six groups: Text, Polygons, Lines,

PostScript, Rotation, and Forms. Code examples are given where appropriate. For other

examples of how to use picture comments for printing please see the Print example

program in the Software Supplement (currently available through APDA as "Macintosh

Example Applications and Sources 1.0").

Note: The examples used in the LaserWriter Reference Manual are incorrect. Please

use the examples presented here instead.

•
Technical Note #91 page 2 of 18 LaserWriter Picture Comments



tFlip: Byte;
tRot: INTEGER;
tLine: Byte;
tCmnt: Byte;

END; { TTxtpicRec

•

•

•

Text

In order to support the What-You-See-Is-What-You-Get paradigm, the LaserWriter driver
uses a line layout algorithm to assure that the placement of the line on the printer closely
approximates the placement of the line on the screen. This means that the printer driver
gets the width of the line from QuickDraw, then tells PostScript to place the text in exactly
the same place with the same width.

The TextBegin comment allows the application to specify the layout and the orientation
of the text that follows it by specifying the fol/owing information:

TTxtPicRec = PACKED RECORD
tJus: Byte; {O,1,2,3,4 or greater => none, left, center, right, full

justification }
{O,1,2 => none, horizontal, vertical coordinate flip}
{O •• 360 => clockwise rotation in degrees}
{1,2,3 .. => single, 1-1/2, double .. spacing}
{Reserved }
}

Left, right or center justification, specified by tJust, tells the driver to maintain only the
left, right or center point, without recalculating the interword spacing. Full justification
specifies that both endpoints be maintained and interword spacing be recalculated. This
means that the driver makes sure that the specified points are maintained on the printer
without caring whether the overall width has changed. Full justification means that the
overall width of the line has been maintained. tF lip and tRot specify the orientation of
the text, alloWing the application to take advantage of the rotation features of PostScript.
tLine specifies the interline spacing. When no TextBegin comment is used, the
defaults are full justification, no rotation and single-spaced lines.

String Reconstruction

The StringBegin and StringEnd comments are used to bracket short strings of text
that are actually sections of an original long string. MacDraw, for instance, breaks long
strings into shorter pieces to avoid stack overflow problems with QuickDraw in the 64K
ROM. When these smaller strings are bracketed by StringBegin and StringEnd, the
LaserWriter driver assumes that the enclosed strings are parts of one long string and will
perform its line layout accordingly. Erasing or filling of background rectangles should
take place before the StringBegin comment to avoid confusing the process of putting
the smaller strings back together.

Text Rotation

In order to rotate a text object, PostScript needs to have information concerning the
center of rotation. The TextCenter comment provides this information when a rotation
is specified in the TextBegin comment. This comment contains the offset from the
present pen location to the center of rotation. The offset is given as the y-component,
then the x-component, which are declared as fixed-point numbers. This allows the
center to be in the middle of a pixel. This comment should appear after the TextBegin
comment and before the first following StringBegin comment.

Technical Note#91 page 3 of 18 LaserWriter Picture Comments



The associated comment data looks like this:

TTxtCenter = RECORD
y,x: Fixed; {offset from current pen location to center of rotation}

END; { TTxtCenter }
•

Right after a TextBegin comment, the LaserWriter driver expects to see a TextCenter

comment specifying the center of rotation for any text enclosed within the text comment

calls. It will ignore all further CopyB its calls, and print all standard text calls in the

rotation specified by the information in TTxtP Lcke c. The center of rotation is the offset

from the beginning position of the first string following the TextCenter comment. The

printer driver also expects the string locations to be in the coordinate system of the

current QuickDraw port. The printer driver rotates the entire port to draw the text so it can

draw several strings with one rotation comment and one center comment. It is good

practice to enclose an entire paragraph or paragraphs of text in a single rotation

comment so that the driver makes the fewest number of rotations.

The printer driver can draw non-textual objects within the bounds of the text rotation

comments but it must unrotate to draw the object, then re-rotate to draw the next string of

text. To do this the printer driver must receive another TextCenter comment before

each new rotation. So, rotated text and unrotated objects can be drawn inter-mixed

within one TextBegin/TextEnd comment pair, but performance is slowed.

Note that all bit maps and all clip regions are ignored during text rotation so that clip

regions can be used to clip out the strings on printers that can't take advantage of these

comments. This has the unfortunate side effect of not allowing rotated text to be clipped .

Rotated text comments are not associated with landscape and portrait orientation of the

printer paper as selected by the Page Setup dialog. These are rotations with reference

to the current QuickDraw port only.

All of the above text comments are terminated by a TextEnd comment.

Turning Off Line Layout

If your application is using its own line layout algorithm (it uses its own character widths

or does its own character or word placement), the printer driver doesn't need to do it too.

To turn off line layout, you can use the LineLayoutOff comment. LineLayoutOn turns

it on again.

Turning on FractEnable for the 128K ROMs has the same effect as LineLayoutOff.

When the driver detects that FractEnable has been turned on, line layout is not

performed. The driver assumes that all text being printed is already spaced correctly for

the LaserWriter and just sends it as is.

•

•
Technical Note #91 page 4 of 18 LaserWriter Picture Comments



•

•

•

Polygons

The polygon comments are recognized by the LaserWriter driver because they are used
by MacDraw as an alternate method of defining polygons.

The PolyBegin and PolyEnd comments bracket polygon line segments, giving an
alternate way to specify a polygon. All StdLine calls between these two comments are
part of the polygon. The endpoints of the lines are the vertices of the polygon.

The picP lyClo comment specifies that the current polygon should be closed. This
comes immediately after PolyBegin, if at all. It is not sufficient to simply check for begpt
= endPt, since MacDraw allows you to create a "closed" polygon that isn't really closed.
This comment is especially critical for smooth curves because it can make the difference
between having a sharp corner or not in the curve.

These comments also work with the StdPoly call. If a FillRgn is encountered before
the PolyEnd comment, then the polygon is filled. Unlike QuickDraw polygons, comment
polygons do not require an initial MoveTo call within the scope of the polygon comment.
The polygon will be drawn using the current pen location at the time the polygon
comment is received. The pen must be set before the polygon comment is called.

Splines

A spline is a method used to determine the smallest number of points that define a
curve. In MacDraw, splines are used as a method for smoothing polygons. The vertices
of the underlying unsmoothed polygon are the control nodes for the quadratic B-spline
curve which is drawn. PostScript has a direct facility for cubic B-splines and the
LaserWriter translates the quadratic B-spline nodes it gets into the appropriate nodes for
a cubic B-spline that will exactly emulate the original quadratic B-spline.

The PolySmooth comment specifies that the current polygon should be smoothed. This
comment also contains data that provides a means of specifying which verbs to use on
the smoothed polygon (bits 7 through 3 are not currently assigned):

TPolyVerb = PACKED RECORD
f7, f6, fS, f4, f3, fPolyClose, fPolyFill, fPolyframe : Boolean;

END; { TPolyVerb }

Although the closing information is redundant with the picP lyClo comment, it is
included for the convenience of the LaserWriter.

The LaserWriter uses the pen size at the time the PolyBegin comment is received to
frame the smoothed polygon if framing is called for by the TPolyVerb information. When
the Poly Ignore comment is received by the LaserWriter driver, all further StdLine
calls are ignored until the PolyEnd comment is encountered. For polygons that are to be
smoothed, set the initial pen width to zero after the PolyBegin comment so that the
unsmoothed polygon will not be drawn by other printers not equipped to handle polygon
comments. To fill the polygon, call StdRgn with the fill verb and the appropriate pattern
set, as well as specifying fill in the PolySmooth comment.

Technical Note #91 page 5 of 18 LaserWriter Picture Comments



Lines

The DashedLine and DashedLineStop comments are used to communicate PostScript
information for drawing dashed lines.

The DashedLine comment contains the following additional data: •
TDashedLine = PACKED RECORD

offset: SignedByte;
centered: SignedByte;

dashed: Array[O .. l] of SignedByte;
END; { TDashedLine }

{Offset as specified by PostScript}
{Whether dashed line should be
centered to begin and end points}

{1st byte is # bytes following}

The printer driver sets up the PostScript dashed line command, as defined on page 214
of Adobe's PostScript Language Reference Manual, using the parameters specified in
the comment. You can specify that the dashed line be centered between the begin and
end points of the lines by making the centered field nonzero.

The SetLineWidth comment allows you to set the pen width of all subsequent objects
drawn. The additional data is a point. The vertical portion of the point is the numerator
and the horizontal portion is the denominator of the scaling factor that the horizontal and
vertical components of the pen are then multiplied by to obtain the new pen width. For
example, if you have a pen size of 1,2 and in your line width comment you use 2 for the
horizontal of the point and 7 for the vertical, the pen size will then be (7/2)*1 pixels wide
and (7/2)*2 pixels high.

Below is an example of how to use the line comments:

PROCEDURE LineTest;
{This procedure shows how to do dashed lines and how to change the line width}
CONST

DashedLine = 180;
DashedStop = 181;
SetLineWidth = 182;

•
TYPE

DashedHdl ADashedPtr;
DashedPtr ATDashedLine;
TDashedLine = PACKED RECORD

offset: SignedByte;
Centered: SignedByte;
dashed: Array[O .. l] of SignedByte;

END; { TDashedLine }
widhdl = Awidptr;
widptr = Awidpt;
widpt = Point;

{ the Oth element is the length }

VAR
arect
Width
dashedln

recti
Widhdl;
DashedHdl; •

Technical Note#91 page 6 of 18 LaserWriter Picture Comments



•

•

•

BEGIN {LineTest}
Dashedln := dashedhdl(NewHandle(sizeof(tdashedline»);
DashedlnAA.offset := 0; ( No offset}
DashedlnAA.centered := 0; ( don't center)
DashedlnAA.dashed[O] . = 1; {this is the length }
DashedlnAA.dashed[1] := 8; {this means 8 points on, 8 points off}

Width := widhdl(NewHandle(sizeof(widpt»);
WidthAA.h := 2; { denominator is 2}
WidthAA.V := 7; { numerator is 7}

myPic := OpenPicture(theWorld);
SetPen(1,2); { Set the pen size to 1 wide x 2 high}
ClipRect(theWorld);
MoveTo(20,20);
DrawString('Do line test');
PicComment(DashedLine,GetHandleSize(Handle(dashedln»,Handle(dashedln»;
PicComment(SetLineWidth,4,Handle(width»; {SetLineWidth}
SetRect(arect,100,100,500,500);
FrameRect(aRect);
MoveTo(500,500);
Lineto(lOO,lOO);
PicComment(DashedStop,O,nil); {DashedStop}

ClosePicture;
DisposHandle(handle(width»; {Clean up}
DisposHandle(handle(dashedln»;
PrintThepicture; {print it please}
KillPicture(Mypic);

END; {LineTest}

Technical Note #91 page 7 of18 LaserWriter Picture Comments



PostScript

The PostScript comments tell the printer driver that the application is going to be
communicating with the LaserWriter directly using PostScript commands instead of •
QuickDraw. The driver sends the accompanying PostScript to the printer with no
preprocessing and no error checking. The application can specify data in the comment
handle itself or point to another file which contains text to send to the printer. When the
application is finished sending PostScript, the PostScriptEnd comment tells the printer
driver to resume normal QuickDraw mode.

Any Quickdraw drawing commands made by the application between the
PostScriptBegin and PostScriptEnd comments will be ignored by PostScript
printers. In order to use PostScript in a device independent way, you should always
include two representations of your document. The first representation should be a
series of Quickdraw drawing commands. The second representation of your document
should be a series of PostScript commands, sent to the Printing Manager via picture
comments. This way, when you are printing to a PostScript device, the picture comments
will be executed, and the Quickdraw commands ignored. When printing to a
non-PostScript device, the picture comments will be ignored, and the Quickdraw
commands will be executed. This method allows you to use PostScript, without having
to ask the device if it supports it. This allows your application to get the best results with
any printer, without being device dependent.

Here are some guidelines you need to remember:

• The graphic state set up during QuickDraw calls is maintained and is not affected by •
PostScript calls made with these comments.

• The header has changed a number of parameters so sometimes you won't get the
results you expect. You may want to take a look at the header listed in The LaserWriter
Reference Manual available through APDA.

• The header changes the PostScript coordinate system so that the origin is at the
top-left corner of the page instead of at the bottom-left corner. This is done so that the
QuickDraw coordinates that are used don't have to be remapped into the standard
PostScript coordinate system. If you don't allow for this, all drawing is printed upside
down. Please see the PostScript Language Reference Manual for details about
transformation matrices.

• Don't call showpage. This is done for you by the driver. If you do, you won't be able to
switch back to QuickDraw mode and an additional page will be printed when you call
PrClosePage.

• Don't call exit server. You may get very strange results.
• Don't call initgraphics. Graphics states are already set up by the header.

• Don't do anything that you expect to live across jobs.

• You won't be able to interrogate the printer to get information back through the driver. •
Technical Note#91 page 8 of 18 LaserWriter Picture Comments



•

•

The PostScriptBegin comment sets the driver state to prepare for the generation of
PostScript by the application by calling gsave to save the current state. PostScript is
then sent to the printer by using comments 192 through 195. The QuickDraw state of the
driver is then restored by the PostScriptEnd comment. All QuickDraw operations that
occur outside of these comments are performed; no clipping occurs as with the text
rotation comments.

PostScript From a Text Handle

When the PostScriptHandle comment is used, the handle PSData points to the
PostScript commands which are sent. PSData is a generic handle that points to text,
without a length byte. The text is terminated by a carriage return. This comment is
terminated by a PostScriptEnd comment.

Note: Due to a bug in the 3.1 LaserWriter driver, PostScriptEnd will not restore the
QuickDraw state after the use of a PostScriptHandle comment. The workaround is to
only use this comment at the end of your drawing, after you have made all the
QuickDraw calls you need. This problem is fixed in more recent versions of the driver.

Here's an example of how to use this comment:

PROCEDURE PostHdl;
{this procedure shows how to use PostScript from a text Handle}
CONST

PostScriptBegin = 190;
PostScriptEnd = 191;
PostScriptHandle = 192;

VAR

MyString
tempstr
MyHandle
err

Str255;
String[l];
Handle;
OSErr;

{Clean up}
{print it please}

•

BEGIN { PostHdl }
MyString := '/Times-Roman findfont 12 scalefont setfont 230 600 moveto

(Hello World) show';
tempstr:=' ';
tempstr[l] := chr(13); {has to be terminated by a carriage return}
MyString := Concat(MyString, tempstr); { in order for it to execute}
err := PtrToHand (Pointer(ord(@myString)+l), MyHandle, length(MyString»;
MyPic := Openpicture(theWorld);

ClipRect(theWorld);
MoveTo(20,20);
DrawString('PostScript from a Handle');
PicComment(PostScriptBegin,O,nil); {Begin PostScript}
PicComment(PostScriptHandle,length(mystring),MyHandle);
PicComment(PostScriptEnd,O,nil); {PostScript End}

ClosePicture;
DisposHandle(MyHandle);
PrintThePicture;
KiIIPicture(MyPic);

END; { PostHdl }

Technical Note #91 page 9 of 18 LaserWriter Picture Comments



Defining PostScript as QuickDraw Text

All QuickDraw text following the Text IsPostScr ipt comment is sent as PostScript. No
error checking is performed. This comment is terminated by a PostScriptEnd
comment.

Here is an example:

PROCEDURE PostTexti
{Shows how to use PostScript in strings in a QuickDraw picture}
CONST

PostScriptBegin = 190i
PostScriptEnd = 191i
TextIsPostScript = 194;

•

BEGIN { PostTest }
MyPic := Openpicture(theWorld)i

ClipRect(theWorld)i
MoveTo(20,20)i
DrawString('TextIsPostScript Comment')i
PicComment(PostScriptBegin,O,nil)i
PicComment(TextIspostScript,O,nil)i

DrawString('O 728 translate')i
DrawString('l -1 scale')i

{Begin PostScript}
{following text is PostScript}

{move the origin and rotate the}
{coordinate system}

DrawString('newpath')i
DrawString('100 470 moveto')i
DrawString('500 470 lineto')i
DrawString('100 330 moveto')i
DrawString('500 330 lineto')i
DrawString('230 600 moveto')i
DrawString('230 200 lineto')i
DrawString('370 600 moveto')i
DrawString('370 200 lineto')i
DrawString('10 setlinewidth')i
DrawString('stroke')i
DrawString('/Times-Roman findfont 12 scalefont setfont')i
DrawString('230 600 moveto')i
DrawString(' (Hello World) ShOW')i

PicComment(PostScriptEnd,O,nil)i {PostScriptEnd}
ClosePicturei
PrintThePicturei {print it please}
KiIIPicture(MyPic)i

ENDi { PostText }

•

•
Technical Note #91 page 100f 18 LaserWriter Picture Comments



•

•

•

PostScript From a File

The PostScriptFile and ResourcePS comments allow you to send PostScript to the
printer from a resource file. Before these comments are described there are some
restrictions you need to follow:

• Don't ever copy a picture containing these comments to the clipboard. If it is pasted
into another application and the specified file or resource is not available, printing will
be aborted and the user won't know what went wrong. This could be very confusing to
a user. If you want the PostScript information to be available when printed from
another application, use one of the other comments and include the information in the
picture.

• Don't keep the PostScript in a separate file from the actual data file. If the data file
ever gets moved without the PostScript file, when the picture is printed the data file
may not be found and the print job will be aborted, again without the user knowing
what went wrong. Keeping the data and PostScript in the same file will forestall many
headaches for you and the user.

Now, a description of the comments:

The PostScriptFile comment tells the driver to use the POST type resources
contained in the file FileNameString. FileNameString is declared as a Str255.

When this comment is encountered, the driver calls OpenResF ile using the file name
specified in FileNameString. It then calls GetResource (' POST', theID) ;
repeatedly, where the I D begins at 501 and is incremented by one for each
GetResource call. If the driver gets a ResNotFound error, it closes the specified
resource file. If the first byte of the resource is a 3, 4, or 5 then the remaining data is sent
and the file is closed.

The format of the POST resource is as follows: The IDs of the resources start at 501 and
are incremented by one for each resource. Each resource begins with a 2 byte data field
containing the data type in the first byte and a zero in the second. The possible values
for the first byte are:

o ignore the rest of this resource (a comment)
1 data is ASCII text
2 data is binary and is first converted to ASCII before being sent
3 AppleTalk end of file. The rest of the data, if there is any, is interpreted as ASCII text

and will be sent after the EOF.
4 open the data fork of the current resource file and send the ASCII text there
5 end of the resource file

The second byte of the field must always be zero. Resources should be kept small,
around 2K. Text and binary should not be mixed in the same resource. Make sure you
include either a space or a return at the end of each PostScript string to separate it from
the following command.

Technical Note #91 page 110f 18 LaserWriter Picture Comments



Here's an example:

PROCEDURE PostFile;
{This procedure shows how to use PostScript from a specified FILE}
CONST

PostScriptBegin = 190;
PostScriptFile = 193;
PostScriptEnd = 191; •

VAR
MyString
MyHandle
err

Str255;
Handle;
OSErr;

BEGIN {PostFile}
{You should never do this in a real program. This is only a test.}
MyString := 'HardDisk:MPW:Print Examples:PSTestDoc';
err := PtrToHand(pointer(MyString),MyHandle,length(MyString) + 1);
MyPic := OpenPicture(theWorld);
ClipRect(theWorld);
MoveTo(20,20);
DrawString('PostScriptFile Comment');
PicComment(PostScriptBegin,O,nil); {Begin PostScript}
PicComment(postScriptFile,GetHandleSize(MyHandle),MyHandIe);
PicComment(PostScriptEnd,O,nil); {PostScriptEnd}
MoveTo(50,50);
DrawString('postScriptEnd has terminated');
ClosePicture;
DisposHandle(MyHandle); {Clean up}
PrintthePicture; {print it please}
KiIIPicture(MyPic);

END; {PostFile}

Here are the resources:
•

type 'POST' {
switch {

case Comment:
key bitstring[8]
fill byte;
string;

/* this is a comment */
0;

case ASCII: /* this is just ASCII text */
key bitstring[8] = 1;
fill byte;
string;

case Bin: /* this is binary */
key bitstring[8] = 2;
fill byte;
string;

case ATEOF: /* this is an AppleTalk EOF */
key bitstring[8] = 3;
fill byte;
string; •

Technical Note #91 page 120f 18 LaserWriter Picture Comments



•
} ;

case DataFork:
key bitstring[8]
fill byte;

case EOF:
key bitstring[8]
fill byte;

} ;

/* send the text in the data fork */
= 4;

/* no more */
= 5;

•

•

resource 'POST' (501) {
ASCII{"O 728 translate "}};

resource 'POST' (502) {
ASCII{"l -1 scale "}};

resource 'POST' (503)
ASCII{"newpath "}};

resource 'POST' (504)
ASCII{"100 470 moveto "}};

resource 'POST' (505)
ASCII{"500 470 lineto "}};

resource 'POST' (506)
ASCII{"100 330 moveto "}};

resource 'POST' (507)
ASCII{"500 330 lineto "}};

resource 'POST' (508)
ASCII{"230 600 moveto "}};

resource 'POST' (509)
ASCII{"230 200 lineto "}};

resource 'POST' (510)
ASCII{"370 600 moveto "}};

resource 'POST' (511)
ASCII{"370 200 lineto "}};

resource 'POST' (512) {
ASCII{"10 setlinewidth "}};

resource 'POST' (513)
ASCII{"stroke "}};

resource 'POST' (514) {
ASCII{"/Times-Roman findfont 12 scalefont set font "}};

resource 'POST' (515)
ASCII{"230 600 moveto "}};

resource 'POST' (516) (
ASCII{" (Hello World) show"}};

Technical Note #91 page 130f 18 LaserWriter Picture Comments



/* It will stop reading and close the file after 517 */
resource 'POST' (517) {
EOF
{ } } ;

/* it never gets here */
resource 'POST' (518) {
DataFork
{ } } ;

When the ResourcePS comment is encountered, the LaserWriter driver sends the text
contained in the specified resource as PostScript to the printer. The additional data is
defined as

•
PSRsrc RECORD

PSType
PSID
PSIndex:

END;

Res Type;
INTEGER;
INTEGER;

The resource can be of type STR or STR#. If the Type is STR then the index should be O.
Otherwise an index should be given.

This comment is essentially the same as the PrintF control call to the driver. The
imbedded command string it uses is I "'r"'n', which basically tells the driver to send the
string specified by the additional data, then send a newline. For more information about
printer control calls see the LaserWriter Reference Manual.

Here's an example:

PROCEDURE PostRSRC;
{This procedure shows how to get PostScript from a resource FILE}

CONST
PostScriptBegin = 190;
PostScriptEnd = 191;
ResourcePS = 195;

TYPE
theRSRChdl = AtheRSRCptr;
theRSRCptr = AtheRSRC;
theRSRC = RECORD

theType: ResType;
theID: INTEGER;
Index: INTEGER;

END;

•

VAR
temp
TheResource
i, j
myport
err
atemp

Technical Note #91

Rect;
theRSRChdl;
INTEGER;
GrafPtr;
INTEGER;
Boolean;

page 140f 18 LaserWriter Picture Comments

•



•

•

•

BEGIN { PostRSRC }
TheResource := theRSRChdl(NewHandle(SizeOf(theRSRC)));
TheResourceAA.theID := 500;
TheResourceAA.Index := 0;
TheResourceAA.theType := 'STR ';
HLock(Handle(TheResource));
MyPic := OpenPicture(theWorld);
DrawString('ResourcePS Comment');
PicComment(PostScriptBegin,O,nil); {Begin PostScript}
PicComment(ResourcePS,8,Handle(TheResource)); {Send postscript}
PicComment(PostScriptEnd,O,nil); {PostScriptEnd}
ClosePicture;
DisposHandle(Handle(TheResource)); {Clean up}
PrintthePicture; {print it please}
KiIIPicture(Mypic);

END; { PostRSRC

Here's the resource:

resource 'STR ' (500)
{"O 728 translate I -1 scale newpath 100 470 moveto 500 470 lineto 100 330
moveto 500 330 lineto 230 600 moveto 230 200 lineto 370 600 moveto 370 200
lineto 10 setlinewidth stroke /Times-Roman findfont 12 scalefont set font 230
600 moveto (Hello World) show"
} ;

Technical Note #91 page 150f18 LaserWriter Picture Comments



Rotation

The concept of rotation doesn't apply to text alone. PostScript can rotate any object. The
rotation comments work exactly like text rotation except that all objects drawn between •
the two comments are drawn in the rotated coordinate system specified by the center of
rotation comment, not just text. Also, no clipping of CopyB its calls occurs. These
comments only work on the 3.1 and newer LaserWriter drivers.

The RotateBegin comment tells the driver that the following objects will be drawn in a
rotated plane. This comment contains the following data structure:

Rotation = RECORD
Flip: INTEGER; {0,1,2 => none, horizontal, vertical coordinate flip}
Angle: INTEGER; {0 .. 360 => clockwise rotation in degrees}

END; { Rotation }

When you are finished, the RotateEnd comment returns the coordinate system to
normal, terminating the rotation.

The relative center of rotation is specified by the RotateCenter comment in exactly
the same manner as the TextCenter comments. The difference, however, is that this
comment must appear before the RotateBegin comment. The data structure of the
accompanying handle is exactly like that for the TextCenter comment.

Here's an example of how to use rotation comments:

PROCEDURE Test;
{This procedure shows how to do rotations}
CONST

RotateBegin = 200;
RotateEnd = 201;
RotateCenter = 202;

TYPE
rothdl = Arotptr;
rotptr = Atrot;
trot = RECORD

flip : INTEGER;
Angle : INTEGER;

END; { trot }
centhdl = Acentptr;
centptr = Acent;
Cent = PACKED RECORD

yInt: INTEGER;
yFrac: INTEGER;
xInt: INTEGER;
xFrac: INTEGER;

END; Cent}

•

VAR
arect
rotation
center

Technical Note #91

Rect;
rothdl;
centhdl;

page 160118 LaserWriter Picture Comments

•



{no flip}
{15 degree rotation}•

BEGIN { Test }
rotation := rothdl(NewHandle(sizeof(trot)));
rotationAA.flip := 0;
rotationAA.angle := 15;

center ;= centhdl(NewHandle(sizeof(cent)));
centerAA.xInt := 50;
centerAA.yInt ;= 50;
centerAA.xFrac ;= 0;
centerAA.yFrac ;= 0;

myPic := OpenPicture(theWorld);
ClipRect(theWorld);
MoveTo(20,20);
DrawString('Begin Rotation');

{center at 50,50}

{no fractional part}

•

•

{set the center of Rotation}
PicComment(RotateCenter,GetHandleSize(Handle(center)),Handle(center));
{Begin Rotation}

PicComment(RotateBegin,GetHandleSize(Handle(rotation)),Handle(rotation));
SetRect(arect,100,100,500,500);
FrameRect(aRect);
MoveTo(500,500);
Lineto(100,100);
PicComment(RotateEnd,O,nil); {RotateEnd}

ClosePicture;
DisposHandle(handle(rotation)); {Clean up}
DisposHandle(handle(center));
PrintThePicture; {print

it please}
KillPicture(MyPic);

END; { Test }

Technical Note #91 page 170f18 LaserWriter Picture Comments



Forms

The two form printing comments allow you to prepare a template to use for printing.
When the FormsBegin comment is used, the LaserWriter's buffer is not cleared after •
PrClosePage. This allows you to download a form then change it for each subsequent
page, inserting the information you want. FormsEnd allows the buffer to be cleared at
the next PrClosePage.

•

•
Technical Note #91 page 180f 18 LaserWriter Picture Comments



•
Macintosh Technical Notes

#92: The Appearance of Text

See also: The Printing Manager
The Font Manager
Technical Note #91-

Optimizing for the LaserWriter-Picture Comments

Written by:
Updated:

Ginger Jernigan November 15, 1986
March 1, 1988

•

•

This technical note describes why text doesn't always look the way you
expect depending on the environment you are in.

There are a number of Macintosh text editing applications where layout is critical.
Unfortunately, text on a newer machine sometimes prints differently than text on a 64K
ROM Macintosh. Let's examine some differences you should expect and why.

The differences we will consider here are only differences in the layout of text lines (line
layout), not differences in the appearance of fonts or the differences between different
printers. Differences in line layout may affect the position of line, paragraph and page
breaks. The four variables that can affect line layout are fonts, the printer driver, the font
manager mode, and ROMs.

Fonts

Every font on a Macintosh contains its own table of widths which tells QuickDraw how
wide characters are on the screen. For every style point size there is a separate table
which may contain widths that vary from face to face and from point size to point size.
Character widths can vary between point sizes of characters even in the same face. In
other words, fonts on the screen are not necessarily linearly scalable.

Non-linearity is not normally a problem since most fonts are designed to be as close to
linear as possible. A font face in 6 point has very nearly the same scaled widths of the
same font face in 24 point (plus or minus round-off or truncation differences).
QuickDraw, however, requires only one face of any particular font to be in the System
file to use it in any point size. If only a 10 point face actually exists, QuickDraw may scale
that face to 9, 18, 24 (or whatever point size) by performing a linear scale of the 10 point
face.

Technical Note #92 page 1 of 3 The Appearance of Text



This can cause problems. Suppose a document is created on one Macintosh containing
a font that only exists in that System file in one point size, say 9 point. The document is
then taken to another Macintosh with a System file containing that same font but only in
24 point. The document may, in fact, appear differently on the two screens, and when it •
is printed, will have line breaks (and thus paragraph and page breaks) occurring in
different places simply because of the differences in character widths that exist between
the 9 point and 24 point faces.

The Printer Driver

Even when the printer you are using has a much higher resolution than what the screen
can show, printer drivers perform line layout to match the screen layout as closely as
possible.

The line layout performed by printer drivers is limited to single lines of text and does not
change line break positions within multiple lines. The driver supplies metric information
to the application about the page size and printable area to allow the application to
determine the best place to make line and page breaks.

Printer driver line layout does affect word spacing, character spacing and even word
positioning within a line. This may affect the overall appearance of text, particularly
when font substitutions are made or various forms of page or text scaling are involved.
But print drivers NEVER change line, paragraph or page break positions from what the
application or screen specified. This means that where line breaks appear on the
screen, they will always appear in the same place on the printer regardless of how the •
line layout may affect the appearance within the line.

Operating System and ROMs

In this context, operating system refers to the ROM trap routines which handle fonts and
QuickDraw. Changes have occurred between the ROMs in the handling of fonts. Fonts
in the 64K ROMs contain width tables (as described above) which are limited to integer
values. Several new tables, however, have been added to fonts for the newer ROMs.
The newer ROMs add an optional global width table containing fractional or fixed point
decimal values. In addition, there is another optional table containing fractional values
which can be scaled for the entire range of point sizes for anyone face. There is also an
optional table which provides for the addition (or removal) of width to a font when its
style is changed to another value such as bold, outline or condensed. It is also possible,
under the 128K ROMs, to add fonts to the system with inherent style properties
containing their own width tables that produce different character widths from derived
style widths.

•
Technical Note #92 page 2 ot3 The Appearance ot Text



•

•

•

One or all of the above tables mayor may not be invoked depending on, first, their
presence, and second, the mode of the operating system. The Font Manager in the
newer ROMs allows the application to arbitrarily operate in either the fractional mode or
integer mode (determined, in most cases, by the setting of FractEnable) as it chooses,
with the default being integer. There is one case where fractional widths will be used if
they exist even though fractional mode is disabled. When FScaleDisable is used
fractional widths are always used if they exist regardless of the setting of FractEnable.

Differences in line layout (and thus line breaks) may be affected by any combination of
the presence or absence of the optional tables, and the operating mode, either fractional
or integer, of the application. Any of the combinations can produce different results from
the original ROMs (and from each other).

The integer mode on the newer ROMs is very similar to, but not exactly the same as, the
original 64K ROMs. When fonts with the optional tables present are used on
Macintoshes with 64K ROMs, they continue to work in the old way with the integer
widths. However, on newer ROMs, even in the integer mode, there may be variations in
line width from what is seen on the old ROMs. In the plain text style there is very little if
any difference (except if the global width table is present), but as various type styles are
selected, line widths may vary more between ROMs.

Variations in the above options, by far, account for the greatest variation in the
appearance of lines when a document is transported between one Macintosh and
another. Line breaks may change position when documents created on one system (say
a Macintosh) are moved to another system (like a Macintosh Plus). Variations are more
pronounced as the number and sizes of various type styles increase within a document.

In all cases, however, a printer driver will produce exactly the same line breaks as
appear on the screen with any given system combination.

Technical Note #92 page 3 of3 The Appearance of Text



•

•

•



•
Macintosh Technical Notes

#93: MPW: {$LOAD}; _Datalnit;%_MethTables

See also:

Written by:
Modified by:
Updated:

MPW Reference Manuals

Jim Friedlander
Jim Friedlander

November 15, 1986
January 12, 1987
March 1, 1988

•

•

This technical note discusses the Pascal {$LOAD} directive as well as how to
unload the Datalnit and % MethTables segments.- -

{$LOAD}

MPW Pascal has a {$LOAD} directive that can dramatically speed up compiles.

{$LOAD HD:MPW:PLibraries:PasSymDump}

will combine symbol tables of all units following this directive (until another {$ LOAD}
directive is encountered), and dump them out to HD : MPW: PLibraries : PasSymDump. In
order to avoid using fully specified pathnames, you can use {$LOAD} in conjunction with
the -k option for Pascal:

Pascal -k I{PLibraries}" myfile

combined with the following lines in myfile:

USES
{$LOAD PaSSymDump}

MemTypes,QuickDraw, OSIntf, Toollntf, Packlntf,
{$LOAD} {This ~turns off" $LOAD for the next unit}

NonOptimized,
{$LOAD MyLibDump}

Myt.ib;

will do the following: the first time a program containing these lines is compiled, two
symbol table dump files (in this case PasSymDump and MyLibDump) will be created in
the directory specified by the -k option (in this case {PLibraries}). No dump file will
be generated for the unit NonOptimized. The compiler will compile MemTypes,
QuickDraw, OSIntf, Toollntf, Packlntf (quite time consuming) and dump those
units' symbols to PasSymDump and it will compile the interface to MyLib and dump its
symbols to MyLib. For subsequent compiles of this program (or any program that uses
the same dump file(s)), the interface files won't be recompiled, the compiler will simply
read in the symbol table.

Technical Note #93 page 1 of 3 MPW: {$LOAD} ;_Datalnit;%_MethTables



Compiling a sample five line program on a Macintosh Plus/HD20SC takes 62 seconds
without using the {$LOAD} directive. The same program takes 10 seconds to compile
using the {$LOAD} directive (once the dump file exists). For further details about this
topic, please see the MPW Pascal Reference Manual.

Note: If any of the units that are dumped into a dump file change, you need to make
sure that the dump file is deleted, so that it can be regenerated by the Pascal compiler
with the correct information. The best way to do this is to use a makefile to check the
dump file against the files it depends on, and delete the dump file if it is out of date with
respect to any of the units that it contains. An excellent (and well commented) example
of doing this is in the MPW Workshop Manual.

The _Datalnit Segment

The Linker will generate a segment whose resource name is %A5Init for any program
compiled by the C or Pascal compilers. This segment is called by a program's main
segment. This segment is loaded into the application heap and locked in place. It is up
to your program to unload this segment (otherwise, it will remain locked in memory,
possibly causing heap fragmentation). To do this from Pascal, use the following lines:

PROCEDURE _DataInitiEXTERNALi

BEGIN {main PROGRAM}
UnloadSeg(@_DataInit)i
{remove data initialization code before any allocations}

From C, use the following lines:

extern _DataInit()i

{ /* main */
UnloadSeg(_DataInit)i
/*remove data initialization code before any allocations*/

For further details about Data Initialization, see the MPW Reference Manual.

•

•

•
Technical Note #93 page 2 of 3 MPW: {$LOAD} ;_Datalnit;%_MethTables



•

•

•

0/0 MethTables and % SelProcs

Object use in Pascal produces two segments which can cause heap problems. These
are % MethTables and % SelProcs which are used when method calls are made.- -
MacApp deals with them correctly, so this only applies to Object Pascal programs that
don't use MacApp. You can make the segments locked and preloaded (probably the
easiest route), so they will be loaded low in the heap, or you can unload them
temporarily while you are doing heap initialization. In the latter case, make sure there
are no method calls while they are unloaded. To reload %_MethTables and
%_SelProcs, call the dummy procedure %_InitObj. %_InitObj loads %MethTables
-calling any method will then load %_SelProcs.

Reminder: The linker is case sensitive when dealing with module names. Pascal
converts all module names to upper-case (unless a routine is declared to be a C
routine). The Assembler default is the same as the Pascal default, though it can be
changed with the CASE directive. C preserves the case of module names (unless a
routine is declared to be pascal, in which case the module name is converted to upper
case letters).

Make sure that any external routines that you reference are capitalized the same in both
the external routine and the external declaration (especially in C). If the capitalization
differs, you will get the following link error (library routine = f indrne, program declaration
=extern F indMe () ; ):

fff Link: Error Undefined entry, name: FindMe

Technical Note #93 page 3 of3 MPW: {$LOAD} ;_Datalnit;%_MethTables



•

•

•



Macintosh Technical Notes

• #94: Tags

See also: The File Manager

Written by: Bryan Stearns November 15, 1986
Updated: March 1, 1988

Apple has decided to eliminate support for file-system tags on its future
products; this technical note explains this decision.

Some of Apple's disk products (and some third-party products) have the ability to store
532 bytes per sector, instead of the normal 512. Twelve of the extra bytes are used to
store redundant file system information, known as "tags", to be used by a scavenging
utility to reconstruct damaged disks.

•

•

Apple has decided to eliminate support for these tags on its products; this was decided
for several reasons:

1) Tags were implemented back when we had to deal with "Twiggy" drives on Lisa.
These drives were less reliable than current drives, and it was expected that tags would
be needed for data integrity.

2) We're working on a scavenging utility (Disk First Aid), and we've found that tags don't
help us in reconstructing damaged disks (ie, if we can't fix it without using tags, tags
wouldn't help us fix it). So, at least the first two versions of our scavenging utility will not
use tags, and a third version (which we've planned for, but will probably never
implement) can probably work without them.

3) 532-byte-per-sector drives and controllers tend to cost more, even at Apple's
volumes. Thus, the demise of tags saves us (and our customers) money. The Apple
Hard Disk 20SC currently supports tags; this may not always be the case, however; we'll
probably drop the large sectors when we run out of our current stock of drives.

The Hierarchical File System (HFS) documentation didn't talk about tags because the
writer had no information available about how they worked under HFS. Because of this
decision, it is unlikely that we'll ever have documentation on how to correctly implement
them under HFS.

Technical Note #94 page 1 of 1 Tags



•

•

•



•
Macintosh Technical Notes

#95: How To Add Items to the Print Dialogs

See also:

Written by:

Updated:

The Printing Manager
The Dialog Manager

Ginger Jernigan
Lew Rollins

November 15, 1986

March 1, 1988

•

•

This technical note discusses how to add your own items to the Printing
Manager's dialogs.

When the Printing Manager was initially designed, great care was taken to make the
interface to the printer drivers as generic as possible in order to allow applications to
print without being device-specific. There are times, however, when this type of
non-specific interface interferes with the flexibility of an application. An application may
require additional information before printing which is not part of the general Printing
Manager interface. This technical note describes a method that an application can use
to add its own items to the existing style and job dialogs.

Before continuing, you need to be aware of some guidelines that will increase your
chances of being compatible with the printing architecture in the future:

• Only add items to the dialogs as described in this technical note. Any other methods
will decrease your chances of survival in the future.

• Do not change the position of any item in the current dialogs. This means don't
delete items from the existing item list or add items in the middle. Add items only at
the end of the list.

• Don't count on an item retaining its current position in the list. If you depend on the
Draft button being a particular number in the ImageWriter's style dialog item list, and
we change the Draft button's item number for some reason, your program may no
longer function correctly.

• Don't use more than half the screen height for your items. Apple reserves the right to
expand the items in the standard print dialogs to fill the top half of the screen.

• If you are adding lots of items to the dialogs (which may confuse users), you should
consider having your own separate dialog in addition to the existing Printing
Manager dialogs.

Technical Note #95 page 1 of 14 How To Add Items to the Print Dialogs



The Heart

Before we talk about how the dialogs work, you need to know this: at the heart of the
printer dialogs is a little-known data structure partially documented in the MacPrint •
interface file. It's a record called TP rD Lq and it looks like this:

TPrDlg = RECORD {Print Dialog: The Dialog Stream object.}
dIg DialogRecord; {dialog window}
pFltrProc ProcPtr; {filter proc.}
pItemProc ProcPtr; {item evaluating proc.}
hPrintUsr THPrint; {user's print record.}
fDoIt BOOLEAN;
fDone BOOLEAN;
IUserl LONGINT; {four longs reserved by Apple}
IUser2 LONGINT;
IUser3 LONGINT;
IUser4 LONGINT;
iNumFst INTEGER; {numeric edit items for std filter}
iNumLst INTEGER;

{ ... plus more stuff needed by the particular printing dialog.}
END;
TPPrDlg = ATPrDlg; {== a dialog ptr}

All of the information pertaining to a print dialog is kept in the TPrDlg record. This record
will be referred to frequently in the discussion below.

How the Dialogs Work

When your application calls PrStlDiaIog and PrJobDialog, the printer driver actually
calls a routine called PrDlgMain. This function is declared as follows:

FUNCTION PrDlgMain (hprint: THPrint; pDlgInit: ProcPtr): BOOLEAN;

PrDlgMain first calls the pDIglnit routine to set up the appropriate dialog (in DIg),
dialog hook (pltemProc) and dialog event filter (pFiIterProc) in the TPrDlg record
(shown above). For the job dialog, the address of PrJoblnit is passed to PrDlgMain.
For the style dialog, the address of PrStllnit is passed. These routines are declared
as follows:

FUNCTION PrJobInit (hPrint: THPrint): TPPrDlg;
FUNCTION PrStlInit (hPrint: THPrint): TPPrDlg;

After the initialization routine sets up the TPrDlg record, PrDlgMain calls ShowWindow
(the window is initially invisible), then it calls ModalDialog, using the dialog event filter
pointed to by the pFItrProc field. When an item is hit, the routine pointed to by the
pltemProc field is called and the items are handled appropriately. When the OK button
is hit (this includes pressing Return or Enter) the print record is validated. The print
record is not validated if the Cancel button is hit.

•

Technical Note #95 page 2 of14 How To Add Items tothe Print Dialogs



•

•

How to Add Your Own Items

To modify the print dialogs, you need to change the TPrDlg record before the dialog is
drawn on the screen. You can add your own items to the item list, replace the addresses
of the standard dialog hook and event filter with the addresses of your own routines and
then let the dialog code continue on its merry way.

For example, to modify the job dialog, first call PrJobInit. PrJobInit will fill in the
TPrDlg record for you and return a pointer to that record. Then call PrDlgMain directly,
passing in the address of your own initialization function. The example code's
initialization function adds items to the dialog item list, saves the address of the standard
dialog hook (in our global variable prPItemProc) and puts the address of our dialog
hook into the pIt emP roc field of the TP rD 19 record. Please note that your dialog hook
must call the standard dialog hook to handle all of the standard dialog's items.

Note: If you wish to have an event filter, handle it the same way that you do a dialog
hook.

Now, here is an example (written in MPW Pascal) that modifies the job dialog. The same
code works for the style dialog if you globally replace 'Job' with 'Stl'. Also included is a
function (AppendDITL) provided by Lew Rollins (originally written in C, translated for this
technical note to MPW Pascal) which demonstrates a method of adding items to the item
list, placing them in an appropriate place, and expanding the dialog window's rectangle.

The MPW Pascal Example Program

PROGRAM ModifyDialogs;

USES
{$LOAD PasDump.dump}
MemTypes, QuickDraw, OSIntf, ToolIntf,PackIntf,MacPrint;

CaNST
MyDITL = 256;
MyDFirstBox 1;
MyDSecondBox = 2;

{Item number of first box in my DITL}

•

VAR
PrtJobDialog: TPPrDlg; {pointer to job dialog }
hPrintRec : THPrint; {Handle to print record }
FirstBoxValue, { value of our first additional box }
SecondBoxValue: Integer; { value of our second addtl. box
prFirstItem, { save our first item here }
prPItemProc : LongInt; {we need to store the old itemProc here
itemType : Integer; {needed for GetDItem/SetDItem calls }
itemH : Handle;
itemBox : Rect;
err OSErr;
{------------------------------------------------------------------------}

PROCEDURE _DataInit;
EXTERNAL;

Technical Note #95 page 3 of 14 How To Add Items to the Print Dialogs



1------------------------------------------------------------------------}
PROCEDURE CallItemHandlerltheDialog: DialogPtr; theItem: Integer; theProc:

LongInt);
INLINE $205F,$4E90; MOVE.L IA7)+,AO

JSR lAO)

I this code pops off theProc and then does a JSR to it, which puts the
real return address on the stack. }

1------------------------------------------------------------------------}
FUNCTION AppendDITL(theDialog: DialogPtr; theDITLID: Integer): Integer;
I version 0.1 9/11/86 Lew Rollins of Human-Systems Interface Group}
I this routine still needs some error checking }

I This routine appends all of the items of a specified DITL
onto the end of a specified DLOG - We don't even need to know the format
of the DLOG }

I this will be done in 3 steps:
1. append the items of the specified DITL onto the existing DLOG
2. expand the original dialog window as required
3. return the adjusted number of the first new user item

}

TYPE
DITLItem = RECORD I First, a single item }

itmHndl: Handle; I Handle or procedure pointer for this item
itmRect: Rect; I Display rectangle for this item}
itmType: SignedByte; I Item type for this item - 1 byte }
itmData: ARRAY [0 .. 0] OF SignedByte; I Length byte of data

END; IDITLItem}

•

•
pDITLItem
hDITLItem

ADITLItem;
ApDITLItem;

ItemList RECORD I Then, the list of items }
dlgMaxIndex: Integer; I Number of items minus 1 }
DITLItems: ARRAY [0 .. 0] OF DITLItem; I Array of items

END; IItemList}

pItemList
hItemList

Intptr

AItemList;
ApItemList;

= AInteger;

VAR
offset : Point; I Used to offset rectangles of items being appended }
maxRect : Rect; I Used to track increases in window size }
hDITL hItemList; Handle to DITL being appended }
pItem pDITLItem; Pointer to current item being appended
hItems hItemList; Handle to DLOG's item list}
firstItem Integer; I Number of where first item is to be appended
newItems, I Count of new items }
dataSize, I Size of data for current item }
i : Integer; { Working index }
USB RECORD {we need this because itmData[O] is unsigned}

CASE Integer OF •
Technical Note #95 page 4 of 14 How To Add Items to the Print Dialogs



• BEGIN

1 :
(SBArray: ARRAY [0 .. 1] OF SignedByte);

2 :
(Int: Integer);

END; {USB}

{AppendDITL}

•

•

{

Using the original DLOG

1. Remember the original window Size.
2. Set the offset Point to be the bottom of the original window.
3. Subtract 5 pixels from bottom and right, to be added

back later after we have possibly expanded window.
4. Get working Handle to original item list.
5. Calculate our first item number to be returned to caller.
6. Get locked Handle to DITL to be appended.
7. Calculate count of new items.

}

maxRect := DialogPeek(theDialog)A.window.port.portRect;
offset.v := maxRect.bottom;
offset.h := 0;
maxRect.bottom := maxRect.bottom - 5;
maxRect.right := maxRect.right - 5;
hItems := hItemList{DialogPeek{theDialog)A.items);
firstItem := hItemsAA.dlgMaxIndex + 2;
hDITL := hItemList{GetResource{'DITL',theDITLID));
HLock(Handle{hDITL));
newItems := hDITLAA.dlgMaxIndex + 1;

For each item,
1. Offset the rectangle to follow the original window.
2. Make the original window larger if necessary.
3. fill in item Handle according to type.

pItem := @hDITLAA.DITLItems;
FOR i := 1 TO newItems DO BEGIN

OffsetRect(pItemA.itmRect,offset.h,offset.v);
UnionRect{pItemA.itmRect,maxRect,maxRect);

USB.Int := 0; {zero things out}
USB.SBArray[l] := pItemA.itmData[O];

{ Strip enable bit since it doesn't matter here. }
WITH pItemA DO

CASE BAND{itmType,$7F) OF
userItem: {Can't do anything meaningful with user items. }

itmHndl := NIL;
ctrlItem + btnCtrl,ctrlItem + chkCtrl,ctrlItem + radCtrl: {build Control}

itmHndl := Handle(NewControl{theDialog, { theWindow }
itmRect, { boundsRect }
StringPtr{@itmData[O])A, title}
true, { visible }
0,0,1, { value, min, max}
BAND{itmType,$03), { procID
0) ); { refCon }

ctrlItem + resCtrl: BEGIN { Get resource based Control }

Technical Note#95 page 5 of14 How To Add Items tothe Print Dialogs



itmHndl := Handle(GetNewControl(IntPtr(@itmData[l])A, ( controlID }
theDialog)); { theWindow }

ControlHandle(itmHndl)AA.contrlRect .= itmRect; {give it the right
rectangle}

{An actionProc for a Control should be installed here}
END; {Case ctrlltem + resCtrl}
statText,editText: { Both need Handle to a copy of their text. }

err := PtrToHand(@itmData[l], { Start of data}
itmHndl, { Address of new Handle }
USB.lnt); { Length of text}

iconltem: {Icon needs resource Handle. }
pltemA.itmHndl := Getlcon(IntPtr(@itmData[l])A); { ICON resID }

picltem: {picture needs resource Handle. }
pltemA.itmHndl := Handle(GetPicture(IntPtr(@itmData[l])A));{PICT resID}

OTHERWISE
itmHndl := NIL;

END; {Case}

dataSize .= BAND(USB.lnt + 1,$FFFE);
{now advance to next item}
pltem := pDITLltem(Ptr(ord4(@pltemA) + dataSize + sizeof(DITLltem)));

END; {for}
err := PtrAndHand

(@hDITLAA.DITLltems,Handle(hltems),GetHandleSize(Handle(hDITL)));
hltemsAA.dlgMaxlndex := hltemsAA.dlgMaxlndex + newltems;
HUnlock(Handle(hDITL));
ReleaseResource(Handle(hDITL));
maxRect.bottom := maxRect.bottom + 5;
maxRect.right := maxRect.right + 5;
SizeWindow(theDialog,maxRect.right,maxRect.bottom,true);
AppendDITL := firstltem;

END; {AppendDITL}

{-----------------------------------------------------------_._-----------}

PROCEDURE MyJobltems(theDialog: DialogPtr; itemNo: Integer);
{

This routine replaces the routine in the pltemProc field in the
TPPrDlg record. The steps it takes are:
1. Check to see if the item hit was one of ours. This is done by "localizing"

the number, assuming that our items are numbered from O•• n
2. If it's one of ours then case it and Handle appropriately
3. If it isn't one of ours then call the old item handler
}

VAR
Myltem,firstltem: Integer;
thePt : Point;
thePart : Integer;
theValue Integer;
debugPart Integer;

BEGIN {MyJobltems}
first Item := prFirstltem; { remember, we saved this in myJobDlglnit }
Myltem := itemNo - firstltem + 1; { "localize" current item No }
IF Myltem > a THEN BEGIN { if localized item> 0, it's one of ours}

{ find out which of our items was hit }
GetDltem(theDialog,itemNo,itemType,itemH,itemBox);

•

•

•
Technical Note #95 page 6 of 14 How To Add Items tothe Print Dialogs



item handler, whose address is saved

CASE MyItem OF
MyDFirstBox: BEGIN

{ invert value of FirstBoxValue and redraw it }
FirstBoxValue := 1 - FirstBoxValue;
SetCtlvalue(contro1Handle{itemH),FirstBoxValue);

END; {case MyDFirstBox}
MyDSecondBox: BEGIN

{ invert value of SecondBoxValue and redraw it }
SecondBoxValue := 1 - SecondBoxValue;
SetCtlValue{ControlHandle{itemH),SecondBoxValue);

END; {case MyDSecondBox}
OTHERWISE

Debug;
END;

END
ELSE

{ OH OH - We got an item we didn't expect}
{Case}

{ if MyItem > 0 }
{ chain to standard
in prPItemProc }

CallItemHandler(theDialog,itemNo,prPItemProc);
END; { MyJobItems }

•

{------------------------------------------------------------------------}

•

FUNCTION MyJobDlgInit(hPrint: THPrint): TPPrDlg;
{

This routine appends items to the standard job dialog and sets up the
user fields of the printing dialog record TPRDlg
This routine will be called by PrDlgMain
This is what it does:
1. First call PrJobInit to fill in the TPPrDlg record.
2. Append our items onto the old DITL. Set them up appropriately .
3. Save the address of the old item handler and replace it with ours.
4. Return the Fixed dialog to PrDlgMain.
}

VAR
first Item Integer; { first new item number }

BEGIN
firstItem

{MyJobDlgInit}
.= AppendDITL(DialogPtr(PrtJobDialog),MyDITL);

prFirstItem := firstItem; { save this so MyJobItems can find it }

{ now we'll set up our DITL items - The "First Box" }
GetDItem{DialogPtr(PrtJobDialog),firstItem,itemType,ite mH , i t e mBox ) ;
SetCtlValue{ControlHandle(itemH),FirstBoxValue);

{ now we'll set up the second of our DITL items - The "Second Box" }
GetDItem{DialogPtr(PrtJobDialog),firstItem + 1,itemType,itemH,itemBox);
SetCtlValue(ControlHandle(itemH),SecondBoxValue);

•
{ Now comes the part where we patch in our item handler. We have to save
the old item handler address, so we can call it if one of the standard
items is hit, and put our item handler's address
in pItemProc field of the TPrDlg struct}

prPItemProc := LongInt{PrtJobDialogA.pItemProc);

{ Now we'll tell the modal item handler where our routine is

Technical Note #95 page 7 of14 How To Add Items to the Print Dialogs



PrtJobDialogA.pItemProc := ProcPtr(@MyJobItems):

{ PrDlgMain expects a pointer to the modified dialog to be returned .... }
MyJobDlgInit := PrtJobDialog:

END: {myJobDlgInit} •{------------------------------------------------------------------------}
FUNCTION Print: OSErr:

VAR
bool BOOLEAN:

BEGIN {Print}
hPrintRec := THPrint(NewHandle(sizeof(TPrint»):
PrintDefault(hPrintRec):
bool := PrValidate(hPrintRec):
IF (PrError <> noErr) THEN BEGIN

Print := PrError:
Exit(Print):

END: {If}

{ call PrJobInit to get pointer to the invisible job dialog }
PrtJobDialog := PrJobInit(hPrintRec):
IF (PrError <> noErr) THEN BEGIN

Print := PrError:
Exit (Print) :

END; {If}

{Here's the line that does it all!}
IF NOT (PrDlgMain(hPrintRec,@MyJobDlgInit» THEN BEGIN

Print := cancel;
Exit(Print):

END: {If}

IF PrError <> noErr THEN Print .= PrError:

{ that's all for now

•
END; { Print

{------------------------------------------------------------------------}

BEGIN {PROGRAM}

UnloadSeg(@_DataInit): {remove data initialization code before any
allocations}

InitGraf(@thePort):
InitFonts;
FlushEvents(everyEvent,O):
InitWindowsi
InitMenus:
TEInit:
InitDialogs(NIL):
InitCursor:

{ call the routine that does printing } •
Technical Note#95 page 8 of14 How To Add Items tothe Print Dialogs



•
FirstBoxValue := 0; {value of our first additional box
SecondBoxValue := 0; {value of our second addtl. box}
PrOpen; {Open the Print Manager }
IF PrError = noErr THEN
err := Print { This actually brings up the modified Job dialog }

ELSE BEGIN
{tell the user that PrOpen failed}

END;

•

•

PrClose;
END .

{ Close the Print Manager and leave }

Technical Note #95 page 9 of14 How To Add Items tothe Print Dialogs



The Lightspeed C Example Program

/* NOTE: Apple reserves the top half of the screen (where the current DITL
items are located). Applications may use the bottom half of the
screen to add items, but should not change any items in the top half
of the screen. An application should expand the print dialogs only
as much as is absolutely necessary. •*/

/* Note: A global search and replace of 'Job' with 'Stl' will produce
code that modifies the style dialogs */

tinclude <DialogMgr.h>
tinclude <MacTypes.h>
tinclude <Quickdraw.h>
tinclude <ResourceMgr.h>
tinclude <WindowMgr.h>
tinclude <pascal.h>
tinclude <printmgr.h>
tdefine nil OL

static TPPrDlg PrtJobDialogi /* pointer to job dialog */

/* This points to the following structure:

•
Apple Computer)

(The Dialog window)
(The Filter Proc.)
(The Item evaluating proc.
we'll change this)
(The user's print record.)hPrintUsri

fDoIti
fDonei

reserved by
lUserli
lUser2i
lUser3i
lUser4i

Dlgi
pFltrProci
pItemProci

struct {
DialogRecord
ProcPtr
Procptr

THPrint
Boolean
Boolean

(Four longs
long
long
long
long

} TPrDlgi *TPPrDlgi
*/

/* Declare 'pascal' functions
pascal Boolean PrDlgMain()i
pascal TPPrDlg PrJobInit()i
pascal TPPrDlg MyJobDlglnit()i
pascal void MyJobltems()i

and procedures */
/* Print manager's dialog handler */
/* Gets standard print job dialog. */
/* Our extention to PrJoblnit */
/* Our modal item handler */

tdefine MyDITL 256 /* resource ID of my DITL to be spliced
on to job dialog */

THPrint hPrintReci
short FirstBoxValue = Oi
short SecondBoxValue = Oi
long prFirstltemi
long prPltemProci

/* handle to print record */
/* value of our first additional box */
/* value of our second addtl. box */
/* save our first item here */

/* we need to store the old itemProc here */ •
Technical Note#95 page 100114 How To Add Items tothe Print Dialogs



•
/*-----------------------------------------------------------------------*/

WindowPtr MyWindow;
OSErr err;
Str255 myStr;

main ()
{

Rect myWRect;

•

•

InitGraf(&thePort);
InitFonts () ;
InitWindows () ;
InitMenus();
InitDialogs(nil);
InitCursor();
SetRect(&myWRect,50,260,350,340);

/* call the routine that does printing */
PrOpene);
err = Print () ;

PrClose();
} /* main */

/*------------------------------------------------------------------------*
/

OSErr Print ()

/* call PrJoblnit to get pointer to the invisible job dialog */
hPrintRec = (THPrint) (NewHandle(sizeof(TPrint»);
PrintDefault(hPrintRec);
PrValidate(hPrintRec);
if (PrError() != noErr)

return PrError();

PrtJobDialog = PrJoblnit(hPrintRec);
if (PrError() != noErr)

return PrError();

if (!PrDlgMain(hPrintRec, &MyJobDlglnit» /* this line does all the
stuff */

return Cancel;

if (PrError() != noErr)
return PrError();

/* that's all for now */

} /* Print */

/*------------------------------------------------------------------------*
/

pascal TPPrDlg MyJobDlglnit (hPrint)
THPrint hPrint;

Technical Note #95 page 11 of 14 How To Add Items to the Print Dialogs



/* this routine appends items to the standard job dialog and sets up the
user fields of the printing dialog record TPRDlg
This routine will be called by PrDlgMain */

short

short
Handle
Rect

firstItemi

itemTypei
itemHi
iternBox;

/* first new item number */

/* needed for GetDItem/SetDItem call */ •
first Item AppendDITL (PrtJobDialog, MyDITL); /*call routine to do

this */

prFirstItem = firstItemi /* save this so MyJobItems can find it */

/* now we'll set up our DITL items -- The "First Box" */
GetDItem(PrtJobDialog,firstItem,&itemType,&itemH,&iternBoX ) i

SetCtlValue(itemH,FirstBoxValue);

/* now we'll set up the second of our DITL items -- The "Second Box" */
GetDItem(PrtJobDialog,firstItem+l,&itemType,&itemH,&iternBoX)i
SetCtlValue(itemH,SecondBoxValue);

/* Now comes the part where we patch in our item handler. We have to save
the old item handler address, so we can call it if one of the
standard items is hit, and put our item handler's address
in pItemProc field of the TPrDlg struct

*/

prPItemProc = (long)PrtJobDialog->pItemProc;

/* Now we'll tell the modal item handler where our routine is */
PrtJobDialog->pItemProc = (ProcPtr)&MyJobItems;

/* PrDlgMain expects a pointer to the modified dialog to be returned .... */
return PrtJobDialogi

/*myJobDlgInit*/

/*-----------------------------------------------------------------------*/

/* here's the analogue to the SF dialog hook */

•

pascal void
TPPrDlg
short

MyJobItems(theDialog,itemNo)
theDialog;
itemNoi

prFirstItemi /* remember, we saved this in myJobDlgInit

{ /* MyJobItems
short
short

short
Handle
Rect

first Item
*/

*/
myItem;
firstItem;

itemTypei
itemH;
iternBoxi

/* needed for GetDItem/SetDItem call */

•
Technical Note #95 page 120f 14 How To Add Items to the Print Dialogs



•

•

•

myltem = itemNo-firstltem+l; /* "localize" current item No */
if (myltem> 0) /* if localized item> 0, it's one of ours */

/* find out which of our items was hit */
GetDltem(theDialog,itemNo,&itemType,&itemH,&itemBox);
switch (myltem)
{

case 1:
/* invert value of FirstBoxValue and redraw it */
FirstBoxValue A= 1;
SetCtIValue(itemH,FirstBoxValue);
break;

case 2:
/* invert value of SecondBoxValue and redraw it */
SecondBoxValue A= 1;
SetCtlValue(itemH,SecondBoxValue);
break;

default: Debugger(); /* OH OH */
} /* switch */

} /* if (myltem > 0) */
else /* chain to standard item handler, whose address is saved in

prPltemProc */

CaIIPascal(theDialog,itemNo,prPltemProc);
}

} /* MyJobltems */

Technical Note#95 page 130114 HowTo Add Items tothe Print Dialogs



The Rez Source

#include "types.r"

resource 'DITL' (256) {
{ /* array DITLarray: 2 elements */

/* [1] */
{8, 0, 24, 112},
CheckBox {

enabled,
"First Box"

} ;

/* [2] */
{8, 175, 24, 287},
CheckBox {

enabled,
"Second Box"

}

} ;

•

•

•
Technical Note #95 page 140f 14 How To Add Items to the Print Dialogs



Macintosh Technical Notes

~ #96: SCSI Bugs

See also:

Written by:
Modified by:
Modified by:
Updated:

The SCSI Manager
SCSI Developer's Package

Steve Flowers
Bryan Stearns
Bo3b Johnson

October 1, 1986
November 15, 1986
July 1,1987
March 1, 1988

~

~

There are a number of problems in the SCSI Manager; this note lists the ones
we know about, along with an explanation of what we're doing about them.
Changes made for the 2/88 release are made to more accurately reflect the
state of the SCSI Manager. System 4.1 and 4.2 are very similar; one bug was
fixed in System 4.2.

There are several categories of SCSI Manager problems:

1. Those in the ROM boot code
(Before the System file has been opened, and hence, before any patches could possibly
fix them.)
2. Those that have been fixed in System 3.2
3. Those that have been fixed in System 4.1/4.2
4. Those that are new in System 4.1/4.2
5. Those that have not yet been fixed.

The problems in the ROM boot code can only be fixed by changing the ROMs. Most of
the bugs in the SCSI Manager itself have been fixed by the patch code in the System
3.2 file. There are a few problems, though, that are not fixed with System 3.2-most of
these bugs have been corrected in System 4.1/4.2. Any that are not fixed will be detailed
here. ROM code for future machines will, of course, include the corrections.

ROM boot code problems

• In the process of looking for a bootable SCSI device, the boot code issues a SCSI
bus reset before each attempt to read block 0 from a device. If the read fails for any
reason, the boot code goes on to the next device. SCSI devices which implement the
Unit Attention condition as defined by the Revision 17B SCSI standard will fail to
boot in this case. The read will fail because the drive is attempting to report the Unit
Attention condition for the first command it receives after the SCSI bus reset. The
boot code does not read the sense bytes and does not retry the failed command; it
simply resets the SCSI bus and goes on to the next device.

Technical Note #96 page 1 of 7 SCSI Bugs



If no other device is bootable, the boot code will eventually cycle back to the same
SCSI device 10, reset the bus (causing Unit Attention in the drive again), and try
to read block a (which fails for the same reason).

The 'new' Macintosh Plus ROMs that are included in the platinum Macintosh Plus
have only one change. The change was to simply do a single SCSI Bus Reset after
power up instead of a Reset each time through the SCSI boot loop. This was done to
allow Unit Attention drives to be bootable. It was an object code patch (affecting
approximately 30 bytes) and no other bugs were fixed. For details on the three
versions of Macintosh Plus ROMs, see Technical Note #154.

We recommend that you choose an SCSI controller which does not require the Unit
Attention feature-either an older controller (most of the SCSI controllers currently
available were designed before Revision 17B), or one of the newer
Revision-17B-compatible controllers which can enable/disable Unit Attention as
a formatting option (such as those from Seagate, Rodime, et al). Since the vast
majority of Macintosh Plus computers have the ROMs which cannot use Un it
Attention drives, we still recommend that you choose an SCSI controller that does
not require the Uni t Attention feature.

• If an SCSI device goes into the Status phase after being selected by the boot code,
this leads to the SCSI bus being left in the Status phase indefinitely, and no SCSI
devices can be accessed. The current Macintosh Plus boot code does not handle
this change to Status phase, which means that the presence of an SCSI device
with this behavior (as in some tape controllers we've seen) will prevent any SCSI
devices from being accessed by the SCSI Manager, even if they already had drivers
loaded from them. The result is that any SCSI peripheral that is turned on at boot
time must not go into Status phase immediately after selection; otherwise, the
Macintosh Plus SCSI bus will be left hanging. Unless substantially revised ROMs are
released for the Macintosh Plus (highly unlikely within the next year or so), this
problem will never be fixed on the Macintosh Plus, so you should design for old
ROMs.

• The Macintosh Plus would try to read 256 bytes of blocks a and 1, ignoring the extra
data. The Macintosh SE and Macintosh" try to read 512 bytes from blocks a and 1,
ignoring errors if the sector size is larger (but not smaller) than 512 bytes. Random
access devices (disks, tapes, CD ROMS, etc.) can be booted as long as the blocks
are at least 512 bytes, blocks 0, 1 and other partition blocks are correctly set up, and
there is a driver on it. With the new partition layout (documented in Inside Macintosh
volume V), more than 256 bytes per sector may be required in some partition map
entries. This is why we dropped support for 256-byte sectors. Disks with tag bytes
(532-byte sectors) or larger block sizes (1 K, 2K, etc.) can be booted on any
Macintosh with an SCSI port. Of course, the driver has to take care of data blocking
and de-blocking, since HFS likes to work with 512-byte sectors.

•

•

•
Technical Note #96 page 2 of7 SCSI Bugs



•

•

•

Problems with ROM SCSI Manager routines

Note that the following problems are fixed after the System file has been opened; for a
device to boot properly, it must not depend on these fixes. The sample SCSI driver,
available from APDA, contains an example of how to find out if the fixes are in place.

• Prior to System file 3.2, blind transfers (both reads and writes) would not work
properly with many SCSI controllers. Since blind operation depends on the drive's
ability to transfer data fast enough, it is the responsibility of the driver writer to make
sure blind operation is safe for a particular device.

• Prior to System file 3.2, the SCSI Manager dropped a byte when the driver did
two or more SCSIReads or SCSIRBlinds in a row. (Each Read or RBlind has to
have a Transfer Information Block (TIB) pointer passed in.) The TIB itself can be as
big and complex as you want-it is the process of returning from one SCS IRead or
SCSIRBlind and entering another one (while still on the same SCSI command) that
causes the first byte for the other SCSIReads to be lost.

Note that this precludes use of file-system tags. Apple no longer recommends that
you support tags; see Technical Note #94 for more information.

• Prior to System file 3.2, SCS IStat didn't work; the new version works correctly.

• Running under System file 3.2, the SCSI Manager does not check to make sure
that the last byte of a write operation (to the peripheral) was handshaked while
operating in pseudo-DMA mode. The SCSI Manager writes the final byte to the NCR
5380's one-byte buffer and then turns pseudo-DMA mode off shortly thereafter
(reported to be 10-15 microseconds). If the peripheral is somewhat slow in actually
reading the last byte of data, it asserts REQ after the Macintosh has already turned off
pseudo-DMA mode and never gets an ACK. The CPU then expects to go into the
Status phase since it thinks everything went OK, but the peripheral is still waiting for
ACK. Unless the driver can recover from this somehow, the SCSI bus is 'hung' in the
Data Out phase. In this case, all successive SCSI Manager calls will fail until the
bus is reset.

• Running under System file 4.1/4.2, the SCSI Manager waits for the last byte of
a write operation to be handshaked while operating in pseudo-DMA mode; it checks
for a final DRQ (or a phase change) at the end of a SCSIWrite or SCSIWBlind before
turning off the pseudo-DMA mode. Drivers that could recover from this problem by
writing the last byte again if the bus was still in a Data Out phase will still work
correctly, as long as they were checking the bus state.

• Running under System file 3.2, the SCSI Manager does not time out if the
peripheral fails to finish transferring the expected number of bytes for polled reads
and writes. (Blind operation does poll for the first byte of each requested data transfer
in the Transfer Information Block.)

Technical Note #96 page 3 of7 SCSI Bugs



• Running under System file 4.1/4.2, SCSIRead and SCSIWrite return an error
to the caller if the peripheral changes the bus phase in the middle of a transfer, as
might happen if the peripheral fails to transfer the expected number of bytes. The
computer is no longer left in a hung state.

• Running under System file 3.2, the Selection timeout value is very short (900
microseconds). Patches to the SCSI Manager in System 4.1/4.2 ensure that this
value is the recommended 250 milliseconds.

• Running under System file 3.2, the SCSI Manager routine SCSIGet (which
arbitrates for the bus) will fail if the BSY line is still asserted. Some devices are a bit
slow in releasing BSY after the completion of an SCSI operation, meaning that BSY
may not have been released before the driver issues a SCSIGet call to start the next
SCSI operation. A work-around for this is to call scs IGet again if it failed the first
time. (Rarely has it been necessary to try it a third time.) This assumes, of course, that
the bus has not been left 'hanging' by an improperly terminated SCSI operation
before calling SCSIGet.

• Running under System file 4.1/4.2, the SCSIGet function has been made more
tolerant of devices that are slow to release the BSY line after a SCSI operation. The
SCSI Manager now waits up to 200 milliseconds before returning an error.

Problems with the SCSI Manager that haven't been fixed yet

•

These problems currently exist in the Macintosh Plus, SE, and II SCSI Manager. We
plan to fix these problems in a future release of the System Tools disk, but in the mean •
time, you should try to work around the problems (but don't "require" the problems!).

• Multiple calls to SCS IRead or SCS IRBl ind after issuing a command and before
calling SCSIComplete may not work. Suppose you want to read some mode sense
data from the drive. After sending the command with SCSICmd, you might want to call
SCSIRead with a TIS that reads four bytes (typically a header). After reading the field
(in the four-byte header) that tells how many remaining bytes are available, you
might call SCSIRead again with a TIS to read the remaining bytes. The problem is
that the first byte of the second SCSIRead data will be lost because of the way the
SCSI Manager handles reads in pseudo-DMA mode. The work-around is to issue
two separate SCSI commands: the first to read only the four-byte header, the second
to read the four-byte header plus the remaining bytes. We recommend that you not
use a clever TIS that contains two data transfers, the second of which gets the
transfer length from the first transfer's received data (the header). These two step
TISs will not work in the future. This bug will probably not be fixed.

• On read operations, some devices may be slow in deasserting REQ after sending the
last byte to the CPU. The current SCSI Manager (all machines) will return to the
caller without waiting for REQ to be deasserted. Usually the next call that the driver
would make is SCSIComplete. On the Macintosh SE and II, the SCSIComplete call
will check the bus to be sure that it is in Status phase. If not, the SCSI Manager will
return a new error code that indicates the bus was in Data In/Data Out phase when •
SCSIComplete was called. The combination of the speed of the Macintosh II and a

Technical Note #96 page 4 of 7 SCSI Bugs



•

•

•

slow peripheral can cause SCSIComplete to detect that the bus is still in Data In
phase before the peripheral has finally changed the bus to Status phase. This
results in a false error being passed back by SCSIComplete .

• The scComp (compare) TIB opcode does not work in System 4.1 on the Macintosh
Plus only. It returns an error code of 4 (bad parameters). This has been fixed in
System 4.2.

Other SCSI Manager Issues

• At least one third-party SCSI peripheral driver used to issue SCSI commands from a
VBL task. It didn't check to see if the bus was in the free state before sending the
command! This is guaranteed to wipe out any other SCSI command that may have
been in progress, since the SCSI Manager on the Macintosh Plus does not mask out
(or use) interrupts.

We strongly recommend that you avoid calling the SCSI Manager from interrupt
handlers (such as VBL tasks). If you must send SCSI commands from a VBL task (like
for a removable media system), do a SCSI Stat call first to see if the bus is currently
busy. If it's free (BSY is not asserted), then it's probably safe; otherwise the VBL task
should not send the command. Note that you can't call scs IStat before the System
file fixes are in place. Since SCSI operations during VBL are not guaranteed, you
should check all errors from SCSI Manager calls.

• A new SCSI Manager call will be added in the future. This will be a high-level call; it
will have some kind of parameter block in which you give a pointer to a command
buffer, a pointer to your TIB, a pointer to a sense data buffer (in case something goes
wrong, the SCSI Manager will automatically read the sense bytes into the buffer for
you), and a few other fields. The SCSI Manager will take care of arbitration, selection,
sending the command, interpreting the TIB for the data transfer, and getting the status
and message bytes (and the sense bytes, if there was an error). It should make SCSI
device drivers much easier to write, since the driver will no longer have to worry about
unexpected phase changes, getting the sense bytes, and so on. In the future, this will
be the recommended way to use the SCSI Manager.

• The SCSI Manager (all machines) does not currently support interrupt-driven
(asynchronous) operations. The Macintosh Plus can never support it since there is no
interrupt capability, although a polled scheme may be implemented by the SCSI
Manager. The Macintosh SE has a maskable interrupt for IRQ, and the Macintosh"
has maskable interrupts for both IRQ and DRQ. Apple is working on an implementation
of the SCSI Manager that will support asynchronous operations on the Macintosh "
and probably on the SE as well. Because the interrupt hardware will interact
adversely with any asynchronous schemes that are polled, it is strongly
recommended that third parties do not attempt asynchronous operations until the new
SCSI Manager is released. Apple will not attempt to be compatible with any products
that bypass some or all of the SCSI Manager. In order to implement software-based
(polled) asynchronous operations it is necessary to bypass the SCSI Manager.

Technical Note #96 page 5 of7 SCSI Bugs



The SCSI Manager section of the alpha draft of Inside Macintosh volume V
documented the Disconnect and Reselect routines which were intended to be used
for asynchronous I/O. Those routines cannot be used. Those routines have been
removed from the manual. Any software that uses those routines will have to be
revised when the SCSI Manager becomes interrupt-driven. Drivers which send SCSI •
commands from VBL tasks may also have to be modified.

Hardware in the SCSI

There is some confusion on how many terminators can be used on the bus, and the best
way to use them. There can be no more than two terminators on the bus. If you have
more than one SCSI drive you must have two terminators. If you only have one drive,
you should use a single terminator. If you have more than one drive, the two terminators
should be on opposite ends of the chain. The idea is to terminate both ends of the wire
that goes through all of the devices. One terminator should be on the end of the system
cable that comes out of the Macintosh. The other terminator would be on the very end of
the last device on the chain. If you have an SE or II with an internal hard disk, there is
already one terminator on the front of the chain, inside the computer.

On the Macintosh SE and II, there is additional hardware support for the SCSI bus
transfers in pseudo-DMA mode. The hardware makes it possible to handshake the data
in Blind mode so that the Blind mode is safe for all transfers. On the Macintosh Plus, the
Blind transfers are heavily timing dependent and can overrun or underrun during the
transfer with no error generated. Assuring that Blind mode is safe on the Macintosh Plus
depends upon the peripheral being used. On the SE and II, the transfer is hardware •
assisted to prevent overruns or underruns.

Changes in SCSI for SE and II

The changes made to the SCSI Manager found in the Macintosh SE and Macintosh II
are primarily bug fixes. No new functionality was added. The newer SCSI Manager is
more robust and has more error checking. Since the Macintosh Plus SCSI Manager
only did limited error checking, it is possible to have code that would function (with bugs)
on the Macintosh Plus, but will not work correctly on the SE or II. The Macintosh Plus
could mask some bugs in the caller by not checking errors. An example of this is
sending or receiving the wrong number of bytes in a blind transfer. On the Macintosh
Plus, no error would be generated since there was no way to be sure how many bytes
were sent or received. On the SE and II, if the wrong number of bytes are transferred an
error will be returned to the caller. The exact timing of transfers has changed on the SE
and II as well, since the computers run at different speeds. Devices that are unwittingly
dependent upon specific timing in transfers may have problems on the newer
computers. To find problems of this sort it is usually only necessary to examine the error
codes that are passed back by the SCSI Manager routines. The error codes will
generally point out where the updated SCSI Manager found errors.

•
Technical Note #96 page 6 of7 SCSI Bugs



•

•

•

To report other bugs or make suggestions

Please send additional bug reports and suggestions to us at the address in Technical
Note #0. Let us know what SCSI controller you're using in your peripheral, and whether
you've had any particularly good or bad experiences with it. We'll add to this note as
more information becomes available.

Technical Note #96 page 7 of7 SCSI Bugs



•

•

•



•
Macintosh Technical Notes

#97: PrSetError Problem

Written by:
Updated:

Mark Baumwell November 15, 1986
March 1, 1988

•

•

This note formerly described a problem in Lisa Pascal glue for thePrSetError routine. The glue in MPW (and most, if not all, third partycompilers) does not have this problem.

Technical Note #97 page 1 of 1 PrSetError Problem



•

•

•



•
Macintosh Technical Notes

#98: Short-Circuit Booleans in Lisa Pascal

Written by:
Updated:

Mark Baumwell November 15, 1986
March 1, 1988

•

•

This note formerly described problems with the Lisa Pascal compiler. These
problems have been fixed in the MPW Pascal compiler.

Technical Note #98 page 1 of 1 Short-Circuit Booleans in Lisa Pascal



•

•

•



•
Macintosh Technical Notes

#99: Standard File Bug in System 3.2

See also:

Written by:
Updated:

The Standard File Package

Jim Friedlander November 15, 1986
March 1, 1988

•

•

This note formerly described a bug in Standard File in System 3.2. This bug
has been fixed in more recent Systems.

Technical Note#99 page 1 of 1 Standard File Bug in System 3.2



•

•

•



Macintosh Technical Notes

• #100: Compatibility with Large-Screen Displays

See also: Technical Note #2-Macintosh Compatibility Guidelines

Written by:
Updated:

Bryan Stearns November 15, 1986
March 1, 1988

•

•

A number of third-party developers have announced large-screen display
peripherals for Macintosh. One of them, Radius Inc., has issued a set of
guidelines for developers who wish to remain compatible with their Radius
FPD; unfortunately, one of their recommendations can cause system
crashes. This note suggests a more correct approach.

On the first page of the appendix to their guidelines, "How to be FPO Aware," Radius
recommends the following:

"First, to detect the presence of a Radius FPO, you should check address $eOOo08 ..."

Unfortunately, this assumes that you're running on a Macintosh or Macintosh Plus; this
test will not work on Macintosh XL, nor on a Macintosh II. Since these displays weren't
designed to work with systems other than Macintosh and Macintosh Plus, you should
make sure you're running on one of these systems before addressing I/O locations
(such as those for an add-on display).

Before testing for the presence of any large-screen display, you should first check the
machine 10; it's the byte located at (ROMBASE) +8 (that is, take the long integer at the
low-memory location ROMBASE [$2AE], and add 8 to get the address of the machine 10
byte. On a Macintosh or Macintosh Plus, this address will work out to be $ 4 00008 ;
however, use the low-memory location, to be compatible with future systems that may
have the ROM at a different address!).

The machine 10 byte will be $00 for all current Macintosh systems. If the value isn't $00,
you can assume that no large-screen display is present, but don't forget to follow
Technical Note #2's guidelines for screen size independence!

Note: If you are a developer of an add-on large-screen display, we'd be happy
to review your gUidelines for developers in advance of distribution;
please send them to us at the address for comments in Technical Note
#0. Future versions of this note may recommend general guidelines for
dealing with add-on large-screen displays.

Technical Note #100 page 1 of 1 Compatibility with Large-Screen Displays



•

•

•



•
Macintosh Technical Notes

#101: CreateResFile and the Poor Man's Search Path

See also: The File Manager
The Resource Manager
Technical Note #77-HFS Ruminations

Written by:
Updated:

Jim Friedlander January 12, 1987
March 1, 1988

•

•

CreateResFile checks to see if a resource file with a given name exists,
and if it does, returns a dupFNErr (-48) error. Unfortunately, to do this check,
CreateResFile uses a call that follows the Poor Man's Search Path (PMSP).

CreateResFile checks to see if a resource file with a given name exists, and if it does,
returns a dupFNErr (-48) error. Unfortunately, to do the check, CreateResFile calls
PBOpenRF, which uses the Poor Man's Search Path (PMSP). For example, if we have a
resource file in the System folder named 'MyFile' (and no file with that name in the
current directory) and we call CreateResFiIe ('MyFiIe'), ResError will return a
dupFNErr, since PBOpenRF will search the current directory first, then search the
blessed folder on the same volume. This makes it impossible to use CreateResFiIe to
create the resource file 'MyFi Ie' in the current directory if a file with the same name
already exists in a directory that's in the PMSP.

To make sure that CreateResFile will create a resource file in the current directory
whether or not a resource file with the same name already exists further down the
PMSP, call_Create (PBCreate or Create) before calling CreateResFile:

err := Create('MyFile',O,myCreator,myType)i
{O for VRefNum means current volume/directory}

CreateResFile('MyFile')i
err := ResErrori {check for error}

In MPWC:

err = Create("\pMyFile",O,myCreator,myType)i
CreateResFile("\pMyFile")i
err = ResError()i

This works because _Create does not use the PMSP. If we already have 'MyFile' in
the current directory, _Create will fail with a dupFNErr, then, if 'MyFile' has an empty
resource fork, CreateResFiIe will write a resource map, otherwise, CreateResFile
will return dupFNErr. Ifthere is no file named 'MyFile' in the current directory, Create
will create one and then CreateResFile will write the resource map.
Notice that we are intentionally ignoring the error from _Create, since we are calling it

Technical Note #101 page 1 of 3 CreateResFile and the PMSP



only to assure that a file named 'MyFile' does exist in the current directory.

Please note that SFPutFile does not use the PMSP, but that FSDelete does.
SFPutFile returns the vRefNum/WDRefNum of the volume/folder that the user selected.
If your program deletes a resource file before creating one with the same name based •
on information returned from SFPutF ile, you can use the following strategy to avoid
deleting the wrong file, that is, a file that is not in the directory specified by the
vRefNum/WDRefNum returned by SFPutFile, but in some other directory in the PMSP:

VAR
wher
reply
err
oldVol

Point;
SFReply;
OSErr;
Integer;

wher.h := 80; wher.v := 90;
SFPutFile(wher,' " ",NIL,reply);
IF reply.good THEN BEGIN

err .= GetVol(NIL,oldVol); {So we can restore it later}
err := SetVol(NIL,reply.vRefNum);{for the CreateResFile call}

{Now for the Create/CreateResFile calls to create a resource file that
we know is in the current directory}

err := Create (reply.fName, reply.vRefNum,myCreator,myType) ;
CreateResFile(reply.fName); {we'll use the ResError from this ... }

CASE ResError OF •
noErr:{the create succeeded, go ahead and work with the new

resource file -- NOTE: at this point, we don't know
what's in the data fork of the file!!} ;

dupFNErr: BEGIN {duplicate file name error}
{the file already existed, so, let's delete it. We're now
sure that we're deleting the file in the current directory}

err:= FSDelete(reply.fName,reply.vRefNum);

{now that we've deleted the file, let's create the new one,
again, we know this will be in the current directory}

err:= Create(reply.fName,reply.vRefNum,myCreator,myType);
CreateResFile(reply.fName);

END; {CASE dupFNErr}
OTHERWISE {handle other errors}

END; {Case ResError}
err .= SetVol(NIL,oldVol);{restore the default directory}

END; {If reply.good}

•
Technical Note #101 page 2 of 3 CreateResFile and the PMSP



•
In MPWC:

Point
5FReply
OSErr
short

wher;
reply;
err;
oldVol;

•

wher.h = 80; wher.v = 90;
5FPutFile(wher,"","",nil,&reply);
if (reply.good )
{

err = GetVol(nil,&oldVol);
/*50 we can restore it later*/
err = SetVol(nil,reply.vRefNum);/*for the CreateResFile call*/

/*Now for the Create/CreateResFile calls to create a resource file
that we know is in the current directory*/

err = Create(&reply.fName,reply.vRefNum,myCreator,myType);
CreateResFile(&reply.fName);
/*we'll use the ResError from this ... */

switch (ResError(»
{

case noErr:;/*the create succeeded, go ahead and work with the
new resource file -- NOTE: at this point, we don't
know what's in the data fork of the file! !*/

break; /* case noErr*/
case dupFNErr: /*duplicate file name error*/

/*the file already existed, so, let's delete it.
We're now sure that we're deleting the file in the
current directory*/

err= FSDelete(&reply.fName,reply.vRefNum);

/*now that we've deleted the file, let's create the
new one, again, we know this will be in the current
directory*/

err= Create(&reply.fName,reply.vRefNum,
myCreator,myType);

CreateResFile(&reply.fName);
/*case dupFNErr*/

/*handle other errors*/
break;

default:;
/* switch */

err = 5etvol(nil,01dVol);/*restore
/*if reply.good*/

the default directory*/

•
Note: OpenResF i le uses the PMSP too, so you may have to adopt similar strategies to
make sure that you are opening the desired resource file and not some other file further
down the PMSP. This is normally not a problem if you use SFGetFile, since
SFGetFile does not use the PMSP, in fact, SFGetFile does not open or close files, so
it doesn't run into this problem.

Technical Note #101 page 3 013 CreateResFile and the PMSP



•

•

•



•
Macintosh Technical Notes

#102: HFS Elucidations

See also: The File Manager
Technical Note #77-HFS Ruminations

Written by:
Updated:

Bryan "Bo3b" Johnson January 12, 1987
March 1, 1988

•

•

This technical note will describe a few problems that can occur while using
HFS. It will also describe ways to avoid these problems.

This technical note will discuss the following problems:

1) It is very important to be careful about how files are opened and closed. There must
be no more than one close for every open.

2) Don't use Driver names, like. Bout, . Print or . Sony, in place of file names or the
file system will become confused.

3) Be aware of the ioF 1 VersNum byte in all file calls. A number of pieces of the
Macintosh system do not use, and may in fact ignore, files created with non-zero
ioF1VersNums.

Each of these can lead to strange occurrences, as well as problems for the users. Doing
any or all of these marginally illegal operations will not necessarily lead to a System
Error. In some cases the confusion generated may be worse than a System Error.

One Close is always enough

If a file is closed twice, it is possible to corrupt the file system on a disk. If a program has
been creating unreadable disks, this may be the cause.

One aspect of the file system that is not well documented is how it allocates access
paths to files that are currently open. As a result of this, it is possible to get a rather
cavalier attitude about opening and closing files. This discussion will explain why it is
necessary to be very careful about opening and closing files.

When the File Manager receives an Open call, it will look at the parameters passed in
the parameter block and create a new access path for the file that is being opened. The
access path is how the File Manager keeps track of where to send data that is written,
and where to get data that is read from that file. An access path is nothing more than: 1)
a buffer that the file system uses to read and write data, and 2) a File Control Block that

Technical Note #102 page 1 of 7 HFS Elucidations



describes how the file is stored on a disk.

A call like:

ErrStuff := FSOpen ('FirstFile', theVRefNum, FirstRefNum); •will create the access path as a buffer and a File Control Block (FCB) in the FCB queue.

Note: The following information is here for illustrative purposes only; dependence on it
may cause compatibility problems with future system software.

The structure of the queue can be visualized as:

Last FCB Record •

First FCB Record

Second FCB Record

Buffer Length0

2

gth

···

2+FCBLen

where FCBSPtr is a low-memory global (at $34E) that holds the address of a
nonrelocatable block. That block is the File Control Block buffer, and is composed of the
two byte header which gives the length of the block, followed by the FCB records
themselves. The records are of fixed length, and give detailed information about an
open file. As depicted, any given record can be found by adding the length of the
previous FCB records to the start of the block, adding 2 for the two byte header; giving
an offset to the record itself. The size of the block, and hence the number of files that can
be open at any given time, is determined at startup time. The call to open 'FirstFile'
above will pass back the File Reference Number to that file in FirstRefNurn. This is the
number that will be used to access that file from that point on. The File Manager passes
back an offset into the FCB queue as the Re fNurn. This offset is the number of bytes past
the beginning of the queue to that FCB record in the queue. That FCB record will
describe the file that was opened. An example of a number that might get passed back
as a RefNurn is $lD8. That also means that the FCB record is $lD8 bytes into the FCB
block.

•
Technical Note #102 page 2 of7 HFS Elucidations



•
A visual example of a record being in use, and how the RefNum is related is:

Base 0
-2:---1t-----~

•

Base+RefNum

•

Base is merely the address of the nonrelocatable block that is the FCB buffer. FCBSPtr
points to it. The RefNum (a number like $lD8) is added to Base, to give an address in the
block. That address is what the file system will use to read and write to an open file,
which is why you are required to pass the RefNum to the PBRead and PBWrite calls.

Since that RefNum is merely an offset into the queue, let's step through a dangerous
imaginary sequence and see what happens to a given record in the FCB Buffer. Here's
the sequence we will step through:

ErrStuff ;= FSOpen ('FirstFile', theVRefNum, FirstRefNum);

ErrStuff ;= FSClose ( FirstRefNum );

ErrStuff ;= FSOpen ('SecondFile', theVRefNum, SecondRefNum);

ErrStuff ;= FSClose ( FirstRefNum ); {the wrong file gets closed!!!}
{the above line will close 'SecondFile', not 'FirstFile', which is already
closed}

Before any operations:
the record at $lD8 is not used.

0
2

•

··
NumBasetRef

Base

•
Technical Note #102 page 3 of7 HFS Elucidations



After the call:
ErrStuff := FSOpen ('FirstFile', theVRefNum, FirstRefNum)i

FirstRefNum = $1D8 andthe record is in use.

Base o
2 •

Base+RefNum

Base+Ref

After the call:
ErrStuff := FSClose (FirstRefNum)i

FirstRefNum is still equal to $1D8, but the FCB record is unused.

Base 0
2

···
Num

•

•
Technical Note #102 page 4 of7 HFS Elucidations



After the call:
ErrStuff := FSOpen ('SecondFile', theVRefNum, SecondRefNum);

SecondRefNum = $108, FirstRefNum = $108, and the record is reused .

• Base

Base+Ref

0
2

···
Num

1111111111111111111111111111111111111111111~1111111111I1IIII1

0
2

···
NumBase+Ref

Base

After the call:
ErrStuff := FSClose (FirstRefNum);

The FirstRefNum = $108, SecondRefNum = $108,

the queue element is cleared. This happens, even though F irstF ile was already
closed. Actually, SecondFile was closed:•

•

Note that the second close is using the old RefNum. The second close will still close a
file, and in fact will return noErr as its result. Any subsequent accesses to the
SecondRefNum will return an error, since the file 'SecondFile' was closed. The File
Control Blocks are reused, and since they are just offsets, it is possible to get the same
file RefNum back for two different files. In this case, FirstRefNum = SecondRefNum
since 'FirstFiIe' was closed before opening 'SecondFile' and the same FCB record
was reused for 'SecondFile'.

Technical Note #102 page 5 of7 HFS Elucidations



There are worse cases than this, however. As an example, think of what can happen if a
program were to close a file, then the user inserted an HFS disk. The FCB could be
reused for the Catalog File on that HFS disk. If the program had a generic error handler
that closed all of its files, it could inadvertently close "its" file again. If it thought "its" file
was still open it would do the close, which could close the Catalog file on the HFS disk.
This is catastrophic for the disk since the file could easily be closed in an inconsistent
state. The result is a bad disk that needs to be reformatted.

There are any number of nasty cases that can arise if a file is closed twice, reusing an
old RefNum. A common programming practice is to have an error handler or cleanup
routine that goes through the files that a program creates and closes them all, even if
some may already be closed. If an FCB element was not reused, the Close will return
the expected fnOpnErr. If the FCB had been reused, then the Close could be closing
the wrong file. This can be very dangerous, particularly for all those paranoid hard disk
users.

How to avoid the problem:

A very simple technique is to merely clear the RefNum after each close. If the variable
that the program uses is cleared after each close, then there is no way of reusing a
RefNum in the program. An example of this technique would be:

ErrStuff ;= FSOpen ('FirstFile', theVRefNum, FirstRefNum);
ErrStuff ;= FSClose (FirstRefNum);
FirstRefNum ;= 0; { We just closed it, so clear our refnum }
ErrStuff ;= FSOpen ('SecondFile', theVRefNum, SecondRefNum);
ErrStuff ;= FSClose (FirstRefNum); { returns an error }

This makes the second Close pass back an error. In this case, the second close will try
to close RefNum = 0, which will pass back a fnOpnErr and do no damage. Note: Be
sure to use 0, which will never be a valid RefNum, since the first FCB entry is beyond the
FCB queue length word. Don't confuse this with the °that the Resource Manager uses
to represent the System file.

Thus, if an error handler were cleaning up possibly open files, it could blithely close all
the files it knew about, since it would legitimately get an error back on files that are
already closed. This is not done automatically, however. The programmer must be
careful about the opening and closing of files. The problem can get quite complex if an
error is received halfway through opening a sequence of ten files, for example. By
merely clearing the Re fNum that is stored after each close, it is possible to avoid the
complexities of trying to track which files are open and which are closed.

This .file name looks outrageous.

•

•

There is a potential conflict between file names and driver names. If a file name is
named something like. Bout, . Print or . Sony, then the file system will open the driver
instead of the file. Drivers have priority on the 128K ROMs, and will always be opened •
before a file of the same name. This may mean that an application will get an error back

Technical Note #102 page 6 of7 HFS Elucidations



•

•

•

when opening these types of files, or worse, it will get back a driver RefNum from the call.
What the application thought was a file open call was actually a driver open call. If the
program uses that access path as a file RefNum, it is possible to get all kinds of strange
things to happen. For example, if . Sony is opened, the Sony driver's RefNum would be
passed back, instead of a file RefNum. If the application does a Write call using that
RefNum, it will actually be a driver call, using whatever parameters happen to be in the
parameter block. Disks may be searching for new life after this type of operation. If a
program creates files, it should not allow a file to be created whose name begins with '.'.

This file's not my type.

This has been discussed in other places, but another aspect of the File Manager that
can cause confusion is the ioF 1 VersNum byte that is passed to the low-level File
Manager calls. This is called ioFileType from Assembly, and should not be confused
with ioFVersNum. This byte must be set to zero for normal Macintosh files. There are a
number of parts of the system that will not deal correctly with files that have the wrong
versions: the Standard File package will not display any file with a non-zero
ioF 1 VersNum; the Segment Loader and Resource Manager cannot open files that
have non-zero ioFlVersNums. It is not sufficient to ignore this byte when a file is
created. The byte must be cleared in order to avoid this type of problem. Strictly
speaking, it is not a problem unless a file is being created on an MFS disk. The current
system will easily allow the user to access 400K disks however, so it is better to be safe
than confused.

Technical Note #102 page 7 of7 HFS Elucidations



•

•

•



•
Macintosh Technical Notes

#103: Using MaxApplZone and MoveHHi from Assembly Language

See also: Using Assembly Language
The Memory Manager
Technical Note #129-SysEnvirons

Written by:
Updated:

Bryan "Bo3b" Johnson January 12, 1987
March 1, 1988

•

When calling MaxApplZone and MoveHHi from assembly language, be sure
to get the correct code.

MaxApplZone and MoveHHi were marked [Not in ROM] in Inside Macintosh, Volumes
1-1/1 . They are ROM calls in the 128K ROM. Since they are not in the 64K ROM, if you
want your program to work on 64K ROM routines it is necessary to call the routines by a
JSR to a glue (library) routine instead of using the actual trap macro. The glue calls the
ROM routines if they are available, or executes its copy of them (linked into your
program) if not.

How to do it:

Whenever you need to use these calls, just call the library routine. It will check ROM8S to
determine which ROMs are running, and do the appropriate thing.

For MOS, include the Memory. ReI library in your link file and use:

XREF MoveHHi

JSR MoveHHi

we need to use this 'ROM' routine

jump to the glue routine that will check ROMaS for us

For MPW link with Interface. 0 and use:

IMPORT MoveHHi

JSR MoveHHi

we need to use this

jump to the glue routine that will check ROM8S for us

•
Avoid calling MaxApplZone or MoveHHi directly if you want your software to work on
the 64K ROMS: since that will assemble to an actual trap, not to a JSR to the library.

If your program is going to be run only on machines with the 128K ROM or newer, you
can call the traps directly. Be sure to check for the 64K ROMs, and report an error to the
user. You can check for old ROMs using the SysEnvirons trap as described in
Technical Note #129.

Technical Note #103 page 1 of 1 Using MaxApplZone and MoveHHi



•

•

•



•
Macintosh Technical Notes

#104: MPW: Accessing Globals From Assembly Language

See also:

Written by:
Updated:

MPW Reference Manual

Jim Friedlander January 12, 1987
March 1, 1988

•

This technical note demonstrates how to access MPW Pascal and MPW C
globals from the MPW Assembler.

To allow access of MPW Pascal globals from the MPW Assembler, you need to identify
the variables that you wish to access as external. To do this, use the {$2+} compiler
option. Using the {$2+} option can substantially increase the size of the object file due
to the additional symbol information (no additional code is generated and the symbol
information is stripped by the linker). If you are concerned about object file size, you can
"bracket" the variables you wish to access as external variables with {$ 2 +} and {$ 2 - } .

Here's a trivial example:

Pascal Source

PROGRAM MyPascal;
USES

MemTypes,QuickDraw,OSIntf,ToolIntf;

VAR
myWRect: Rect;

{$Z+} {make the following external}
myInt: Integer;

{$Z-} {make the following local to this file (not lexically local) }
err: Integer;

PROCEDURE MyAsm; EXTERNAL; {routine doubles the value of myInt}

BEGIN {PROGRAM}
myInt:= 5;
MyAsm; {call the routine, myInt will be 10 now}
writeln{'The value of myInt after calling myAsm is " myInt:1);

END. {PROGRAM}

Assembly Source for Pascal

•
CASE OFF

MyAsm PROC EXPORT
IMPORT myInt:DATA
ASL.W f1,myInt
RTS

Technical Note #104

;treat upper and lower case identically
;CASE OFF is the assembler's default
;we need :DATA, the assembler assumes CODE
;multiply by two
;all done with this extensive routine, whew!

page 1 of2 Accessing Globals From Assembly Language



END

The variable mylnt is accessible from assembler. Neither myWRect nor err are
accessible. If you try to access myWRect, for example, from assembler, you will get the
following linker error:

ttt Link: Error

C Source

Undefined entry name: MYWRECT. •
In an MPW C program, one need only make sure that MyAsm is declared as an external
function, that mylnt is a global variable (capitalizations must match) and that the CASE

ON directive is used in the Assembler:

tinclude <types.h>
tinclude <quickdraw.h>
tinclude <fonts.h>
tinclude <windows.h>
tinclude <events.h>
tinclude <textedit.h>
tinclude <dialogs.h>
tinclude <stdio.h>

main ()
{

windowPtr MyWindow;
Rect myWRect;

extern MyAsm();
short myInt;

/* assembly routine that doubles the value of myInt */
/* we'll change the value of this variable from MyAsm */

•
myInt = 5;
MyAsm() ;
printf(n The value of myInt after calling myAsm is %d\nn,myInt);
} /*main*/

Assembly source for C

MyAsm
CASE
PROC
IMPORT
ASL.W
RTS
END

ON
EXPORT
myInt:DATA
tl,myInt

;treat upper and lower case distinct
;this is how C treats upper and lower case
;we need :DATA, the assembler assumes CODE
;multiply by two
;all done with this extensive routine, whew!

•
Technical Note #104 page 2 of 2 Accessing Globals From Assembly Language



•
Macintosh Technical Notes

#105: MPW Object Pascal Without MacApp

See also: Technical Note #93-{$LOAD};_Datalnit;%_MethTables

Written by:
Updated:

Rick Blair January 12, 1987
March 1, 1988

•

•

Object Pascal must have a CODE segment named % MethTables in order to access
object methods. In MacApp this is taken care of "behind the scenes" so you don't have to
worry about it . However, if you are doing a straight Object Pascal program, you must
make sure that %_MethTables is around when you need it. If it's unloaded when you
call a method, your Macintosh will begin executing wild noncode and die a gruesome
and horrible death.

The MPW Pascal compiler must see some declaration of an object in order to produce a
reference to the magic segment. You can achieve this cheaply by simply including
Obj Inti. p in your Uses declaration. This must be in the main program, by the way. The
compiler will produce a call to %_InitObj which is in %_MethTables.

If you're a more adventurous soul, you can call % In i tOb j explicitly from the
initialization section of your main program (you must usethe {$%+} compiler directive to
allow the use of "%" in identifiers). This will load the %_MethTables segment. See
Technical Note #93 for ideas about locking down segments that are needed forever
without fragmenting the heap.

Technical Note#105 page 1 of 1 MPWObject Pascal Without MacApp



•

•

•



•
Macintosh Technical Notes

#106: The Real Story: VCBs and Drive Numbers

See also: The File Manager
Technical Note #36-Drive Queue Element Format

Written by:
Updated:

Rick Blair January 12, 1987
March 1, 1988

•

The top of page IV-178 in The File Manager chapter of Inside Macintosh in attempts to
explain the behavior of two fields in a volume control block when the corresponding disk
is offline or ejected. Due to the fact that a little bit is left unsaid, this paragraph is rather
misleading. The two fields in question are vcbDrvNum and vcbDRefNum (referred to as
ioVDrvlnfo and ioVDRefNum in C and Pascal). PBHGetVlnfo can be used to access
these fields.

Offline

When a mounted volume is placed offline, vcbDrvNum is cleared and vcbDRefNum is
set to the two's complement of the drive number. Since drive numbers are assigned
positive values (starting with one), this will be a negative number. If vcbDrvNum is zero
and vcbDRe fNum is negative, you know that the volume is offline.

Ejected

When a volume is ejected, vcbDrvNum is cleared and vcbDRefNum is set to the positive
drive number. If vcbDrvNum is zero and vcbDRefNum is positive, you know that the
volume is ejected. Ejection implies being offline. There is no such thing as "premature
ejection".

Summary

vcbDrvNum
vcbDRefNum

online
>0 (DrvNum)
<0 (DRefNum)

offline
o
<0 (-DrvNum)

ejected
o
>0 (DrvNum)

Please refrain from assuming anything about a VCB queue element beyond what is
documented in Inside Macintosh, and don't expect it to always be 178 bytes in size. It
grew when we went from MFS to HFS, and it may grow again. It's safest to use calls like

• PBHGetVlnfo to get the information that you need.

Technical Note#106 page 1 of 1 The Real Story: VCBs and Drive Numbers



•

•

•



•
Macintosh Technical Notes

#107: Nulls in Filenames

See also:

Written by:
Updated:

The File Manager

Rick Blair March 2, 1987
March 1, 1988

•

•

Some applications (loosely speaking so as to include Desk Accessories, INITs, and
what-have-you) generate or rename special files on the fly so that they are not explicitly
named by the user via SFPutFile. Since the Macintosh file system is very liberal about
filenames and only excludes colons from the list of acceptable characters, this can lead
to some difficulties, both for the end user and for writers of other programs which may
see these files.

Other programs which might be backing up your disk or something similar may get
confused. A program written in C will think it has found the end of a string when it hits a
null (ASCII code 0) character, so nulls in filenames are especially risky.

As a rule, filenames should only include characters which the user can see and edit.
The only reasonable exception might be invisible files, but it can be argued that they are
of dubious value anyway. You can argue "but what about my help file, I don't want it
renamed" but we already have what we think is the best approach for that situation. If
you can't find a configuration or other file because the user has renamed or moved it,
then call SFGetFile and let the user find it. If the user cancels, and you can't run without
the file, then quit with an appropriate message.

Please consider carefully before you put non-displaying characters in filenames!

Technical Note #107 page 1 of 1 Nulls in Filenames



•

•

•



•
Macintosh Technical Notes

#108: AddDrive, Drvrlnstall, and DrvrRemove- - -

See also: Technical Note #36, Drive Queue Elements
SCSI Development Package (APDA)

Written by:
Revised by:

Jim Friedlander
Pete Helme

March 2, 1987
December 1988

•

AddDrive, DrvrInstall, and DrvrRemove are used in the sample
SCSI driver in the SCSI Development Package, which is available from
APDA. This Technical Note documents the parameters for these calls.
Changes since March 1,1988: Updated the DrvrInstall text to
reflect the use of register AO, which should contafri a pointer to the driver
when called. Also added simple glue code for DrvrInstall and

DrvrRemove since none is available in the MPW interfaces.

AddDrive

AddDr i ve adds a drive to the drive queue, and is discussed in more detail in
Technical Note #36, Drive Queue Elements:

FUNCTION AddDrive (DQE:DrvQElidriveNum, refNum:INTEGER) :OSErri

AO (input) ~

DO high word(input) ~

DO low word(input) ~

DO (output) ~

Drvrlnstall

pointer to DQE
drive number
driver RefNum
error code

noErr (always returned)

Drvrlnstall is used to install a driver. A DeE for the driver is created and its handle
entered into the specified Unit Table position (-1 through -64). If the unit number is -4
through -9, the corresponding ROM-based driver will be replaced:

FUNCTION DrvrInstall(drvrHandle:Handlei refNum: INTEGER): OSErri

•
AO (input)
DO (input)
DO (output)

Technical Note #108

pointer to driver
driver RefNum (-1 through -64)
error code

noErr
badUnitErr

page 1 of 2 _AddDrive, _Drvrlnstall, and _DrvrRemove



DrvrRemove

DrvrRemove is used to remove a driver. A RAM-based driver is purged from the •
system heap (using ReleaseResource). Memory for the DeE is disposed:

FUNCTION DrvrRemove(refNum: INTEGER) :OSErr;

DO (input)
DO (output)

Interfaces

Driver RefNum
error code

noErr
qErr

Through a sequence of cataclysmic events, the glue code for DrvrInstall and
_DrvrRemove was never actually added to the MPW interfaces (Le., "We forgot."), so
we will include simple glue here at no extra expense to you.

It would be advisable to first lock the handle to your driver with HLock before making
either of these calls since memory may be moved. -

;---------------------------------------------------------------
; FUNCTION DRVRInstall (drvrHandle: Handle; refNum: INTEGER) : OSErr;
;---------------------------------------------------------------

DRVRInstall PROC
MOVEA.L
MOVE.W
MOVEA.L
MOVEA.L
DrvrInstall

MOVE.W
JMP
ENDPPROC

EXPORT
(SP)+, Al
(SP)+, DO
(SP)+, AO
(AO), AO

DO, (SP)
(AI)

pop return address
driver reference number
handle to driver
pointer to driver
$A03D
get error
& split

•
;---------------------------------------------------------------
; FUNCTION DRVRRemove(refNum:INTEGER) :OSErr;
;---------------------------------------------------------------

DRVRRemove PROC
MOVEA.L
MOVE.W

DrvrRemove-
MOVE.W
JMP
ENDPPROC

EXPORT
(SP) +, Al
(SP)+, DO

DO, (SP)
(AI)

pop return address
driver reference number
$A03E
get error
& split

•
Technical Note #108 page 2 of 2 _AddDrive, _Drvrlnstall, and _DrvrRemove



Macintosh Technical Notes

• #109: Bug in MPW 1.0 Language Libraries

See also:

Written by:
Updated:

MPW Reference Manual

Scott Knaster March 2, 1987
March 1, 1988

This note formerly described a problem in the language libraries for MPW
1.0. This bug is fixed in MPW 1.0.2, available from APDA.

•

•
Technical Note #109 page 1 of 1 BuginMPW1.0Language Lhraries



•

•

•



•
Macintosh
Technical Notes

Developer Technical Support

#110: MPW: Writing Stand-Alone Code
Revised by: Keith Rollin
Written by: Jim Friedlander

August 1990
March 1987

•

•

This Technical Note formerly discussed using MPW Pascal and C to write stand-alone code, such
as 'WDEF', 'LDEF', 'INIT', and 'FKEY' resources.
Changes since February 1990: Merged the contents of this Note into Technical Note #256,I
Stand-Alone Code, ad nauseam.

This Note formerly discussed using MPW Pascal and C to write stand-alone code. This
information has been expanded and is now contained in Technical Note #256, Stand-Alone Code,
ad nauseam.

#110: MPW: Writing Stand-Alone Code 1 of 1



•

•

•



•
Macintosh Technical Notes

#111: MoveHHi and SetResPurge

See also:

Written by:
Updated:

The Memory Manager
The Resource Manager

Jim Friedlander March 2, 1987
March 1, 1988

•

•

SetRe sPurge (TRUE) is called to make the Memory Manager call the Resource
Manager before purging a block specified by a handle. If the handle is a handle to a
resource, and its re sChanged bit is set, the resource data will be written out (using
WriteResource).

When MoveHHi is called, even though the handle's block is not actually being purged,
the resource data specified by the handle will be written out. An application can prevent
this by calling SetResPurge (FALSE) before calling MoveHHi (and then calling
SetResPurge (TRUE) after the MoveHHi call).

Technical Note #111 page 1 of 1 MoveHHi and SetResPurge



•

•

•



•
Macintosh Technical Notes

#112: FindDltem

See also:

Written by:
Updated:

The Dialog Manager

Rick Blair March 2, 1987
March 1, 1988

•

•

FindDltem is a potentially useful call which returns the number of a dialog item given a
point in local coordinates and a dialog handle. It returns an item number of -1 if no
item's rectangle overlaps the point. This is all well and good, except you don't get back
quite what you would expect.

The item number returned is zero-based, so you have to add one to the result:

theitem := FindDltem(theDialog, thePoint) + 1;

Technical Note #112 page 1 of 1 FindDltem, win D prize



•

•

•



•
Macintosh Technical Notes

#113: Boot Blocks

See also:

Written by:
Updated:

The Segment Loader

Bo3b Johnson March 2, 1987
March 1, 1988

•

•

There are two undocumented features of the Boot Blocks. This note will
describe how they currently work.

Warning: The format and functionality of the Boot Blocks will change in the
future; dependence on this information may cause your program to fail on
future hardware or with future System software.

The first two sectors of a bootable Macintosh disk are used to store information on how
to start up the computer. The blocks contain various parameters that the system uses to
startup such as the name of the system file, the name of the Finder, the first application
to run at boot time, the number of events to allow, etc.

Changing System Heap Size

The boot blocks dictate what size the system heap will be after booting. Any common
sector editing program will allow you to change the data in the boot blocks. Changing
the system heap size is accomplished by changing two parameters in the boot blocks:
the long word value at location $86 in Block 0 indicates the size of the system heap; the
word value at location $ 6 is the version number of the boot blocks. Changing the version
number to be greater than $14 ($15 is recommended) tells the ROM to use the value at
$ 86 for the system heap size, otherwise the value at $ 86 is ignored. The $ 86 location
only applies to computers with more than 128K of RAM.

Secondary Sound and Video Pages

Another occasionally useful feature of the boot blocks is the ability to specify that the
secondary sound and video pages be allocated at boot time. This is done before a
debugger is loaded, so the debugger will load below the alternate screen. This is useful
for debugging software that uses the alternate video page, like page-flipping demos or
games. To allocate the second video and sound buffers, change the two bytes starting at
location $ 8 in the boot blocks. Change the value (normally 0) to a negative number
($FFFF) to allocate both video and sound buffers. Change the value to a positive
number ($0001) to allocate only the secondary sound buffer.

Warning: MacsBug may not work properly if you allocate additional pages for sound
and video.

Technical Note #113 page 1 of 1 Boot Blocks



•

•

•



•
Macintosh Technical Notes

#114: AppleShare and Old Finders

See also:

Written by:
Updated:

AppleShare User's Guide

Bryan Stearns March 2, 1987
March 1, 1988

•

•

A rumor has been spread that if you use a pre-AppleShare Finder on a workstation to
access AppleShare volumes, you can bypass AppleShare's "access privilege"
mechanisms.

This is not true. Access controls are enforced by the server, not by the Finder. If you use
an older Finder, you are still prevented (by the server) from gaining access to protected
files and folders; however, you will not get the proper user-interface feedback that you
would if you were using the correct Finder: for instance, folders on the server will always
appear plain white (that is, without the permission feedback you'd normally get), and
error messages would not be as explanatory as those from Finders that "know" about
AppleShare servers.

Technical Note #114 page 1 of 1 AppleShare and Old Finders



•

•

•



•
Macintosh Technical Notes

#115: Application Configuration with Stationery Pads

See also: The File Manager
Technical Note #116-AppleShare-able Applications
Technical Note #47-Customizing SFGetFile
Technical Note #48-Bundles
"Application Development in a Shared Environment"

Written by:
Updated:

Bryan Stearns March 2, 1987
March 1, 1988

•

•

With the introduction of AppleShare (Apple's file server) there are restrictions
on self-modification of application resource files and the placement of
configuration files. This note describes one way to get around the necessity
for configuration files.

Configuration Files

Some applications need to store information about configuration; others could benefit
simply from allowing users to customize default ruler settings, window placement, fonts,
etc.

There are applications which store this information as additional resources in the
application's resource file; when the user changes the configuration, the application
writes to itself to change the saved information.

AppleShare, however, requires that if an application is to be used by more than one
user at a time, it must not need write access to itself. This means that the above method
of storing configuration information cannot be used. (For more information about making
your application sharable, see Technical Note #116.)

Storing configuration in a special configuration file can be a problem; the user must
keep the file in the system folder or the application must search for it. This process has
design issues of its own.

An alternative to configuration files: Stationery Pads

A basis for one solution to this problem was a user-interface feature of the Lisa Office
System architecture. Lisa introduced the concept of "stationery pads", special
documents that created copies of themselves to allow users to save a pre-set-up
document for future use. On Lisa, this was the way Untitled documents were created.

Technical Note #115 page 1 of 2 Application Configuration with Stationery Pads



Your Macintosh application can provide the option of saving a document as a stationery
pad, to provide similar functionality. Here's how:

• You'll need to add a checkbox to your SFPutFile dialog box (if you don't know •
how to do this, check out Technical Note #47); if the user checks this box, save
the document as you normally would, but use a different file type (the file type of a
document is usually set when the document is created, using the File Manager
Create procedure, or later using SetFilelnfo).

[DJ~~.~._ - rm~~·~·~~--- .....
iii:::.:: Di:--.. ::.":' ..

A Document and its Stationery pad

• Be sure to use a different but similar icon for the stationery pad file. This is easy if
you differentiate between stationery and normal files solely by file type-the
Finder uses the type to determine which icon to display, see Technical Note #48
for help with the "bundle" mechanism used to associate a file type with an icon.

• When opening a stationery pad file, the window should come up named
"Untitled", with the contents of the stationery pad file.

• "Revert" should re-read the stationery pad file.

• Don't forget to add the stationery pad's file type to the file-types list that you pass
to Standard File, so that the new files will appear in the list when the user •
chooses Open. This file type should be registered with Macintosh Developer
Technical Support.

•
Technical Note #115 page 2 of 2 Application Configuration with Stationery Pads



•
Macintosh Technical Notes

#116: AppleShare-able Applications and the Resource Manager

See also: The Resource Manager
"Application Development in a Shared Environment"
Technical Note #4Q-Finder Flags

Written by:
Updated:

Bryan Stearns March 2, 1987
March 1, 1988

•

•

Normally, applications on an AppleShare server volume cannot be executed
by more than one user at a time. This technical note explains why, and tells
how you can enable your application to be shared.

The Resource Manager versus Shared Files

Part of the explanation of why applications are not automatically sharable is based on
the design of the Resource Manager. The Resource Manager is a great little database.
It was originally conceived as a way to keep applications localizable (a task it has
performed admirably), and was found to be an excellent foundation for the Segment
Loader, Font Manager, and a large part of the rest of the Macintosh operating system.

However, it was never designed to be a multi-user database. When the Resource
Manager opens a resource file (such as an application), it reads the file's resource map
into memory. This map remains in memory until the resource file is closed by the
Segment Loader, which regains control when the application exits. Sometimes it is
necessary to write the map out to disk; normally, this is only done by UpdateResFile
and CloseResF i Ie.

If two users opened the same resource file at the same time, and one of them had write
access to the file and added a resource to it, the other user's Resource Manager
wouldn't know about it; this would make the other user's copy of the file's original
resource map invalid. This could cause (at least) a crash; if both users had write access,
it's not unlikely that the resource file involved would become corrupted. Also, although
you can tell the Resource Manager to write out an updated resource map, there's no
way for another user to tell it to refresh the copy of the map in memory if the file changes.

Technical Note #116 page 1 of 3 AppleShare-able Applications



What does all this have to do with running my application twice?

Your application is stored as a resource file; code segments, alert and dialog templates,
etc., are resources. If you write to your application's resource file (for instance, to add
configuration information, like print records), your application can't be shared. •

In Apple's compatibility testing of existing applications (during development of
AppleShare), we found quite a few applications, some of them quite popular, that wrote
to their own resource files. So we decided, to improve the safety of using AppleShare, to
always launch applications using a combination of access privileges such that only one
user at a time could use a given application (these privileges will be discussed in a
future Technical Note). In fact, AppleShare opens all resource files this way, unless the
resource file is opened with OpenRFPerm and read-only permission is specified.

But my application doesn't write to itself!

We realize that many applications do not. However, there are other considerations
(covered in detail, with suggestions for fixes, in "Application Development in a Shared
Environment", available from APDA ). In brief, here are the big ones we know about:

• Does your application create temporary files with fixed names in a fixed place (such
as the directory containing the application)? Without AppleShare's protection, two
applications trying to use the same temporary file could be disastrous.

• Is your application at least "conscious" of the fact that it may be in a multi-user
environment? For instance, does it work correctly if a volume containing an existing •
document is on a locked volume? Does it check all result codes returned from File
Manager calls, and ResError after relevant Resource Manager calls?

OK, I follow the rules. What do I do to make my application
sharable?

There is a flag in each file's Finder information (stored in the file's directory entry) known
as the "shared" bit. If you set this bit on your application's resource file, the Finder will
launch your application using read-only permissions; if anyone else launches your
application, they'll also get it read-only (their Finder will see the same "shared" bit set.).

Three important warnings accompany this information:

• The definition of the "shared" bit was incorrect in previous releases of information and
software from Apple. This includes the June 16, 1986 version of Technical Note #40
(fixed in the March 2, 1987 version), as well as all versions of ResEdit before and
including 1.1b3 (included with MPW 2.0). For now, the most reliable way to set this bit
is to get the 1.1b3 version of ResEdit, use it to Get Info on your application, and check
the box labeled "cached" (the incorrect documentation upon which ResEdit [et al.] was
based called the real shared bit "cached"; the bit labeled as "shared" is the real •
cached bit [a currently unused but reserved bit which should be left clear)).

Technical Note #116 page 2 of3 AppleShare-able Applications



•

•

•

• By checking this bit, you're promising (to your users) that your application will work
entirely correctly if launched by more than one user. This means that you follow the
other rules, in addition to simply not writing to your application's own resource file.
See "Application Development for a Shared Environment," and test carefully!

• Setting this bit has nothing to do with allowing your application's documents to be
shared; you must design this feature into your application (it's not something that
Apple system software can take care of behind your application's back.). You should
realize from reading this note, however, that if you store your document's data in
resource files, you won't be able to allow multiple users to access them
simultaneously.

Technical Note#116 page 3 of3 AppleShare-able Applications



•

•

•



•
Macintosh Technical Notes

#117: Compatibility: Why & How

See Also: Technical Note #2-Compatibility Guidelines
Technical Note #7-A Few Quick Debugging Tips

Written by:
Updated:

B03b Johnson February 9, 1987
March 1, 1988

•

•

While creating or revising any program for the Macintosh, you should be
aware of the most common reasons why programs fail on various versions of
the Macintosh. This note will detail some common failure modes, why they
occur, and how to avoid them.

We've tried to explain the issues in depth, but recognize that not everyone is interested
in every issue. For example, if your application is not copy protected, you're probably not
very interested in the section on copy protection. That's why we've included the outline
form of the technical note. The first two pages outline the problems and the solutions that
are detailed later. Feel free to skip around at will, but remember that we're sending this
enormous technical note because the suggestions it provides may save you hasty
compatibility revisions when we announce a new machine.

We know it's a lot, and we're here to help you if you need it. Our address (electronic and
physical) is on page three-eontact us with any questions-that's what we're here for!

Technical Note #117 page 1 of 28 Compatibility: Why & How



Compatibility: the outline

Don't assume the screen is a fixed size
To get the screen size:

• check the QuickDraw global screenBits. bounds

Don't assume the screen is in a fixed location
To get the screen location:

• check the QuickDraw global screenBits .baseAddr

Don't assume that rowBytes is equal to the width of the screen
To get the number of bytes on a line:

• check the QuickDraw global screenBits . rowBytes
To get the screen width:

• check the QuickDraw global screenBits .bounds. right
To do screen-size calculations:

• Use Longlnts

Don't write to or read from nil Handles or nil Pointers

Don't create or Use Fake Handles
To avoid creating or using fake handles:

• Always let the Memory Manager perform operations with handles
• Never write code that assigns something to a master pointer

Don't write code that modifies itself
Self modifying code will not live across incarnations of the 68000

Think carefully about code designed strictly as copy protection
To avoid copy protection-related incompatibilities:

• Avoid copy protection altogether
• Rely on schemes that don't require specific hardware
• Make sure your scheme doesn't perform illegal operations

Don't ignore errors
To get valuable information:

• Check all pertinent calls for errors
• Always write defensive code

Don't access hardware directly
To avoid hardware-related incompatibilities:

• Don't read or write the hardware
• If you can't get the support from the ROM, ask the system where the hardware is
• Use low-memory globals

Don't use bits that are reserved
To avoid compatibility problems when bit status changes:

• Don't use undocumented stuff
• When using low-memory globals, check only what you want to know

•

•

•
Technical Note #117 page 2 of 28 Compatibility: Why & How



•

•

•

Summary
Minor bugs are getting harder and harder to get away with:

• Good luck
• We'll help
• AppleLink: MacDTS, MCI: MacDTS
• U.S. Mail: 20525MarianiAve.;M/S27-T;Cupertino.CA 95014

Technical Note #117 page 3 of 28 Compatibility: Why & How



What it Is

The basic idea is to make sure that your programs will run, regardless of which
Macintosh they are being run on. The current systems to be concerned with include:

• Macintosh 128K
• Macintosh 512K
• Macintosh XL

• Macintosh 512Ke
• Macintosh Plus
• Macintosh SE
• Macintosh II

•
If you perform operations in a generic fashion, there is rarely any reason to know what
machine is running. This means that you should avoid writing code to determine which
version of the machine you are running on, unless it is absolutely necessary.

For the purposes of this discussion, the term "programs" will be used to describe any
code that runs on a Macintosh. This includes applications, INITs, FKEYs, Desk
Accessories and Drivers.

What the "Rules" mean

Compatibility across all Macintosh computers (which may sound like it involves more
work for you) may actually mean that you have less work to do, since it may not be
necessary to revise your program each time Apple brings out a new computer or System
file. Users, as a group, do not understand compatibility problems; all they see is that the
program does not run on their system.

The benefits of being compatible are many-fold: your customers/users stay happy, you
have less programming to do, you can devote your time to more valuable goals, there
are fewer versions to deal with, your code will probably be more efficient, your users will
not curse you under their breath, and your outlook on life will be much merrier.

Now that we know what being compatible is all about, recognize that nobody is
requiring you to be compatible with anything. Apple does not employ roving gangs of
thought police to be sure that developers are following the recommended guidelines.
Furthermore, when the guidelines comprise 1200 pages of turgid prose (Inside
Macintosh), you can be expected to miss one or two of the "rules." It is no sin to be
incompatible, nor is it a punishable offense. If it were, there would be no Macintosh
programs, since virtually all developers would be incarcerated. What it does mean,
however, is that your program will be unfavorably viewed until it steps in line with the
current system (which is a moving target). If a program becomes incompatible with a
new Macintosh, it usually requires rethinking the offending code, and releasing a new
version. You may read something like "If the developers followed Apple guidelines, they
would be compatible with the transverse-hinged diatomic quark realignment system."
This means that if you made any mistakes (you read all 1200 pages carefully, right?),
you will not be compatible. It is extremely difficult to remain completely compatible,
particularly in a system as complex as the Macintosh. The rules haven't changed, but
what you can get away with has. There are, however, a number of things that you can do
to improve your odds-some of which will be explained here.

•

•
Technical Note #117 page 4 of28 Compatibility: Why & How



•

•

•

It's your choice

It is still your choice whether you will be concerned with compatibility or not. Apple will
not put out a warrant for your arrest. However, if you are doing things that are specifically
illegal, Apple will also not worry about "breaking" your program.

Bad Things

The following list is not intended to be comprehensive, but these are the primary
reasons why programs break from one version of the system to the next. These are the
current top ten commandments:

I Thou shalt not assume the screen is a fixed size.
II Thou shalt not assume the screen is at a fixed location.
'" Thou shalt not assume that rowBytes is equal to the width of the screen.
IV Thou shalt not use nil handles or nil pointers.
V Thou shalt not create or use fake handles.
VI Thou shalt not write code that modifies itself.
VII Thou shalt think twice about code designed strictly as copy protection.
VIII Thou shalt check errors returned as function results.
IX Thou shalt not access hardware directly.
X Thou shalt not use any of the bits that are reserved (unused means reserved).

This has been determined from extensive testing of our diverse software base.

Technical Note #117 page 5 of 28 Compatibility: Why & How



Assuming the screen is a fixed size

Do not assume that the Macintosh screen is 512 x 342 pixels. Programs that do
generally have problems on (or special case for) the Macintosh XL, which has a wider
screen. Most applications have to create the bounding rectangle where a window can •
be dragged. This is the boundsRect that is passed to the call:

DragWindow (myWindowPtr, theEvent.where, boundsRect)i

Some ill-advised programs create the boundsRect by something like:

SetRect (boundsRect, 0,0,342,512); {oops, this is hard-coded..}

Why it's Bad

This is bad because it is never necessary to specifically put in the bounding rectangle
for the screen. On a Macintosh XL for example, the screen size is 760x364 (and
sometimes 608x431 with alternate hardware). If a program uses the hard-coded
0,0,342,512 as a bounding rectangle, end users will not be able to move their windows
past the fictitious boundary of 512. If something similar were done to the GrowWindow
call, it would make it impossible for users to grow their window to fill the entire screen.
(Always a saddening waste of valuable screen real-estate.)

Assuming screen size makes it more difficult to use the program on Macintoshes with
big screens, by making it difficult to grow or move windows, or by drawing in strange
places where they should not be drawing (outside of windows). Consider the case of
running on a Macintosh equipped with one of the full page displays, or Ultra-Large •
screens. No one who paid for a big screen wants to be restricted to using only the
upper-left corner of it.

How to avoid becoming a screening fascist

Never hard code the numbers 512 and 342 for screen dimensions. You should avoid
using constants for system values that can change. Parameters like these are nearly
always available in a dynamic fashion. Programs should read the appropriate variables
while the program is running (at run-time, not at compile time).

Here's how smart programs get the screen dimensions:

InitGraf(@thePort); { QuickDraw global variables have to be initialized.}

boundsRect := screenBits.bounds; { The Real way to get screen size }
{ Use QuickDraw global variable. }

This is smart, because the program never has to know specifically what the numbers
are. All references to rectangles that need to be related to the screen (like the drag and
grow areas of windows) should use screenBits .bounds to avoid worrying about the
screen size.

•
Technical Note #117 page 6 of 28 Compatibility: Why & How



•

•

•

Note that this does not do anything remotely like assume that "if the computer is not a
standard Macintosh, then it must be an XL." Special casing for the various versions of
the Macintosh has always been suspicious at best; it is now grounds for breaking. (At
least with respect to screen dimensions.)

By the way, remember to take into account the menu bar height when using this
rectangle. On 128K ROMs (and later) you can use the low-memory global mBarHeight
(a word at $BAA). But since we didn't provide a low-memory global for the menu bar
height in the 64K ROMs, you'll have to hard code it to 20 ($14). (You're not the only ones
to forget the future holds changes.)

How to find fascist screenism in current programs

The easiest way is to exercise your program on one of the Ultra-Large screen
Macintoshes. There should be no restrictions on sizing or moving the windows, and all
drawing should have no problems. If there are any anomalies in the program's usage,
there is probably a lurking problem. Also, do a global find in the source code to see if the
numbers 512 or 342 occur in the program. If so, and if they are in reference to the
screen, excise them.

Technical Note#117 page 7 of 28 Compatibility: Why & How



Assuming the screen is at a fixed location

Some programs use a fixed screen address, assuming that the screen location will be
the same on various incarnations of the Macintosh. This is not the case. For example,
the screen is located at memory location $lA700 on a 128K Macintosh, at $7A700 on a •
512K Macintosh, at $F8000 on the Macintosh XL, and at $FA700 on the Macintosh Plus.

Why it's Bad

When a program relies upon the screen being in a fixed location, Murphy's Law dictates
that an unknowing user will run it upon a computer with the screen in a different location.
This usually causes the system to crash, since the offending program will write to
memory that was used for something important. Programs that crash have been proven
to be less useful than those that don't.

How to avoid being a base screener

Suffice it to say that there is no way that the address of the screen will remain static, but
there are rare occasions where it is necessary to go directly to the screen memory. On
these occasions, there are bad ways and not-as-bad ways to do it. A bad way:

myScreenBase := Pointer ($7A700); {not good. Hard-coded number.

myScreenBase := screenBits.baseAddr; {Good. Always works. }
{Yet another QuickDraw global variable}

A not-as-bad way:

InitGraf(@thePort); { do this only once in a program. }

•Using the latter approach is guaranteed to work, since QuickDraw has to know where to
draw, and the operating system tells QuickDraw where the screen can be found. When
in doubt, ask QuickDraw. This will work on Macintosh computers from now until forever,
so if you use this approach you won't have to revise your program just because the
screen moved in memory.

If you have a program (such as an INIT) that cannot rely upon QuickDraw being
initialized (via InitGraf), then it is possible to use the ScrnBase low-memory global
variable (a long word at $824). This method runs a distant second to asking QuickDraw,
but is sometimes necessary.

How to find base screeners

The easiest way to find base screeners is to run the offending program on machines that
have different screen addresses. If any addresses are being used in a base manner, the
system will usually crash. The offending program may also occasionally refuse to draw.
Some programs afflicted with this problem may also hang the computer (sometimes
known as accessing funny space). Also, do a global find on the source code to look for
numbers like $ 7 A700 or $lA700. When found, exercise caution while altering the
offending lines.

•
Technical Note #117 page 8 of 28 Compatibility: Why & How



•
Assuming that rowbytes is equal to the width of the screen

According to the definition of a bitMap found in Inside Macintosh (p 1-144), you can see
that rowBytes is the number of actual bytes in memory that are used to determine the
bitMap. We know the screen is just a big hunk of memory, and we know that QuickDraw
uses that memory as a bitMap. rowBytes accomplishes the translation of a big hunk of
memory into a bitMap. To do this, rowBytes tells the system how long a given row is in
memory and, more importantly, where in memory the next row starts. For conventional
Macintoshes, rowBytes (bytes per Row) * 8 (Pixels per Byte) gives the final horizontal

width of the screen as Pixels per Row. This does not have to be the case. It is possible to
have a Macintosh screen where the rowBytes extends beyond what is actually visible
on the screen. You can think of it as having the screen looking in on a larger bi tMap.
Diagrammatically, it might look like:

Big Hunk 0' Memory

•

...-- ...-

•

With an Ultra-Large screen, the number of bytes used for screen memory may be in the
500,000 byte range. Whenever calculations are being made to find various locations in
the screen, the variables used should be able to handle larger screen sizes. For
example, a 16 bit Integer will not be able to hold the 500,000 number, so a LongInt
would be required. Do not assume that the screen size is 21,888 bytes long. bitMaps
can be larger than 32K or 64K.

Why it's Bad

Programs that assume that all of the bytes in a row are visible may make bad
calculations, causing drawing routines to produce unusual, and unreadable, results.
Also, programs that use the rowBytes to figure out the width of the screen rectangle will
find that their calculated rectangle is not the real screenBits . Bounds. Drawing into
areas that are not visible will not necessarily crash the computer, but it will probably give
erroneous results, and displays that don't match the normal output of the program.

Programs that assume that the number of bytes in the screen memory will be less than
32768 may have problems drawing into Ultra-Large screens, since those screens will
often have more memory than a normal Macintosh screen. These particular problems
do not evidence themselves by crashing the system. They generally appear as loss of

Technical Note #117 page 9 of 28 Compatibility: Why & How



functionality (not being able to move a window to the bottom of the screen), or as
drawing routines that no longer look correct. These problems can prevent an otherwise
wonderful program from being used.

How to avoid being a row byter

In any calculations, the rowBytes variable should be thought of as the way to get to the
next row on the screen. This is distinct from thinking of it as the width of the screen. The
width should always be found from s ere en Bit s . b 0 un d s . rig h t 
screenBits.bounds.left.

It is also inappropriate to use the rectangle to decide how many bytes there are on a
row. Programs that do something like:

bytesLine := screenBits.bounds.right DIV 8i {bad use of bounds
rightSide .= screenBits.rowBytes * 8i { bad use of rowBytes }

will find that the screen may have more rowBytes than previously thought. The best
way to avoid being a row byter is to use the proper variables for the proper things.
Without the proper mathematical basis to the screen, life becomes much more difficult.
Always do things like:

bytesLine .= screenBits.rowBytesi {always the correct number}
rightSide .= screenBits.bounds.righti {always the correct screen size

It is sometimes necessary to do calculations involving the screen. If so, be sure to use
LongInts for all the math, and be sure to use the right variables (Le. use LongInts) .
For example, if we need to find the address of the sooth row in the screen (500 lines
from the top):

•

•
VAR myAddress:

myRow:
myOffset:
bytesLine:

LongInti
LongInti
LongInti
LongInti

so the calculations don't round off.
could easily be over 32768 ... }

myAddress := ord4(screenBits.baseAddr)i {start withe real base address
myRow := sOOi {the row we want to address
bytesLine := screenBits.rowBytesi {the real bytes per line}
myOffset := myRow * bytesLinei {lines * bytes per lines gives bytes }
myAddress := myAddress + myOffseti {final address of the sooth line }

This is not something you want to do if you can possibly avoid it, but if you simply must
go directly to the screen, be careful. The big-screen machines (Ultra-Large screens) will
thank you for it. If QuickDraw cannot be initialized, there is also the low-memory global
screenRow (a word at $106) that will give you the current rowBytes.

How to find row byters

To find current problems with row byter programs, run them on a machine equipped with •
Ultra-Large screens and see if any anomalies crop up. Look for drawing sequences that
don't work right, and for drawing that clips to an imaginary edge. For source-level

Technical Note #117 page 10 of 28 Compatibility: Why & How



•

•

•

inspection, look for uses of the rowBytes variables and be sure that they are being
used in a mathematically sound fashion. Be highly suspicious of any code that uses
rowBytes for the screen width. Any calculations involving those system variables
should be closely inspected for round-off errors and improper use. Search for the
number 8. If it is being used in a calculation where it is the number of bits per byte, then
watch that code closely for improper conceptualization. This is code that could leap out
and grab you by the throat at anytime. Be careful!

Technical Note #117 page 11 of 28 Compatibility: Why & How



Using nil Handles or nil Pointers

A nil pointer is a pointer that has a value of O. Recognize that pointers are merely
addresses in memory. This means that a nil pointer is pointing to memory location O. •
Any use of memory location 0 is strictly forbidden, since it is owned by Motorola.
Trespassers may be shot on sight, but they may not die until much later. Sometimes
trespassers are only wounded and act strangely. Any use of memory location 0 can be
considered a bug, since there are no valid reasons for Macintosh programs to read or
write to that memory. However, nil pointers themselves are not necessarily bad. It is
occasionally necessary to pass ni 1 pointers to ROM routines. This should not be
confused with reading or writing to memory location O. A pointer normally points to
(contains the address of) a location in memory. It could look like this:

•

This is how a Pointer
works. The address of
the pointer variable itself
is $E93l0 (@P) and is four
bytes long. The pointer points
to (contains the address of)
the block at $3E4DE (P).
That memory location is where
the actual data resides (P~).

$3E4DEP: $E93l0:t::J~~=j--..,

P~: $3E4DE:

Memory 0

Higher Memory

Highest Memory

If a pointer has been cleared to nil, it will point to memory location O. This is OK as
long as the program does not try to read from or write to that pointer. An example of a
nil pointer could look like:

•

This is a nil Pointer.
Note that the memory that
it points to (the address)
is 0 (P~). This is wrong.
There is no valid data at
memory location O. Any
writing to or reading from
this pointer is a bug.

o

Memory 0 L.- ...I .............

(P~)

P: $E93l0:t=::J~=j--..,

Higher Memory

Highest Memory

Technical Note#117 page 12 of 28 Compatibility: Why & How



nil handles are related to the problem, since a handle is merely the address of a
pointer (or a pointer to a pointer). An example of what a normal handle might look like
is:

This is how a Handle works.
The address of the handle
variable itself (H) is $E9310.
That variable points (has the
address) to the master pointer
at location $2603C (H). That
variable is a pointer also, and
points to the real data found
at $3E4DE (H...... ). The dark grey
block is a Master pointer block. It
is a group (usually 64) of Master
Pointers. One of them is the Master
Pointer at address $2603C (H"').

$2603CH: $E9310:l=:J~~=l----,

H"': $2603C:

Memory 0

Higher Memory

Highest Memory•

When the first pointer (h) becomes nil, that implies that memory location 0 can be used
as a pointer. This is strictly illegal. There are no cases where it is valid to read from or
write to a nil handle. A pictorial representation of what a nil handle could look like:

This is a nil Handle.
Note that the Handle usually
points to a Master Pointer, but
in this case it points at (has
the value of) 0 (H"'). This is wrong.
Using what is at memory location
o as a pointer is invalid, since
it is not known what will be there.

oH: $E9310:~=:J~=:t----,

Higher Memory

Highest Memory

•
$3E4DE:~~~~~4

$2603C:

Memory 0
(H"')

~~~H·"'''': Points someplace strange ...

•

If the memory at 0 contains an odd number (numerically odd), then using it as a pointer
will cause a system error with 10=2. This can be very useful, since that tells you exactly
where the program is using this illegal handle, making it easy to fix. Unfortunately, there
are cases where it is appropriate to pass ani 1 handle to ROM routines (such as
GetScrap). These cases are rare, and it is never legal to read from or write to a nil
handle.

Technical Note #117 page 13 of 28 Compatibility: Why & How

There is also the case of an empty handle. An empty handle is one where the handle
itself (the first pointer) points to a valid place in memory; that place in memory is also a
pointer, and if it is nil the entire handle is termed empty. There are occasions where it
is necessary to use the handle itself, but using the nil pointer that it contains is not
valid. An example of an empty handle could be: •

This is an Empty Handle.
Note that the handle itself
has a valid Master Pointer
address in it $2603C (H~). The
Master Pointer is nil however,
which is the address of location
o in memory. It is wrong to use
the Master Pointer in this case,
although there are cases where
using the Handle itself is valid.

$2603CH: $E9310:t:::::Im~=l----,

Memory 0
(W~)

$3E4DE :p±..........................---!

W: $2603C:~·~··~--W

Higher Memory

Highest Memory

Fundamentally, any reading or writing to memory using a pointer or handle that is nil is
punishable by death (of your program).

Why it's Bad

The use of nil pointers can lead to the use of make-believe data. This make-believe
data often changes for different versions of the computer. This changing data makes it
difficult to predict what will happen when a program uses nil pointers. Programs may
not crash as a result of using ani 1 pointer, and they may behave in a consistent
fashion. This does not mean that there isn't a bug. This merely means that the program
is lucky, and that it should be playing the lottery, not running on a Macintosh. If a
program acts differently on different versions of the Macintosh, you should think "could
there be a nasty nil pointer problem here?" Use of a nil handle usually culminates in
reading or writing to obscure places in memory. As an example:

•

VAR myHandle: TEHandle;

myHandle := nil;

That's pretty straightforward, so what's the problem? If you do something like:

myHandle~~.viewRect := myRect; {very bad idea with myHandle = nil

memory location zero will be used as a pointer to give the address of a TextEdit record.
What if that memory location points to something in the system heap? What if it points to
the sound buffer? In cases like these, eight bytes of rectangle data will be written to •
wherever memory location 0 points.

Technical Note #117 page 14 of28 Compatibilny: Why & How

•

•

Use of a ni 1 handle will never be useful. This memory is reserved and used by the
68000 for various interrupt vectors and Valuable Stuff. This Valuable Stuff is composed
of things that you definitely do not want to change. When changed, the 68000 finds out,
and decides to get back at your program in the most strange and wonderful ways.
These strange results can range from a System Error all the way to erasing hard disks
and destroying files. There really is no limit to the havoc that can be wreaked. This
tends to keep the users on the edge of their seat, but this is not really the desired effect.
As noted above, it won't necessarily cause traumatic results. A program can be doing
naughty things and not get caught. This is still a bug that needs to be fixed, since it is
nearly guaranteed to give different results on different versions of the Macintosh.
Programs exhibiting schizophrenia have been proven to be less enjoyable to use.

How to avoid being a Niller

Whenever a program uses pointers and handles, it should ensure that the pointer or
handle will not be nil. This could be termed defensive programming, since it assumes
that everyone is out to get the program (which is not far from the truth on the Macintosh).
You should always check the result of routines that claim to pass back a handle. If they
pass you back a nil handle, you could get in trouble if you use them. Don't trust the
ROM. The following example of a defensive use of a handle involves the Resource
Manager. The Resource Manager passes back a handle to the resource data. There
are any number of places where it may be forced to pass back ani 1 handle. For
example:

VAR myRezzie: MyHandle;

myRezzie := MyHandle (GetResource (myResType, myResNumber)); { could be missing...}
IF myRezzie = nil THEN ErrorHandler('We almost got Nilled')
ELSE myRezzieAA.myRect := newRect; { We know it is OK }

As another example, think of how handles can be purged from memory in tight memory
conditions. If a block is marked purgeable, the Memory Manager may throw it away at
any time. This creates an empty handle. The defensive programmer will always make
sure that the handles being used are not empty.

VAR myRezzie: myHandle;

myRezzie := myHandle(GetResource(myResType, myResNumber)); could be
missing...

IF myRezzie = nil THEN ErrorHandler('We almost got Nilled')
ELSE myRezzieAA.myRect := newRect; {We know it is OK }
tempHandle := NewHandle (largeBlock); {might dispose a purgeable myRezzie}
IF myRezzie A = nil THEN LoadResource(Handle(myRezzie)); {Re-load empty

handle}

Be especially careful of places where memory is being allocated. The NewHandle and
Newptr calls will return a nil handle or pointer if there is not enough memory. If you
use that handle or pointer without checking, you will be guilty of being a Niller.•

IF ResError = noErr THEN
myRezzieAA.StatusField := OK; { guaranteed not empty, and actually

gets read back in, if necessary }

Technical Note #117 page 15 of 28 Compatibility: Why & How

How to find Nillers

The best way to find these nasty nil pointer problems is to set memory location zero to
be an odd number (a good choice is 'NILI' = $4E4 94C21, which is numerically odd, as
well as personality-wise). Please see Technical Note #7 for details on how to do this. •

If you use TMON, you can use the extended user area with Discipline. Discipline will set
memory location 0 to 'NILI' to help catch those nasty pointer problems. If you use
Macsbug, just type 8M 0 I NIL! and go. Realize of course, that if a program has made a
transgression and is actually using nil pointers, this may make the program crash with
an 10=2 system error. This is good! This means that you have found a bug that may
have been causing you untold grief. Once you know where a program crashes, it is
usually very easy to use a debugger to find where the error is in the source code. When
the program is compiled, turn on the debugging labels (usually a $0+ option). Set
memory location 0 to be 'NILI'. When the program crashes, look at where the program is
executing and see what routine it was in (from a disassembly). Go back to that routine in
the source code and remove the offending code with a grim smile on your face. Another
scurvy bug has been vanquished. The intoxicating smell of victory wafts around your
head.

Another way to find problems is to use a debugger to do a checksum on the first four
bytes in memory (from 0 to 3 inclusive). If the program ever traps into the debugger
claiming that the memory changed, see which part of the program altered memory
location O. Any code that writes to memory location zero is guilty of high treason against
the state and must be removed. Remember to say, "bugs are not my friends."

•

•
Technical Note#117 page 16 of 28 Compatibilny: Why & How

•
Creating or Using Fake Handles

A fake handle is one that was not manufactured by the system, but was created by the
program itself. An example of a fake handle is:

CaNST aMem = $100;
VAR myHandle: Handle;

myPointer: Ptr;

myPointer := ptr (aMem);
myHandle := @myPointer;

{ the address of some memory }
{the address of the pointer variable. Very bad.}

•

•

The normal way to create and use handles is to call the Memory Manager NewHandle
function.

Why it's Bad

A handle that is manufactured by the program is not a legitimate handle as far as the
operating system is concerned. Passing a fake handle to routines that use handles is a
good way to discover the meaning of "Death by ROM." For example, think how confused
the operating system would get if the fake handle were passed to DisposHandle. What
would it dispose? It never allocated the memory, so how can it release it? Programs
that manufacture handles may find that the operating system is no longer their friend.

When handles are passed to various ROM routines, there is no telling what sorts of
things will be done to the handle. There are any number of normal handle manipulation
calls that the ROM may use, such as SetHandleSize, HLock, HNoPurge, MoveHHi and
so on. Since a program cannot guarantee that the ROM will not be doing things like this
to handles that the program passes in, it is wise to make sure that a real handle is being
used, so that all these type of operations will work as the ROM expects. For fake
handles, the calls like HLock and SetHandleSize have no bearing. Fake handles are
very easy to create, and they are very bad for the health of otherwise upstanding
programs. Whenever you need a handle, get one from the Memory Manager.

As a particularly bad use of a fake handle:

VAR myHandle: Handle;
myStuff: myRecord;

myHandle := NewHandle (SIZEOF(myStuff»; {create a new normal handle}
myHandle A ;= @myStuff; {YOW! Intended to make myHandle a handle to

the myStuff record. What it really does is
blow up a Master Pointer block, Heap corruption,
and death by Bad Heap. Never do this. }

This can be a little confusing, since it is fine to use your own pointers, but very bad to
use your own handles. The difference is that handles can move in memory, and
pointers cannot, hence the pointers are not dangerous. This does not mean you should
use pointers for everything since that causes other problems. It merely means that you
have to be careful how you use the handles.

The use of fake handles usually causes system errors, but can be somewhat mysterious

Technical Note #117 page 17 of 28 Compatibility: Why & How

in its effects. Fake handles can be particularly hard to track down since they often cause
damage that is not uncovered for many minutes of use. Any use of fake handles that
causes the heap to be altered will usually crash the system. Heap corruption is a
common failure mode. In clinical studies, 9 out of 10 programmers recommend
uncorrupted heaps to their users who use heaps. •

How to avoid being a fakir

The correct way to make a handle to some data is to make a copy of the data:

VAR myHandle: Handle;
myStuff: myRecord;

errCode := PtrToHand (@myStuff, myHandle, SIZEOF(myStuff»;
IF errCode <> noErr THEN ErrorHandler ('Out of memory');

Always, always, let the Memory Manager perform operations with handles. Never write
code that assigns something to a master pointer, like:

VAR myDeath: Handle;

myDeath A := stuff; {Don't change the Master pointer. }

If there is code like this, it usually means the heap is being corrupted, or a fake handle is
being used. It is, however, OK to pass around the handle itself, like:

myCopyHandle := myHandle; { perfectly OK, nobody will yell about this. }

This is far different than using the A operator to accidentally modify things in the system. •
Whenever it is necessary to write code to use handles, be careful. Watch things
carefully as they are being written. It is much easier to be careful on the way in than it is
to try to find out why something is crashing. Be very careful of the @ operator. This
operator can unleash untold problems upon unsuspecting programs. If at all possible,
try to avoid using it, but if it is necessary, be absolutely sure you know what it is doing. It
is particularly dangerous since it turns off the normal type checking that can help you
find errors (in Pascal). In short, don't get crazy with pointer and handle manipulations,
and they won't get crazy with you.

How to find fakirs

Problems of this form are particularly insidious because it can be very difficult to find
them after they have been created. They tend to not crash immediately, but rather to
crash sometime long after the real damage has been done. The best way to find these
problems is to run the program with Discipline. (Discipline is a programmer's tool that
will check all parameters passed to the ROM to see if they are legitimate. Discipline can
be found as a stand-alone tool, but the most up-to-date version will be found in the
Extended User Area for the TMON debugger. The User Area is public domain, but
TMON itself is not. TMON has a number of other useful features, and is well worth the
price.) Discipline will check handles that are passed to the ROM to see if they are real
handles or not, and if not, will stop the program at the offending call. This can lead you
back to the source at a point that may be close to where the bad handle was created. If
a program passes the Discipline test, it will be a healthy, robust program with drastically

Technical Note #117 page 18 of 28 Compatibility: Why & How

•

•

•

improved odds for compatibility. Programs that do not pass Discipline can sleep poorly
at night, knowing that they have broken at least one or two of the "rules."

A way to find programs that are damaging the heap is to use a debugger (TMON or
Macsbug) and turn on the Heap Check operation. This will check the heap for errors at
each trap call, and if the heap is corrupted will break into the debugger. Hopefully this
will be close to where the code is that caused the damage. Unfortunately, it may not be
close enough; this will force you to look further back.

Looking in the source code, look for all uses of the @ operator, and examine the code
carefully to see if it is breaking the rules. If it is, change it to step in line with the rest of
the happy programs here in happy valley. Also, look for any code that changes a master
pointer like the myHandle" := stuff. Any code of this form is highly suspect, and
probably a member of the Anti-Productivity League. The APL has been accused of
preventing software sales and the rise of the Yen. These problems can be quite difficult
to find at times, but don't give up. These fake handles are high on the list of guilty
parties, and should never be trusted.

Technical Note #117 page 19 of 28 Compatibility: Why & How

Writing code that modifies itself

Self-modifying code is software that changes itself. Code that alters itself runs into two
main groupings: code that modifies the code itself and code that changes the block the
code is stored in. Copy protection code often modifies the code itself, to change the way •
it operates (concealing the meaning of what the code does). Changing the code itself is
very tricky, and also prone to having problems, particularly when the microprocessor
itself changes. There are third-party upgrades available that add a 68020 to a
Macintosh. Because of the 68020's cache, programs that modify themselves stand a
good chance of having problems when run on a 68020. This is a compatibility point that
should not be missed (nudge, nudge, wink, wink). Code that changes other code (or
itself) is prone to be incompatible when the microprocessor changes.

The second group is code that changes the block that the code is stored in. Keeping
variables in the CODE segment itself is an example of this. This is uncommon with
high-level languages, but it is easy to do in assembly language (using the DC directive).
Variables defined in the code itself should be read-only (constants). Code that modifies
itself has signed a tacit agreement that says "I'm being tricky, if I die, I'll revise it."

Why it's Bad

There are now three different versions of the microprocessor, the 68000, 68010, and the
68020. They are intended to be compatible with each other, but may not be compatible
with code that modifies itself. As the Macintosh evolves, the system may have
compatibility problems with programs that try to "push the envelope."

How to avoid being an abuser

Well, the obvious answer is to avoid writing self-modifying code. If you feel obliged to
write self-modifying code, then you are taking an oath to not complain when you break
in the future. But don't worry about accidentally taking the oath: you won't do it without
knowing it. If you choose to abuse, you also agree to personal visits from the Apple
thought police, who will be hired as soon as we find out.

How to find abusers

Run the program on a 68020 system. If it fails, it could be related to this problem, but
since there are other bugs that might cause failures, it is not guaranteed to be a
self-modifying code problem. Self-modifying code is often used in copy protection,
which brings us to the next big topic.

•

•
Technical Note #117 page 20 of 28 Compatibility: Why & How

•

•

•

Code designed strictly as copy protection

Copy protection is used to make it difficult to make copies of a program. The basic
premise is to make it impossible to copy a program with the Finder. This will not be a
discussion as to the pros and cons of copy protection. Everyone has an opinion. This
will be a description of reality, as it relates to compatibility.

Why it's Bad

System changes will never be made merely to cause copy protection schemes to fail,
but given the choice between improving the system and making a copy protection
scheme remain compatible, the system improvement will always be chosen.

• Copy protection is number one on the list of why programs fail the compatibility test.
• Copy protection by its very nature tends to do the most "illegal" things.
• Programs that are copy protected are assumed to have signed a tacit agreement to

revise the program when the system changes.

Copy protection itself is not necessarily bad. What is bad is when programs that would
otherwise be fully compatible do not work due only to the copy protection. This is very
sad, since it requires extra work, revisions to the software, and time lost while the
revision is being produced. The users are not generally humored when they can no
longer use their programs. Copy protection schemes that fail generally cause system
errors when they are run. They also can refuse to run when they should.

How to avoid being a protectionist

The simple answer is to do without copy protection altogether. If you think of
compatibility as a probability game, if you leave out the copy protection, your odds of
winning skyrocket. As noted above, copy protection is the single biggest reason why
programs fail on the various versions of the Macintosh. For those who are required to
use copy protection, try to rely on schemes that do not require specific hardware and
make sure that the scheme used is not performing illegal operations. If a program runs,
an experienced Macintosh programmer armed with a debugger can probably make a
copy of it, (no matter how sophisticated the copy protection scheme) so a moderate
scheme that does not break the rules is probably a better compatibility bet. The trickier
and more devious the scheme, the higher the chance of breaking a rule. Tread lightly.

How to find protectionists

The easiest way to see if a scheme is being overly tricky is to run it on a Macintosh XL.
Since the floppy disk hardware is different this will usually demonstrate an unwanted
hardware dependency. Be wary of schemes that don't allow installation on a hard disk.
If the program cannot be installed on a hard disk, it may be relying upon things that are
prone to change. Don't use schemes that access the hardware directly. All Macintosh
software should go through the various managers in the ROM to maintain compatibility.
Any code that sidesteps the ROM will be viewed as having said "It's OK to make me
revise myself."

Technical Note #117 page 21 of 28 Compatibilny: Why & How

Check errors returned as function results

All of the Operating System functions, as well as some of the Toolbox functions, will
return result codes as the value of the function. Don't ignore these result codes. If a •
program ignores the result codes, it is possible to have any number of bad things
happen to the program. The result code is there to tell the program that something went
wrong; if the program ignores the fact that something is wrong, that program will
probably be killed by whatever went wrong. (Bugs do not like to be ignored.) If a
program checks errors, an anomaly can be nipped in the bud, before something really
bizarre happens.

Why it's Bad

A program that ignores result codes is skipping valuable information. This information
can often prevent a program from crashing and keep it from losing data.

How to avoid becoming a skipper

Always write code that is defensive. Assume that everyone and everything is out to kill
you. Trust no one. An example of error checking is:

myRezzie := GetResource (myResType, myResId);
IF myRezzie = nil THEN ErrorHandler ('Who stole my resource ... ');

Another example:

fsErrCode := FSOpen ('MyFile', myVRefNum, myFileRefNum);
IF fsErrCode <> noErr THEN ErrorHandler (fsErrCode, 'File error');

And another:

myTPPrPort := PrOpenDoc (myTHPrint, nil, nil);
IF PRError <> noErr THEN ErrorHandler (PRError, 'Printing error');

Any use of Operating System functions should presume that something nasty can
happen, and have code to handle the nasty situations. Printing calls, File Manager
calls, Resource Manager calls, and Memory Manager calls are all examples of
Operating System functions that should be watched for returning errors. Always, always
check the result codes from Memory Manager calls. Big memory machines are pretty
common now, and it is easy to get cavalier about memory, but realize that someone will
always want to run the program under Switcher, or on smaller Macintoshes. It never
hurts to check, and always hurts to ignore it.

How to find skippers

•

This is easy: just do weird things while the program is running. Put in locked or
unformatted disks while the program is running. Use unconventional command
sequences. Run out of disk space. Run on 128K Macintoshes to see how the program
deals with running out of memory. Run under Switcher for the same reason. (Programs •
that die while running under Switcher are often not Switcher's fault, and are in fact due

Technical Note#117 page 22 of 28 Compatibilny: Why & How

•

•

•

to faulty memory management.) Print with no printer connected to the Macintosh. Pop
disks out of the drives with the Command-Shift sequence, and see if the program can
deal with no disk. When a disk-switch dialog comes up, press Command-period to pass
back an error to the requesting program (128K ROMs only). Torturing otherwise well
behaved programs can be quite enjoyable, and a number of users enjoy torturing the
program as much as the program enjoys torturing them. For the truly malicious, run the
debugger and alter error codes as they come back from various routines. Sure it's a
dirty low-down rotten thing to do to a program, but we want to see how far we can push
the program. (This is also a good way to check your error handling.) It's one thing to be
an optimist, but it's quite another to assume that nothing will go wrong while a program
is running.

Technical Note #117 page 23 of 28 Compatibility: Why & How

Accessing hardware directly

Sometimes it is necessary to go directly to the Macintosh hardware to accomplish a
specific task for which there is no ROM support. Early hard disks that used the serial •
ports had no ROM support. Those disks needed to use the SCC chip (the 8530
communication chip) in a high-speed clocked fashion. Although it is a valid function, it is
not something that is supported in the ROM. It was therefore necessary to go play with
the SCC chip directly, setting and testing various hardware registers in the chip itself.
Another example of a valid function that has no ROM support is the use of the alternate
video page for page-flipping animation. Since there is no ROM call to flip pages, it is
necessary to go play with the right bit in the VIA chip (6522 Versatile Interface Adapter).
Going directly to the hardware does not automatically throw a program into the
incompatible group, but it certainly lowers its odds.

Why it's bad

Going directly to the hardware poses any number of problems for enlightened programs
that are trying to maintain compatibility across the various versions of the Macintosh. On
the Macintosh XL for example, a lot of the hardware is found in different locations, and in
some cases the hardware doesn't exist. On the XL there is no sound chip. Programs
that go directly to the sound hardware will find they don't work correctly on an XL. If the
same program were to go through the Sound Manager, it would work fine, although the
sound would not be the same as expected. Since the Macintosh is heavily oriented to
the software side of things, expecting various hardware to always be available is not a
safe bet. Choosy programmers choose to leave the hardware to the ROM.

How to avoid having a hard attack

Don't read or write the hardware. Exhaust every possible conventional approach before
deciding to really get down and dirty. If there is a Manager in the ROM for the operation
you wish to perform, it is far better to use the Manager than to go directly to the
hardware. Compatibility at the hardware level can very rarely be maintained, but
compatibility at the Manager level is a prime consideration. If a program is down to the
last ditch effort, and cannot get the support from the ROM that is desired, then access the
hardware in an enlightened approach. The really bad way to do it:

VIA := Pointer ($EFEIFE); {sure it's the base address today...}
{ This is bad. Hard-coded number. }

The with-it, inspired programmer of the eighties does something like:

TYPE LongPointer = ALongInt;

VAR VIA: LongPointer;
VIABase: LongInt;

VIA := Pointer ($lD4); {the address of the low-memory global. }
VIABase := VIA A; { get the low-memory variable's value}

{ Now VIABase has the address of the chip

•

•
Technical Note #117 page 24 of 28 Compatibiltty: Why & How

•

•

•

The point here is that the best way to get the address of a hardware chip is to ask the
system where it currently is to be found. The system always knows where the pieces of
the system are, and will always know for every incarnation of the Macintosh. There are
low-memory global variables for all of the pieces of hardware currently found in the
Macintosh. This includes the VIA, the SCC, the Sound Chip, the IWM, and the video
display. Whenever you are stuck with going to the hardware, use the low-memory
globals. The fact that a program goes directly to the hardware means that it is risking
imminent incompatibility, but using the low-memory global will ensure that the program
has the best odds. It's like going to Las Vegas: if you don't gamble at all, you don't lose
any money; if you have to gamble, play the game that you lose the least on.

How to find hard attacks

Run the suspicious program on the Macintosh XL. Nearly all of the hardware is in a
different memory location on the XL. If a program has a hard-coded hardware address
in it, it will fail. It may crash, or it might not perform the desired task, but it won't work as
advertised. This unfortunately, is not a completely legitimate test, since the XL does not
have some of the hardware of other Macintoshes, and some of the hardware that is
there has the register mapping different. This means that it is possible to play by the rule
of using the low-memory global and still be incompatible.

Technical Note #117 page 25 of 28 Compatibiltty: Why & How

Don't use bits that are reserved

Occasionally during the life of a Macintosh programmer, there comes a time when it is

necessary to bite the bullet and use a low-memory global. These are very sad days,

since it has been demonstrated (by history) that low-memory global variables are a •

mysterious lot, and not altogether friendly. One fellow in particular is known as ROM8S, a

word located at $ 2 8E. This particular variable has been documented as the way to

determine if a program is running on the 128K ROMs or not. Notably, the top most bit of

that word is the determining bit. This means that the rest of the bits in that word are

reserved, since nothing is described about any further bits. Remember, if it doesn't say,

assume it's reserved. If it's reserved, don't depend upon it. Take the cautious way out

and assume that the other bits that aren't documented are used for Switcher local

variables, or something equally wild. An example of a bad way to do the comparison is:

VAR Rom85ptr: Wordptr;

RomsAre64: Boolean;

Rom85Ptr := Pointer ($28E); {point at the low-memory global

IF Rom85Ptr A = $7FFF THEN RomsAre64 := False {Bad test. }

ELSE RomsAre64 := True;

This is a bad test since the comparison is testing the value of all of the bits, not only the

one that is valid. Since the other bits are undocumented, it is impossible to know what

they are used for. Assume they are used for something that is arbitrarily random, and

take the safe way out.

How to avoid being bitten

VAR ROM85Ptr: ptr

Rom85Ptr := Pointer ($28E); { point at the low-memory global}

IF BitTst(ROM85Ptr,O) THEN RomsAre64 := True {Good--tests only hi-bit}

ELSE RomsAre64 := False;

This technique will ensure that when those bits are documented, your program won't be

using them for the wrong things. Beware of trojan bits.

Don't use undocumented stuff. Be very careful when you use anything out of the

ordinary stream of a high-level language. For instance, in the ROM8S case, it is very

easy to make the mistake of checking for an absolute value instead of testing the actual

bit that encodes the information. Whenever a program is using low-memory globals, be

sure that only the information desired is being used, and not some undocumented (and

hence reserved) bits. It's not always easy to determine what is reserved and what isn't,

so conservative programmers always use as little as possible. Be wary of the strange

bits, and accept rides from none of them. The ride you take might cause you to revise

your program.

•

•
Technical Note #117 page 26 of 28 Compatibiltty: Why & How

•

•

•

How to find those bitten

Since there are such a multitude of possible places to get killed, there is no simple way
to see what programs are using illegal bits. As time goes by it will be possible to find
more of these cases by running on various versions of the Macintosh, but there will
probably never be a comprehensive way of finding out who is accepting strange rides,
and who is not. Whenever the use of a bit changes from reserved status to active, it will
be possible to find those bugs via extensive testing. From a source level, it would be
advisable to look over any use of low-memory globals, and eye them closely for
inappropriate bit usage. Do a global search for the $ (which describes those ubiquitous
hexadecimal numbers), and when found see if the use of the number is appropriate.
Trust no one that is not known. If they are documented, they will stay where they are,
and have the same meaning. Be very careful in realms that are undocumented. Bits
that suddenly jump from reserved to active status have been known to cause more than
one program to have a sudden anxiety attack. It is very unnerving to watch a program
go from calm and reassuring to rabid status. Users have been known to drop their
keyboards in sudden shock (which is bad on the keyboards).

Technical Note #117 page 27 of 28 Compatibility: Why & How

Summary

So what does all this mean? It means that it is getting harder and harder to get away
with minor bugs in programs. The minor bugs of yesterday are the major ones of today.
No one will yell at you for having bugs in your program, since all programs have bugs of •
one form or another. The goal should be to make the programs run as smoothly and
effortlessly as possible. The end-users will never object to bug-reduced programs.

What is the best way to test a program? A reasonably comprehensive test is to exercise
all of the program's functions under the following situations:

• Use Discipline to be sure the program does not pass illegal things to the ROM.
• Use heap scramble and heap purge to be sure that handles are being used

correctly, and that the memory management of the program is correct.
• Run with a checksum on memory locations 0...3 to see if the program writes to these

locations.
• Run on a 128K Macintosh, or under Switcher with a small partition, to see how the

program deals with memory-critical situations.
• Run on a 68020 system to see if the program is 68020-compatible and to make sure

that changing system speed won't confuse the program.
• Run on a Macintosh XL to be sure that the program does not assume too much about

the operating system, and to test screen handling.
• Run on an Ultra-Large screen to be sure that the screen handling is correct, and that

there are no hard-coded screen dimensions.
• Run on 64K ROM machines to be sure new traps are not being used when they don't

exist.
• Run under both HFS and MFS to be sure that the program deals with the file system •

correctly. (400K floppies are usually MFS.)

If a program can live through all of this with no Discipline traps, no checksum breaks, no
system errors, no anomalies, no data loss and still get useful work done, then you
deserve a gold medal for programming excellence. Maybe even an extra medal for
conduct above and beyond the call of duty. In any case, you will know that you have
done your job about as well as it can be done, with today's version of the rules, and
today's programming tools.

Sounds like a foreboding task, doesn't it? The engineers in Macintosh Technical
Support are available to help you with compatibility issues (we won't always be able to
talk about new products, since we love our jobs, but we can give you some hints about
compatibility with what the future holds).

Good luck.

•
Technical Note#117 page 28 of 28 Compatibility: Why & How

•
Macintosh Technical Notes

#127: TextEdit EOl Ambiguity

See also:

Written by:
Updated:

TextEdit

Rick Blair May 4,1987
March 1, 1988

TESetSelect may be used to position the insertion point at the end of a line.There is an ambiguity, though; should the insertion point appear at the end ofthe preceding line or the start of the following one? It is possible to determinewhat will happen, as you are about to see.

The following code can be used to force the insertion point to appear at the left of thefollowing line when it is positioned at the end of a line; in MPW Pascal:

There is an internal flag used by TextEdit to determine where the insertion point at theend of a line appears. This flag is part of the clikSt uff field in the TERec. It is theremainly for the use of TEClick, but it is also used by TESetSelect (although it defaultsto the right side of the previous line).

• TEDeactivate(tH)i
tH~~.clikStuff := 255i
TESetSelect(eolcharpos, eolcharpos, tH)i
TEActivate(tH)i

In MPWC:

TEDeactivate(tH)i
(**tH) .clikStuff = 255i
TESetSelect(eolcharpos, eolcharpos, tH) i
TEActivate(tH)i

{position caret o n left}
{ambiguous point}

/*position caret on left*/
/*ambiguous point */

•

If you want to ensure that the caret is on the right side (to which it normally defaults) thensubstitute a zero for the 255.

Technical Note #127 page 1 of 1 TextEdit EOL Amb iguity

•

•

•
-

Macintosh Technical Notes

• #128: PrGeneral

See also: The Printing Manager
Technical Note #118-

How to Check and Handle Printing Errors

Written by:
Updated:

Ginger Jernigan May 4,1987
March 1, 1988

•

•

The Printing Manager architecture has been expanded to include a new
procedure called PrGeneral. The features described here are advanced,
special-purpose features, intended to solve specific problems for those
applications that need them. The calls to determine printer resolution
introduce a good deal of complexity into the application's code, and should be
used only when necessary.

Version 2.5 (and later) of the ImageWriter driver and version 4.0 (and later) of the
LaserWriter driver implement a generic Printing Manager procedure called PrGeneral.
This procedure allows the Print Manager to expand in functionality, by allowing printer
drivers to implement various new functions. The Pascal declaration of PrGeneral is:

PROCEDURE PrGeneral (pData: Ptr);

The pDa ta parameter is a pointer to a data block. The structure of the data block is
declared as follows:

TGnlData = RECORD {1 st 8 by t e s are common for all PrGeneral calls)
iOpCode : INTEGER; {input}
iError : INTEGER ; {o utput}
IReserved : LONGINT; {reserved for future use}
{more fields here, de pending on particular call}

END;

The first field is a 2-byte opcode, iOpCode, which acts like a routine selector. The
currently available opcodes are described below.

The second field is the error result, iError, which is returned by the print code. This
error only reflects error conditions that occur during the P r Ge n e r a l call. For example , if
you use an opcode that isn't implemented in a particular printer driver then you will get a
Op No t Impl error.

-

Technical Note #128 page 1 of 7 PrGeneral

Here are the errors currently defined:

Ca NST
noErr = 0;
NoSuchRsl 1;

OpNot Impl = 2 ;

{e ve r yt h i ng ' s hunky }
{the resolution you chose isn' t available }

{the dr iver doesn ' t support t h i s op code } •
After calling PrGeneral you should always check PrError. If n oErr is returned, then

you can proceed . If ResNotFound is returned, then the current printer driver doesn't

support P rGeneral and you should proceed appropriately. See Technical Note #118 for

details on checking errors returned by the Printing Manager.

IError is followed by a four byte reserved field (that means don't use it). The contents of

the rest of the data block depends on the opcode that the application uses. There are

currently five opcodes used by the ImageWriter and LaserWriter drivers.

The Opcodes

Initially, the following calls are implemented via PrGeneral:

• GetRsIData (get resolution data): iOpCode = 4

• SetRsl (set resolution): i OpCode = 5

• DraftBits (bitmaps in draft mode): i OpCode = 6

• noDraftBits (no bitmaps in draft mode): iOpCode 7

• GetRotn (get rotation): iOpCode = 8

The GetRsIData and SetRsl allow the application to find out what physical resolutions •

the printer supports, and then specify a supported resolution. DraftBit s and

noDraftBits invoke a new feature of the ImageWriter, allowing bitmaps (imaged via

CopyB its) to be printed in draft mode. GetRotn lets an application know whether

landscape has been selected. Below is a detailed description of how each routine works.

The GetRslData Call

GetRsIData (iOpCode = 4) returns a record that lets the application know what

resolutions are supported by the current printer. The application can then use Set Rs 1

(description follows) to tell the printer driver which one it will use. This is the format of the

input data block for the GetRsIData call:

TRslRg = RECORD {used in TGetRslBlk }

iMin, iMa x: Integer ; 10 if printer only s up po r t s d isc r e t e r esolutions}

END;

TRslRec RECORD {used in TGetRsIBlk}

i XRsl, iYRsl : Integer ; la discrete, physical r esolution}

END;

•
Technical Note #128 page 2 of7 PrGeneral

- - _ I _ • _ ... -

RECORD {da ta block f or GetRs lData c a ll }
In tege r; {inp ut; = getRs lDa taOp}
I nte ger ; {output}
Lo ngI nt ; (rese r ved f o r f ut ure use}
Integer; (ou t p u t ; versio n numbe r)
TRslRg ; (o utp u t ; range of X r e s olutio n s }
TRslRg; {o utput; r a nge o f Y r e s olutions}
In t e ge r ; {output; how many Rs l Re c s follow}
ARRAY [1. . 27J OF TRslRec ; {o utput; numbe r filled depends o n

printer t ype }

TGetRs l Blk =
i OpCode:
iE r ror:
lRe s erve d:
iRgType :
XRs l Rg:
YRs l Rg:
iRslRecCnt :
rgRslRe c :

•
END ;

The iRgType field is much like a version number; it determines the interpretation of the
data that follows. At present, a iRgType value of 1 applies both to the LaserWriter and to
the ImageWriter.

For variable-resolution printers like the LaserWriter, the resolution range fields XRs I Rg
and YRs IRg express the ranges of values to which the X and Y resolutions can be set.
For discrete-resolution printers like the ImageWriter, the values in the resolution range
fields are zero.

Note: In general, X and Y in these records are the horizontal and vertical directions of
the printer, not the document! In landscape orientat ion, X is horizontal on the printer but
vertical on the document.

•
After the resolution range information there is a word which gives the number of
resolution records that contain information. These records indicate the physical
resolutions at which the printer can actually print dots. Each resolution record gives an X
value and a Y value.

When you call P rGenera l you pass in a data block that looks like this:

OpCode = 4

Error Code

Reserved

RangeType = 1

X Resolution Range :
min = 0, max = 0

Y Resolution Range :
min =0, max = 0

Resolution Record Count =0

Resolut ion Reco rd #1:
x, 0, Y =0

Reso lution Record #2..27

1 word

1 word

2 words

1 word

2 words

2 words

1 word

2 words

•
Technical Note #128 page 3 of 7 PrGeneral

.,,,,,,.U\J L.l11'-JI a I Vrlllll""":

Below is the data block returned for the LaserWriter:

OpCode = 4

Error Code (0 '"' okay)

Reserved

RangeType ,",l

X Resolution Range:
min'"' 72, max - 1500

Y Resolu tion Range :
min - 72, max - 1500

Resolution Record Count .. 1

Resolution Record #1:
X = 300, Y = 300

1 word

1 word •2 words

1 word

2 words

2 words

1 word

2 words

Note that all the resolution range numbers happen to be the same for this printer. There
is only one resolution record, which gives the physical X and Y resolutions of the printer
(300x300).

Below is the data block returned for the ImageWriter.

OpCode =4

Error Code (0 = okay)

Reserved

RangeType = 1

X Resolution Range:
min =0, max = 0

Y Resolution Range :
min = O. max = 0

Resolution Record Count = 4

Resolution Record #1:
X,", 72, Y = 72

Resolution Record #2:
X =144, Y = 144

Resolution Record #3:
X = 80, v ; 72

Reso lution Record #4:
X=160.Y ,..144

1 word

1 word

2 words

1 word •2 words

2 words

1 word

2 words

2 words

2 words

2 words

All the resolution range values are zero, because only discrete resolutions can be
specified for this printer . There are four resolution records giving these discrete physical
resolutions.

Note that Get Rs lOa ta always returns the same information for a particular printer
type-it is not dependent on what the user does or on printer configurat ion information .

•
Technical Note #128 page 4 of 7 PrGeneral

•
The SetRsl Call

S e t Rs l (iOp Co d e = 5) is used to spec ify the des ired imaging resolution , after using
Ge t Rs i Da t a to determine a workable pair of values . Below is the format of the data
block :

TSe t RslBlk
i Op Code:
iErro r:
l Re s e r ve d :
hP rint:
i XRs l:
iYRsl :

END;

RECORD
I n t e ge r ;
Intege r;
LongIn t;
THPr i n t;
Inte ge r ;
In t e ge r ;

{dat a bloc k f o r Se tRs l c a l l }
[i npu t ; = s e tRs I Op}
{ou t p ut }
(re s e r ved f o r f u t ure u s e)
[i npu t ; ha nd l e to a va l id pr int reco r d }
(inp u t ; des ire d X r e s o lu t i o n)
{input; des i r e d Y r e so l uti on }

•

hP r in t shou ld be the handle of a print record that has previously been passed to
PrVa l idate . If the call executes successfully, the print record is updated with the new
resolution ; the data block comes back with 0 for the error and is otherwise unchanged.

However, if the desired resolution is not supported, the error is set to n o Su chRs 1 and the
resolution fields are set to the printe r's default resolution

Note that you can undo the effect of a previous call to Se t Rs i by making another call that
spec ifies an unsupported resolution (such as OxO), forcing the default resolution.

The DraftBits Call

DraftBit s (i Op Co d e =6) is implemented on both the ImageWriter and the LaserWriter .
(On the LaserWriter it does nothing , since the LaserWrite r is always in draft mode and
can always print bitmaps.) Below is the format of the data block :

TDftBit s Blk
iOpCode :
i Er r o r:
l Re se r ve d :
hPr i n t :

END ;

RECORD
In t e ge r ;
I n t e ge r ;
LongIn t ;
THPrint ;

{dat a b loc k f o r Draf tBi ts a nd NoDr a ftBit s c a lls}
{input; = d r a ftBit s Op o r noDraf t Bitsop}
(output)
(re s erved for fu t u re u s e)
(i npu t ; handle t o a va l id p r int r e c o r d)

•

h P r int should be the handle of a print record that has previously been passed to
P r Va i idate .

This call forces draft-mode (i.e., immediate) printing, and will allow bitmaps to be printed
via CopyBi t s calls. The virtue of this is that you avoid spooling large masses of bitmap
data onto the disk , and you also get better perfo rmance .

The following restrictions apply :

This call shou ld be made before bringing up the print dialogs because it affects their
appearance. On the ImageWriter, calling Dr aft Bit s disables the landscape icon in
the Style dialog , and the Best, Faster , and Draft butto ns in the Job dialog.

Technical Note #128 page 5 of 7 PrGeneral

• If the printer does not support draft mode, already prints bitmaps in draft mode , or
does not print bitmaps at all, this call does nothing .

Only text and bitmaps can be printed.

As in the normal draft mode , landscape format is not allowed.

Everything on the page must be strictly V-sorted , i.e . no reverse paper motion
between one string or bitmap and the next. Note that this means you can't have two
or more objects (text or bitmaps) side by side; the top boundary of each object must
be no higher than the bottom of the preceding object.

The last restriction is important. If you violate it, you will not like the results. But note that if
you want two or more bitmaps side by side, you can combine them into one before
calling CopyBi t s to print the result. Similarly, if you are just printing bitmaps you can
rotate them yourself to achieve landscape printing.

The NoDraftBits Call

NoD r a f t B i t s (i Op Co d e = 7) is implemented on both the ImageWriter and the
LaserWriter. (On the LaserWriter it does nothing, since the LaserWriter is always in draft
mode and can always print bitmaps .) The format of the data block is the same as that for
the Draft Bi ts call.

This call cancels the effect of any preceding Dr a f t Bi t s call. If there was no preceding
Ora f tB it s call, or the printer does not support draft -mode printing anyway , this call •
does nothing.

The GetRotn Call

Ge tRot n (i Op Co d e = 8) is implemented on the ImageWriter and LaserWriter. Here is the
format of the data block:

TGetRotnBlk
i OpCode:
iError:
l Reserved :
hP rint :
f Lands c ape:
bXt ra :

END;

RECORD
I nteger;
I ntege r;
LongIn t ;
THPr i nt;
Boo lean;
Signe dByte;

{data b lock f o r Get Rot n c a l l}
{i nput ; = ge tRo t nOp }
(output)
{r e s e r ved f o r f ut u r e use}
{input; ha n d l e to a va lid print r e c o r d }
{output ; Boole a n f lag}
{r e s e rve d }

h P r i n t should be the handle to a print record that has previously been passed to
P r Va l i d at e.

If landscape orientation is selected in the print record , then f La n d sca p e is true .

•
Technical Note #128

- ---~- - - - - - ' " . -

page 6 of 7 PrGeneral

•

•

•

How To Use The PrGeneral Opcodes

The SetRsl and DraftBits calls may require the print code to suppress certain optionsin the Style and/or Job dialogs, therefore they should always be called before any call tothe Style or Job dialogs. An application might use these calls as follows:

• Get a new print record by calling PrintDefault, or take an existing one from adocument and call PrValidate on it.

• Call GetRslData to find out what the printer is capable of, and decide whatresolution to use. Check PrError to be sure the PrGeneral call is supported on thisversion of the print code; if the error is ResNotFound, you have older print code andmust print accordingly. But if the PrError return is 0, proceed:

• Call SetRs 1 with the print record and the desired resolution if you wish.

• Call DraftBi ts to invoke the printing of bitmaps in draft mode if you wish.

Note that if you call either SetRsl or DraftBits, you should do so before the user seeseither of the printing dialogs.

Technical Note #128 page 7 of7 PrGeneral

•

•

•

•
Macintosh
Technical Notes

Developer Technical Support

#129: _Gestalt & _SysEnvirons-a Never-Ending Story
Revised by:
Written by:

Dave Radcliffe
Jim Friedlander

May 1992
May 1987

•

•

This Technical Note discusses the latest changes and enhancements in the _ Ge s tal t and
_SysEnvirons calls.

Changes since October 1991: Clarified information on Gestalt information for Macintosh
PowerBook computers and added information on the Macintosh LC II and the
gestal tHardwareAt t r selector.

Introduction

Previous versions of this Note provided the latest documentation on new information the
S y s En v iron s trap could return. DTS will continue to revise this Note to provide this

information: however, as the _Gestalt trap is now the preferred method for determining
information about a machine environment, this Note will also provide up-to-date information on

Gesta 1t selectors.

Gestalt

This Note now documents Ge s tal t selectors and return values added since the release of
Inside Macintosh Volume vI Please note that this is supplemental information; for the complete
description of _ Gestal t and its use, please refer to Inside Macintosh Volume VI.

The Macintosh LC II is identical to the Macintosh LC, except for the presence of an MC68030
processor, so it returns the same gestaltMachineType response as the Macintosh LC (i.e. 19).
Developers are reminded that the gestaltMachineType selector is for informational purposes only
and should not be used as a basis for programmatic decisions. As always, developers are
encouraged to test for the specific features they need and not to rely on any particular machine
having a particular set of features.

Note: The Macintosh PowerBook 100 Developer Notes and the Macintosh PowerBook 140/170
Developer Notes, available from APDA and on the Developer CD Series disc and
AppleLink, incorrectly document gesta ltMa chineType response values for the
Macintosh PowerBook computers. The following values are, and have always been, the
correct values.

#129: _Gesralt & _SysEnvirons-a Never-Ending Story 1 of 5

Macintosh Technical Notes

Additional Gestalt Response Values •
ge s t a ltMa c h i ne Type re s p onse valu e s }

gesta ltQuad r a900
ge s tal t Po werBoo k1 70
ges taltQuadra7 00
g esta ltClassic I I
gesta lt Powe rB o o kl OO
ge s t a lt Powe rBoo k1 40

ge s t alt Keybo a rdTy pe res p o nse v a lues
gest alt PwrBookADBKbd
ge s ta ltPwrBoo k I SOADBKbd

gestaltHardwareAttr Selector

2 0 ;
21 ;
22 ;
2 3 ;
24 ;
25 ;

12 ;
13 ;

Ma c i nt o s h Quad r a 900 }
Ma c i n t o sh Po werBook 170
Ma c i nt osh Quadra 700 }
Maci nto s h Clas sic I I }
Ma cint o s h Powe r Boo k 10 0
Ma c int o s h Powe r Boo k 140

Powe r Boo k Key board }
Po werB oo k Keyboard (ISO) }

The gestaltHardwareAttr selector has been a source of confusion for developers since
originally documented in Inside Macintosh Volume VI . This section will try to reduce that
confusion and also introduce additional information returned by the selector. But be warned that
use of this selector for anything other than informational purposes should be deemed a
compatibility risk. In other words, if you are dependent on the information returned by this
selector to function on existing computers, you will almost certainly have problems on future
systems.

The reason for this is that gestaltHardwareAttr returns very low-level hardware
information. If you need to use this information , it implies you are too hardware dependent. So •
be very careful about using this information.

The principal source of confusion is bit 7, described as gestal tHa s SCSI. What this bit really
means is the machine is equipped with SCSI based on the 53C80 chip, which was introduced in
the Macintosh Plus. This bit will be zero on the Macintosh IIfx and the Macintosh Quadra
computers because they have a different low-level SCSI implementation . The Macintosh IIfx has
a 53C80 compatible chip that also supports SCSI DMA. It reports this information using bit 6 of
the gestaltHardwareAttr response. The Macintosh Quadra computers have yet another
SCSI implementation based on the 53C96 chip and so report different information (see below).

Another source of confusion is bit 4 (ge stal tHas SCC). The Macintosh IIfx and Macintosh
Quadra 900 have intelligent I/O processors (lOPs) that normally isolate the hardware and make
direct access to the SCC impossible. Normally, these machines will report that they do not have
an SCC implying, correctly, that were you to attempt to access it directly, you would fail.
However, if the user has used the Compatibility Switch control panel to enable compatibility
mode, g e staltHa sS CC will report true indicating you may access the SCC directly. But
remember that doing so means you are doing direct hardware access and that there may be a day
when you can't access the SCC under any circumstances.

New gestaltHardwareAttr Values for Macintosh Quadra Computers

Below are the new bits supported by the Macintosh Quadra computers. Any other bits remain
undocumented and subject to change.

gestal tHa s SCS I 96 l

2 of 5

IV- V"-I\./ . -;.ilr-IIII IN'III II .'IIIY 1111 .' Illl'-'IIIIUL.lVII ..

21 ; (53C96 SCS I cont r olle r on i nt er na l b us

#129: _Gestalt & _SysEnvirons-a Never-Ending Story •
-

•
Developer Technical SuPPOrt

ges taltHasSCSI962

_SysEnvirons

May 1992

= 22 ; { 53C96 SCS I c o ntro lle r on ex t e rna l bu s

•

_SysEnvirons was the standard way to determine the features available on a given machine.
The preferred method to get this information is now Ge st a 1 t ; information on
_SysEnvirons is now provided only for backward compatibility.

As originally conceived, _ SysEnvirons would check the versionRequest ed parameter to
determine what level of information you were prepared to handle, but this technique means
updating _S ysEnvirons for every new hardware product Apple produces. With system
software version 6.0, SysEnvirons introduced version 2 of environsVersion to
provide information abOut new hardware as we introduce it; this new version returns the same
SysEnvRec as version 1.

Beginning with system software version 6.0.1, Apple releases a new version of
_ SysEnvirons only when engineering makes changes to its structure (that is, when they add
new fields to SysEnvRe c); all existing versions return accurate information about the machine
environment even if part of that information was not originally defined for the version you
request. For example, if you call SysEnvirons with versionRequested = 1 on a
Macintosh Ilfx, it returns a machineType of envMacI I fx even though this machine type
originally was not defined for version 1 of the call.

You should use version 2 of Sy s En v i ron s until Apple releases a newer version. MPW 3.0
defines a constant curSysEnvVers, which can be used to minimize the need for source code
revisions when _SysEnvirons evolves. Regardless of the version used, however, your
software should be prepared to handle unexpected values and should not make assumptions
about functionality based on current expectations. For example, if your software currently
requires a Macintosh II, testing for machineType >= envMacII may result in your
software trying to run on a machine that does not support the features it requires, so test for
specific functionality (that is, hasFPU, ha s ColorQD, and so on).

Warning: This test for specific functionality is particularly true of FPUs (floating-point
units). Some CPUs, such as the Macintosh IIsi, may have optional, user
installed FPUs; therefore, an application should not assume that any Macintosh
with a microprocessor greater than a 68000 (for example, 68020, 68030 or
68040) has an FPU (68881/68882 or built-in for the 68040). If an application
makes a conditional branch to execute floating-point instructions directly, then it
should first explicitly check for the presence of the FPU.

You should always check the environsversion when returning from SysEnvirons
since the glue always returns as much information as possible, with e n v i r o n s Ve r s i o n
indicating the highest version available, even if the call returns an envSel To o Big (-5502)
error.

Calling _SysEnvirons From a High-Level Language

Due to a documentation error in Inside Macintosh Volume V, DTS still receives questions about
how to call_SysEnvirons properly from Pascal and C.lnside Macintosh defines the Pascal

• interface to _ SysEnvirons as follows :

#129: _Gestalt & _SysEnvirons-a Never-Ending Story 3 of 5

"'II~;..t • ..- IU'III'I .1..- rlr,....nr .." Tr"'\ n "..."nlp 1""'QVn~~f"0r1 "I'l1I'1£1,11"" ,.,. '" _~,I __ .. -- 1........ ,...~ .. __ .. .,;-- ~

Macintosh Technical Notes

FUNCTIO N SysE nv iron s (v e r s Reque s ted: I NTEGER; VAR t he Wor l d : SysEnvRe cP t r) : OS Er r ;

Because theWorld is passed by reference (as a VAR parameter), it is not correct to pass a
SysEnvRecPtr in the second argument. Pascal would then generate a pointer to this pointer
and pass that to the _SysEn vi ro ns trap in AO. (The assembly-language information is
essentially correct; _S ysEnviron s really does want a pointer to a Sys EnvRec in AO.) The
correct Pascal interface to _ Sy s Env i r ons is therefore:

FUNCTI ON Sy s Environ s (ve r sion Re que s t e d : I NTEGER; VAR theWorld: Sy sEnvRec) : OSErr ;

In this case , Pascal pushes a pointer to theWor1d on the stack. The Pascal interface glue then
pops this pointer off the stack directly into AO and calls _ Sy sEnviro n s. Everything is
copacetic.

C programmers should recognize their corresponding interface:

p as ca l OSEr r Sy s Envi rons (shor t ve r s i on Re q ue s ted , S y s EnvRe c *t he Wo rld) ;

Inside Macintosh defines the type SysEnvPtr = " Sys EnvRe c . It also sometimes refers to
this type as Sys EnvRe c Pt r . The inconsistency is insignificant because in reality MPW does
not define any such type, under either name; therefore, it is never needed.

Inside Macintosh also states that "all of the Toolbox Managers must be initialized before calling
SysEnvirons." This statement is not necessarily true. Startup documents (INITs), for instance,
may wish to call_SysEnviron s without initializing any of the Toolbox Managers . Keep in
mind that the atDrvrVersNum field returns a zero result if the AppleTalk drivers are not
initialized. The system version, machine type , processor type, and other key data return
normally.

Additional SysEnvirons Constants

The following are new SysEnviron s constants which are not documented in Inside
Macintosh; however, yOU should refer to Inside Macintosh Volume V-I , Compatibility
Guidelines, for the rest of the story.

•

•

4 of 5

machineType
e n v Ma c I Ix
e nvMacI I cx
en v SEJ O
e n vP ortabl e
en vMa c I I ci
e nvMac I I fx
envMacCl a ss ic
envMacIIs i
envMac LC
e n vMacQuadra 90 0
envMacPowe r Bo ok 17 0
en v MacQu a d ra7 0 0
envMacCla s s ic I I
en vMa cP ower Book 10 0
e nvMac Powe r Book 140

5 ;
6 ;
7;
8 ;
9 ;
11 ;
1 5 ;
1 6 ;
1 7 ;
1 8 ;
1 9 ;
2 0 ;
21 ;
22 ;
2 J ;

Mac i nt osh II x }
Ma c i nt o s h IIcx }
Ma c i nt o sh SE/ J O }
Mac i n t osh Portable
Macinto s h IIci }
Mac i nt os h II f x }
Ma c i nt o sh Cl a s si c
Mac i nt os h II s i }
Mac i nt osh LC)
Mac int o sh Qu a d ra 900)
Mac i n t os h Po werBook 1 70
Ma cint osh Quad r a 700)
Mac i nt os h Cl a s s i c I I }
Mac i n t osh Powe r Boo k 1 0 0
Macintos h Po we r Boo k 1 40

#129: _Gestalt & _SysEnvirons-a Never-Ending Story
•

'. IIV.-I' :.-tIC'""'": 11111 -

•
Developer Technical Support

processor
e nv68 0 30
env680 40

keyBoardType
e nv Prt b l ADBKb d
en v Pr t b l ISOKbd
en vS t dI SOAD BKb d
en vEx t I SOADBKbd

e nv ADBKb d II
en vADB ISOKbdII
e nvP wr Bk AD BKb d
e nv Pwr BkI SOKb d

Further Reference:

4 ;

5 ;

6 ;
7 ·

8 ;
9 ;

1 0 ;
11 ;
12 ;
13 ;

MC 68 03 0 p r oc e s sor
MC6 804 0 p roce s s o r

Po rt ab l e Keyboa r d }
Por t a b le Keybo ard (I SO)
Apple Stand a r d Keyboa rd (ISO) }
Ap p l e Ex t e nded Keyboa rd (ISO)

App l e Key board II }
Ap p le Ke y boa rd II (I SO)
Powe r Bo o k Key board }
Powe r Boo k Ke yboa r d (I SO) }

May 1992

•

•

• Inside Macintosh, Volumes V and VI, Compatibility Guidelines

#129: _Gestalt & _SysEnvirons-a Never-Ending Story 5 of 5

•

•

•
-

•
Macintosh Technical Notes

#130: Clearing ioCompletion

See also:

Written by:
Updated:

The File Manager

Jim Friedlander May 4,1987
March 1, 1988

•

•

When making synchronous calls to the File Manager, it is not necessary to clearioCompletion field of the parameter block, since that is done for you.

Some earlier technotes explicitly cleared ioCompletion, with the knowledge that thiswas unnecessary, to try to encourage developers to fill in all fields of parameter blocksas indicated in Inside Macintosh.

By the way, this is true of all parameter calls-you only have to set fields that areexplicitly required.

Technical Note #130 page 1 of 1 Clearing ioCompletion

•

•

•

Macintosh Technical Notes

• #131: TextEdit Bugs in System 4.2

Written by:
Updated:

Chris Derossi June 1, 1987
March 1, 1988

•

•

This note formerly described the known bugs with the version of Styled
TextEdit that was provided with System 4.1. Many of these bugs were fixed in
System 4.2. This updated Technical Note describes the remaining known
problems.

TEStylinsert

Calling TES ty 1 Ins e r t while the TextEdit record is deactivated causes unpredictable
results, so make sure to only call TEStylInsert when the TextEdit record is active.

TESetStyle

When using the d o Fa ce mode with TESetSt yle, the style that you pass as a parameter
is ORe d into the style of the currently selected text. If you pass the empty set (no styles)
though, TE S et St yl e is supposed to remove all styles from the selected text. But
TESe tStyle checks an entire word instead of just the high-order byte of the ts Face
field. The style information is contained completely in the high-order byte, and the
low-order byte may contain garbage .

If the low-order byte isn't zero, TESetStyle thinks that the tsFace field isn't empty, so it
goes ahead and GRs it with the selected text's style. Since the actual style portion of the
ts F a c e field is zero, no change occurs with the text. If you want to have TESetSt y le
remove all styles from the text, you can explicitly set the t s Face field to zero like this :

VA R

myStyle Te xt Style;
a nIntP t r ~ I n t ege r ;

BEGIN

an Int Ptr : = @my St y le.t s Fac e ;
a n Ln t. P t. r " : = 0;
TESet Style(doFac e, myStyl e , TRUE, textH);

END;

Technical Note #131 page 1 of 2 TextEdit Bugs

Ie'" r'\. T"lJ 1_+_ -. ,.. 1 __ .I. ,LL- __ .. __ u _ _ 1 - • I .

TEStylNew

The line heights array does not get initialized when TE Sty I Ne w is called . Because of
this, the caret is init ially drawn in a random height. This is easily solved by calling
TE Cal Te x t immediately after calling TE St y I Ne w. Extra calls to TE Cal Te xt don't hurt •
anything anyway, so this will be compatible with future Systems .

An extra character run is placed at the beginning of the text which corresponds to the
font, size, and style which were in the grafPort when TESt y lNew was called. This can
cause the line height for the first line to be too large. To avoid this , call Te x tS iz e with
the desired text size before calling TEStyINe w. If the text's style information cannot be
determined in advance, then call Te x t Siz e with a small value (like 9) before calling
TEStyINew.

TEScroll

The bug documented in Technical Note #22 remains in the new TextEdit . TE S cro11
called with zero for both vertical and horizontal displacements causes the insertion point
to disappear. The workaround is the same as before; check to make sure that d V and dH
are not both zero before calling TEScroll.

Growing TextEdit Record

TextEdit is supposed to dynamically grow and shrink the L i ne S t ar ts array in the
TE Re c so that it has one entry per line. Instead, when lines are added , TextEdit expands •
the array without first checking to see if it's already big enough. In addition , TextEdit
never reduces the size of this array.

Because of this, the longer a particular TextEdit record is used, the larger it will get. This
can be particularly nasty in programs that use a single T E Re c for many operations
during the program 's execution .

Restoring Saved TextEdit Records

Applications have used a technique for saving and restoring styled text which involves
saving the contents of all of the TextEdit record handles . When restoring, TE S t yl Ne w is
called and the TextEdit record 's handles are disposed. The saved handles are then
loaded and put into the TextEdit record. This technique should not be used for the
n u l lS ty Ie handle in the style record.

Instead, when TESt y INew is called , the n ull S t y Le handle from the style record should
be copied into the saved style record. This will ensure that the fields in the null-sty le
record point to valid data .

•
Technical Note #131

...I1..J .L' C '-.- V V L I ' '-'' ... '' •• _ .. ~ ., ,- . • _ _

page 2 of 2 TextEdit Bugs

-

