
Macintosh Technical Notes

#1: DeskAccessoriesandSystemResources

Seealso: The ResourceManager

Written by: Bryan Stearns February25, 1985Updated: March 1, 1988

This note formerly describeda strategyfor dealing with systemresourcesfrom deskaccessories.We no longerrecommendcalling ReleaseResourceor DetachResourcefor a systemresource.When you are done with asystemresource,leaveit alone;do not try to disposeor releaseit.

TechnicalNote #1 page 1 of 1 DeskAccessoriesandSystemResources



.

.

.



Macintosh Technical Notes c3
#2: Compatibility Guidelines

Written by: Cary Clark January21, 1986
ScottKnaster

Modified by: Louella Pizzuti February9, 1987
Updated: March 1, 1988

Apple hasmany enhancementsplannedfor the Macintoshfamily of computers.To helpensureyour software’scompatibility with theseenhancements,checkeach item in thisnoteto be surethat you’re following the recommendations.

If your softwareis written in a high-level languagelike Pascalor C and if you adheretothe guidelineslisted in Inside Macintosh, many of the questionsin this note won’tconcernyou. If you develop in assemblylanguage,you should read each questioncarefully. If you answerany question “yes,” your software may encounterdifficultyrunning on future Macintoshcomputers,and you should take the recommendedactionto changeyour software.

Do you dependon 68000 instructions which require that the processorbein supervisormode?

In general,your softwareshould not include instructionswhich dependon supervisormode.Theseinclude modifying the contentsof the statusregister.Most programswhichmodify the statusregisterare only changingthe Condition Code Register(CCR) half ofthe statusregister,so an instructionwhich addressesthe CCR will work fine. Also, yoursoftwareshouldnot usethe UserStackPointer(USP) or turn interruptson and off.

Do you have code which executesin responseto an exception and relieson the position of data in the exception’s local stack frame?

Exceptionstackframesvary on different microprocessorsin the 68000 family, someofwhich may be usedin future Macintoshcomputers.You should avoid using the TRAPinstruction. Note: You can determinewhich microprocessoris installed by examiningthe low-memoryglobal CPUFlag (a byte at $12F). Thesearethe values:

CPUFIag microprocessor
$00 68000
$01 68010
$02 68020
$03 68030

TechnicalNote #2 page 1 of 5 MacintoshCompatibility Guidelines



Do you use low-memory globals not documentedin Inside Macintosh?

Other microprocessorsin the 68000 family use the exceptionvectors in locations $0

through $FF in different ways. No undocumentedlocation below the systemheap($100

through $ 13FF) is guaranteedto be availablefor usein future systems.

Do you make assumptionsabout the file system which are not consistent

with both the original Macintosh File System and the Hierarchical File

System?

Your applicationsshould be compatiblewith both file systems.The easiestway to do

this is to stick to the old files systemtrap calls (which work with both file systems)and

avoid direct manipulation of data structuressuch as file control blocks and volume

control blocks wheneverpossible.

Do you dependon the systemor applicationheapsstartingat a hard-coded

address?

The starting addressesand the size of the systemand application heapshas already

changed(Macintoshvs. Macintosh Plus) and will changeagain in the future. Use the

global App iZone to find the application heapand SysZone to find the systemheap.

Also, don’t count on the application heapzone starting at an addressless than 65536

(that is, a systemheapsmallerthan 64K).

Do you look through the system’squeuesdirectly?

In general, you should avoid examining queueelementsdirectly. Instead, use the

OperatingSystemcalls to manipulatequeueelements.

Do you directly addressmemory-mappedhardwaresuchas the VIA, the

SCC, or the IWM?

You shouldavoid accessingthis memorydirectly and usetrap calls instead(disk driver,

serial driver, etc.). Future machinesmay include a memory managementunit (MMU)

which may preventaccessto memory-mappedhardware.Also, thesememory-mapped

devicesmay not be presenton future machines.The addressesof thesedevicesare

likely to change,so if you mustaccessthe hardwaredirectly, get the baseaddressof the

device from the appropriatelow-memory global (obtainablefrom includesand interface

files):

device global
VIA $1D4
SCCRd $1D8
SCCWr $1DC

$1EO

TechnicalNote #2 page 2 of 5 MacintoshCompatibility Guidelines



Do you assumethe location or size of the screen?

The location, size, and bit depthof the screenis different in various machines.You can
determine its location and size by examining the QuickDraw global variable
screenBitson machineswithout Color QuickDraw. On machineswith Color
QuickDraw, the device list, describedin the Graphics Devices chapterof Inside
Macintosh, tells the location and size and bit depth of each screen,screenBitscontainsthe location and size of the main device, and GrayRgn containsa region
describingthe shapeandsize of the desktop.

Does your software fall on some Macintosh models or on A/UX?

If so, you shoulddeterminethe reason.Failure to run on all versionsof the Macintoshmay indicate problems which will prevent your software from working on future
machines.Failture to run on A/UX, Apple’s Unix for the Macintosh, also may indicate
such problems.

Do you change master pointer flags of relocatable blocks directly withBSET or BCLR instructions?

In the future and on A/UX, all 32 bits of a masterpointermay be used,with the flags bytemoved elsewhere.Use the Memory Manager calls HPurge,HNoPurge,HLock,
HUnlock, HSetRBit,HClrRBit, HGetState,and HSetStateto manipulatethemasterpointerflags. (Seethe Memory Managerchapterof Inside Macintosh Volume IVfor information on thesecalls.)

Do you check for 128K, 512K, and 1M RAM sizes?

You should be flexible enoughto allow for non-standardmemory sizes.This will allowyour softwareto work in environmentslike MultiFinder.

Is your software incompatiblewith a third-party vendor’s hardware?

If so, the incompatibility may preventyour software from working on future machines.You should researchthe incompatibility and try to determinea solution.

Do you rely on systemresourcesbeing in RAM?

On most of our systems,somesystemresourcesare in ROM. You should not assume,for example,that you can regain RAM spaceby releasingsystemresources.

Does your software have timing-sensitivecode?

Various Macintoshesrun at different clock speeds,so timing loops will be invalid. Youcan usethe trap call Delay for timing, or you can examinethe global variableTicks.

TechnicalNote #2 page 3 of 5 MacintoshCompatibility Guidelines



Do you have code which writes to addresseswithin the code itself?

A memory managementunit (MMU) may one day prevent code from writing to

addresseswithin code memory. Also, somemicroprocessorsin the 68000 family cache

codeas it’s encountered.Your datablocks shouldbe allocatedon the stackor in heap

blocksseparatefrom the code,andyour codeshould not modify itself.

Do you rely on keyboard key codes rather than ASCII codes?

The various keyboardsare slightly different; future keyboardsmay be different from

them. For textual input, you shouldreadASCII codesratherthan key codes.

Do you rely on the format of packedaddressesin the trap dispatchtable?

The trap dispatchtable is different on variousMacintoshes.There’s no guaranteeof the

trap table’s format in the future. You shouldusethe systemcalls GetTrapAddressand

SetTrapAddressto manipulatethe trap dispatchtable.

Do you usethe ResourceManagercalls AddReferericeor RmveReference?

Thesecalls havebeenremovedfrom the 128K ROM. They are no longersupported.

Do you store information in the application parametersarea (the 32 bytes

betweenthe application and unit globals and the jump table)?

This spaceis reservedfor useby Apple.

Do you depend on values in registersafter a trap call, other than those

documentedin Inside Macintosh?

These values aren’t guaranteed.The register conventionsdocumentedin Inside

Macintoshwilt, of course,be supported.Often, you may not realize that your code is

dependingon theseundocumentedvalues,so checkyour registerusagecarefully.

Do you use the IMMED bit in File Managercalls?

This bit, which was documentedin early versionsof Inside Macintoshas a specialform

of File Managercall, actually did nothing for File Managercalls, and was usedonly for

Device Managercalls. With the adventof the HierarchicalFile System,this bit indicates

that the call hasa parameterblock with hierarchicalinformation.

Do you make assumptionsabout the numberand size of disk drives?

There are now five sizesof Apple disks for the Macintosh (400K, 800K, and 20M, 40M,

80M), aswell as many more from third-party vendors.You shoulduseStandardFile and

File Managercalls to determinethe numberand size of disk drives.

TechnicalNote #2 page 4 of 5 MacintoshCompatibility Guidelines



Do you dependon alternate(page 2) sound or video buffers?

SomeMacintoshesdo not supportalternatesoundand video buffers.

Do you print by sending ASCII directly to the printer driver?

To retain compatibility with both locally-connectedand AppleTalk-connectedprinters,
you shouldprint using Printing Managerr,asdocumentedin Inside Macintosh.

Does your application fail when it’s the startup application (i.e., without
the Finder being run first)?

If so, you’re probably not initializing a variable. If your applicationdoesnot work as the
startupapplication,you shoulddeterminewhy and fix the problem, since it may cause
your applicationto fail in the future.

TechnicalNote #2 page 5 ot5 MacintoshCompatibility Guidelines



.

.

.



Macintosh Technical Notes

#3: Command-Shift-NumberKeys

Seealso: The Toolbox EventManager
TechnicalNote #11O—MPW: Writing StandaloneCode

Written by: HarveyAlcabes March 3,1985
Modified by: GingerJernigan April 25,1985
Updated: March 1, 1988

In the standardsystem,therearetwo Command-Shift-numberkey combinationsthat are
automaticallycapturedandprocessedby GetNextEvent.The combinationsare:

Command-Shift-i Eject internal disk
Command-Shift-2 Eject externaldisk

Numbersfrom 3 to 9 are alsocapturedby GetNextEvent,but are processedby calling
‘FKEY’ resources.You can implement your own actions for Command-Shift-number
combinationsfor numbers5 to 9 by defining your own ‘FKEY’ resource.The routine
must have no parameters.The ID of the resourcemust correspondto the numberyou
want the routine to respondto. For example, if you want to define an action for
Command-Shift-8,you would createan ‘FKEY’ resourcewith an ID of 8. The ‘FKEY’
resourceshouldcontainthe codethat you want to executewhen the key is pressed.

The following Command-Shift-numberkey combinationsare implementedwith ‘FKEY’
resourcesin the standardSystemfile.

Command-Shift-3 Savecurrentscreenas MacPaintfile named
Screen0, Screen1, ... Screen9
(Works in one-bit modeonly on Mac II)

Command-Shift-4 Print the activewindow (to an lmageWriter)
(with Caps Lock on) Print the entirescreen(to an lmageWriter)

TechnicalNote #3 page 1 of 1 Command-Shift-NumberKeys



. . .



Macintosh Technical Notes j
#4: Error Returnsfrom GetNewDialog

Seealso: The Dialog Manager

Written by: RussDaniels April 4, 1985
Updated: March 1, 1988

When calling GetNewDialogto retrieve a dialog templatefrom a previously opened
resourcefile, how are error conditionsindicatedto the caller?

Unfortunately, they aren’t. The Dialog Managercalls GetResourceand assumesthe
returnedvalue is good. Sincethe Dialog Managerdoesn’tcheck,you havetwo choices.
Your first choice is to call GetResourcefor the dialog template, item list, and any
resourcesneededby items in the item list yourself. But what do you do when you find
the resourcesaren’t there?Try to display an alert telling the useryour applicationhas
beenmortally wounded?What if resourcesneededfor the alert aren’t available?

The second,simpleralternativeis to assurethat the dialog templateand other resources
will be availablewhen you build your product. This is realty an adequatesolution: If
somebodyusesa resourceeditor to removeyour dialog template,you can hardly be
blamedfor its not executingproperly.

A gooddebuggingtechniqueto catchthis sort of problem is to put the value $5OFFcOO1at absolutememory location 0 (the first long word of memory). If you do that, when the
Dialog Managertries to dereferencethe nil handle returnedby the ResourceManager,
you’ll get an addresserror or bus error with someregistercontaining $5OFF0001.If you
list the instructionsaroundthe programcounter,you’ll often seesomethinglike:

MOVE.L (A2),A1 ; in effect (O),A1
MOVE.L (A]),A1 the error occurs here

GetNewWindow and most of the other “GetSomething”calls will return nil if the
“something” is not found.

TechnicalNote #4 page 1 of 1 Error Returnsfrom GetNewDialog



.

.



Macintosh Technical Notes

#5: Using ModelessDialogsfrom DeskAccessories

Seealso: The Toolbox EventManager
The Dialog Manager
The DeskManager

Written by: RussDaniels April 4, 1985
Updated: March 1, 1988

When a deskaccessorycreatesa window (including a modelessdialog window) it must
set the windowKind to its refnum—a negative number. When the application calls
GetNextEvent,the Event Managercalls SystemEvent,which checksto see if the
event belongsto a desk accessory.SystemEventchecksthe windowKind of the
frontmostwindow, and usesthe (negative)numberfor the refnumto makea control call,
giving the deskaccessorya shot at the event.Then SystemEventreturnsTRUE, and
GetNextEventreturnsFALSE.

So, your deskaccessorygets an event from SystemEvent.Since your window is a
modelessdialog, you call IsDialogEvent,which mysteriouslyreturnsFALSE. What is
going on?

Like SystemEvent,IsDialogEventchecksthe windowKind of windows in the window
list, looking for dialog windows. It doesthis by looking for windows with a windowKind of
2. In this case,it finds none,anddoesnothing.

The solution is to change the windowkind of your window to 2 before calling
IsDialogEvent.This allows the Dialog Managerto recognizeand handlethe event
properly. Before returning to SystemEvent,be sure to restorethe windowKind. That
way, when the application calls the Dialog Manager with the same event (the
application should passall eventsto Dialog Managerif it has any modelessdialogs
itself), the Dialog Managerwill ignore it.

TechnicalNote #5 page 1 of 1 Using ModelessDialogsfrom DAs



.

.



MacintoshTechnicalNotes

#6: Shortcutfor OwnedResources

Seealso: The ResourceManager
TechnicalNote#23—

Life With Font/DA Mover—DeskAccessories

Written by: Bryan Stearns May 10, 1986
Updated: March 1, 1988

To allow the Font/DA Mover to renumberdeskaccessoriesasneededwhen moving
them betweensystemfiles, deskaccessoriesshouldusethe “owned resource”protocol
describedin the ResourceManagerchapterof InsideMacintoshVolume I.

All resourceIDs in a deskaccessoryshouldbe zero-based.At runtime,a routinecanbe
calledto find the current“base” valueto addto a resource’szero-basedvalueto get the
actualcurrent ID of that resource.Then,when a resourceis needed,its zero-based
valuecanbe addedto the resourcebasevalue,giving the actualresourceID to be used
in future ResourceManagercalls.

Here’sthe sourceto a handyroutineto getthe resourcebasevalue,GetResBase

;FUNCTION GetResBase(driverNumber:INTEGER): INTEGER;

;GetResBasetakes the driver number and returns the ID
;of the first resourceowned by that driver. This is
;accordingto the private resourcenumbering convention
;documentedin the ResourceManager.

GetResBase FUNC

MOVE.L (SP)+,AO Get return address
MOVE.W (SP)+,DO Get driver number
NOT.W DO Change to unit number
ASL.W #5,DO Move it over in the word
ORI.W #$C000,DO Add the magic bits
MOVE.W DO, (SP) Return function result
JMP (AO) and return

END

TechnicalNote #6 page 1 of 1 Shortcutfor OwnedResources



.

.



Macintosh Technical Notes

#7: A Few Quick DebuggingTips

Written by: Jim Friedlander April 16, 1986
Updated: March 1, 1988

This presentsa few tips which may makeyour debuggingeasier.

Setting memory location 0 to somethingodd

Dereferencingnil handlescan causereal problemsfor an application. If location 0 (nil)
is somethingeven,the dereferencewill not causean addresserror, and the applicationcan run on for quite a while, making tracing backto the problemquite difficult. If location
0 containssomethingodd, such as $5OFFCOO1,an addresserror will be generated
immediatelywhen a nil handle is dereferenced.On Macintosheswith 68020s,like the
Mac II, this samevalue ($5oFFcool)will causea bus error. An addresserror or bus
error will also be generated,of course,when the ROM tries to dereferencea nil handle,
suchaswhen you call HNoPurge(hndl), wherehndl is nil.

Some versions of the TMON debuggerset location 0 to ‘NILI’ ($4E494c21) or
$5OFFCOO1.If you are using MacsBug,you should include code in your programthat
sets location 0. Of course,there is no needto ship your application with this code in
it—it’s just for debuggingpurposes.Old versionsof the Finder usedto set location 0 tothe value $464F424A(‘FOBJ’). On newer machines,newly launchedapplicationsgetlocation 0 setto $00F80000by the SegmentLoader.

Checksummingfor slow motion mode

Entering the Macsbug command“ss 400000 400000” will causeMacsbugto do achecksumof the location $400000every time an instruction is executed.ChecksumtheROM, becauseit will not changewhile your programis executing(the ROM may change
in betweenlaunchesof your application,but that’s OK)! This will causethe Macintoshtogo into slow motion mode. For example,you will needto hold down the mousebuttonfor about 10 secondsto get a menu to pull down—you can seehow the ROM draws
menus,graystext, etc.

This technique is very handy for catching problems like multiple updatesof your
windows, redrawingscroll bars more than once, that troublesomeflashing grow icon,etc. To turn slow motion modeoff, simply enterMacsBugandtype “ss”.

TechnicalNote #7 page 1 of 2 A Few Quick DebuggingTips



TMON performsthis function in a different way. Insteadof calculatingthe checksumafter

each instruction, it only calculateschecksumsafter each trap. You can checksum

different amountsof the ROM dependingon how much you want thingsto slow down.

ChecksummingMemErr

A lot of programsdon’t call MemErrorasoften asthey should. If you are having strange,

memory-relatedproblems,one thing that you can do to help find them is to checksumon

MemErr (the low memory global word at $220). In MacsBug,type “ss 220 221”. In

TMON, enter220 and 221 as limits on the ‘Checksum (bgn end) :‘line and on the line

above,enterthe rangeof trapsyou wish to havethe checksumcalculatedafter.

When MemErr changes,the debuggerwill appear,and you can check your code to

make surethat you are checkingMemErr. If not, you might have found a problem that

could causeyour programto crash’

Checksummingon a masterpointer

Due to fear of moving memory, someprogrammerslock every handlethat they create.

Of course,handlesneedonly be locked if they are going to be dereferencedand if a

call will be madethat can causerelocation. Unnecessarilylocking handlescan cause

unwantedheapfragmentation.If you suspectthat a particularmemory block is moving

on you when you have its handledereferenced,you can checksumthe masterpointer

(the handleyou got back from NewHandle is the addressof the masterpointer). Your

program will drop into the debuggereach time your handle changes—thatis, either

whenthe block it refersto is relocated,or when the masterpointer’s flags byte changes.

TechnicalNote #7 page 2 of 2 A Few Quick DebuggingTips



Macintosh Technical Notes

#8: RecoverHandleBug in AppleTalk PascalInterfaces

Seealso: AppleTalk Manager

Written by: Bryan Stearns April 21, 1986
Updated: March 1, 1988

Previousversionsof this note describeda bug in the AppleTalk Pascal
Interfaces.This bug wasfixed in MPW 1.0 andnewer.

TechnicalNote #8 page 1 of 1 Bug in AppleTalk PascalInterfaces



0 0 0



Macintosh
TechnicalNotes

DeveloperTechnicalSupport

#9: Will Your AppleTalk Application
SupportInternets?

Written by: SriramSubramanian& PeteHelme April 1990Written by: Bryan Stearns April 1986

This TechnicalNote discusseshow AppleTalk applicationsshouldwork acrossinternets,groupsof interconnectedAppleTalk networks. It explains the differencesbetweenlife on a singleAppleTalknetworkandlife on an internet.
Changessince March 1988: Removedthe sectionon AppleTalk retry timers, as it is nolongeraccurate;seeTechnicalNote #270,AppleTalkTimersExplained,for moreinformationonretry timers.

You can readaboutinternets(AppleTalk networksconnectby one or more bridges)in InsideAppleTalk. Whatdo you needto do aboutthem?

Use a High-Level Network Protocol

Make sureyou usethe DatagramDelivery Protocol(DDP), or a higherAppleTalkprotocolbasedon DDP, like the AppleTalk TransactionProtocol(ATP). Be warnedthatLink AccessProtocol(LAP) packetsdo not makeit acrossbridgesto otherAppleTalk networks. Also, don’t broadcast;broadcastpacketsare not forwarded by bridges (broadcastingusing protocolsaboveLAP isdiscouraged,anyway).

Use Name Binding

As usual,usethe NameBinding Protocol (NBP) to announceyour presenceon the network, aswell as to find otherentitieson thenetwork. Payspecialattentionto zonenamefields; the asterisk(asin “MyLaser:LaserWriter:*”) in a nameyou look up is now important; it means“my zoneonly”(seethe ZoneInformationProtocol(ZIP) chapterof InsideAppleTalk for informationon findingOut whatotherzonesexist). The zonefield shouldalwaysbe an asteriskwhenregisteringa name.

Pay Attention to Network Number Fields

When handling the network addressesreturnedby NBPLo0kUp (or anyoneelse),don’t besurprisedif the networknumberfield is non-zero.

Am I Running on an Internet?

The low-memory global ABridge is usedto keep track of a bridge on the local AppleTalknetwork (NBP and DDP use this value). If ABridge is non-zero,then you’re running on aninternet; if it’s zero,chancesare,you’re not (this is not guaranteed,however,dueto the fact thattheABridge valueis “aged”, andif NBP hasn’theardfrom the bridgein a long time, the valueiscleared).

#9: Will Your AppleTalk Application SupportInternets? 1 of 2



MacintoshTechnicalNotes

Watch for Out-Of-Sequenceand Non-Exactly-OnceRequests

Due to a “race” condition on an internet, it’s possiblefor an exactly-onceATP packetto slip

throughtwice; to keepthis from happening,senda sequencenumberaspart of the datawith each
ATP packet;wheneveryou makea request,bump the sequencenumber,and neverhonoran old

sequencenumber.

Further Reference:
• InsideAppleTalk
• InsideMacintosh,VolumesII & V, TheAppleTalkManager
• TechnicalNote#250,AppleTalk Phase2 on the Macintosh
• TechnicalNote#270,AppleTalkTimersExplained

.

2 of 2 #9: Will Your AppleTalk Application SupportIntemets?



Macintosh Technical Notes

#10: Pinouts

Seealso: MacintoshHardwareReferenceManual
TechnicalNote #65—MacintoshPlus Pinouts

Written by: Mark Baumwell April 26, 1985
Modified: July 23, 1985
Updated: March 1, 1988

This notegivespinoutsfor Macintoshports, cables,andotherproducts.

Below are pinout descriptionsfor the Macintosh ports, cables, and various other
products.Pleaserefer to the Hardwarechapterof Inside Macintoshandthe Macintosh
HardwareReferenceManualfor more information, especiallyabout power limits. Note
that unconnectedpins are omitted.

Macintosh Port Pinouts

MacintoshSerial Connectors(DB-9)

Liii Name Description/Notes
1 Ground
2 ÷5V SeeInsideMacintoshfor power limits
3 Ground
4 TxD+ TransmitData line
5 TxD— TransmitData line
6 +1 2V SeeMacintoshHardwarechapterfor power limits
7 HSK HandshaKe:CTS or TRxC, dependson Zilog 8530 mode
8 RxD+ ReceiveData line: groundthis line to emulateRS232
9 RxD— ReceiveData line

MacintoshMouseConnector(DB-9)

Em Name Description/Notes
1 Ground
2 +5V SeeInsideMacintoshfor powerlimits
3 GND Ground
4 X2 Horizontal movementline (connectedto VIA PB4 line)
5 Xl Horizontalmovementline (connectedto SCC DCDA— line)7 Sw— Mousebutton line (connectedto VIA PB3)
8 Y2 Vertical movementline (connectedto VIA PB5 line)
9 Vi Vertical movementline (connectedto SCC DCDB— line)

TechnicalNote #10 page 1 of 6 MacintoshPinouts



MacintoshKeyboardConnector(RJ-1 1 Telephone-stylejack)

Name Description/Notes
1 Ground
2 KBD1 Keyboardclock
3 KBD2 Keyboarddata
4 +5V SeeInsideMacintoshfor powerlimits

MacintoshExternal Drive Connector(DB-19)

.Em Name Description/Notes
1 Ground
2 Ground
3 Ground
4 Ground
5 —1 2V SeeInsideMacintoshfor power limits

6 +5V SeeInsideMacintoshfor power limits

7 +1 2V SeeInsideMacintoshfor power limits

8 +1 2V SeeInsideMacintoshfor power limits

1 0 PWM Regulatesspeedof the drive
11 PHO Control line to sendcommandsto the drive

1 2 PHi Control line to sendcommandsto the drive

1 3 PH2 Control line to sendcommandsto the drive

1 4 PH3 Control line to sendcommandsto the drive

1 5 WrReq— Turnson the ability to write datato the drive

1 6 HdSel Control line to sendcommandsto the drive

1 7 Enbl2— Enablesthe Rd line (elseRd is tn-stated)

1 8 Rd Dataactually readfrom the drive

1 9 Wr Dataactuallywritten to the drive

Other Pinouts

MacintoshXL Serial ConnectorA (DB-25)

Name Description/Notes
1 Ground
2 TxD TransmitData line
3 RxD ReceiveData line
4 RTS Requestto Send
5 CTS ClearTo Send
6 DSR Data Set Ready
7 Ground
8 DCD DataCarrierDetect
1 5 TxC Connectedto TRxCA
1 7 RxC Connectedto RTxCA
24 TEXT Connectedto TRxCA

TechnicalNote #10 page2 of 6 MacintoshPinouts



MacintoshXL Serial ConnectorB (DB-25)

Em Name Description/Notes
1 Ground
2 TxD— TransmitData line
3 RxD— ReceiveData line
6 HSK/DSR TRxCB or CTSB
7 Ground
19 RxD÷ ReceiveData line
20 TXD+/DTR connectedto DTRB

Apple 300/1200Modem Serial Connector(DB-9)

Modem Name Description/Notes
2 DSR Output from modem
3 Ground
5 RxD Output from modem
6 DTR Input to modem
7 DCD Output from modem
8 Ground
9 TxD Input to modem

Apple lmageWriterSerial Connector(DB-25)

ImayeWriter Name Description/Notes
1 Ground
2 SD SendData; Output from lmageWriter3 RD ReceiveData; Input to lmageWriter4 RTS Output from ImageWriter
7 Ground
1 4 FAULT— Falsewhendeselected;Output from ImageWriter20 DTR Output from lmageWriter

Apple LaserWriterAppleTalk Connector(DB-9)

LaserWriter Name Description/Notes
1 Ground
3 Ground
4 TxD+ TransmitData line
5 TxD— TransmitData line
7 RXCLK TRxC of Zilog 8530
8 RxD÷ ReceiveData line
9 RxD— ReceiveData line

TechnicalNote #10 page3 of 6 MacintoshPinouts



Apple LaserWriterSerial Connector(DB-25)

LaserWriter Name Description/Notes
1 Ground
2 TXD— TransmitData:Outputfrom LaserWriter

3 RXD— ReceiveData; Input to LaserWriter

4 RTS— Outputfrom LaserWriter
5 CTS Input to LaserWriter
6 DSR Input to LaserWriter(connectedto DCBB— of 8530)

7 Ground
8 DCD Input to LaserWriter(connectedto DCBA— of 8530)

20 DTR— Outputfrom LaserWriter
22 RING Input to LaserWriter

Macintosh Cable Pinouts

Note for the cabledescriptionsbelow:

The arrows (“—“) show which side is an input and which is an output. For example,the

notation“a — b” meansthat signal “a” is an output and “b” is an input.

When pins are said to be connectedon a side in the Notescolumn, it meansthe pins are

connectedon that side of the connector.

Macintosh lmageWriterCable
(part number590-0169)

Macintosh Name lmageWriter Notes

(DB9) (DB25)
1 Ground 1
3 Ground 7 pins 3, 8 connectedon Macintoshside

5 TxD— —* RD 3 RD ReceiveData

7 HSK DTR 20
8 RxD+ = GND Not connectedon ImageWriter side

9 RxD— — SD 2 SD=SendData

MacintoshModem Cable (Warning! Don’t usethis cableto connect2 Macintoshes!)

(part number590-0197-A)

Macintosh Name Modem Notes

(DB9) (DB9)
3 Ground 3 pins 3, 8 connectedon EACH side

5 TxD— —* TxD 9
6 ÷12V — DTR 6
7 HSK DCD 7
8 Nowire 8
9 RxD— — RxD 5

TechnicalNote #10 page4 of 6 MacintoshPinouts



Macintoshto MacintoshCable (MacintoshModem Cablewith pin 6 clipped on both ends.)

Macintosh Name Macintosh Notes
(DB9) (DB9)
3 Ground 3 pins 3, 8 connectedon EACH side5 TxD— —, RxD— 9
7 HSK DCD 7
8 Nowire 8
9 RxD— <.— TxD— 5

MacintoshExternal Drive Cable
(part number590-0183-B)

Macintosh Name Sony Drive
(DB9) (20 Pin Ribbon)
1 Ground 1
2 Ground 3
3 Ground 5
4 Ground 7
6 ÷5V 11
7 -i-12V 13
8 +12V 15
10 PWM 20
11 PHO 2
12 PHi 4
13 PH2 6
14 PH3 8
15 WrReq— 10
16 HdSel 12
17 Enbl2— 14
18 Rd 16
19 Wr 18

MacintoshXL Null Modem Cable
(part number590-0166-A)

MacintoshXL Name 121E Notes
(DB25) (DB25)
1 Ground 1
2 TxD— —, RxD 3
3 RxD— — TxD 2
4, 5 RTS,CTS — DCD 8 pins 4, 5 connectedtogether6 DSR DTR 20
7 Ground 7
8 DOD RTS, CTS 4, 5 pins 4, 5 connectedtogether20 DTR — DSR 6

TechnicalNote#10 page5 of 6 MaantoshPinouts



Macintosh to Non-Apple ProductCable Pinouts

Macintoshto IBM PC Serial Cable#1 (not tested)

Macintosh Name IBM PC Notes

(DB9) (DB25)

3 Ground 7 pins 3, 8 connectedon Macintoshside

5 TxD— —* RxD 3
7 HSK DTR 20

8 RxD+ = Ground Not connectedon IBM side

9 RxD— — TxD 2
CTS f— RTS 4-5 pins 4, 5 connectedon IBM side

DSR DCD,DTR 6-8-20 pins 6, 8, 20 connectedon IBM side

Macintoshto IBM PC Serial Cable#2 (not tested)

Macintosh Name IBM PC Notes

(DB9) (DB25)

1 Ground 1

3 Ground 7 pins 3, 8 connectedon Macintoshside

5 TxD— —> RxD 3
9 RxD— — TxD 2

CTS — RTS 4-5 pins 4, 5 connectedon IBM side

DSR — DTR 6-8 pins 6, 8 connectedon IBM side

.

TechnicalNote #10 page6 of 6 MaantoshPinouts



Macintosh
TechnicalNotes

DeveloperTechnicalSupport

#11: Memory—BasedMacWrite Format
Revised: August 1989

This TechnicalNote formerly describedthe formatof files createdby MacWrite® 2.2.
Changessince March 1988: Updatedthe CLARIS address.

This Note formerly discussedthe memory—basedMacWrite 2.2 file format. For informationon
MacWrite andotherCLARIS products,contactCLARIS at:

CLARIS Corporation
5201 PatrickHenryDrive
P.O. Box 58168
SantaClara,CA 95052-8168

TechnicalSupport
Telephone: (408) 727-9054
AppleLink: Claris.Tech

CustomerRelations
Telephone: (408) 727-8227
AppleLink: Claris.CR

MacWriteis a registeredtrademarkof CLARIS Corporation.

#11: Memory-BasedMacWriteFormat 1 of 1



. . .



Macintosh
TechnicalNotes

DeveloperTechnicalSupport

#12: Disk—BasedMacWrite Format

Revised: August 1989

This TechnicalNote formerly describedthe formatof files createdby MacWrite®, which is now
publishedby CLARIS.
Changessince March 1988: Updatedthe CLARIS address.

This Noteformerly discussedthe disk—basedMacWritefile format. For informationon MacWrite
andotherCLARIS products,contactCLARIS at:

CLARIS Corporation
5201 PatrickHenryDrive
P.O. Box 58168
SantaClara,CA 95052-8168

TechnicalSupport
Telephone: (408) 727-9054
AppleLink: Claris.Tech

CustomerRelations
Telephone: (408) 727-8227
AppleLink: Claris.CR

MacWrite is a registeredtrademarkof CLARIS Corporation.

#12: Disk-BasedMacWrite Format 1 of 1



. . .



Macintosh
TechnicalNotes

DeveloperTechnicalSupport

#13: MacWrite ClipboardFormat
Revised: August 1989

This TechnicalNote formerly describedtheclipboardformat usedby MacWrite®, which is now
publishedby CLARIS.
Changessince March 1988: Updatedthe CLARIS address.

This Note formerly discussedtheMacWriteclipboardformat. For informationon MacWriteand
otherCLARIS products,contactCLARIS at:

CLARIS Corporation
5201PatrickHenryDrive
P.O. Box 58168
SantaClara,CA 95052-8168

TechnicalSupport
Telephone: (408) 727-9054
AppleLink: Clans.Tech

CustomerRelations
Telephone: (408) 727-8227
AppleLink: Claris.CR

MacWrite is a registeredtrademarkof CLARIS Corporation.

#13: MacWriteClipboardFormat 1 of 1



.

.



Macintosh Technical Notes

#14: The INIT 31 Mechanism

See: The SystemResourceFile
The StartManager

Written by: Bryan Stearns March 13, 1986
Updated: March 1, 1988

This note formerly describedthings that are now coveredin the System
ResourceFile chapterof InsideMacintoshVolume IV andthe StartManager
chapterof InsideMacintoshVolume V. Pleasereferto InsideMacintosh.

TechnicalNote #14 page 1 of 1 The INIT31 Mechanism



.

.



Macintosh Technical Notes

#15: Finder4.1

Written by: HarveyAlcabes April 12, 1985
Updated: March 1, 1988

This noteformerly describedFinder4.1, which is now recommendedonly for
usewith 64K ROM machines.Information specificto 64K ROM machineshas
beendeletedfrom MacintoshTechnicalNotesfor reasonsof clarity.

TechnicalNote #15 page 1 of 1 Finder Update



.

.



Macintosh Technical Notes

#16: MacWorksXL

Written by: HarveyAlcabes May 11, 1985
Mark Baumwell

Updated: March 1, 1988

Earlier versionsof this note describedMacWorks XL, the systemsoftware
that allowed you to use Macintosh applicationson the Macintosh XL.
Information specific to Macintosh XL machineshas been deleted from
MacintoshTechnicalNotesfor reasonsof clarity.

TechnicalNote #16 page 1 of 1 MacWorksXL



.

.



Macintosh Technical Notes

#17: Low-Level Print Driver Calls

Seealso: The Print Manager

Written by: GingerJernigan April 14, 1986
Updated: March 1, 1988

This technicalnote hasbeenreplacedby information in Inside Macintosh
Volume V. Pleaserefer to the Print Managerchapterof Inside Macintosh
Volume Vfor informationon low-level print driver calls.

TechnicalNote#17 page 1 of 1 Low-Level PrinterDriver Calls



0 . .



Macintosh Technical Notes

#18: TextEdit ConversionUtility

Seealso: MacintoshMemory Management:An Introduction
TextEdit

Written by: HarveyAlcabes April 10, 1985
Updated: March 1, 1988

Text sometimesmustbe convertedbetweena Pascalstring and “pure” text
in a handle.This note illustratesa way to do this using MPW Pascal.

Text containedin TextEdit recordssometimesmust be passedto routineswhich expect
a Pascalstring of type Str255 (a length byte followed by up to 255 characters).The
following MPW Pascalunit can be usedto convertbetweenTextEdit recordsand Pascal
strings:

UNIT TEConvert;

{General utilities for conversionbetween TextEdit and strings)

INTERFACE

USES MemTypes,QuickDraw,OSIntf,Toollntf;

PROCEDURE TERecToStr(hTE: TEHandle; VAR Str: Str255);
{TERecToStr converts the TextEdit record hTE to the string str.}
(If necessary,the text will be truncatedto 255 characters.)

PROCEDURE StrToTERec(str:Str255; hTE: TEHandle);
{StrToTERec converts the string str to the TextEdit record hTE.

IMPLEMENTATION

PROCEDURE TERecToStr(hTE: TE1-landle; VAR str: Str255);

BEGIN

GetIText(hTE’’.hText, str);
END;

PROCEDURE StrToTERec(str: Str255; hTE: TEHandle);

BEGIN

TESetText(POINTER(ORD4(@str)+ 1), ORD4(length(str)), hTE);
END;

END.

TechnicalNote #18 page 1 of 1 TextEdit ConversionUtility



.

.



Macintosh
TechnicalNotes

DeveloperTechnicalSupport

#19: How To ProduceContinuousSound
Without Clicking

Revisedby: Jim Reekes June1989
Written by: GingerJernigan April 1985

This TechnicalNote formerly describedhow to usethe SoundDriver to producecontinuoussound
without clicking.
ChangessinceMarch 1988: The continuoussoundtechniqueis no longerrecommended.

Apple currentlydiscouragesuseof the SoundDriver due to compatibility issues. The hardware
supportfor sounddesignedinto theearlyMacintosharchitecturewasminimal. (Many thingshave
changedsince1983—1984.) ThenewMacintoshcomputerscontaina customchip to providebetter
supportfor sound,namely the Apple SoundChip (ASC). The ASC is presentin the complete
MacintoshII family aswell as the MacintoshSE/30andlatermachines.Whentheolderhardware
of the MacintoshPlusand SE areaccessed,it is likely to causea click. This click is a hardware
problem. The softwaresolution to this problemwas to continuouslyplay silence. This is not a
real solutionto theproblemandis not advisablefor the following reasons:

• The SoundDriver is no longersupported.Therehavealwaysbeen,and still are,
bugsin the glue codefor StartSound.

• The SoundDriver maynot bepresentin futureSystemSoftwarereleases,or future
hardwaremay not be able to supportit. The SoundManageris the application’s
interfaceto the soundhardware.

• The techniqueusedto createa continuoussoundshouldhaveonly beenusedon a
MacintoshPlusor SE, sincethesearetheonly modelsthathavethe “embarrassing
click.” Do not usethis methodon a Macintoshwhich hastheApple SoundChip.

• Using the continuoussoundtechnique,or the SoundDriver for that matter,will
causeproblemsfor the systemand thoseapplicationsthatproperlyusethe Sound
Manager. Also realizethat_SysBeep,which is a commonroutinethateverything
uses,is a SoundManagerroutine.

• The continuoussound techniquewastesCPU time by playing silence. With
multimediaapplicationsandthe adventof MultiFinder, it is importantto allow the
CPU to do as much work aspossible. The continuoussoundtechniqueusedthe
CPU to continuouslyplay silence,thus stealingvaluabletime from other, more
important,jobs.

Further Reference:
• TheSoundManager,Interim Chapterby Jim Reekes,October2, 1988
• TechnicalNote#180,MultiFinderMiscellanea

#19: How To ProduceContinuousSoundWithout Clicking 1 of 1



.

.



Macintosh Technical Notes

#20: DataServerson AppleTalk

Seealso: The AppleTalk Manager
Inside LaserWriter

Written by: Bryan Stearns April 29, 1985
Updated: March 1, 1988

Many applicationscould benefit from the ability to sharecommon data
betweenseveralMacintoshes,without requiring a file server.This technical
notediscussesonetechniquefor managingthis AppleTalk communication.

Thereare four main classesof network “server” devices:

Device Servers,such as the LaserWriter, allow several users to share a single
hardwaredevice; other examplesof this (currently underdevelopmentby third parties)
are modemserversand serial servers(to take advantageof non-intelligentprinterssuch
asthe lmageWriter).

File Servers,such as AppleShare,which support file accessoperationsover the
network. A userstationsendshigh-level requestsover the network (suchas“Open this
file,” “Read 137 bytesstartingat the currentfile position of this file,” “Close this file,” etc.).

Block Servers,which answerto block requestsover the network. Theserequests
impart no file systemknowledgeaboutthe blocks being passed,i.e., the serverdoesn’t
know which files are openby which users,andthereforecannotprotectone user’sopen
file from other users. Examplesof this type of serverare available from third-party
developers.

Data Servers,which answerto requestsat a higher level than file servers,such as
“Give me the first four recordsfrom the databasewhich match the following search
specification.”This notedirectsits attentionat this type of server.

A data server is like a file server in that it respondsto intelligent requests,but the
requeststhat it respondsto can be more specialized,becausethe code in the server
waswritten to handlethat specific type of request.This hasseveraladdedbenefits:user
station processingcan be reduced,if the data serveris usedfor sorting or searching
operations;and network traffic is reduced,becauseof the specificity of the requests
passedover the network. The dataservercan evenbe designedto do printing (over the
network to a LaserWriter,or on a local lmageWriter),given that it hasthe dataand can
be directedasto the format in which it shouldbe printed.

TechnicalNote #20 page 1 of 4 DataServerson AppleTalk



ATP: The AppleTalk TransactionProtocol

ATP, the assured-deliveryAppleTalk TransactionProtocol, can be usedto supportall

types of servercommunications(the LaserWriter usesATP for its communications!).

Here is a possiblescenariobetweentwo user stations(“Dave” and “Bill”) and a data

server station (“OneServer”, a server of type “MyServer”). We’ve found that the

“conversational” analogy is helpful when planning AppleTalk communications;this

example is thereforepresentedas a conversation,along with appropriateAppleTalk

Managercalls (Note that no error handling is presented,however; your application

shouldcontaincodefor handlingerrors,specifically the “half-open connection”problem

describedbelow).

Establishingthe Connection

Each station usesATPLoad to makesurethat AppleTalk is loaded.The serverstation,

since it wants to accept requests,opens a socket and registers its name using

NBPRegister.The user stationsuse NBPLOOkUp to find out the server’s network

address.This looks like this, conversationally:

Server: “I’m readyto accept ATPLoad OpensAppleTalk

requests!” OpenSocket Createssocket
NBPRegister Assignsnameto socket

ATPGetRequest queuea few asynchronous

ATPGetRequest calls, to be ableto handleseveral

ATPGetRequest. users

Dave: “Any ‘MyServers’ ATPL0ad OpensAppleTalk

out there?” NBPLookup look for servers,finds OneServer

Dave: “Hey, MyServer! What ATPRequest Ask the serverwhich socketto

socketshould I talk to you usefor furthercommunications

on?”

Bill: “Any ‘MyServers’ ATP Load OpensAppleTalk

out there?” NBPLookup look for servers,finds OneServer

Bill: “Hey, MyServer!What ATPRequest Ask the serverwhich socketto

socketshould I talk to you usefor furthercommunications

on?”

Server: “Hi, Dave! UseSocketN.” ATPOpenSkt Get a new socketfor talking to Dave

ATPResponse SendDave the socketnumber

ATPGetRequest Replacethe usedGetRequest

Server: “Hi, Bill! UsesocketM.” ATPOpenSkt Get a new socketfor talking to Bill

ATPResponse SendBill the socketnumber

ATPGetRequest Replacethe usedGetRequest

From this point on, the serverknows that any requestsreceivedon socket N are from

Dave, and thosereceivedon socketM are from Bill. The conversationscontinue,after a

brief discussionof error handling.

TechnicalNote #20 page 2 of 4 DataServerson AppleTalk



Half-Open Connections

There is a possibility that one side of a connectioncould go down (be poweredoff,
rebootedaccidently,or simply crash)beforethe connectionhasbeenofficially broken. If
a userstationgoesdown, the servermust throw away any savedstateinformation and
close that user’s open socket. This can be done by requiring that the user stations
periodically “tickle” the server:every 30 seconds(for example)the userstation sendsa
dummy requestto the server,which sendsa dummy response.This lets eachside of the
connectionknow that the otherside is still “alive.”

When the serverdetectsthat two intervals havegone by without a tickle request,it can
assumethat the userstation hascrashed,and closethat user’ssocketand throw away
any accumulatedstateinformation.

The userstation should use a vertical-blankingtask to generatethesetickle requests
asyncronously,ratherthan generatingthem within the GetNextEventloop: this avoids
problemswith long periodsaway from GetNextEvent (such as when a modal dialog
box is running). This task can look at the time that the last requestwas made of the
server, and if it’s approachingthe interval time, queuean asynchronousrequestto
tickle the server(it’s importantthat any AppleTalk calls madefrom interrupt or completion
routinesbe asynchronous).

If a userstation’s request(including a tickle request)goesunanswered,the userstation
should recoverby looking for the serverand reestablishingcommunicationsas shown
above(beginningwith the call to NEpLookup).

More information about half-open connectionscan be found in the Printer Access
Protocolchapterof InsideLaserWriter,availablefrom APDA.

Using the Connection

The userstationsDave and Bill have establishedcommunicationswith the server,each
on its own socket(note that the userstationshave not had to opentheir own sockets,or
register names of their own, to do this—the names we’re using are merely for
explanationalconvenience).They are also automatically tickling the server as
necessary.

TechnicalNote #20 page 3 of 4 DataServerson AppleTalk



Now the userstationsmakerequestsof the serverasneeded:

Bill: “I’d like to usethe sales ATPRequest Bill opensa database.

figuresfor this year.”

Server: “Ok, Bill.” ATPResponse The serverchecksto makesurethat
no one elseis using that database.

Dave: “Hey, Server- I’m still here” ATPRequest Dave notices that the interval time is

approaching,andmakesa tickle
request.

Server: “Ok, Dave.” ATPResponse The server resetsits “last time I heard
from Dave”.

Bill: “Pleaseprint the figures ATPRequest Bill asksfor specicdata.

for Januarythru June.”

Server: “Ok, Bill.” ATPResponse The serverdoesa databasesearch
sortsthe results,andprints them
on a local Imagewriter.

Dave: “I’d like to usethe sales ATPRequest Daveopensa database.

figuresfor this year.”

Server: “Sorry, Dave, I can’t do that. ATPResponse The serverfinds that Bill is usingthat

Bill is using that database.” data.

Closing the Connection

The userstationscontinuemaking requestsof the server,until eachis finished. The type

of work being done by the serverdetermineshow long the conversationwill last: since

the numberof socketsopenableby the serveris limited, it may be desirableto structure

the requestsin such a way that the averageconversationis very short. It may also be

necessaryto havea (NBP named)socketopen on the userstation, if the serverneedsto

communicatewith the user on other than a request-responsebasis. Here is how our

exampleconnectionsended:

Dave: “Thank you, server,I’m done ATPRequest Davetells the serverhe’s finished.

now. You’ve beena big help.”

Server: “Ok, Dave. Bye now.” ATPResponse The serverkissesDavegoodbye.

ATPCloseSkt After the Responseoperation
completes,the servercloses
the socket Dave was using. It also

ATPCloseSkt noticesthat Bill hasn’t senta request
in more than two intervals, and closes
Bill’s socket,too.

The userstationcan forget aboutthe socketit was using on the server; if it needsto talk

with the serveragain, it startsat the NBPLookUp (just in casethe serverhasmoved,gone

down andcomeup, etc.).

TechnicalNote #20 page 4 of 4 DataServerson AppleTalk



Macintosh Technical Notes

#21: QuickDraw’s Internal PictureDefinition

Seealso: QuickDraw
Color QuickDraw
Using AssemblyLanguage
TechnicalNote #59—PicturesandClip Regions

Written by: GingerJernigan April 24, 1985
Modified by: Rick Blair November15, 1986
Updated: March 1, 1988

This technical note describesthe internal format of the QuickDraw picture
datastructure.This revision correctssomeerrors in the opcodedescriptions
andprovidessomeexamples.

This technical note describesthe internal definition of the QuickDraw picture. The
information given here only appliesto QuickDraw picture format version 1.0 (which is
alwayscreatedby Macintosheswithout Color QuickDraw). Picture format version 2.0 is
documentedin the Color QuickDraw chapterof Inside Macintosh. This information
should not be usedto write your own picture bottleneckprocedures;if we add new
objectsto the picture definition, your program will not be able to operateon pictures
createdusing standardQuickDraw. Your program will not know the size of the new
objects and will, therefore,not be able to proceedpast the new objects. (What this
ultimately meansis that you can’t processa new picture with an old bottleneckproc.)

Terms

An opcodeis a numberthat DrawPictureusesto determinewhat object to draw or
what modeto changefor subsequentdrawing. The following list gives the opcode,the
nameof the object (or mode),the associateddata,and the total size of the opcodeand
data. To better interpret the sizes,pleaserefer to page 1-91 of the Using Assembly
Languagechapterof Inside Macintosh. For types not describedthere, here is a quick
list:

opcode byte
mode word
point 4 bytes
0..255 byte
—128..127 signedbyte
rect 8 bytes
poly 10+ bytes(startswith word sizefor poly (md. sizeword)
region 10+ bytes(startswith word size for region (mci. size word)

TechnicalNote #21 page 1 of 6 QuickDraw’s Internal PictureDefinition



fixed point long
pattern 8 bytes
rowbytes word (alwayseven)
bit data rowbytes* (bounds.bottom- bounds.top)bytes

Each picture definition beginswith a picsize(word), then a picframe(rect), and

thenthe picture definition, which consistsof a combinationof the following opcodes:

Opcode Name Additional Data Total Size(bytesi

00 NOP none 1

01 clipRgn rgn 1+rgn

02 bkPat pattern 9

03 txFont font (word) 3

04 txFace face(byte) 2

05 txMode mode(word) 3

06 spExtra extra (fixed point) 5

07 pnSize pnSize (point) 5

08 pnMode mode(word) 3

09 pnPat pattern 9

OA thePat pattern 9

OB ovSize point 5

OC origin dh, dv (words) 5

OD txSize size (word) 3

OE fgColor color (long) 5

OF bkColor color (long) 5

1 0 txRatio numer(point), denom(point) 9

11 picVersion version(byte) 2

20 line pnLoc ( point), newPt ( point) 9

21 line from newPt ( point) 5

22 short line pnLoc ( point); dh, dv (-128.127) 7

23 short line from dh, dv (-128.127) 3

28 long text txLoc ( point), count (0.255),text 6÷text

29 DH text dh (0.255), count (0..255), text 3+text

2A DV text dv (0.255),Count (O..255), text 3+text

2B DHDV text dh, dv (0. .255), count (0.255), text 4+text

30 frameRect rect 9

31 paintRect rect 9

32 eraseRect rect 9

33 invertRect rect 9

34 fillRect rect 9

38 frameSameRect rect 1

39 paintSameRect rect 1

3A eraseSameflect rect 1

3B invertSameRect rect 1

3C fillSameRect red 1

40 trameRRect rect ( ovalwidth, height; see1, below) 9

41 paintflRect rect (ovalwidth, height; see1, below) 9

42 eraseRRed rect (ovalwidth, height;see1, below) 9

TechnicalNote #21 page 2 of 6 QuickDraw’s Internal PictureDefinition



Opcode(cont.) Name Additional Data Total Size(bytes)

43 invertRRect rect (ovalwidth, height:see1, below) 9
44 filiRRect rect ( ovalwidth, height; see1, below) 9

48 frameSameRRectrect 1
49 paintSameRRect rect 1
4A eraseSameRRectrect 1
4B invertSameRRectrect 1

4C filiSameRRect red 1

50 frameOval rect 9
51 paintOval rect 9
52 eraseOval rect 9
53 invertOval rect 9
54 fillOval rect 9

58 frameSameOval rect 1
59 paintSameOval rect 1
5A eraseSameOval rect 1
5B invertSameOval rect 1
5C filiSameOval rect 1

60 frameArc red, startAngle,arcAngle 1 3
61 paintArc rect, startAngle,arcAngle 1 3
62 eraseArc rect, startAngle,arcAngle 1 3
63 invertArc red, startAngle,arcAngle 1 3
64 fillArc rect, startAngle,arcAngle 1 3

68 frameSameArc startAngle,arcAngle 5
69 paintSameArc startAngle,arcAngle 5
6A eraseSameArc startAngle,arcAngle 5
6B invertSameArc startAngle,arcAngle 5
6C tillSameArc startAngle,arcAngle 5

70 framePoly poly 1+poly
71 paintPoly poly 1+poly
72 erasePoly poly 1÷poly
73 invertPoly poly 1÷poly
74 filiPoly poly 1+poly

78 frameSamePoly (not yet implemented—sameas70, etc.) 1
79 paintSamePoly (not yet implemented) 1
7A eraseSamePoly (not yet implemented) 1
7B invertSamePoly (not yet implemented) 1
7C tiliSamePoly (not yet implemented) I

80 frameRgn rgn 1÷rgn
81 paintRgn rgn 1+rgn
82 eraseRgn rgn t+rgn
83 invertRgn rgn 1-+-rgn
84 fillRgn rgn 1+rgn

88 frameSameRgn (not yet implemented—sameas80, etc.) 1
89 paintSameRgn (not yet implemented) 1
8A eraseSameRgn (not yet implemented) 1
8B invertSameRgn (not yet implemented) 1

TechnicalNote #21 page 3 of 5 QuickDraw’s Internal PictureDefinition



Opcode(cont.) Name Additional Data TotalSize(bytes)

8C tillSameRgn (not yet implemented) 1

90 BitsRect rowBytes,bounds,srcRect,dstRect,mode, 29+unpacked

unpackedbitData bitData

91 BitsRgn rowBytes,bounds,srcRect,dstRect,mode, 29+rgn+

maskRgn,unpackedbitData bitData

98 PackBitsRect rowBytes,bounds,srcRect,dstRect,mode, 29+packed

packedbitDatafor eachrow bitData

99 PackBitsRgn rowBytes,bounds,srcRect,dstRect,mode, 29+rgn+

maskRgn,packedbitDatafor eachrow packedbitData

A0 shortComment kind(word) 3

Al longCommerit kind(word), size(word),data 5+data

FE EndOfPicture none 1

Notes

Rounded-cornerrectanglesuse the setting of the ovSize point (see opcode sOB,

above).

OpenPictureand DrawPictureset up a default set of port characteristicswhen they

start. When drawing occurs, if the user’s settings don’t match the defaults, mode

opcodesare generated.This is why there is usually a ciipRgn code after the

picversion: the defaultclip region is an empty rectangle.

The only savingsthat the “same” opcodesachieveunderthe current implementationis

for rectangles.DrawPicturekeepstrack of the last rectangleusedand if a “same”

opcodeis encounteredthat requestsa rectangle,the last rect. will be used (and no

rectanglewill appearin the opcode’sdata).

This last sectioncontainssomePascalprogramfragmentsthat generatepictures.Each

sectionstartsout with the picture itself (yes, they’re dull) followed by the codeto create

and draw it, andconcludeswith a commentedhex dumpof the picture.

{variables used in all examples}

VAR

err: OSErr;

ph: PicFiandle;

h: Handle;

r: Rect;

smalir: Rect;

orgr: Rect;

pstate: PenState; fare they in the Rose Bowl, or the statepen?}

.
TechnicalNote #21 page 4 of 6 QuickDraw’s Internal PictureDefinition



I. {Rounded—cornerrectangle)
SetRect(r, 20, 10, 120, 175);
ClipRect(myWindow” .portRect);
ph := OpenPicture(r);
FrameRoundRect(r, 5, 4); {r,width,height}
Close?icture;
DrawPicture(ph, r);

‘PICT’ (1) 0026 {size} 000A 0014 OOAF 0078 {picFrame}
1101 (version 1) 01 000A 0000 0000 OOFA 0190 {clipRgn — 10 byte region)
OB 0004 0005 {ovSize point) 40 000A 0014 OOAF 0078 (frameRRect rectangle)
FF (fin)

II. {Overpainted arc)
GetPenState(pstate); {save)
SetRect(r, 20, 10, 120, 175);
ClipRect(myWindow”.portRect);
ph := OpenPicture(r);
PaintArc(r, 3, 45); (r,startangle,endangle}
Pen?at (gray);
PenMode(patXor); {turn the black to gray}
PaintArc(r, 3, 45); {r,startangle,endangle}
Close?icture;
SetPenState(pstate);(restore)
DrawPicture(ph, r);

data ‘PICT’ (2) 0036 (size) 000A 0014 OOAF 0078 {picFrame}
1101 {version 1) 01 000A 0000 0000 OOFA 0190 {clipRgn — 10 byte region)
61 000A 0014 OOAF 0078 0003 002D {paintArc rectangle,startangle,endangle}
08 000A {pnMode patXor — note that the pnMode comes before the pnPat}
09 AA55 AA55 AA55 AA55 {pnPat gray)
69 0003 002D {paintSameArc startangle,endangle}
FF (fin)

TechnicalNote #21 page 5 of 6 QuickDraw’s Internal PictureDefinition



.

III. {CopyBits nopack, norgn, nowornan, nocry)

GetPenState(patate);

SetRect(r, 20, 10, 120, 175);

SetRect(smallr,20, 10, 25, 15);

SetRect(orgr,0, 0, 30, 20);

ClipRect(myWindow” .portRect);

ph := OpenPicture(r);

PaintRect(r);
CopyBits (myWindow” .portBits, myWindow” .portBits,

smallr, orgr, notSrcXor, NIL);

{note: result BitMap is 8 bits wide insteadof the 5 specifiedby smallr}

ClosePicture;

SetPenState(pstate);(restorethe port’s original pen state)

DrawPicture(ph, r);

data ‘PICT’ (3) 0048 {size) 000A 0014 OOAF 0078 {picFrame}

1101 (version 1) 01 000A 0000 0000 OOFA 0190 (clipRgn — 10 byte region)

31 000A 0014 OOAF 0078 (paintRect rectangle)

90 0002 000A 0014 000F OO1C {BitsRect rowbytes bounds (note that bounds is

wider than smallr)

000A 0014 000F 0019 {srcRect)

0000 0000 0014 OO1E {dstRect)

00 06 {mode=notSrcXor}

0000 0000 0000 0000 0000 (5 rows of empty bitmap (we copied from a

still—blank window)

FF (fin)

.
TechnicalNote #21 page 6 of6 QuickDraw’s InternalPictureDefinition



Macintosh Technical Notes

#22: TEScroll Bug

Seealso: TextEdit
TechnicalNote #1 31—TextEditBugs

Written by: Bryan Stearns April 21, 1986
Updated: March 1, 1988

A bug in TextEdit causesthe following problem:a call to TEScroll with no horizontalor
vertical displacement(that is, both dh and dv setto zero) resultsin disappearanceof the
insertion point. Sincesuchcalls do nothing, they shouldbe avoided:

IF (dh <> 0) OR (dv <> 0) THEN TEScroll(dh,dv,myTEHandle);

TechnicalNote #22 page 1 of 1 TEScroll Bug



. . .



Macintosh Technical Notes

#23: Life With FontJDAMover—DeskAccessories

Seealso: The ResourceManager
TechnicalNote #6—Shortcutfor OwnedResources

Written by: GingerJernigan April 25, 1985
Updated: V March 1, 1988

This technicalnotedescribeshow to makesurethatyour deskaccessorywill
work afterbeing movedby Font/DeskAccessoryMover.

If you want your desk accessoryto work properly after being moved by the Font/DA
Mover, thereare someeccentricitiesthat you needto be awareof. When the Font/DA
Mover movesa deskaccessory,it renumbersto avoid conflicts in ID numbers.It will also
renumberall of your desk accessory’sowned resources.Seethe ResourceManager
chapterof Inside Macintoshfor more information on ownedresources.

Since theseowned resourcesare renumbered,your code will need to calculatethe
resourceID of any ownedresourceit uses.For example,if your deskaccessoryhasan
owned ‘DLOG’ resource,and calls GetNewDialogwith the ID you assignedto it
originally, the ResourceManagerwill not find it. The solution is that everytime your desk
accessoryreferencesan ownedresource,it must figure out (at executiontime) the ID of
the resourceaccordingto the currentdriver resourceID.

When the Font/DA Mover renumbers,it doesits bestto keepresourcespointing to each
other properly. This meansthat it tries to renumberresourceIDs embeddedin other
resourcesas well as the resourcesthemselves.For example,the referenceto a ‘DITL’
within a ‘DLOG’ or ‘ALRT’ resourcegetschangedautomatically.Font/DA Mover knows
aboutthe standardembeddedresourceIDs in most of the standardresources,but if you
define your own, the Font/DA Mover won’t be able to renumberthem for you. The
embeddedresourcelDs which the Font/DA Mover knows aboutare listed below.

Note that certain resourcescan never be owned, becausetheir resourceIDs are
restrictedto a certain range.One such exampleis a WDEF. Sincethe ID of a WDEF is
specifiedalong with a four bit variation code,the rangeof WDEF IDs that can be usedis
0-16363.Since noneof this falls within the ownedresourceID range,WDEFs cannotbe
owned.For the samereason,MDEFs, CDEF5,and MBDFs can’t be ownedeither.

As a rule of thumb, beforeyou ship a deskaccessory,move it to a disk with anotherdesk
accessoryof the sameID. This will causethe Font/DA Mover to renumberyour desk
accessory.If the movedcopy doesn’twork, then thereis probablysomethingwrong with
the way you are handlingyour owned resources.

Technica’Note #23 page1 of 2 Life With FontJDAMover



Embeddedresourcesknown by Font/DA Mover

Theseareall true for Font/DA Mover 3.3 and newer:

• referencesto ‘DITL’ resourcesin ‘DLOG’/’ALRT’ resources

• referencesto ‘ICON’, ‘PICT’, ‘CTRL’ in ‘DITL’ resources

• referencesto ‘MENU’ resourcesinside the resourcesthemselves(menulD field)

• referencesto ‘MENU’ resourcesin ‘MBAR’ resources

Anything not on this list hasto be fixed by the deskaccessory.

By the way...

Before Font/DA Mover, deskaccessoriescould havean ID in the range 12 to 31. Now,

and in the future, deskaccessoriescan only have IDs in the range 12 to 26, because

Font/DA Mover will only assignnumbersin this range.Numbers27 thru 31 are reserved.

.

TechnicalNote #23 page2 of 2 Life With Font/DA Mover



Macintosh Technical Notes

#24: Available Volumes

Seealso: The File Manager

Written by: Bryan Stearns April 26, 1985
Modified by: Bryan Stearns October15, 1985
Updated: March 1, 1988

StandardFile lets the userselectone file from any availablevolume; it is
sometimesnecessaryfor an applicationto find which volumesare present.
This technicalnotegivesthe propermethodof accomplishingthis.

There is a little-noticed featureof the low-level file managercall PBHGetVInfo which
allows specificationof a “volume index’ to selectthe volume. This volume index selects
the nth volume in the VCB queue.The following function usesPBHGetVInfo to find out
abouta given volume. In MPW Pascal:

FUNCTION GetlndVolume(whichVol: INTEGER; VAR volName: Str255;
VAR volRefNum: INTEGER) : OSErr;

{Return the name and vRefNum of volume specifiedby whichVol.)

VAR

volPB : HParamBlockRec;
error : OSErr;

BEGIN

WITH volPB DO BEGIN {makes it easierto fill in!)
ioNamePtr : @volName; {make sure it returns the name)
ioVRefNum := 0; {0 means use ioVollndex}
ioVollndex := whichVol; luse this to determine the volume)

END; {with}
error := PBHGetVInfo(@volPB,false); {do it)
IF error = noErr THEN BEGIN {if no error occurred

volRefNum := volPB.ioVRefNum; {return the volume reference)
END; {if no error}
{other information is available from this record; see the FILE)
{Manager’s descriptionof PBHGetVInfo for more details...
GetlndVolume := error; {return error code)

END;

TechnicalNote #24 page 1 of2 Available Volumes



In MPW C:

OSErr GetlndVolume(whichVol, volName,volRefNum)

short mt whichVol;

char *volName;

short mt *volRefNum.

/*Return the name and vRefNum of volume specifiedby whichVol.*/

HVolumeParam volPB;

OSErr error;

volPB.ioNamePtr= volName; /*make sure it returns the name*I

volPB.ioVRefNum = 0; 1*0 means use ioVollndex*/

volPB.ioVollndex = whichVol; /*use this to determinethe volume*/

error = PBHGetVInfo(&volPB,false); I*do it*/

if (error == noErr) /*jf no error occurred */

*volRefNum = volPB.ioVRefNum; /*return the volume reference*/

/*other information is available from this record; see the FILE*/

/*Manager’s descriptionof PBHGetVInfo for more details...

return(error); /*always return error code*/

/* GetlndVolume *1

To find out aboutall volumeson-line, you can call this routine severaltimes, starting at

whichVol := 1 and incrementingwhichVol until the routine returnsnsvErr.

TechnicalNote #24 page 2 of 2 Available Volumes



Macintosh Technical Notes

#25: Don’t Dependon RegisterA5 Wfthin Trap Patches

Seealso: The OperatingSystemUtilities

Written by: Bryan Stearns June25, 1986
Updated: March 1, 1988

Future softwaremay allow deskaccessoriesto have their own globals bychangingregisterA5 when the accessoryis enteredand exited. This cancauseproblemsfor applicationsthat patch trapswithout following certainrules.

If your application patchesany traps, it’s important that the patchesnot dependonregisterA5. This is becauseyou may haveintercepteda trap usedby a deskaccessory.

If you needaccessto your globals within your patch, you can saveA5 (on the stack,perhaps),load A5 from the low-memory global CurrentA5 (this is guaranteedto becorrectfor your application),do whateveryou haveto do within your patch,then restore
A5 on the way out. Note that if you make any trapswithin your patch (or call the “real”versionof the routine you patched),you should restorethe caller’s A5 beforedoing so.

Thereareseveralways of dependingon A5 within a patchthat you shouldwatch out for:

• Are you making any referencesto your global variables,or thoseof any unitsthat you’re using, such as thePortfrom QuickDraw?Theseare accessedwith A5-relative referenceswith negativeoffsets.
• Are you making any inter-segmentsubroutinecalls? Theseare accessedwith A5-relative referenceswith positive offsets.
• Are you using any systemcalls (either traps or “glue” routines) which will

dependon A5 during their execution?In this case,you needto be surethatyou restorethe caller’s A5 beforeexecutingthe call.

To be safest,patchedtrapsshouldfollow the samerules as interrupt handlers.

Note

In general,applicationsshould not have to patch any traps, and risk compatibilityproblemsif they do! If you’d like help in removing your dependenceon patching,pleasecontactMacintosh DeveloperTechnicalSupport.

TechnicalNote #25 page 1 of 1 RegisterA5 Within Trap Patches



.

.

.



Macintosh
TechnicalNotes

DeveloperTechnicalSupport

#26: Fond of FONDs
Written by: JosephMaurer May 1992

This TechnicalNote takes the place of Tech Note #26, “Charactervs. String OperationsinQuickDraw” by Bryan Stearns(March 1988),which pointedout the possibledifferencesbetweentheresultsof a StringWidth call andsuccessivecalls to CharWidth.This Note updatesandbrings into a broadercontext the issuesrelatedto text measuring.It also providesadditionaldocumentationon font family resources(‘FOND ‘s), andaddressesvariousotherfrequentlyaskedquestionsrelatedto the Font Manager.For reasonsof consistencyandeasierreference,muchofthe contentsof TechnicalNotes#191,“Font Names,”#198,“Font/DA Mover, StyledFonts,and‘NFNT ‘s,” and#245,“Font Family Numbers,”havebeenupdatedandworked into this Note aswell.

Introduction

Every Macintoshdeveloperneedsto draw text in a GrafPort,and to specify typeface,size, andstyle. In mostcases,thereareno problems,andapplicationdevelopersdon’t needto havein-depthknowledgeof the Font Manager’sinner workings and the datastructuresinvolved. Sometimes,however,the resultson the screenor on printedoutputmay be different from what you expected.Then,usually,DTS comesinto play to figure out what theproblemis andhow to fix it. This Noteis basedon sharpdeveloperquestionsfrom the lastyearor so, which point mainly at shortcomingsof the existingFontManagerarchitecture,inconsistenciesin its datastructures,andmissingdetailsin the documentation.

We’ll startwith a historicaloverview,which discussesthe introductionof font family descriptionresousces(‘FOND ‘s) back in 1986, explainsthe consequencesof non-proportionallyscalingfonts, andcovers non-registrationandvolatility of font family numbers.

We will thendealwith the Font/DA Mover andthe built-in “Mover” of theFinderin System7. Wediscussa numberof not-so-well-knownaspectsof moving fonts in and Out of a suitcasefile, andrecommendthat you altogetherabandonthe resourcetype ‘FONT’. We’ll alsocommenton fontnames,and show you how to put separatestylistic variantsof a typefacetogetherinto one fontfamily. And we providedocumentationon the ffVers ion field of a ‘FOND’ (accompaniedby adisclaimerandanotherpieceof irritating information).

The main bodyof this Note addresseshow theFontManagerworks in the FMSwapFontcontext,and gives information on the scaling factors in the FMOutput structureand on the changesintroducedby TrueType.We again took the examplesof unexpectedbehavior(undercertaincircumstances)from developerquestions.Thanksfor helpingdocumentthis!

Determiningthe width of text, as requiredfor line layout, is sometimestrickier than you mightthink. We will documentthe effectsof SetFractEnablein moredetail andmentionsomemoreline layoutproblems.

#26: Fond of FONDs
1 of 12



MacintoshTechnicalNotes

Finally, this Note includessamplecode that puts the Out lineMetrics call to work, and

determinestext boundingboxesfor bitmapfonts.

Some FOND Background

Originally (InsideMacintoshVolume I, Chapter7), all font-relateddatawascontainedin resources

of type ‘FONT’. For a font numberwithin the range0....255, and a font size resthctedto less

than 128, the (unnamed)‘FONT’ resourcewith an ID:

1 28*(font number)+ (font size)

containedthe bitmap font strike, while the ‘FONT’ resourcewith ID = 128*(font number),

correspondingto font size0, did not contain any data,but its resourcenameprovidedthe font

family name.QuickDrawtook careof stylistic variantslike italic, bold, shadow,and so on; if a

user had a specifically fine-tuned font strike for a stylistic variant, QuickDraw would not

automaticallysubstituteit whendrawingtext.

For aestheticreasons,bitmap fonts for different sizeswere usually designedwith widths non-

proportionalto the point size. For example,the text “Show the differencein text widths” drawn

with Courier9 measures170 pixels, whereasthe sametext drawn with Courier 18 measures374

pixels, which is 10% more than you expect.(By the way, this is bad newsfor the ImageWriter

printer driver. When “Best” mode(144 dpi) is selectedand text in Courier9 is to be printed, the

printer driver usesCourier 18 to renderthe 9-point font size on the paperat twice the screen

resolution,andobviouslyhasbig troublecompensatingfor the 10% differencein text width.)

On the other hand, given that only integercharacterwidths (in QuickDraw’s 72 dpi units) are

possible,proportionalfont scalingis compromisedanyway. Accumulatedroundingerrorsin text

measuring,particularly for scaled fonts, contribute to the headachesof many Macintosh

programmers.The computedtext widths (vital for positioningtext preciselyandfor line layout

algorithmsto justify text) sometimeschangequite abruptlywhenthe userremovesor addscertain

font sizes.

The introductionof the LaserWriter,andthe successof Macintoshin the desktoppublishingarena,

requiredan extensionof the original Font Managerarchitecture.This extensionis basedon the

conceptof “font family description”resourcesof type ‘FOND’, and on a new resourcetype

‘NFNT’ for the dataof theexisting ‘FONT’ resources(seeInsideMacintoshVolume IV, Chapter

5).

The ‘FOND’ resourcestoressize-independentinformationaboutthe font family, andits resource

ID is the font number(in the range0...32767). The resourcenameof the ‘FOND’ is the font

name,and it containsa variable-lengthfont associationtable,which referencesthe font strikes

belongingto a specific font family. Thesereferencesinclude size, style, andresourceID of the

‘NFNT’ or ‘FONT’ resourcecontainingthe bitmapfont data.TrueTypefonts wereretrofittedinto

this scheme,andare identified as font strike resourcesfor point size zero. Any referenceto point

sizezerorefersto a resourceof type ‘s fnt’.

Note: The range0...32767for font numbersis subdividedinto rangesfor the various

script systems(seeInside Macintosh Volume VI, pages 13-8 and 14-22, and

TechnicalNote #242, “Fonts and the Script Manager”).This restrictsthe rangeof

font numbersfor the Romanscript to 0...16383,with 0, 1, and 16383reservedfor

the system.

2 of 12 #26: Fond of FONDs



DeveloperTechnicalSupport May 1992

SinceApple originally intendedfonts to bereferencedby their font family numbers,
DTS attemptedto registerthosenumbers(seeInsideMacintoshVolume I, page219
and Volume IV, page31). This failed—not only becausethe numberof fonts
registeredgrew greaterthan the numberof font family numbersavailable,but also
becausethe Font/DA Mover (version 3.8, shippedwith System6), and the
“Mover” built into the System7 Finderresolveconflicts betweenfont IDs (which
happenedanyway!) by renumberingthe fonts on-the-fly. There is no font ID
registrationany more—exceptfor thevery specialcaseof JapaneseKanji ‘FOND
fbit’ IDs, andpotentiallyfor Korean,Chineseandotherdouble-bytefonts.

As early asApril 1988,TechnicalNote#191, “Font Names,”recommendedthe use
of font namesratherthan font family numbers. Sincethen, the recommendation
hasbeenreinforcedin InsideMacintoshVolume VI, page12-16.Fortunately,most
applicationshavebeengoodaboutfollowing this recommendation.Unfortunately,
someexceptionsremain, even in Apple’s own software. QuickDraw Pictures
createdwithout 32-Bit QuickDrawreferto fonts by font family numberonly!

For obviousreasonsof upwardcompatibility (to maintainexistingfonts, andto avoidreflowing of
existingdocuments),the introductionof ‘FOND’ s did not solveall theproblems.This is what this
Note is all about.

Moofing Fonts

The Font/DA Mover utility has evolved into version 4.1, which knows about ‘S fnt ‘s. It is
availableon the DeveloperCD Series disc,path“Tools & Apps (Moof!): Misc. Utilities:”. The
Finderin System7 incorporatesits own “Mover” (seeInsideMacintoshVolume VI, page9-33),
which makesthe Font/DA Mover redundantfor System7 users.

Given the combinatorialexplosionof all imaginablesituationswith ‘FOND ‘s, ‘FONT ‘s,
‘NFNT ‘ s and ‘s fnt ‘s, and stylistic variationsof fonts belongingto the samefamily, the font
movingjob deservesrespect.The following notescover someless well-known aspectsof this
business.

If an old “standalone” ‘FONT’ (without corresponding‘FOND’ resource)is movedinto a
suitcasefile, Font/DA Mover or the System7 Mover createsa minimal ‘FOND’ resourceon-
the-fly. This ‘FOND’ hasno tables,andnearly all its fields arezeroed.The System7 Finder
alsoconvertsthe resourcetypefrom ‘FONT’ to ‘NFNT’; unfortunately,theFont/DA Mover
keepstheresourcetype ‘FONT’.

Note: While it is perfectly legal to have ‘FOND ‘s continueto referencethe older
‘FONT’ type, DTS recommendsthat you avoid ‘FONT ‘ s. Accessing
‘FONT ‘s is much slower, sincethe Font Manageralwayslooks for ‘FOND ‘s
and ‘NFNT ‘s first. More importantly, ‘FONT ‘s are troublemakersif an
applicationcomeswith its own font in its resourcefork. Imaginean application
that includesa private ‘FOND’ which referencesa ‘FONT’ in its resource
fork by resource10. Whenthe FontManagerwantsto load the font resource,it
first looks for a resourceof type ‘NFNT’ with this sameresourceID. If there’s
an ‘NFNT’in the Systemfile with the sameresourceID, the FontManagerwill
pick it insteadof the ‘FONT ‘ from the application’s resourcefork. This
happensmoreoften thanyou’d like to think!

#26: Fond of FONDs 3of12



MacintoshTechnicalNotes

• Underthecurrentfont architecture,the font nameis theresourcenameof the ‘FOND’ resource

(let’s forget about ‘FONT ‘s altogether),so the font name can be any Pascalsthng.
Unfortunately,this conflicts with the 31-characterlimitation of a file namewhenthe System7
Finderderivesthe file nameof a movablefont file (insideMacintoshVolume VI, page9-34)
from the font name. Somethird-party fonts come with font nameslong enoughto cause
trouble. You may also seethis problemwhen trying to open a suitcaseif the Findercan’t
generatedistinct namesfor all of the fonts in the suitcase;the Findermay say the suitcaseis
“damaged”whenit is not.

Note: Each TrueType ‘ s fnt ‘ resourcecontains a Naming Table (see The
TrueType7” FontFormatSpecification,APDA M0825LL/A) which provides
nearlyunrestrictedfont namingcapabilities,to accommodatethe needsof font
manufacturers.A forthcomingMacintoshTechnicalNoteon TrueTypeNaming
Tablesgivesadditionalinformation.

• QuickDrawandthe currentFont Managerhavenoprovisionfor stylistic variantslike “light,”
“medium,” “demi,” “book,” “black,” “heavy,” “extra,” “ultra,” etc., usedin the contextof
professionaltypesetting.Therefore,eachof thesevariantscomeswith a separatefont family
resource.Probablyfor reasonsof consistency,the “italic” variantshavetheir own font family

resourcesas well. Unfortunately,unlesseach ‘FOND’ referencesboth the “plain” and the
“italic” font strikes,QuickDrawwill no longerknow a customizeditalic font strikeexists.

It is fairly easy,usingSystem7 andResEdit,to mergetwo font families (named,for exmaple,
“myFont” and“myFont italic”) into one. This way, QuickDrawwill automaticallyusethepre

designeditalic font strike insteadof creatingone algorithmically. Follow theseconvenient
steps:

1. Make surethereis no resourceID conflict betweenthe ‘NFNT ‘S and ‘s fnt ‘s belonging

to both families.
2. Make surethe style bits for italic are setin the font associationtableof “myFont italic.”

3. From ResEdit’sFile menu,“Get Info...” on the“myFont” ‘FOND’ resource.Write down

the resourceID of the “myFont” ‘FOND’.

4. From ResEdit’sFile menu,“Get Info...” on the “myFont italic” ‘FOND’. Changeits
resourceID to be identical to theoneyou wrote down in step3. Changeits resourcename

to “myFont.”
5. Use the Finderin System7 to move the contentsof the “myFont italic” suitcaseinto the

original “myFont” suitcase.It will mergeall constituentsinto one font associationtable,
andthusenabletransparentsubstitutionof theright font for QuickDraw’sitalic style.

Version Numbers

The ‘FOND’ structure(seeinsideMacintoshVolume IV, page45, “FamRec”) containsa field

ffVersion, andinquiring mindsnaturally want to know moreaboutit. Before anythingelse,

however,pleasereadthe following disclaimer:

Disclaimer: The Font Managerdoesnot checkversionnumbersin a ‘FOND’, and we
recommendthat you not rely on the (intentionallyvague)statementsbelow,

but ratheranalyzethe datain the ‘FOND ‘independently.

.
4 of 12 #26: Fondof FONDs



DeveloperTechnicalSupport May 1992

Currently, valuesO...3 may appearin the ffVersion field, with the following intended
interpretations:

Version0: Usually indicatesthat the ‘FOND’ hasbeencreatedon the fly by theFont/DA
Mover (or the System7 Finder). But the ‘FOND’ for Palatino on the
distributiondisksof System7 is a counterexample.

Version 1: Obviously indicates the first version when ‘FOND ‘s cameout (Inside
MacintoshVolume IV, page36).

Version2: Correspondsto the extensionof the ‘FOND’ format documentedin Inside
MacintoshVolume V, page 185 (which doesnot meanthat the ‘FOND’
actuallycontainsa boundingbox table).

Version3: The ‘FOND’is supposedto containa boundingbox table.

This bringsup an annoyingfact. All measurementvalues(referringto a hypothetical1-point font)
in the ‘FOND’ are in a 16-bit fixed-point format, with an integerpart in the high-order4 bits anda
fractional part in the low-order 12 bits. You would expect that negativevalues (like for
ffDescent,or in the kerningtables)arerepresentedin the usualtwo’s-complementformat, such
that standardbinary arithmeticapplies.This is mostly true, but not always.Again, Palat inc is a
counterexample(and probably not the only one). To our knowledge,version0 and version 1
‘FOND ‘s havenegativevaluesrepresentedin a format wherethe most significantbit is the sign
bit, andthe restrepresentsthe absolutevalue. However,thereis nothing in the systemsoftware
thatenforcesthis, socounterexamplesmay exist.

Warning: Don’t rely on the versionnumber,but includesanitychecksfor the negative
valuesin a ‘FOND’ instead! The following Pascalfunction showshow
this canbe done:

FUNCTION Check4pl2Value(n: Integer) : Integer;
n is a 4.12 fixed—point value; i.e., its “real” value is n/4096.
If n is “unreasonablynegative,” interpret the most significant bit
as sign bit, and convert to the usual two’s complement format.

BEGIN
IF n < S8FFF THEN { means: (4.12—interpretationof n) is beiow — 7

Check4pi2Value := — BitAnd)n,$7FFF)
i.e., mask sign bit, and take negative of absolutevalue

ELSE
Check4pl2Value := n;

END;

In the Heart of the Font Manager

Swapping Fonts

As statedin InsideMacintosh,thereis only onecontactbetweenQuickDrawandtheFontManager:
the FMSwapFont function. Each of the three QuickDraw text measuring functions
(CharWidth, StringWidthandTextWidth)alwaysendsup in the QuickDrawbottleneck
procedure QDProcs. txMeasProc.Eachof the threeQuickDraw text drawing procedures
(DrawChar, DrawStringand DrawText) alwaysendsup in the QDProcs.textProc
bottleneckprocedure.Any reasonabletextProc (like StdText) needsto call the currently-
installedtext measuringbottleneckprocedure beforeactuallyrenderingthe text. And whatdoes
any reasonabletext measuringbottleneckprocedure(like StdTxMeas)do first, beforeanything

#26: Fondof FONDs 5 of 12



MacintoshTechnicalNotes

else?It calls FMSwapFont,to makesurewe are talking aboutthe right font and its properties!
(To be precise,GetFontInfo and FontMetrics are the othercalls that makesurethe right
font is swappedin andsetup, without requiringyou to call FMSwapFontexplicitly.)

Respondingto a font requestis a lot of work, and FMSwapFont hasbeenoptimizedto returnas
quickly as possibleif the requestis the sameas the previousone. Building the global width
table(seeInsideMacintoshVolume IV, page41) is amongthe moretime-consumingtasksrelated
to FMSwapFont;this is why the Font Managermaintainsa cacheof up to 12 width tables.

Inside MacintoshVolume I, page220 documentsthe Font Manager’schoicewhen a font of the
requestedsize is not available. However, some consequencesor additional featureshave
occasionallybeena surpriseto developers(and usersaswell).

Scaling Factors in FMOutPut and StdTxMeas

Let’s supposeyou haveonly a 12-point bitmap versionof Palatino,anddon’t haveany Palatino
outline fonts. When you requestPalatino 18, QuickDraw setsup the FMlnput record with
size = l8andnumer = denom Point($00010001).On return, the FMOutput

recordcontainsthe handleto thefont recordto use(the ‘NFNT’ with the Palatino12 bitmapfont
strike), and indicatesthe scalingfactorsQuickDraw will haveto useto producethe desiredtext
point size in FMOutput . numer and FMOutput . denom. In this example,thatratio is 3/2.

Note that theseare also the valuesreturnedin StdTxMeas (InsideMacintoshVolume I, page

199) if you call the procedurewith numer = denom = Point ($00010001). Why?
BecauseStdTxMeascalls FMSwapFont,asexplainedunder“SwappingFonts.” StdTxMeas

doesnot apply thesescalingfactors to the text it measures.In our example,it would measure
Palatino12 andreturnnumerand denom in the ratio 3/2 to tell you that your applicationmust
multiply the resultsby thesevaluesto get the correctmeasurementsfor Palatino18. This has
surprisedmore thanoneprogrammerwho didn’t expectnumerand denomto change!

By the way, the Font Manageralwaysnormalizesthe scalingfactorsas fractionsnumer/denom
suchthat the denominator is equal to 256. In our example,the real numbersreturnedby
FMSwapFontor StdTxMeasarenumer= 384 and denom= 256.

Warning: If the scaling factors numer and denom passed to
StdTxMeas, StdText (seeInsideMacintoshVolume I, pages
198 and 199), or in the FMlnput recordto FMSwapFont are

such that txSize*numer.v/denom.vis less than 0.5 and
rounds to 0, and if there is more than one ‘ s fnt ‘ resource
referencedin the font associationtable, then the current Font
Managermay get confusedand return results for the wrong font
strike.

TrueType Always Has the Right Size

The defaultvalueof out linePreferred is FALSE. If you havebitmapfonts for Palatino12
andPalatino14 in your systemaswell as a PalatinoTrueTypefont, thenrequestsfor Palatino12
or Palatino14 are fulfilled with the bitmapfonts, but requestsfor any othersizearefulfilled with
the TrueTypefont. In particular,if you (or, for example,a printerdriver) needPalatino12 scaled
by 2, theFontManagerwill actually look for Palatino24 andreturn theoutline font, regardlessof

the settingof outlinePreferred.Even if you wantedthe bitmap font doubledfor exact

6 of 12 #26: Fond of FONDs



DeveloperTechnicalSupport May 1992

“what-you-see-is-what-you-get”text placement,you’re Out of luck—you get the TrueTypefont,
which mayhavevery different font metricsor charactershapes.

If the FontManagerusesan outline font to fulfill a given font request,the I sOut1 me function
returnsTRUE. Interestingly,this doesnot imply that RealFont returnsTRUE as well. If the
text size is smallerthan the value lowestRecPPEM(“smallestreadablesize in pixels”) in the
head’ font headerin the TrueTypefont (seeThe TrueTypeFontFormatSpecification,version

1.0, page227), then RealFont returnsFALSE!

First Size, Then Style—or: To Be or Not to Be Outline

WhentheFontManagerwalks the font associationtableof a ‘FOND’ to look for a font strikeof a
specifiedsize and style, it stopsat the first font of the right size. Only if you requesteda stylistic
variant (like bold or italic) doesit take a closerlook at the fonts of the samesize. It doesthis by
putting weightson the variousstyle bits (for example,8 for italic, 4 for bold, 3 for outline) and
choosingthe font strike whosestyle weightmostcloselymatchesthe weightof the requestedstyle.
All this is fine when only bitmap fonts are available.With the presenceof TrueTypeoutlines,
however,theresultsarenot alwaysasexpected,dependingon the font configurationinstalled.

Let’s look at a few examples:

Example 1: Let’s supposeyou have the bitmap font Times 12 (Normal) and the
TrueTypefonts Times (Normal), Times Italic and Times Bold in your
system.If you requestTimes 14 Italic or Times 14 Bold, it’s renderedfrom
the Times Italic or Times Bold TrueTypefonts. However,if you ask for
Times 12 Italic or Times 12 Bold, andyour systemhasthedefaultsettingof
outlinePreferred = FALSE, the Font Managerdecidesto takethe
Times 12 bitmap and let QuickDrawalgorithmically slant it (for italics) or
smearit (for bold).

Example 2: Let’s supposeyou want to draw big, bold Helveticacharactersandthereare
no existingbitmapsfor the sizeyou want. If the HelveticaBold TrueType
outlinesareavailable,the FontManagerchoosesthemandthe only surprise
in text renderingwill be a pleasantone. If there is no Helvetica Bold
TrueTypefont, however(like in the machineof your customer,who kept
only the normalHelveticaTrueTypefont in his system),then the characters
are renderedusing the normal Helveticaoutlines and, in a secondstep,
QuickDraw appliesits horizontal 1-pixel “smearing” to simulatethe bold
stylistic variant. The result is very different (and rather an unpleasant
surprise).

Example 3: Admittedly, this is less likely (but it has happened).Let’s suppose
somebodydecidesto rip the TimesTrueTypeoutlineout of the Systemfile
(don’t ask me why—I don’t know). He forgetsto take the Times Italic
TrueTypeoutline away as well. The next time he draws text in Times
(Normal), in a size for which there is no bitmap font (or if
outlinePreferred = TRUE), the Font Managergoes for an
‘s fnt ‘, andthe text showsup in italic (what a surprise!).

Unfortunately,given the currentimplementationof the FontManager,thereareno solutionsto the
problemsillustratedabove—otherthan askingusersof your applicationto install the fonts you
recommend.The only way to anticipatethesepotentialsurprisesfrom within your applicationis to

#26: Fond of FONDs 7 of 12



MacintoshTechnicalNotes

look into the ‘FOND ‘s font associationtable. You can’t dependon the IsOutline function

becauseit returns TRUE as soonas the Font Managerstopsat an ‘s fnt’, in its first pass
throughthe font associationtable—regardlessof subsequentstylistic variations. This means,for

example,if you askfor HelveticaBold and I sOutline returnsTRUE, you don’t know if you got
theHelveticaBold TrueTypefont or if QuickDraw“smeared”theHelvetica(Plain) TrueTypefont.

Where Do the Widths Come From?

Text measuring(for example,for precisetext placementin forms with boundingboxes)andmost
line layout algorithmsfor justified text rely heavily on the characterwidths containedin the global
width table. Given that underthe current font architecture,we may easily havethree or more
differentwidth tablesfor the samefont specification(the non-proportionalintegerwidths attached

to the ‘NFNT’, the fractionalwidths containedin the ‘FOND’, andthe fractionalwidthsprovided

by the ‘s fnt ‘), it is importantto understandwherethe widthscomefrom in anycase.

Since SetFractEnablewas introduced(InsideMacintoshVolume IV, page32 andVolume

V, page 180), its setting TRUE or FALSE was supposedto give predictableeffects. If it’s

FALSE, the Font Managertakesthe integerwidths from the ‘NFNT’; if it’s TRUE, it takesthe

fractional widths from the ‘FOND’. Unfortunately,there are someadditionaldetailsand side
effectsthat arenot well known.

• The Font Managerlooks at bit 14 of the ffFlags field in the ‘FOND’ (seeInside Macintosh
Volume IV pages36 and 37). If it is set (like it is for Courier), the fractional widths from the

‘FOND’ arenever used.
• If SetFractEnableis TRUE and you requesta stylistic variation like bold or italic, the Font

Managerlooks at bits 12 and 13 of the ffFlags field to decidehow different widths or extra
widths for the stylistic variantshaveto be used. What it decidesis documentedin the “Font
Manager”chapterof InsideMacintoshPreview,locatedon theDeveloperCD Seriesdiscs.

• Given that it is not possibleto set the pen to a fractionalposition,precisetext positioningwith

fractionalwidthsenabledis alwayscompromisedbecauseof (accumulated)roundingerrors.
• QuickDrawdisthbutesthe accumulatedroundingerrorsacrosscharacterswithin a string (instead

of addingit at the endof the drawntext). This resultsin poor text quality on the screen,andin
problemswhencalculatingthepositionof the insertionpoint betweencharacters.

• The LaserWriter driver watches what you pass to SetFractEnable.PassingTRUE to
SetFractEnabledisablessomeof the LaserWriterdriver’s line layout features,assumingthat the
programmerintends to control text placementmanually. Explicitly passingFALSE to
SetFractEnableachievesdifferent results than using the default value of FALSE—Font
Substitutionbehavesdifferently, for example. Theseeffects are sometimesNot What You
Wanted.

• On non-32-Bit-QuickDrawsystems,SetFractEnableis not recordedin pictures.This affectsthe
line layout of text reproducedthroughDrawPictureif the picture was createdwith fractional
widths enabled.

In systemswith TrueType,quite naturally the widths alwayscomefrom the ‘sfnt’ when the

Font Managerusesa TrueTypefont. If fractEnableis FALSE, hand-tunedintegercharacter

widths for specificpoint sizescomefrom the ‘hdmx’ tablein the ‘sfnt’. If fractEnableis

FALSE andno ‘hdmx’ table is presentor it containsno entriesfor the desiredpoint size, the

fractionalcharacterwidths from the ‘s fnt’ areroundedto integralvalues.

.
8of 12 #26: Fondof FONDs



DeveloperTechnicalSupport May 1992

More Line Layout Problems

Theroutines SpaceExtra(InsideMacintoshVolume I, page172) and CharExtra (inside
MacintoshVolume V, page77; availableonly in co’or GrafPorts)are intendedto help you draw
fully justified text. This works fine on the screen,but not all printerdrivers are smartenoughto
use thesesettingsappropriatelyunder all circumstances.In particular, if you passTRUE to
SetFractEnable,or if you turn theLaserWriterdriver’s line layout algorithmoff (by meansof
the picture comment LineLayoutOff; see MacintoshTechnical Note #91), or if font
substitutionis enabledand actually occurs, it is better not to rely on SpaceExtra and
CharExtra whenprinting fully justified text. Instead,keepthe LaserWriterdriver’s line layout
adjustmentsoff, and calculatethe placementof your text (word by word, or evencharacterby
character)yourself.

Putting Text Into Boxes

TrueType fonts came to the Macintosh togetherwith sevennew Font Managerroutines (as
documentedin InsideMacintoshVolume VI, Chapter12). The Out1 ineMetri cs function is
certainlythemostsophisticatedof these,andsamplecodeillustrating its usagemay be helpful. The
following procedure DrawBoxedString assumesthat the new outlinecalls (InsideMacintosh
VolumeVI, Chapter12) areavailable,andthat I sOutline returns TRUE for thecurrentport
setting.

PROCEDURE DrawBoxedString(pt: Point; s: Str255);
Draw string s at pen position (pt.h, pt.v), and show each charactersbounding box.

C ON ST
kOneOne $00010001;

VAR

advA: FixedPtr;
isbA: FixedPtr;
bdsA: RectPtr;
err,i,yNin,yMax,leftEdge,terrp:Integer;
numer,denorn: Point;
advance,lsb: Fixed;
r: Rect;

BEGIN
turner := Point(kOneOne);
denom := Point(kOneOne); unless you want to draw with scaling factors

MoveTo(pt.h,pt.v);
DrawString(s);

This is for the pleasureof your eyes only — in practice, you would probably
first look at the metrics, and then decide where and how to draw the string!

advA := FixedPtr(NewPtr(Length(s)* SizeOf(Fixed)));
lsbA := FixedPtr(NewPtr(Length(s)* SizeOf(Fixed)));
bdsA := RectPtr(NewPtr(Length(s)* SizeOf(RectH);

Please, check for NIL pointers here!
err := OutlineNetrics(Length(s),@s(1),numer,denorn,yMax,yMin,advA,lsbA,

bdsA);
advance := 0;
FOR I := 1 TO Length(s) DO { for each character

BEGIN
Add accumulatedadvanceWldthand leftSideBearingof current glyph
horizontally to starting point.

leftEdge : pt.h Fix2Long(advance+ lsbA);

#26: Fondof FONDs 9 of 12



MacintoshTechnicalNotes

r : bdsA; { The bounding box rectangleis in TrueType coordinates.

temp := r.bottom; { need to flip it “upside down”

r.bottom := - r.top;

r.top := — temp;

OffsetRect(r, leftEdge,pt.v);

FrameRect(r); { This is the glyph’s bounding box.

advance := advance -- advA;

“Advance” is Fixed, to avoid accumulation of rounding errors.

Now, bump pointers for next glyph.

bdsA := RectPtr(ord4(bdsA)+ SizeOf(Rect));

advA := FixedPtr(ord4(advA) + SizeOf(Fixed));

lsbA : FixedPtr(ord4(isbA) SizeOf(Fixed));

END;
DisposPtr(Ptr(advA))
DisposPtr(Ptr (isbA)

DisposPtr(Ptr (bdsA)

END; { DrawBoxedString

OutlineMetricsexistsbecausemanydevelopersneedpixel-preciseinformationon placement
and boundingboxes,often on a character-by-characterbasis. Unfortunately,there is no similar

facility for text drawing with bitmap fonts. Worse, undercertain circumstances,italicized or
shadowed(or both) bitmap fonts are sometimespoorly clipped, particularly for scaledsizes.
Cosmeticworkaroundsincludeaddinga spacecharacterto stringsdrawnin italic. You might also
draw the text off-screenfirst (in orderto determinethe boundingbox of the black pixels) anduse

CopyBits to copy the text onto the screen—butusing CopyBits for text is usually bad for
printing.

Theexistingdocumentationon the FMOutput andglobal width tablestructures(InsideMacintosh
Volume I, page227 and Volume IV, page41) suggestsit’s possibleto devisea routine for
determining a fairly precise text bounding box for bitmap fonts. The procedurebelow,

BitmapTextBoundingBox,is a first attempt.It assumesthatTrueTypeis unavailable,or that

the IsOutline call returned FALSE for thecurrentport settings.While the returnedbounding

box is not always“tight,” be careful beforemodifying the algorithm and shrinking the resulting

boundingbox—bitmapfontsjust don’t containenoughpreciseinformationfor an exactbounding

box, anddifferentbitmapfonts anddifferentsizesmay requiredifferent adjustments.

PROCEDURE TextBoundingBox(s: Str255; nurner,denom:Point; VAR box: Rect);

C ON ST
FMgrOutRec = $998; { FMOutRec starts here in low memory

tabFont = 1024;

global width table offset for font record handle, see IM IV—41

TYPE

FontRecPtr ‘TontRec;

VAR
hScale,vScale: Fixed;

err, intWidth, kernAdjust: Integer;

xy: Point;

info: Fontlnfo; ( only for StdTxMeas; we’ll use FontMetrics

fm: FMetrlcRec; { see Inside Macintcsh, IV—32

fmOut: FMOutput;

h: Handle;

BEGIN

intWidth : StdTxMeas(ord(s0),s,numer,denon,info);

calls FMSwapFont and everything -

StdTxMeas returns possibly modified scaling factors numer, denom

hScale := FixRatio(numer.h,denom.h);

10 of 12 #26: Fond of FONDs



DeveloperTechnicalSupport May 1992

vScale FixRatio(numer.v,denom.v);
These are the scaling factors QuickDraw uses
in “stretching” the available characterbitmaps

fmOut := FMOutPtr(FMgrOuttecV’;
has been filled by the most recent FMSwapFont,
implicitly calied by StdTxMeas

SetRect(box,O,— info.ascent,intWidth,info.descent);
bounding box for unscaledplain text

IF (italic IN the?ort.txFace)AND (fmOut.ltalic <> 0) THEN BEGIN
the following is heuristics
box.right box.right -f (info.ascent + info.descent— 1) *

fmOut.italic DIV 16;
FontMetrics(fm)
HLock(fm.WTabHandle); ( We’ll point to global WidthTable.
h := Handle(LongPtr(ord4(fm.WTabHandle)-1- tabFont));

Be sure it’s a handle to a ‘NFNT’ or ‘FONT’
kernAdjust : FontRecPtr(h)’.kernMax;
OffsetRect(bcx, — kernAdjusr,0);
HUnlock (fm.WTabHandie)

END;
IF (bold IN thePort’.txFace) AND (fnmOut.bold <> 0) THEN

box.right box.right fr.Out.bcld — fmOut.extra;
IF (outline IN thePort.txFace)THEN InsetRect(box, — 1, — 1);
IF (shadow IN thePort.txFace)AND (fmOut.shadow<> 0) THEN BEGIN

IF fmOut.shadow> 3 THEN fmOut.shadow := 3;
box.right box.right + fmOut.shadow;
box.bottom box.borcom + fmOut.shadow;
InsetRect(bnx, — 1, - 1);

END;
Now scale the box (more or less) as QuickDraw would do.
Note that some of the adjustmentsare based on trial and error...

box.top FixRound(FixNIul(Long2Fix(box.top),vScale));
box.left FixRound)FixMul(Long2Fix(box.left),hScale))

— 1;
box.bottom := FixRound(FixMul(Long2Fix(box.bottom),vScale))+ 1;
box.right FixRound(FixMul(Long2Fix(box.right),hScale))+ 1;
GetPen(xy)
OffsetRect(box,xy.h,xy.v)

END;

Conclusion

At the time when the original Font Managerarchitecturewas designed,basedon QuickDraw’s
hard-coded72 dpi resolution,nobodycould anticipatethat someyearslater, the Macintoshwould
be usedto tackle professionaltypesettingprojects.Severaladvancedpagelayout applications
managedto work around the “built-in” limitations, at high developmentcosts, and some
compatibility andperformanceproblems.In manyothercases,however,thoselimitations caused
questionsto DTS andunsatisfyingcompromises.This Note can’t do muchmorethan explain the
stateof affairs; the real solution to the problemsmust come from a redesignedfoundation.
TrueTypeleadsthe way andalreadyfulfills manyof the requirements;everythingelseis getting
closerandcloser.

#26: FondofFONDs 11 of 12



MacintoshTechnicalNotes

Further Reference:
• InsideMacintosh,Volume I, Chapter7, TheFontManager
• InsideMacintosh,Volume IV, Chapter5, TheFontManager
• InsideMacintosh,Volume V, Chapter9, TheFontManager
• InsideMacintosh,Volume VI, Chapter12, TheFontManager
• New & ImprovedInside Macintosh,Imaging: The Font Manager.DeveloperCD Series

disc,pathDeveloperEssentials:TechnicalDocs: InsideMacintoshPreview
• MacintoshTechnicalNote#91,PictureComments—TheRealDeal
• MacintoshTechnicalNote#191, FontNames
• MacintoshTechnicalNote#242,Fontsandthe ScriptManager
• MacintoshTechnicalNote#245,FontFamily Numbers
• Apple LaserWriterReference,Chapter2, Working With Fonts(Addison-Wesley,1988)
• Adobe TechnicalNote #0091 (PostScriptDeveloperSupportGroup), MacintoshFOND

Resources

PostScriptandAdobeareregisteredtrademarksof AdobeSystemsIncorporated.
HelveticaandPalatinoareregisteredtrademarksof LinotypeAG and/orits subsidiaries.

Velocio is not a trademarkof the author.

.
12 of 12 #26: Fondof FONDs



Macintosh
TechnicalNotes

DeveloperTechnicalSupport

#27: MacDraw’s PICT File Format
Revised: August1989Written by: GingerJernigan August1986

This TechnicalNoteformerly describedthe PICT file formatusedby MacDraw®and thepicturecommentstheMacDrawusedto communicatewith theLaserWriterdriver.ChangessinceMarch 1988: Updatedthe CLARIS address.

This Note formerly discussedthePICT file formatusedby MacDraw,which is now publishedbyCLARIS. For information on MacDraw (its specific useof the PICT format) andotherCLARISproducts,contactCLARIS at:

CLARIS Corporation
5201 PatrickHenryDrive
P.O. Box 58168
SantaClara,CA 95052-8168

TechnicalSupport
Telephone: (408) 727-9054
AppleLink: Claris.Tech

CustomerRelations
Telephone:(408) 727-8227
AppleLink: Claris.CR

Inside Macintosh,Volume V—39, Color QuickDraw and TechnicalNote #21, QuickDraw’sInternalPictureFormat,now documentthe PICT file format. TechnicalNote#91,Optimizing fortheLaserWriter—PictureComments,now documentsthepicturecommentswhich theLaserWriterdriver supports.

Further Reference:
• InsideMacintosh,VolumeV—39, ColorQuickDraw
• TechnicalNote#21,QuickDraw’sInternalPictureFormat
• TechnicalNote#91,Optimizingfor theLaserWriter—PictureComments

MacDrawis aregisteredtrademarkof CLARIS Corporation.

#27: MacDraw’sPICT File Format 1 of 1



. . .



Macintosh Technical Notes

#28: Findersand ForeignDrives

Written by: GingerJernigan May 7, 1984
Updated: March 1, 1988

This technicalnotedescribesthe differencesin the way the 1 .lg, 4.1, 5.0 and
newerFinderscommunicatewith foreign (non-Sony)disk drives.

Identifying Foreign Drives

Non-Sonydisk drivescan sendan icon and a descriptivestring to the Finder; this icon is
usedon the desktopto representthe drive. The string is displayedin the “Get Info” box
for any object belongingto that disk. When the Finder noticesa non-Sonydrive in the
VCB queue,it will issue1 or 2 control calls to the disk driver to get the icon and string.

Finder 1 .lg issuesone control call to the driver with csCode= 20 andthe driver returns
the icon ID in csParam.This method has problemsbecausethe icon ID is tied to a
particularsystemfile. So, if the Finder switch-launchesto a different floppy, the foreign
disk’s icon revertsto the Sony’s.

Finders4.1 and newer issuea newercontrol call and, if that fails, they issuethe old
Control call. The new call has csCode= 21, and the driver should return a pointer in
csParam.The pointer points to an ‘ICN#’ followed by a 1 to 31 byte Pascalstring
containingthe descriptor.This implies that the icon and the string must be part of the
disk driver’s code becauseonly the existenceof the driver indicatesthat the disk is
attached.

This has implications about the translationof the driver for overseasmarkets,but the
descriptorwill usually be a trademarkedname which isn’t translated.However, the
driver install programcould be maderesponsiblefor inserting the translatedname into
the driver.

Drivers should respondto both control calls if compatibility with both Findersis desired.

Formatting Foreign Drives

When the userchoosesthe EraseDisk option in the Finder, a non-Sonydriver needsto
know that this has happenedso it can format the disk. Finder 4.1 and newernotify the
driver that the drive needsto be formattedand verified. They first issuea Control call to
the driver with the csCode= 6 to tell the disk driver to format the drive. Thenthey issuea
Control call with a csCode= 5 to tell the driver to verify the drive.

TechnicalNote #28 page 1 of 2 Findersand Foreign Drives



Other Nifty Things to Know About

Finders4.1 and neweralso permit the userto drag any online disk to the trashcan. The

Finder will clean up the disk state, issuean Eject call followed by an Unmount call to

the disk and then, an event loop later, reclaim all the memory. This meansany

program/accessoryusedto mount volumesshouldreconcileits private data,menus,etc.

to the currentstateof the VCB queue.TheseFindersalso notice if a volume disappears

and will clean up safely. But, becauseof a quirk in timing, a mount managercannot

unmountone volume then mount anotherimmediately;it must wait for the Finderto loop

aroundand clean up the first disk before it noticesthe second.(It should havecleaned

up old onesbefore it noticesnew ones,but it doesn’t.)

Finders5.0 and newerallow you to drag the startupdisk to the trash; Finder 4.1 just

ignoredyou. Finders5.0 and newertakethe volume offline as if you had chosenEject.

.

TechnicalNote #28 page 2 of 2 Findersand Foreign Drives



Macintosh Technical Notes

#29: ResourcesContainedin the DesktopFile

Seealso: The Finder Interface

Written by: GingerJernigan May 7, 1985
Modified by: GingerJernigan December2, 1985
Updated: March 1, 1988

This technicalnotedescribesthe resourcesfound in the Desktopfile. Note:
Don’t baseanything critical on the format of the Desktopfile. AppleShare
alreadyusesanotherscheme;AppleSharevolumesdon’t haveDesktopfiles.
The format of this file can,andprobablywill, changein the future.

The Desktopfile containsalmostthe sameresourcesfor both the MacintoshFile System
(MFS) and the Hierarchical File System (HFS). This technical note describesthe
resourcesfound in both. This information is for reading only. This means your
applicationcan read it but it should NEVER write out information of its own, becausethe
Finder, aswell as MacintoshDeveloperTechnicalSupport,won’t like it.

The Desktopis a resourcefile which containsthe folder information on an MFS volume,
the “Get Info” comments,the applicationbundles,‘FREE’s and ‘ICN#’s, and information
concerningthe whereaboutsof applicationson an HFS disk. Everything except the
commentsare preloadedwhen the desktopis opened,making it easierfor the Finderto
find things.

The contentsof the Desktopfile are describedbelow. The resourcetypesare the same
for both MFS and HFS volumesunlessotherwisestated.

‘APPL’: This resourcetype is usedby the HFS to locateapplications.This is
used by the Finder to locate the right application when a documentis opened.
Each application is identified by the creator, the directory number, and the
applicationname.This is usedonly by HFS.

‘BNDL’: This resourcetype containsa copy of all of the bundlesfor all of the
applicationsthat are eitheron the disk or are the creatorsof documentsthat are on
the disk. This is used by the Finder to find the right icons for documentsand
applications.If you havea documentwhosecreatorthe Finder has not seenyet, it
will not be in the Desktopfile and the default documenticon will be used.

‘FREF’: This containsa copy of all of the FREFsreferencedin the bundles.

TechnicalNote #29 page 1 of 2 ResourcesContainedin the DesktopFile



‘FCMT’: This resource contans all of the “Get Info” comments for

applicationsand documents.On MFS volumesthe ID is a hash of the object’s

name.The hashingalgorithm is as follows:

FUNCTION HashString(str:Str255) : INTEGER;

The ID for the FCMT returned in function result

(SP)+,AO ; get return address

(SP)+,Al ; get string pointer

get string length

accumulateID here

MOVE.B (Al)-f,Dl ; get next char

EOR.B Dl,D2 ; XOR in

ROR.W #l,D2 ; stir things up

BMI.S @1 ; ID must be negative

NEG.W D2

loop until done

until end of string

return the hashedcode

resourceis randomlygeneratedusing UniqueID.

for a file or directory call PBGetCatInfo. The

commentID for a file is kept in ioFlXFndrlnfo. fdComment.The commentID for a

directory is kept in ioDrFndrlnfo.frComment.

‘FOBJ’: This resourcetype containsall of the folder information for an MFS

volume. The format of this resourceis not available. This is only in an MFS

volume’s Desktopfile.

‘ICN#’: This resourcetype containsa copy of all of the ‘ICN#’ resources

referencedin the bundlesand any othersthat may be present.

‘STR’: This is a string that identifies the version of the Finder, but it isn’t

alwayscorrect.

Creators: A resourcewith a type equal to the creatorof eachapplicationwith

a bundle is storedin the Desktopfile for referencepurposesonly. The datastored

in theseresourcesis for the Finder’s useonly.

Be awarethat if a resourceis copiedfrom an applicationresourcefile and thereis an ID

conflict, the Finderwill renumberthe resourcein the Desktopfile.

HashString

MOVE. L

MOVE . L

MOVEQ #O,DO

MOVE.B (A1)+,DO

MOVEQ #O,D2

@2

@1
SUBQ.W #1,DO

BNE.S @2

MOVE

JMP

D2, (SF)

(AO)

For HFS volumes,the ID of the
To find the ID of the comment .

TechnicalNote #29 page 2 of 2 ResourcesContainedin the DesktopFile



Macintosh Technical Notes

#30: Font HeightTables

SeeAlso: The Font Manager
The ResourceManager

Written by: GenePope April 25, 1986
Updated: March 1, 1988

This technicalnote describeshow the Font Manager(exceptin 64K ROMs)
calculatesheighttablesfor fonts andhow you canforce recalculation.

In order to expeditethe processingof fonts, the Font Manager(in anything newerthan
the 64K ROMs) calculatesa heighttable for all of the charactersin a font whenthe font is
first loaded into memory. This height table is then appendedto the end of the font
resourcein memory; if someprogram (such as a font editor) subsequentlysavesthe
font, the height table will be savedwith the font and will not haveto be built again.This
is fine for mostcasesexcept,for example,when the tablesreally shouldbe recalculated,
suchas in a font editor whenthe ascentand/ordescenthavechanged.

The following is an exampleof how to eliminatethe heighttable from a font:

IF (BitAnd(hStrike’”’.fontTyp,$l)=l) THEN BEGIN (We have a height table)
{Truncate the height table)
SetHandleSize(Handle(hStrike) , GetHandleSize(Handle(hStrike)-

(2*(hStrike”.lastChar_hStrike”.firstChar)+3)));
{We no longer have a height table so set the flag to indicate that)
hStrike” .forrnat := BitAnd(hStrike” .fontType,$FFFFFFFE);

END;

In MPWC:

jf ((**hstrike)fontType & Oxi ==l) { /We have a height table*/
/*Truncate the height table*/
SetHandleSize((Handle)hStrike,GetHandleSize((Handle)hStrike)-

(2*((**hStrike) .lastChar_(**hStrike).firstChar)+3));
/*We no longer have a height table so set the flag to indicate that*/
(**hStrike) .fontType = (**hStrike) .fontType & OxFFFFFFFE;

wherehStrike is a handleto the ‘FONT’ or ‘NFNT’ resource(handleto a FontRec).

Note: After the height table has beeneliminated,the modified font should be savedto
disk (with ChangedResourceand WriteResource)and purgedfrom memory (using
ReleaseResource).This is an important step, becausethe Font Managerdoes not
expectothercodeto go behind its back removing height tablesthat it hascalculated.

TechnicalNote #30 page 1 of 1 Font Height Tables



.

.

.



Macintosh
TechnicalNotes

REVI[EW DRAFT

DeveloperTechnicalSupport

#31A: GestaltWaitNextEvent

Revisedby: C.K. Haun <TR> April 1 1992

This TechnicalNotediscussesa new EventManagercall in MacintoshSystem Software.

The ChangingWorld
TheMacintosh operatingenvironmentis changingrapidly. Modularsystem software,dynamically
linked libraries, plugandplay hardware,all addup to aconfusingenvironmentfor the application
programmer.

To dispelthis confusion,it is essentialthatan applicationalwaysknow what featuresareavailable
for its use Theuserexpenencev. ill be greatly enhancedwhen the usercan drop a new system
extensioninto thdrSytmFolderandimmediatelyusetin all apphcauons

To allow this, a newfunct3.on(providedas a systemextensicn)hasbeenaddedto System7 and
later,Gestaltwaitretvent

Thebestway to explainGWNE is to seeit in action. The functionprototypefor GWNE is:

pascalEventReturnStructHandleGestaltWaitNextEvent(EventMaskHandle
tl-ieMask,SleepHard1.e..s1eepValue,GestaltAvaila,eHandle
featuresAvailablaestaJ..tAvailableHandlerninimurnNeeded,GWNECallbackHandle
myCaliBack)

The first thing you’It notices that the mouseregiønpammeteris missing No one could ever
figure this out, soit4sbeendropped

Therearesix new structuresdefined forthis caILJ

The first is the EventReturnStruct.Sinceyou neverknow what features maybe connectedto
your Mac, you canneverbe certainwhateventsyou’ll getback.Also, it is possibleto getmultiple
events simultaneously,dependingon thetypesof devicesandextensionsthe userhasinstalled So
this variablestructurehasbeencreatedto let you know what happenedduring theeventcall.

struct EventReturnStruct
unsignedlong
struct EventRecord2

where EventRecord2is:

struct EventRecord2
unsignedlong
Handle
DateTimeRec
EventRecord2

NumberOfEvents;
**theEvents;

typeOfEvent;
eventData;
eventTime;
**nextEvent;

#31A: GestakWaitNextEvent I of 5



MacintoshTechnicalNotes

When GWNE returns,you will then walk through the linked list of EventRecord2Structures,
examiningtheeventtypeandparsingthedatain theeventDatafield asappropriatefor thatevent.
ThenumberofEventsparameteris availableto quickly determinehow manyeventshaveoccurred.
Since it is possiblefor you to get up to 4294967295eventsper GWNE call (or up to available
memory) it may be appropriateto display a watch cursoror ‘pleasewait’ dialog after returning
from GWNE.

Also pleasenotethateacheventcontainsa DateTimeRecstructure. Ticks arenot enoughfor some
events,for exampleif the SubSpacemanager(seedevelopissue7) is installed,the normalstarting
pointof Jan11904is not adequate,sinceeventspostedmanymillenniaearlieror latermayalsobe
queuedto your machine. Pleaseseethe specificeventsourcedocumentationfor explanationof this
recordfor specificevents.

Thenextnew structureis the EventMaskStruct.This is necessarysincethereis a largeamount
of possibleevents(again,up to 4294967295) that you may be interestedin, and they may have
differentmaskingneeds.

struct EventMaskStruct
unsignedlong typeOfEvent;

Handle eventAcceptPataieters

Handle ventRefueParamete

struct Eventk uct
*:: t:i..

You’ll note that youn r accnor1efusiiigañevent, the contentsof
thesehandlesis determinedby theeventType field.

Warning: You must pass a handle in both eventAcceptParametersand
eventRefusepararneters.Failure to do so may causean event not
intendedfor yourco3nputerto beaccepted

Theold sleepvaluehasalsochanged Ti’e newstructureSiepHidledefinesnot only how long
you’ll sleep,but also if y shouldwakup for anyspecifiedcvnz This gives you muchmore
flexibility to customizeyourapplicationto meetthereal needsofyourcustomers

struct SleepStruct{
unsignedlong typeOfEvent;

Handle eventwakeParameters;

Handle eventStayAsleepParameters;

EventMaskHandle XOREvents;

EventMaskHandle ANDEvents;

EventMaskHandle OREvents;

EventMaskHandle NOTEvents;

struct SleepStruct **nextsleep;

The new sleepstructuregivesyou muchfiner control overwhat you wish to wakeup for. Besides
passingthewakeup parametersandstaysleepingparameters(thedefinition of theseparametersis
determinedby theeventnumber)you alsopasshandlesto the eventsthat mayrelateto the event
you areconcernedabout.

For example,you passa SleepStructfor a k14onitorMovedeventthat specifiesthat you should
only be awakenedif the monitormovedmore that 75 degreesvertically, but stay sleepingif the

2 of 5 #31A: GestaltWaitNextEvent



Developer TechnicalSupport April 1992

moveangle exceeds90 degreesvertical. This may be all that is required,but you may also be
concerned about what caused that to happen. If you pass an event mask for a
kCatJumpedonMontiorasoneof thenEventparameters,thenyou will be wakenedif the75-90
tilt is the resultof the kCatJurnpedOriMontior.If thereare somesimultaneouseventsthat you
don’t careabout,passthemin the NOTEvents. In this case,you may passa kEarthQuakeEvent
mask witha valueof kLessThanRichter4.0 as a parameter. Thiswould indicatethatyou wantto
be wakenedf monitormoved morethat 75 degreesvertically, but staysleepingif the moveangle
exceeds75 degreesverticalandthis wasnot causedby a smallearthquake.

A few experimentswill makethis clear,andyou’ll be gladto havethecontrol you have.

The nextnewparameteris the GestaltAvailableHandle,this will return to you a list of current
systemfeatures. This will allow you to dispatchrapidly to theappropriateroutinewhen the user
addsor deletesa systemfeature.

struct GestaltAvailable
BooJ.ean changed;
Boolean added;
FeatureStruct **addedFeatures;
Boolean removed;
FeatureStruct **removedFeatures;

whereFeatureStructiS

struct FeatireSt,ruct
OSTy:. e1ect;
long response;
OSErr result;
struct FeatureStruct **nextFeature;

The selectoris seI÷explanatory Responseand resultare includedhere,becauseGWNE will
automaticallycall aU Lhe curreulynstaUedGetstaltstounngits call

The next parametertoGWNE i anotbetGaltvaiableHand1eThis recordspecifiesthe
mimmumrequirements yottrapplication,hastobeawakenedagain

While we hope every application is rewrfttento take advantageof every possiblesystem
configuration dynamically,we understandthat therearesomesmallershops wherethis will not be
possiblefor a few monthsafter GWNE goesinto generaluse. For example,theremay be some
applicationsthatwill takea while to reviseto continue workingwhenthe user removesQuickDraw
from the system.

If this is the casefor your application,in this parameterall the featuresthat you needto run in
minimuxnNeeded.

Note: Pleasedo not abuse this feature. Ifyourapplicationistoopickyandnot
readyto handlemanydifferentconfigurations,it is possiblefor you to call GWNE
andneverreturn. Theuserwould be confusedby this.

Thefinal new structureis the GWNECallbackHandle

struct GWNECallbackHandle
Void.Procptr callBack;
FeatureStruct **featuresNeeded;

#31A: GestakWair.NextEvent 3 of 5



MacintoshTechnicalNotes

short minimumCallBackMinutes;

Becauseof thepowerof GWNE , it sometimestakesa longertime to completethan the olderWNE
routine. If you would like to take someperiodicactionduring a GWNE call, passthis structure.
GWNE will call your callBack proc when the amount of minutes specified in
minimumCallBackMinuteshaselapsedif the featureset you definedin featuresNeededis
available.

Cautionary Notes

Obviouslyow is goingto takea little moretime than theolderWaitNextEventcall. Also, GWNE

disablesinterruptsfor the durationof the call to preventnew selectorsand featuresfrom being
addedwhile thecall is in progress.

This shouldnot bea problemfor a well-behavedapplication,if you arecheckingTicks insteadof
incrementinga variableduring interrupttime you will not beaffected

Note: TickCountnow returnsminutes,not sixtiethsof a second.

We havedeterminedthetext.. iting applicationsmayexperiencedifficulty blinking an insertion
point if the userhas a. greatmany featuresinstalled We cannotfix this in current System
Software,but all new hardwareprojectswall bedesignedwith .a ‘LCl) Stiutter’ over the display,
cycling onceevery 1 3ecoads Thxs will simulatetheeffectofa bl.mkmgcursorby blinking the
wholescreenregularly.

Determining if GWNE is available

At this writing, GWNE is designedto be a systemextension,andthereareno plansto incorporateit
in coresystemsoftware Incoporaungit in thecoresoftwarewauldiimit its effectiveness

This meansthat determinmits availability is problematic. ‘You mustcall GWNE to determineif
GWNE is available We recommendthe following code,

II Prior to calling’G, copy all RAM to’thsk to allow recovery if call fails

CopyMachineRAMToDiskO; 1* your routine */

II Install a bus error handler. This will point to the code immediatly after

// the GWNE call
InstaliMyBusError0;

/1 Call GWNE

myEvts=GestaltWaitNextEvent(myMaskHandle,mySleepaandle,returnedFeatureSet,mini

ntuxnFeaturesNeeded,callBackHandle);
if (didBusError)

II this flag will be set by your bus error handler. If it is set,thenGWNE is

/1 not currently installed. Reload memory from disk

CopyDisklmageBackToRAMo; 1* your routine /

CallWaitNextEvent0; 7/ default to calling WNE

4 of 5 #31A: GestaitWaitNextEvent



DeveloperTechnicalSupport April 1992

NOTE: You cannotassumethat GWNE will neverbe availableif it was not availableonetime.
Theusermay install or removeit at any time, so you mustwrite your eventioop in this
fashion.

Conclusion:

GestaitWaitNextEventanswersthe prayersof developers,and the needsof users. It givesa well
defmed,consistentinterfaceto a fluid environment.

Obviously, existing applicationswill needsomerewriting to becomefully GWNE aware. We
expectincorporationwill takeup to two weeks,andre-writing yourcodeto be ‘any featureaware’
may takeslightly longer. However,it will be worth theeffort.

Further Reference:
InsideMacintosh,Volume VII-XXIII, PossibleEventCodesReferences

#31A: GesgakWaitNextEvent 5 of 5



.



Macintosh Technical Notes

#32: ReservedResourceTypes

See: The ResourceManager

Written by: ScottKnaster May 13, 1985
Updated: March 1, 1988

Your applicationsand deskaccessoriescan createtheir own resourcetypes. To avoid
using type nameswhich havebeenor will be usedin the system,Apple hasreservedall
resourcetype nameswhich consistentirely of spaces($20), lower-caseletters ($61
through$7A), and “international”characters(greaterthan$7F).

In addition Apple has reserveda numberof resourcetypes which contain upper-case
letters and the “#“ character.For a list of theseresourcetypes, seeThe Resource
ManagerChapterof InsideMacintosh(startingwith Volume

TechnicalNote #32 page 1 of 1 ReservedResourceTypes



.

.

.



Macintosh Technical Notes

#33: lmageWriterII PaperMotion

Written by: GingerJernigan April 30, 1986
Updated: March 1, 1988

The purposeof this technicalnote is to answerthe many questionsasked
aboutwhy the papermovestheway it doeson the lmageWriterII.

Many people have asked why the paper is rolled backward at the beginning of a
Macintoshprint job on the ImageWriterII. First, note that this only happenswith pin-feed
paper(i.e. not with hand-feedor the sheet-feeder)and only at the beginningof a job.

It is not a bug, and it is not maliciousprogramming.It is simply that usersare told in the
manualto load pin-feed paperwith the top edgeat the pinch-rollers,making it easyto
rip off the printed page(s)without wrecking the paperthat is still in the printer or having
to roll the paperup anddown manually.At the end of every job, the softwaremakessure
that the paperis left in this position, leaving the print-head roughly an inch from the
edge. If something is to be printed higher than that, the paper has to be rolled
backwards.

As you are probablyaware,the “printable rectangle”(rPage)reportedto the application
by the print codebegins1/2 inch from the top edge,not one inch. The reasonfor that is
that we want a documentto print exactly the sameway whetheryou are printing on the
lmageWriter I or II. On the lmageWriter I, the paperstartswith the print-head1/2 inch
from the top edge,so the top of rPageis at that position for both printers.

There is no way to eliminate the reverse-feedaction, becausethe userwould have to
load the papera different way AND the softwarewould haveto know that this wasdone.

Incidentally, in addition to the papermotion describedabove,there is also the “burp.”This is a 1/8-inch motion backand forth to takeup the slop in the printer’s gear-train,It isneededon the old-model printer, and there is debateaboutwhetheror not it’s neededon ALL ImageWriterus, or only some,or none. The burp has been in and out of the
ImageWriterII codein variousreleases;right now it’s in.

TechnicalNote #33 page 1 of 1 lmageWriterII PaperMotion



. .



Macintosh Technical Notes

#34: User Items in Dialogs

0

Seealso: InsideMacintosh,The Dialog Manager

Written by:
Updated:
Revisedby:

Bryan Stearns

Jim Reekes

May29, 1985
March 1, 1988
October1, 1988

The Dialog Managerdoesnot go into detail about how to manageuser
itemsin dialogs;this TechnicalNote describesthe process.
Changessince March 1, 1988: Added MPW C 3.0 code, addeda
SetPortcall to the Pascalexample,andnotedthe necessityandmeaning

of enableditems.

To usea userItem with the Dialog Manager,you mustdefine a dialog, load the dialog
and install your userltem,and respondto eventswhich relateto your userltem. If
your applicationwantsto receivemouseclicks in the userltem,then you mustsetthe
item to enabled.

Defining a Dialog Box with a useritem

You should define the dialog box in your resourcefile as follows. Note that it is
definedas invisible, sincewe haveto play with the userltembeforewe candraw it.

resource ‘DLOG (1001)
(100, 100,300, 400),
dBoxproc, invisible, nocoAway, OxO,
1001,
“Test Dialog”

resource DITL (1001)

(160, 190, 180, 280),
button { enabled, “OX” };

(104, 144, 120, 296),
userltem { enabled

/* type/ID for box */
1* rectangle for window */
/ note it is invisible */

/* matching item list */

/* rectangle for button */
I an OK button */
1* rectangle for item */

a user item! */

Loading and Preparingto Show the Dialog Box

Before we can actuallyshowthe dialog box to the user,we needtwo supportroutines.
The Dialog Manager calls the first procedurewheneverwe need to draw our
userltem. You should install it (as shown below) after calling _GetNewDialogbut
beforecalling _ShowWindow. This first proceduresimply drawsthe userltem.

TechnicalNote #34 page1 of 4 UserItemsin Dialogs



In MPW Pascal:

PROCEDURE MyDraw(theoialog: DialogPtr; theltem: INTEGER);

VAR
iType : INTEGER; (returned item type)

jBox : Rect; (returnedbounds rect)

iHdl : Handle; (returneditem handle)

BEGIN
GetDltem(theoialog,theltem,iType,iHdl,iBox); (get the box)

FillRect(iBox,ltGray); (fill with light gray)

FrameRect(iBox); (frame it)

END; (MyDraw)

In MPWC 3.0:

pascalvoid MyDraw (theoialog,theltem)

DialogPtr theoialog;

short mt theltem;

short mt lType; /*returned item type*/

Rect iBox; /*returned bounds rect*/

Handle illdl; /*returned item handle*/

GetDltem(theDlalog,theltem,&iType,&iHdl,&isox);/*get the box*/

FillRect(&iBox,qd.ltGray); /*fill with light gray*/

FrameRect(&iBox); /*frame it*/

/*MyDraw*/

The other necessaryprocedureis a filter procedure(filterProc) that the Dialog

Managercalls whenever_ModalDialog receivesan event (this only applieswhen

calling ModalDialog; modelessdialogs are covered below). The default

filterProc looks for key-down and auto-keyeventsand simulatespressingthe OK

button (or whateverelseis item 1) if the userhaspressedeitherthe Return key or the

Enter key. To supporta userltem,the filterProc must handle eventsfor any

userltemitems in the dialog in addition to performingthe default filterProc tasks.

The following short filterProcsupportsthesetypesof items;whenthe userclicks in

the userltem,the filterProc inverts it.

In MPW Pascal:

FUNCTION MyFilter(theDialog: DialogPtr; VAR theEvent: EventRecord;

VAR itemHit: INTEGER): BOOLEAN;

CONST
enterKey = 3;

returnKey = 13;

VAR
mouseLoc : Point; (we’ll play wI mouse)

key : SignedByte; (for enter/return)

iBox : Rect; (returnedboundsrect)

iHdl : Handle; (returneditem handle)

iType, itemHit : INTEGER; (returneditem and type)

BEGIN
SetPort(theDialog);

MyFllter := FALSE; (assumenot our event)

TechnicalNote #34 page2 of 4 UserItemsin Dialogs



CASE theEvent.whatOF (which event?)
keyDown,autoKey BEGIN (he hit a key)

key SignedByte(event.message);(get keycode)
IF (key = enterKey) OR (key returnKey ) THEN BEGIN

MyFilter TRUE; (we handled it)
itemHit 1; (he hit the 1st item)

END; (test CR or Enter)
END; (keydown)
mouseDown: BEGIN (he clicked)

mouseLoc := theEvent.where; (get the mouse posn)
GlobalToLocal(mouseLoc); (convert to local)
GetDltem(theDialog,2,iType,iHdl,iBox); (get our box)
IF PtlnRect(mouseLoc,iBox)THEN BEGIN (he hit our item)

InvertRect(iBox);
MyFilter := TRUE; (we handled it)
iternHit 2; (he hit the userltem}

END; (if he hit our userltem)
END; (mousedown)

END; (event case)
END; {MyFilter)

In MPWC3.O:

pascal Boolean MyFilter (theDialog,theEvent,itemHit)
DialogPtr theDialog;
EventRecord *theEvent;
short mt *itemHit;

#define enterKey 3; /*the enter key*/
Idefine returnKey 13; /*the return key*/

char key; /*for enter/return*/
short mt iType; /*returned item type*/
Rect iBox; /*returned boundsrect*/
Handle iHdl; /*returned item handle*/
Point mouseLoc; /*well play w/ mouse*/

SetPort(theDialog);
switch (theEvent—>what) /*which event?*/

case keyDown:
case autoKey: /*he hit a key*/

key = theEvent—’message;/*get ascii code*/
if ((key == enterKey) (key == returnKey))

/*he hit CR or Enter*/
*itemHit = 1; /*he hit the 1st item*/
return(true); /*we handled it*/

/*he hit CR or enter*/
break; /* case keydown, case autoKey *1

case mouseDown: /*he clicked*/
mouseLoc = theEvent—>where; /*get the mouse posn*/
GlobalToLocal(&mouseLoc); /*convert to local*/
GetDltem(theDialog,2,&iType,&iHdl,&iBox); /*get our box*/
if (PtlnRect(mouseLoc,&iBox))

/*he hit our item*/
InvertRect(&iBox);
*itemHit = 2; /*he hit the userltem*/
return(true); /*we handled it*/

/*if he hit our userltem*/
break; /*case mouseDown *1

} /*event switch*/
return(false);/ we’re still here, so return false

(we didnt handle the event) */
/*MyFilter*/

TechnicalNote #34 page3 of 4 UserItemsin Dialogs



Invoking the Dialog Box

When we needthis dialog box, we load it into memoryasfollows:

In MPW Pascal:

PROCEDURE DoOurDialog;

VAR
myDialog : DialogPtr; {the dialog pointer)

iType, itemHit : INTEGER; (returned item type)

iBox : Rect; (returnedboundsRect)

iHdl : Handle; (returneditem Handle)

BEGIN
myDialog := GetNewDialog(lOOl,nil,POINTER(—l)); (get the box)

GetDltem(myDialog,2,iType,iHdl,iBox); (2 is the item number)

SetDltem(rnyDialog,2,iType, @myDraw, iBox); (install draw proc)

ShowWindow(theDialog); (make it visible)

REPEAT

ModalDialog(tMyFilter, itemHit ); (let dialog manager run it)

UNTIL itemHit = 1; (until he hits ok.)

DisposDialog(myDialog); (throw it away)

END; (DoourDialog)

In MPWC3.O:

void DoOurDialog()

DialogPtr myDialog; /*the dialog pointer*/

short mt iType; /*returned item type*/

short mt itemHit; /*retUrned from ModalDialog*/

Rect iBox; /*returned boundsRect*/

Handle illdl; /*returned item Handle*/

myDialog = GetNewDialog(100l,nil,(WindowPtr)—l); /*get the box*/

GetDltem(myDialog,2,&iType,&iHdl,&iBox); /*2 is the item number*/

SetDltem(myDialog,2,iType,MyDraw,&iBox); /*install draw proc*/

ShowWindow(myDialog); /*make it visible*/

while (itemHit != 1) ModalDialog(MyFilter, &itemHit);

DisposDialog(myDialog); /*throw it away*/

/*DoourDialog*/

Using useritemItems with ModelessDialogs

If you are using userlternitems in modelessdialog box, the Dialog Managerwill call
the draw procedurewhen _Dialogselectreceivesan updateevent for the dialog
box. Whenthe userclicks on your userltemand it is enabled,_DialogSelectwill
return TRUE. The itemHit will be equalto the item numberof your userltem. Your
codecanthen handlethis like the mouse-downeventcasein the exampleabove.

0
TechnicalNote #34 page4 of 4 UserItemsin Dialogs



Macintosh Technical Notes i
#35: DrawPictureProblem

Written by: Mark Baumwell June19, 1986
Updated: March 1, 1988

This note formerly describeda problemwith DrawPicturethat occurredonly
on 64K ROM machines.Informationspecificto 64K ROM machineshasbeendeletedfrom MacintoshTechnicalNotesfor reasonsof clarity.

TechnicalNote #35 page 1 of 1 DrawPictureProblem



.

.

.



Macintosh Technical Notes

#36: Drive QueueElements

Seealso: The File Manager
The Device Manager

Written by: Bryan Stearns June12, 1985
Updated: March 1, 1988

This noteexpandson InsideMacintosh’sdefinition of the drive queue,which
is given in the File Managerchapter.

As shown in Inside Macintosh,a drive queueelementhasthe following structure:

DrvQE1 = RECORD

qLink: QElemPtr; (next queue entry)
qType: INTEGER; (queue type)
dQt)rive: INTEGER; {drive number)
dQRefNum: INTEGER; {driver referencenumber)
dQFSID: INTEGER; (file-systemidentifier)
dQDrvSz: INTEGER; (number of logical blocks on drive)
dQDrvSz2: INTEGER; (additional field to handle large drive size)

END;

Note that dQDrvSz2 is only used if qType is 1. In this case,dQDrvSz2 containsthehigh-orderword of the size, and dQDrvSzcontainsthe low-order word.

Inside Macintoshalso mentionsfour bytesof flags that precedeachdrive queueentry.How aretheseflags accessed?The flags begin 4 bytesbeforethe addresspointedto by
the DrvQElPtr. In assemblylanguage,accessingthis isn’t a problem:

MOVE.L -4(AO),DO ;AO = DrvQElPtr; get drive queue flags

If you’re using Pascal,it’s a little more complicated.You can get to the flags with thisroutine:

FUNCTION DriveFlags(aDQEPtr:DrvQElPtr): LONGINT;

VAR

flagsPtr : ‘LONGINT; (we’ll point at drive queue flags with this}

BEGIN

(subtract 4 from the DrvQElPtr, and get the LONGINT there)
flagsPtr := POINTER(ORD4(aDQEPtr) - 4);
DriveFlags := flagsPtr;

END;

TechnicalNote #36 page 1 of 3 Drive QueueElements



From MPW C, you can use:

long DriveFlags(aDQEPtr)

DrvQElPtr aDQEPtr;

/ DriveFlags */

return(*((long *)aDQEptr
— 1)); 1* coerce flagsPtr to a (long *)

so that subtracting1 from it

will back us up 4 bytes */

/ DriveFlags /

Creating New Drives

To add a drive to the drive queue,assembly-languageprogrammerscan use the

function defined below. It takes two parameters:the driver referencenumber of the

driver which is to “own” this drive, and the size of the new drive in blocks. It returnsthe

drive numbercreated.It is vital that you not hard-codethe drive number; if the userhas

installedother non-standarddrives in the queue,the drive numberyou’re expectingmay

already be taken. (Note that the examplefunction below arbitratesto find an unused

drive number,taking care of this problem for you. Also, note that this function doesn’t

mount the new volume; your codeshouldtake careof that, calling the Disk Initialization

Packageto reformatthe volume if necessary).

AddNyDrive PROC EXPORT

;FUNCTION AddNyDrive(drvSize: LONGINT; drvrRef: INTEGER): INTEGER;

;Add a drive to the drive queue. Returns the new drive number, or a negative

;error code (from trying to allocate the memory for the queue element)

DQESize EQU 18 ;size of a drive queue element

;We use a constanthere becausethe number in SysEqu.adoesn’t take into

;account the flags LONGINT before the element, or the size word at the end.

StackFrame RECORD {link},DECR

result DS.W 1 ;function result

params EQU *

drvSize DS.L 1 ;drive size parameter

drvrRef DS.W 1 ;drive refNum parameter

paramSize EQU params_*

return DS.L 1 ;return address

link DS.L 1 ;savedvalue of A6 from LINK

block DS.B ioQElSize ;parameterblock for call to MountVol

linkSize EQU *

ENDR

WITH StackFrame ;use the offsets declaredabove

LINK A6,#linkSize ;createstack frame

;searchexisting drive queue for an unusednumber

LEA DrvQHdr,AO ;get the drive queue header

MOVEQ #4,DO ;start with drive number 4

TechnicalNote #36 page 2 of 3 Drive QueueElements



CheckDrvNum
MOVE.L qHead(AO),Al

CheckDrv

ADDQ.W #l,DO
BRA.S CheckDrvNum

;start with first drive

;bump to next possibledrive number
;try the new number

GotDrvNum

;we got a good number (in DO.W), set it aside

G0tDQE

MOVE.W DO,result(A6) ;return it to the user

;get room for the new DQE

;f ill out the DQE

MOVE.L #$80000,(AO)+ ;flags: non-ejectable;bump past flags

#l,qType(AO) ;qType of 1 means we do use dQDrvSz2
dQFSID(AO) ;“local file system”
drvSize(A6),dQDrvSz2(AO) ;high word of number of blocks
drvSize+2(A6),dQDrvSz(AO) ;low word of number of blocks

;call AddDrive

FinishUp

MOVE.W result(A6) ,DO
SWAP DO
MOVE.W drvrRef(A6) ,DO
AddDrive

;get the drive number back
;put it in the high word
;move the driver refNum in the low word
;add this drive to the drive queue

UNLK A6 ;get rid of stack frame
MOVE.L (SP)+,AO ;get return address
ADDQ #paramSize,SP ;get rid of parameters
JMP (AO) ;back to caller

ENDPROC

NextDrvNum

CMP.W dqDrive(A1),DO ;does this drive already have our number?
BEQ.S NextDrvNum ;yep, bump the number and try again.
CMP.L A1,qTail(AO) ;no, are we at the end of the queue?
BEQ.S GotDrvNum ;if yes, our number’s unique! Go use it.
MOVE.L qLink(Al),Al ;point to next queue element
BRA.S CheckDrv ;go check it.

;this drive number is taken, pick another

MOVEQ #DQESize,DO ;size of drive queue element, adjusted
sys ;get memory for it

BEQ.S GotDQE ;no error...continue
MOVE.W DO,result(A6) ;couldn’t get the memory! return error
BRA.S FinishUp ;and exit

MOVE . W
CLR.W
MOVE . W
MOVE . W

TechnicalNote #36 page 3 of3 Drive QueueElements



.

.



Macintosh Technical Notes

#37: Differentiating BetweenLogic Boards

See: TechnicalNote #1 29—SysEnvirons

Written by: Mark Baumwell June19, 1986
Updated: March 1, 1988

Earlier versionsof this note are obsoletedby existenceof SysEnvirons,
which is documentedin TechnicalNote #129.

TechnicalNote #37 page 1 of 1 Differentiating BetweenLogic Boards



. .



Macintosh Technical Notes

#38: The ROM Debugger

Written by: Louella Pizzuti June20, 1986
Updated: March 1, 1988

The debuggerin ROM (not presenton the Macintosh 128, Macintosh512, or Macintosh
XL) recognizesthe following commands:

PC [expr] (programcounter)

Typing c on a line by itself displaysthe programcounter.Typing c 50000 setsthe
programcounterto$50000.

SM [address [number(s)]] (setmemory)

Typing SM 011 a line by itself displaysthe next 96 bytesof memory.Typing SM 50000 will
display memorystarting at $50000.Typing SM 50000 4849 2054 6865 7265 2120 will
set memorystarting at $50000to $4849...Subsequentlyhitting Return will increment
the display a screenat a time.

DM [address] (display memory)

Typing DM on a line by itself displaysthe next 96 bytesof memory.Typing DM 50000will
display memory at $50000.Subsequentlyhitting Return will incrementthe display a
screenat a time.

SR [expr] (statusregister)

Typing SR on a line by itself displaysthe statusregister.Typing SR 2004 setsthe status
registerto $2004.

TD (total display)

Displaysmemory at the “magic” location $3FFcS0,which containsthe currentvaluesof
the registers.The registersare displayedin the following order: D0—D7, A0-A7, PC, SR.

G [address) (go)

Executesinstructionsstarting at address.If G is typed on a line by itself, execution
beginsat the addressindicatedby the programcounter.

Note: If you want to exit to the shell, you just needto type: SM 0 A9F4, then G 0

Note: If you crashinto the debuggerand the systemhangs,try turning off your modem.

TechnicalNote #38 page 1 of 1 The ROM Debugger



. . .



Macintosh Technical Notes

#39: SegmentLoaderPatch

Written by: RussDaniels August 1, 1985
Bryan Stearns

Modified by: Jim Friedlander November15, 1986
Updated: March 1, 1988

This note formerly describeda patch to the SegmentLoaderfor 64K ROM
machines.Information specificto 64K ROM machineshasbeendeletedfrom
MacintoshTechnicalNotesfor reasonsof clarity.

TechnicalNote #39 page 1 of 1 SegmentLoader Patch



. .



Macintosh Technical Notes

#40: FinderFlags

Seealso: The File Manager

Written by: Jim Friedlander June16, 1986
Modified by: Jim Friedlander March 2, 1987
Updated: March 1, 1988

This revision correctsthe meaningsof bits 6 and7, which were interchangedin the olderversionof this technicalnote. ResEditusesthesebits incorrectlyin versionsolder than 1.2.

The Finderkeepsandusesa seriesof file information flags for eachfile. Theseflags arelocated in the fdFlags field (a word at offset $28 into an HParamBlockRec)of the
ioFlFndrlnfo record of a parameterblock. They may changewith newerversionsofthe Finder. Finders5.4 and newerassignthe following meaningsto the flags:

Bit Meaning
0 Set if file/folder is on the desktop(Finder5.0 and later)
1 bFOwnAppl (usedinternally)
2 reserved(currently unused)
3 reserved(currently unused)
4 bFNever(neverSwitchLaunch)(not implemented)
5 bFAlways (always SwitchLaunch)
6 Set if file is a shareableapplication
7 reserved(usedby System)
8 Inited (seenby Finder)
9 Changed(usedinternally by Finder)

10 Busy (copiedfrom File Systembusy bit)
11 NoCopy (not usedin 5.0 and later, formerly called BOZO)
1 2 System(set if file is a systemfile)
13 HasBundle
14 Invisible
15 Locked

TechnicalNote #40 page 1 of 1 FinderFlags



. . .



Macintosh
TechnicalNotes

DeveloperTechnica’Support

#41: Drawing Into an Off-ScreenBitmap
Revisedby: JonZap & ForrestTanaka June1990
Written by: Jim Friedlander& GingerJernigan July 1985

This TechnicalNoteprovidesan exampleof creatingan off-screenbitmap,drawing to it, and then
copyingfrom it to the screen.
Changessince April 1990: Clarified the sectionon window updateswith off-screenbitmaps
to explicitly limit theseupdatesto your own windows.

Thefollowing is an exampleof creatinganddrawingto an off-screenbitmap,thencopyingfrom it
to an on-screenwindow. We supplythis examplein both MPW PascalandC.

MPW Pascal

First, let’s look at a generalpurposefunction to createan off-screenbitmap. This functioncreates
the GrafPorton the heap. You could also createit on the stack and passthe uninitialized
structureto a function similar to this one.

FUNCTION CreateOffscreeoBitEap(VARnewcffscreen:GrafPtr;inBounds:Rect( : BOOEAN;

VAR

savePort : GrafPtr;
newport : GrafPtr;

BEGIN
GetPort(savePort); (need this to restore thePort after OpenPort changesit}

newPort := GrafPtr(NewPtr(sizeof(GrafPor-t))); {allocate the GrafPort}
IF MemError <> noErr THEN BEGIN

CreateOtfscreenBitMap: false; (failed to allocate it}
EXIT (CreateOffscreenBitMap)

END;

the OpenPort call does the following
allocatesspace for visRgn (set to screenBits.bouods)and clicRgn (set wide open)
sets portBits to screer.Bits
sets portRect to screenBits.bounds
etc. (see IN 1—163,164)
side effect: does a SetPort(offScreen)

Openport(newPort)

(make bitmap exactly the size of the bounds that caller supplied)
WITH newPort DO BEGIN {portRect, clipRgn, and visRgn are in newPort(

portRect := inBounds;
RectRgn(clipRgn, inBounds(; (avoid wide—open clipRgn, to be safe}
RectRgn(visRgn, inBounds); (in case inBounds is > screenbounds)

END;

#41: Drawing Into an Off-ScreenBitmap 1 of 6



MacintoshTechnicalNotes

WITH newPort.portBitsDO BEGIN {baseAddr, rowBytes and bounds are in newport)

bounds inBounds;
(rowBytes is size of row it must be rounded up to even number of bytes}

rowBytes := ((inBounds.right — inBounds.ieft + 15) DIV 16) * 2;

(number of bytes in BitMap is rowBytes * number of rows)

(see note at end of Technical Note about using NewHandie rather than NewPtr)

baseAddr := NewPtr(rowBytes * LONGINT(inBounds.bottom— inBounds.top)

END;
IF MemError <> noErr THEN BEGIN (see if we had enough room for the bits)

SetPort(savePort)
ClosePort(newPort); ( dump the visRgn and ciipRgn

DisposPtr(Ptr(newPortH; ( dump the GrafPort}

CreateOffscreenBitMap false;

END
ELSE BEGIN

since the bits are just memory, let’s erasethem before we start

EraseRect(inBounds); (OpenPort did a SetPort(newPort)

newOffscreen newport;

SetPort(savePort);
CreateOffscreenBitNap:= true;

END;

END;

Hereis theprocedureto get rid of an off-screenbitmapcreatedby the previousfunction:

PROCEDJRE DestroyOffscreenBicNac(oldOffscreen: Graf?tr) ;

BEGIN

ClosePort(oldOffscreeri); dump the viskgn and ciipRgn

DisposPtr(oldOffscreeri.pcrtBits.baseAddr); { dump the bits

DispcsPrr(Ptr(oldOffscreen)); dump the port

END;

Now that you know how to createanddestroyan off-screenbitmap, let’s go throughthe motions
of usingone. First, let’s definea few thingsto makethe NewWindowcall a little clearer.

CONST
klsVisible = true;
kNoGoAway = false;
kMakeFrontWindow = —1;

rnyString = ‘The EYE; (string to display)

Here’sthe body of the testcode:

VAR
offscreen : GrafPtr; (our off—screen bitmap)

ovalRect : Rect; (used for example drawing)

mywBounds : Rect; (for creatInG window)

OSRect : Rect; {portRect and bounds tox off—screen bitmap)

myWindow : WindowPtr;

BEGIN

InitToolbox; (exercise ieft to the reader)

myWBounds screenBits.bounds; ( size of main screen

InsetRect(myWBounds,50,50); make it fit better

myWindow := NewWindow(NIL, myWBounds, ‘Test Window, klsVisible,

noGrowDocProc, WindowPtr (kNakeFrontNindow), kNoGoAway, 0);

IF NOT CreateOffscreenBitMap(cffscreen,myWinccw.ocrtNect)ThEN BEGN

SysBeep(l);

ExitToShell;

END;

2 of 6 #41: Drawing Into an Off-ScreenBitmap



DeveloperTechnicalSupport June1990

Example drawing to our oft—screen bitmap
SetPort(offscreen);
OSRect := offscreen.portRect; { offscreenbitmap’s local coordinaterect
ovalRect OSRect;
FillOval(ovalRect, black);
InsetRect(ovalRect,1, 20);
FillOval (ovalRect, white)
InsetRect(ovalRect,40, 1);
FillOval (ovalRect, black);
WITH ovaiRect DO

MoveTo((left+right—StringWidth(myString))DIV 2, (top+bottom—12) DIV 2);
TextMode(srcXor);
Drawstring(myString)

copy from the off—screen bitmap to the on—screenwindow. Note that in this
case the source and destinationrects are the same size and both cover the
entire area. These rects are allowed to be portions of the source and/or
destinationand do not have to be the same size. If they are not the same size
then CopyBits scalesthe image accordingly

SetPort(myWindow)
CopyBits(offscreen”.portBits,myWindow.portBits,

offscreen.portRect, myWindow .portRect, srcCopy, NIL)

DestroyOffscreenBitMap(offscreen); (remove the evidence)

WHILE NOT Button DO; (give user a chanceto see the results)
END.

MPWC

First, let’s look at a generalpurposefunction to createan off-screenbitmap. This function creates
the GrafPorton the heap. You could also createit on the stack and passthe uninitialized
structureto a function similar to this one.

Boolean CreaoeOffscreenBitMap(GrafPtr‘newOffscreen, Rect ‘lnBounds)

GrafPtr savePort;
CrafPtr newPcrt;

GetPort(&saveport); /* need this to restorethePort after OpenPort */

newPort (GrafPtr) NewPtr(sizeof(GrafPort)) ; /* allocate the grafPort /
if (MemError() noErr)

return false; /* failed to allocate the off—screen port */

the call to OpenPort does the following .

allocatesspace for visRgn (set to screen3its.oounds)ano clipPgn (set wide open)
sets portEits to screenBits
sets portRect to screenBits.bounds
etc. (see IN 1—163,164)
side effect: does a SetPort(&offScreen)

OpenPort(newPort)
/* make bitmap the size of the bounds that caller supplied */

newPort—>portRect= *in3ounds;
newPort—>portBits.boends = *inBounds;
RectRgn(newPort—>clipRgn,inBounds); /* avoid wide—open ciipRgn, to be safe /
RectRgn(newPort->visRgn,inBounds); / in case newBounds is > screen bounos */

/* rowBytes is size of row, it must be rounded up to an even number of bytes */
newPort—>portBits.rowBytes= ((inBounds—>right — lnBounds—>left + 15) >> 4) << 1;

#41: Drawing Into an Off-ScreenBitmap 3 of 6



MacintoshTechnicalNotes

7* number of bytes in BirYap is rowByres nunber of rows
7* see notes at end of Technical Note about using Newhandie rather than NewPtr */

newPort—>portBits.baseAddr
NewPtr(newPort—>portBits.rowBytes* (long) (inBounds—>bottom— inBounds—>top))

if (MemError() !noErr) ( 7* check to see if we had enough room for the bits */

SetPort(savePort)
ClosePort(newPort); 7* dump the visRgn and clipRgn *7

DisposPtr((Ptr)newPort);7* dump the GrafPort *7

return false; 7* tell caller we failed *7

/ since the bits are just memory, lets clear them before we start *7

EraseRect(inBounds); /* OpenPort did a SetPort(newPcrt)so we are Ok /
*newOffscreen = newport;

SetPort(savePort)

return true; 7* tell caller we succeeded! *7

Here is the function to get rid of an off-screenbitmapcreatedby the previousfunction:

void DestroyOffscreenBitMap(GrafPtroldOffscreen)

ClosePort(oldOffscreen); /* dump the visRgn and clipRgn *7

DisposPtr(oldOffscreen—>portBjts.baseAddr); 7* dump the bits *7

DisposPtr((Ptr)oldOffscreen); 7* dump the port *7

Now thatyou know how to createanddestroyan off-screenbitmap, let’s go throughthe motions
of usingone. First, let’s definea few things to makethe NewWindowcall a little clearer.

#define klsVisibie true

#define kNoGoAway false
#define kNoWindowStorageDL

#define kFrontWindow ) (WindowPtr) —1L)

Here’sthe bodyof the testcode:

main ()

char* myString “\pThe EYE”; 7* string to display *7

GrafPtr offscreen; /* our off—screen bitmap *7

Rect ovalRect; 7* used for example drawing *7

Rect myWBounds; 7* for creating window *7

Rect OSRect; 7* pcrtRect ano bounds for off—screen bitmap*/

WindowPtr myWindow;

InitToolbcxO; /* exercise for the reader */

ryWBounds = qd.screenBits.bounds;7* size of main screen

InsetRect(&mywBounds,50,50); / make it fit better /

myWindow = Newwindow(kNoWindowstorage,&myWBounds, “\pTest Window”, klsVislble,

noGrow0ocproc, kFrontWindow, kN000Away, 0);

if (!CreateOffscreenBitMap(&offscreen,&mywindow->portRect))

SysBeep(l);

ExitToShell() ;

I
4 of 6 #41: Drawing Into an Off-ScreenBitmap



DeveloperTechnical Support June1990

/* Example drawing to our off—screen biEmap/

SetPort(off screen>
OSRect = offscreen—>portRect; 1* offscreenbitmaps local coordinaterect */

ovalRect = OSRect;
FillOval (&ovalRect, qd.black)
InsetRect(&ovalRect,1, 20);
FillOval(&ovalRect, qd.white)

InsetRect(&ovalRect,40, 1);
FillOval(&ovalRect, qd.black)
MoveTo((ovalRect.left+ ovalRect.right — StringWidth)myString)) >> 1,

(ovalRect.top+ ovalRect.bottom— 12) >> 1);
TextMode(srcXor);
Drawstring(myString)

1* copy from the off—screen bitmap to the on—screenwindow. Note that in this

case the source and destinationrects are the same size and both cover the

entire area. These rects are allowed to be portions of the source and/or

destinationand do not have to be the same size. If they are not the same size

then _CopyBits scalesthe image accordingly.

SetPort(myWindow)
CopyBits(&offscreen—>portBits,&(*myWlndow) .porthits,

&offscreen—>portRect, & (*mywindow) .portRect, srcCopy, OL)

DestroyOffscreenBitMap)offscreen); / dump the off—screen bitmap */

while (!Button()); /* give user a chance to see our work of art */

Comments

In the examplecode,the bits of the BitMap structure,which are pointed to by the baseAddr
field, areallocatedby a NewPtrcall. If your off-screenbitmap is closeto the sizeof the screen,
then the amountof memoryneededfor the bits canbe quite large (on the orderof 20K for the
MacintoshSE or 128K for a large screen). This is quite a lot of memoryto lock down in your
heapandit caneasilyleadto fragmentationif you intendto keepthe off-screenbitmap aroundfor
any lengthof time. Onealternativethat lessensthis problemis to get the bitsvia NewHandleso
the Memory Managercanmovethemwhennecessary.To implementthis approach,you needto
keep the handleseparatefrom the GrafPort (for example,in a structurethat combinesa
GrafPortanda Handle). Whenyou want to usethe off-screenbitmap you would then lock
the handleandput the dereferencedhandle intothe baseAddrfield. Whenyou arenot using the
off-screenbitmapyou can thenunlock it.

This exampledoesnot demonstrateoneof the more typicalusesof off-screenbitmaps,which is to
preservethe contents ofwindows so that after a temporary windowor dialog box obscurespartof
your windowsand is then dismissed,you can quickly handlethe resultingupdateeventswithout
recreatingall of the intermediatedrawingcommands.

Make sureyou only restorethepixels within the content regionsof your own windowsin casethe
temporarywindow partly obscureswindows belongingto other applicationsor to the desktop.
Another applicationcould changethe contentsof its windows while they are behind your
temporarywindow, so you cannotsimply restoreall the pixels that werebehind the temporary
window becausethat would restorethe old contentsof the otherapplication’swindows. Instead,
you could keepkeepan off-screen bitmapfor eachof your windows and then restorethem by
copying eachbit map intothe correspondingwindow’s portswhen theyget their updateevents.

An alternatemethodis to makea singleoff-screenbitmapthat is as largeas the temporarywindow
and a region thatis the union of the contentregionsof your windows. Before you display the

#41: Drawing Into an Off-ScreenBitmap 5 of 6



MacintoshTechnicalNotes

temporary window,copy the screeninto the off-screenbit mapusingthe regionasa mask. After
the temporary windowis dismissed,restorethe obscuredareaby copying fromthe off-screenbit
map intoa copyof theWindow Managerport, andusethe regionas a mask. If the regionhas the
propershape andlocation,it prevents_CopyBits from drawingoutsideof the contentregionsof
your windows. SeeTechnicalNote #194, WMgrPortability for details aboutdrawing across
windows.

In somecasesit canbejust as fast andconvenientto simply definea picture(PICT) andthendraw
it into your window when necessary.Thereare cases,however,suchas text rotation,whereit is
advantageousto do thedrawingoff the screen,manipulatethe bit image,andthen copy the result
to the visible window (thus avoiding the dangersinherentin writing directly to the screen). In
addition, this technique reducesflicker, becauseall of the drawingdoneoff the screenappearson
the screenat once.

It is alsoimportantto realizethat, if you planon usingthepre-ColorQuickDraweight-colormodel,
an off-screenbitmaplosesany color informationandyou do notseeyour colorson a systemthat is
capableof displaying them. In this caseyou shouldeither use a PICT to save the drawing
informationor check forthe presenceof Color QuickDrawand,when it is present,usea PixMap

insteadof a BitMap and the color toolbox calls (Inside Macintosh,Volume V) insteadof the
standardQuickDrawcalls (InsideMacintosh, VolumeI).

You mayalsowant to refer to the OffScreenlibrary (DTS SampleCode#15) which providesboth
high- and low-level off-screenbitmap support forthe 128K and later ROMs. TheOffSample
application(DTS SampleCode#16) demonstratesthe useof this library.

Further Reference:
• InsideMacintosh,VolumesI & IV, QuickDraw
• InsideMacintosh,Volume V, Color QuickDraw
• TechnicalNote#120, DrawingInto an Off-ScreenPixel Map
• TechnicalNote #194,WMgrPortability
• DTS MacintoshSampleCode#15, OffScreen& #16, OffSample

I
6 of 6 #41: Drawing Into an Off-ScreenBitmap



Macintosh Technical Notes

#42: PascalRoutinesPassedby Pointer

Seealso: MacintoshMemory Management:An Introduction

Written by: ScottKnaster July 22, 1985
Updated: March 1, 1988

Routinespassedby pointer are used in many placesin conjunction with Macintoshsystemroutines.For example,filter proceduresfor modaldialogsare passedby pointer,as are controls’ action procedures(when calling TrackControl),and I/O completion
routines.

If you’re using MPW Pascal,the syntaxis usually

partCode := TrackControl(theControl,startPt, @MyProc)

whereMyProc is the procedurepassedby pointer (using the @ symbol).

Becauseof the way that MPW Pascal(and some other compilers) constructstackframes, any procedureor function passedby pointer must not have its declarationnestedwithin anotherprocedureor function. If its declarationis nested,the programwillcrash,probably with an illegal instruction error. The following exampledemonstratesthis:

PROGRAM CertainDeath;

PROCEDURE Cailoialog;

VAR

x : INTEGER;

FUNCTION MyFilter(theDialog: DialogPtr; VAR theEvent: EventRecord;
VAR itemHit: INTEGER): Boolean;

(note that MyFilter’s declarationis nestedwithin CallDialog}

BEGIN {MyFilter)
{body of MyFilter)

END; {MyFilter}

BEGIN {CallDialog}
ModalDialog(@MyFilter,iteml-Iit) 1< will crash here}

END; {CallDialog}

BEGIN {main program)
CaliDialog;

END.

TechnicalNote #42 page 1 of 1 PascalRoutinesPassedby Pointer



. . .



Macintosh Technical Notes

#43: Calling LoadSeg

Seealso: The SegmentLoader

Written by: GenePope October15, 1985
Updated: March 1, 1988

Earlierversionsof this notedescribeda way to call the LoadSegtrap, which is
used internally by the SegmentLoader. We no longer recommendcalling
LoadSegdirectly.

TechnicalNote #43 page 1 of 1 Calling LoadSeg



. . .



Macintosh Technical Notes

#44: HFS Compatibility

Seealso: The File Manager

Written by: Jim Friedlander October9, 1985
Modified by: ScottKnaster December5, 1985

Jim Friedlander
Updated: March 1, 1988

This technical note tells you how to make sure that your applicationsrun
underthe HierarchicalFile System(H ES).

The Hierarchical File System (HFS) provides fast, efficient managementof larger
volumesthan the original Macintosh File System(MFS). Since HFS is hierarchical,HFS
folders havea meaningdifferent from MFS folders. In MFS, a folder hasonly graphical
significance—it is only usedby the Finder as a meansof visually grouping files. The
MFS directory structureis actually flat (all files are at the ‘root’ level). Under HFS, a
folder is a directorythat can containfiles and otherdirectories.

A folder is accessedby useof a WDRefNum (Working Directory referencenumber).Calls
that return a vRefNumwhen running underMFS may return a WDRefNUm when running
underHFS. You may usea WDRefNumwherevera vRefNummay be used.

In order to provide for compatibility with softwarewritten for MFS, the HFS calls that
open files searchboth the default directory and the directory that containsthe System
and the Finder (HFS marks this last directory so it alwaysknows where to look for the
Systemandthe Finder).

Your goal shouldbe to write programsthat are file systemindependent.Your programs
should not only be able to accessfiles on othervolumes,but also files that are in other
directories.Accomplishing this is not difficult—most applicationsthat were written for
MFS work correctly under HFS. If you find that your current applicationsdo not run
correctly underHFS, you shouldcheckto seeif you are doing any of the following five
things:

Are you using StandardFile?

This is very importantto ensurethat your applicationwill run correctly underHFS. HFS
usesan extendedStandardFile, which allows the userto selectfrom files in different
directories.This increasedfunctionality was implementedwithout changing Standard
File’s externalspecification—theonly differenceis that SFReply. vRefNumcan now be
a WDRefNum. Pleasenote that using StandardFile’s dialog hook and filter procs or
addingcontrolsof your own will not causecompatibility problemswith HFS.

TechnicalNote #44 page 1 of 2 HFS Compatibility Issues



Existing applicationsthat use StandardFile properly run without modification under
HFS. Applicationsthat take the SFReply. vRefNum and convertthat to a volume name,
then appendit to SFReply.fName (as in #2 below) do not function correctly under
HFS—the user can only open files in the root directory. If you call Open with
SFReply.vRefNumand SE’Reply.fName,everythingwill work correctly. Remember,
SFReply.vRefNummay be a WDRefNum. Using StandardFile will virtually guarantee
that your applicationwill be compatiblewith MFS, HFS, and future file systems.

Are you concatenatingvolume namesto file names,i.e. using file
namesof the form VOLUME:fileName?

Applicationsthat do this do not work correctly underHFS (in fact, they do not even run
correctly underMFS). Insteadof this, usea vRefNum to accessa volume or a directory.
Fully qualified pathnames(such as volume:folderl:folder2:filename)work
correctly, but we don’t recommendthat you use them. Pleasedon’t ever make a user
type in a full pathname!

Are you searchingdirectoriesfor files using a loop suchas
FOR index:= 1 to ioVwrnFls DO

where ioVIrnP1s was returnedfrom a PBGetvinfo call?

This techniqueshould not be used. Instead,use repeatedcalls to PBGetFInfo using
ioFDir Index until fnfErr is returned.Indexedcalls to PBGetFInfo will return files in
the directoryspecifiedby the vRefNum that you put in the parameterblock.

Are you assumingthat a vRefNum will actually refer to a volume?

A vRefNum can now be a WDRefNurn. A WORefNum indicateswhich working directory
(folder) a file is in, not which volumethe file is on. Don’t think of a vRefNum asa way to
accessa volume,but ratherasa meansof telling the file systemwhereto find a file.

Are you walking through the VCB queue?

You should let us do the walking for you. Using indexedcalls to PBGetVInfo will allow
you to get information aboutany mountedvolume. You shouldn’t walk through the VCB
queuebecauseit changedfor HFS and might changein the future. The routinesthat we
supply will correctly accessinformation in the VCB queue.

Are you using the file system’s“ID” bit? (assemblylanguageonly)

InsideMacintoshdescribesbit 9 of the trap word asthe immediatebit. In fact, settingthis
bit under MFS did not work as documented;it did not have the desired effect of
bypassingthe file I/O queue.Under HFS, this bit is used; it distinguishesHFS varieties
of calls from MFS varieties.For example,the PBOpencall hasthis bit clear;PBHOpenhas
it set. Therefore,you must be sure that your file systemcalls do not usethis bit as the
immediatebit.

TechnicalNote #44 page 2 of 2 HFS CompatibthtyIssues



Macintosh Technical Notes

#45: InsideMacintoshQuick Reference

Compiledby: Jim Friedlander August2, 1985
Updated: March 1, 1988

This noteformerly listed the trapsfrom InsideMacintoshVolumesI-Ill. Better
referencesarenow availableelsewhere.

TechnicalNote #45 page 1 of 1 InsideMacintosh Reference



.

.

.



Macintosh Technical Notes

#46: SeparateResourceFiles

Seealso: The ResourceManager

Written by: Bryan Stearns October16, 1985
Updated: March 1, 1988

During application development,you use a resourcecompiler (RMaker or Rez) to
convert a resourcedefinition file into an executableapplication. You rarely change
anything but your CODE resourcesduring development,and the resourcecompiler
spendsa lot of time compiling other resourceswhich havenot changedsincethey were
originally created.

To save time, somedevelopershave adoptedthe techniqueof storing all of these
“static” resourcesin a separateresourcefile. This file should be placedon the same
volume asyour application;when your applicationstartsup, useOpenResFileto open
the separatefile. This will causethe resourcemap for the separatefile to be searched
before the normal application resourcefile’s map (which now containsmostly CODE
resources,along with any brand-newresourcesstill being tested).

This will have little or no effect on the rest of your program.Any time that a resourceis
needed,both resourcefiles will be searchedautomatically so you don’t need to
changeeachGetResourcecall. (Actually, having the extra resourcefile open has a
minor impact on memory management,and usesone more file-control block; unless
you’re using a lot of openfiles at once,or are running at the limits of availablememory
without segmentation,this shouldn’t affect you.)

Once your application is close to being finished, you can use ResEditto move all the
resourcesback into the main applicationfile, and removethe extraOpenResFileat the
beginning of your application.You should do this for any major release(alpha, beta,
and any other ‘heavy-testing’ releases).Other minor modifications(such as fine-tuning
dialog box item positions)may also be donewith ResEditat this time.

The only catch is that you must be careful if your applicationaddsresourcesto its own
resourcefile. Most applicationsdo not do this (it’s not really a great idea, and causes
problemswith file servers).

TechnicalNote #46 page 1 of 1 SeparateResourceFiles



. . .



Macintosh Technical Notes

#47: CustomizingStandardFile

Seealso: The StandardFile Package

Written by: Jim Friedlander October11, 1985
Updated: March 1, 1988

This notecontainsan exampleprogramthat demonstrateshow SFPGetFi1e
canbe customizedusingthe dialog hook andfile filter functions.

SFPGetFi1e’Sdialog hook function and file filter function enableyou to customize
SFPGetFlie’S behaviorto fit the needsof your application.This technicalnote consists
primarily of a short exampleprogramthat

1) changesthe title of the Openbutton to ‘Myopen’,
2) addstwo radio buttonsso that the usercan chooseto display either text files or

text files andapplications.
3) addsa quit button to the SFPGetF11edialog,

All this is done in a way so as to provide compatibility with the Macintosh File System
(MFS), the Hierarchical File System(HFS) and (hopefully) future systems.If you have
any questionsasyou read,the completesourceof the demo programand the resource
compiler input file is providedat the end of this technicalnote.

Basically, we needto do three things: add our extra controls to the resourcecompiler
input file, write a dialog hook function, and write a file filter function.

Modifying the ResourceCompiler Input File

First we needto define a dialog in our resourcefile. It will be DLOG #128:

CONST myDLOGID = 128;

and it’s Rezdescriptionis:

resource ‘DLOG’ (128, purgeable)
(0, 0, 200, 349},
dBoxProc, invisible, noGoAway,
OxO,
128,
“MyGF”

TechnicalNote #47 page 1 of 12 CustomizingSFPGetFi1e



The abovecoordinates(0 0 200 349) are from the standardStandardFile dialog. If you

needto changethe size of the dialog to accommodatenew controls, changethese

coordinates.Next we needto add a DITL in our resourcefile that is the sameas the

standardHFS DITL #—4000 exceptfor one item. We needto changethe left coordinate

of Userltem#4, or part of the dialog will be hidden if we’re running underMFS:

/* [4] */

/* left coordinatechangedfrom 232 to 252 so program will

work on MFS *1
{39, 252, 59, 347),

Userltem

disabled

None of the other items of the DITL shouldbe changed,so that your programwill remain

as compatibleas possiblewith different versionsof StandardFile. Finally, we needto

addthreeitemsto this D1TL, two radio buttonsandone button (to serveasa quit button)

1* [11] textButton *7

(1, 14, 20, 1421,

RadioButton

enabled,

“Text files only”

7* [12] textAppButton *7

{19, 14, 38, 176),

RadioButton

enabled,

“Text and applications”

/* [13] quitButton *1

(6, 256, 24, 3361,

Button

enabled,

“Quit”

Becausewe’ve addedthree items, we needalso needto changethe item count for the

DITL from 10 to 13. We also includethe following in our resourcefile:

resource ‘STR#’ (256)
{/* array StringArray: 1 elements */

7* [1] */

“MyOpen”

That’s all thereis to modify in the resourcefile.

TechnicalNote #47 page2 of 12 CustomizingSFPGetFile



The Dialog Hook

We will be calling SFPGetFi1easfollows:

SFPGetFi1e (wher, ‘‘, @SFFileFilter, NumFileTypes,
MyFileTypes, @MySFHook, reply, myDLOGID, nil);

Notice that we’re passing@MySFHook to StandardFile. This is the addressof our dialog
hook routine. Our dialog hook is declaredas:

FUNCTION MySFHook(MySFitern: INTEGER; theDialog: DialogPtr) :INTEGER;

A dialog hook routine allows us to seeevery item hit beforestandardfile actson it. This
allows us to handlecontrolsthat aren’t in the standardSFPGetFiie’SDITL or to handle
standardcontrols in non-standardways. The dialog hook in this exampleconsistsof a
casestatementwith MysFitem asthe caseselector.Before SFPGetFlie displays its
dialog, it calls our dialog hook, passingit a —1 asMysFitem. This gives us a chanceto
initialize our controls. Here we will set the textAppButtonto off and the textButton
to on:

GetDltem(theDialog,textAppButton,itemType,itemToChange,itemBox);
SetCtlValue(controll-Iandle(itemToChange),btnOff);
GetDltem(theDialog,textButton,itemType,itemToChange,itemBox);
SetCtlVaiue(controlHandle(itemToChange),btnOn);

and we can alsochangethe title of an existing control. Here’s how we might changethe
title of the Openbutton usinga string that we get from a resourcefile:

GetlndString(buttonTitle,256,1);
If buttonTitle <> ‘‘ then Begin { if we really got the resource)

GetDltem(theDialog,getOpen,itemType,itemToChange,itemBox);
SetCtitle(controlHandle(itemToChange),buttonTitle);

End; {if} {if we didn’t get the resource,don’t change the title

Upon completionof our routine that handlesthe —1, we return a —ito standardfile:

MySFHook:= MySFItem; {pass back the same item we were sent)

We now have a SFPGetFi1edialog displayedthat has a quit button and two radio
buttons(the textOnly button is on, the TextApp button is off). In addition, the standard
Openbutton hasbeenrenamedto MyOpen (or whateverSTR is the first string in STR#
256). This was all done before SFPGetFi1edisplayedthe dialog. Once our hook is
exited, SFPGetFi1edisplaysthe dialog andcalls ModaiDiaiog.

TechnicalNote #47 page3 of 12 CustomizingSFPGetFi1e



When the userclicks on an item in the dialog, our hook is called again. We can then

take appropriateactions,such as highlighting the textButtonand un-highlighting the

textAppButtonif the userclicks on the textButton.At this time, we canalso updatea

global variable (textonly) that we will use in our file filter function to tell us which files

to display. Notice that we can redisplaythe file list by returning a 101 as the result of

MySFHook. (StandardFile for Systemsnewerthan 4.3 will also read the low memory

globals,CurDirStoreand SFSaveDisk,and switch directorieswhen necessaryif a 101

is returnedasthe result. Thus, you can point StandardFile to a new directory, or a new

disk.) For example,whenthe textButtonis hit we turn the textAppButtonoff, turn the

textButton on, update the global variable textOnly, and tell SFPGetFi1eto

redisplaythe list of files the usercanchoosefrom:

if not textOnly then Begin {if textOnly was turned off, turn it on now}

GetDltem(theDialog,textAppButton,itemType,itemToChange,itemBox);

SetCtlValue(controlHandle(itemToChange),btnOff);

GetDltem(theDialog,textButton,itemType,itemToChange,iternBox);

SetCtlValue(controiHandle(itemToChange),btnOn);

textOnly:=TRUE; {toggle our global variable for use in the filter)

MySFHook:= reDrawList;{lO1} {we must tell SF to redraw the list)

End; {if not textOnly)

If our quit button is hit, we can passSF’PGetFlie back the cancelbutton:

MySFHook:= getCancel;

If oneof SFPGetFi1e’Sstandarditems is hit, it is very importantto passthat item backto

SFPGetFi1e

MySFHook:= MySFItem; (pass back the same item we were sent)

The File Filter

Remember,we called SFPGetF11easfollows:

SFPGetFi1e (wher, ‘‘, @SFFileFilter, NumFileTypes,

MyFileTypes, @MySFHook, reply,myDLOGID,nil);

Notice that we’re passing@SFFileFilter to SFPGetF11e.This is the addressof our

file filter routine. A file filter is declaredas:

FUNCTION SFFileFilter (p: ParmBlkptr) : BOOLEAN;

A file filter routine allows us to control which files SFPGetFile will display for the user.

Our file filter is called for every file (of the type(s) specified in the typelist) on an MFS

disk, or for every file (of the type(s)specifiedin the typelist) in the currentdirectory on an

HFS disk. In addition, SFPGetFile displays HFS folders for us automatically.Our file

filter selectswhich files should appearin the dialog by returning FALSE for every file

that shouldbe shownand TRUE for every file that shouldn’t.

TechnicalNote #47 page4 of 12 CustomizingSFPGetFi1e



For example,using our global variable textOnly (which we set in our dialog hook,
remember?):

FUNCTION SFFileFilter(p:parmBlkPtr):boolean;

Begin {SFFileFilter}
SFFileFilter:= TRUE; (Don’t show it —- default)

if textOnly then
if p.ioFlFndrInfo.fdType= ‘TEXT’ then

SFFileFilter:= FALSE (Show TEXT files only}
else Begin
End {dummy else)

else

if (p”.ioFlFndrlnfo.fdType = ‘TEXT’) or
(p’.ioFlFndrInfo.fdType = ‘APPL’) then

SFFileFilter:= FALSE; { show TEXT or APPL files}
End; {SFFileFilter}

SFPGetFlie calls the file filter after it hascalledour dialog hook. Pleaserememberthat
the filter is passedevery file of the typesspecifiedin the typelist (MyFileTypes). If you
want your application to be able to choosefrom all files, passSFPGetFlie a —1 as
numTypes.For information about parametersto SFPGetF11ethat haven’t been
discussedin this technical note, see the StandardFile Packagechapterof Inside
Macintosh.

That’s all there is to it!! Now that you know how to modify SFPGetFiieto suit your
needs,pleasedon’t rush off and load up the dialog window with all kinds of controlsand
text. Pleasemake sure that you adhereto Macintosh interface standards.Similar
techniquescan be usedwith SFGetFI1e,SFPutFileand SEPPutF11e.

The completesourceof the demo program and of the resourcecompiler input file
follows:

TechnicalNote #47 page5 of 12 CustomizingSFPGetFi1e



MPW PascalSource

{$R—}

(Jim Friedlander Macintosh Technical Support 9/30/85)

program SFGetDemo;

USES

MernTypes,

QuickDraw,

OSIntf,

Toollntf,

Packlntf;

{$D+)

CONST

myDLOGID = 128; (ID of our dialog for use with SFPGetFile}

VAR

wher: Point; { where to display dialog

reply: SFReply; { reply record I

textOnly: BOOLEAN; { tells us which files are currently being displayed)

myFileTypes: SFTypetist; { we won’t actually use this

NumFileTypes: integer;

FUNCTION f1ySF1ook(MySFitem:integer; theDialog:DialogPtr): integer;

CONST

textButton 11; (DITL item number of textButton)

textAppButton = 12; (DITL item number of textAppButtOfl}

quitButton = 13; {DITL item number of quitButton)

staylnSF = 0; (if we want to stay in SF after getting an Open hit,

we can pass back a 0 from our hook (not used in

this example)

firstTime = —1; (the first time our hook is called, it is passeda

—1)

(The following line is the key to the whole routine —- the magic 101!!)

reDrawList = 101; (returning 101 as item number will cause the

file list to be recalculated)

btnOn 1; (control value for on)

btnOff = 0; (control value for off)

VAR

itemToChange:Handle; (needed for GetDltem and SetCtlValue)

itemBox:Rect; (needed for GetDltem)

itemType:integer; (needed for GetDltem)

buttonTitle: Str255; (neededfor OetlndString)

Begin {MySFHook}

caseMySFItem of

firstTime: Begin ( before the dialog is drawn, our hook gets called

with a -l (firstTime) as the item so we can change

things like button titles, etc. I

TechnicalNote #47 page6 of 12 CustomizingSFPGetFile



(Here we will set the textAppButton to OFF, the textButton to ON)
GetDltem(theDialog,textAppButton,iternType,itemToChange,itemBox)
SetCtlValue(controlHandle(iternToChange),btnOff) ;
GetDltem(theDialog,textButton,itemType,itemTothange,itemBox);
SetCtlValue(controlHandle(itemToChange),btnOn);

GetlndString(buttonTitle,256, 1);

(get the button title from a resourcefile)
If buttonTitle <> then Begin { if we really got the resource)

GetDltem(theDialog,getOpen,ltemType,itemToChange,itemBox);(get a handle to the

open button)
SetCtitle(controillandle(itemToChange), buttonTitle);

End; (if) (if we cant get the resource, we just wont change
the open button’s title)

MySFHook:= MySFItem; (pass back the same item we were sent)
End; (firstTime)

(Here we will turn the textAppButton OFF, the textButton ON and redraw the list)
textButton: Begin

if not textOnly then Begin
Getoltem(theDialog,textAppButton,itemType,itemToChange,itemBox);
SetCtlValue(controlHandle(itemToChange),btnOff);
GetDltem(theDialog,textButton,itemType,itemToChange,itemBox);
SetctlValue(controlHandle(itemToChange),btnOn) ;
textOnly: =TRUE;
MySFHook:= reDrawList; (we must tell SF to redraw the list)

End; (if not textOnly)
End; (textOniyButton)

(Here we will turn the textButton OFF, the textApp8utton ON and redraw the list)
textAppButton: Begin

if textOnly then Begin
GetDltem(theDialog,TextButton,itemType,iternToChange,itemBox);
SetCtlValue(controlHandle(itemToChanqe),BtnOff);
GetDltem(theDialog,TextAppButton,itemType,itemToChange,itemBox);
SetCtlValue(controlHandle(itemToChange), BtnOn);
TextOnly =FALSE;
MySFHook:= reDrawList; (we must tell SF to redraw the list)

End; (if not textOnly)
End; (textAppButton)

quitButton: MySFHook:= getcancel; (Pass SF back a ‘cancel button’)

{‘!!‘very important H!! We must pass SF’s standard’ item hits back to SF)
otherwise Begin

MySFHook:= MySFItem; { the item hit was one of SF’s standarditems...
End; (otherwise) { so just pass it back)

End; (case)

End; {MySFHook)

—)

TechnicalNote #47 page7 of 12 CustomizingSFPGetFI1e



FUNCTION SFFiieFiiter(p:parmBikPtr):boolean; (general strategy -- check value of global var

textOnly to see which files to display)

Begin {SFFileFilter)

SFFileFilter:= TRUE; (Don’t show it —— default)

if textOnly then

if p.ioFiFndrInfo.fdType= ‘TEXT’ then

SFFileFilter:= FALSE (Show it)

else Begin

End (dummy else)

else

if (p”.ioFlFndrlnfo.fdType = ‘TEXT> or (p’.ioFlFndrInfo.fdType = APPL) then

SFFileFilter:= FALSE; (Show it)

End; (SFFileFilter)

Begin (main program)

InitGraf (@thePort);

InitFonts;

InitWindows;

TEInit;

InitDialogs (nil)

wher.h:=80;

wher.v:=90;

NumFileTypes:= —1; (Display all files)

we don’t need to initialize MyFileTypes, becausewe want to get a chance to filter every file

on the disk in SFFileFilter - we will decide what to show and what not to. If you want to

filter just certain types of files by name, you would set up MyFileTypes and NumFileTypes

accordingly)

repeat

textOnly:= TRUE; {each time SFPGetFile is called, initial display will be text-only

files)

SFPGetFiIe (wher, ‘‘, @SFFileFiiter, NumFileTypes, MyFileTypes, @MySFHook,

reply,myDLOGID,nil);

until reply.good = FALSE;

(until we get a cancel button hit ( or a Quit button —— thanks to our dialog hook

End.

MPW C Source

#inciude <Types.h>

#include <Quickdraw.h>

#include <Resources.h>

linclude <Fonts.h>

#include <Windows.h>

#inciude <Menus.h>

#include <TextEdit.h>

#include <Events.h>

#include <Dialogs.h>

#include <Packages.h>

#include <Files.h>

#include <Controls.h>

#include <ToolUtils.h>

TechnicalNote #47 page8 ot 12 CustomizingSFPGetFiJ.e



/*DITL item number of textButton*/
#define textButton 11

/*DITL item number of textAppButton*/
#define textAppButton 12

/*DITL item number of quitButton*/
Idefine quitButton 13

/*jf we want to stay in SF after getting an Open hit, we can pass back a 0
from our hook (not used in this example) */

#define staylnSF 0

/*the first time our hook is called, it is passeda
#define firstTime -1

/*The following line is the key to the whole routine —— the magic 101!!*/
/*returning 101 as item number will causethe file list to be recalculated*/

rdefine reDrawList 101

/*control value for on/
define btnOn 1

/*control value for off*/

#define btnoff 0

/*resource ID of our DLOG for SFPGetFi1e*/
#define myDLOGID 128

Boolean textOnly; / tells us which files are currently being
displayed*/

main()
/*main program*/

pascal short MySFHookO;
pascal Boolean flFilter;

Point wher; 1* where to display dialog *1
SFReply reply;

/* reply record */

SFTypeList myFileTypes;
/ we won’t actually use this *1

short mt NumFileTypes = —1;

InitGraf (&qd.thePort);
InitFonts0;
FlushEvents(everyEvent, 0);
mitWindows0;
TEInit () ;
InitDialogs(nil)
InitCursor0;

wher.h=80;

wher v=90;

TechnicalNote #47 page9 of 12 CustomizingSFPGetFile



/ we dont need to initialize MyFileTypes, becausewe want to get a chance to filter every

file on the disk in fiFilter — we will decide what to show and what not to. if you want to

filter just certain types of files by name, you would set up MyFileTypes and NurnFileTypes

accordingly*/

do

textOnly= true; /*each time SFPGetFi1eis called, initial display will be

text—only files*/

SFPGetFI1e(&wher, ““,flFilter, NumFileTypes,myFileTypes,MySFHook,&reply,myDLOGID, nil);

}while (reply.good); /*until we get a cancel button hit ( or a Quit button in this case

*1
/ main *1

pascal short MySFHook (MySFItem,theDialog)

short MySFItem;

Dialogptr theDialog;

Handle itemToChange; /*needed for GetDltem and SetCtlValue*/

Rect itemBox; /*needed for GetDltem*/

short itemType; /*needed for GetDltem*/

char buttonTitle(256j; /*needed for GetlndString*/

switch (MySFItem)

case firstTime:
/* before the dialog is drawn, our hook gets called with a —l (firstTime) . . . *1

/ as the item so we can change things like button titles, etc. *1

/*Here we will set the textAppButton to OFF, the textButton to ONI

GetDltem(theDialog,textAppButton,&itemType,&itemToChange,&itemBox);

SetCtlValue(itemToChange,btnOff);

GetDltern(theDialog,textButton,&itemType, &itemToChange,&itemBox);

SetctlValue(itemToChange,btnOn);

GetlndString((char*)buttonTjtle,256,fl;

/*get the button title from a resourcefile*/

if (buttonTitle[O) 0) /* check the length of the p—string to

see if we really got the resource*/

GetDltem(theDialog,getOpen,&itemType, &itemToChange,&itemBox); /*get a

handle to the open button*/

SetCTitle(itemToChange,buttonTitle);

/*jf we cant get the resource, we just wont change the open buttons title*/

return MySFItem; /*pass back the same item we were sent*/

break;

/*Here we will turn the textAppButton OFF, the textButton ON and redraw the list*/

case textButton:

if (!textOnly)

GetDltem(theDialog,textAppButton,&itemType,&itemToChange,&itemBox);

SetCtlValue(itemToChange,btnOff);

GetDltem(theDialog,textButton,&itemType, &itemToChange,&ltemBox);

SetCtlValue(itemToChange,btnOn);

textOnly=true;

return(reDrawList)

/*we must tell SF to redraw the list*/

/*jf !textOnly*/

return MySFItem;

break;

TechnicalNote#47 page 1 Oof 12 CustomizingSFPGetFI1e



/*Here we will turn the textButton OFF, the textAppButton ON and redraw the list*/
case textAppButton:

if (textOnly)

Getoltem(theDialog,textButton,&itemType,&itemToChange,&itemBox);
SetCtlValue(itemToChange,btnOff);
GetDltem(theDialog,textAppButton,&itemType,&itemToChange,&itemBox);
SetCtlValue(itemToChange,btnOn);
textOnlyfalse;
return(reDrawList);

/*we must tell SF to redraw the list*/
/*jf not textOnly*/

return MySFItem; /*pass back the same item we were sent*/
break;

case quitButton

return(getCancel);
/*pass SF back a ‘cancel button*/

/*H!!Hvery important We must pass SF’s ‘standard’ item hits back to SF*/
default:

return(MySFItem); /* the item hit was one of SF’s standarditems... /
/*switch*/

return(MySFItem); 1* return what we got *1
/*MySFH0Ok*/

pascal Boolean flFilter(pb)
FileParam *pb;

/ is this gross or what??? */

return((textOnly) ? ((pb—>ioFlFndrlnfo.fdType) ‘TEXT’)
((pb—>ioFlFndrlnfo.fdType) ‘TEXT’) &&
((pb—>ioFlFndrlnfo.fdType) APPL’));

/*flFjlter*/

RezInput File

#include “types.r”

resource ‘STR#’ (256)

“MyOpen”

resource DLOG’ (128, purgeable)
(0, 0, 200, 349),
dBoxProc,

invisible,

noGoAway,

OxO,

128,

“MyGF”

TechnicalNote #47 page11 of 12 CustomizingSFPGetFi1e



resource DITL’ (128, purgeable)

1* [1) *1

(138, 256, 156, 336),

Button { enabled, “Open” );
/* (2) *7

(1152, 59, 1232, 77),

Button { enabled, “Hidden” );
7* (3) *1

(163, 256, 181, 336),

Button ( enabled, “Cancel” };
7* [4) *7

(39, 252, 59, 347),

Userltem ( disabled };
7* [5] */

(68, 256, 86, 336),

Button ( enabled, “Eject”
7* [6] *1

(93, 256, 111, 336),

Button { enabled, “Drive”
7* (7) *1

(39, 12, 185, 230),

Userltem ( enabled };
1* [8] *7

{39, 229, 185, 245),

Userltem ( enabled );
7* [9) *1

(124, 252, 125, 340),

Userltern { disabled };
/* (10) */

(1044, 20, 1145, 116),

StaticText { disabled, ““

7* [11] *7

(1, 14, 20, 142),

RadioButton ( enabled, “Text files only” H
7* [12) *7

(19, 14, 38, 176),

RadioButton ( enabled, “Text and applications” );
7* [13] *7

(6, 256, 24, 336),

Button ( enabled, “Quit”

.
TechnicalNote#47 page 1 2of 12 CustomizingSFPGetFi1e



Macintosh Technical Notes

#48: Bundles

Seealso: The Finder Interface

Written by: GingerJernigan November1, 1985
Updated: March 1, 1988

This notedescribeswhat a bundleis andhow to createone.

A bundle is a collection of resources.Bundlescan be usedfor a numberof different
purposes,andarecurrentlyusedby the Finder ito tie an icon to a file type, allowing your
applicationor datafile to have its own icon.

How to Createa Bundle

A bundle is a collection of resources.To makea bundlefor finder icons, we needto set
up four typesof resources:an ICN#, an FREF, a creatorSTR and a BNDL.

The ICN# resourcetype is an icon list. Each ICN# resourcecontainsone or more icons,
on after another.For Finder bundle icons, thereare two icons in eachICN#: one for the
icon itself andone for the mask. In our samplebundle,we havetwo file types,eachwith
its own icon. To define the icons for thesefiles we would enterthis into our Rez input file:

resource ‘ICN#’ (732) { 7* first icon: the ID number can be anything */
/* first, the icon */

$“FF FF FF FF” /* each line is 4 bytes (32 bits) */

$“FO 09 CD DD” /* 32 lines total for icon */

$“FF FF FF FF” 7* 32nd line of icon */

/ now, the mask *1
$“FF FF FF FF” 7* 32 lines total for mask
$“FF FF FF FF’

$“FF FF FF FF” / 32nd line of mask*/

resource ‘ICN#’ (733) { / second icon /

$“FF FF FF FF”

$“FF FF FT FF’

TechnicalNote #48 page1 of 3 Bundles



Now that we’ve defined our icons we can set up the FREFs. An FREF is a file type

reference;you needone for eachfile type that has an icon. It ties a file type to a local

icon resourceID. This will be mappedby the BNDL onto an actual resourceID number

of an ICN# resource.Our FREFswill look like this:

resource ‘FREF’ (816) { / file type referencefor application icon */

‘APPL’, 605, /* the type is APPL(ication), the local ID is 605 *1
/* this string should be empty (it is unused) */

resource ‘FREF’ (816) { /* file type referencefor a document icon /

‘TEXT’, 612, /* the type is TEXT, the local ID is 612 */

/* this string should be empty (it is unused) */

The reasonthat you specifythe local ID, ratherthan the actual resourceID of the ICN# is

that the Finderwill copy all of the bundle resourcesinto the Desktopfile and renumber

them to avoid conflicts. This meansthat the actual IDs will change,but the local IDs will

remain the same.

Every application(or other file with a bundle) hasa unique four-charactersignature.The

Finderusesthis to identify an application.The creatorresourcethat containsa single

string, and shouldbe defined like this:

type ‘NINE’ as ‘STR ‘; 1* MINE is the signature/

resource ‘MINE’ (0) { /k the creator resourceID must be 0 */

“MyProgram 1.0 Copyright 1988”

Now for the BNDL resource.The BNDL resourceassociateslocal resourceIDs with

actual resourceIDs, and also tells the Finderwhat file typesexist, and which ICN#s and

FREFsare part of the bundle.The resourcelooks like this:

resource ‘BNDL’ (128) { /‘ the bundle resourceID should be 0 */

‘MINE’, /* signatureof this application */

0, / the creator resourceID (this must be 0) */

‘ICN#’, 7* local resourceID mapping for icons */

605, 732, /* ICN# local ID 605 maps to 732 */

612, 733 /* ICN# local ID 612 maps to 733 */

‘FREF’, /* local resourceID mapping for file type references*/

523, 816, /* FREF local ID 523 maps to 816 */

555, 817 7* FREF local ID 555 maps to 817 */

TechnicalNote #48 page2 of 3 Bundles



When you are in the Finder, your application,type APPL (FREF 816), will be displayed
with icon local ID 605 (from the FREF resource).This is ICN# 732. Files of type TEXT
(FREF 817) createdby your applicationwill be displayedwith icon local ID 612 (from the
FREF resource).This is ICN# 733.

How the Finder Uses Bundles

If a file hasthe bundlebit set,but the bundleisn’t in the Desktopfile, the Finder looks for
a BNDL resource.If the BNDL resourcematchesthe signatureof theapplication,the
Finderthen makesa copy of the bundleand puts it in the Desktopfile. The file is then
displayedwith its associatedicon.

If a file has lost its icon (it’s on a disk without the file containingbundleandthe Desktop
file doesn’tcontain the bundle), then it will be displayedwith the default documenticon
until the Finderencountersa copy of the file that containsthe right bundle. The Finder
then makesa copy of the application’s bundle (renumberingresourcesif necessary)
and placesit in the Desktopfile of that disk.

ProblemsThat May Arise

There are times when you have set up theseresourcetypes properly but the icon is
either the wrong one or it has defaultedto the standardapplication or data file icon.
Therearea numberof possiblereasonsfor this.

If you are using the Macintosh-basedRMaker, the first thing to check is whetherthere
are any extraneousspacesin your resourcecompiler input file. The Macintosh-based
RMakeris very picky aboutextraspaces.

If your icon is defaultingto the standardicon, checkto seethat the bundlebit is set. If the
bundlebit isn’t set , the Finderdoesn’tknow to placethe bundle in the Desktopfile. If it
isn’t in the Desktopfile, the Finderdisplaysthe file with a default icon.

If you changedthe icon and remadethe resourcefile, but the file still hasthe sameold
icon when displayedin the Finder. The old icon is still in the Desktopfile. The Finder
doesn’tknow that you’ve changedit, so it useswhat it has.To get it to usethe new icon
you needto rebuild the Desktopfile. To force the Finderto rebuild the Desktopfile, you
can hold down the Option and Commandkeys on startupor on insertion of the disk in
questionif it isn’t the boot disk. The Finderwill askwhetheror not you want to rebuild the
desktop(meaningthe Desktopfile).

Have a bundleof fun!

TechnicalNote #48 page3 of 3 Bundles



. .



Macintosh Technical Notes

#50: Calling SetResLoad

Seealso: The ResourceManager
TechnicalNote #1—DAsandSystemResources

Written by: Jim Friedlander October25, 1985
Updated: March 1, 1988

Calling SetResLoad(FALSE) can be usefulif you needto get a handleto a resource,
without causingthe resourceto be loadedfrom disk if it isn’t already in memory. This
technique is used in Technical Note #1. SetResLoadchangesthe value of the
low-memoryglobal ResLoad(at location $A5E).

It is very important that your program not leave ResLoadset to FALSE when it exits.
Doing this will causethe systemto rebootor crashwhen it doesa GetResourcecall for
the next codesegmentto be loaded(usually the Finder). The systemwill crashbecause
GetResourcewill not actually load the codefrom disk when ResLoadIS FALSE.

So, makesurethat you call SetResLoad(TRUE) beforeexiting your program.

TechnicalNote #50 page 1 of 1 Calling SetResLoad



.

.



Macintosh Technical Notes

#51: DebuggingWith PurgeMemandCompactMem

Seealso: The Memory Manager

Written by: Jim Friedlander October19, 1985
Updated: March 1, 1988

If you are having problemsfinding bugs like handlesthat aren’t locked down when they
shouldbe, or resourcesthat aren’t therewhen they’re supposedto be, there is a handy
techniquefor forcing theseproblemsto the surface.Every time throughthe main event
loop call:

PurgeMem(MaxSize); {MaxSize = $800000}
size:= CompactMem(MaxSize);

PurgeMemwill purge all purgeableblocks and CompactMemwill rearrangethe heap,
trying to find a contiguousfree block of MaxSize bytes.Obviously, this will move things
aroundquite a bit, so, if thereare any unlockedhandlesthat you havede-referenceci,
you will find out aboutthem very quickly.

Don’t be alarmedwhen you seethe performanceof your programdeterioratedrastically
—it’s becauselots of resourcesare being loadedand purgedevery time through the
main event loop. You might want to havea debuggingmenu item that togglesbetween
glacial and normal executionspeeds.

Pleasebe sureto removethesetwo lines from any codethat you shipH In fact, neither
of thesetwo calls should normally be madefrom your application. They tend to undo
work that hasbeendoneby the Memory and ResourceManagers.

TechnicalNote #51 page1 of 1 PurgeMemandCompactMem



.

.

.



Macintosh
TechnicalNotes

DeveloperTechnicalSupport

#52: Calling LaunchFrom a High-Level Language

Revisedby: Rich Collyer April 1989

Written by: Jim Friedlander November1985

This TechnicalNote formerly discussedcalling _Launchfrom a high-level languagewhich

allowsinline assemblycode.
ChangessinceMarch 1988: Mergedcontentsinto TechnicalNote #126.

This Noteformerly discussedcalling_Launchfrom a high-levellanguage.The informationon

calling _Launchis now containedin TechnicalNote#126,Sub(Launching)Froma High-Level
Language,which alsocoverssublaunchingotherapplications.

#52: Calling _LaunchFrom a High-LevelLanguage 1 of I



. . .



Macintosh Technical Notes i
#53: MoreMastersRevisited

Seealso: The Memory Manager

Written by: Jim Friedlander October28, 1985
Updated: March 1, 1988

MoreMastersshould be called from CODE segment1. The numberof

masterpointers that a program needscan be determinedempirically.
MoreMasterscan be tricked into creating the exact numberof master

pointersdesired.

If you ask Macintoshprogrammerswhen and how many timesMoreMastersshould be

called, you will get a variety of answers,ranging from “four times in the initialization

segment”to “once, anywhere.”As you might suspect,the answeris somewhatdifferent

from eitherof these.

MoreMastersallocatesa block of masterpointers in the current heapzone. In the

applicationheap,a block of masterpointersconsistsof 64 masterpointers;in the system

heap, a block consists of 32 masterpointers.Since master pointer blocks are

non-relocatable,we want to be sureto allocatethem early. The systemwill allocate

one masterpointer block as your program loads. It’s the first object in the application

heap—itssize is $108bytes.

A lot of programmerscall MoreMastersfrom an “initialization” segment,but aswe shall

see,that’s not sucha good idea.The problemoccurswhen we unloadour “initialization”

segmentand it getspurgedfrom memory.

TechnicalNote #53 page 1 of 3 MoreMastersRevisited



The following diagramsof the application heap illustrate what happensif we call
MoreMastersfrom CODE segment2 (MPB standsfor MasterPointerBlock):

Before MoreMasters After MoreMasters After CODE 2 is purged

Free Free
High Heap Heap
Memory Space Space

ODE 2

WMgr Port—$74

CODE 1
Low
Memory MPB $108 ,

non—relocatable locked

Notice that we now have someheapfragmentation—notserious,but it can be avoided
by making all MoreMasterscalls in CODE segment1. BecauseInitWindows creates
the Window ManagerPort (wMgrport), it shouldalso be called from CODE segment1.
Both MoreMastersand InitWindows shouldbe called beforeanotherCODE segment
is loaded, or the non-relocatableobjectsthey allocate will be put above theCODE
segmentand you’ll get fragmentationwhen the CODE segmentis purged. If you want to
call an initialization segmentbefore calling MoreMastersand Initwindows, make
surethat you unloadit beforeyou call either routine.

Now that we know when to call MoreMasters,how many times do we call it? The
answerdependson your application. If you don’t call MoreMastersenoughtimes, the
system will call it when it needs more masterpointers. This can happen at very
inconvenienttimes, causingheapfragmentation.If you call MoreMasterstoo often, you
can be wasting valuable memory. This is preferable,however, to allocating too few
masterpointer blocks!

The numberof times you should call MoreMasterscan be empirically determined.
Onceyour applicationis almostfinished, removeall MoreMasterscalls. Exerciseyour
applicationas completelyas possible,openingwindows, using handles,openingdesk
accessories,etc. You can then go in with a debuggerand see how many times the
systemcalledMoreMasters.You do that by countingthe non-relocatablesof size $1 08.
Due to Memory Managersize correction,the masterpointerblocks can alsohavea size
of $1OC or $110 bytes. You should give yourself about 20% leeway— that is, if the
systemcalledMoreMasters10 times for you, you shouldcall it 12 times. If you’re more
cautious,you mightwant to call MoreMasters15 times.

Free
Heap
Space

ODE 2 Free Heap Space

WMgr Port-$74

‘B— $ 10 8 d—$108

TechnicalNote #53 page 2 ot3 MoreMastersRevisited



Anothertechniquethat can savetime at initialization is to calculatethe numberof master

pointersyou will need,then set the MoreMast files of the heapzone headerto that

number,andthencall MoreMastersonce:

PROCEDURE MyMoreMasters(nuxnMastPtrs: INTEGER);

VAR

oldMoreMast : INTEGER;

zone : THz;

BEGIN
zone : GetZone;
WITH zone” DO BEGIN

oldMoreMast : MoreMast;

MoreMast := nuniMastPtrs;

MoreMasters;

MoreMast := oldNoreMast;

END;

END;

(savedvalue of MoreMast)

(heap zone)

{get the heap zone)

(get the old value of MoreMast)

(put the value we want in the zone header)

(allocate the masterpointers)

(restorethe old value of MoreMast}

In MPW C:

void MyMoreMasters(numMastPtrs)

short nuxuMastPtrs;

MoreMastersQ;
oZone->moreMast

1* MyMoreMasters

/* savedvalue of MoreMast*/
/* heap zone*/

1* MyMoreMasters *1
short oldMoreMast;

THz oZone;

oZone = GetZone;

oldI4oreMast = oZone->moreMast;

oZone—>moreMast= numl4astPtrs;

= oldl’4oreMast;
*1

1* get the heap zone*/

1* get the old value of MoreMast*/

/ put the value we want in the

zone header */

/*allocate the masterpointers*/

/*restore the old value of MoreMast*/

TechnicalNote #53 page 3 of3 MoreMastersRevisited



.

.



Macintosh Technical Notes

#54: Limit to Sizeof Resources

Written by: Jim Friedlander October23, 1985
Updated: March 1, 1988

This note formerly describeda bug in WriteResourceon 64K ROM
machines.Informationspecificto 64K ROM machineshasbeendeletedfrom
MacintoshTechnicalNotesfor reasonsof clarity.

TechnicalNote #54 page1 of 1 Limit to Sizeof Resources



. .



Macintosh Technical Notes

#55: Drawing Icons

Seealso: QuickDraw
Toolbox Utilities

Written by: Jim Friedlander October21, 1985

Updated: March 1, 1988

Using resourcesof type ICON allowsdrawingof icons in srcOrmode. Using

resourcesof type ICN# allows for morevariety when drawing icons.

Thereare two different kinds of resourcesthat contain icons: ICON and ICN#. An ICON

is a 32 by 32 bit imageof an icon and can be drawn using the following Toolbox Utilities

calls:

MylconHndl:= Getlcon(iconlD);

Plotlcon(destRect,iconlD);

While very convenient,this methodonly allows the drawing of icons in SrcOr mode (as

in the MiniFinder). The Finderusesresourcesof type ICN# to draw iconson the desktop.

Becausethe FinderusesICN#s, it candraw icons in a variety of ways.

An ICN# resourceis a list of 32 by 32 bit imagesthat are groupedtogether.Common

conventionhas beento group two 32 by 32 bit imagestogetherin each ICN#. The first

image is the actual icon, the secondimage is the maskfor the icon. To get a handleto

an ICN#, we would usesomethinglike this:

TYPE

iListFlndl = “iListPtr;

iListPtr iListStruct;

iListStruct = record

icon : packedarray[O..311 of Longint;

mask : packedarray[O..31] of Longint;

End; { iListStruct

VAR

myILHndl : iListHndl; (handle to an ICN#}

iBitMap BitMap; (BitMap for the icon)

mBitMap : BitMap; (BitMap for the mask)

MyILHndl:= iListHndl(GetResource(’ICN#’,iconlD));

if MyILMndl = NIL then HandleError; { and exit or whatever is appropriate)

TechnicalNote #55 page1 ot 4 Drawing Icons



Oncewe havea handleto the icons, we needto set up two bitMapsthat we will be using
later in copyBits:

SetRect(icnRect,0,0,32,32);
With iBitMap do Begin

baseAddr:=@MyILHndl” . icon;
rowbytes:= 4;
bounds:= icnRect;

End; {with}
With mBitMap do Begin

baseAddr:=@MyILHnd1’’ .mask;
rowbytes:= 4;
bounds:= icnRect;

End; {with}

Icons can representdesktopobjectsthat are eitherselectedor not. Folderand volume
icons can eitherbe open or not. The object (or the volume it is on) can either be online
or offline. The Finderdrawsicons using all permutationsof open,selectedand online:

Drawing icons as non-openis basically the samefor online and offline volumes. We
needto puncha hole in the desktopfor the icon. This is analogousto punchinga hole in
doughwith an irregularshapedcookie-cutter.We can then sprinkle jimmies* all over the
cookieandthey will only stick in the areathat we punchedout (the mask).We do this by
copyBitsingthe maskonto the desktop(whateverpattern)to our destRect.For non-open,
non-selectedicons:

we usethe SrcBic modeso that we puncha white hole:

SetRect(destRect,left,top,left+32,top+32);
CopyBits(mBitMap,thePort.portBits,icnRect,destRect,SrcBic,NIL);

Then we XOR in the icon:

CopyBits(iBitMap,thePort’.portBits,icnRect,destRect,Srcxor,NIL);

define the icon’s ‘bounds’)

4 * 8 =32)

Non—Open Non—Open Open Open
Non—Selected Selected Non—Selected Selected

.

.

Online IIIIIIIIIIIP
Offline

TechnicalNote #55 page2 of4 Drawing Icons



That’s all there is to drawing an icon as non-Open,non-selected.To draw the icon as

non-open,selected:

we will OR in the mask, causinga mask-shapedBLACK hole to be punchedin the

desktop:

CopyBits(mBitMap,thePort’.portBits,icnRect,destRect,SrcOr,NIL);

Then,asbefore,we XOR in the icon:

CopyBits(iBitMap,thePort.portBits,icnRect,destRect,SrcXOr,NIL);

To draw icons as non-openedfor offline volumes:

we needto do a little more work. We needto XOR a ltGray patterninto the boundsRect

of the icon. We will then punch the hole, draw the icon and then XOR out the ltgray

patternthat doesnot fall inside the mask. So, to draw the icon as offline, non-open,

non-selectedwe would:

GetpenState(OldPen); {save the pen state so we can restore it)

PenMode(patXor);

PenPat(ltGray);

PaintRect(destRect); {paint a ltGray backgroundfor icon)

CopyBits(mBitMap,thePort.portBits,icnRect,destRect,SrcBic,NIL); {punch)

PaintRect(destRect); {XOR out bits outside of the mask, leaving the mask)

{filled with ltGray}

CopyBits(iBitMap,thePort’.portBits,icnRect,destRect,SrcOr,NIL); { OR in

the icon to the ltGray mask)

SetPenState(OldPen); {restore the old pen state)

To draw the icon asoffline, non-open,selected:

we would usea similar approach:

GetPenState(OldPen); { save the pen state so we can restore it}

PenMode(patXor);

PenPat(dkGray); { the icon is selected, so we need dkGray

PaintRect(destRect); { paint a dkGray backgroundfor icon

CopyBits(mBitMap,thePort”.portBits,icnRect,destRect,SrcBic,NIL);{punch}

PaintRect(destRect); {XOR out bits outside of the mask, leaving the mask)

{filled with dkGray}

CopyBits(iBitMap,thePort.portBits,icnRect,destRect,SrcBic,NIL);{BIC the)

{icon to the dkGray mask)

SetPenState(OldPen); {restore the old pen state)

TechnicalNote #55 page3 of 4 Drawing Icons



Drawing the openedicons requiresone lessstep.We don”t haveto CopyBits the icon
in, we just use the mask. Online and offline icons are drawn the sameway. To draw
iconsasopen,selected:

we do the following:

GetPenState(Oldpen); {save the pen state so we can restore it)

PenMode(patXor);
PenPat(dkGray); { the icon is selected,so we need dkGray
PaintRect(destRect); { paint a dkGray backgroundfor icon}
CopyBits(mBitMap,thePort”.portBits,icnRect,destRect,SrcBic,NIL); {punch)
PaintRect(destRect); {XOR out bits outside of the mask, leaving the mask)

{filled with dkGray}
SetPenstate(QldPen); {restore the old pen state}

To draw iconsasopen,non-selected:

.

PenPat(ltGray) the icon is non-selected,so we need ltGray

Thesetechniqueswill work on any background,window-white or desktop-grayand all
patternsin between.Have fun.

* jimmies: little bits of chocolate

we just needto changeone line from above. Insteadof XORing with a dkGray pattern,
we usea ltGray pattern:

.

TechnicalNote #55 page4 of4 Drawing Icons



Macintosh Technical Notes

#56: BreakICTSDeviceDriver EventStructure

Seealso: The Device Manager
Serial Drivers
Zilog Z8030/Z8530SCCSerial CommunicationsController

Technical Manual

Written by: Mark Baumwell December2, 1986
Updated: March 1, 1988

This technicalnotedocumentsthe eventrecordinformationthatgetspassed
whenthe serialdriver postsan eventfor a breaklCTSstatuschange.

The serial driver can be programmedto post a devicedriver eventupon encounteringa
breakstatuschangeor CTS change(via the SerHShakecall). The structureof device
driver events is driver-specific. This technical note documentsthe event record
information that gets passedwhen the serial driver postsa device driver event for a
break/CTSstatuschange.

When the eventis posted,the messagefield of the eventrecordwill be a long word (four
bytes). The most significant byte will contain the value of SCC Read Register0 (see
below for the relevantReadRegister0 values).The next byte will contain the changed
(sincethe last interrupt) bits of the SCC read register0. The lower two bytes (word) will
containthe DCtlRefNurn.

The valuesfor ReadRegister0 areasfollows:

• If a breakoccurred,bit 7 will be set.
• If CTS changed,bit 5 will reflect the stateof the CTS pin (0 meansthe

handshakeline is assertedandthat it is OK to transmit).

We discourageposting theseeventsbecauseinterruptswould be disabledfor a long
time while the event is being posted.However, it is possibleto detecta breakor readthe
value of the CTS line in anotherway. A breakcondition will alwaysterminatea serial
driver input request(but not an output request),and the error breakRecd(—90) will be
returned. (This constantis defined in the SysEqufile.) You could thereforedetecta
breakby checkingthe returnederrorcode.

The stateof the CTS line can be checkedby making a SerStatuscall andcheckingthe
value of the ctsHold flag in the SerStaRecrecord. Seethe Serial Drivers chapterof
Inside Macintoshfor details.

TechnicalNote#56 page1 of 1 Break/CTSDevice Driver EventStructure



.

.



Macintosh Technical Notes

#57: MacintoshPlusOverview

See: InsideMacintoshVolume IV

Written by: ScottKnaster January8, 1986
Updated: March 1, 1988

This notewasoriginally meantasinterim MacintoshPlusdocumentationand
hasbeenreplacedby InsideMacintosh Volume IV, which is more complete
and moreaccurate.

TechnicalNote#57 page1 of 1 MacintoshPlusOverview



. . .



Macintosh Technical Notes

#58: InternationalUtilities Bug

Written by: Jim Friedlander January24, 1986
Updated: March 1, 1988

This note formerly described a bug in System 2.0, which is now
recommendedonly for usewith 64K ROM machines.Information specific to
64K ROM machineshasbeendeletedfrom MacintoshTechnicalNotes for
reasonsof clarity.

TechnicalNote #58 page 1 of 1 InternationalUtilities PackageBugs



. . .



Macintosh Technical Notes i
#59: PicturesandClip Regions

Seealso: QuickDraw

Written by: GingerJernigan January16, 1986
Updated: March 1, 1988

This notedescribesa problemthataffectscreationof QuickDrawpictures.

When a GrafPort is created,the fields in the GrafPortaregiven defaultvalues;one of
theseis the clip region, which is setto the rectangle(—32767,—32767, 32767,32767). If
you createa picture, then call DrawPicturewith a destinationrectanglethat is not the
samesize asthe picFramewithout everchangingthe default clip region, nothing will
be drawn.

When the picture frame is comparedwith the destinationrectangleand the picture is
scaled,the clip region is scaledtoo. In the processof scaling,the clip region you end up
overflows and becomesempty, and your picture doesn’t get drawn. If you call
ClipRect(thePort”.portRect) before you record the picture, the picture will be
drawn correctly. The clipping on the destinationport when playing back the picture is
irrelevant:oncea picture is incorrectly recorded,it is too late.

TechnicalNote #59 Page1 of 1 PicturesandClip Regions



.

.

.



Macintosh Technical Notes

#60: Drawing Charactersinto a Narrow GrafPort

Seealso: QuickDraw

Written by: GingerJernigan January20, 1986
Updated: March 1, 1988

When you draw a characterinto a GrafPort,your programwill die with an
addresserror if the width of the GrafPort is smallerthan the width of the
character.If you checkbeforedrawing the characterto seeif the GrafPort is
wide enough,you can avoid this unfortunatetragedy.

TechnicalNote #60 page 1 of 1 Drawing Charactersinto a Narrow Grafport



. .



Macintosh Technical Notes

#61: GetltemStyleBug

Written by: Jim Friedlander January21, 1986
Updated: March 1, 1988

This noteformerly describeda bug (in GetItemstyle)which occursonly on
64K ROM machines.Information specific to 64K ROM machineshasbeen
deletedfrom MacintoshTechnicalNotesfor reasonsof clarity.

TechnicalNote #61 page 1 of 1 GetltemStyleBug



.

.



Macintosh Technical Notes

#62: Don’t Use ResourceHeaderApplication Bytes

Seealso: The ResourceManager

Written by: Bryan Stearns January23, 1986
Updated: March 1, 1988

The section of the ResourceManagerchapterof Inside Macintoshwhich
describesthe internal format of a resourcefile showsan areaof the resource
headerlabeled “available for application data.” You shouldnot use this
area—itis usedby the ResourceManager.

TechnicalNote #62 page 1 of 1 Don’t Use ResourceHeaderBytes



. .



Macintosh Technical Notes i
#63: WriteResourceBug Patch

Written by: Rick Blair January15, 1986
Jim Friedlander
Bryan Stearns

Modified by: Jim Friedlander March 3, 1986
Updated: March 1, 1988

This note formerly containeda patchto fix a bug in WriteResourceon 64K
ROM machines.Information specificto 64K ROM machineshasbeendeleted
from MacintoshTechnical Notesfor reasonsof clarity.

TechnicalNote #63 page 1 of 1 WriteResourceBug Patch



.

.



Macintosh Technical Notes

#64: lAZNotify

Written by: Jim Friedlander January15, 1986
Modified by: Jim Friedlander August 18, 1986
Updated: March 1, 1988

Previousversionsof this technicalnote recommendeduseof a low memory
hook called IAzNotify. We no longerrecommenduseof IAzNotify, since
the IAZNotify hook is nevercalled underMultiFinder.

TechnicalNote #64 page 1 of 1 IAZNotify



.

.



Macintosh Technical Notes

(3
#65: MacintoshPlus Pinouts

Seealso: MacintoshHardwareReferenceManual

Written by: Mark Baumwell January27, 1986
Modified by: Mark Baumwell March 20, 1986
Updated: March 1, 1988

This note gives pinout descriptionsfor someof the MacintoshPlus portsand
MacintoshPluscablesthataredifferent thanthe Macintosh128K and512K.

Below are pinout descriptionsfor someMacintoshPlus ports andcablesthat aredifferent
than the Macintosh128K and 512K. Note that any unconnectedpins are omitted.

MacintoshPlusPort Pinouts

MacintoshPlusSerial Connectors(Mini DIN-8)

:kor)

Pin Name Description/Notes
1 HSK0 OutputHandshake(from Zilog 8530 DTR pin)
2 HSKi/ExternalClock Input Handshake(CTS) or TRxC (dependson 8530 mode)
3 TxD— TransmitData line
4 Ground
5 RxD— ReceiveData line
6 TxD+ TransmitData line
7 Not connected
8 RxD+ ReceiveDataline; groundthis line to emulateRS232

TechnicalNote#65 page1 of 3 MacintoshPlus Pinouts



MacintoshPlusSCSI Connector(DB-25)

C13 12 11 10 9 8 7 6 5 4 3 2 1 )
(Female
C t ) \ 25 24 23 22 21 20 19 18 17 16 15 14onnecor

Em Name DescriDtion/Notes
I REQ—
2 MSG
3 I/O—
4 RST—
5 ACK
6 BSY—
7 Ground
8 DBO—
9 Ground
10 DB3-
11 DB5—
12 DB6—
13 DB7—
14 Ground
15 C/D—
16 Ground
17 ATN
18 Ground
19 SEL—
20 DBP—
21 DB1—
22 DB2—
23 DB4—
24 Ground
25 TPWR Not connected

.
TechnicalNote #65 page2 of 3 MacintoshPkis Pinouts



MacintoshPlusCablePinouts

Apple SystemPeripheral-8Cable(connectsMacintoshPlusto lmageWriterII
andApple PersonalModem)
(Productpart number:MOl 87)
(Cableassemblypart number:590-0340-A(stampedon cableitself).

...
678

Connector)

(DIN-8) (DIN-8)
1 2
2 1
3 5
4 4
5 3
6 8
7 7
8 6

MacintoshPlusAdapterCable(connectsMacintoshPlus DIN-8 to existing
MacintoshDB-9 cables)
(Apple part number:M0189)
(Cableassemblypart number:590-0341-A(stampedon cableitself).

(DIN-8) Name (DB-9) Notes
1 +12V 6
2 HSK 7
3 TxD— 5
4 Ground 3 Jumperedto DB-9 pin 1 (in DB-9 connector)
5 RxD— 9
6 TxD+ 4
7 no wire
8 RxD+ 8

Ground 1 Jumperedto DB-9 pin 3 (in DB-9 connector)

TechnicalNote#65 page3 of 3 MacintoshPkis Pinouts



.

.

.



Macintosh
TechnicalNotes

DeveloperTechnicalSupport

#66: DeterminingWhich File SystemIs Active
Revisedby: RobertLenoil & Brian Bechtel August 1990
Written by: Jim Friedlander December1985

This TechnicalNotediscusseshow to determinewhich file systema particularvolumeis running.
ChangessinceJune1990: Removedtext aboutIDs $0001-$0016beingAppleSharevolumes;
otherfile systemsusethis rangetoo.

Undercertaincircumstancesit is necessaryto determinewhich file systemis currentlyrunningon a
particularvolume. For example,on a 64K ROM machine,your application(i.e., especiallydisk
recoveryutilities or disk editors,etc.) may needto checkfor MFS versusHFS. Note that this is
usually not necessary,becauseall ROMs, exceptthe original 64K ROMs, includeHFS. If your
applicationonly runson 128K ROMs or newer,you do not needto checkfor HFS versusMFS.
You mayneedto checkif a particularvolumeis in High Sierra,ISO 9660,or audioCD format.

Beforeperformingthesefile systemchecks,be sureto call SysEnvirons,to makesurethe
machineon which you arerunninghasROMs which know aboutthe callsyou need.

To checkfor HFS on 64K ROM machines,checkthe low-memoryglobal FSFCBLen(at location
$3F6). This global is one word in length (two bytes) and is equal to -1 if MFS is activeand a
positivenumber(currently $5E) if HFS is active. From Pascal,the following would performthe
check:

CON ST
FSFCSLen = $3F6; (addressof the low—memory global)

VAR
HFS: ‘INTEGER;

HFS:= POINTER(FSFCBLen);
IF HFS > 0 THEN

(we’re running HFS)
ELSE

(we’re running MFS)
END;

If an applicationdeterminesthat it is runningunderHFS, it shouldnot assumethat all mounted
volumesare HFS. To check individual volumesfor HFS, call PBHGetVInfo and checkthe
directory signature(the ioVSigWordfield of an HParamBlockRec).A directorysignatureof
$D2D7 meansthe volume is an MFS volume, while a directory signatureof $4244meansthe
volumeis an HFS volume.

#66: DeterminingWhich File SystemIs Active 1 of 2



MacintoshTechnicalNotes

To find out if a volume usesa file systemother than HFS or MFS, call PBHGetVInfo and
checkthe file systemID (the iOVFSID field of an HParamBlockRec).A file systemID of
$0000meansthevolumeis eitherHFS or MFS. A file systemID of $4242meansthevolumeis a
High Sierravolume,while a file system11) of $4147is an ISO 9660volume,anda file systemID
of $4A48 is an audioCD volume. AppleShareandotherfile systemsusea dynamictechniqueof
obtainingthe first unusedfile systemID; therefore,low-numberedIDs cannotbe associatedwith
any particularfile system.

Whendealingwith High Sierraand ISO 9660formats,do not assumethat the volumesare CD
ROM discs. Supportfor thesefile systemsis donewith the ExternalFile Systemhook in theFile
Manager,soany block-basedmediacould potentiallybe in theseformats. It is possibleto havea
High Sierraformattedfloppy disk, althoughit would be uselessexceptfor testingpurposes.

Further Reference:
• InsideMacintosh,Volume IV, File Manager
• TechnicalNote#209,High Sierra& ISO 9660CD-ROM Formats
• TechnicalNote#129,_SysEnvirons:System6.0 andBeyond

.

.
2 of 2 #66: DeterminingWhich File SystemIs Active



Macintosh
TechnicalNotes

DeveloperTechnicalSupport

#67: How to Bless a Folder to Be the SystemFolder

Rewrittenby: ColleenK. Delgadillo May 1992
Updatedby: Jim Friedlander March 1988
Written by: Jim Friedlander January1986

This TechnicalNote describeshow to determinewhich folder on an HFS volume is the blessed
folder, that is, the folder thatcontainsboth the Systemfile andtheFinder.

ChangessinceJanuary1986: The information abouthow to find the “BlessedFolder” has
beendeletedfrom this technicalnote. The FindFolderfunction can now be usedto find the
“BlessedFolder” and is documentedin Inside MacintoshVolume VI, pages9-42 to 9-44. This
notenow includesinformationabouthow to blessa folder to the new systemfolder.

Note: The following informationmay beeffectedby future changesto systemsoftware. If you
chooseto usethis information,you mustdo so at your own risk.

The way to blessa folder is by taking the longwordwhich is the directoryID of the blessedfolder
andputting it into the MasterDirectoryBlock (MDB). This canbe accomplishedby usingtheHFS
call PBSetVInfo. You should not attempt to changethis block directly. First call
PBHGetVInfo and set ioVFnderlnfo[1] to the directory ID of the the new folder to be
blessed. Thencall PBSetVInfoto savethis information. Onceyou havedonethis, you will
find that the Finder takesa little while to realizethat you haveblessedthe folder. Therefore,the
icon will takea little while to change.Exactly how long you will haveto wait to seethe new icon is
unknown.

Forcing the icon to changesooneris not a difficult task. The bestway for you to seethe icon
changemorequickly is to changethe modificationdateof thedirectoryinto which you arecopying
the new SystemFolder.Doing this will causetheFinderto reexaminethe window andits contents.
When the Findernoticesthat the volume’smodificationdatehaschanged,it beginsscanningfor
changesin all the openfolders. This scanningprocesstakesplaceaboutonceevery 10 seconds.
You canchangethe last modificationdatefor thatvolumeandthe SystemFolder’sdirectoryID for
that volumeusingPBSetVInfo.Changingthe file’s FndrInfo or renamingthe file doesnot
changethe modification date. When you call PBSetVInfoyou will needto put the System
Folder’s directory ID in the longword at ioVfndr Info. This longword will be the first four
bytesof this directory ID. (As usual,wheneveryou makea changeto a field of a structureyou
need to first do a PBGetCatInfo, changewhat you are going to change,and then do
PBSetCatInfo. This ensuresthatyou changeonly theportionof thevolumethat you intended,
in this casea longword,andnot the whole structure.)

Further Reference:
MasterDirectory Block: InsideMacintoshVolume IV on page166.

#67: Finding the “BlessedFolder” 1 of I



.

.



Macintosh
TechnicalNotes

DeveloperTechnicalSupport

#68: SearchingVolumes—Solutionsand Problems

Revisedby: JimLuther January1992
Written by: Jim FriedlanderandRick Blair December1985— October1988

This TechnicalNotediscussesthe PBCatSearchfunctionandtells why it shouldbeused.It also
providessimplealgorithmsfor searchingboth MFS andHFS volumesanddiscussestheproblems
with indexedsearch routines.
Changessince October 1988: Includes information on PBCatSearchand notesthe
problemswith indexedsearchroutines.Sourcecodeexampleshave beenaddedand revised.
Thanksto JohnNorstadat NorthwesternUniversity for pointingout someof the shortcomingsof
the indexedsearchroutines. Thanksto theSystem7 engineeringteamfor addingPBCatSearch.

It may be necessaryto search thevolume hierarchy for files or directorieswith specific
characteristics.Generally speaking,your application should avoid searchingentire volumes
becausesearchingcan be a very time-consumingprocesson a largevolume. Your application
shouldrely insteadon files beingin specific directories(the samedirectoryastheapplication,or in
oneof the system-relatedfoldersthatcanbe foundwith FindFolder)or on havingthe userfind
files with StandardFile.

SearchingMFS Volumes

UnderMFS, indexedcalls to PBGetFInfo returninformationaboutall files on a givenvolume.
UnderHFS, the sametechniquereturns information only about files in the currentdirectory.
Here’sa shortcodesnippetshowinghow to usePBGetFInfo to list all files on an MFS volume:

PROCEDURE EnumMFS (theVRefNum: Integer);
search theMFS volume specified by theVRefNum

VAR
Pb: ParamBlockRec;
itemName: Str255;
index: Integer;
err: OSErr;

BEGIN
WITH pb DO

BEGIN
ioNamePtr := @itemName;
ioVRefNum := theVRefNum;
ioFVersNum := 0;

END;
index := 1;
REPEAT

pb.ioFDirlndex := index;
err := PBGetFlnfoSync(@pb);
IF err = noErr THEN

BEGIN
do something useful with the file information in pb

#68: Searching Volumes—SolutionsandProblems 1 of 8



MacintoshTechnicalNotes

END;
index := index + 1;

UNTIL err <> noErr;
END;

As notedin MacintoshTechnicalNote#66, a directorysignatureof $D2D7 meansa volumeis an
MFS volume,while a directorysignatureof $4244meansthevolumeis an}{FS volume.

SearchingHFS Volumes

Fast, Reliable SearchesUsing PBCatSearch

The fastestandmostreliableway to searchan HFS volume’scatalogis with the File Manager’s
PBCatSearchfunction. PBCatSearchreturnsa list of FSSpecrecordsto files or directories
that match the searchcriteria specifiedby your application.However,PBCatSearchis not
availableon all volumes or under all versionsof the File Manager.Volumes that support
PBCatSearchcan be identified using the PBHGetVolParmsfunction. (Seethe following
code.)Versionsof the File Managerthat supportPBCatSearchcan be identified with the
gestaltFSAttrGestaltselectorand gestaltFullExtFSDispatchingbit asshownin
the following code:

FUNCTION HasCatSearch(vRefNurn: Integer) : Boolean;
See if volume specifiedby vRefNum supportsPBCatSearch

VAR

pb: HpararnBlockRec;
infoBuffer: GetVolparmslnfoBuffer;
attrib: Longlnt;

BEGIN
HasCatSearch:= FALSE; { default to no PBCatSearcnsupport
IF GestaltAvailableTHEN { See Inside Macintosh Volume VI, Chapter 3

IF Gestalt(gestaltFSAttr,attrib) = noErr THEN
IF BTst(attrib, gestaltFullExtFSDispatching)THEN

BEGIN { this version of the File Manager can call PBCatSearch
WITH pb DO

BEGIN

ioNamePtr : NIL;
ioVRefNum : vRefNum;
ioBuffer := @infoBuffer;
ioReqCount := sizeof(infoBuffer);

END;
IF PBHGetVolParmsSync(@pb)= noErr THEN

IF BTST(infoBuffer.vMAttrib, bHasCatSearch)THEN
HasCatSearch:= TRUE; { volume supports PBCatSearch

END;
END;

Note: File serversthat supportthe AppleTalkFiling Protocol(AFP) version2.1 support
PBCatSearch.That includesvolumesanddirectoriessharedby System7 File
Sharingandby theAppleShare3.0 file server.AlthoughAFP version2.1 supports
PBCatSearch,the fsSBNegatebit is not supportedin the ioSearchBits
field. Using PBCatSearchto askthe file serverto perform the searchis usually
fasterthanusingtherecursiveindexedsearchdescribedin the nextsection.

PBCatSearchshouldbe usedif it is availablebecauseit is usuallymuch fasterthana recursive
search.For example,thesearchtime for finding all files anddirectorieson a recentDeveloperCD

2 of 8 #68: SearchingVolumes—SolutionsandProblems



Developer TechnicalSupport january1992

was around18 secondswith PBCatSearch.It took 6 minutesand 36 secondswith a recursive
indexedsearch.How longdo youwant the usersof yourapplicationto wait?

PBCatSearchcanbeusedto collecta list of FSSpecrecordsto all itemson avolumeby setting
ioSearchBitsin theparameterblock toO.

RecursiveIndexed SearchesUsing PBGetCatInfo

WhenPBCatSearchis not available,an application mustresortto a recursiveindexedsearch.
Thereare a coupleof potentialproblemswith a recursive indexedsearch;a recursiveindexed
searchcanuseup a lot of stack spaceandthevolumedirectorystructurecanchangein themulti
user/multiprocessMacintoshenvironment.Theexamplecodein this noteaddressesthestackspace
problem,but for reasonsexplainedlater, doesnotaddressproblemscausedby multiple usersor
processeschangingthevolumedirectorystructureduringa recursivesearch.

Thedefaultstackspaceon theMacintoshcanbe as small as 8K; therefore,therecursiveindexed
searchexampleshownin this Note enclosesthe actualrecursive routinein a shell thatcan hold
mostof thevariables needed,which dramaticallyreducesthe sizeof the stackframe.This example
usesonly 26 bytesof stackspaceeachtime theroutine recurses. Thatis, it couldsearch100levels
deep(pretty unlikely) anduseonly 2600bytesof stackspace.

Pleasenoticethatwhen theroutinecomesback fromrecursing,it has toclearthenonlocalvariable
err to noErr, since thereasonthe routinecamebackfrom recursingis that PBGetCatInfo
returnedanerror:

EnumerateCatalog(myCPB.ioorDirlD);
err := noErr; {clear error return on way back)

Pleasenotice also that you must setmyCPB.ioDrDirld eachtime you call PBGetCatInfo,
becauseif PBGetCatInfo getsinformationabouta file, it returnsioFlNum (the file number)in
the samelocationthat ioDrDirID previously occupied.

Be sureto checkbit 4, the fifth leastsignificantbit, whenyou checkthe file attributesbit to seeif
you’ve got a file or a folder. The following routineusesMPW Pascal’sBTST function to check
that bit. If you usethe Toolbox bit manipulationroutines(e.g.,BitTst), rememberto orderthe
bits in reverseorderfrom standard68000notation.

Hereis theroutinein MPW Pascal:

PROCEDURE EnumerSheil (vRefNumToSearch:Integer; { the vRefNurn to search)
dirlDToSearch: Longlnt); { the dirlD to search

VAR
itemName: Str63;
rnyCPB: CInfoPBRec;
err: OSErr;

PROCEDURE EnurnerateCatalog(dirlDToSearch: Longlnt);
CON S T

ioDirFlgBit = 4;
VAR

index: Integer;

BEGIN EnurnerateCatalog
index := 1;
REPEAT

WITH rnyCBP DO

#68: SearchingVolumes—SolutionsandProblems 3 of 8



MacintoshTechnicalNotes

-

BEGIN
ioFDirlndex := index;
ioDrDirlD : dirlDToSearch; { we need to do this every

time through
fjller2 := 0; { Clear the ioACUser byte if searchis

interestedin it. Nonservervolumes
wont clear it for you and the value
returned is meaningless.

END;
err : PBGetCatlnfo(@myCPB,FALSE);
IF err = noErr THEN

IF BTST(myCPB.ioFlAttrib, ioDirFlgBit) THEN
BEGIN { we have a directory

do somethinguseful with the directory information
in myCPB }

EnurnerateCatalog(myCPB.ioDrDirlD);
err := noErr; (clear error return on way back)

END
ELSE

BEGIN { we have a file

do somethinguseful with the file information
in myCPB

END;
index := index ÷ 1;

UNTIL (err <> noErr);

END; ( EnumerateCatalog

BEGIN { EnumerShell
WITH myCPB DO

BEGIN
ioNameptr @itemName;
ioVRefNum := vRefNumToSearch;

END;
EnurnerateCatalog(dirlDToSearch);

END; { EnumerShell

InMPWC:

/* the following variablesare globals *1
HFilelnfo gMyCPB; 1* for the PBGetCatlnfo call */

StrE3 gltemName; /* place to hold file name /
OSErr gErr; /* the usual */

1* *1

void EnurnerateCatalog(long mt dirlDToSearch)
1* Enumeratecatalog*1

short mt index=l;
do

gMyCPB.ioyDirlndex= index;
gMyCPB. ioDirlD= dirlDToSearch; /* we need to dc this every time I

1* through, since GetCatinfo *1
/ returns ioFlNum in this field /

gMyCPB.filler2= 0; /* Clear the ioACUser byte if search is
/* interestedin it. Nonservervolumes wont *1
/* clear it for you and the value returned is /
1* meaningless.*1

4 of 8 #68: SearchingVolumes—SolutionsandProblems



DeveloperTechnicalSupport January1992

- gErr= PBGetCatlnfo(&gMyCPB,false);

if (gErr == rioErr)

if ((gMyCPB.ioFlAttrib & ioDirMask) 0)
/ we have a directory */

1* do somethinguseful with the directory information */

/ in gMyCPB *1

EnumerateCatalog(gMyCPB.ioDirlD);/ recurse/

gErr = noErr; /* clear error return on way back */

else
/ we have a file */

1* do somethinguseful with the file information *1
/ in gMyCPB *1

++index;
while (gErr = noErr);

1* EnumerateCatalog*1

1* *1

EnumerShell(.shortmt vRefNumToSearch, long mt dirlDToSearch)

1* EnumerShell *1
gMyCPB.ioName?tr= gltemName;

gMyCPB. ioVRefNum = vRefNumToSearch;

EnumerateCatalog(dirlDToSearch);

1 /* EnumerShell *1

Pleasemakesurethatyou axe runningunderlIPS beforeyou usethis routine(seeTechnicalNote
#66).You cansearchthe entirevolumeby specifyinga startingdirectoryID of fsRtDirlD, the
root directoryconstant.You cando partial searchesof a volumeby specifyinga startingdirectory
ID otherthan fsRtDirlD.

Searchingin a Multi-user/MultiprocessEnvironment

Volumescanbe sharedby multiple usersaccessinga file serveror multiple processesrunningon a
singleMacintosh.Eachuseror processwith accessto sucha sharedvolumemay be ableto make
changesto the volume’scatalogat any time. Changesin a volume’s catalogin the middle of a
searchcancausetwo problems:

• Files anddirectoriesrenamedor movedby anotheruseror processcan be entirely missedor
foundmultiple timesby a searchroutine.

• A searchroutinecaneasilylosetrackof its positionwithin thehierarchicaldirectorystructure
whenfiles or directoriesarecreated,deleted,or renamedby anotheruseror process.

A volumesearchedwith a singlecall to PBCatSearchensuresthat all partsof thevolumeare
searchedwithout anotheruseror processchangingthevolume’scatalog.However,a singlecall to
PBCatSearchmaynot bepossibleor practicalbecauseof the numberof matchesyou expect,or
becauseyou may want to seta time limit on the searchso that the usercancancela long search.
PBCatSearchreturnsa catChangedErr(—1304) and no matcheswhen the catalogof a
volumeis changedby anotheruseror processin a way thatmight affect the currentsearch.The

searchcanbecontinuedwith the CatPositionRecreturnedwith the catChangedErrerror,

but at therisk of missingcatalogentriesor fmding duplicatecatalogentries.

#68: SearchingVolumes—SolutionsandProblems 5 of 8



MacintoshTechnicalNotes

Thingsaren’tso nice for searchroutinesbasedon indexedFile Managercalls.TheFile Manager
won’t notify you whena volume’scataloghaschanged.In fact, thereare severalwaysthecatalog
can changethat are very difficult to detectand correct for. Since methodsthat attempt to
resynchronizeanindexedsearchandfind all catalogentriesthatmight bemissedor foundmultiple
timeswhenthecatalogchangesdo not work for all cases,thosemethodsarenot discussedin this
TechnicalNote. Thefollowing paragraphsdescribewhy somechangesarevery difficult to detect.

Therearethreechangesyou canmaketo thecontentsof a directorythatchangethelist of files and
directoriesreturnedby an indexedsearch:creating,deleting,andrenaming.Directoriesof an }IFS
volumearealwayssortedalphabetically,so whena file or subdirectoryis deletedfrom a directory,
anydirectoryentriesafterit bubblesup to ff1 thevacatedentryposition;whena file or subdirectory
is created,it is insertedinto the list andall entriesafterit bubblesdownoneposition.Whena file
or subdirectoryis renamed,it is removedfrom its currentpositionandmovedinto its alphabetically
correctposition.The first two changes,creatinganddeleting,canbedetectedonly at the parent
directory level. That’s becausea creationor deletionchangesonly the modification dateof the
parentdirectorybut not themodificationdateof anyof theparentdirectory’sancestors.Renaming
a file or subdirectorydoesnot changethe modificationdateof the file or subdirectoryrenamedor
the modificationdateits parentdirectory,but it doeschangethe orderof files andsubdirectories
found by an indexedsearch.

With this in mind, herearea coupleof examplesthatarevery difficult to detect.

The first exampleshowsa file, Dashboard,moved(by anotheruseror process)with PBCatMove
from the CDevssubdirectoryto theControlPanelssubdirectory.(Seefigures 1 and2.) At the time
of the move, the searchroutine hasjust finishedrecursivelylooking throughthe Development
directoryandis readyto recursivelysearchthe Gamesdirectory.After themove,two directories,
CDevsandControlPanels,havenewmodificationdatesbut no changeis seenat theroot directory
of My Disk. Thereis nothingto immediatelytell the searchroutinesomethinghaschanged(except
for thevolumemodificationdatewhich mayor maynot meanthedirectorystructurehas changed),
so the searchwill seeDashboardtwice. If the movewerein the oppositedirection, from Control
Panelsto CDevs,Dashboardwould bemissedby the searchroutine.

I I

Oectto h -
Dashboard

Figure 1 BeforeDashboardIs Moved With PBCatMove

.

My Di

SystemFolder

Dropper Kibitz Control Panels

6 of 8 #68: SearchingVolumes—SolutionsandProblems



DevelonerTechnicalSutmort January1992

Figure2 After DashboardIs MovedWith PBCatMove

The secondexample(seeFigures3 and4) showsa directory,Toys, renamed(by anotheruseror
process)with PBHRenameto Games.At thetime of themove,the searchroutinehasseenthe files
AardvarkandLetterandis looking at the third objectin the directory,the file Résumé.After the
move,the indexpointeris still pointing at the third objectbut now the third objectis the file Letter,
a file thathasalreadybeenseenby the search.This changecannotbedetectedby looking at the
parentdirectory’smodificationdatebecausePBHRenamedoesnot changeany modificationdates.
However,this changecanbedetectedby checkingto seeif the indexpointerstill pointsto the same
file or directory.The searchroutinecould re-indexthroughthe directoryto find the Résuméfile
againandstartsearchingfrom there,but what aboutthe directorythatwasrenamed?The search
routineeithermustmissit (andits contents)or it mustrepeatthe searchof the entiredirectoryto
ensurenothingis missed.

ri
SearchDir

Aardvark Letter Résumé Toys

4 4
Index Objectto rename

Figure3 BeforeToys Is RenamedWith PBHRename

Modification
datesame

Development SystemFolder

Controi PanelsCDevs Dropper Kibitz

Objethat
moved

Modification

_____

datechanged Dashboard

#68: SearchingVolumes—SolutionsandProblems 7 of 8



MacintoshTechnicalNotes

ri
SearchDir

Aardvark Games Letter Résumé

4 *
Renamedobject Index

Figure4 After Toys Is Renamedto GamesWith PBHRename

As theseexamplesshow, a changeduring a searchof a hierarchicaldirectory structurewith
indexedFile Managercalls involvestherisk of missingcatalogentriesor finding duplicatecatalog
entries.If your applicationdependson seeingall itemson a volumeat leastonceandonly once,
you shouldmakethe usersof your applicationawareof the problemsassociatedwith indexed
searchesandsuggestto themways to makesurethe volume’scatalogis not changedduring the
indexedsearch.Here’sa goodsuggestionyou couldmaketo theuser:do not useotherprograms
during the search.Otherprogramsmaycreate,delete,or renamefiles duringthe search.

Conclusion

You shouldalwaysusePBCatSearchto searcha volumeif it is available.If PBCatSearch
isn’t availableandyou mustusean indexedsearch,be awarethat it is difficult to ensurethatyou
do not misssomecatalogentriesor seesomecatalogentriesmultiple timesduringyour search.

Further Reference:
• InsideMacintosh,VolumeIV, TheFile Manager
• InsideMacintosh,VolumeV, File ManagerExtensionsin a SharedEnvironment
• InsideMacintosh,Volume VI, TheFinderInterface
• InsideMacintosh,Volume VI, TheFile Manager
• TechnicalNote#66,DeterminingWhich File SystemIs Active
• TechnicalNote#305,PBShare,PBUnshare,andPBGetUGEntry

.
8 of 8 #68: SearchingVolumes—SolurionsandProblems



Macintosh Technical Notes

#69: SettingioFDirlndex in PBGetCatlnfoCalls

j

Seealso: The File Manager
TechnicalNote #24—AvailableVolumesand Files
TechnicalNote #67—Findingthe BlessedFolder

Written by:
Updated:

Jim Friedlander February
March 1,

15, 1986
1988

This technical notedescribeshow to set ioFDirlndex for PBGetCatInfo.

The File Managerchapterof Inside Macintoshvolume IV is not very specific in
describinghow to use ioFDirlndex when calling PBGetCatInfo. It correctly saysthat
ioFDirlndex should be positive if you are making indexedcalls to PBGetCatInfo

(analogousto making indexedcalls to PBGetVInfo as describedin Technical Note
#24). However,the statement“If ioFDirlndex is negativeor 0, the File Managerreturns
information aboutthe file having the namein ioNamePtr...”is not specific enough.

If ioFDir Index is 0, you will get information about files or directories,dependingon
what is specifiedby ioNamePtr”.

If ioFDirlndex is —1, you will get information about directoriesonly. The name in
ioNamePtr” is ignored. For example,given the following tree structure(with sample
DirIDs for the directories):

Root

Sys MyFiles2

N
El SubFi1es

Fiie2

El
Fiie3

El
System

El
Finder

El
Fuel

TechnicalNote #69 page 1 ot4 SettingioFDirlndex in PBGetCatlnfoCalls



Calling PBGetCatlnfo

We will now makecalls to PBGetCatInfo of the form:

err:= PBGetCatlnfo(@myClnfoPBRec,FALSE);

Note: We will assumethat we just havea WDRefnum and a file name—theinformation

that SFGetFilereturns.

Setting up the parameterblock

We will usethe following fields in the parameterblock. Before the call, ioComplet ion

will alwaysbe set to NIL, ioNamePtrwill alwayspoint at a str255,ioVRefNum will

always contain a WDRefNum that referencesthe directory ‘SubFiles’, and offset 48

(dir ID/f iNum) will alwayscontaina zero:

Offset in
parameterblock Variable name(s)

12 ioCompletion

18 ioNamePtr

22 iovRefNum

28 ioFDirlndex

48 ioDirID/ioFLNurn/ioDrDirID

100 ioDrparlD/ioFlParID

Samplecalls to PBGetCatlnfo

The first examplewill call PBGetCatInfo for the file ‘F11e3’—we will get information

aboutthe file (ioFDirlndex= 0):

Before the call After the call
ioNameptr” ‘File3’ ioNamePtr”: ‘File3’
ioFDirlndex 0 Offset 48(ioFLNum): a file number

Offset 100(parlD): 57

Now we will get information about the directory that is specified by the iovRefNum

(ioFDirlndex= —1). Notice that ioNamePtr” is ignored:

Before the call After the call
ioNamePtr” ignored ioNamePtr”: ‘SubFiles’

ioFDirlndex —1 Offset 48(dirlD): 57
Offset 100(parlD): 37

TechnicalNote#69 page 2 of 4 SettingioFDirlndex in PBGetCatlnfoCalls



Notice that, since ioNamePtr” is ignored,Offset 48 containsthe dir ID of the directory
specifiedby the iovRefNumthat we passedin and thatOffset 100 containsthe parentID
of that directory.
Notice that if we try to get information about the directory SubFiles by calling
PBGetCatInfo with ioFDirlndex set to 0, we will get an error —43 (File not found
error) backbecausethere is neithera file nor a directory with the name‘SubFiles’ in the
directorythat iovRefNum refersto.

If you specify a full pathnamein ioNamePtr”,then the call returnsinformation about
that path,whetherit is a directoryor a file. The iovRefNum is ignored:

Before the call After the call
ioNamePtr ‘‘: ‘Root:Sys’ ioNamePtr t: ‘Root :Sys’
ioFDirlndex: 0 Offset48(dirlD): 17
ioVRefNum: refersto ‘SubFiles’ Offset 100 (pariD): 2

Or, if the full pathnamespecifiesa file, the iovRefNum is overridden:

Before the call After the call
ioNamePtrt’: ‘Root:Sys:Finder’ ioNamePtr”: ‘Root:Sys:Finder’
ioFDirlndex 0 Offset 48 (fiNum): fileNumber
ioVRefNum refersto ‘SubFiles’ Offset 100 (pariD): 17

Or, given an ioVRefNum that refersto MyFiles2 anda partial pathnamein ioNamePtr”,
we’ll get information aboutthe directory ‘SubFiles’:

Before the call After the call
ioNamePtr’ ‘SubFiles’ ioNameptr”: ‘SubFiles’
ioFDirlndex 0 Offset48(dirlD): 57
ioVRefNum: refersto ‘MyFiles2’ Offset 100 (pariD): 37

PBGetCatlnfoand The Poor Man’s SearchPath (PMSP)

If no ioDirlD is specified(ioDirlD is set to zero), calls to PBGetCatlnfowill return
information about a file in the specified directory, but, if no such file is found, will
continuesearchingdown the Poor Man’s SearchPath. Note: the PMSP is not usedif
ioFDirlndex is non-zero( either—1 or >0). The default PMSP includesthe directory
specifiedby ioVRefNum (or, if ioVRefNum is 0, the default directory) and the directory
that containsthe SystemFile andthe Finder—theblessedfolder. So for example:

Before the call After the call
ioNamePtr” ‘System’ ioNamePtr”: ‘System’
ioFDirlndex 0 Offset 48 (ioFLNum): a file number

Offset 100 (pariD): 17

You must be careful when using PBGetCatInfo in this way to make surethat the file
you’re getting information aboutis in the directorythat you think it is, and not in a
directory further down the PoorMan’s SearchPath. Of course,this doesnot presenta
problem if you are using the fName andthe vRefNum that SFGetFilereturns.

TechnicalNote #69 page 3 of 4 Setting ioFDirlndex in PBGetCatlnfoCalls



If you want to specifically look at a file in the blessedfolder, pleaseusethe technique

describedin technicalnote#67 to get the dir ID of the ‘blessedfolder’ andthen usethat

dirlD asinput in the ioDirlD field of the parameterblock (offset 48).

Summary (DirID = 0 in all the following):
If ioFDirlndex is setto 0:

1) Information will be returnedaboutfiles.
2) Information will be returnedaboutdirectoriesasfollows:

A) If a partial pathnameis specifiedby ioNamePtrthenthe volume
and directory will be takenfrom iovRefNum.

B) If a full pathnameis specifiedby ioNamePtr’. In this case,
ioVRefNum is ignored.

If ioFDirlndex is setto —1:
1) Only information aboutdirectorieswill be returned.
2) The namepointedto by ioNameptris ignored.
3) If Dir ID and ioVRefNum are0, you’ll get information aboutthe default

directory.

.

TechnicalNote #69 page 4 of 4 SettingioFDirlndex in PBGetCatlnfoCalls



Macintosh Technical Notes

#70: Forcing Disks to be Either400K or 800K

Seealso: The Disk Driver
The Disk Initialization Package

Written by:
Updated:

Rick Blair February13, 1986
March 1, 1988

This documentexplainshow to initialize a disk as either single- or double
sided. It only appliesto 800K drives, of course.

You can call the disk driver to initialize a disk and determineprogrammaticallywhetherit
should be initialized as single- (MFS) or double- (HFS) sided. All you have to do is call
the . Sony driver directly to do the formatting then the Disk Initialization Packageto write
the directory information.

Note: This is not the way you should normally format disks within an application. If the
userputs in an unformatteddisk, you should let her or him decidewhetherit becomes
single- or double-sidedvia the Disk Initialization dialog. This automatically happens
when you call DlBadMount or the userinsertsa disk while in StandardFile. The intent of
this technicalnote is to provide a meansfor specific applicationsto produce,say, 400K
disks. An examplemight be a productiondisk copying program.

From MPW Pascal:

WITH paramBlock DO BEGIN

ioRefNum := -5;
ioVRefNurn : 1;
csCode := 6;
IPtr: =@csParam;
IPtr” : =1;

END;

{.Sony driver)

(drive number)

(format control code)
(pretend it’s an INTEGER)

{number of sides)

error:=PBControl(@paramBlock,FALSE); (do the call)
IF error=ControlErr THEN

{you are under MFS, which doesn’t support control code 6, but it)
(would always get formattedsingle-sidedanyway.)
{other errors are possible: ioErr, etc.)
END;

VAR

error:

IPtr:

paramBlock:

OSErr;

INTEGER;

ParamBlockRec; (needs OSIntf}

Technica’Note #70 page 1 ot2 Forcing Disks to be Lither 400K or 800K



From MPW C:

paramBlock.ioCRefNum= -5;

paramBlock.ioVRefNum= 1;

paramBlock.csCode= 6;
paramBlock.csParam[OJ=l;

/* Sony driver*/

/*drjve number*/

/*format control code*/

/*for single sided,2 for double_sided*/

error=PBControl(&paramBlock,false);/*do the call*/

if (error==controlErr)
/*yu are under MFS, which doesn’t support control code 6, but it*/

/*would always get formatted single-sidedanyway.*/

/*other errors are possible: ioErr, etc.*/

You then call DIZero to write a standard(MFS or HFS) directory. It will produceMFS if

you formattedit single-sided,and HFS if you formatteddouble-sided.

.

.

OSErr

CntrlParam
error;
paramBlock; .

TechnicalNote #70 page 2 of2 Forcing Disks to be Either 400K or 800K



Macintosh Technical Notes

#71: Finding Drivers in the Unit Table

Seealso: The Device Manager

Written by: Rick Blair February4, 1986

Updated: March 1, 1988

This note will explain how codecan be written to determinethe reference

number of a previously installed driver when only the name is known.

Changessince2/86: Sincethe driver can be purgedand the DCE still be

allocated,the codenow testsfor dCtlDriver being NIL aswell.

You should alreadybe familiar with The Device Managerchapterof Inside Macintosh

before readingthis technicalnote.

The Pascalcode at the end of this note demonstrateshow to obtain the reference

numberof a driver that hasbeeninstalled in the Unit Table. The referencenumbermay

then be usedin subsequentcalls to the Device Managersuch as Open,Control and

Prime.

One thing to note is that the dRAMBasedbit really only tells you whetherdCtlDriver is

a pointer or a handle, not necessarilywhetherthe driver is in ROM or RAM. SCSI

drivers, for instance,are in RAM but not relocatable;their DCE entriescontain pointers

to them.

From MPW Pascal:

PROCEDURE GetDrvrRefNum(driverName:Str255; VAR drvrRefNum: INTEGER);

TYPE

WordPtr = INTEGER;

CONST

UTableBase = $11C; {low memory globals}

UnitNtryCnt = $102;

dRAMBased = 6; {bit in dCtlFlags that indicates ROM/RAM)

drvrName = $12; {length byte and name of driver [string]

VAR

riegCount : INTEGER;

DCEH : DCtlHandle;

drivePtr : Ptr;

s Str255;

TechnicalNote #71 page 1 of 3 Finding Drivers in the Unit Table



BEGIN

UprString(driverName,FALSE); {force same case for compare}

negCount := - WordPtr(UnitNtryCnt)”; (get -(table size)

(Check to see that driver is installed, obtain refNum.
(Assumes that an Open was done previously -- probably by an INIT.)
(Driver doesn’t have to be open now, though.)

drvrRefNum — 12 + 1; (we’ll start with driver refnum = —12,
right after .ATP entry)

{Look through unit table until we find the driver or reach the end.)

REPEAT

drvrRefNum := drvrRefNum — 1; {bump to next refnum}
DCEH := GetDCtlEntry(drvrRefNum); {get handle to DCE)

s := ‘‘; (no driver, no name)

IF DCEI-I <> NIL THEN
WITH DCEH’ DO BEGIN (this is safe -- no chance of heap moving

before dCtlFlags/dCtlDriverreferences)
IF (dCtlDriver <> NIL) THEN BEGIN

IF BTST(dCtlFlags, dRAMBased) THEN
drivePtr := Handle(dCtlDriver) {zee deréference)

ELSE

drivePtr := Ptr(dCtlDriver);

IF drivePtr <> NIL THEN BEGIN
s := StringPtr(ORD4(drivePtr)+ drvrName)”;
UprString(s,FALSE); (force same case for compare)

END;

END; (IF)
END; {WITH)

UNTIL (s = driverName) OR (drvrRefNum = negCount);

(Loop until we find it or we’ve just looked at the last slot.)

IF s <> driverName THEN drvrRefNum := 0; (can’t find driver)
END;

From MPW C:

short GetDrvrRefNum(driverName)
char *driverName[2561

1* GetDrvrRefNum *1

#define UnitNtryCnt Oxld2

/*bit in dCtlFlags that indicates ROM/RAM*/
*define dRANBased 6
/*length byte and name of driver f string] */

#define drvrName 0x12

.
TechnicalNote #71 page 2 of 3 Finding Drivers in the Un Table



short negCount,dRef;

DCtlHandle DCEH;

char *drjveptr *3;

negCount = _*(short *) (UnitNtryCrit); /*get —(table size)*7

/*Check to see that driver is installed, obtain refNum.*/

/*Assumes that an Open was done previously -- probably by an INIT.*/

/*Driver doesn’t have to be open now, though.*/

dRef = —12 + 1; /*well start with driver refnurn == —12,

right after .ATP entry*/

/*Look through unit table until we find the driver or reach the

end.*7

do

dRef _ 1; /*burnp to next refrnmt*/

DCEH = GetDCtlEritry(dRef); /*get handle to DCE*/

s =

if ((DCEH != nil) && ( (**DCEH) .dCtlDriver != nil)

if (((**DCEI4).dctlFlags >> dRAMBased) & 1)
/ test dRamBasedbit *1

driveptr *(Handle) (**DCEH) .dCtlDriver;

/*zee deréference*/

else
driveptr = (**DCEH) .dCtlDriver;

if (driveptr ! nil)

s = drivePtr + drvrName;

while (EqualString(s,driverName,O,O)&& (dRef != negCount));

/*Loop until we find it or we’ve just looked at the last slot.*/

if (EqualString(s,driverName,O,O))

return dRef;

else
return 0; /*can’t find driver*/

11* GetDrvrRefNum *1

That’s all thereis to locating a driver and picking up the referencenumber.

TechnicalNote#71 page 3 013 Finding Drivers in the Unit Table



I

.

.



Macintosh
TechnicalNotes

DeveloperTechnicalSupport

#72: Optimizing For The LaserWriter—Techniques
Revisedby: Pete“Luke” Alexander October1990
Written by: GingerJemigan Februaiy1986

This TechnicalNotediscussestechniquesfor optimizingcodefor printingon theLaserWriter.
Changes since March 1988: Updated the “Printable Paper Area” and “Memory
Considerations”sectionsaswell astheprinter IDs, movedtheerrormessagesfrom the endof the
Note to TechnicalNote #161, A Printing Loop That Cares...,and removedthe “Spool-A-
Page/Print-A-Page”sectionbecause TechnicalNote#125,Effect of Spool-A-Page/Print-A-Pageon
SharedPrinters,alreadythoroughlycoversthis topic.

Introduction

Although the Printing Managerwasoriginally designedto allow applicationcodeto be printer
independent,therearesomethingsabouttheLaserWriterthat, in somecases,haveto beaddressed
in aprinterdependentway. This Note describeswhattheLaserWritercan andcannotdo, memory
considerations,speedconsiderations,aswell asotherthingsyou needto watchout for if you want
to makeyourprintingmoreefficienton theLaserWriter.

How To DetermineThe Currently SelectedPrinter

With the additionof newpicturecommentsandthePrGeneralprocedure,an applicationshould
neverneedto know the type of deviceto which it is connected.However,somedevelopersfeel
their applicationshouldbe able to take advantageof all of the featuresprovidedby a particular
device,notjust thoseprovidedby thePrintingManager,andin doingso, thesedevelopersproduce
device-dependentapplications,which canproduceunpredictableresultsthird-partyandnewApple
printing devices. For this reason,Apple stronglyrecommendsthat you useonly the features
providedby thePrintingManager,anddo not try to useunsupported devicefeatures.

Eventhoughthereis no supportedmethodfor determininga device’stype, thereis onemethod
describedin theoriginal InsideMacintoshthatstill works for ImageWriterandLaserWriterprinter
drivers. This methodis not supported,meaningthatat somepoint in the future it will no longer
work, if you usethis methodin your application,it is up to you to weigh thevalueof the feature
againstthecompatibility risk. The following methodworksfor all ImageWriter,ImageWriterII,
andLaserWriter(original,Plus,lINT, IINTx) drivers. Sinceall newdevicesreleasedfrom Apple
andthird-partydevelopershavetheir own uniqueID, it is up to you to decidewhat to do with an
ID thatyourapplicationdoesnotrecognize.

if you areusingthe high-levelPrintingManagerinterface,first call PrValidateto makesure
you have the correctprint record. Look at the high byte of the wdev word in the TPrSt1
subrecordof theprint record. Note that if you haveyourown driverandwant to haveyourown
number, pleaselet DTS know, andDTS canregisterit.

#72: OptimizingFrTheLaserWriter—Techniques 1 of 5



MintoshTechnicalNotes

Following is theciuTentlist of printerIDs:

Printer wDev

JmageWriterI, ImageWriterII 1
LaserWriter,LaserWriterPlus,
LaserWriterTINT, LaserWriterIINTX, and
PersonalLaserWriterwr 3
LaserWriterIISC, PersonalLaserWriterSC 4

ImageWriterLQ 5

If you areusingthe low-levelPrintingManagerinterface,thereis no dependableway of gettingthe

wDev information. You shouldnot attemptto determinethedeviceID whenusingthe low-level

PrintingManagerinterface.

Using QuickDraw With the LaserWriter

When you print to the LaserWriter,all of the QuickDraw calls you makeare translated(via

QuickDraw bottlenecks)into PostScript®,which is in the LaserWriterROM. Most of the

operationsavailablein QuickDraw are available in PostScript,with a few exceptions. The

LaserWriterdriverdoesnot supportthefollowing:

• XOR andNotXOR transfermodes.
• Thegrafverbinvert.
• _SetOrigincalls within PrOpenPageand PrClosePagecalls. Use

OffsetRectinstead. (This is fixed in version3.0 andlaterof thedriver.)

• egionsare ignored. You cansimulateregionsusingpolygonsor bitmaps. Refer

to TechnicalNote#41,Drawing Into An Off-ScreenBitmap, for how to createoff-

screenbitmaps.
• Clip regionsshouldbe limited to rectangles.
• Thereis a small differencein characterwidths betweenscreenfonts andprinter

fonts. Only theendpointsof text stringsarethe same.

What You See Is Not Always What You Get

Unfortunately,whatyou seeon the screenis not alwayswhatyou get. If you areusingstandard

graphicobjects,like rectangles,circles,etc., theobjectis thesamesizeon theLaserWriterasit is

on the screen. Thereare, however,two typesof objectswherethis is not the case: text and

bitmaps.

The earliernoteddifferencebetweenthe widths of characterson the screenand the widths of

characterson theprinteris dueto thedifferencein resolution. However,to maintainthe integrity

of line breaks,thedriverchangesthe word andcharacterspacingto maintaintheendpointsof the

lines asspecified. What this all meansis thatyou cannotcounton thepositionsor the widthsof

printedcharactersbeingexactly the sameas they areon the screen. This is why in the original

MacDraw®, for example,if one carefully placestext and a rectangleand prints it, the text

sometimesextendsbeyondtheboundsof therectangleon theprintedpage. If anapplicationdoes

its own line layout (i.e., positionsthe wordson the line itself), then it may want to disablethe

LaserWriter’sline layout routines. To disabletheseroutines,usethe LineLayoutOffpicture

commentdescribedin theLaserWriterReferenceManualandTechnicalNote#91,Optimizing for

theLaserWriter—PictureComments.

.

.

.
2 of 5 #72: optimizingForTheLaserWriter—Techniques



Deve1opTechnicalSupport October1990

Thesoleexceptionto thisrule is if an applicationis runningon 128K ROMsor later. The 128K
ROM Font Managersupportsthe specificationof fractional pixel widths for screen fonts,
increasingthescreento printeraccuracy.This fractionalwidth featureis disabledby default. To
enableit, anapplication canuse_SetFractEnable,aftercalling_InitFonts.

Applicationscanuse picturecommentsto left-, right-, or center-justifytext. Only the left, right, or
center endpointsareaccurate.If the text is fully justified,bothendpointsareaccurate.Technical
Note#91,Optimizingfor theLaserWiiter—PictureComments, discussesthesepicturecomments.

Memory Considerations

To print to theLaserWriter,you needto makesurethatyou haveenoughmemoryavailableto load
thedriver’s code. Thebestway to do this is to haveall the code youneedfor printing in a separate
segmentandunload everythingelse. Whenyou print to theLaserWriteryou areonly ableto print
in Draft mode. You arenot ableto spool(asthe ImageWriterdoesin thestandardor high-quality
settings),andyourprint code,data,andthedrivercode haveto beresidentin memory.

In termsof memoryrequirements,thereis notanymagicnumberthatalwaysworks with all printer
drivers(including third-partyprinterdrivers) thatareavailablefor the Macintosh. To makesure
thereis enoughmemoryavailableduringprint time, you shouldmakeyourprintingcodea separate
segmentandswapout all unwantedcodeanddatabeforeyou call _PrOpen.

Printable PaperArea

On theLaserWriterthereis a 0.45-inchborderthat surroundstheprintableareaof thepaper(this is
assumingan 8.5” x 11” paper). if you selectthe “Larger Print Area” option in the PageSetup
dialog box, theborderchangesto 0.25of an inch. Thisprintableareais differentthantheavailable
print areaof the hnageWriter.An applicationcannot printa largerareabecauseof the memory
PostScriptneedsto imageapage. PostScripttakestheamountof memoryavailablein theprinter
andcentersit On thepaper,andthereis not enoughRAM in the LaserWriterto imagean entire
sheetof paper.

Page Sizes

Many developershaveexpresseda desireto supportpagesizesotherthanthoseprovidedby the
Apple printerdrivers. Eventhoughsomedevicescanphysicallysupportotherpagesizes,thereis
no way for an applicationto tell the driver to usethis size. With the ImageWriter driver,it is
possibleto modify certainfields in the print recordand expandthe printable areaof the page.
However,eachof theApple driversimplementsthe pagesizesin adifferentway. No onemethod
works for all drivers. Becauseof this difference,it is stronglyrecommendedthatapplicationsdo
not attemptto changethe pagesizesprovided in the “Style” dialog box. if your application
currently supportspagesizesotherthan thoseprovidedby the printer driver, you are taking a
seriouscompatibilityrisk with futureApple andthird-partyprinterdrivers.

#72: OptimizingForTheLaserWriter—Techniques 3 of 5



MintoshTechnicalNotes

Speed Considerations

Although theLaserWriteris relatively fast, thereare sometechniquesan applicationcan useto

ensureits maximumperformance.

Try to avoid using the QuickDraw Erase calls (e.g., _Er aseRec t,

_EraseOval,etc.). It takesa lot of time to handlethe erasefunction because

everybit (90,000bits per squareinch) hasto be cleared. Erasingis unnecessary

becausethepaperdoesnotneedto beerasedtheway the screendoes.

Printingpatternstakestime, sincethe bitmapfor thepatternhasto be built. The

patternsblack,white,andall the graypatternshavebeenoptimizedto usethe

PostScriptgray scales. If you usea different patternit works, but it just takes

longerthanusual. In addition, the patternsin driverversion3.0 arerotated;they

arenot rotatedin version1.0.

Try to avoid frequentlychangingfonts. PostScripthasto build eachcharacterit

needseitherby usingthedrawingcommandsfor the built-in LaserWriterfonts or

by resizingbitmapsdownloadedfrom screenfonts on the Macintosh. As each

characteris built, it is cached(if there’sroom), so if thatcharacteris neededagain

PostScriptgetsif from thecache.Whenthefont changes,thecharactershaveto be

built from scratchin the new font, which takestime. If the font is not in the

LaserWriter,it takestime to downloadit from theMacintosh. If the userhasthe

option of choosingfonts, you haveno control overthis variable;however,if you

controlwhich fonts to use,keepthis in mind.

• Avoid using _TextBox. It makescalls to EraseRect,which slows the

printer,for everyline of text it draws. You migfi wantto useadifferentmethodof

displayingtext (e.g.,_DrawStringor_DrawText)or write your own version

of _TextBox. If an applicationis currently calling TextBox, changingto

anothermethodof displayingtext canimprovespeedon lEe orderof five to one.

• Becauseof theway rectangleintersectionsaredetermined,if yourclip regionfalls

outsideof the rPagerectangle,you slow down the printer substantially. By

makingsureyourclip regionis entirelywithin the rPagerectangle,you cangeta

speedimprovementof approximatelyfour to one.

• Do not usespool-a-page/print-a-pageassomeapplicationsdowhenprintingon the

JinageWiiter. It slowsthingsdownconsiderablybecauseof all of thepreparation

thathasto bedonewhenajobis initiated. Referto TechnicalNote#125,Effectof

Spool-A-Page/Print-A-Pageon SharedPrinters,for moreinformation.

• Using_DrawCharto placeeverycharacterto print can takea lot of time. One

reason,of course,is becauseit hasto go throughthebottlenecksfor everycharacter

that is drawn. The otheris that the printerdriver doesits bestto do line layout,

makingthecharacterspacingjust right. If you aretrying to positioncharactersand

thedriver is trying to positioncharacterstoo, thereis conflict, andprinting takes

much longer than necessary. In version 3.0 of the driver, there are picture

commentsthatturn off the line layoutoptimization,alleviatingsomeof theproblem.

Referto TechnicalNote#91,Optimizing for theLaserWriter—.PictureComments,

for moreinformation.

.
4 of 5 #72 OpumizingForTheLaserWriter—Techniques



DeveloperTechnicalSupport October1990

Clipping Within Text Strings

Whenclipping charactersout of a siring, makesurethattheclipping rectangleor regionis greater
thantheboundingbox of thetext you wantto clip. Thereasonis thatif you clip partof acharacter
(e.g.,a descender),theclippedcharacterhasto berebuilt, which takestime. In addition,because
of thedifferencebetweenscreenfontsandprinterfonts,chancesarethatyou cannotaccuratelyclip
the right charactersunlessyou arerunningon the 128K ROMs andhavefractionalpixel widths
enabled.

When to Validate the Print Record

To validatetheprint recoiti, call Prvalidate.You needvalidationto checkto seeif all of the
fields areaccurateaccordingto thecurrentprinterselectedandthe currentversionof the driver.
You shouldcall Prvalidatewhenyou haveallocateda newprint recordor wheneveryou need
to accessinformation from the print record (i.e., when you get r Page). The routines
PrStlDialogandPrJobDialogcall PrValidatewhentheyarecalled,soyou do not have
to worry aboutit if you usethesecalls.

Empty QuickDraw Objects

QuickDrawobjectsthatareempty (i.e., they haveno pixelsin them)andarefilled but not framed,
do not print on the ImageWriteranddo not showup on the screen;however,on theLaserWriter
theyarerealobjectsanddoprint.

Further Reference:
InsideMacintosh,VolumeI, QuickDraw

• InsideMacintosh,VolumeII, ThePrintingManager
• LoserWriterReferenceManual
• TechnicalNote#41,DrawingInto An Off-ScreenBitmap
• TechnicalNote#91,Optimizingfor theLaserWriter—PictureComments
• TechnicalNote#125,Effectof Spool-A-Page/Print-A-Pageon SharedPrinters
• TechnicalNote#161,A PrintingLoop ThatCares...
• PostSciiptLanguageReference,AdobeSystems,Incorporated
• PostScriptLanguageTutorial andCookbook,AdobeSystems,Incorporated

MacDrawis a registeredtrademarkof ClarisCorporation.
PostScriptis a registeredtrademarkof AdobeSystems,Incorporated.

#fl: OptimizingForTheLaserWriter—Techniques 5 of 5



.



Macintosh Technical Notes

#73: Color Printing

Seealso: QuickDraw
The Printing Manager
PostScriptLanguageReferenceManual,

Adobe Systems

Written by: GingerJernigan February3, 1986

Modified by: Scott “ZZ” Zimmerman January1, 1988

Updated: March 1, 1988

This discussescolor printing in a Macintoshapplication.

Whereasthe original eight-colormodel of QuickDrawwas sufficient for printing in color

on the lmageWriterII, the introductionof Color QuickDraw hascreatedthe needfor more

sophisticatedprinting methods.

The first sectiondescribesusing the eight-colorQuickDraw model with the lmageWriter

II and lmageWriterLQ drivers. Sincethe current Print Managerdoesnot supportColor

GrafPorts,the eight-colormodel is the only methodavailablefor the lmageWriters.

The next sectiondescribesa techniquethat can be usedfor printing halftone images

using PostScript (when it is available). Also describedis a device independent

technique for sending the PostScriptdata. This techniquecan be used on any

LaserWriter driver 3.0 or later. It will work with all LaserWriters except the the

LaserWriteruSC.

It is very likely that bettercolor supportwill be addedto the Print Managerin the future.

Until then,thesearethe bestmethodsavailable.

TechnicalNote #73 page 1 of 4 Color Printing



Part 1, ImageWriters

The lmageWriterdrivers are capableof generatingeach of the eight standardcolors
defined in QuickDraw by the following constants:

whiteColor
blackColor
redColor
greenColor
blueColor
cyanColor
magentaColor
yellowColor

To generatecolor all you needto do is setthe foregroundandbackgroundcolors before
you begin drawing (initially they are set to blackColor foreground and whiteColor
background).To do this you call the QuickDraw routinesForeColorandBackColoras
describedin Inside Macintosh. If you are using QuickDraw pictures,makesureyou set
the foregroundand backgroundcolors beforeyou call ClosePictureso that they are
recordedin the picture. Settingthe colorsbeforecalling DrawPicturedoesn’twork.

The driversalso recognizetwo of the transfermodes:srcCopyand srcOr.The effect of
the othertransfermodesis not well definedand has not beentested.It may be bestto
stayawayfrom them.

Caveats

When printing a large areaof more than one color you will encountera problemwith the
ribbon. When you print a large areaof one color, the printer’s pins pick up the color from
the back of the ribbon. When anotherlarge areaof color is printed, the pins depositthe
previouscolor onto the backof the ribbon. Eventuallythe first color will comethroughto
the front of the ribbon, contaminatingthe secondcolor. You can get the samekind of
effect if you set, for example,a foregroundcolor of yellow and a backgroundcolor of
blue. The ribbon will pick up the blue as it tries to print yellow on top of it. This problemis
partially alleviated in the 2.3 version of the lmageWriterdriver by using a different
printing technique.

The ribbon goesthrough the printer ratherquickly when printing large areas.When the
ribbon comesthroughthe secondtime the colorsdon’t look too great.

TechnicalNote #73 page2 of 4 Color Printing



Part 2, LaserWriters

Using the PostScript‘image’ Operatorto Print Hattones

About ‘image’

The PostScriptimageoperatoris usedto sendBitmaps or Pixmapsto the LaserWriter.
The image operator can handle depths from 1 to 8 bits per pixel. Our current
LaserWriterscan only imageabouttwenty shadesof gray, but the printed pagewill look
like there’s more. Being that the imageoperatoris still a PostScriptoperator,it expects
its data in the form of hexidecimal bytes. The bytes are representedby two ASCII
characters(O-9,A-F). The imageoperatortakestheseparameters:

width height depth matrix image-data

The first three are the width, height, and depth of the image, and the matrix is the
transformationmatrix to be appliedto the currentmatrix. Seethe PostScriptLanguage
ReferenceManual for more information. The imagedatais where the actual hex data
should go. Insteadof inserting the data betweenthe first parametersand the image
operatoritself, it is betterto usea small, PostScriptprocedureto readthe datastarting
from right afterthe imageoperator.For example:

640 480 8 [640 0 0 480 0 0)
{currentfile picstr readhexstringpop}
image
FF 00 FF 00 FF 00 FF 00

In the aboveexample,the width of the image is 640, the height is 480, and the depth is
8. The matrix (enclosedin brackets)is setupto draw the imagestarting at QuickDraw’s
0,0 (top left of page),and with no scaling. The PostScriptcode (enclosedin braces)is
not executed.Instead,it is passedto the image operator,and the image operatorwill
call it repeatedlyuntil it has enoughdata to draw the image. In this case,it will be
expecting640*480 bytes. When the image operatorcalls the procedure,it doesthe
following:

1. Pushesthe current file which in this caseis the streamof datacoming to the
LaserWriteroverAppleTalk. This is the first parameterto readhexstring.

2. Next picstr is pushed.picstr is a string variabledefined to hold one row of hex
data.The PostScriptto createthe picstr is:

/picstr 640 def

3. Now readhexstringis called to fill picstr with datafrom the current file. It begins
readingbyteswhich arethe charactersfollowing the imageoperator.

4. Since readhexstringleavesboth the string we want, and a booleanthat we
don’t want on the stack,we do one pop to kill of the boolean.Now the string is
left behindfor the imageoperatorto use.

TechnicalNote #73 page3 of 4 Color Printing



So using the abovePostScriptcodeyou can easily print an image.Just fill in the width

height anddepth,and sendthe hex dataimmediatelyfollowing the PostScriptcode.

Setting Up for ‘image’

Most of the usersof this techniqueare going to want to print a Color QuickDraw PixMap.

Although the imagecommanddoesa lot of the work for you, thereare still a coupleof

tricks that are recommendedfor performance.

Assumethe Maximum Depth

Sincethe currentversionof the imageoperatorhasa maximumdepthof 8 bits/pixel, it is
wise to convert the sourceimageto the samedepth before imaging. This can be done
very simply by using an offscreenGrafPort that is set to 8 bits/pixel, and then using

CopyBits to do the depthconversionfor you. This will do a nice job of converting lower
resolutionimagesto 8 bits/pixel.

Build a Color Table

An 8 bit deepimagecan only use256 colors. Sincethe imagethat you are startingwith

is probably color, and the image you get will be grayscale,you need to convert the
colors in the sourcecolor table into PostScriptgrayscalevalues.This is actually easyto

do using the Color Manager.First createa tablethat can hold 512 bytes.This is 2 bytes

for eachcolor value from 0 to 255. SincePostScriptwantsthe valuesin ASCII, you need
two charactersfor each pixel. Now loop through the colors in the color table. Call
lndex2Colorto get the real RGB color for that index, and then call RGB2HSLto convert

the RGB color into a luminancevalue. This value will be expressedas a SmallFract

which can then be scaled into a value from 0 to 255. This value should then be

convertedto ASCII, and storedat the appropriatelocation in the table. When you are

done,you should be able to usea pixel value as an index into your table of PostScript

color values.For eachpixel in the image,sendtwo charactersto the LaserWriter.

Sending the Data

Onceyou haveset up the color table,all that left to do is to loop through all of the pixels,

and sendtheir PostScriptrepresentationto the LaserWriter.Thereare a coupleof ways
to do this. First is to usethe low-level Print Managerinterfaceand streamthe PostScript
usingthe stdBuf PrCtlCall. Although this seemslike it would be the fastestway, the latest
version of the LaserWriterdriver (5.0) convertsall low-level calls to their high level
equivalentbefore executingthem. Becauseof this, the low-level interfaceis no longer
fasterthan the high level. In an FKEY I havewritten, I usethe high-level Print Manager

interface, and sendthe data via the PostScriptHandlePicComment.This way, I can

buffer a large amountof data, before actually sendingit. Using this technique,I have
beenable to imagea Mac Il screenin about5 minuteson a LaserWriterPlus,and about
1.5 minuteson a LaserWriterII NTX.

.
TechnicalNote #73 page4 of 4 Color Printing



Macintosh Technical Notes

#74: Don’t Usethe ResourceFork for Data

Seealso: The ResourceManager
TechnicalNote #62—ResourceHeaderApplication Bytes

Written by: Bryan Stearns March 13, 1986
Updated: March 1, 1988

Don’t usethe resourcefork of a file for non-resourcedata.Partsof the system(including
the File Managerand the Finder) assumethat if this fork exists, it will contain valid
ResourceManagerinformation.

PBOpenRFwas provided to allow copying of the resourcefork of a file in its entirety,
without ResourceManagerinterpretation.Do not useit to open“anotherdatafork.”

The File Managerassumesthat the first block of the resourcefork of a file will be part of
the resourceheader,and puts information there to aid in scavenging.Note that this
meansthat if you copy a resourcefile (openedwith PBOpenRF),the duplicatemay not be
exactly like the original.

TechnicalNote #74 page 1 of 1 Don’t Usethe ResourceFork for Data



.

.

.



Macintosh
TechnicalNotes

DeveloperTechnicalSupport

#75: Apple’s Multidisk Installer

Revisedby: Rich Kubota January1992
Written by: Scottdouglass March 1986

This TechnicalNote documentsApple’s Multidisk Installer, and it is in addition to separate
Installerdocumentationwhich providesthedetailsof writing scripts.
Changessince September1991: Revisedinformation on the useof Installerversion 3.1 to
version3.2. Revisedinformationon the useof ScriptCheckversion3.2.1 with Installerversion
3.2. AddedCommonQuestionsand Answersrelatingto theuseof the Installer.

Apple’s Multidisk Installer is intendedto make it easyfor Macintoshusersto add or update
software. It is a very useful tool for addingthird-partysoftware,andApple recommendsthatyou
usethe Installerunlessyour softwareinstallationis simple.Apple alsorecommendsthat you use
version3.2 of the Installer.

TheMultidisk Installerhasthefollowing features,asof version3.2:

• “Easy Install” modewheretheInstallerscriptwriter candeterminethe appropriate
installationbaseduponexaminationof the targetenvironmentandprovidethe user
with “One-ButtonInstallation”

• An optional “Custom Install” mode where power userscan customizetheir
installation

• “Live” installationto the currentlybootedand active system;thus it is no longer
necessaryto ship the Installeron a bootabledisk with a SystemFolder

• Ability to install from an AppleShareserver(“Network Install”)
• Ability to install from multiple sourcedisks
• Installationof softwareto foldersotherthanthe SystemFolderaswell ascreation

of newfoldersasnecessary
• RunsunderSystem4.2 andlaterversions
• “User Function” support;this featureprovideslinkageto developer-definedcode

segmentsduring Easy Install, so script writers can customizethe processof
determiningwhat softwareto install andhow to install it

• “Action Atom” support; this featureprovideslinkage to developer-definedcode
segmentsthatarecalledbeforeor aftertheinstallationtakesplace;script writerscan
usethis featureto extendthecapabilitiesof theInstaller

• Audit Records;this featureprovidesthe script writer with the ability to record
detailsaboutan installationsothat future installationscanbe moreintelligent

The ‘incin’ (defaultmap) resourceof Installer3.0.1 is no longer supportedin Installer3.1 and
laterversions.This wasusedby scriptwriters to implementEasyInstall. It is replacedby ‘infr’
(framework)and ‘inn’ (rule) resources.

Note: If theuseropensthe Installerdocumentratherthanthe Installer,the wrong Installer
may be launched(dependinguponthe contentsof their mountedvolumes).This is
only a problembetweenversions3.1 and 3.0.x. If you aredevelopinga 3.1 script,

#75: Apple’s Multidisk Installer 1 of4



MacintoshTechnicalNotes

you maywant to addan ‘in&n’ resourcethatputsup a warningdialog box. If you
aredevelopinga 3.0.x script, you maywant to addan ‘infr’ and ‘inn’ resource
thatputs up a reportsysErrordialog box. This problemis resolvedin Installer
3.2. With version3.2, the file type andcreatorareboth ‘bjbc’ asopposedto the
useof ‘cfbj’ with versions3.0.1 and3.1.

Installerversion3.2 is availableasa completereferencesuitewhich includesthefollowing:

• Installer3.2 ScriptingGuide (datedDecember1, 1991,on thecover)
• InstallerScriptCheck32b7User’sManual
• Installer3.2 application
• ScriptCheck3.2.1 (MPW Tool)
• InstallerTypes.r(MPW Rezinterfacefile)
• ActionAtomlntf.a, .h, .p (Action Atom interfacefiles for Assembler,C, andPascal)

The referencesuite for Mukidisk Installer3.2 is availableon the latestDeveloperCD and on
AppleLink in theDeveloperServicesBulletin Board.TheMultidisk Installerwas alsoprovidedon
the System7 GoldenMasterCD-ROM: however,thatpackageincludedthe b7 releaseof theMPW
ScriptChecktool.

Mukidisk Installerversion3.2 containsa few minor improvementsthatwill makeit easierto write
scriptsthatwork on both System6.0.x and7.0. Installer3.1 hadminimal testingwith System7.0.
If you areexpectingto install softwareonto machinesrunningSystem7.0, you shouldconsider
upgrading.Scriptchangesshouldbeminimal.

Common Question and Answers
Q How canI checkfor a minimumsystemversion?

A Usethe checkFileversion clauseaspartof the ‘inn’ RulesFrameworkresource.The
formatof the minimal-versionparameteris shownin the InstallerTypes.rfile as ‘#define

Version’.Themostcommondifficulties are in rememberingthatBCD valuesarerequired
andin dealingwith two-digit versionnumbers.Somesamplesfollow.

Assumingthat the target-filespecresource,‘irifs’, for the Systemfile is 1000,usethe
following clauseto checkfor Systemversion6.0.5:

checkFileVersion{1000,6, 5, release,O};

Assumingthat the target-filespecresource,‘infs’, for the Finder file is 1001, usethe
following clauseto checkfor Finderversion6.1.5:

checkFileVersion{lOOl, 6, 0x15, release, O};

Assumingthat the target-filespecresource,‘inf a’, for the AppleTalk resourcefile is
1002,usethe following clauseto checkfor AppleTalkversion53:

checkFileVersion{1002,0x53, 0, release, 0};

Q My Installerscript installsa deskaccessory.UnderSystem6, eachtime I run the script, a
new copyof theDA appearsasa DRVR resourcein the Systemfile. Why?

A Unfortunately,this is a symptomwhen the ‘deleteWhenlnstalling’flag is usedin
conjunctionwith the ‘updateExisting’flag. The Installer3.1 & 3.2 Scripting Guide
indicatesthat resourcesmarkedwith the ‘dontDeleteWhenlnstalling’flag can be

2 of 4 #75: Apple’s Multidisk Installer



DeveloperTechnicalSupport January1992

replacedwith a new resource.The guide alsoindicatesthat the Installerwill overwritea
preexistingresourcein the targetfile if the ‘updateExisting’flag is set.Given thesetwo
flag settings,and the useof thereplace ‘byName’ (noByID) flag, the Installerdoesnot
deletethe DA. Insteada new DRVR resourceis createdwith the samenamebut a new
resourceID.

The correctInstalleractionis accomplishedby settingthe ‘deletewhenlnstalling’flag
in conjunction with the ‘updateExisting’flag. Alternatively, use the
‘dontneleteWhenlnstalling’flag with the ‘keepExisting’ flag.

Q How can I include the currentvolumenamein a reportvolErroralert as manyof the
installationscriptsfrom Apple do?

A The volumenamecanbe includedby inserting“0” in the desiredlocationof the Pascal
stringpassedto the reportVolErrorerrorreportingclause.

Q. I setthe searchForFileflag in my ‘infs’ resource, however,the Installeractsas if it’s
unableto find the file. Why?

A. The likely reasonfor this problemis that the desiredfile is within a folder by the same
name. When the searchForFileflag is set, the Installerwill also find a matchon a
folder. The Installerwill not replacea folder with a file, nor will it add a resourceto a
folder. TheInstallercontinuesas if the searchfailed.

Q Whatis the ‘mcd’ resourceabout?

A WhentheMPW ScriptChecktool is used,it readsthe script’sfile creationdate/timestamp
andconvertsit into a long word with theDate2Secsprocedure.ScriptCheckstoresthis
long word in the ‘mcd’ resourcefor usewith verifying files whena networkinstallation
is performed.Seethe following questionsfor a discussionof this resource.

Q Whatchecksaremadeby the Installerwhenpreflightingan installation?Occasionallythe
alert “Could not find a requiredfile. . .“ occursandthe installationis aborted.

A The Installercompilesa list of the sourcefile specificationsfrom eachof the resource
‘inra’ andfile ‘inf a’ atomsspecifiedamongthe package‘inpk’ atomsincludedfor
installation.Eachsourcefile specificationincludesa completepathname.As eachsource
file is accessed,a checkis madeof the file’s creationdate/timestampwith the date/time
stamprecordedin the corresponding‘infs’ resource.If the date/timestampsdo not
match,the alert resultsandthe installationis aborted. Thecreationdate/timestampin the
‘infs’ resourcecanbe

• enteredmanuallyinto the script file so long asthevalueis not 1 or 0,
• filled in by ScriptCheckautomatically,if a valueof 1 is enteredin thedatefield,
• forcedto be updated,if the -d switch is usedwith ScriptCheck.

Q Whataresomeof theconsiderationswhenconfiguringa networkinstallationsetup?

A UnderInstaller3.1/3.2,networksoftwareinstallationsaremadepossibleby settingup an
installationfolder on the servervolume.This folder will containthe Installerapplication,
the Script file, anda folder(s)matchingthe namesof the requireddisk(s).Within the disk
folder(s)arethecorrespondingcontentsof thedisk(s).

A problemcanoccurwhena workstationis usedto createthe serverinstallationfolderand
the systemdate and time differ significantly betweenthe two systems.Under such

#75: Apple’s Multidisk Installer 3 of 4



MacintoshTechnicalNotes

condition, files copied from the workstationto the servermay havetheir creationand
modificationdatetime/stampsaltered.If amodificationis made,the“delta” is constantfor
boththecreationandmodificationdate/timestampandfor all files copiedat that time.

As indicatedin thepreviousquestion,the installerpreflightsa file by comparingits creation
date/timestampwith thevaluestoredin thecorresponding‘infs’ resourcein thescript file.
To compensatefor the fact that a servermay alter a file’s creationdate/timestamp,the
Installer implementsthe ‘mcd’ resource.After the userselectsthe install button, the
Installerreadsthe ‘mcd’ resourceandcomparesit with the script file’s creationdate/time
stamp.Thedifferenceis storedasthe“delta.” On a normaldisk installation,the “delta” is
alwayszero.As the Installerfinds eachrequiredsourcefile, the file’s creationdate/time
stampis convertedto a long word and adjustedby the “delta.” The modified date/time
stampis then comparedwith that storedin the script file. If the valuesmatch,the file is
consideredfoundandthe installationproceeds.On networkinstallations,the deltamay be
nonzero.If so, it indicatesthat the file’s creationdate/timestampsweremodified when
copiedto the server. Thus the ‘mcd’ resourcegives the Installera way to maintainfile
verificationeventhoughthedate/timestampmaybealtered.

A specificproblemcanoccurwhenan installationis setup on somesystemsrunningolder
versionsof Novell Serversoftware.Underspecificconditions,files copiedto someNovell
servershavetheir creationtime stampalteredto 12:00A.M. regardlessof theoriginal time
stamp.This includesthecreationtime stampof the scriptfile. This conditionwreakshavoc
with the Installer’s preflight mechanism.The “delta” determinedbetweenthe ‘mcd’

resourceand the Script file’s creationdate/timestampmay not be consistentwith the
creationdate/timestampstoredin the infs resourceandthecorrespondingfile’s time stamp
now at 12:00A.M.

A work-aroundsolutionfor this problemis to settheCreationtime stampfor all files on the
installationdisk to 12:00 A.M., BEFORErunning the ScriptChecktool. Use the MPW
tool SetFile to perform this function. Here’s a sampleMPW script for performing this
function:

SetFile —d “1/1/92 12:00AM” ‘files —r —s —f

This script assumesthat the currentdirectoryis setto theroot of the Installationdisk. For
multiple disks,run this scripton eachdisk. Usethe ‘-f switch with ScriptCheckto ensure
thatthedate/timestampsareupdatedon scriptspreviouslychecked.

Installationof softwareis a nontrivial process.Apple recommendsthat you reservetime for
developmentand testingto ensurethat the installationprocessproceedssmoothlyon all target
machineconfigurations.

To ship the Installerwith yourproductyou mustcontactApple’s SoftwareLicensingDepartment
(AppleLink: SW.LICENSE)and licensethe Installeraloneor with the systemsoftwarepackage
that includesthe versionof the Installeryou intend to use.SoftwareLicensingalso suppliesyou
with a copyof the Installerthatyou may ship.

Further Reference:
Installer3.2 ReferenceSuite

0
4 of 4 #75: Apple’s Multidisk Installer



Macintosh Technical Notes

#76: The MacintoshPlus UpdateInstallationScript

Written by: scottdouglass February24, 1986
Updated: March 1, 1988

Earlierversionsof this notedescribedthe MacintoshPlus Updateinstallation
script, becauseit was the first script createdfor the Installer. Since then,
manyversionsof this script havebeencreatedwhich no longer matchwhat
wasdescribedhere. In addition, manyotherscriptsnow exist.

TechnicalNote #76 page 1 of 1 The MacintoshPlus UpdateScript



.

.



Macintosh Technical Notes

#77: HFS Ruminations

Seealso: The File Manager
TechnicalNote #66—

DeterminingWhich File Systemis Active
TechnicalNote #67—Findingthe “BlessedFolder”
TechnicalNote #68—

SearchingAll Directorieson an HFS Volume

Written by: Jim Friedlander June7, 1986
Updated: March 1, 1988

This technicalnotecontainssomethoughtsconcerningHFS.

HFS numbers

A drive numberis a small positive word (e.g. 3).

A VRefNum (asopposedto a wDRefNum) is a small negativeword (e.g. $FFFE).

A WDRefNum is a large negativeword (e.g. $8033).

A DirID is a long word (e.g. 38). The root directory of an HFS volume always has a
dirlD of 2.

Working Directories

Normally an application doesn’t need to open working directories (henceforthWDS)
using PBOpenWD, since SFGetFiiereturnsa WDRefnum if the selectedfile is in a
directory on a hierarchicalvolume and you are running HFS. Thereare times, however,
when openinga WD is desirable(seethe discussionaboutBootDrive below).

If you do open a WD, it should be createdwith an ioWDProcID of ERlK’ ($4552494B)
and it will be deallocatedby the Finder. Note that underMultiFinder, ioWDProcID will be
ignored,so you shouldonly use ‘ERIK’.

SFGetFilealso createsWDs with an ioWDProcID of ‘ERIK’. If SFGetFI1eopenstwo
files from the same directory (during the sameapplication), it will only createone
working directory.

TrchnicaI Note #77 page 1 of 6 HFS RuminaUons



Thereare no WDRefnumsthat refer to the root—the root directory of a volume is always
referredto by a vRefNum.

When you can use HFS calls

All of the HFS ‘H’ calls, exceptfor PBHSetVInfo,can be madewithout regardto file
systemas long as you passin a pointer to an HFS parameterblock. PBHGetVo1,

PBHSetVo1 (see the warnings in the File Managerchapterof Inside Macintosh),
PBHOpen,PBHQpenRF,PBHCreate,PBHDelete,PBHGetE’Info,PBHSetFInfo,

PBHSetFLock,PBHRstFLockand PBHRenamediffer from their MFS counterpartsonly in
that a dir ID can be passedin at offset $30.

The only differencebetween,for example,PBOpenand PBHOpenis that bit 9 of the trap
word is set, which tells HFS to use a larger parameterblock. MFS ignoresthis bit, so it
will use the smallerparameterblock (not including the dirlD). Rememberthat all of
thesecalls will accepta WDRefNum in the ioVRefNum field of the parameterblock.

PBHGetVInfo returns more information than PBGetVInfo, so, if you’re counting on
getting information that is returned in the HFS parameterblock, but not in the MFS
parameterblock, you shouldcheckto seewhich file systemis active.

HFS-specificcalls can only be made if HFS is active. Thesecalls are: PBGetCatInfo,

PBSetCatInfo, PBOpenWD,PBC1oseWD,PBGetFCBInfo,PBGetWDInfo,PBCatMove

and PBDirCreate.PBHSetVInfohasno MFS equivalent.If any of thesecalls are made
when MFS is running, a systemerror will be generated.If PBCatMoveor PBDirCreate

are called for an MFS volume, the function will return the error code —123 (wrong
volume type). If PBGetCatInfo or PBSetCatInfo are called on MFS volumes,it’s just
as if PBGetFInfoandPBSetFInfowerecalled.

Default volume

If HFS is running, a call to GetVol (beforeyou’ve madeany SetVol calls) will return the
WDRefNum of your application’s parentdirectory in the vRefNum parameter.If your
application was launchedby the user clicking on one or more documents,the
WDRefNums of thosedocuments’parentdirectoriesare availablein the vRefNum field of
the AppFile recordreturnedfrom GetAppFiles.

If MFS is running,a call to GetVol (beforeyou’ve madeany SetVol calls) will return the
vRefNum of the volume your application is on in the vRefNum parameter. If your
applicationwas launchedby the userclicking on one or more documents,the vRefNum

of thosedocuments’volume are available in the vRefNum field of the AppEile record
returnedfrom GetAppFiles.

TechnicalNote #77 page 2 of 6 HFS Ruminations



BootDrive

If your applicationor deskaccessoryneedsto get the WDRefNum of the “blessedfolder”
of the boot drive (for example,you might want to storea configurationfile there), it can
not rely on the low-memoryglobal BootDrive (a word at $210) to contain the correct
value. If your application is the startup application, BootDrive will contain the
WDRefNum of the directory/volumethat your application is in (not the WDRefNum of the
“blessedfolder”); Your applicationcould havebeen_Launchedfrom an applicationthat
has modified BootDrive; if you are a desk accessory,you might find that some
applicationsalterBootDr±ve.

To get the “real” WDRefNum of the “blessedfolder” that containsthe currently open
Systemfile, you should call SysLnvirons(discussedin TechnicalNote #129). If that is
impossible, you can do something like this (Note: if you are running under MFS,
BootDrive always containsthe vRefNum of the volume on which the currently open
Systemfile is located):

CONST

SysWDProcID = $4552494B; (“ERIK”)
BootDrive = $210; (addressof Low-Mem global BootDrive}
FSFCBLen = $3F6; (addressof Low-Mem global to

distinguish file systems
SysMap = $A58; (addressof Low-Mem global that contains

systemmap referencenurnber}

TYPE

WordPtr = “Integer; (Pointer to a word(2 bytes)

FUNCTION HFSExists: BOOLEAN;

Begin {HFSExists}

HFSExists : WordPtr(FSFCBLen)” > 0;
End; {HFSExists}

FUNCTION GetRealBootDrive: INTEGER;

VAR

MyHPB : I-{ParamBlockRec;
MyWDPB : WDPBRec;
err OSErr;
sysVRef : integer; (will be the vRefNum of open system’s vol}

Begin (GetRealBootDrive

if HFSEzists then Begin (If we’re running under HFS...

(get the VRefNum of the volume that I
{contains the open SystemFile
err:= GetVRefNum(WordPtr(SysMap)“,sysVRef);

TechnicalNote #77 page 3 of 6 HFS Ruminations



with MyHPB do Begin

{Get the “System” vRefNum and “Blessed” dirlD}

ioNamePtr := NIL;

ioVRefNum := sysVRef; (from the GetVrefNum call)

ioVollndex 0;

End; (with)

err := PBHGetVInfo(@MyHPB, FALSE);

with myWDPB do Begin (Open a working directory there)

ioNamePtr : NIL;

ioVRefNum := sysVRef;

ioWDProcID := SysWDProcID; (Using the systemproc ID)

ioWDDirID myHPB.ioVFndrlnfo[l];{ see TechNote 67)
End; {with}

err PBOpenWD(@myWDPB, FALSE);

GetRealBootDrive : = myWDPB. ioVRefNum;

{We’ve got the real WD)

End Else (we’re running MFS}

GetRealBootDrive := WordPtr(BootDrive);

{BootDrive is valid under MFS}

End; {GetRealBootDrive

From MPW C:

/*flERIK’*/

#define SysWDPr0cID 0x4552494B

#define BootDrive 0x210
/*addressof Low—Mem global that contains systemmap referencenumber*/

#define SysMap 0xA58

#define FSFCBLen 0x3F6

#define I-{FSlsRunning ((*(short mt *) (FSFCBLen)) > 0)

OSErr GetRealBootDrive(BDrive)

short mt *BDrjve;

/*GetRealBootDrive*/

/*three different parameterblocks are used here for clarity*/

HVolumeParam myHPB;

FCBPBRec myFCBRec;

WDPBRec myWDPB;

OSErr err;

short mt sysVRef; /*will be the vRefNum of open system’s

vol * /

if (HFSlsRunnirig)

/*if we’re running under HFS... *1

/*get the vRefNum of the volume that contains the open SystemFile*/

myFCBRec ioNamePtr= nil;

myFCBRec.ioVRefNum= 0;

myFCBRec.ioRefNum= *(short mt *) (SysMap);

myFCBRec.ioFC3lndx= 0;

err = PBGetFCBInfo(&myFCBRec,false);

if (err != noErr) return(err);
/*now we need the dirlD of the “Blessed Folder” on this volume*/

TechnicalNote #77 page 4 of 6 HFS Ruminations



myHPB.ioNamePtr= nil;

myHPB. ioVRefNum = rnyFCBRec.ioFCBVRefNum;

myHPB.ioVollndex = 0;

err = PBHGetVInfo(&myHPB,false);

if (err noErr) return(err);

/*we can now open a WD for the directory that contains the open

system file one will most likely already be open, so PBOpenWD will

just return that WDRefNum*/

myWDPB.ioNamePtr= nil;

myWDPB. ioVRefNum = myHPB. ioVRefNum;

myWDPB.ioWDProcID = SysWDProcID; /*ERIK’*/

myWDPB.ioWDDirID = myHPB.ioVFndrlnfo[0]; / see Technote # 67
[c has 0—basedarrays]*/

err = PBOpenWD(&myWDPB,false);

if (err != noErr) return err;

*BDrive = myWDPB.ioVRefNum; /*that’s all!*/
/* if (HFSlsRunning) *1

else
*BDrive = * (short mt *) (BootDrive);
/*BootDrjve is valid under MFS*/

return noErr;
/*GetRealBootDrive*/

The Poor Man’s SearchPath (PMSP)

If HFS is running, the PMSP is usedfor any file systemcall that can return a file-not-
found error, suchasPBOpen,PBClose,PBDelete,PBGetCatlnfo,etc. It is not usedfor
indexed calls(that is, where ioFDir Index is positive) or when a file is created
(PBCreate)or when a file is being movedbetweendirectories(PBCatMove).The PMSP
is also not usedwhen a non-zerodir ID is specified.

Here’s a brief descriptionof how the default PMSPworks.

1) The directorythat you specify (specifiedby WDRefNumor pathname)is searched;if the
specifiedfile is not found, then

2) the volume/directoryspecified by BootDrive (low-memory global at $210) is
searchedIF it is on the samevolume asthe directoryyou specified(see#1 above); if the
specifiedfile is not found, or the directory specifiedby BootDrive is not on the same
volume asthe directory that you specified,then

3) if there is a “blessedfolder” on the samevolume as the directory you specified(see
#1 above), it is searched. Pleasenote that if #2 abovespecifiesthe samedirectory as
#3, then thatdirectory is not searchedtwice. If no file is found, then

4) fnfErr is returned.

TechnicalNote #77 page 5 of 6 HFS Ruminations



ioDirld and ioFlNum

Two fields of the HparamBlockRecrecord sharethe same location. loDirID and
ioFlNum are both at offset $30 from the start of the parameterblock. This causesa
problem, since, in somecalls (e.g. PBGetCatInfo), a dirID is passedin and a file
numberis returnedin the samefield.

Future versionsof Apple’s HFS interfaceswill omit the ioFlNum designator,so, if you
needto get the file numberof a file, it will be in the ioDirlD of the parameterblock
after you have madethe call. If you are making successivecalls that dependon
ioDirlD being setcorrectly, you must “reset” the ioDirlD field before eachcall. The
programfragmentin TechnicalNote #68 doesthis.

PBHGetVInfo

Normally, PBHGetVInfo will be called specifyinga vRefNum. Thereare times, however,
when you may makethe call and only specify a volume name. If this is so, thereare a
coupleof thingsto look out for.

Let’s say that we havetwo volumesmounted:“Von :“ (the default volume) and “Vo12 :“.

We also have a variable of type HParamBlockReccalled MyHPB. We want to get
information about Vo12 : , so we put a pointer to a string (let’s call it fName) in
MyHPB. ioNamePtr.The string fName is equal to “Vo12” (Pleasenote the missing
colon). We also initialize MyHPB. ioVRefNum to 0. Then we makethe call. We are very
surprisedto find out that we are returnedan error of 0 (noErr) and thatthe ioVRefNum

that we get backis not the vRefNumof Vo12 :, but ratherthat of Voll:.

Here’s what’s happening:PBHGetvInfo looks at the volume name,and seesthat it is
improper(it is missinga colon). So, beinga forgiving sort of call, it goeson to look at the
ioVRefNum field that you passedit (seepp. 99 of Inside Macintosh,vol. II). It seesa 0
there,so it returnsinformation aboutthe default volume.

If you want to get information abouta volume, and you just have its nameand you are
not sure that the nameis a properone, you should set MYHPB. ioVRefNum to —32768
($8000). No vRefNum or WDRefNum can be equal to $8000. By doing this, you are
forcing PBHGetVInfo to usethe volume name and,if that name is invalid, to return a
—35 error (nsvErr), “No suchvolume.”

PBGetWDInfo and Register Dl

Therewas a problem with PBGetWDInfo that sometimescausedthe call to inaccurately
report the dir ID of a directory. It is fixed in System3.2 and later. To be absolutelysure
that you won’t get stung by this, clear register Dl (CLR.L Dl) before a call to
PBGetWDInfo. You cando this eitherwith an INLINE (Lisa Pascaland most C’s) or with
a shortassembly-languageroutine beforethe call to PBGetWDInfo.

.
TechnicalNote #77 page 6 of 6 HFS Ruminations



Macintosh Technical Notes

#78: ResourceManagerTips

Seealso: The ResourceManager
The Memory Manager
The Menu Manager
TechnicalNote #1 29—SysEnvirons

Written by: Jim Friedlander June8, 1986
Updated: March 1, 1988

This notediscussessomeproblemswith the ResourceManagerand how to
work aroundthem.

OpenResFileBug

This section of the note formerly describeda bug in OpenResFileon 64K ROM
machines.Information specificto 64K ROM machineshasbeendeletedfrom Macintosh
TechnicalNotesfor reasonsof clarity.

GetMenu and ResErrProc

If your application makesuse of ResErrProc(a pointer to a procedurestored in
low-memoryglobal $AF2) to detectresourceerrors,you will get unexpectedcalls to your
ResErrProcprocedurewhen calling GetMenuon 128K ROMs. The Menu Managercall
GetMenumakesa call to GetResInfo, requestingresourceinformation aboutMDEF 0.
Unfortunately,ROMMaplnsertis setto FALSE, SO this call fails, settingResErrto —192
(resNotFound).This in turn will causea call to your ResErrProc,procedureeven
thoughthe GetMenucall hasworked correctly. This is only a problem if you are using
ResErrProc.

The workaroundis to:
1) savethe addressof your ResErrProcprocedure
2) clearResErrProc
3) do a GetResourcecall on the MENU resourceyou want to get
4) checkto seeif you get a nil handleback, if you do, you can handlethe error in
whateverway is appropriatefor your application

5) call GetMenu,and
6) when you aredonecalling GetMenu,restoreResErrProc

TechnicalNote #78 page 1 of 2 ResourceManagerTips



SetResAttrson read-only resourcemaps

SetResAttrsdoesnot return an error if you are setting the resourceattributesof a

resourcein a resourcefile that has a read-only resourcemap. The workaroundis to

checkto seeif the map is read-onlyandproceedfrom there:

CONST
MapROBit = 8; (Toolbox bit ordering for bit 7 of low-order byte}

BEGIN

attrs:= GetResFileAttrs(refNum);

IF BitTst(@attrs,MapROBit) THEN ... {write—protectedmap)

.

TechnicalNote #78 page 2 of 2 ResourceManagerTips



Macintosh
TechnicalNotes

DeveloperTechnicalSupport

#79: _ZoomWindow
Revisedby: CraigProuse April 1990
Written by: Jim Friedlander June1986

This TechnicalNotecontainssomehints aboutusing_ZoornWindow.
ChangessinceFebruary1990: Fixed a bug in DoWZ corn which causedcrashesif the content
of a window did not intersectwith any device’sgdRect. Also madeD0WZ corn morerobustby
making savePorta local variableand checkingfor off-screenandinactiveGDevicerecords.
(Onevariablenamehaschanged.)Additional minorchanges:Correctedoriginal samplecodeto
use_EraseRectbeforezoomingand addedreferencesto Human InterfaceNote #7, Who’s
ZoomingWhom?for moresubtleandapplication-specificconsiderations.

Basics

ZoornWindowallows a window to be toggledbetweentwo states(where“state” meanssizeand
Tocation): a defaultstateanda user-selectablestate. The default statestaysthe sameunlessthe
applicationchangesit, while the user-selectablestateis alteredwhen the userchangesthe sizeor
location of a zoomablewindow. The code to handlezoomablewindows in a main eventloop
would look somethinglike the exampleswhich follow.

Note: ZoornWindow assumesthat the window that you are zooming is the current
GrafPort. If thePortis not set to the window that is being zoomed,an
addresserroris generated.

MPW Pascal

CASE myEvent.what OF
rnouseDown: BEGIN

partCode:=FindWindow(myEvent.where,whichWindow);
CASE partCodeOF

inZoomln, InZoomOut:
IF TrackBox(whichWinclow, myEvent.where,partCode) THEN

BEGIN

GetPort(oldPort);
SetPort(whichWindow);
EraseRect(whichWindow.portRect);
ZoornWlndow(whichWindow, partCode, TRUE);
SetPort(oldPort)

END; {IF}
(and so on}

END; (CASE)
END; {mouseDown)

(and so on)
END; (CASE)

#79: _ZoomWindow 1 of 5



MacintoshTechnicalNotes

MPWC

switch (myEvent.what)

case mouseDown:

partCode= Findwindow(myEvent.where,&whichWindow);

switch (partCode)

case inZoornln:

case inZoornOut:

if (TrackBox(whichWindow, myEvent.where,partCode))

GetPort(&oldPort)

SetPort(whichWindow)

EraseRect(whichwjndow->portRect);

ZoornWindow(whichWindow, partCode, true);

SetPort(olciport);

) 1* if */

break;
/* and so on

/* switch */

1* and so on
1* switch */

If a window is zoomable,that is, if it has a window definition ID = 8 (using the standard

WDEF ‘), WindowRecord . dataHandlepoints to a structurethat consistsof two rectangles.
Theuser-selectablestateis storedin the first rectangle,and the defaultstateis storedin the second
rectangle.An applicationcanmodify eitherof thesestates,thoughmodifying the user-selectable
statemight presenta surpriseto the userwhen the window is zoomedfrom the default state. An
applicationshouldalsobe careful to not changeeitherrectangleso that the title barof the window
is hiddenby the menubar.

Beforemodifying theserectangles,an applicationmustmakesurethatDataHandleis not NIL.

If it is NIL for a window with window definition ID = 8, that meansthat the programis not
executingon a systemor machinethat supportszoomingwindows.

Oneneednot be concernedaboutthe useof a window with window definition ID = 8 makingan
applicationmachine-specific—ifthe systemor machinethat the applicationis runningon doesn’t
supportzoomingwindows, FjndWjndowneverreturnsinZoomln or inZoomOut,so neither

TrackBoxnor _ZoomWindowarecalled.

If DataHandleis not NIL, an applicationcan set the coordinatesof either rectangle. For

example,theFindersetsthe secondrectangle(defaultstate)so thata zoomed-outwindow doesnot
coverthedisk and trashicons.

For the More Adventurous(or Seeing Double)

Developersshouldlong havebeenawarethat they shouldmakeno assumptionsaboutthe screen
sizeandusescreenBits. boundsto avoid limiting utilization of largevideodisplays. Modular
MacintoshesandColor QuickDrawsupportmultiple displaydevices,which invalidatesthe useof

screenBits. boundsunlessthe boundaryof only theprimary display (the onewith the menu
bar) is desired. When draggingand growing windows in a multi-screen environment,

developersare now urgedto usethe boundingrectangleof the GrayRgn. In mostcases,this is
not a majormodificationanddoesnot add a significantamountof code. Simply definea variable

desktopExtent := GetGrayRgn. rgnaBox;

.
2 of 5 #79: _ZoomWindow



DeveloperTechnicalSupport April 1990

andusethis in placeof screenBits . bounds. Whenzoominga documentwindow, however,
additionalwork is requiredto implementa window-zoomingstrategywhich fully conformswith
Apple’s HumanInterfaceGuidelines.

Onedifficulty is thatwhena newwindow is createdwith NewWindowor GetNewWindow,its
default stdStaterectangle(the rectangledeterminingthe size and position of the zoomed
window) is setby the Window Managerto be the grayregionof the main displaydeviceinsetby
threepixels on eachside. If a window has beenmoved to reflect a position on a secondary
display,thatwindow still zoomsontothemain device,requiringtheuserto panacrossthedesktop
to follow the window. Thepreferredbehavioris to zoomthe window onto the devicecontaining
the largestportion of the unzoomedwindow. This is a perfectexampleof a casewhereit is
necessaryfor the applicationto modify thedefaultstaterectanglebeforezooming.

DoWZoomis a Pascalprocedurewhich implementsthis functionality. It is a goodexampleof how
to manipulateboth a WStateDatarecordand the Color QuickDrawdevicelist. On machines
without Color QuickDraw (e.g., Macintosh Plus, Macintosh SE, Macintosh Portable) the
stdStaterectangleis left unmodifiedand the procedurereducesto five instructions,just like it is
illustratedunder“Basics.” If Color QuickDrawis present,a sequenceof calculationsdetermines
which displaydevicecontainsmostof the window prior to zooming. That deviceis considered
dominantand is the deviceonto which the window is zoomed. A new stdStaterectangleis
computedbasedon the gdRectof the dominantGDevice. Allowancesare madefor the
window’s title bar, the menubar if necessary,and for the standardthree-pixelmargin. (Please
note that DoWzoomonly mimics the behaviorof the default ZoomWindowtrap as if it were
implementedto supportmultiple displays. It doesnot accountfor the “natural size” of a window
for a particularpurpose. SeeHumanInterfaceNote #7, Who’s ZoomingWhom?,for detailson
what constitutesthe natural size of a window.) It is not necessaryto set stdStateprior to
calling _ZoomWindowwhenzoomingbackto userState,so the extracodeis not executedin
this case.

DoWZoomis too complexto executewithin the main eventloop as shownin “Basics,” but if an
applicationis alreadyusing a similar scheme,it can simply add the DoWZoom procedureand
replacetheconditionalblock of codefollowing

IF TrackBox...

with

DoWZoom(whichWindow, partCode);.

HappyZooming.

#79: _ZoomWindow 3 of 5



MacintoshTechnicalNotes

PROCEDURE DoWZoom (theWindow: WindowPtr; zoornDir: INTEGER);

VAR
windRect, theSect, zoomRect : Rect;

nthDevice, dominantGDevice GDflandle;

sectArea, greatestArea LONGINT;

bias INTEGER;

sectFlag BOOLEAN;

savePort : GrafPtr;

BEGIN
theEvent is a global EventRecordfrom the main event loop

IF TrackBox(theWindow,theEvent.where,zoomDir) THEN

BEGIN
GetPort(savePort);

SetPort(theWinciow);

EraseRect(theWindow”.portRect); (recommendedfor cosmetic reasons)

If there is the possibility of multiple gDevices, then we

must check them to make sure we are zooming onto the right

display device when zooming out.

sysConfig is a global SysEnvRecset up during initialization

IF (zoomDir inZoomOut) AND sysConfig.hasColorQDTHEN

BEGIN
window’s portRect must be convertedto global coordinates

windRect theWindow.portRect;

LocalToGlobal(windRect.topLeft);

LocalToGlobal(windRect.botRight);

must calculateheight of window’s title bar

bias := windRect.top - 1

— WindowPeek(theWindow) . strucRgn. rgnBBoX.top;

windRect.top := windRect.top — bias; (Thanks, Wayne!>

nthDevice GetDeviceList;

greatestArea 0;
This loop checks the window against all the gdRects in the

goevice list and rememberswhich gdRect contains the largest

portion of the window being zoomed.

WHILE nthDevice <> NIL DO

IF TestDeviceAttribute(nthDevice, screenDevice)THEN

IF TestDeviceAttribute(nthDevice,screenActive) THEN

BEGIN
sectFlag SectRect(windRect,nthDevice.gdRect,theSect);

WITH theSectDO

sectArea LONGINT(right — left) * (bottom — top>;

IF sectArea> greatestAreaTHEN

BEGIN
greatestArea:= sectArea;

dominantGDevice nthDevice;

END;
nthDevice := GetNextDevice(nthDevice);

END; (of WHILE)

We must createa zoom rectanglemanually in this case.

account for menu bar height as well, if on main device I

IF dorninantGDevice= GetMainDevice THEN

bias bias + GetMBarHeight;

WITH dominantGDevice’ . gdRect DO

SetRect(zoornRect,left÷3,top+bias+3,riqht—3,bottom—3);

Set up the WStateDatarecord for this window.

WStateDataHandle(WindowPeek(theWindow).dataHandle) . stdState zoomRect;

END; (of Color QuickDraw conditional stuff)

ZoomWindow(theWindow,zoomDir,TRUE);

SetPort(savePort);

END;

END;

0

4 of 5 #79: _ZoomWindow



DeveloperTechnicalSupport April 1990

In an attemptto avoid declaringadditionalvariables,the original versionof this documentwas
flawed. In addition,the assignmentstatementresponsiblefor settingthe stdStaterectangleis
relatively complexand involves two type-casts.The following may look like C, but it really is
Pascal.Trustme.

WStateDataHandle(WindowPeek(theWindow)“.dataHandle)‘“.stdState : zoomRect;

It couldbeexpandedinto a morereadableform suchas:

VAR
theWRec WindowPeek;
zbRec : WStateDatallandle;

theWRec WindowPeek(theWindow);
zbRec WStateDataHand1e(theWRec.dataHard1e);
zbRec.stdState := zoomRect;

Further Reference:
• InsideMacintosh,Volume IV, The Window Manager(pp. 49—52)
• InsideMacintosh,Volume V, GraphicsDevices(p. 124),TheWindow Manager(p. 210)
• HumanInterfaceNote#7, Who’s ZoomingWhom?

#79: _ZoomWindow 5 of 5



.

.

.



Macintosh Technical Notes

#80: StandardFile Tips

Seealso: The StandardFile Package

Written by: Jim Friedlander June7, 1986
Updated: March 1, 1988

SFSaveDiskand CurDirStore

Low-memory location $214 (sFsaveDisk—aword) contains—1 * the vRefNum of the
volumethat SF is displaying (MFS and HFS). It nevercontains—1 * a WDRefNum.

Low-memory location $398 (curDirstore—along word) containsthe dirlD of the
directory that SF is displaying (HFS only).

This information can be particularly useful at hook time, when the vRefNum field of the
reply record has not yet beenfilled in. Note: reply. fName is filled in correctly at hook
time if a file has been selected.If a directory has been selected,reply. fType iS
non-zero(it containsthe dirlD of the selecteddirectory). If neithera file nor a directory
is selected,both reply. fName[0] and reply. fType are0.

Setting StandardFile’s default volume and directory

If you want SFGetFileor SFPutFileto display a certain volume when it draws its
dialog, you can put —1 * the vRefNum of the volume you wish it to display into the
low-memoryglobal SFSaveDisk(a word at $214).

In Pascal,you would usesomethinglike:

TYPE

WordPtr = “INTEGER; {pointer to a two-byte location)
CONST

SFSaveDisk= $214; (location of low-memory global)
VAR

SFSaveVRef: WordPtr;
myVRef : INTEGER;

BEGIN

{myVRef gets assignedhere)

SFSaveVRef := WordPtr(SFSaveDisk); (point to SFSaveDisk}
SFSaveVRef”:= -1 * myVRef; (“stuff” the value in)
SFGetFile(...

TechnicalNote #80 page 1 of 2 StandardFile Tips



In C you would use somethinglike this (where a variable of type “short” occupies2
bytes):

#define SFSaveDisk (*(short *)0x214)

short myVRef;

1* myVRef gets assignedhere */

SFSaveDisk= —1 * myVRef; /* “stuff” the value in /

SFGetFile(...

If you are running HFS and would like to have StandardFile display a particular
directoryaswell asa particularvolume,you can’t just put a WDRefNum into SFSaveDisk.

If you do put a WDRefNum into SFSaveDisk,StandardFile will display the root directory
of the default volume. Instead,you must put —1 * the vRefNum into SFSaveDisk(see
above) and put the dirlD of the directory that you wish to have displayed in
CurDirStore.If you put an invalid dirlD into CurDirStore,StandardFile will display
the root level of the volume referredto by SFSaveDisk.To changeCurD irStoreYOU

can usea techniquesimilar to the above,but rememberthat CurDirStoreis a four-byte
value. If your applicationis running underMFS, StandardFile ignoresCurDirStore,SO

you can usethe samecoderegardlessof file system.

.

.
TechnicalNote #80 page 2 of 2 StandardFile Tips



Macintosh Technical Notes

#81: Caching

Seealso: The File Manager
The Device Manager
TechnicalNote #14—TheINIT 31 Mechanism

Written by: Rick Blair June17, 1986
Updated: March 1, 1988

This technical note describesdisk and File System caching on the
Macintosh,with particularemphasison the high-level File Systemcache.Of
the threecachesusedfor file I/O, this is the onewhich could havethe most
impacton your program.Note: This big File Systemcacheis not availableon
64K ROM machines.

A term

In this note I will usethe term “HFS” to meanthe HierarchicalFile Systemand the Sony
driver which can accessthe 800K drives. Both RAM-basedHFS (Hard Disk 20 file) and
the 128K ROM version include the second-generationSony driver.

There’s always a cache(type 1)

The first type of cacheusedby the File Systemhasbeenaroundsincethe daysof the
Macintosh File System. Under MFS, each volume has a one-block buffer for all
file/volume data. This preventsa read of two bytes followed by a read (at the next file
position) of 4 bytes from causingactualdisk I/O. The volume allocation map also gets
savedin the systemheapbut it’s not really part of the cache.

This type of caching is still used by HFS, which includes MFS-format volumeswhich
may be mountedwhile running HFS. With HFS, the cacheis a little bigger: eachvolume
gets 1 block of buffering for the bitmap, 2 blocks for volume (including file) data,and 16
blocks for HFS B*tree control buffering.

This cachelives in the systemheap(unlessHFS is using the new File Systemcaching
mechanism,in which casethings becomemore complicated.See“type 3” below).

TechnicalNote #81 page 1 of 3 Caching



Cachetrack fever (type 2)

The track cache,only presentwith the enhancedSony driver, will cachethe current

track (up to twelve blocks)so that subsequentreadsto that track may usethe cache.The

track cacheis “write through”; all writes go to both the cacheand the Sony disk so

flushing is never required.

Track caching only takesplace for synchronousI/O calls; when an application makes

asynchronouscalls it expectsto usethe time while the disk is seeking,etc. to execute

othercode.

The trackcachegetsits storagespacefrom the systemheap.

Cacheme if you can (type 3)

The last type of cacheto be discussedis only available underthe 128K and greater

ROMs. This user-controlledcacheis not “write-through”.

Basedon how much spacethe userhasallocatedvia the control panel,the File System

will set up a cachewhich can accommodatea certain numberof blocks. This storage

will comefrom the applicationheapin the spaceaboveBufPtr (seetechnicalnote #14

and below). This is really the spaceabove the jump table and the “A5 world”, not

technically part of the application heap. However, moving BufPtr down will causea

correspondingreductionin the spaceavailableto the applicationheap.

The installationcodewill also grabthe spaceusedby the old File Systemcache(type 1)

sinceall typesof disk blockscan be accommodatedby this new cache.

The bulk of the cachingcodeusedfor this RAM cacheis also loadedaboveBufPtr at

application launchtime. This is accomplishedby the INIT 35 resourcewhich is installed

in the system heapand initialized at boot time. At application launch time, INIT 35

checksthe amountof cacheallocatedvia the control panel and movesBufPtr down

accordinglybeforebringing in the balanceof the cachingcode.The RAM cachingcode

is in the ‘CACH’ 1 resourcein the SystemFile.

The cachingcode always makessure there is room for 128K of application heapand

32K of cache.If the user-requestedamountwould reducethe heap/cachebelow these

valuesthen the cachespaceis readjustedaccordingly.

Up to 36 separatefiles may be buffered by the cache.Each queueis a list of blocks

cachedfor that file. Information is kept aboutthe “age” of eachblock andthe blocks are

also kept in a list in the order in which they occur in the file. The aging information tells

which blocks were least recently used; theseare the first to be releasedwhen new

blocks becomeeligible for caching.The file order information is useful for flushing the

cacheto the disk in an efficient manner,i.e. the file orderapproximatesdisk order.

TechnicalNote #81 page 2 of 3 Caching



Assuming this cachehas beenenabledby the user, all files which are read from or
written to by File System (HFS) calls are subject to caching under the current
implementation.The cacheis not “write through” like the track cache.When a File
Systemwrite (PBWrite, WriteResource,etc.) is done,the block is buffered until the
block is released(age discrimination), a volume flush is done or the application
terminates.

It may be useful to an application to prevent this processof reading and writing “in
place”. The Finderdisablescachingof newly read/writtenblocks while doing file copies
since it would be silly to cachefiles that the Finder was reading into memory anyway.
Copy protectionschemesmay also needthis capability. Disabling readingand writing in
placeis accomplishedby settinga bit in a low memoryflag byte, CacheCom(seebelow).
When you setthis flag, no new candidatesfor cachingwill be accepted.Blocks already
savedmay still be readfrom the cache,of course.

CacheComis at $39C. Bit 7 is the bit to setto disablesubsequentcaching,asfollows:

MOVE.B CacheCom,saveTemp;save away the old value
BSET.B #7,CacheCom ;tell caching code to stop R/W I.P.

BTST.B #7,saveTemp ;check savedvalue
BNE.S @69
BCLR.B *7,CacheCom ;clear it if it was clearedbefore

@69

Bit 6 containsanotherflag which can force all I/O to go to the disk. If that flag is set then
every time even one byte is requestedfrom the File Systemthe disk will be hit. I can
think of no good reasonto usethis exceptto test the systemcode itself. The other bits
should likewise be left alone.

Pleasedon’t usethis featureunnecessarily;the usershouldretain control over caching.
Important: if your program doesn’t have enoughspaceto run due to caching you
should ask the userto disable (or reduce) it with the control panel and then relaunch
your application.This may be the subjectof a future technicalnote.

ButPtr

The RAM-resident caching software arbitratesBufPtr in the friendliest manner
possible. It savesthe old value away before changing it, and then when it is time to
releaseits spaceit looks at it again. If BufPtr has beenmoved again, it knows that it
can’t restorethe old value it saveduntil BufPtr is put back to where it left it. In this
mannerany subsequentcode or data put up underBufPtr is assuredof not being
obliteratedby the cachingroutines.

A final note

To avoid problemswith datain the cachenot getting written out to disk, call FlushVol
after eachtime you write a file to disk. This ensuresthat the cacheis written, in casea
crashoccurssoonthereafter.

TechnicalNote #81 page 3 of 3 Caching



.

.

.



Macintosh Technical Notes

#82: TextEdit: Advice & Descent

Seealso: TextEdit
TechnicalNote #22—TEScrollBug
TechnicalNote #127—TextEditEOL Ambiguity
TechnicalNote #1 31—TextEditBugs

Written by: Rick Blair June21, 1986
Updated: March 1, 1988

This technicalnotewill point out somebugs(andpossibleworkarounds),and
other itemsof interestfor the TextEdit programmer.

TESeiRect

Multiple line selectionsare often more complexshapesthan simple rectangles.If this is
the case,the teSeiRectfield of the TERec is setto the last (bottommost)rectanglein
the selection.The teHiHook is calledto invert eachline of the selection.

The ROM limits the selectionrange(i.e. the lines that get set into teSeiRect)to only
thoselines which will fit into the viewRect.This meansthat teSeiRectwill be left at the
last visible line. (The old 64K ROMs madeall the calls for the completeselectionand
just let clipping takecareof the rest.)

TEDoText

The parametersof this specialhook into TextEdit needa little additionalexplanation.D3
and D4 are describedon page391 of Inside Macintosh Volume I as being the first and
last charactersto be redrawn.This is true but specificto the —1 “DoDraw” case.In fact, all
the calls to TEDoText are interestedin thesefirst and last characterpositions.They
determinethe selectionfor a (1) highlight call, the caretposition for a (—2) DoCaretcall
(whereD4 is ignoredas it’s assumedto equalD3), etc.

Note that the DoCaret (—2) call behavesdifferently thandescribedin Inside Macintosh,
as well. Good old page391 saysit setsup the pen position for caretdrawing. Sincean
InvertRectcall is usedto draw the caret if you usethe default teCarHook,the ROMs
just setup teSeiRect,they don’t botherwith the QuickDrawpen.

TechnicalNote #82 page 1 of 2 TextEdit: Advice& Descent



TEScrpLength

Inside MacintoshdescribesTEScrpLengthas a long integer; indeed,four bytes are

reservedfor this value with the intent of somedayusing that rangeof values.However,

the ROMs use word operationsin their accessesto TEScrpLengthand make word

calculationswith it. This meansthat the high word of TEScrpLengthis used for

calculations.This is somethingto watch out for.

CharWidth

Inside Macintoshsaysthat Charwidth takesstylistic variations into accountwhen

determiningthe width of a character.In fact, for italic and ©uDined stylesthe extra width

is not taken into account.TextEdit relieson CharWidthfor positioningof the caret,etc. If

you havechosento use,for instance,italic style in your TE recordyou will find that as

you type the caretactually overlapsthe characterto the left and so when the caret is

erasedsomeof that characterwill get erased,too. This is somewhatdisconcertingto the

userbut the programwill still function correctly.

Clikloops

If you add your own click loop and try to do somethinglike updatescroll barsyou may

run into trouble. Before your routine getscalled, TextEdit will haveset clipping down to

just the viewRect.You will have to saveaway the old clipping region, set it out to

sufficient size (—32767, —32767, 32767, 32767 is probably OK), do your drawing, then

restoreTextEdit’s clipping areaso that it can function properly.

TechnicalNote #82 page 2 of 2 TextEciit: Advice & Descent



Macintosh Technical Notes

#83: SystemHeapSizeWarning

Seealso: The Memory Manager

Written by: Jim Friedlander June21, 1986
Updated: March 1, 1988

Earlier versionsof this note pointed out that, due to varying system heap
sizes,the applicationheapdoesnot alwaysstartat scBoo.The startof the
application heap has not been fixed for some time now; programsthat
dependon it neverwork on the MacintoshSE or the MacintoshII.

TechnicalNote #83 page 1 of 1 SystemHeapSizeWarning



. . .



Macintosh Technical Notes

#84: Edit File Format

Written by: HarveyAlcabes April 1 1, 1985
Modified by: Bryan Johnson August15, 1986
Updated: March 1, 1988

This technicalnote describesthe format of the files createdby Edit. It has
beenverified for versions1 .x and2.0.

Edit, a text editor licensedby Apple and included in the Consulair68000 Development
System,can readany text-only file whosefile type is TEXT. Files createdby Edit havea
creatorID of EDIT. Edit is a disk-basededitor so the file length is not limited by available
memory. Files createdor modified by Edit, havethe format describedbelow; if they are
not too long they can be read by any application which can read TEXT files (eg:
MacWrite, Microsoft Word, or the APDA exampleprogramFile).

The datafork containstext (ASCII characters).Carriagereturn charactersindicate
line breaks; tab charactersare displayed as describedbelow. No other
charactershavespecialsignificance.

The resourcefork containsresourcesof type ETAB and EFNT. If Edit opensa
text-only file thatdoesnot havetheseresourcesit will addthem.

The ETAB (Editor TAB) resource,resourceID 1004, containstwo integers.The
first is the numberof pixels to display for eachspacewithin a tab (not necessarily
the sameasfor the spacecharacter).The secondintegeris the numberof these
spaceswhich will be displayedfor eachtab character.

The EFNT (Editor FONT) resource,resourceID 1003, containsan integerfollowed
by a Pascalstring (length byte followed by characters).The integer is the point
size of the document’sfont. The string containsthe font name. If the string size
(including the length byte) is odd, an extra byte is addedso that the resourcesize
is even.

For more informationaboutEdit, contact:

ConsulairCorp.
140 CampoDrive
PortolaValley, CA 94025
(415) 851-3272

TechnicalNote#84 page1 of 1 Edit File Format



.

.

a



Macintosh Technical Notes

#85: GetNextEvent;Blinking Apple Menu

Seealso: The Menu Manager
The Toolbox Event Manager
The DeskManager

Written by: Rick Blair August 14, 1986
Updated: March 1, 1988

Whereinarcanemysteriesare unraveledso you can makethe Alarm Clock
(or a similar deskaccessory)blink the Apple menuat the appointedsecond.
Also, why GetNextEvent IS a goodthing.

The obvious

Don’t disableinterruptswithin an application!Therewill almostcertainlycomea time (or
Macintosh) where you won’t be able to changethe interrupt mask becausethe
processoris running in usermode.The one-secondinterrupt is usedto blink the apple.

The not-so-obvious

You must call GetNextEvent periodically. GetNextEventusesa filter (GNE filter)
which allows for a routine to be installed which overrides(or augments)the behaviorof
the system.The GNE filter is installed by pointing the low-memoryglobal jGNEFilter
(a long word at $29A) to the routine. After all other GNE processingis complete,the
routine will be called with Al pointing to the event record and DO containing the
booleanresult. The filter may then modify the eventrecordor changethe function result
by alteringthe word on the stackat 4 (A7). This word will matchDO initially, of course.

TechnicalNote #85 page 1 of 2 GetNextEvent;Blinking d Menu



A GNE filter is usedto do the blinking when the interrupt handlerhasannouncedthat

the momentis at hand. GetOSEventwon’t do. If you don’t havea standardmain event

loop, it is generallya good idea to give GetNextEvent (and SystemTask,too) a call

wheneveryou have any idle time. GetNextEvent“extra” servicesinclude, but aren’t

limited to, the following:

1. Calling the GNE filter.
2. Removing lingering disk-switchedwindows (uncommonunlessmemoryis tight).

3. Making Window Manageractivate,deactivateand updateeventshappen.

4. Getting variouseventsfrom a journaling driver when one is playing.

5. Giving SystemEventa chanceat eachevent.

6. Running command-shiftfunction key routines (e.g. command-shift-4to print the

screento an ImageWriter).

The more subtle

When the (default) GNE filter seesthat the interrupt handlerhasset the “time to blink”

flag, it looks at the first menu in MenuList. The title of that menu must consistsolely of

the “apple” characteror no blinking will occur. It really just looks at the first word of the

string to see if it is $0114. This is a Pascalstring which has only the $14 “apple”

characterin it. So you musn’t haveany spacesor any othercharactersin the title of your

first menuor you’ll get no blinkin’ results.

.

TechnicalNote #85 page2 of 2 GetNextEvent;Blinking S Menu



Macintosh
TechnicalNotes

DeveloperTechnicalSupport

#86: MacPaintDocumentFormat
Revisedby: Jim Reekes June1989
Written by: Bill Atkinson 1983

This TechnicalNote describesthe internalformatof a MacPaint®document,which is a standard
usedby many otherprograms. This descriptionis the sameas that found in the “Macintosh
Miscellaneous”sectionof earlyInsideMacintoshversions.
ChangessinceOctober1988: Fixed bugsin the examplecode.

MacPaintdocumentsare easyto readandwrite, and they havebecomea standardinterchange
format for full—page imageson the Macintosh. This Note describesthe MacPaintinternal
documentformat to help developersgenerateandinterpretfiles in this format.

MacPaintdocumentshavea file typeof “PNTG,” andsincethey useonly the datafork, you can
ignorethe resourcefork. Thedatafork containsa 512—byteheaderfollowed by compresseddata
which representsa singlebitmap(576pixels wide by 720pixels tall). At a resolutionof 72 pixels
per inch, this bitmapoccupiesthe full 8 inch by 10 inch printableareaof a standardImageWriter
printerpage.

Header

Thefirst 512 bytesof thedocumentform a headerof the following format:

• 4—byteversionnumber(default=2)
• 38*8 = 304 bytesof patterns
• 204unusedbytes(reservedfor futureexpansion)

As a Pascalrecord,thedocumentformatcouldlook like thefollowing:

MPHeader = RECORD
Version: LONGINT;
PatArray: ARRAY [1. .38) of Pattern;
Future: PACKED ARRAY [1. .204) of SignedByte;

END;

If the versionnumberis zero,thedocumentusesdefaultpatterns,soyou canignoretherestof the
headerblock, andif yourprogramgeneratesMacPaintdocuments,you canwrite 512 bytesof zero
for the documentheader. Most programswhich readMacPaintdocumentscan skip the header
whenreading.

Bitmap

Following the headerare720compressedscanlinesof datawhich form the 576pixel wide by 720
pixel tall bitmap. Without compression,this bitmapwould occupy51,840bytesandchewup disk
spacepretty fast; typical MacPaintdocumentscompressto about 10K using the _PackBits

#86: MacPaintDocumentFormat 1 of 5



MacintoshTechnicalNotes

procedureto compressrunsof equalbyteswithin eachscanline. The bitmappartof a MacPaint

documentis simply theoutputof_PackBits called720 times,with 72 bytesof input eachtime.

To determinethemaximumsizeof a MacPaintfile, it is worth notingwhatInsideMacintoshsays

about PackBits:

“The worst casewould be when_PackBi t s addsone byte to the row of bytes

whenpacking.”

If we include an extra512 bytesfor the file headerinformation to the size of an uncompressed

bitmap(51,840),thenthe total numberof byteswould be 52,352. If we takeinto accounttheextra

720“potential” bytes(onefor eachrow) to theprevioustotal, themaximumsizeof a MacPaintfile

becomes53,072bytes.

Reading Sample

PROCEDURE ReadMPFile;

This is a small example procedurewritten in Pascalthat demonstrates

how to read MacPaint files. As a final step, it takes the data that

was read and displays it on the screento show that it worked.

Caveat: This is not intendedto be an example of good programming

practice, in that the possibleerrors merely causethe program to exit.

This is VERY uninformative, and there should be some sort of error handler

to explain what happened.For simplicity, and thus clarity, those types

of things were deliberatelynot included. This example will not work

on a 128K Macintosh, since memory allocation is done too simplistically.

CONST
DefaultVolume = 0;

HeaderSize= 512; { size of Macpaint header in bytes

MaxUnPackedSize= 51840; { maximum MacPaint size in bytes

720 lines * 72 bytes/line

VAR
srcPtr: Ptr;

dstPtr: Ptr;

saveDstPtr: Ptr;

lastDestptr: Ptr;

srcFile: INTEGER;

srcSize: LONGINT;

errCode: INTEGER;

scanLine: INTEGER;

aPort: GrafPort;

theBitMap: BitMap;

BEGIN
errCode := FSOpen(’MP TestFile’, DefaultVolume, srcFile); { Open the file.

IF errCode <> noErr THEN ExitToShell;

errcode := SetFPos(srcFile,fsFromStart, HeaderSize); { Skip the header.

IF errCode <> noErr THEN ExitToShell;

errCode := GetEOF(srcFile, srcSize); { Find out how big the file is,

IF errCode <> noErr THEN ExltToShell; { and figure out source size.

srcSize := srcSize - HeaderSize; ( Remove the header from count.

srcPtr := NewPtr(srcSize); { Make buffer just the right size.

IF srcPtr = NIL THEN ExitToShell;

errCode := FSRead(srcFile,srcSize, srcPtr); I Read the data into the buffer.

IF errCode <> noErr THEN ExitToShell; { File marker is past header.

2 of 5 #86: MacPaintDocumentFormat



DeveloperTechnicalSupport June1989

errCode FsClose(srcFile); { Close the file we just read.
IF errCode <> noErr THEN ExitToShell;

Create a buffer that will be used for the Destination BitMap.
dstPtr := NewPtrClear(MaxUnPackedSize); {MPW library routine, see TN 219)
IF dstPtr = NIL THEN ExitToShell;
saveDstPtr := dstptr;

Unpack each scan line into the buffer. Note that 720 scan lines are
guaranteedto be in the file. (They may be blank lines.) In the
UnPackBits call, the 72 is the count of bytes done when the file was
created. MacPaint does one scan line at a time when creating the file.
The destinationpointer is testedeach time through the scan loop.
UnPackBits should increment this pointer by 72, but in the casewhere
the packed file is corrupted UnPackBits may end up sendingbits into
unchartedterritory. A temporary pointer lastDstPtr” is used for testing
the result.)

FOR scanLine := 1 TO 720 DO BEGIN
lastDstPtr dstPtr;
UnPackBits(srcPtr,dstPtr, 72); { bumps both pointers
IF ORD4(iastDstPtr) + 72 <> ORD4(dstPtr) THEN ExitToShell;

END;

The buffer has been fully unpacked. Create a port that we can draw into.
You should save and restorethe current port.

OpenPort(@aPort);

Create a BitMap out of our saveDstPtrthat can be copied to the screen.
theBitMap.baseAddr saveDstPtr;
theBitMap.rowBytes := 72; { width of MacPaint picture
SetPt(theBitMap.bounds.topLeft,0, 0);
SetPt(theBitMap.bounds.botRight,72*8, 720); (maximum rectangle)

Now use that BitMap and draw the piece of it to the screen.
Only draw the piece that is full screensize (portRect)

CopyBits(theBitMap, aPort.portBits, aPort.portRect,
aPort.portRect,srcCopy, NIL);

We need to disposeof the memory we’ve allocated. You would not
disposeof the destPtr if you wish to edit the data. I

DisposPtr(srcPtr); { disposeof the sourcebuffer I
DisposPtr(dstPtr); { disposeof the destinationbuffer

END;

#86: MacPaintDocumentFormat 3 of 5



MacintoshTechnicalNotes

Writing Sample

PROCEDURE WriteMPFile;

This is a small example procedurewritten in Pascalthat demonstrateshow

to write MacPaint files. It will use the screenas a handy BitMap to be

written to a file.

CONST
DefaultVolume = 0;

HeaderSize= 512; ( size of MacPaint header in bytes

MaxFileSize = 53072; { maximum MacPaint file size.

VAR
srcPtr: Ptr;

dstPtr: Ptr;

dstFile: INTEGER;

dstSize: LONGINT;

errCode: INTEGER;

scanLine: INTEGER;

aPort: GrafPort;

dstBuffer: PACKED ARRAY[1. .HeaderSize]OF BYTE;

I: LONGINT;

picturePtr: Ptr;

tempPtr: BigPtr;

theBitMap: BitMap;

BEGIN
Make an empty buffer that is the picture size.

picturePtr := NewPtrClear(MaxFileSize); {MPW library routine, see TN 219)

IF picturePtr = NIL THEN ExitToShell;

Open a port so we can get to the screensBitMap easily. You should save

and restorethe current port.

OpenPort(@aPort);

Create a BitMap out of our dstPtr that can be copied to the screen.

theBitMap.baseAddr:= picturePtr;

theBitMap.rowBytes := 72; ( width of Macpaint picture

SetPt(theBitMap.bounds.topLeft, 0, 0);

SetPt(theBitMap.bounds.botRight,72*8, 720); {maximum rectangle)

Draw the screenover into our picture buffer.

CopyBits(aPort.portBits,theBitMap, aPort.portRect,

aPort.portRect,srcCopy, NIL);

Create the file, giving it the right Creator and File type.)

errCode := Create(MPTestFile’, DefaultVolume, MPNT, PNTG);

IF errCode <> noErr THEN ExitToShell;

Open the data file to be written.

errCode := FSOpen(dstFileName,DefaultVolume, dstFile);

IF errCode <> noErr THEN ExitToShell;

FOR I := 1 to HeaderSizeDO ( Write the header as all zeros.

dstBuffer[I] := 0;

errCode := FSWrite(dstFile, HeaderSize,@dstBuffer);

IF errCode <> noErr THEN ExitToShell;

.
4 of 5 #86: MacPaintDocumentFormat



DeveloperTechnicalSupport June1989

Now go into a loop where we pack each line of data into the buffer,
then write that data to the file. We are using the line count of 72
in order to make the file readableby MacPaint. Note that the
Pack/UnPackBltscan be used for other purposes.

srcPtr theBitMap.baseAddr; ( point at our picture BitMap
FOR scanLine := 1 to 720 DO

BEGIN
dstPtr @dstBuffer; { reset the pointer to bottom
PackBits(srcPtr,dstptr, 72); { bumps both ptrs
dstSize ORD(dstPtr)—ORD(@dstBuffer); { calc packed size
errCode := FSWrite(dstFile,dstSize, @dstBuffer);
IF errCode <> noErr THEN ExitToShell;

END;

errCode := FSClose(dstFile); { Close the file we iust wrote.
IF errCode <> noErr THEN ExitToShell;

END;

Further Reference:
• InsideMacintosh,Volume1-135,QuickDraw
• InsideMacintosh,Volume1-465,ToolboxUtilities
• InsideMacintosh,Volume11-77,TheFile Manager
• TechnicalNote#219, New MemoryManagerGlueRoutines

MacPaintis a registeredtrademarkof Claris Corporation.

#86: MacPaintDocumentFormat 5 of 5



.

.



Macintosh Technical Notes

#87: Error in FCBPBRec

Seealso: The File Manager

Written by: Jim Friedlander August 18, 1986
Updated: March 1, 1988

The declarationof a FCBPBRecis wrong in InsideMacintoshVolume IV and
earlyversionsof MPW. This hasbeenfixed in MPW 1.0 andnewer.

An error was madein the declarationof an FCBPBReCparameterblock that is usedin
PBGetFCBInfocalls. The field ioFCBlndx was incorrectly listed asa LONGINT. The
following declaration(found in Inside Macintosh):

ioRefNum: INTEGER;
filler: INTEGER;
ioFCBlndx: LONGINT;
ioFCBF1Nm: LONGINT;

shouldbe changedto:

ioRefNum: INTEGER;
filler: INTEGER;
ioFCBlndx: INTEGER;
ioFCBFillerl: INTEGER;
ioFCBF1Nm: LONGINT;

TechnicalNote #87 page 1 of 1 Error in FCBPBRec



.

.

.



Macintosh Technical Notes

#88: Signals

Seealso: Using AssemblyLanguage(Mixing Pascal& Assembly)

Written by: Rick Blair August 1, 1986
Updated: March 1, 1988

Signalsare a form of intra-programinterrupt which can greatly aid clean,
inexpensiveerror trapping in stackframe intensive languages.A program
may invoke the Signal procedureand immediately return to the last
invocationof CatchSignal,including the completestackframestateat that
point.

Signals allow a program to leave off executionat one point and return control to a
convenienterror trap location, regardlessof how many levels of procedurenestingare
in between.

The example is provided with a Pascalinterface, but it is easily adaptedto other
languages.The only qualification is that the languagemust bracketits procedures(or
functions)with LINK and tJNLK instructions.This will allow the signalcodeto cleanup at
procedureexit time by removing CatchSignalentriesfrom its internal queue.Note:
only proceduresand/orfunctionsthat call CatchSignalneedto be bracketedwith LINK
and UNLK instructions.

Important: Initsignalsmust be called from the main programso that A6 can be set
up properly.

Note that thereis no limit to the numberof local CatchSignalswhich may occurwithin
a single routine. Only the last one executedwill apply, of course, unlessyou call
FreeSignal.FreeSignalwill “pop” off the last CatchSignal.If you attemptto signal
with no CatchSignalspending,Signalwill halt the programwith a debuggertrap.

InitSignalscreatesa small relocatableblock in the application heap to hold the
signal queue.If CatchSignalis unableto expandthis block (which it does5 elements
at a time), then it will signal backto the last successfulCatchSignalwith code= 200. A
Signal(0) actsas a NOP, so you may passOSErrs,for instance,after making File
Systemtype calls, and, if the OSErr is equalto NoErr, nothing will happen.

ThchnicalNote #88 page 1 of 6 Signals



CatchSignalmay not be used in an expressionif the stack is usedto evaluatethat

expression.For example,you can’t write:

c:= 3*Catchsignal;

“Gotcha” summary

1. Routineswhich call catchsignalmust havestackframes.

2. Initsignalsmust be called from the outermost(main) level.

3. Don’t put the CatchSignal function in an expression.Assign the result to an

INTEGER variable; i.e. i:=CatchSignal.

4. It’s safestto call a procedureto do the processingafter catchsignalreturns.See

the PascalexampleTestSignalsbelow. This will preventthe use of a variable

which may be held in a register.

Below are threeseparatesourcefiles. First is the Pascalinterfaceto the signaling unit,

then the assemblylanguagewhich implementsit in MPW Assemblerformat. Finally,

there is an exampleprogramwhich demonstratesthe useof the routinesin the unit.

{File ErrSignal.p}

UNIT ErrSignal;

INTERFACE

{Call this right after your other initializations (InitGraf, etcj——in other

words as early as you can in the application)

PROCEDURE InitSignals;

{Until the procedurewhich enclosesthis call returns, it will catch

subsequentSignal calls, returning the code passedto Signal. When

CatchSignalis encounteredinitially, it returns a code of zero. These calls

may “nest”; i.e. you may have multiple CatchSignalsin one procedure.

Each nestedCatchSignalcall uses 12 bytes of heap space

FUNCTION CatchSignal:INTEGER;

{This undoes the effect of the last CatchSignal.A Signal will then invoke

the CatchSignalprior to the last one.)

PROCEDURE FreeSignal;

(Returns control to the point of the last CatchSignal. The program will then

behave as though that CatchSignalhad returnedwith the code parameter

supplied to Signal.)

PROCEDURE Signal(code:INTEGER);

END.

{End of ErrSignal.p}

TechnicalNote #88 page 2 of 6 Signals



Here’sthe assemblysourcefor the routinesthemselves:

ErrSignal code w. InitSignal, CatchSignal,FreeSignal,Signal
defined

Version 1.0 by Rick Blair

PRINT OFF
INCLUDE ‘Traps.a’
INCLUDE ‘ToolEqu . a’
INCLUDE ‘QuickEqu . a’
INCLUDE ‘SysEqu. a’
PRINT ON

CatchSigErrEQU 200 ;“insufficient heap” message
SigChunks EQU 5 ;number of elementsto expand by
FrameRet EQU 4 ;return addr. for frame (off A6)
SigBigA6 EQU $FFFFFFFF ;maximum positive A6 value

A template in MPW Assemblerdescribesthe layout of a collection of data
without actually allocating any memory space. A templatedefinition starts

with a RECORD directive and ends with an ENDR directive.

To illustrate how the template type feature works, the following template
is declaredand used. By using this, the assemblersource appromixatesvery
closely Pascalsource for referencingthe correspondinginformation.

;template for our table elements
SigElement RECORD 0 ;the zero is the template origin
SigSP DS.L 1 ;the SP at the CatchSignal—(DS.Ljust like EQU)
SigRetAddr DS.L 1 ;the addresswhere the CatchSignalreturned
SigFRet DS.L 1 ;return addr. for end, procedure
SigElSize EQU * ;just like EQU 12

ENDR

The global data used by these routines follows. It is in the form of a
RECORD, but, unlike above, no origin is specified, which means that memory
space *will* be allocated.
This data is referencedthrough a WITH statementat the beginning of the
procs that need to get at this data. Since the Assembler knows when it is
referencingdata in a data module (since they must be declaredbefore they
are accessed),and since such data can only be accessedbasedon A5, there
is no need to explicitly specify A5 in any code which referencesthe data
(unless indexing is used) . Thus, in this program we have omitted all A5
referenceswhen referencingthe data.

SigGlobals RECORD ;no origin means this is a data record
;not a template(asabove)

SigEnd DS.L 1 ;current end of table
SigNow DS.L 1 ;the MRU element
SigHandle DC.L 0 ;handle to the table

ENDR

TechnicalNote #88 page 3 of 6 Signals



InitSigrials PROC EXPORT ;PROCEDURE InitSignals;

IMPORT CatchSignal

WITH SigElement,SigGlobals

;the above statementmakes the template SigElement and the global data

;record SigGlobals available to this procedure

0
MOVE L

Newl-landle

BNE. S

MOVE L

MOVE . L

MOVE . L

MOVE . L

forgetit RTS

ENDP

#SigChunks*SigElSize,DO

;try to get a table

forgetit ;we couldn’t get that!?

AO,SigHandle ;save it

#—SigElSize,SigNow;point “now” before start

#SigChunks*SigElSize,SigEnd;save the end

#SigBigA6,A6 ;make A6 valid for Signal

CatchSignalPROC

IMPORT

WITH

EXPORT ; FUNCTION CatchSignal:INTEGER;

SiggySetup,Signal,SigDeath

SigElement,SigGlobals

MOVE . L

MOVE . L

BEQ
MOVE . L

MOVE . L

ADD . L

MOVE . L

CMP . L

BNE . S

(SP)+,Al

SigHandle,DO

SigDeath

DO,AO

SigNow,DO

#SigElSize,DO

DO, SigNow

SigEnd,DO

catchit

;grab return address

;handle to table

;if NIL then croak

ADD.L #SigChunks*SigElSize,DO;we’ll try to expand

MOVE.L DO,SigEnd ;save new (potential) end

SetHandleSize

BEQ.S @0 ;jump around if it worked!

signals, we use ‘em

MOVE . L

MOVE . L

SUB. L

MOVE . W

ourselves

SigNow,SigEnd ;restoreold ending offset

#SigElSize,DO

D0,SigNow ;ditto for current position

#catchSigErr,(SP) ;we’ll signal a “couldn’t

@0

JSR Signal

MOVE.L SigNow,D0

catch” error

;never returns of course

(AO) ,AO

DO,AO

SP,SigSP(AO)

A1,SigRetAddr(A0) ;save return addressthere

#SigBigA6,A6 ;are we at the outer level?

@0 ;yes, no frame or cleanup needed

FrameRet(A6),SigFRet(AO);saveold frame return

address

;put handle in A-register

;save flew position

;have we reachedthe end?

;no, proceed .

catchit MOVE.L

ADD . L

MOVE . L

MOVE . L

CMP . L

BEQ. S

MOVE - L

deref.

;poiflt to new entry

;save SP in entry

TechnicalNote #88 page 4 016 Signals



SiggyPop,AO
AO,FrameRet(A6) ;set cleanup code address
(SP) ;no error code (before its time)
(Al) ;done setting the trap

SiggyPop JSR
MOVE . L

SUB . L

MOVE . L
JMP

ENDP

SiggySetup
SigFRet(AO) ,AO
#SigElSize,DO
DO, SigNow

(AO)

;get pointer to element
;get proc’s real return address

;“pop” the entry
gone

EXPORT ;PROCEDURE FreeSignal;
S iggySetup
SigElement,SigGlobals
SiggySetup ;get pointer to current entry
SigFRet(AO),FrameRet(A6);“pop” cleanup code
#SigElSize,DO
DO,SigNow ;“pop” the entry

;PROCEDURE Signal(code:INTEGER);

;get code
;processthe signal if
;save return address
;adjust stack pointer
;return to caller(code was 0)

@0 JSR SiggySetup
BRA.S SigLoopi

;get pointer to entry

SigLoop UNLK
SigLoopi CMP.L

BLO. S

MOVE . L

MOVE . L

MOVE.W

JMP

A6

SigSP(AO) ,A6
SigLoop

SigSP(AO) , SP
SigRetAddr(A0),
Dl, (SP)
(AO)

(or Hooston if

;unlink stack by one frame
;is A6 beyond the saved stack?
;yes, keep unlinking
;bring back our SP

AO ;get return address
;return code to CatchSignal
;Houston, boost the Signal!

you’re from the Negative Zone)

deref.

;to set CCR
;nil handle means trouble
;grab table offset to entry
;if no entries then give up
;point to current element

SigDeath _Debugger

ENDP

END

;a signal sans catch is bad news

@0

LEA

MOVE . L
CLR. W
JMP

FreeSignal

Signal

PROC

IMPORT

WI TB

JSR

MOVE . L
SUB. L

MOVE . L
RT S
ENDP

PROC

EXPORT
WI TM

MOVE . W
BNE . S
MOVE . L
ADDQ . L
JMP

EXPORT

SiggySetup,SigDeath
SigElement,SigGlobals
4 (SP) ,Dl

@0
(SP) ,AO

#6, SP

(A0)

code is non—zero

SiggySetup MOVE.L SigHandle,AO
MOVE.L (AO),A0
MOVE.L AO,DO
BEQ.S SigDeath
MOVE.L SigNow,DO
BMI.S SigDeath
ADD.L DO,AO
RT S

TechnicalNote #88 page 5 ot6 Signals



Now for the examplePascalprogram:

PROGRAM TestSignals;

USES ErrSignal;

VAR i:INTEGER;

PROCEDURE DoCatch(s: STR255; code:INTEGER);

BEGIN

IF code<>O THEN BEGIN

Writeln(s,code);

Exit (TestSignals);

END;

END; {DoCatch}

PROCEDURE Easy;

PROCEDURE Never;

PROCEDURE DoCatch(s:STR255;code:INTEGER);

BEGIN

IF code<>O THEN BEGIN

Writeln(s,code);

Exit (Never);

END;

END; {DoCatch}

BEGIN (Never)

i : =CatchSignal;

DoCatch(’Signalcaught from Never, code = ‘, i );

i : =CatchSignal;

IF i<>O THEN DoCatch(’Shouldnever get here!’,i);

FreeSignal; (“free” the last CatchSignal}

Signal(7); {Signal a 7 to the last CatchSignal}

END; (Never)

BEGIN (Easy)

Never;

Signal(69); {this won’t be caught in Never)

END; (Easy) {all local CatchSignalsare freed when a procedureexits.)

BEGIN {PROGRAM}

InitSignals; (You must call this early on!

(catch Signals not otherwise caught by the program)

i : =CatchSignal;

IF i<>O THEN

DoCatch(’Sigrial caught from main, code =

Easy;

END.

The exampleprogramproducesthe following two lines of output:

Signal caught from Never, code = 7

Signal caught from main, code = 69

TechnicalNote #88 page 6 of 6 Signals



Macintosh Technical Notes c3
#89: DrawPictureBug

Written by: GingerJernigan August 16, 1986
Updated: March 1, 1988

Earlierversionsof this notedescribeda bug in DrawP±cture.This bug never
occurredon 64K ROM machines,and has beenfixed in System3.2 and
newer. Use of Systemsolder than 3.2 on non-64K ROM machinesis no
longer recommended.

TechnicalNote #89 page 1 of 1 DrawPictureBug



.

.

.



Macintosh Technical Notes

#90: SANE Incompatibilities

Written by: Mark Baumwell August14, 1986
Updated: March 1, 1988

Earlierversionsof this notedescribeda problemwith SANE andSystem2.0.
Useof System2.0 is only recommendedfor Macintosh128 machines,which
containthe 64K ROMs. Information specificto 64K ROM machineshasbeen
deletedfrom MacintoshTechnicalNotesfor reasonsof clarity.

TechnicalNote #90 page 1 of 1 SANE Incompatibilities



.

.

0



Macintosh Technical Notes

#91: Optimizing for the LaserWriter—PictureComments

Seealso: The Print Manager
QuickDraw
TechnicalNote#72—

Optimizing for the LaserWriter—Techniques
TechnicalNote #27—MacDrawPictureComments
PostScriptLanguageReferenceManual,AdobeSystems
PostScriptLanguageTutorialandCookbook,

Adobe Systems
LaserWriterReferenceManual

Written by: GingerJernigan November15, 1986Modified by: GingerJernigan March 2, 1987Updated: March 1, 1988

This technicalnote is a continuationof Technical Note #72. This technicalnotediscussesthe picturecommentsthat the LaserWriterdriver recognizes.

This technicalnote has beenmodified to include correcteddescriptionsofthe SetLineWidth,PostScriptFileandResourcePScommentsand toincludesomeadditionalwarnings.

The implementationof QuickDraw’spicCommentfacility by the LaserWriterdriver allowsyou to take advantageof features(like rotatedtext) which are availablein PostScriptbutmay not be availablein QuickDraw.

Warning: Using PostScript-specificcommentswill make your code printer-dependentand may causecompatibility problemswith non-PostScriptdevices,so don’t usethemunlessyou absolutelyhaveto.

Someof the picture commentsbelow are designedto be issuedalong with QuickDrawcommandsthat simulatethe commentedcommandson the Macintoshscreen.When thecommentsare used,the accompanyingQuickDraw commentsare ignored. If you aredesigninga picture to be printed by the LaserWriter, the structureand use of thesecommentsmust be precise,otherwisenothing will print. If anotherprinter driver (like thelmageWriterI/Il driver) hasnot implementedthesecomments,the commentsare ignoredandthe accompanyingQuickDrawcommandsare used.

TechnicalNote #91 page 1 of 18 LaserWriterPictureComments



Below arethe picturecommentsthat the LaserWriterdriver recognizes:

Type

* LineLayoutOff

* LineLayoutOn

* DashedLine
* DashedStop
* SetLineWjdth

Kind DataSIZe Data Description

Turns LaserWriter line layout off

Turns LaserWriter line layout on

Draw following lines as dashed

End dashedlines

Set fractional line widths

* PostScriptBegin190

* PostScriptEnd 191

* PostScriptllandle192

* PostScriptFile 193

* TextlsPostScrlpt194

* ResourcepS 195

0 NIL

0 NIL

—
PSData

—
FileName

o NIL

8 Type/ID/Index

Set driver stateto PostScript

RestoreQuickDraw state

PostScriptdata in handle

FileName in data handle

QuickDraw text is sent as Postscript

PostScriptdata in a resourcefile

**Formsprinting 210

**EndFormsprjnting 211

* These
** These

0

0

TRotation

NIL

Center

NIL

NIL

t Thesecommentsare not availablewhen backgroundprinting is enabled.

Each of thesecommentsare discussedbelow in six groups: Text, Polygons, Lines,

PostScript,Rotation,and Forms.Codeexamplesaregiven whereappropriate.For other

examplesof how to use picture commentsfor printing pleaseseethe Print example

programin the SoftwareSupplement(currently availablethrough APDA as “Macintosh

ExampleApplicationsand Sources1.0”).

Note: The examplesusedin the LaserWriterReferenceManual are incorrect. Please

usethe examplespresentedhere instead.

TextBegin

TextEnd

StringBegin

Stringtnd

TextCenter

Begin text function

End text function

Begin pieces of original string

End pieces of original string

Offset to center of rotation

150

151

152

153

154

155

156

160

161

163

164

165

180

181

182

PolyBegin

PolyEnd

Polylgnore

PolySmooth

picPlyClo

6 TTxtPicRec

0 NIL

0 NIL

0 NIL

8 TTxtCenter

0 NIL

0 NIL

0 NIL

0 NIL

0 NIL

1 PolyVerb

0 NIL

—
TDashedLine

0 NIL

4 Point

Begin special polygon

End special polygon

Ignore following poly data

Close, Fill, Frame

Close the poly

.

.**RotateBegjn 200 4

**RotateEnd 201 0

**RotateCenter 202 8

Begin rotatedport

End rotation

Offset to center of rotation

Don’t clear print buffer after each page

End forms printing after PrClosePage

commentsareonly implementedin LaserWriterdriver 3.0 or later.

commentsareonly implementedin LaserWriterdriver 3.1 or later.

TechnicalNote #91 page2 ofl8 LaserWriterPictureComments



Text

In orderto supportthe What-You-See-Is-What-You-Getparadigm,the LaserWriterdriver
usesa line layout algorithm to assurethat the placementof the line on the printerclosely
approximatesthe placementof the line on the screen.This meansthat the printer driver
getsthe width of the line from QuickDraw,thentells PostScriptto placethe text in exactly
the sameplacewith the samewidth.

The TextBegincommentallows the applicationto specify the layout andthe orientation
of the text that follows it by specifyingthe following information:

TTxtPicRec = PACKED RECORD
tJus: Byte; {0,1,2,3,4 or greater=> none, left, center, right, full

justification I
tFlip: Byte; (0,1,2 => none, horizontal, vertical coordinateflip
tRot: INTEGER; {0. .360 => clockwise rotation in degrees
tLine: Byte; (1,2,3.. => single, 1-1/2, double., spacing I
tCnint: Byte; f Reserved

END; { TTxtPicRec I

Left, right or centerjustification, specifiedby tJust,tells the driver to maintainonly the
left, right or centerpoint, without recalculatingthe interword spacing.Full justification
specifiesthat both endpointsbe maintainedand interword spacingbe recalculated.This
meansthat the driver makessurethat the specifiedpoints are maintainedon the printer
without caring whetherthe overall width haschanged.Full justification meansthat the
overall width of the line hasbeenmaintained.tElip and tRot specify the orientationof
the text, allowing the applicationto take advantageof the rotation featuresof PostScript.
tLine specifiesthe interline spacing.When no TextBegin comment is used,the
defaultsare full justification, no rotation and single-spacedlines.

String Reconstruction

The StringBeginand StringEndcommentsare usedto bracketshort stringsof text
that are actually sectionsof an original long string. MacDraw, for instance,breakslong
strings into shorterpiecesto avoid stackoverflow problemswith QuickDraw in the 64K
ROM. When thesesmallerstringsare bracketedby StringBeginand stringEnd,the
LaserWriterdriver assumesthat the enclosedstringsare partsof one long string and will
perform its line layout accordingly. Erasing or filling of backgroundrectanglesshould
take placebeforethe StringBegincommentto avoid confusingthe processof putting
the smallerstringsbacktogether.

Text Rotation

In order to rotate a text object, PostScriptneedsto have information concerningthe
centerof rotation.The TextCentercommentprovidesthis information when a rotation
is specified in the TextBegin comment.This commentcontainsthe offset from the
presentpen location to the centerof rotation. The offset is given as the y-component,
then the x-component,which are declaredas fixed-point numbers.This allows the
centerto be in the middle of a pixel. This commentshouldappearafter the TextBegin
commentandbeforethe first following StringBegincomment.

TechnicalNote #91 page3 of 18 LaserWriterPictureComments



The associatedcommentdatalooks like this:

TTxtCenter = RECORD

y,x: Fixed; {offset from current pen location to center of rotatiori}

END; { TTxtCenter }

Right after a TextBegincomment,the LaserWriterdriver expectsto seea TextCenter

commentspecifyingthe centerof rotation for any text enclosedwithin the text comment

calls. It will ignore all further CopyBits calls, and print all standardtext calls in the

rotation specifiedby the information in TTxtPicRec.The centerof rotation is the offset

from the beginningposition of the first string following the TextCentercomment.The

printer driver also expectsthe string locations to be in the coordinatesystemof the

currentQuickDrawport. The printer driver rotatesthe entire port to drawthe text so it can

draw severalstrings with one rotation commentand one centercomment. It is good

practice to enclosean entire paragraphor paragraphsof text in a single rotation

commentso that the driver makesthe fewestnumberof rotations.

The printer driver can draw non-textualobjectswithin the boundsof the text rotation

commentsbut it mustunrotateto drawthe object, then re-rotateto draw the next string of

text. To do this the printer driver must receiveanotherTextCentercommentbefore

each new rotation. So, rotated text and unrotatedobjects can be drawn inter-mixed

within one TextBegin/TextEndcommentpair, but performanceis slowed.

Note that all bit mapsand all clip regionsare ignored during text rotation so that clip

regionscan be usedto clip out the stringson printersthat can’t takeadvantageof these

comments.This hasthe unfortunateside effect of not allowing rotatedtext to be clipped.

Rotatedtext commentsare not associatedwith landscapeand portrait orientationof the

printer paperas selectedby the PageSetupdialog. Theseare rotationswith reference

to the currentQuickDrawport only.

All of the abovetext commentsareterminatedby a TextEndcomment.

Turning Off Line Layout

If your applicationis using its own line layout algorithm (it usesits own characterwidths

or doesits own characteror word placement),the printerdriver doesn’tneedto do it too.

To turn off line layout, you can usethe LineLayoutOff comment.LineLayoutOnturns

it on again.

Turning on FractEnablefor the 128K ROMs hasthe sameeffect as LineLayoutOff.

When the driver detectsthat FractEnablehas been turned on, line layout is not

performed.The driver assumesthat all text being printed is alreadyspacedcorrectly for

the LaserWriterandjust sendsit asis.

TechnicalNote #91 page4 of 18 LaserWriterPictureComments



Polygons

The polygon commentsare recognizedby the LaserWriterdriver becausethey are used
by MacDrawasan alternatemethodof defining polygons.

The PolyBeginand PolyEnd commentsbracket polygon line segments,giving an
alternateway to specify a polygon. All StdLinecalls betweenthesetwo commentsare
part of the polygon. The endpointsof the lines arethe verticesof the polygon.

The picPlyClo commentspecifiesthat the current polygon should be closed.This
comesimmediatelyafterPolyBegin,if at all. It is not sufficient to simply checkfor begPt
= endPt,since MacDrawallows you to createa “closed” polygon that isn’t really closed.
This commentis especiallycritical for smoothcurvesbecauseit can makethe difference
betweenhaving a sharpcorneror not in the curve.

Thesecommentsalso work with the StdPolycall. If a FillRgn is encounteredbefore
the PolyEndcomment,then the polygon is filled. Unlike QuickDraw polygons,comment
polygonsdo not requirean initial MoveTo call within the scopeof the polygon comment.
The polygon will be drawn using the current pen location at the time the polygon
commentis received.The pen mustbe setbeforethe polygon commentis called.

Splines

A spline is a method used to determinethe smallestnumberof points that define a
curve. In MacDraw, splinesare usedasa methodfor smoothingpolygons.The vertices
of the underlying unsmoothedpolygon are the control nodesfor the quadraticB-spline
curve which is drawn. PostScripthas a direct facility for cubic B-splines and the
LaserWritertranslatesthe quadraticB-spline nodesit getsinto the appropriatenodesfor
a cubic B-spline that will exactly emulatethe original quadraticB-spline.

The PolySmoothcommentspecifiesthat the currentpolygon shouldbe smoothed.This
commentalso containsdatathat providesa meansof specifying which verbsto useon
the smoothedpolygon (bits 7 through3 are not currentlyassigned):

TPolyVerb = PACKED RECORD
f7, f6, f5, f4, f3, fPolyClose, fPolyFill, fPolyframe : Boolean;

END; { TPolyVerb

Although the closing information is redundantwith the picPlyClo comment, it is
includedfor the convenienceof the LaserWriter.

The LaserWriterusesthe pen size at the time the Polysegincommentis receivedto
framethe smoothedpolygon if framing is called for by the TPolyVerb information. When
the Polylgnorecommentis receivedby the LaserWriterdriver, all further StdLine
calls are ignoreduntil the PolyEndcommentis encountered.For polygonsthat areto be
smoothed,set the initial pen width to zero after the PolyBegin commentso that the
unsmoothedpolygon will not be drawn by otherprinters not equippedto handlepolygon
comments.To fill the polygon, call StdRgnwith the fill verb and the appropriatepattern
set,aswell asspecifyingfill in the PolySmoothcomment.

TechnicalNote #91 page5 of 18 LaserWriterPictureComments



Lines

The DashedLineandDashedLineStopcommentsare usedto communicatePostScript

information for drawing dashedlines.

The DashedLinecommentcontainsthe following additionaldata:

TOashedLine= PACKED RECORD

offset: SignedByte; {Offset as specifiedby PostScript}

centered:SignedByte; {Whether dashedline should be

centeredto begin and end points)

dashed: Array[0. .1] of SignedByte; fist byte is # bytes following)

END; { TDashedLine

The printer driver setsup the PostScriptdashedline command,asdefinedon page214

of Adobe’s PostScriptLanguageReferenceManual, using the parametersspecifiedin

the comment.You can specify that the dashedline be centeredbetweenthe begin and

end pointsof the lines by making the centeredfield nonzero.

The SetLinewidthcommentallows you to setthe pen width of all subsequentobjects

drawn. The additionaldata is a point. The vertical portion of the point is the numerator

andthe horizontalportion is the denominatorof the scaling factor that the horizontaland

vertical componentsof the pen are then multiplied by to obtain the new pen width. For

example,if you havea pen size of 1,2 and in your line width commentyou use2 for the

horizontal of the point and 7 for the vertical, the pen size will then be (7/2)*1 pixels wide

and (712)*2 pixels high.

Below is an exampleof how to usethe line comments:

PROCEDURE LineTest;

{This procedureshows how to do dashedlines and how to change the line width}

CONST

DashedLine= 180;

DashedStop= 181;

SetLineWidth = 182;

TYPE

DashedHdl = DashedPtr;

DashedPtr= TDashedLine;

TDashedLine= PACKED RECORD

offset: SignedByte;

Centered: SignedByte;

dashed:ArraylO. .1) of SignedByte; { the 0th element is the length

END; { TDashedLine

widhdl = widptr;

widptr = “widpt;

widpt = Point;

VAR

arect : rect;

Width : Widhdl;

dashedln : DashedHdl;

TechnicalNote #91 page6 of 18 LaserWriterPictureComments



BEGIN {LineTest}
Dashedln := dashedhdl(Newl-landle(sizeof(tciashedline)));
Dashedln”’.offset := 0; { No offset)
Dashedln.centered 0; ( don’t center)
Dashedln.dashed[0):= 1; { this is the length I
Dashedln’.dashed[1] 8; { this means 8 points on, 8 points off I

Width := widhdl(NewHandle(sizeof(widpt)));
Width”.h 2; ( denominatoris 2)
Width”.v 7; { numerator is 7)

xnyPic OpenPicture(theWorld);
SetPen(1,2); ( Set the pen size to 1 wide x 2 high
ClipRect(theWorld);
MoveTo(20,20);
DrawString(’Do line test’);
PicCornment(DashedLine,GetHandleSize(Handle(dashedin)) ,Handle(dashedin));
PicComment(SetLineWidth,4,Handle(width)); (SetLineWidth}
SetRect(arect,100,100,500,500);
FrameRect(aRect);
MoveTo(500,500);
Lineto (100,100);
PicComment(DashedStop,0,nil); {DashedStop}

ClosePicture;
DisposHandle(handle(width)); (Clean up)
DisposHandle(handle(dashedln));
PrintThePjcture; (print it please)
KillPicture (MyPic);

END; (LineTest)

TechnicalNote #91 page7 of 18 LaserWriterPictureComments



PostScript

The PostScriptcommentstell the printer driver that the application is going to be

communicatingwith the LaserWriter directly using PostScriptcommandsinstead of

QuickDraw. The driver sendsthe accompanyingPostScriptto the printer with no

preprocessingand no error checking.The applicationcan specify datain the comment

handleitself or point to anotherfile which containstext to sendto the printer. When the

applicationis finished sendingPostScript,the PostScriptEndcommenttells the printer

driver to resumenormal QuickDraw mode.

Any Quickdraw drawing commands made by the application between the

PostScriptBegin and PostScriptEndcommentswill be ignored by PostScript

printers. In order to use PostScriptin a device independentway, you should always

include two representationsof your document.The first representationshould be a

seriesof Quickdrawdrawing commands.The secondrepresentationof your document

should be a seriesof PostScriptcommands,sentto the Printing Managervia picture

comments.This way, when you are printing to a PostScriptdevice,the picture comments

will be executed, and the Quickdraw commands ignored. When printing to a

non-PostScriptdevice, the picture commentswill be ignored, and the Quickdraw

commandswill be executed.This methodallows you to use PostScript,without having

to askthe device if it supportsit. This allows your applicationto get the bestresultswith

any printer, without being devicedependent.

Hereare someguidelinesyou needto remember:

• The graphicstateset up during QuickDraw calls is maintainedand is not affectedby

PostScriptcalls madewith thesecomments.

• The headerhas changeda numberof parametersso sometimesyou won’t get the

resultsyou expect.You may want to take a look at the headerlisted in The LaserWriter

ReferenceManualavailablethroughAPDA.

• The headerchangesthe PostScriptcoordinatesystemso that the origin is at the

top-left cornerof the pageinsteadof at the bottom-left corner. This is doneso that the

QuickDraw coordinatesthat are useddon’t have to be remappedinto the standard

PostScriptcoordinatesystem. If you don’t allow for this, all drawing is printed upside

down. Pleaseseethe PostScriptLanguageReferenceManual for details about

transformationmatrices.

• Don’t call showpage.This is donefor you by the driver. If you do, you won’t be able to

switch backto QuickDraw mode and an additional pagewill be printed when you call

PrClosePage.

• Don’t call exitserver.You may get very strangeresults.

• Don’t call initgraph±cs.Graphicsstatesarealreadysetup by the header.

• Don’t do anythingthat you expectto live acrossjobs.

• You won’t be able to interrogatethe printer to get information backthroughthe driver.

TechnicalNote #91 page8 of 18 LaserWriterPictureComments



The PostScriptBegincommentsetsthe driver stateto preparefor the generationof
PostScriptby the application by calling gsaveto savethe current state.PostScriptis
then sentto the printer by using comments192 through 195. The QuickDrawstateof the
driver is then restoredby the PostscriptEndcomment.All QuickDraw operationsthat
occur outside of thesecommentsare performed; no clipping occursas with the text
rotation comments.

PostScriptFrom a Text Handle

When the PostScriptHandlecommentis used,the handle PSDatapoints to the
PostScriptcommandswhich are sent. PSDatais a generichandlethat points to text,
without a length byte. The text is terminatedby a carriagereturn. This comment is
terminatedby a PostScriptEndcomment.

Note: Due to a bug in the 3.1 LaserWriterdriver, PostScriptEndwill not restorethe
QuickDrawstateafter the useof a PostScriptHandlecomment.The workaroundis to
only use this comment at the end of your drawing, after you have made all the
QuickDrawcalls you need.This problemis fixed in more recentversionsof the driver.

Here’san exampleof how to usethis comment:

PROCEDURE PostHdl;
(this procedureshows how to use PostScript from a text Handle}
CONST

PostScriptBegin= 190;
PostScriptEnd= 191;
PostScriptHandle= 192;

VAR

MyString Str255;
tempstr : String[1);
MyHandle : Handle;
err : OSErr;

BEGIN { PostHdl
MyString ‘/Times—Roman findfont 12 scalefont setfont 230 600 moveto

(Hello World) show’;
tempstr:=’ ‘;

tempstr[1) := chr(13); (has to be terminatedby a carriage return
MyString := Concat(MyString, tempstr); { in order for it to execute)
err := PtrToHand (Pointer(ord(t3myString)+1),MyHandle, length(MyString));
MyPic OpenPicture(theWorld);

ClipRect(theWorid);
MoveTo (20,20);
DrawString(’PostScriptfrom a Handle’);
PicComrnent(PostScriptBegin,0, nil); (Begin PostScript
PicComrnent(PostScriptHandle,length(mystring) ,MyHandle);
PicComrnent(PostScriptEnd,0,nil); (PostScriptEnd)

ClosePicture;
DisposHandle(Myllandle); (Clean up}
PrjntThePjcture; {print it please)
KiliPicture (MyPic);

END; { PostHdl

TechnicalNote #91 page9 of 18 LaserWriterPictureComments



Defining PostScriptas QuickDraw Text

All QuickDrawtext following the TextlsPostScriptcommentis sentas PostScript.No

error checking is performed. This comment is terminatedby a PostScriptEnd

comment.

Here is an example:

PROCEDURE PostText;

{Shows how to use PostScript in strings in a QuickDraw picture)

CONST

PostScriptBegin= 190;

PostScriptEnd= 191;

TextlsPostScript= 194;

.

BEGIN { PostTest

MyPic := OpenPicture(theWorld);

ClipRect(theWorid);

MoveTo(20,20);

DrawString( ‘TextlsPostScriptComment’);

PicComment(PostScriptBegin,0, nil);

PicCornnient(TextlsPostScript,0,nil);

DrawString(’O 728 translate’);

DrawString(’l -1 scale’);

DrawString( ‘newpath’);

{Begin Postscript)

{following text is PostscriptI

{move the origin and rotate the)

{coordinate system)

DrawString(’lOO 470 moveto’);

DrawString(’500 470 lineto’);

DrawString(’lOO 330 moveto’);

DrawString(’500 330 lineto’);

DrawString(’230 600 moveto’);

DrawString(’230 200 lineto’);

DrawString(’370 600 moveto’);

DrawString(’370 200 lineto’);

DrawString(‘10 setlinewidth’);

DrawString(‘stroke’);

DrawString( ‘/Times-Roman findfont

DrawString(’230 600 moveto’);

DrawString(’(Hello World) show’);

PicComment(PostScriptEnd,0,nil);

ClosePicture;

PrintThePicture;

KillPicture (MyPic);

END; { PostText

.

12 scalefont setforit’);

{PostscriptEnd}

(print it please)

TechnicalNote #91 page lOot 18 LaserWriterPictureComments



PostScriptFrom a File

The PostScriptFileandResourcePScommentsallow you to sendPostScriptto the
printer from a resourcefile. Before thesecommentsare describedthere are some
restrictionsyou needto follow:

• Don’t ever copy a picture containingthesecommentsto the clipboard. If it is pasted
into anotherapplicationand the specifiedfile or resourceis not available,printing will
be abortedandthe userwon’t know what went wrong. This could be very confusingto
a user. If you want the PostScriptinformation to be available when printed from
anotherapplication,useone of the othercommentsand include the information in the
picture.

• Don’t keepthe PostScriptin a separatefile from the actualdata file. If the datafile
ever gets movedwithout the PostScriptfile, when the picture is printed the datafile
may not be found and the print job will be aborted,again without the userknowing
what went wrong. Keepingthe dataand PostScriptin the samefile will forestall many
headachesfor you andthe user.

Now, a descriptionof the comments:

The PostScriptFilecommenttells the driver to use the POST type resources
containedin the file FileNameString.FileNameStringis declaredasa Str255.

When this commentis encountered,the driver calls OpenResFileusing the file name
specified in FileNameString.lttheflcallSGetResource(’POST’,thelD);
repeatedly, where thelD begins at 501 and is incrementedby one for each
GetResourcecall. If the driver gets a ResNotFounderror, it closesthe specified
resourcefile. If the first byte of the resourceis a 3, 4, or 5 then the remainingdatais sent
and the file is closed.

The format of the POSTresourceis asfollows: The IDs of the resourcesstart at 501 and
are incrementedby one for eachresource.Eachresourcebeginswith a 2 byte datafield
containingthe datatype in the first byte and a zero in the second.The possiblevalues
for the first byte are:

0 ignore the restof this resource(a comment)
1 datais ASCII text
2 datais binary and is first convertedto ASCII beforebeing sent
3 AppleTalk end of file. The restof thedata,if thereis any, is interpretedasASCII text

andwill be sentafterthe EOF.
4 openthe datafork of the currentresourcefile and sendthe ASCII text there
5 endof the resourcefile

The secondbyte of the field must always be zero. Resourcesshould be kept small,
around2K. Text and binary should not be mixed in the sameresource.Make sureyou
include eithera spaceor a return at the end of eachPostScriptstring to separateit from
the following command.

TechnicalNote #91 page 1 lot 18 LaserWriterPictureComments



Here’s an example:

PROCEDURE PostFile;

(This procedureshows how to use PostScript from a specifiedFILE)

CONST

PostScriptBegin= 190;

PostScriptFile= 193;

PostScriptEnd= 191;

VAR

MyString : Str255;

MyHandle : Handle;

err : OSErr;

BEGIN { PostFile

(You should never do this in a real program. This is only a test.)

MyString := ‘HardDisk:MPW:Print Examples:PSTestDoc’;

err := PtrToHand(pointer(MyString),MyHandle,length(MyString) + 1);

MyPic := OperiPicture(theWorld);

ClipRect(theWorld);

MoveTo(20,20);

DrawString( ‘PostScriptFileComment’);

PicComment(PostScriptBegin,0, nil); {Begin Postscript)

PicComment(PostScriptFile,GetHandleSize(MyHandle),MyHandle);

PicCorninent(PostScriptEnd,0,riil); {PostScriptEnd}

MoveTo (50,50);

DrawString(’PostScriptEndhas terminated’);

ClosePicture;

DisposHandle(MyHandle); {Clean up)

PrintthePicture; (print it please)

KillPicture (MyPic);

END; { PostFile

Herearethe resources:

type ‘POST’

switch

case Comment: /* this is a comment /

key bitstring[8] = 0;

fill byte;

String;

caseASCII: /* this is just ASCII text *1

key bitstring[81 = 1;

fill byte;

String;

case Bin: /* this is binary /

key bitstring[81 = 2;

fill byte;

String;

case ATEOF: /* this is an AppleTalk EOF */

key bitstring[8] = 3;

fill byte;

string;

TechnicalNote #91 page 1 2of 18 LaserWriterPictureComments



caseDataFork: 1* send the text in the data fork *1
key bitstring[8] 4;
fill byte;

case EOF: / no more *1
key bitstring[8] = 5;
fill byte;

resource ‘POST’ (501)
ASCII{”O 728 translate“}};

resource ‘POST’ (502)
ASCII{”l —1 scale “}};

resource ‘POST’ (503)
ASCII { “newpath “} };

resource ‘POST’ (504)
ASCII{”lOO 470 moveto “}};

resource ‘POST’ (505)
ASCII{”500 470 lineto “}};

resource ‘POST’ (506)
ASCII{”lOO 330 moveto “)};

resource ‘POST’ (507)
ASCII{”500 330 lineto “1);

resource ‘POST’ (508)
ASCII{”230 600 moveto “}};

resource ‘POST’ (509) 1
ASCII{”230 200 lineto “}};

resource ‘POST’ (510)
ASCII{”370 600 moveto U));

resource ‘POST’ (511)
ASCII{”370 200 lineto “}};

resource ‘POST’ (512)
ASCII{”lO setlinewidth “));

resource ‘POST’ (513)
ASCII { “stroke “});

resource ‘POST’ (514)
ASCII{”/Times—Roman findfont 12 scalefontsetfont “}};

resource ‘POST’ (515)
ASCII(”230 600 moveto ‘));

resource ‘POST’ (516)
ASCII{” (Hello World) show “}};

TechnicalNote #91 page 1 3of 18 LaserWriterPictureComments



/* It will stop reading and close the file after 517 */

resource ‘POST’ (517)

EOF

{1 };

1* it never gets here */

resource ‘POST’ (518)

DataFork

{}};

When the ResourcePScommentis encountered,the LaserWriterdriver sendsthe text

containedin the specified resourceas PostScriptto the printer. The additionaldata is

definedas

PSRsrc = RECORD

PSType ResType;

PSID : INTEGER;

PSlndex: INTEGER;

END;

The resourcecan be of type STR or STR#. If the Type is STR thenthe index shouldbe 0.

Otherwisean index should be given.

This comment is essentiallythe sameas the PrintF control call to the driver. The

imbeddedcommandstring it usesis ‘rn’, which basicallytells the driver to sendthe

string specifiedby the additionaldata,then senda newline. For more information about

printercontrol calls seethe LaserWriterReferenceManual.

Here’s an example:

PROCEDURE P05tRSRC;

{This procedureshows how to get PostScript from a resourceFILE}

CONST

PostScriptBegin= 190;

PostScriptEnd= 191;

ResourcePS= 195;

TYPE

theRSRChdl = ‘theRSRCptr;

theRSRCptr= theRSRC;

theRSRC = RECORD

theType: ResType;

thelD: INTEGER;

Index: INTEGER;

END;

VAR

temp : Rect;

TheResource : theRSRChdl;

i,j : INTEGER;

myport : GrafPtr;

err : INTEGER;

atemp : Boolean;

TechnicalNote #91 page 1 4of 18 LaserWriterPictureComments



BEGIN { PostRSRC
TheResource:= theRSRChdl(NewHandle(Sizeof(theRSRC)));TheResource’.theID: 500;
TheResource”.Index:= 0;
TheResource”.theType:= ‘STR ‘;
HLock (Handle(TheResource));
MyPic OpenPicture(theWorld);
DrawString( ‘ResourcePSComment’);
PicComment(PostScriptBegin,0, nil); (Begin PostScriptPicCoznment(ResourcepS,8,Handle(TheResource));(Send postscript)PicComment(PostScriptEnd,0,nil); {PostScriptEnd}
ClosePicture;
DisposHandle(Handle(TheResource));(Clean up)
PrintthePicture; (print it please)
KillPicture(MyPic);

END; { P05tRSRC

Here’sthe resource:

resource ‘STR ‘ (500)
{“O 728 translate 1 —1 scale newpath 100 470 moveto 500 470 lineto 100 330moveto 500 330 lirieto 230 600 moveto 230 200 lineto 370 600 moveto 370 200lineto 10 setlinewidth stroke /Times-Romanfindfont 12 scalefont setfont 230600 moveto (Hello World) show”

TechnicalNote #91 page 1 5of 18 LaserWriterPictureComments



Rotation

The conceptof rotation doesn’tapply to text alone. PostScriptcan rotateany object. The

rotation commentswork exactly like text rotation exceptthat all objectsdrawn between

the two commentsare drawn in the rotatedcoordinatesystemspecifiedby the centerof

rotation comment,not just text. Also, no clipping of copyBits calls occurs. These

commentsonly work on the 3.1 and newerLaserWriterdrivers.

The RotateBegincommenttells the driver that the following objectswill be drawn in a

rotatedplane.This commentcontainsthe following datastructure:

Rotation = RECORD

Flip: INTEGER; {0,l,2 => none, horizontal, vertical coordinateflip I

Angle: INTEGER; {0. .360 => clockwise rotation in degrees

END; { Rotation

When you are finished, the RotateEndcommentreturnsthe coordinatesystemto

normal, terminatingthe rotation.

The relative centerof rotation is specifiedby the RotateCentercommentin exactly

the samemannerasthe TextCentercomments.The difference,however,is that this

commentmustappearbeforethe RotateBegincomment.The datastructureof the

accompanyinghandleis exactly like that for the TextCentercomment.

Here’s an exampleof how to use rotation comments:

PROCEDURE Test;

{This procedureshows how to do rotations)

CONST

RotateBegin= 200;

RotateEnd= 201;

RotateCenter= 202;

TYPE

rothdl = “rotptr;

rotptr = “trot;

trot = RECORD

flip : INTEGER;

Angle : INTEGER;

END; { trot
centhdl = “centptr;

centptr = “cent;

Cent = PACKED RECORD

ylnt: INTEGER;

yFrac: INTEGER;

xlnt: INTEGER;

xFrac: INTEGER;

END; { Cent

VAR

arect : Rect;

rotation : rothdl;

center : centhdl;

TechnicalNote #91 page 1 6of 18 LaserWriterPictureComments



BEGIN { Test
rotation := rothdl (NewHandle(sizeof(trot)));
rotation’.flip := 0; {no flip)rotation.angle:= 15; {15 degreerotation)

center := centhdl(NewHandle(sizeof(cent)));
center”.xInt := 50; (center at 50,50)center”.ylnt 50;
center”.xFrac: 0; (no fractional part)center’.yFrac := 0;

myPic := OpenPicture(theWorld);
ClipRect(theWorld);
MoveTo (20,20);
DrawString(‘Begin Rotation’);

(set the center of Rotation)
PicComment(RotateCenter,GetHandleSize(Handle(center)) ,Handle(center));(Begin Rotation)

PicCornment(RotateBegin,GetHandleSize(Handle(rotation) ) , (rotation));SetRect(arect,100,100,500,500);
FrameRect(aRect);
MoveTo (500,500);
Lineto (100,100);
PicComment(RotateEnd,0,nil); {RotateEnd}ClosePicture;

DisposHandle(handle(rotation)); {Clean up)
DisposHandle(handle(center));
PrintThePicture;

(printit please)
KillPicture (MyPic);

END; { Test I

TechnicalNote #91 page 1 70118 LaserWriterPictureComments



Forms

The two form printing commentsallow you to preparea templateto use for printing.

When the FormsBegincommentis used,the LaserWriter’sbuffer is not clearedafter

PrClosePage.This allows you to downloada form then changeit for eachsubsequent

page,inserting the information you want. FormsEndallows the buffer to be clearedat

the next PrClosePage.

.

TechnicalNote #91 page180118 LaserWriterPictureComments



Macintosh Technical Notes

#92: The Appearanceof Text

Seealso: The Printing Manager
The Font Manager
TechnicalNote #91—

Optimizing for the LaserWriter—PictureComments

Written by: GingerJernigan November15, 1986
Updated: March 1, 1988

This technical note describeswhy text doesn’t always look the way you
expectdependingon the environmentyou are in.

There are a number of Macintosh text editing applicationswhere layout is critical.
Unfortunately,text on a newermachinesometimesprints differently than text on a 64K
ROM Macintosh.Let’s examinesomedifferencesyou shouldexpectandwhy.

The differenceswe will considerhereareonly differencesin the layout of text lines (line
layout), not differencesin the appearanceof fonts or the differencesbetweendifferent
printers. Differencesin line layout may affect the position of line, paragraphand pagebreaks.The four variablesthat can affect line layout are fonts, the printerdriver, the font
managermode,and ROMs.

Fonts

Every font on a Macintoshcontainsits own table of widths which tells QuickDraw how
wide charactersare on the screen.For every style point size there is a separatetable
which may contain widths that vary from face to face and from point size to point size.
Characterwidths can vary betweenpoint sizesof characterseven in the sameface. In
otherwords, fonts on the screenare not necessarilylinearly scalable.

Non-linearity is not normally a problem since most fonts are designedto be ascloseto
linear as possible.A font face in 6 point hasvery nearly the samescaledwidths of the
same font face in 24 point (plus or minus round-off or truncation differences).
QuickDraw, however, requiresonly one face of any particularfont to be in the Systemfile to useit in any point size. If only a 10 point face actuallyexists,QuickDraw may scalethat face to 9, 18, 24 (or whateverpoint size) by performinga linearscaleof the 10 point
face.

TechnicalNote #92 page 1 013 The Appearanceof Text



This can causeproblems.Supposea documentis createdon one Macintoshcontaining

a font that only exists in that Systemfile in one point size, say 9 point. The documentis

then takento anotherMacintoshwith a Systemfile containingthat samefont but only in

24 point. The documentmay, in fact, appeardifferently on the two screens,and when it

is printed, will have line breaks(and thus paragraphand page breaks)occurring in

different placessimply becauseof the differencesin characterwidths that exist between

the 9 point and 24 point faces.

The Printer Driver

Even when the printer you are using hasa much higher resolutionthan what the screen

can show, printer drivers perform line layout to match the screenlayout as closely as

possible.

The line layout performedby printer drivers is limited to single lines of text and doesnot

changeline breakpositionswithin multiple lines. The driver suppliesmetric information

to the application about the pagesize and printable areato allow the application to

determinethe bestplaceto make line and pagebreaks.

Printer driver line layout doesaffect word spacing,characterspacingand even word

positioning within a line. This may affect the overall appearanceof text, particularly

when font substitutionsare madeor various forms of pageor text scalingare involved.

But print drivers NEVER changeline, paragraphor pagebreakpositionsfrom what the

application or screenspecified. This meansthat where line breaks appearon the

screen,they will alwaysappearin the sameplace on the printer regardlessof how the

line layout may affect the appearancewithin the line.

OperatingSystemand ROMs

In this context,operatingsystemrefersto the ROM trap routineswhich handlefonts and

QuickDraw. Changeshave occurredbetweenthe ROMs in the handling of fonts. Fonts

in the 64K ROMs containwidth tables(as describedabove)which are limited to integer

values.Severalnew tables,however, have beenaddedto fonts for the newer ROMs.

The newerROMs add an optional global width table containingfractional or fixed point

decimal values. In addition, there is anotheroptional table containing fractional values

which can be scaledfor the entire rangeof point sizesfor any one face.Thereis also an

optional table which providesfor the addition (or removal) of width to a font when its

style is changedto anothervalue suchas bold, outline or condensed.It is also possible,

under the 128K ROMs, to add fonts to the system with inherent style properties

containingtheir own width tablesthat producedifferent characterwidths from derived

style widths.

TechnicalNote #92 page 2 of 3 The Appearanceof Text



One or all of the abovetables may or may not be invoked dependingon, first, theirpresence,and second,the mode of the operatingsystem.The Font Managerin thenewerROMs allows the applicationto arbitrarily operatein eitherthe fractional modeorintegermode(determined,in mostcases,by the settingof FractEnable)as it chooses,with the default being integer.There is one casewhere fractional widths will be usedifthey exist even though fractional mode is disabled.When FScaleDisableis usedfractionalwidths are alwaysusedif they exist regardlessof the settingof FractEnable.

Differencesin line layout (and thus line breaks)may be affectedby any combinationofthe presenceor absenceof the optional tables,andthe operatingmode,eitherfractionalor integer,of the application.Any of the combinationscan producedifferent resultsfromthe original ROMs (and from eachother).

The integermodeon the newerROMs is very similar to, but not exactlythe sameas,theoriginal 64K ROMs. When fonts with the optional tables presentare used onMacintosheswith 64K ROMs, they continueto work in the old way with the integerwidths. However,on newerROMs, even in the integermode,theremay be variationsinline width from what is seenon the old ROMs. In the plain text style there is very little ifany difference(exceptif the global width table is present),but asvarioustype stylesareselected,line widths may vary more betweenROMs.

Variations in the above options, by far, account for the greatestvariation in theappearanceof lines when a documentis transportedbetweenone Macintosh andanother.Line breaksmay changeposition whendocumentscreatedon onesystem(saya Macintosh)are movedto anothersystem(like a MacintoshPlus). Variationsare morepronouncedasthe numberand sizesof varioustype stylesincreasewithin a document.
In all cases,however, a printer driver will produceexactly the sameline breaksasappearon the screenwith any given systemcombination.

TechnicalNote #92 page 3 of 3 The Appearanceof Text



.



Macintosh Technical Notes

#93: M PW: {$LOAD}; Datalnit;%MethTables

Seealso: MPW ReferenceManuals

Written by: Jim Friedlander November15, 1986
Modified by: Jim Friedlander January12, 1987
Updated: March 1, 1988

This technicalnotediscussesthe Pascal{ $LOAD } directiveaswell ashow to
unloadthe_Datalnitand % MethTablessegments.

{$LOAD}

MPW Pascalhasa { $LOAD } directive that candramaticallyspeedup compiles.

{$LOAD HD:MPW:PLibraries:PasSymDump}

will combinesymbol tablesof all units following this directive (until another { $ LOAD
directive is encountered),anddumpthemoutto HD:MPW:PLibraries:PasSymDump.In
orderto avoid using fully specifiedpathnames,you can use { $ LOAD } in conjunctionwith
the —k option for Pascal:

Pascal—k “{PLibraries}” myfile

combinedwith the following lines in myfile:

USES

{$LOAD PasSyxnDump}
MemTypes,QuickDraw,OSIntf, Toollntf, Packlntf,

{$L0AD} {This “turns off” $LOAD for the next unit}
Nonoptimi zed,

{$LOAD MyLibDump}
MyLib;

will do the following: the first time a program containing theselines is compiled, two
symbol table dump files (in this casePasSymDumpandMyLibDump) will be createdin
the directory specifiedby the —k option (in this case{PLibraries)).No dump file will
be generatedfor the unit NonOptimized.The compiler will compile MemTypes,
QuickDraw, OSIntf, Toollntf, Packlntf (quite time consuming)anddump those
units’ symbolsto PasSymDumpand it will compile the interfaceto MyLib and dump its
symbolsto MyLib. For subsequentcompilesof this program(or any programthat uses
the samedump file(s)), the interfacefiles won’t be recompiled,the compilerwill simply
readin the symbol table.

TechnicalNote #93 page 1 of 3 MPW: {$LOAD} ;_Datalnit;%_MethTables



Compiling a samplefive line programon a Macintosh Plus/HD2OSCtakes62 seconds

without using the {$LOAD} directive. The sameprogramtakes 10 secondsto compile

using the { $LOAD } directive (once the dump file exists). For further details about this

topic, pleaseseethe MPW PascalReferenceManual.

Note: If any of the units that are dumpedinto a dump file change,you needto make

surethat the dump file is deleted,so that it can be regeneratedby the Pascalcompiler

with the correct information. The bestway to do this is to use a makefile to checkthe

dump file againstthe files it dependson, and deletethe dump file if it is out of datewith

respectto any of the units that it contains.An excellent(and well commented)example

of doing this is in the MPW WorkshopManual.

The _Datalnit Segment

The Linker will generatea segmentwhoseresourcenameis %A5Init for any program

compiled by the C or Pascalcompilers.This segmentis called by a program’s main

segment.This segmentis loadedinto the applicationheapand locked in place. It is up

to your programto unload this segment(otherwise, it will remain locked in memory,

possiblycausingheapfragmentation).To do this from Pascal,usethe following lines:

PROCEDURE Datamit; EXTERNAL;

BEGIN (main PROGRAN}

tJnloadSeg(@Datalnit);

(remove data initialization code before any allocations}

From C, usethe following lines:

extern Datalnit0;

/ main /

UnloadSeg(Datalnit);

/*remove data initialization code before any allocations*/

For furtherdetailsaboutData Initialization, seethe MPW ReferenceManual.

TechnicalNote #93 page 2 of 3 MPW: {$LOAD} ;_Datalnit;%MethTables



%_MethTablesand %_SelProcs

Object use in Pascalproducestwo segmentswhich can causeheapproblems.These
are % MethTablesand % SelProcswhich are usedwhen methodcalls are made.
MacApp dealswith them correctly, so this only appliesto Object Pascalprogramsthat
don’t use MacApp. You can make the segmentslocked and preloaded(probably the
easiestroute), so they will be loaded low in the heap, or you can unload them
temporarily while you are doing heapinitialization. In the latter case,make sure there
are no method calls while they are unloaded. To reload %_MethTablesand
%SelProcs,call the dummy procedure% IriitObj. % InitObj loads%MethTables
—calling any methodwill then load %_SelProcs.

Reminder: The linker is casesensitivewhen dealing with module names.Pascal
convertsall module namesto upper-case(unlessa routine is declaredto be a C
routine). The Assemblerdefault is the sameas the Pascaldefault, though it can be
changedwith the CASE directive. C preservesthe caseof module names(unlessa
routine is declaredto be pascal,in which casethe modulenameis convertedto upper
caseletters).

Make surethat any externalroutinesthat you referencearecapitalizedthe samein both
the external routine and the externaldeclaration(especiallyin C). If the capitalization
differs, you will get the following link error (library routine = findme, programdeclaration
= extern FindMe () ;):

### Link: Error Undefined entry, name: FindMe

TechnicalNote #93 page 3 of 3 MPW: {$LOAD} ;Datalnit;%_MethTables



.

.

.



Macintosh Technical Notes

#94: Tags

Seealso: The File Manager

Written by: Bryan Stearns November15, 1986
Updated: March 1, 1988

Apple has decidedto eliminate support for file-systemtags on its future
products;this technicalnoteexplainsthis decision.

Someof Apple’s disk products(and somethird-party products)havethe ability to store
532 bytesper sector,insteadof the normal 512. Twelve of the extra bytesare usedto
store redundantfile systeminformation, known as “tags”, to be usedby a scavenging
utility to reconstructdamageddisks.

Apple hasdecidedto eliminatesupportfor thesetagson its products;this wasdecided
for severalreasons:

1) Tags were implementedback when we had to deal with “Twiggy” drives on Lisa.
Thesedriveswere lessreliable than currentdrives, and it was expectedthat tagswould
be neededfor dataintegrity.

2) We’re working on a scavengingutility (Disk First Aid), and we’ve found that tagsdon’t
help us in reconstructingdamageddisks (ie, if we can’t fix it without using tags, tags
wouldn’t help us fix it). So, at leastthe first two versionsof our scavengingutility will not
use tags, and a third version (which we’ve planned for, but will probably never
implement)can probablywork without them.

3) 532-byte-per-sectordrives and controllers tend to cost more, even at Apple’s
volumes.Thus, the demiseof tags savesus (and our customers)money. The Apple
Hard Disk 2OSCcurrently supportstags;this may not alwaysbe the case,however;we’ll
probablydrop the large sectorswhenwe run out of our currentstockof drives.

The Hierarchical File System(HFS) documentationdidn’t talk about tags becausethe
writer had no information availableabouthow they worked underHFS. Becauseof this
decision, it is unlikely that we’ll everhavedocumentationon how to correctly implement
them underHFS.

TechnicalNote #94 page 1 of 1 Tags



.

.

.



Macintosh Technical Notes

#95: How To Add Itemsto the Print Dialogs

Seealso: The Printing Manager
The Dialog Manager

Written by: GingerJernigan November15, 1986
Lew Rollins

Updated: March 1, 1988

This technical note discusseshow to add your own items to the Printing
Manager’sdialogs.

When the Printing Managerwas initially designed,great care was taken to make the
interfaceto the printer drivers as genericas possiblein order to allow applicationsto
print without being device-specific.There are times, however, when this type of
non-specificinterfaceinterfereswith the flexibility of an application.An applicationmay
require additional information before printing which is not part of the generalPrinting
Managerinterface.This technicalnote describesa methodthat an applicationcan use
to add its own itemsto the existing style andjob dialogs.

Before continuing, you need to be aware of someguidelinesthat will increaseyour
chancesof being compatiblewith the printing architecturein the future:

• Only add items to the dialogsasdescribedin this technicalnote. Any othermethods
will decreaseyour chancesof survival in the future.

• Do not changethe position of any item in the current dialogs. This meansdon’t
deleteitems from the existing item list or add items in the middle. Add items only at
the end of the list.

• Don’t count on an item retaining its current position in the list. If you dependon the
Draft button being a particularnumberin the lmageWriter’sstyle dialog item list, and
we changethe Draft button’s item numberfor some reason,your program may no
longerfunction correctly.

• Don’t usemore than half the screenheight for your items. Apple reservesthe right to
expandthe items in the standardprint dialogsto fill the top half of the screen.

• If you are adding lots of items to the dialogs (which may confuseusers),you should
consider having your own separatedialog in addition to the existing Printing
Managerdialogs.

TechnicalNote #95 page 1 of 14 How To Add Itemsto the Print Dialogs



The Heart

Before we talk about how the dialogswork, you needto know this: at the heartof the

printer dialogs is a little-known data structurepartially documentedin the MacPrint

interfacefile. It’s a recordcalled TPrD1gand it looks like this:

TPrD1g = RECOPD (Print Dialog: The Dialog Streamob:ject.}

dig : DialogRecord; (dialog window)

pFltrProc : ProcPtr; (filter proc.)

pltemProc : ProcPtr; (item evaluatingproc.)

hPrintUsr : THPrint; (user’s print record.}

fDolt : BOOLEAN;

fDone : BOOLEAN;

lUser]. : LONGINT; (four longs reservedby Apple)

lUser2 : LONGINT;

lUser3 : LONGINT;

lUser4 : LONGINT;

iNumFst : INTEGER; (numeric edit items for std filter)

iNumLst : INTEGER;

{... plus more stuff neededby the particular printing dialog.}

END;

TPPrD1g TPrDlg; {== a dialog ptrj

All of the information pertainingto a print dialog is kept in the TPrD1g record.This record

will be referredto frequently in the discussionbelow.

How the Dialogs Work

When your applicationcalls PrstlDiaiogandPrJobDialog,the printerdriver actually

calls a routine calledPrDigMain. This function is declaredas follows:

FUNCTION PrDlgMain (hprint: THPrint; pDlglnit: ProcPtr): BOOLEAN;

PrDigMain first calls the pDiglnit routine to set up the appropriatedialog (in Dig),

dialog hook (pltemProC) anddialog eventfilter (pFilterProC) in the TPrD1g record

(shownabove).For the job dialog, the addressof PrJoblnit is passedto PrDigMain.

For the style dialog, the addressof PrStllnit is passed.Theseroutinesare declared

asfollows:

FUNCTION PrJoblnit (hPrint: THPrint): TPPrD1g;

FUNCTION PrStllnit (hPrint: THPrint) : TPPrD1g;

After the initialization routine setsup the TPrD1g record,PrDlgMain calls ShowWindow

(the window is initially invisible), then it calls ModalDialog,using the dialog eventfilter

pointed to by the pFitrProc field. When an item is hit, the routine pointed to by the

pltemProcfield is calledand the items are handledappropriately.When the OK button

is hit (this includes pressingReturn or Enter) the print record is validated.The print

recordis not validatedif the Cancelbutton is hit.

TechnicalNote #95 page 2 of 14 How To Add Itemsto the Print Dialogs



How to Add Your Own Items

To modify the print dialogs,you needto changethe TPrD1g recordbeforethe dialog isdrawn on the screen.You can addyour own itemsto the item list, replacethe addressesof the standarddialog hook and eventfilter with the addressesof your own routinesandthen let the dialog codecontinueon its merry way.

For example,to modify the job dialog, first call PrJoblnit.PrJoblnitwill fill in the
TPrD1g recordfor you and return a pointerto that record.Then caN PrDlgMain directly,passing in the addressof your own initialization function. The example code’sinitialization function addsitemsto the dialog item list, savesthe addressof the standarddialog hook (in our global variable prpltemproc)and puts the addressof our dialoghook into the pltemProcfield of the TPrD1g record. Pleasenote that your dialog hookmustcall the standarddialog hook to handleall of the standarddialog’s items.

Note: If you wish to have an event filter, handle it the sameway that you do a dialoghook.

Now, hereis an example(written in MPW Pascal)that modifies the job dialog. The samecodeworks for the style dialog if you globally replace‘Job’ with ‘Sti’. Also included is afunction (AppendDITL) providedby Lew Rollins (originally written in C, translatedfor thistechnicalnoteto MPW Pascal)which demonstratesa methodof adding itemsto the itemlist, placing them in an appropriateplace,and expandingthe dialog window’s rectangle.

The MPW PascalExampleProgram

PROGRAM ModifyDialogs;

USES

$LOAD PasDump. dump)
MemTypes,QuickDraw,OSIntf,Toollntf,packlntf,Macprjnt;

CONST
MyDITL = 256;
MyDFirstBox = 1; {Item number of first box in my DITL}
MyDSecondBox = 2;

VAR

PrtJobDialog: TPPrD1g; { pointer to ob dialog
hPrintRec : THPrint; { Handle to print record
FirstBoxValue, { value of our first additional box I
SecondBoxValue: Integer; { value of our secondaddtl. box
prFirstltem, { save our first item here
prPlternProc Longlnt; { we need to store the old itemProc here
itemType : Integer; { neededfor GetDltem/SetDltemcalls
itemH Handle;
itemBox : Rect;
err : OSErr;

PROCEDURE Datalnit;
EXTERNAL;

TechnicalNote #95 page 3 of 14 How To Add Itemsto the Print Dialogs



{
I

PROCEDURE CallltemHandler(theDialog:DialogPtr; theltem: Integer; theProc:

Longlnt);

INLINE $205F,$4E90; ( MOVE.L (A7)+,A0

JSR (A0)

this code pops off theProc and then does a JSR to it, which puts the

real return addresson the stack.

FUNCTION AppendDITL(theDialog: DialogPtr; theDITLID: Integer): Integer;

version 0.1 9/11/86 Lew Rollins of Human-SystemsInterface Group)

this routine still needs some error checking

This routine appendsall of the items of a specifiedDITL

onto the end of a specifiedDLOG — We don’t even need to know the format

of the DLOG

this will be done in 3 steps:

1. appendthe items of the specifiedDITL onto the existing DLOG

2. expandthe original dialog window as required

3. return the adjustednumber of the first new user item

TYPE

DITLItem RECORD { First, a single item

itmHndl: Handle; { Handle or procedurepointer for this item

itrnRect: Rect; { Display rectanglefor this item I

itmType: SignedByte; { Item type for this item — 1 byte

itmData: ARRAY [0. .01 OF SigriedByte; { Length byte of data

END; {DITLItem)

pDITLItem = ‘DITLItem;

hDITLItem = pDITLItem;

ItemList = RECORD { Then, the list of items

digMaxlndex: Integer; { Number of items minus 1

DITLItems: ARRAY [ 0. .0) OF DITLItem; { Array of items

END; {ItemList}

pltemList = ‘ItemList;

hltemList ‘pItemList;

IntPtr = Integer;

VAR
offset : Point; { Used to offset rectanglesof items being appended

maxRect : Rect; { Used to track increasesin window size

hDITL : hltemList; { Handle to DITL being appended

pltem : pDITLItem; { Pointer to current item being appended

hltems : hltemList; { Handle to DLOG’s item list

firstltem : Integer; { Number of where first item is to be appended

newltems, { Count of new items

dataSize, { Size of data for current item

i : Integer; ( Working index

USB : RECORD {we need this becauseitrnData[0) is unsigned)

CASE Integer OF

TechnicalNote #95 page 4 of 14 How To Acid Itemsto the Print Dialogs



1:

2:
(SBArray: ARRAY [0. .1] OF SignedByte);

(Int: Integer);
END; {USB}

BEGIN {AppendDITL}

Using the original DLOG

1. Rememberthe original window Size.
2. Set the offset Point to be the bottom of the original window.
3. Subtract 5 pixels from bottom and right, to be added

back later after we have possibly expandedwindow.
4. Get working Handle to original item list.
5. Calculate our first item number to be returnedto caller.
6. Get locked Handle to DITL to be appended.
7. Calculatecount of new items.

maxRect := DialogPeek(theDialog) .window.port.portRect;
off set.v := maxRect.bottom;
offset.h := 0;
maxRect.bottom: maxRect.bottom- 5;
maxRect.right := maxRect.right - 5;
hltems := hltemList(DialogPeek(theDialog) . items);
firstltem := hltems”’.dlgMaxlndez+ 2;
hDITL := hItemList(GetResource(’DITL,theDITLID));
HLock (Handle(hDITL));
newltems := hDITL’”’.dlgMaxlndex + 1;

each item,
Offset the rectangleto follow the original window.
Make the original window larger if necessary.
fill in item Handle according to type.

pltem := @hDITL.DITLItems;
FOR i : 1 TO newltems DO BEGIN

OffsetRect(pItem . itmRect,offset.h, offset .

UnionRect(pItem” . itmRect,maxRect,maxRect);

USB.Int := 0; (zero things out}
USB.SBArray[l] := pItem’.itmData[0];

Strip enable bit since it doesn’t matter here.
WITH pItem DO

CASE BAND(itmType,$7F) OF
userltem: { Can’t do anything meaningful with user items.

itmHndl
ctrlltem

itmHndl

:= NIL;
+ btnCtrl,ctrlltem + chkCtrl,ctrlltem + radCtrl:{build Control
:= Handle(NewControl(theDialog,{ theWindow

itmRect, { boundsRect
StringPtr(@itmData[0])”, { title
true, { visible
0,0,1, { value, mm, max
BAND(itmType,$03), { proclD
0)); { refCon

ctrlltem + resCtrl: BEGIN { Get resourcebasedControl

For
1.
2.

3.

TechnicalNote #95 page 5 of 14 How To Add Itemsto the Print Dialogs



itmHndl := Handle(GetNewControl(Intptr(@itrnData[1))”,{ controllD I

theDialog)); { theWindow

ControlHandle(itmHndl)’.contrlRect:= itrnRect; (give it the right

rectangle

(An actionProcfor a Control should be installedhere)

END; (Case ctrlltem + resCtrl}

statText,editText: { Both need Handle to a copy of their text.

err := PtrToHand(@itmData[1), ( Start of data

itrnHndl, ( Address of new Handle

USB.Int); { Length of text I
iconltein: { Icon needs resourceHandle.

pItem’.itmHndl := Getlcon(IntPtr(@itmData[11)”); { ICON reslD

picltem: ( Picture needs resourceHandle.

pItem.itmHndl := Handle(GetPicture(IntPtr(@itmData[1)V’));{PICTreslD)

OTHERWISE

itmHndl := NIL;

END; (Case)

dataSize := BAND(USB.Int + l,$FFFE);

(now advanceto next item)

pltem := pDITLItem(Ptr(ord4(@plterW’) + dataSize+ sizeof(DITLItem)));

END; (for)

err : PtrAndHand

(@hDITL’”’.DITLItems,Handle(hltems),GetHandleSize(Handle(hDITL)));

hltems’”’ .dlgMaxlndex := hltems”.dlgMaxlndex + newltems;

HUnlock (Handle(hDITL));

ReleaseResource(Handle(hDITL));

maxRect.bottom:= maxRect.bottom+ 5;

maxRect.right := maxRect.right+ 5;

SizeWindow(theDialog,maxRect.right,maxRect.bottom,true);

AppendDITL := firstltem;

END; {AppendDITL}

PROCEDURE MyJobltems(theDialog:DialogPtr; iternNo: Integer);

This routine replacesthe routine in the pltemProc field in the

TPPrD1g record. The steps it takes are:

1. Check to see if the item hit was one of ours. This is done by “localizing”

the number, assumingthat our items are numberedfrom 0. .n

2. If it’s one of ours then case it and Handle appropriately

3. If it isn’t one of ours then call the old item handler

VAR

Myltem, firstltem: Integer;

thePt : Point;

thePart : Integer;

theValue : Integer;

debugPart : Integer;

BEGIN {MyJobltems

firstltem := prFirstltem; ( remember, we savedthis in myJobDiglnit I
Myltem := itemNo — firstltem + 1; { “localize” current item No

IF Myltem > 0 THEN BEGIN { if localized item > 0, it’s one of ours

find out which of our items was hit I
GetDltem(theDialog,itemNo,itemType,itemH, itemBox);

TechnicalNote #95 page 6 of 14 How To Add Itemsto the Print Dialogs



CASE Myltem OF
MyDFirstBox: BEGIN

invert value of FirstBoxValue and redraw it
FirstBoxValue := 1 - FirstBoxValue;
SetCtlValue(ControiHandle(itemH) , FirstBoxValue);

END; (caseMyDFirstBox}
MyDSecondBox: BEGIN

invert value of SecondBoxValueand redraw it
SecondBoxValue:= 1 - SecondBoxValue;
SetCtlValue(ControlHandle(iternH) , SecondBoxValue);

END; {case MyDSecondBox}
OTHERWISE

Debug; { OH OH — We got an item we didn’t expect
END; {Case}

END { if Myltem > 0
ELSE { chain to standarditem handler, whose addressis saved

in prPltemProc I
CallltemHandler(theDialog,itemNo,prPltemProc);

END; { MyJobltems

FUNCTION MyJobDlglnit (hprint: THPrint): TPPrD1g;

This routine appendsitems to the standardob dialog and sets up the
user fields of the printing dialog record TPRD1g
This routine will be called by PrDlgMain
This is what it does:
1. First call PrJoblnit to fill in the TPPrD1g record.
2. Append our items onto the old DITL. Set them up appropriately.
3. Save the addressof the old item handler and replace it with ours.
4. Return the Fixed dialog to PrDlgMain.

VAR

firstltem : Integer; { first new item number

BEGIN {MyJobDlglnit I
firstltem : AppendDITL(DialogPtr(PrtJobDialog),MyDITL);

prFirstltem := firstltem; { save this so MyJobltems can find it

now we’ll set up our DITL items — The “First Box”
GetDltem(DialogPtr(PrtJobDialog), firstltem,itemType,itemH, itemBox);
SetCtlValue(ControlHandle(itemH),FirstBoxValue);

now we’ll set up the secondof our DITL items — The “Second Box”
GetDltem(DialogPtr(PrtJobDialog),firstltem + 1, itemType,iternH,itemBox);
SetCtlValue(ControlHandle(iternH) , SecondBoxValue);

Now comes the part where we patch in our item handler. We have to save
the old item handler address,so we can call it if one of the standard
items is hit, and put our item handler’s address
in pltemProc field of the TPrD1g struct)

prPlternProc := LongInt(PrtJobDialog.pItemProc);

Now we’ll tell the modal item handler where our routine is

Technica’Note #95 page 7 of 14 How To Add Itemsto the Print Dialogs



PrtJobDialog.pItemProc:= ProcPtr(@MyJobltems);

PrDlgMain expectsa pointer to the modified dialog to be returned....

MyJobDiglnit : PrtJobDialog;

END; {myJobDlglnit}

FUNCTION Print: OSErr;

VAR

bool : BOOLEAN;

BEGIN {Print}

hPrintRec := THPrint(NewHandle(sizeof(TPrint)));

PrintDefault(hPrintRec);

bool := PrValidate(hPrintRec);

IF (PrError <> noErr) THEN BEGIN

Print : PrError;

Exit (Print);

END; {If}

call PrJoblnit to get pointer to the invisible job dialog I

PrtJobDialog := PrJoblnit(hPrintRec);

IF (PrError <> noErr) THEN BEGIN

Print : PrError;

Exit (Print);

END; {If}

(Here’s the line that does it all!}

IF NOT (PrDlgMain(hPrintRec,@MyJobDlglnit))THEN BEGIN

Print := cancel;

Exit (Print);

END; (If}

IF PrError <> noErr THEN Print := PrError;

that’s all for now

END; { Print I

BEGIN {PROGRAM)

UnloadSeg(@Datalnit); {remove data initialization code before any

allocations

InitGraf (@thePort);

InitFonts;

FlushEvents(everyEvent,0);

InitWindows;

InitMenus;

TEInit;

InitDialogs(NIL);

InitCursor;

call the routine that does printing I

TechnicalNote #95 page 8 of 14 How To Add Itemsto the Print Dialogs



FirstBoxValue := 0; { value of our first additional box
SecondBoxValue:= 0; { value of our secondaddtl. box
PrOpen; { Open the Print Manager
IF PrError = noErr THEN
err := Print { This actually brings up the modified Job dialog I

ELSE BEGIN
{tell the user that PrOpen failed}

END;

PrClose; { Close the Print Manager and leave I
END.

TechnicalNote #95 page9 of 14 How To Add Itemsto the Print Dialogs



The LightspeedC ExampleProgram

7* NOTE: Apple reservesthe top half of the screen (where the current DITL

items are located) . Applications may use the bottom half of the

screento add items, but should not change any items in the top half

of the screen. An application should expandthe print dialogs only

as much as is absolutelynecessary.

*7

7* Note: A global searchand replaceof ‘Job’ with ‘Sti’ will produce

code that modifies the style dialogs /

#include <DialogMgr . h>

#include <MacTypes. h>

#include <Quickdraw.h>

#include <ResourceMgr. h>

#include <WindowMgr . h>

#include <pascal.h>

I include <printmgr . h>

#define nil CL

static TPPrD1g PrtJobDiaiog; 1* pointer to job dialog *7

7* This points to the following structure

struct
DialogRecord

ProcPtr

ProcPtr

THPrint

Boolean

Boolean

(Four longs

long

long

long

long
*TpprDlg;

#define MyDITL 256

THPrint hPrintRec;

short FirstBoxValue = 0;

short SecondBoxValue= 0;

long prFirstltem;

long prPltemProc;

Dig; (The Dialog window)

pFltrProc; (The Filter Proc.)

pltemProc; (The Item evaluatingproc. --

we’ll change this)

hPrinttJsr; (The user’s print record.)

fDolt;

fDone;
-- reservedby Apple Computer)

lUseri;

lUser2;

lUser3;

lUser4;

7* resourceID of my DITL to be spliced

on to job dialog */

7* handle to print record */

7* value of our first additional box *7

7* value of our secondaddti. box /

1* save our first item here *7
7* we need to store the old itemProc here */

0

.

I TPrDlg;

*1

/ Declare ‘pascal’ functions and procedures*/

pascalBoolean PrDlgMainO; 7* Print manager’sdialog handler */

pascal TPPrD1g PrJobInit; 7* Gets standardprint job dialog. *7

pascal TPPrD1g MyJobDlgInit; 7* Our extention to PrJoblnit /

pascal void MyJobItems; / Our modal item handler *7

TechnicalNote #95 page lOot 14 How To Add Itemsto the Print Dialogs



1* */
WindowPtr MyWindow;
OSErr err;
Str255 myStr;

main()

Rect myWRect;

InitGraf (&thePort);
InitFonts0;
InitWindows0;
InitMenus0;
InitDialogs(nil);
InitCursor;
SetRect(&myWRect,50,260,350,340);

/* call the routine that does printing /
PrOpen0;
err = Print();

PrCloseQ;
/ main /

7*
*

/

OSErr Print()

/ call PrJoblnit to get pointer to the invisible job dialog */
hPrintRec = (THPrint) (NewHandle(sizeof(TPrint)));
PrintDefault(hPrintRec);
PrValidate(hPrintRec);
if (PrError() != noErr)

return PrError();

PrtJobDialog= PrJoblnit(hPrintRec);
if (PrError() != noErr)

return PrError();

if (!PrlDlgMain(hPrintRec, &MyJobDlglnit)) 7* this line does all the
stuff */

return Cancel;

if (PrError() != noErr)
return PrError();

7* that’s all for now *7

1 / Print *7

7*
*

/

pascal TPPrD1g MyJobDlglnit (hPrint)
THPrint hPrint;

TechnicalNote #95 page 11 of 14 How To Add Itemsto the Print Dialogs



/* this routine appendsitems to the standardjob dialog and sets up the

user fields of the printing dialog record TPRD1g

This routine will be called by PrDlgMain *1

short firstltem; /* first new item number */

short itemType; /* neededfor GetDltem/SetDltemcall */

Handle itemH;

Rect itemBox;

firstltem AppendDITL (PrtJobDialog, MyDITL); /*call routine to do

this */

prFirstltem = firstltem; / save this so MyJobltems can find it /

now we’ll set up our IDITL items -- The “First Box” /

GetDltem(PrtJobDialog,firstltem,&itemType,&itemH, &itemBox);

SetCtlValue(itemH,FirstBoxValue);

now we’ll set up the secondof our DITL items -- The “Second Box” /

GetDltem(PrtJobDialog,firstltem+l,&itemType,&itemH,&itemBox);

SetCtlValue(itemH, SecondBoxValue);

1* Now comes the part where we patch in our item handler. We have to save

the old item handler address,so we can call it if one of the

standarditems is hit, and put our item handler’s address

in pltemProc field of the TPrDlg struct

prPltemProc= (long) PrtJobDialog—>pltemProc;

/* Now we’ll tell the modal item handler where our routine is /

PrtJobDialog->pltemProc= (ProcPtr)&MyJobltems;

1* PrDlgMain expects a pointer to the modified dialog to be returned....*/

return PrtJobDialog;

/*myJobDlglnit*/

1* *1

/ here’s the analogueto the SF dialog hook */

pascal void MyJobltems(theDialog,itemNo)

TPPrD1g theDialog;

short itemNo;

1* MyJobitems *1
short myltem;

short firstltem;

short itemType; /* neededfor GetDltem/SetDltemcall */

Handle itemH;

Rect itemBox;

firstltem = prFirstltem; /* remember, we saved this in myJobDiglnit

*1

TechnicalNote #95 page 120114 How To Add Itemsto the Print Dialogs



myltern = itemNo-firstltem+l; f* “localize” current item No *1
if (myltem > 0) /* if localized item > 0, it’s one of ours

/* find out which of our items was hit */

GetDltem(theDialog,itemNo,&itemType,&itemH, &itemBox);
switch (myltem)

case 1:
1* invert value of FirstBoxValue and redraw it *1
FirstBoxValue 1;
SetCtlValue(itemH,FirstBoxValue);
break;

case 2:
1* invert value of SecondBoxValueand redraw it *1
SecondBoxValue‘= 1;
SetCtlValue(itemH, SecondBoxValue);
break;

default: DebuggerO; / OH OH *1
/* switch */

/* if (myltem > 0) */

else 1* chain to standarditem handler, whose addressis saved in
prPltemProc *1

CaliPascal(theDialog,itemNo,prPltemProc);

1* MyJobitems *1

TechnicalNote #95 page 1 3of 14 How To Add Itemsto the Print Dialogs



The RezSource

#include “types.

resource ‘DITL’ (256)
1* array DiTLarray: 2 elements/

/* [1] */

(8, 0, 24, 112},

CheckBox
enabled,
“First Box”

1* [2] */

{8, 175, 24, 287},

CheckBox
enabled,

“Second Box”

.

.
TechnicalNote #95 page 1 4of 14 How To Add Itemsto the Print Dialogs



Macintosh Technical Notes

#96: SCSI Bugs

Seealso: The SCSI Manager
SCSI Developer’sPackage

Written by: SteveFlowers October1, 1986
Modified by: Bryan Stearns November15, 1986
Modified by: Bo3b Johnson July 1, 1987
Updated: March 1, 1988

Therearea numberof problemsin the SCSI Manager;this note lists the ones
we know about,along with an explanationof what we’re doing aboutthem.
Changesmadefor the 2/88 releaseare madeto more accuratelyreflect the
stateof the SCSI Manager.System4.1 and4.2 arevery similar; onebug was
fixed in System4.2.

Thereare severalcategoriesof SCSI Managerproblems:

1. Thosein the ROM bootcode
(Before the Systemfile hasbeenopened,and hence,beforeany patchescould possibly
fix them.)
2. Thosethat havebeenfixed in System3.2
3. Thosethat havebeenfixed in System4.1/4.2
4. Thosethat are new in System4.1/4.2
5. Thosethat havenot yet beenfixed.

The problemsin the ROM boot codecan only be fixed by changingthe ROMs. Most of
the bugs in the SCSI Manageritself have beenfixed by the patch code in the System
3.2 file. Thereare a few problems,though,that are not fixed with System3.2—mostof
thesebugshavebeencorrectedin System4.1/4.2.Any that are not fixed will be detailed
here. ROM codefor future machineswill, of course,include the corrections.

ROM boot code problems

In the processof looking for a bootableSCSI device, the boot code issuesa SCSI
bus resetbeforeeachattemptto readblock 0 from a device. If the readfails for any
reason,the boot codegoeson to the next device.SCSI deviceswhich implementthe
Unit Attention condition asdefinedby the Revision 17B SCSI standardwill fail to
boot in this case.The readwill fail becausethe drive is attemptingto reportthe Unit
Attention condition for the first commandit receivesafter the SCSI bus reset.The
boot codedoesnot readthe sensebytesand doesnot retry the failed command;itsimply resetsthe SCSI busandgoeson to the next device.

TechnicalNote #96 page 1 of 7 SCSI Bugs



If no otherdevice is bootable,the boot code will eventuallycycle back to the same

SCSIdevice ID, resetthe bus (causingUnit Attention ifl the drive again),andtry

to readblock 0 (which fails for the samereason).

The ‘new’ Macintosh Plus ROMs that are included in the platinum Macintosh Plus

haveonly one change.The changewas to simply do a single SCSI Bus Resetafter

powerup insteadof a Reseteachtime throughthe SCSI boot loop. This wasdoneto

allow Unit Attention drivesto be bootable.It was an objectcodepatch (affecting

approximately30 bytes) and no other bugs were fixed. For details on the three

versionsof MacintoshPlus ROM5, seeTechnicalNote #154.

We recommendthat you choosean SCSI controllerwhich doesnot requirethe Unit

Attention feature—eitheran older controller (mostof the SCSI controllerscurrently

available were designed before Revision 17B), or one of the newer

Revision-i7B-compatiblecontrollerswhich can enable/disableUnit Attention as

a formatting option (such as those from Seagate,Rodime, et al). Since the vast

majority of Macintosh Plus computershave the ROMs which cannot use Unit

Attention drives, we still recommendthat you choosean SCSI controllerthat does

not requirethe Unit Attention feature.

If an SCSI devicegoesinto the Statusphaseafter being selectedby the boot code,

this leadsto the SCSI bus being left in the Statusphaseindefinitely, and no SCSI

devicescan be accessed.The current Macintosh Plus boot code does not handle

this changeto Statusphase,which meansthat the presenceof an SCSI device

with this behavior (as in sometape controllerswe’ve seen)will preventany SCSI

devicesfrom being accessedby the SCSI Manager,even if they alreadyhad drivers

loadedfrom them. The result is that any SCSI peripheralthat is turned on at boot

time must not go into Statusphaseimmediately after selection;otherwise,the

MacintoshPlus SCSI bus will be left hanging.UnlesssubstantiallyrevisedROM5 are

releasedfor the Macintosh Plus (highly unlikely within the next year or so), this

problem will never be fixed on the Macintosh Plus, so you should design for old

ROMs.

The MacintoshPluswould try to read256 bytesof blocks 0 and 1, ignoring the extra

data.The MacintoshSE and Macintosh II try to read 512 bytesfrom blocks 0 and 1,

ignoring errors if the sectorsize is larger (but not smaller) than 512 bytes. Random

accessdevices(disks, tapes,CD ROMS, etc.) can be bootedas long as the blocks

are at least512 bytes,blocks 0, 1 and otherpartition blocks arecorrectly set up, and

there is a driver on it. With the new partition layout (documentedin Inside Macintosh

volume V), more than 256 bytes per sectormay be required in some partition map

entries.This is why we droppedsupportfor 256-bytesectors.Disks with tag bytes

(532-byte sectors) or larger block sizes (1K, 2K, etc.) can be booted on any

Macintoshwith an SCSI port. Of course,the driver hasto take careof datablocking

and de-blocking,since HFS likes to work with 512-bytesectors.

TechnicalNote #96 page 2 of 7 SCSI Bugs



Problemswith ROM SCSI Managerroutines

Note that the following problemsare fixed after the Systemfile has beenopened;for a
device to boot properly, it must not dependon thesefixes. The sampleSCSI driver,
availablefrom APDA, containsan exampleof how to find out if the fixes are in place.

• Prior to Systemfile 3.2, blind transfers(both readsand writes) would not work
properly with many SCSI controllers. Since blind operationdependson the drive’s
ability to transferdatafast enough,it is the responsibilityof the driver writer to make
sureblind operationis safefor a particulardevice.

• Prior to Systemfile 3.2, the SCSI Managerdroppeda byte when the driver did
two or more SCSIReadsor SCSIRB1indsin a row. (Each Reador RBlind hasto
havea TransferInformation Block (TIB) pointerpassedin.) The TIB itself can be as
big and complex as you want—it is the processof returning from one SCSIReador
SCSIRB1indand enteringanotherone (while still on the sameSCSI command)that
causesthe first byte for the otherSCSIReadsto be lost.

Note that this precludesuse of file-systemtags. Apple no longer recommendsthat
you supporttags;seeTechnicalNote #94 for more information.

• Prior to Systemfile 3.2, SCSIStatdidn’t work; the new version works correctly.

• Running underSystemfile 3.2, the SCSI Managerdoesnot checkto make sure
that the last byte of a write operation (to the peripheral)was handshakedwhile
operatingin pseudo-DMAmode.The SCSI Managerwrites the final byte to the NCR
5380’s one-byte buffer and then turns pseudo-DMA mode off shortly thereafter
(reportedto be 10-15 microseconds).If the peripheralis somewhatslow in actually
readingthe last byte of data, it assertsREQ after the Macintoshhasalreadyturnedoff
pseudo-DMA mode and nevergets an ACK. The CPU then expectsto go into the
Statusphasesinceit thinks everythingwent OK, but the peripheralis still waiting for
ACK. Unlessthe driver can recoverfrom this somehow,the SCSI bus is ‘hung’ in the
DataOut phase.In this case,all successiveSCSI Managercalls will fail until the
bus is reset.

• Running underSystemfile 4.1/4.2,the SCSI Managerwaits for the last byte of
a write operationto be handshakedwhile operating in pseudo-DMAmode; it checks
for a final DRQ (or a phasechange)at the endof a SCSIWriteor SCSIWB1Indbefore
turning off the pseudo-DMA mode. Drivers that could recoverfrom this problem by
writing the last byte again if the bus was still in a DataOut phasewill still work
correctly, as long asthey werecheckingthe busstate.

• Running underSystemfile 3.2, the SCSI Managerdoes not time out if the
peripheralfails to finish transferringthe expectednumberof bytes for polled reads
andwrites. (Blind operationdoespoll for the first byte of eachrequesteddatatransfer
in the TransferInformation Block.)

TechnicalNote #96 page 3 of 7 SCSI Bugs



• Running under Systemfile 4.1/4.2,SCSIReadand SCSIWrite return an error

to the caller if the peripheralchangesthe bus phasein the middle of a transfer,as

might happenif the peripheralfails to transferthe expectednumberof bytes. The

computeris no longer left in a hung state.

• Running underSystemfile 3.2, the Selectiontimeout value is very short (900

microseconds).Patchesto the SCSI Managerin System4.1/4.2 ensurethat this

value is the recommended250 milliseconds.

• RunningunderSystemfile 3.2, the SCSI Manager routine SCSIGet (which

arbitratesfor the bus) will fail if the BSY line is still asserted.Somedevicesare a bit

slow in releasingBSY after the completionof an SCSI operation,meaningthat BSY

may not havebeenreleasedbeforethe driver issuesa SCSIGetcall to startthe next

SCSI operation.A work-aroundfor this is to call SCSIGetagain if it failed the first

time. (Rarely hasit beennecessaryto try it a third time.) This assumes,of course,that

the bus has not been left ‘hanging’ by an improperly terminatedSCSI operation

beforecalling SCSIGet.

• RunningunderSystemfile 4.1/4.2,the SCSIGet function has been made more

tolerantof devicesthat are slow to releasethe BSY line after a SCSI operation.The

SCSI Managernow waits up to 200 millisecondsbefore returningan error.

Problemswith the SCSI Managerthat haven’t been fixed yet

Theseproblemscurrently exist in the Macintosh Plus, SE, and II SCSI Manager.We

plan to fix theseproblemsin a future releaseof the SystemTools disk, but in the mean

time, you shouldtry to work aroundthe problems(but don’t “require” the problems!).

• Multiple calls to SCSIReador SCSIRB11ndafter issuing a commandand before

calling SCSICompletemay not work. Supposeyou want to read somemodesense

datafrom the drive. After sendingthe commandwith SCSICmd,you might want to call

SCSIReadwith a TIB that readsfour bytes(typically a header).After readingthe field

(in the four-byte header)that tells how many remaining bytes are available,you

might call SCSIReadagainwith a TIB to readthe remaining bytes. The problem is

that the first byte of the secondSCSIReaddatawill be lost becauseof the way the

SCSI Managerhandlesreadsin pseudo-DMAmode. The work-aroundis to issue

two separateSCSIcommands:the first to readonly the four-byte header,the second

to readthe four-byte headerplus the remainingbytes. We recommendthat you not

use a clever TIB that containstwo data transfers,the secondof which gets the

transferlength from the first transfer’s receiveddata (the header).Thesetwo step

TlBs will not work in the future. This bug will probablynot be fixed.

• On readoperations,somedevicesmay be slow in deassertingREQ after sendingthe

last byte to the CPU. The current SCSI Manager(all machines)will return to the

caller without waiting for REQ to be deasserted.Usually the next call that the driver

would makeis SCSIComplete.On the MacintoshSE and II, the SCSICompletecall

will checkthe bus to be surethat it is in Statusphase.If not, the SCSI Managerwill

return a new error codethat indicatesthe bus was in Data In/Data Out phasewhen

SCSICompletewascalled. The combinationof the speedof the Macintosh II and a

TechnicalNote #96 page 4 of 7 SCSI Bugs



slow peripheralcan causeSCSlCornpleteto detectthat the bus is still in Data Inphasebefore the peripheralhas finally changedthe bus to Statusphase.Thisresultsin a false errorbeing passedbackby SCSIComplete.

• The scComp (compare)TIB opcodedoesnot work in System4.1 on the MacintoshPlus only. It returns an error code of 4 (bad parameters).This has beenfixed inSystem4.2.

Other SCSI Manager Issues

• At leastone third-party SCSI peripheraldriver usedto issueSCSI commandsfrom aVBL task. It didn’t checkto seeif the bus was in the free statebefore sendingthecommand!This is guaranteedto wipe out any other SCSI commandthat may havebeenin progress,sincethe SCSI Manageron the MacintoshPlus doesnot maskout(or use) interrupts.

We strongly recommendthat you avoid calling the SCSI Managerfrom interrupthandlers(suchasVBL tasks). If you mustsendSCSI commandsfrom a VBL task (likefor a removablemediasystem),do a SCSIStatcall first to seeif the bus is currentlybusy. If it’s free (BSY is not asserted),then it’s probablysafe;otherwisethe VBL taskshouldnot sendthe command.Note that you can’t call SCSIStatbeforethe Systemfile fixes are in place. Since SCSI operationsduring VBL are not guaranteed,youshouldcheckall errorsfrom SCSI Managercalls.

• A new SCSI Managercall will be addedin the future. This will be a high-level call; itwill have some kind of parameterblock in which you give a pointer to a commandbuffer, a pointerto your TIB, a pointerto a sensedatabuffer (in casesomethinggoeswrong, the SCSI Managerwill automaticallyreadthe sensebytes into the buffer foryou), anda few other fields. The SCSI Managerwill takecareof arbitration,selection,sendingthe command,interpretingthe TIB for the datatransfer,and getting the statusand messagebytes (and the sensebytes, if therewas an error). It should makeSCSIdevicedrivers much easierto write, sincethe driver will no longerhaveto worry aboutunexpectedphasechanges,getting the sensebytes,and so on. In the future, this willbe the recommendedway to usethe SCSI Manager.

• The SCSI Manager (all machines)does not currently support interrupt-driven(asynchronous)operations.The MacintoshPluscan neversupportit sincethereis nointerrupt capability, although a polled schememay be implementedby the SCSIManager.The MacintoshSE hasa maskableinterrupt for IRQ, and the Macintosh IIhasmaskableinterruptsfor both IRQ and DRQ. Apple is working on an implementationof the SCSI Managerthat will supportasynchronousoperationson the Macintosh IIand probably on the SE as well. Becausethe interrupt hardwarewill interactadversely with any asynchronousschemesthat are polled, it is stronglyrecommendedthat third partiesdo not attemptasynchronousoperationsuntil the newSCSI Manageris released.Apple will not attemptto be compatiblewith any productsthat bypasssomeor all of the SCSI Manager. In order to implementsoftware-based(polled) asynchronousoperationsit is necessaryto bypassthe SCSI Manager.

TechnicalNote #96 page 5 of 7 SCSI Bugs



The SCSI Manager section of the alpha draft of Inside Macintosh volume V

documentedthe Disconnectand Reselectroutineswhich were intendedto be used

for asynchronousI/O. Those routinescannot be used. Those routines have been

removedfrom the manual. Any software that usesthose routines will have to be

revisedwhen the SCSI Managerbecomesinterrupt-driven.Drivers which sendSCSI

commandsfrom VBL tasksmay also haveto be modified.

Hardware in the SCSI

Thereis someconfusionon how many terminatorscan be usedon the bus,andthe best

way to usethem. Therecan be no more than two terminatorson the bus. If you have

more than one SCSI drive you must have two terminators.If you only have one drive,

you shouldusea single terminator. If you have more than one drive, the two terminators

shouldbe on oppositeendsof the chain. The idea is to terminateboth endsof the wire

that goesthrough all of the devices.Oneterminatorshouldbe on the end of the system

cablethat comesout of the Macintosh.The otherterminatorwould be on the very end of

the last device on the chain, If you have an SE or II with an internal hard disk, there is

alreadyoneterminatoron the front of the chain, inside the computer.

On the Macintosh SE and II, there is additional hardwaresupport for the SCSI bus

transfersin pseudo-DMAmode.The hardwaremakesit possibleto handshakethe data

in Blind modeso that the Blind modeis safefor all transfers.On the MacintoshPlus, the

Blind transfersare heavily timing dependentand can overrun or underrunduring the

transferwith no error generated.Assuringthat Blind modeis safeon the MacintoshPlus

dependsupon the peripheralbeing used.On the SE and 11, the transferis hardware

assistedto preventoverrunsor underruns.

Changesin SCSI for SE and II

The changesmadeto the SCSI Managerfound in the Macintosh SE and Macintosh II

are primarily bug fixes. No new functionality was added.The newerSCSI Manageris

more robust and has more error checking. Since the Macintosh Plus SCSI Manager

only did limited errorchecking,it is possibleto havecodethat would function (with bugs)

on the MacintoshPlus, but will not work correctly on the SE or II. The Macintosh Plus

could mask some bugs in the caller by not checking errors. An example of this is

sendingor receiving the wrong numberof bytes in a blind transfer.On the Macintosh

Plus, no error would be generatedsincetherewas no way to be sure how many bytes

were sentor received.On the SE and II, if the wrong numberof bytesare transferredan

error will be returnedto the caller. The exacttiming of transfershaschangedon the SE

and II aswell, sincethe computersrun at different speeds.Devicesthat are unwittingly

dependentupon specific timing in transfers may have problems on the newer

computers.To find problemsof this sort it is usually only necessaryto examinethe error

codesthat are passedback by the SCSI Manager routines. The error codeswill

generallypoint out wherethe updatedSCSI Managerfound errors.

TechnicalNote #96 page 6 of 7 SCSI Bugs



To report other bugs or make suggestions
Pleasesendadditional bug reportsand suggestionsto us at the addressin TechnicalNote #0. Let us know what SCSI controlleryou’re using in your peripheral,and whetheryou’ve had any particularly good or bad experienceswith it. We’ll add to this note asmore information becomesavailable.

TechnicalNote#96 page 7 of 7
SCSI Bugs



.

.

I



Macintosh Technical Notes

#97: PrSetErrorProblem

Written by: Mark Baumwell November15, 1986Updated: March 1, 1988

This note formerly describeda problem in Lisa Pascal glue for thePrSetErrorroutine. The glue in MPW (and most, if not all, third partycompilers)doesnot havethis problem.

TechnicalNote #97 page 1 of 1 PrSetErrorProblem



.



Macintosh Technical Notes

#98: Short-CircuitBooleansin Lisa Pascal

Written by: Mark Baumwell November15, 1986Updated: March 1, 1988

This note formerly describedproblemswith the Lisa Pascalcompiler. Theseproblemshavebeenfixed in the MPW Pascalcompiler.

TechnicalNote #98 page 1 of 1 Short-CircuitBooleansin Lisa Pascal



.

.



Macintosh Technical Notes

#99: StandardFile Bug in System3.2

Seealso: The StandardFile Package

Written by: Jim Friedlander November15, 1986Updated: March 1, 1988

This noteformerly describeda bug in StandardFile in System3.2. This bughasbeenfixed in morerecentSystems.

TechnicalNote #99 page 1 of 1 StandardFile Bug in System3.2



.



Macintosh Technical Notes

#100: Compatibility with Large-ScreenDisplays

Seealso: TechnicalNote #2—MacintoshCompatibility Guidelines
Written by: Bryan Stearns November15, 1986Updated: March 1, 1988

A numberof third-party developershave announcedlarge-screendisplayperipheralsfor Macintosh.One of them, Radius Inc., has issueda set ofguidelinesfor developerswho wish to remain compatiblewith their RadiusFPD; unfortunately, one of their recommendationscan causesystemcrashes.This notesuggestsa morecorrectapproach.

On the first pageof the appendixto their guidelines,“How to be FPD Aware,” Radiusrecommendsthe following:

“First, to detectthe presenceof a RadiusFPD, you shouldcheckaddress$c00008...”

Unfortunately,this assumesthat you’re running on a Macintoshor Macintosh Plus; thistest will not work on MacintoshXL, nor on a Macintosh II. Sincethesedisplaysweren’tdesignedto work with systemsother than Macintosh and Macintosh Plus, you shouldmake sure you’re running on one of thesesystemsbefore addressingI/O locations(suchasthosefor an add-ondisplay).

Before testing for the presenceof any large-screendisplay, you should first checkthemachineID; it’s the byte locatedat (ROMBASE) +8 (that is, take the long integerat thelow-memory location ROMBASE [$2AE], and add 8 to get the addressof the machineIDbyte. On a Macintosh or Macintosh Plus, this addresswill work out to be $400008;however,usethe low-memory location, to be compatiblewith future systemsthat mayhavethe ROM at a different address!).

The machineID byte will be soc for all currentMacintoshsystems.If the value isn’t $00,you can assumethat no large-screendisplay is present,but don’t forget to followTechnicalNote #2’s guidelinesfor screensize independence!

Note: If you are a developerof an add-on large-screendisplay, we’d be happyto review your guidelines for developersin advanceof distribution;pleasesendthem to us at the addressfor commentsin Technical Note#0. Future versionsof this note may recommendgeneralguidelinesfordealingwith add-on large-screendisplays.

TechnicalNote #100 page 1 of 1 Compatibilitywith Large-ScreenDisplays



.



Macintosh Technical Notes

#101:CreateResFileandthe PoorMan’s SearchPath

Seealso: The File Manager
The ResourceManager
TechnicalNote #77—HFSRuminations

Written by: Jim Friedlander January12, 1987
Updated: March 1, 1988

CreateResFilechecksto seeif a resourcefile with a given nameexists,and if it does,returnsa dupFNErr(—48) error. Unfortunately,to do this check,
CreateResFileusesa call that follows the PoorMan’s SearchPath(PMSP).

CreateResFilechecksto seeif a resourcefile with a given nameexists,and if it does,
returnsa dupFNErr (—48) error. Unfortunately,to do the check,CreateResFilecalls
PBOpenRF,which usesthe PoorMan’s SearchPath (PMSP). For example,if we havearesourcefile in the Systemfolder named ‘MyFile’ (and no file with that name in the
currentdirectory) and we call CreateResFile( ‘MyFile’) , ResErrorwill return a
dupFNErr,since PBOpenRFwill searchthe current directory first, then searchtheblessedfolder on the samevolume. This makesit impossibleto useCreateResFileto
createthe resourcefile ‘MyFile’ in the currentdirectory if a file with the samenamealreadyexistsin a directory that’s in the PMSP.

To make surethat CreateResFilewill createa resourcefile in the currentdirectory
whetheror not a resourcefile with the same name already exists further down the
PMSP,call _Create(PBCreateor Create)beforecalling CreateResFile:

err Create(’MyFile’ , O,myCreator,myType);
(0 for VRefNurn means current volume/directory)

CreateResFile( ‘MyFile’);
err := ResError; {check for error}

In MPWC:

err = Create(”\pMyFile”,0,myCreator,myType);
CreateResFile(“\pMyFile”);
err = ResErrorQ;

This works because_Createdoesnot usethe PMSP. If we alreadyhave ‘MyFile’ in
the currentdirectory,_Createwill fail with a dupFNErr,then, if ‘MyFile’ hasan empty
resourcefork, CreateResFilewill write a resourcemap, otherwise,CreateResFile
will return dupFNErr. If thereis no file named‘MyFile’ in the currentdirectory,_Create
will createoneandthenCreateResFilewill write the resourcemap.
Notice that we are intentionally ignoring the error from _Create,sincewe are calling it

TechnicalNote#101 page 1 of 3 CreateResFileandthe PMSP



only to assurethata file named‘MyFile’ doesexist in the currentdirectory.

Pleasenote that SFPutFlie doesnot use the PMSP, but that FSDeietedoes.

SFPutFlie returnsthe vRefNum/WDRefNumof the volume/folderthat the userselected.

If your programdeletesa resourcefile beforecreatingone with the samenamebased

on information returnedfrom SFPutFile,you can use the following strategyto avoid

deleting the wrong file, that is, a file that is not in the directory specified by the

vRefNum/WDRefNumreturnedby SFPutFile,but in someotherdirectory in the PMSP:

VAR

wher : Point;

reply : SFReply;

err : OSErr;

oldVol : Integer;

wher.h := 80; wher.v 90;

SFPutF11e(wher, ‘‘, ‘‘ ,NIL, reply);

IF reply.good THEN BEGIN

err := GetVol(NIL,oldVol); {So we can restore it later)

err := SetVol(NIL,reply.vRefNum);{for the CreateResFilecall)

{Now for the Create/CreateResFilecalls to createa resourcefile that

we know is in the current directory)

err : Create(reply.fName,reply.vRefNum,myCreator,myType);

CreateResFile(reply.fName);(we’ll use the ResError from this ...}

CASE ResErrorOF

noErr: (the create succeeded,go aheadand work with the new

resourcefile -- NOTE: at this point, we don’t know

what’s in the data fork of the file!!)

dupFNErr: BEGIN (duplicate file name error}

{the file already existed, so, let’s delete it. We’re now

sure that we’re deleting the file in the current directory)

err:= FSDelete(reply.fName,reply.vRefNum);

{now that we’ve deletedthe file, let’s create the new one,

again, we know this will be in the current directory)

err:= Create(reply.fName,reply.vRefNurn,myCreator,myType);

CreateResFile(reply.fName);

END; {CASE dupFNErr}

OTHERWISE (handle other errors)

END; (Case ResError}

err := SetVol(NIL,oldVol);{restore the default directory)

END; (If reply.good}

0

TechnicalNote #101 page 2 of 3 CreateResFileandthe PMSP



In MPWC:

Point wher;
SEReply reply;
OSErr err;
short oldVol;

wher.h = 80; wher.v = 90;
SFPutFile(wher,“I “,nil,&reply);
if (reply.good

err = GetVol(nil,oldVol);
/*SO we can restoreit later*/
err = SetVol(nil,reply.vRefNum);/*for the CreateResFilecall*/

/*Now for the Create/CreateResFilecalls to createa resourcefilethat we know is in the current directory*/

err = Create(&reply.fName,reply.vRefNum,myCreator,myType);CreateResFile(&reply.fName);
/*welll use the ResError from this .

. .*/

switch (ResError)

case noErr:;/*the createsucceeded,go aheadand work with thenew resourcefile -— NOTE: at this point, we don’tknow what’s in the data fork of the file!!*/
break; /* case noErr*/

case dupFNErr: /*duplicate file name error*/
/*the file alreadyexisted, so, let’s delete it.
We’re now sure that we’re deleting the file in thecurrent directory*/

err= FSDelete(&reply.fName,reply.vRefNum);

/*c,w that we’ve deletedthe file, let’s createthenew one, again, we know this will be in the currentdirectory* /

err= Create(&reply.fName,reply.vRefNum,
myCreator,myType);

CreateResFile(&reply. fName);
break; /*case dupFNErr*/

default:; /*handle other errors*/
/* switch */

err SetVol(nil,oldVol);/*restorethe default directory*/
/*if reply.good*/

Note: OpenResFileusesthe PMSPtoo, so you may haveto adoptsimilar strategiestomakesurethat you areopeningthe desiredresourcefile andnot someotherfile furtherdown the PMSP.This is normally not a problemif you useSFGetFile,sinceSFGetFiledoesnot usethe PMSP,in fact, SFGetFiledoesnot openor closefiles, soit doesn’trun into this problem.

TechnicalNote #101 page 3 of 3 CreateResFileandthe PMSP



.

.

.



Macintosh Technical Notes

#102: HFS Elucidations

Seealso: The File Manager
TechnicalNote #77—HFSRuminations

Written by: Bryan “Bo3b” Johnson January12, 1987Updated: March 1, 1988

This technicalnote will describea few problemsthat can occurwhile usingHFS. It will alsodescribewaysto avoid theseproblems.

This technicalnote will discussthe following problems:

1) It is very importantto be careful about how files are openedand closed.There mustbe no more than oneclosefor everyopen.

2) Don’t useDriver names,like . Bout, . Print or . Sony, in placeof file namesor thefile systemwill becomeconfused.

3) Be aware of the ioFlversNumbyte in all file calls. A numberof piecesof theMacintosh system do not use, and may in fact ignore, files createdwith non-zeroioFlVersNums.

Eachof thesecan leadto strangeoccurrences,aswell as problemsfor the users.Doingany or all of thesemarginally illegal operationswill not necessarilylead to a SystemError. In somecasesthe confusiongeneratedmay be worsethan a SystemError.

One Close is always enough

If a file is closedtwice, it is possibleto corruptthe file systemon a disk. If a programhasbeencreatingunreadabledisks, this may be the cause.

One aspectof the file systemthat is not well documentedis how it allocatesaccesspathsto files that are currently open. As a result of this, it is possibleto get a rathercavalierattitude about openingand closing files. This discussionwill explain why it isnecessaryto be very careful aboutopeningandclosing files.

When the File Managerreceivesan Open call, it will look at the parameterspassedinthe parameterblock andcreatea new accesspath for the file that is being opened.Theaccesspath is how the File Managerkeepstrack of where to senddatathat is written,andwhereto get datathat is readfrom that file. An accesspath is nothing more than: 1)a buffer that the file systemusesto readand write data,and 2) a File Control Block that

TechnicalNote #102 page 1 of 7 HFS Elucidations



describeshow the file is storedon a disk.

A call like:

ErrStuff := FSOpen (‘FirstFile’, theVRefNum, FirstRefNum);

will createthe accesspath asa buffer anda File Control Block (FCB) in the FCB queue.

Note: The following information is here for illustrative purposesonly; dependenceon it

may causecompatibility problemswith future systemsoftware.

The structureof the queuecan be visualizedas:

FCBSPtr ($34E) Buffer Length

First FCB Record

2+FCBLength

Second FCB Record

Last FCB Record

where FCBSPtr is a low-memory global (at $34E) that holds the addressof a

nonrelocatableblock. That block is the File Control Block buffer, and is composedof the

two byte headerwhich gives the length of the block, followed by the FCB records

themselves.The recordsare of fixed length, and give detailed information about an

open file. As depicted,any given record can be found by adding the length of the

previousFCB recordsto the start of the block, adding 2 for the two byte header;giving

an offset to the recorditself. The sizeof the block, and hencethe numberof files that can

be openat any given time, is determinedat startuptime. The call to open ‘FirstFile’

abovewill passbackthe File ReferenceNumberto that file in FirstRefNum.This is the

numberthat will be usedto accessthat file from that point on. The File Managerpasses

backan offset into the FCB queueasthe RefNum. This offset is the numberof bytespast

the beginning of the queueto that FCB record in the queue.That FCB record will

describethe file that was opened.An exampleof a numberthat might get passedback

asa RefNum is $1D8. That also meansthat the FCB record is $1D8 bytes into the FCB

block.

.
TechnicalNote #102 page 2 of7 HFS Elucidations



A visual exampleof a recordbeing in use,and how the RefNum is relatedis:

Base 0
2

Base+ RefNum

Baseis merely the addressof the nonrelocatableblock that is the FCB buffer. FCBSPtrpointsto it. The RefNum (a numberlike $1D8) is addedto Base,to give an addressin theblock. That addressis what the file systemwill useto readand write to an open file,which is why you are requiredto passthe RefNumto the PBReadand PBWrite calls.
Sincethat RefNum is merely an offset into the queue,let’s stepthrough a dangerousimaginarysequenceand seewhat happensto a given record in the FCB Buffer. Here’sthe sequencewe will stepthrough:

ErrStuff := FSOpen (‘FirstFile’, theVRefNum, FirstRefNum);ErrStuff := FSClose ( FirstRefNum );
ErrStuff := FSOpen (‘SecondFile’, theVRefNum, SecondRefNum);ErrStuff := FSClose ( FirstRefNunt ); {the wrong file gets closed!!!{the above line will close ‘SecondFile’, not ‘FirstFile’, which is alreadyclosed}

Beforeany operations:
the recordat $1D8 is not used.

Base Q
2

Base+RefNum

TechnicalNote #102 page 3 of 7 HFS Elucidations



After thecall:

ErrStuff FSOpen (‘FirstFile’, theVRefNum, FirstRefNuin);

FirstRefNum $lD8 andthe recordis in use.

After thecall:

ErrStuff := FSClose (FirstRefNum);

FirstRefNum is still equal to $1D8, but the FCB record is unused.

.

.

Base

/

TechnicalNote #102 page 4 of7 HFS Elucidations



After the call:
ErrStuff FSOpen (‘SecondFile’, theVRefNum, SecondRefNurn);

SecondRefNum= $1D8, FirstRefNum = $1D8, and the record Is reused.

Base

2

Base+ Ref Num

After the call:
ErrStuff := FSClose (FlrstRefNum);

The FirstRefNum = $1D8, SecondRefNum= $1D8,

the queueelementis cleared.This happens,eventhoughFirstFiie wasalreadyclosed.Actually, SecondFlie wasclosed:

Base 0

2

Base+RefNum

Note that the secondclose is using the old RefNum. The secondclosewill still close afile, and in fact will return noErr as its result. Any subsequentaccessesto the
SecondRefNumwill return an error, since the file ‘SecondFlie’ was closed.The FileControl Blocks are reused,and sincethey are just offsets, it is possibleto get the samefile RefNum back for two different files. In this case,FirstRefNum= SecondRefNumsince ‘FirstFiie’ was closedbeforeopening ‘SecondFiie’andthe sameFCB record
was reusedfor ‘SecondFlie’.

TechnicalNote #102 page 5 of 7 HFS Elucidations



Thereareworsecasesthan this, however.As an example,think of what can happenif a

programwere to close a file, then the user insertedan HFS disk. The FCB could be

reusedfor the CatalogFile on that HFS disk. If the programhad a genericerror handler

that closedall of its files, it could inadvertentlyclose“its” file again. If it thought “its” file

was still open it would do the close,which could closethe Catalogfile on the HFS disk.

This is catastrophicfor the disk sincethe file could easily be closed in an inconsistent

state.The result is a baddisk that needsto be reformatted.

Thereare any numberof nastycasesthat can arise if a file is closedtwice, reusingan

old RefNum. A common programmingpractice is to have an error handleror cleanup

routine that goesthrough the files that a programcreatesand closesthem all, even if

somemay alreadybe closed. If an FCB elementwas not reused,the Closewill return

the expectedfnOpnErr. If the FCB had beenreused,then the Closecould be closing

the wrong file. This can be very dangerous,particularly for all thoseparanoidhard disk

users.

How to avoid the problem:

A very simple techniqueis to merely clear the RefNum after eachclose. If the variable

that the program usesis clearedafter each close, then there is no way of reusing a

RefNum in the program.An exampleof this techniquewould be:

ErrStuff := ESOpen (‘FirstFile’, theVRefNum, F±rstRefNum);

ErrStuff FSClose (FirstRefNum);

FirstRefNum 0; ( We just closed it, so clear our refnum

ErrStuff := FSOpen (‘SecondFile’, theVRefNum, SecondRefNum);

ErrStuff : FSClose (FirstRefNum); { returns an error

This makesthe secondClosepassbackan error. In this case,the secondclosewill try

to close RefNum = 0, which will passback a fnOpnErr and do no damage.Note: Be

sureto use0, which will neverbe a valid RefNum, sincethe first FCB entry is beyondthe

FCB queuelength word. Don’t confusethis with the 0 that the ResourceManageruses

to representthe Systemfile.

Thus, if an error handlerwere cleaningup possiblyopen files, it could blithely closeall

the files it knew about, since it would legitimately get an error back on files that are

alreadyclosed. This is not done automatically, however. The programmermust be

careful aboutthe openingand closing of files. The problem can get quite complex if an

error is received halfway through opening a sequenceof ten files, for example. By

merely clearing the RefNum that is storedafter eachclose, it is possibleto avoid the

complexitiesof trying to track which files are openand which areclosed.

This .file name looks outrageous.

There is a potential conflict betweenfile namesand driver names. If a file name is

namedsomethinglike .Bout, .Print or .Sony,thenthe file systemwill openthe driver

insteadof the file. Drivers have priority on the 128K ROMs, and will alwaysbe opened

beforea file of the samename.This may meanthat an applicationwill get an error back

TechnicalNote #102 page 6 of 7 HFS Elucidations



when openingthesetypesof files, or worse,it will get backa driver RefNum from the call.What the applicationthoughtwas a file opencall was actually a driver opencall. If theprogramusesthat accesspath asa file RefNum, it is possibleto get all kinds of strangethingsto happen.For example,if . Sony is opened,the Sonydriver’s RefNumwould bepassedback, insteadof a file RefNum. If the applicationdoesa Write call using thatRefNum, it will actually be a driver call, using whateverparametershappento be in theparameterblock. Disks may be searchingfor new life after this type of operation.If aprogramcreatesfiles, it shouldnot allow a file to be createdwhosenamebeginswith ‘.‘.

This file’s not my type.

This has beendiscussedin other places,but anotheraspectof the File Managerthatcan causeconfusion is the ioFlVersNum byte that is passedto the low-level FileManagercalls. This is called ioFileType from Assembly,and shouldnot be confusedwith ioFVersNum.This byte must be setto zero for normal Macintoshfiles. Thereare anumberof parts of the systemthat will not deal correctly with files that havethe wrongversions: the Standard File package will not display any file with a non-zeroioFlVersNum; the SegmentLoaderand ResourceManagercannot open files thathave non-zero ioFlVersNums. It is not sufficient to ignore this byte when a file iscreated.The byte must be cleared in order to avoid this type of problem. Strictlyspeaking,it is not a problem unlessa file is being createdon an MFS disk. The currentsystemwill easily allow the userto access400K disks however,so it is betterto be safethanconfused.

TechnicalNote#102 page 7 of 7 HFS Elucidations



.



Macintosh Technical Notes

#103: Using MaxApplZoneandMoveHHi from AssemblyLanguage
Seealso: Using AssemblyLanguage

The Memory Manager
TechnicalNote #1 29—SysEnvirons

Written by: Bryan “Bo3b” Johnson January12, 1987Updated: March 1, 1988

When calling MaxAppizoneandMoveNHi from assemblylanguage,be sureto getthe correctcode.

MaxAppiZoneandMoveHHi were marked[Not in ROM] in Inside Macintosh, VolumesI-Ill. They are ROM calls in the 128K ROM. Sincethey are not in the 64K ROM, if youwant your programto work on 64K ROM routinesit is necessaryto call the routinesby aJSR to a glue (library) routine insteadof using the actualtrap macro.The glue calls theROM routines if they are available, or executesits copy of them (linked into yourprogram)if not.

How to do it:

Wheneveryou needto usethesecalls, just call the library routine. It will checkR0M85 todeterminewhich ROMs are running, anddo the appropriatething.

For MDS, includethe Memory . Rel library in your link file anduse:

XREF MoveHHi ; we need to use this ‘ROM’ routine

JSR MoveHHi ; jump to the glue routine that will check R0M85 for us
For MPW link with Interface. o anduse:

IMPORT MoveHHi ; we need to use this

JSR MoveHHi ; jump to the glue routine that will check R0M85 for us

Avoid calling _MaxApplZoneor_MoveHHi directly if you want your softwareto work onthe 64K ROMs, sincethat will assembleto an actualtrap, not to a JSRto the library.
If your programis going to be run only on machineswith the 128K ROM or newer,youcancall the trapsdirectly. Be sureto checkfor the 64K ROMs, and reportan error to theuser. You can check for old ROMs using the SysEnvironstrap as describedinTechnicalNote #129.

TechnicalNote #103 page 1 oIl Using MaxAppiZoneandMoveHHi



. .



Macintosh Technical Notes

#104: MPW: AccessingGlobalsFrom AssemblyLanguage

Seealso: MPW ReferenceManual

Written by: Jim Friedlander January12, 1987
Updated: March 1, 1988

This technicalnote demonstrateshow to accessMPW Pascaland MPW Cglobalsfrom the MPW Assembler.

To allow accessof MPW Pascalglobalsfrom the MPW Assembler,you needto identifythe variablesthat you wish to accessas external. To do this, usethe { $z+ } compileroption. Using the { $Z+ I option can substantiallyincreasethe size of the object file due
to the additional symbol information (no additional code is generatedand the symbolinformation is strippedby the linker). If you areconcernedaboutobject file size,you can“bracket” the variablesyou wish to accessasexternalvariableswith { $ z + } and { $ z

—Here’s a trivial example:

PascalSource

PROGRAM MyPascal;
USES

MemTypes,QuickDraw,OSIntf,Toollntf;

VAR

myWRect: Rect;
{$Z+} (make the following external}

mylnt: Integer;
{$Z—} (make the following local to this file (not lexically local) I

err: Integer;

PROCEDURE MyAsm; EXTERNAL; {routine doubles the value of mylnt)

BEGIN (PROGRAM)
mylnt:= 5;
MyAsm; (call the routine, mylnt will be 10 now}
writeln(’The value of mylnt after calling myAsm is ‘, mylnt:l);

END. (PROGRAM}

AssemblySourcefor Pascal

CASE OFF ;treat upper and lower case identically
MyAsm PROC EXPORT ;CASE OFF is the assembler’sdefault

IMPORT mylnt:DATA ;we need :DATA, the assemblerassumesCODE
ASL.W *1,mylnt ;multiply by two
RTS ;all done with this extensiveroutine, whew!

TechnicalNote #104 page 1 of 2 AccessingGlobalsFrom AssemblyLanguage



END

The variable mylnt is accessiblefrom assembler. Neither rnywRect nor err are

accessible. If you try to accessmywRect,for example,from assembler,you will get the

following linker error:

### Link: Error Undefined entry name: MYWRECT.

C Source

In an MPW C program,one needonly makesurethat MyAsm is declaredasan external

function, that mylnt is a global variable (capitalizationsmust match) and that the CASE

ON directive is usedin the Assembler:

#include <types.h>

#include <quickdraw.h>

#include <fonts.h>

#include <windows.h>

*include <events.h>

#include <textedit.

#include <dialogs.

#include <stdio. h>

extern MyAsmO; 1* assemblyroutine that doubles the value of mylnt *1

short mylnt; /* we’ll change the value of this variable from MyAsm */

main()

WindowPtr MyWindow;

Rect myWRect;

mylnt = 5;
MyAsmO;

printf(” The value of mylnt after calling myAsm is %d\n”,mylnt);

/*main*/

Assemblysourcefor C

CASE ON ;treat upper and lower casedistinct

MyAsm PROC EXPORT ;this is how C treats upper and lower case

IMPORT mylnt:DATA ;we need :DATA, the assemblerassumesCODE

ASL.W #1,mylnt ;multiply by two

RTS ;all done with this extensiveroutine, whew!

END

TechnicalNote #104 page 2 of 2 AccessingGlobalsFrom AssemblyLanguage



Macintosh Technical Notes

#105: MPW ObjectPascalWithout MacApp

Seealso: TechnicalNote #93—{$LOAD} ;_Datalnit;%_MethTables
Written by: Rick Blair January12, 1987Updated: March 1, 1988

Object Pascalmust havea CODE segmentnamed%_MethTablesin orderto accessobjectmethods.In MacApp this is takencareof “behind the scenes”so you don’t havetoworry about it However, if you are doing a straight Object Pascalprogram,you mustmake surethat %_MethTablesis aroundwhen you needit. If it’s unloadedwhen youcall a method,your Macintoshwill begin executingwild noncodeand die a gruesomeand horrible death.

The MPW Pascalcompilermustseesomedeclarationof an object in orderto produceareferenceto the magic segment.You can achievethis cheaply by simply includingObjlntf.p in your Usesdeclaration.This mustbe in the main program,by the way. Thecompilerwill producea call to %_InitObj which is in %MethTables.

If you’re a more adventuroussoul, you can call %_InitObj explicitly from theinitialization sectionof your main program(you mustusethe $%+} compilerdirectivetoallow the useof “%“ in identifiers). This will load the %_MethTablessegment.SeeTechnical Note #93 for ideasabout locking down segmentsthat are neededforeverwithout fragmentingthe heap.

TechnicalNote #105 page 1 of 1 MPW ObjectPascalWithout MacApp



.



Macintosh Technical Notes

#106:The RealStory: VCBs and Drive Numbers

Seealso: The File Manager
TechnicalNote #36—DriveQueueElementFormat

Written by: Rick Blair January12, 1987Updated: March 1, 1988

The top of page IV-1 78 in The File Managerchapterof Inside Macintoshin attemptstoexplain the behaviorof two fields in a volume control block whenthe correspondingdiskis offline or ejected.Due to the fact that a little bit is left unsaid,this paragraphis rathermisleading.The two fields in questionare vcbDrvNumandvcbDRefNum(referredto asioVDrvlnfo and ioVDRefNum in C and Pascal). PBHGetVInfocan be usedto accessthesefields.

Offline

When a mountedvolume is placedoffline, vcbDrvNum is clearedandvcbDRefNumISset to the two’s complementof the drive number. Since drive numbersare assignedpositive values(startingwith one), this will be a negativenumber. If vcbDrvNum is zeroandvcbDRefNumis negative,you know that the volume is offline.

Ejected

Whena volume is ejected,vcbDrvNum is clearedandvcbDRefNumis set to the positivedrive number. If vcbDrvNum is zero and vcbDRefNum is positive, you know that thevolume is ejected.Ejection implies being offline. There is no suchthing as “prematureejection”.

Summary

online offline ejectedvcbDrvNum >0 (DrvNum) 0 0vcbDRefNum <0 (DRefNum) <0 (-DrvNum) >0 (DrvNum)

Pleaserefrain from assuminganything about a VCB queueelementbeyondwhat isdocumentedin Inside Macintosh,and don’t expectit to alwaysbe 178 bytes in size. Itgrewwhenwe went from MFS to HFS, and it may grow again. It’s safestto usecalls likePBHGetVInfo to get the information that you need.

TechnicalNote #106 page 1 oIl The RealStory: VCBs andDrive Numbers



.

.



Macintosh Technical Notes

#107: Nulls in Filenames

Seealso: The File Manager

Written by: Rick Blair March 2, 1987Updated: March 1, 1988

Someapplications(loosely speakingso as to include Desk Accessories,INITs, andwhat-have-you)generateor renamespecialfiles on the fly so that they are not explicitlynamedby the uservia SFPutFiie.Sincethe Macintoshfile systemis very liberal aboutfilenamesand only excludescolonsfrom the list of acceptablecharacters,this can leadto somedifficulties, both for the end userand for writers of otherprogramswhich mayseethesefiles.

Other programswhich might be backing up your disk or somethingsimilar may getconfused.A programwritten in C will think it hasfound the end of a string when it hits anull (ASCII code0) character,so nulls in filenamesare especiallyrisky.
As a rule, filenamesshould only include characterswhich the usercan seeand edit.The only reasonableexceptionmight be invisible files, but it can be arguedthat they areof dubiousvalue anyway. You can argue“but what about my help file, I don’t want itrenamed”but we alreadyhavewhat we think is the bestapproachfor that situation. Ifyou can’t find a configurationor other file becausethe userhasrenamedor moved it,thencall SFGetFlie and let the userfind it. If the usercancels,andyou can’t run withoutthe file, then quit with an appropriatemessage.

Pleaseconsidercarefully beforeyou put non-displayingcharactersin filenames!

TechnicalNote#107 page 1 of 1 Nulls in Filenames



.

.



Macintosh Technical Notes

#108: _AddDrive,_Drvrlnstall, and DrvrRemove

Seealso: TechnicalNote #36, Drive QueueElements
SCSI DevelopmentPackage(APDA)

Written by: Jim Friedlander March 2, 1987Revisedby: PeteHelme December1988

AddDrive, Drvrlnstall, and DrvrRemoveare used in the sampleSCSI driver in the SCSI DevelopmentPackage,which is available fromAPDA. This TechnicalNote documentsthe parametersfor thesecalls.Changessince March 1, 1988: Updatedthe _Drvrlnstall text toreflect the useof registerAO, which shouldcontain a pointer to the driverwhen called. Also addedsimple glue code for Drvrlnstall andDrvrRemovesincenoneis availablein the MPW interfaces.

_AddDrive

AddDrive adds a drive to the drive queue,and is discussedin more detail inTechnicalNote #36, Drive QueueElements:

FUNCTION AddDrive(DQE:DrvQE1;driveNum,refNum:INTEGER):OSErr;

AO (input) pointerto DQE
DO high word(input) — drive number
DO low word(input) driver RefNum
DO (output) error code

noErr (alwaysreturned)

Drvrlnstall

Drvrlnstall is usedto install a driver. A DCE for the driver is createdand its handleenteredinto the specifiedUnit Tableposition (—1 through—64). If the unit numberis —4through—9, the correspondingROM-baseddriver will be replaced:

FUNCTION Drvrlnstall(drvrHandle:Handle;refNum: INTEGER): OSErr;

AO (input) —> pointerto driver
DO (input) — driver RefNum (—1 through—64)
DO (output) error code

noEr r
badUnitEr r

TechnicalNote #108 page1 of 2 _AddDrive,_Drvrtnstall, and_DrvrRemove



DrvrRemove

DrvrRemove is usedto remove a driver. A RAM-baseddriver is purged from the

systemheap(using ReleaseResource).Memory for the DCE is disposed:

FUNCTION DrvrRemove(refNum: INTEGER) :OSErr;

DO (input) — Driver RefNum

DO (output) error code
floE r r
qEr r

Interfaces

Through a sequenceof cataclysmicevents,the glue code for Drvrlnstall and

DrvrRemovewas neveractually addedto the MPW interfaces(i.e., “We forgot.”), so

we will include simple glue hereat no extraexpenseto you.

It would be advisableto first lock the handleto your driver with HLock before making

eitherof thesecalls sincememorymay be moved.

FUNCTION DRVRInstall(drvrHandle:Handle;refNum:INTEGEX) :OSErr;

DRVRInstall PROC EXPORT

MOVEA.L (SP)+, Al ; pop return address

MOVE.W (SP)÷, DO driver referencenumber

MOVEA.L (SP)-, AO handle to driver

MOVEA.L (AO), AO pointer to driver

Drvrlnstai]. $AO3D

MOVE.W DO, (SP) ; get error

JMP (Al) ; & split

ENDPPROC

FUNCTION DRVRRemove(refNum:INTEGER):OSErr;

DRVRRemove PROC EXPORT

MOVEA.L (SP)+, Al ; pop return address

MOVE.W (SP)+, DO driver referencenumber

DrvrRemove $AO3E

MOVE.W DO, (SP) get error

JMP (Al) & split

ENDPPROC

TechnicalNote #108 page2 of 2 _AddDrive,_Drvrlnstall, and_DrvrRemove



Macintosh Technical Notes

#109: Bug in MPW 1.0 LanguageLibraries

Seealso: MPW ReferenceManual

Written by: ScottKnaster March 2, 1987Updated: March 1, 1988

This note formerly describeda problem in the languagelibraries for MPW1.0. This bug is fixed in MPW 1.0.2,availablefrom APDA.

TechnicalNote #109 page 1 of 1 Bug in MPW 1.0 LanguageLbranes



.

.



Macintosh
TechnicalNotes

DeveloperTechnicalSupport
#110: MPW: Writing Stand-AloneCode
Revisedby: Keith Rollin

August 1990Written by: Jim Friedlander
March 1987

This TechnicalNote formerly discussedusingMPW PascalandC to write stand-alonecode,suchas ‘WDEF’, ‘LDEF’, ‘INIT’,and ‘FKEY’ resources.ChangessinceFebruary1990: Mergedthe contentsof this Note into TechnicalNote #256,Stand-AloneCode,adnauseam.

This Note formerly discussedusing MPW Pascaland C to write stand-alonecode. Thisinformationhasbeenexpandedandis now containedin TechnicalNote#256,Stand-AloneCode,adnausean.

#110: MPW: Writing Stand-AloneCode
1 of 1



.



Macintosh Technical Notes

#111:MoveHHi andSetResPurge

Seealso: The Memory Manager
The ResourceManager

Written by: Jim Friedlander March 2, 1987Updated: March 1, 1988

SetResPurge(TRUE) is called to make the Memory Managercall the ResourceManagerbefore purging a block specifiedby a handle. If the handle is a handleto aresource,and its resChangedbit is set, the resourcedatawilt be written out (usingWriteResource).

When MoveHHi is called, even thoughthe handle’sblock is not actually being purged,the resourcedataspecifiedby the handlewill be written out. An applicationcan preventthis by calling SetResPurge(FALSE) before calling MoveHHi (and then callingSetResPurge(TRUE) afterthe MoveHHi call).

TechnicalNote #111 page 1 of 1 MoveHHi andSetResPurge



.

.



Macintosh Technical Notes

#112: FindDltem

Seealso: The Dialog Manager

Written by: Rick Blair March 2, 1987Updated: March 1, 1988

FindOItem is a potentially useful call which returnsthe numberof a dialog item given apoint in local coordinatesand a dialog handle. It returnsan item numberof —1 if noitem’s rectangleoverlapsthe point. This is all well andgood, exceptyou don’t get backquite what you would expect.

The item numberreturnedis zero-based,so you haveto addoneto the result:
theitem := FindDltem(theDialog, thePoint) + 1;

TechnicalNote #112 page 1 of 1 FiridDitem, win D prize



.



Macintosh Technical Notes

#113: Boot Blocks

Seealso: The SegmentLoader

Written by: Bo3b Johnson March 2, 1987Updated: March 1, 1988

There are two undocumentedfeaturesof the Boot Blocks. This note wiltdescribehow they currentlywork.

Warning:The format and functionality of the Boot Blocks will changein thefuture; dependenceon this information may causeyour programto fail onfuture hardwareor with future Systemsoftware.

The first two sectorsof a bootableMacintoshdisk are usedto store information on howto start up the computer.The blocks containvariousparametersthat the systemusestostartupsuchasthe nameof the systemfile, the nameof the Finder, the first applicationto run at boot time, the numberof eventsto allow, etc.

Changing System Heap Size

The boot blocks dictatewhat size the systemheapwill be after booting. Any commonsectorediting programwill allow you to changethe data in the boot blocks. Changingthe systemheapsize is accomplishedby changingtwo parametersin the boot blocks:the long word valueat location $86 in Block 0 indicatesthe size of the systemheap;theword valueat location $6 is the versionnumberof the boot blocks. Changingthe versionnumberto be greaterthan $14 ($15 is recommended)tells the ROM to usethe valueat$86 for the systemheapsize, otherwisethe value at $86 is ignored.The $86 locationonly appliesto computerswith more than 128K of RAM.

SecondarySound and Video Pages

Another occasionallyuseful featureof the boot blocks is the ability to specify that thesecondarysoundand video pagesbe allocatedat boot time. This is done before adebuggeris loaded,so the debuggerwill load below the alternatescreen.This is usefulfor debuggingsoftwarethat usesthe alternatevideo page,like page-flippingdemosorgames.To allocatethe secondvideo and soundbuffers,changethe two bytesstartingatlocation $8 in the boot blocks. Changethe value (normally 0) to a negativenumber(sFFFF) to allocate both video and sound buffers. Changethe value to a positivenumber($0001)to allocateonly the secondarysoundbuffer.

Warning: MacsBug may not work properly if you allocateadditional pagesfor soundand video.

TechnicalNote #113 page 1 of 1 Boot Blocks



.

.



Macintosh Technical Notes

#114:AppleShareandOld Finders

Seealso: AppleShareUser’sGuide

Written by: Bryan Stearns March 2, 1987Updated: March 1, 1988

A rumor hasbeenspreadthat if you usea pre-AppleShareFinder on a workstationtoaccessAppleShare volumes, you can bypass AppleShare’s “access privilege”mechanisms.

This is not true. Accesscontrolsareenforcedby the server,not by the Finder. If you usean older Finder, you are still prevented(by the server)from gaining accessto protectedfiles and folders; however,you will not get the properuser-interfacefeedbackthat youwould if you were using the correctFinder: for instance,folders on the serverwill alwaysappearplain white (that is, without the permissionfeedbackyou’d normally get), anderror messageswould not be as explanatoryas thosefrom Findersthat “know” aboutAppleShareservers.

TechnicalNote#114 page 1 of 1 AppleShareandOld Finders



.



Macintosh Technical Notes

#115:Application Configurationwith StationeryPads

Seealso: The File Manager
TechnicalNote #116—AppleShare-ableApplications
TechnicalNote #47—CustomizingSFGetFile
TechnicalNote #48—Bundles
“Application Developmentin a SharedEnvironment”

Written by: Bryan Stearns March 2, 1987
Updated: March 1, 1988

With the introductionof AppleShare(Apple’s file server)therearerestrictionson self-modification of application resourcefiles and the placementofconfigurationfiles. This note describesoneway to get aroundthe necessityfor configurationfiles.

Configuration Files

Someapplicationsneedto store information aboutconfiguration;otherscould benefitsimply from allowing usersto customizedefault ruler settings,window placement,fonts,etc.

There are applicationswhich store this information as additional resourcesin theapplication’s resourcefile; when the userchangesthe configuration, the application
writes to itself to changethe savedinformation.

AppleShare,however, requiresthat if an application is to be used by more than one
userat a time, it must not needwrite accessto itself. This meansthat the abovemethodof storing configurationinformation cannotbe used.(For more information aboutmakingyour applicationsharable,seeTechnicalNote #116.)

Storing configuration in a special configuration file can be a problem; the user mustkeepthe file in the systemfolder or the applicationmust searchfor it. This processhas
designissuesof its own.

An alternativeto configurationfiles: StationeryPads

A basisfor one solution to this problem was a user-interfacefeatureof the Lisa Office
System architecture. Lisa introduced the concept of “stationery pads”, special
documentsthat createdcopies of themselvesto allow users to save a pre-set-up
documentfor future use. On Lisa, this wasthe way Untitled documentswerecreated.

TechnicalNote #115 page 1 of 2 Application Configurationwith StationeryPads



Your Macintoshapplicationcan provide the option of savinga documentasa stationery

pad, to provide similar functionality. Here’s how:

You’ll needto add a checkboxto your SFPutFiiedialog box (if you don’t know

how to do this, checkout TechnicalNote #47); if the userchecksthis box, save

the documentasyou normally would, but usea different file type (the file type of a

documentis usually set when the documentis created,using the File Manager

Createprocedure,or later using SetFlie Info).

I IArbLwh

A Documentandits Stationerypad

• Be sureto usea different but similar icon for the stationerypad file. This is easyif

you differentiate betweenstationeryand normal files solely by file type—the

Finderusesthe type to determinewhich icon to display, seeTechnicalNote #48

for help with the “bundle” mechanismusedto associatea file type with an icon.

• When opening a stationery pad file, the window should come up named

“Untitled”, with the contentsof the stationerypadfile.

• “Revert” shouldre-readthe stationerypad file.

• Don’t forget to addthe stationerypad’s file type to the file-types list that you pass

to StandardFile, so that the new files will appearin the list when the user

choosesOpen. This fife type should be registeredwith Macintosh Developer

TechnicalSupport.

.
TechnicalNote #115 page 2 of 2 Application Configurationwith StationeryPads



Macintosh Technical Notes

#116:AppleShare-ableApphcationsandthe ResourceManager
Seealso: The ResourceManager

“Application Developmentin a SharedEnvironment”TechnicalNote #40—FinderFlags

Written by: Bryan Stearns March 2, 1987Updated: March 1, 1988

Normally, applicationson an AppleShareservervolume cannotbe executedby more than one userat a time. This technicalnote explainswhy, and tellshow you canenableyour applicationto be shared.

The ResourceManagerversusSharedFiles

Part of the explanationof why applicationsare not automaticallysharableis basedonthe designof the ResourceManager. The ResourceManageris a great little database.It was originally conceivedas a way to keep applicationslocalizable (a task it hasperformedadmirably), and was found to be an excellentfoundation for the SegmentLoader,Font Manager,anda large part of the restof the Macintoshoperatingsystem.
However, it was never designedto be a multi-user database.When the ResourceManageropensa resourcefile (suchasan application), it readsthe file’s resourcemapinto memory. This map remains in memory until the resourcefile is closed by theSegmentLoader, which regainscontrol when the application exits. Sometimesit isnecessaryto write the map out to disk; normally, this is only doneby UpdateResFileandCloseResFile.

If two usersopenedthe sameresourcefile at the sametime, and one of them had writeaccessto the file and addeda resourceto it, the other user’s ResourceManagerwouldn’t know about it; this would make the other user’s copy of the file’s originalresourcemap invalid. This could cause(at least)a crash;if both usershad write access,it’s not unlikely that the resourcefile involved would becomecorrupted.Also, althoughyou can tell the ResourceManagerto write out an updatedresourcemap, there’s noway for anotheruserto tell it to refreshthe copy of the map in memoryif the file changes.

TechnicalNote #116 page 1 of 3 AppleShare-ableApplications



What doesall this haveto do with running my applicationtwice?

Your applicationis storedas a resourcefile; codesegments,alert and dialog templates,

etc., are resources.If you write to your application’sresourcefile (for instance,to add

configurationinformation, like print records),your applicationcan’t be shared.

In Apple’s compatibility testing of existing applications (during developmentof

AppleShare),we found quite a few applications,someof them quite popular,that wrote

to their own resourcefiles. So we decided,to improve the safetyof using AppleShare,to

always launchapplicationsusing a combinationof accessprivilegessuchthat only one

user at a time could use a given application (theseprivileges will be discussedin a

future TechnicalNote). In fact, AppleShareopensall resourcefiles this way, unlessthe

resourcefile is openedwith QpenRFPermand read-onlypermissionis specified.

But my applicationdoesn’twrite to itself!

We realize that many applicationsdo not. However, there are other considerations

(coveredin detail, with suggestionsfor fixes, in “Application Developmentin a Shared

Environment”,availablefrom APDA). In brief, herearethe big oneswe know about:

• Doesyour applicationcreatetemporaryfiles with fixed namesin a fixed place (such

as the directory containing the application)?Without AppleShare’sprotection,two

applicationstrying to usethe sametemporaryfile could be disastrous.

• Is your application at least “conscious” of the fact that it may be in a multi-user

environment?For instance,doesit work correctly if a volume containingan existing

documentis on a locked volume?Does it checkaI result codesreturnedfrom File

Managercalls, andResErrorafter relevantResourceManagercalls?

OK, I follow the rules. What do I do to make my application

sharable?

Thereis a flag in eachfile’s Finderinformation (storedin the file’s directory entry) known

as the “shared” bit. If you set this bit on your application’s resourcefile, the Finder will

launch your application using read-only permissions;if anyoneelse launchesyour

application,they’ll also get it read-only(their Finderwill seethe same“shared” bit set.).

Threeimportantwarningsaccompanythis information:

• The definition of the “shared” bit was incorrect in previousreleasesof information and

softwarefrom Apple. This includesthe June16, 1986 version of TechnicalNote #40

(fixed in the March 2, 1987 version), as well as all versionsof ResEdit before and

including 1.1b3 (includedwith MPW 2.0). For now, the most reliable way to setthis bit

is to get the 1.1 b3 versionof ResEdit,use it to Get Info on your application,andcheck

the box labeled“cached” (the incorrectdocumentationupon which ResEdit[et al.] was

basedcalled the real sharedbit “cached”; the bit labeled as “shared” is the real

cachedbit [a currentlyunusedbut reservedbit which shouldbe left clear]).

TechnicalNote #116 page 2 of 3 AppleShare-ableApplications



• By checkingthis bit, you’re promising (to your users)that your application will workentirely correctly if launchedby more than one user.This meansthat you follow theother rules, in addition to simply not writing to your application’sown resourcefile.See“Application Developmentfor a SharedEnvironment,”andtestcarefully!

• Setting this bit has nothing to do with allowing your application’sdocumentsto beshared;you must design this feature into your application (it’s not somethingthatApple systemsoftwarecan take careof behindyour application’sback.). You shouldrealize from reading this note, however,that if you store your document’sdata inresource files, you won’t be able to allow multiple users to accessthemsimultaneously.

TechnicalNote #116 page 3 013 AppleShare-ableApplications



.

.



Macintosh Technical Notes

#117:Compatibility:Why & How

SeeAlso: TechnicalNote #2—CompatibilityGuidelines
TechnicalNote #7—A Few Quick DebuggingTips

Written by: Bo3b Johnson February9, 1987
Updated: March 1, 1988

While creatingor revising any program for the Macintosh, you should be
awareof the mostcommonreasonswhy programsfail on variousversionsof
the Macintosh.This note will detail somecommonfailure modes,why they
occur,andhow to avoid them.

We’ve tried to explain the issuesin depth, but recognizethat not everyoneis interested
in every issue.For example,if your applicationis not copy protected,you’re probablynot
very interestedin the sectionon copy protection.That’s why we’ve includedthe outline
form of the technicalnote. The first two pagesoutline the problemsandthe solutionsthat
are detailedlater. Feel free to skip aroundat will, but rememberthat we’re sendingthis
enormoustechnical note becausethe suggestionsit provides may save you hasty
compatibility revisionswhen we announcea new machine.

We know it’s a lot, and we’re hereto help you if you needit. Our address(electronicand
physical) is on pagethree—contactus with any questions—that’swhat we’re herefor!

TechnicalNote #117 page1 of 28 Compatibility: Why & How



Compatibility: the outline

Don’t assumethe screenis a fixed size
To getthe screensize:

• checkthe QuickDrawglobal screenBits. bounds

Don’t assumethe screenis in a fixed location
To get the screenlocation:

• checkthe QuickDrawglobal screenBits.baseAddr

Don’t assumethat rowBytes is equalto the width of the screen
To get the numberof byteson a line:

• checkthe QuickDrawglobal screenBitsrowBytes

To get the screenwidth:
• checkthe QuickDrawglobal screenBits.bounds right

To do screen-sizecalculations:
• UseLonglnts

Don’t write to or readfrom nil Handlesor nil Pointers

Don’t createor Use FakeHandles
To avoid creatingor using fake handles:

• Always let the Memory Managerperform operationswith handles
• Neverwrite codethat assignssomethingto a masterpointer

Don’t write codethat modifies itself
Self modifying codewill not live acrossincarnationsof the 68000

Think carefully aboutcodedesignedstrictly ascopy protection
To avoid copy protection-relatedincompatibilities:

• Avoid copy protectionaltogether
• Rely on schemesthat don’t requirespecific hardware
• Make sureyour schemedoesn’tperform illegal operations

Don’t ignoreerrors
To get valuableinformation:

• Checkall pertinentcalls for errors
• Always write defensivecode

Don’t accesshardwaredirectly
To avoid hardware-relatedincompatibilities:

• Don’t reador write the hardware
• If you can’t get the supportfrom the ROM, askthe systemwherethe hardwareis
• Use low-memoryglobals

Don’t usebits that are reserved
To avoid compatibility problemswhen bit statuschanges:

• Don’t useundocumentedstuff
• When using low-memoryglobals,checkonly what you want to know

TechnicalNote #117 page2 of 28 Compatibility: Why & How



Summary
Minor bugsaregetting harderand harderto get awaywith:

• Good luck
• We’ll help
• AppleLink: MacDTS, MCI: MacDTS
• U.S. Mail: 20525Mariani Ave.; MIS 27-T; Cupertino,CA 95014

TechnicalNote#117 page3 of 28 Compatibility: Why & How



What it Is

The basic idea is to make sure that your programswill run, regardlessof which

Macintoshthey are being run on. The currentsystemsto be concernedwith include:

• Macintosh128K • Macintosh512Ke

• Macintosh512K • MacintoshPlus

• MacintoshXL • MacintoshSE
MacintoshII

If you perform operationsin a genericfashion,there is rarely any reasonto know what

machineis running. This meansthat you shouldavoid writing codeto determinewhich

versionof the machineyou are running on, unlessit is absolutelynecessary.

For the purposesof this discussion,the term “programs” will be usedto describeany

code that runs on a Macintosh. This includes applications, INITs, FKEYs, Desk

Accessoriesand Drivers.

What the “Rules” mean

Compatibility acrossall Macintoshcomputers(which may sound like it involves more

work for you) may actually meanthat you have less work to do, since it may not be

necessaryto reviseyour programeachtime Apple bringsout a new computeror System

file. Users,asa group,do not understandcompatibility problems;all they seeis that the

programdoesnot run on their system.

The benefitsof being compatibleare many-fold: your customers/usersstay happy,you

have lessprogrammingto do, you can devoteyour time to more valuablegoals, there

are fewerversionsto dealwith, your codewill probablybe more efficient, your userswill

not curseyou undertheir breath,andyour outlook on life will be much merrier.

Now that we know what being compatible is all about, recognizethat nobody is

requiring you to be compatiblewith anything. Apple does not employ roving gangsof

thought police to be sure that developersare following the recommendedguidelines.

Furthermore,when the guidelines comprise 1200 pagesof turgid prose (Inside

Macintosh),you can be expectedto miss one or two of the “rules.” It is no sin to be

incompatible, nor is it a punishableoffense. If it were, there would be no Macintosh

programs,since virtually all developerswould be incarcerated.What it does mean,

however, is that your program will be unfavorablyviewed until it stepsin line with the

current system(which is a moving target). If a program becomesincompatiblewith a

new Macintosh, it usually requiresrethinking the offending code, and releasinga new

version.You may readsomethinglike “If the developersfollowed Apple guidelines,they

would be compatiblewith the transverse-hingeddiatomic quark realignmentsystem.”

This meansthat if you madeany mistakes(you read all 1200 pagescarefully, right?),

you will not be compatible. It is extremely difficult to remain completely compatible,

particularly in a systemas complex as the Macintosh.The rules haven’t changed,but

what you can get awaywith has.Thereare, however,a numberof thingsthat you can do

to improve your odds—someof which will be explainedhere.

TechnicalNote #117 page4 of 28 Compatibility: Why & How



It’s your choice

It is still your choicewhetheryou will be concernedwith compatibility or not. Apple will
not put out a warrantfor your arrest.However, if you aredoing thingsthat arespecifically
illegal, Apple will also not worry about“breaking” your program.

Bad Things

The following list is not intendedto be comprehensive,but theseare the primary
reasonswhy programsbreakfrom one version of the systemto the next. Thesearethe
currenttop ten commandments:

I Thou shalt not assumethe screenis a fixed size.
II Thou shalt not assumethe screenis at a fixed location.
Ill Thou shalt not assumethat rowBytes is equalto the width of the screen.
IV Thou shalt not usenil handlesor nil pointers.
V Thou shalt not createor usefake handles.
VI Thou shalt not write codethat modifies itself.
VII Thou shalt think twice aboutcodedesignedstrictly ascopy protection.
VIII Thou shaltcheckerrorsreturnedasfunction results.
IX Thou shalt not accesshardwaredirectly.
X Thou shalt not useany of the bits that are reserved(unusedmeansreserved).

This hasbeendeterminedfrom extensivetestingof our diversesoftwarebase.

TechnicalNote #117 page5 of 28 Compatibility: Why & How



Assumingthe screenis a fixed size

Do not assumethat the Macintosh screen is 512 x 342 pixels. Programsthat do

generallyhave problemson (or specialcasefor) the MacintoshXL, which hasa wider

screen.Most applicationshaveto createthe bounding rectanglewhere a window can

be dragged.This is the boundsRectthat is passedto the call:

DragWindow (myWindowPtr, theEvent. where, boundsRect);

Someill-advised programscreatethe boundsRectby somethinglike:

SetRect (boundsRect,0,0,342,512); { oops, this is hard—coded...)

Why it’s Bad

This is bad becauseit is never necessaryto specifically put in the boundingrectangle

for the screen.On a Macintosh XL for example,the screensize is 760x364 (and

sometimes608x431 with alternate hardware). If a program usesthe hard-coded

0,0,342,512asa bounding rectangle,end userswill not be able to move their windows

pastthe fictitious boundaryof 512. If somethingsimilar were doneto the GrowWindow

call, it would make it impossiblefor usersto grow their window to fill the entire screen.

(Always a saddeningwasteof valuablescreenreal-estate.)

Assuming screensize makesit more difficult to usethe programon Macintosheswith

big screens,by making it difficult to grow or move windows, or by drawing in strange

placeswhere they should not be drawing (outsideof windows). Considerthe caseof

running on a Macintosh equippedwith one of the full pagedisplays, or Ultra-Large

screens.No one who paid for a big screenwants to be restrictedto using only the

upper-leftcornerof it.

How to avoid becoming a screeningfascist

Never hard code the numbers512 and 342 for screendimensions.You should avoid

using constantsfor systemvaluesthat can change.Parameterslike theseare nearly

alwaysavailablein a dynamic fashion. Programsshould readthe appropriatevariables

while the programis running (at wn-time, not at compile time).

Here’s how smarlprogramsget the screendimensions:

InitGraf(@thePort); { QuickDraw global variableshave to be initialized.)

boundsRect := screenBits.bounds; { The Real way to get screensize I

Use QuickDraw global variable.

This is smart, becausethe program never has to know specifically what the numbers

are. All referencesto rectanglesthat needto be relatedto the screen(like the drag and

grow areasof windows) shouldusescreenBits.boundsto avoid worrying aboutthe

screensize.

TechnicalNote #117 page6 of 28 CompatibiIy:Why & How



Note that this doesnot do anything remotely like assumethat “if the computeris not a
standardMacintosh,then it must be an XL.” Specialcasingfor the variousversionsof
the Macintosh hasalways beensuspiciousat best; it is now groundsfor breaking. (At
leastwith respectto screendimensions.)

By the way, rememberto take into accountthe menu bar height when using this
rectangle.On 128K ROMs (and later) you can usethe low-memoryglobal mBarHeight
(a word at $BAA). But since we didn’t provide a low-memory global for the menu bar
height in the 64K ROMs, you’ll haveto hardcode it to 20 ($14). (You’re not the only ones
to forget the future holdschanges.)

How to find fascist screenismin current programs

The easiestway is to exerciseyour program on one of the Ultra-Large screen
Macintoshes.Thereshould be no restrictionson sizing or moving the windows, and all
drawing should have no problems. If thereare any anomaliesin the program’susage,
thereis probablya lurking problem.Also, do a global find in the sourcecodeto seeif the
numbers512 or 342 occur in the program. If so, and if they are in referenceto the
screen,excisethem.

TechnicalNote #117 page7 of 28 CompatibiIy: Why & How



Assumingthe screenis at a fixed location

Someprogramsusea fixed screenaddress,assumingthat the screenlocation will be
the sameon various incarnationsof the Macintosh.This is not the case.For example,
the screenis locatedat memory location $1A700 on a 128K Macintosh,at $7A700 on a
512K Macintosh,at $F8000on the MacintoshXL, andat $FA700 on the MacintoshPlus.

Why it’s Bad

When a programrelies upon the screenbeing in a fixed location, Murphy’s Law dictates
that an unknowing userwill run it upon a computerwith the screenin a different location.
This usually causesthe systemto crash, since the offending program will write to
memorythat wasusedfor somethingimportant. Programsthat crashhavebeenproven

to be lessuseful thanthosethat don’t.

How to avoid being a basescreener

Suffice it to saythat thereis no way that the addressof the screenwill remainstatic, but
thereare rare occasionswhere it is necessaryto go directly to the screenmemory. On
theseoccasions,thereare badwaysand not-as-badwaysto do it. A badway:

myScreenBase:= Pointer ($7A700); { not good. Hard-codednumber. I

A not-as-badway:

InitGraf(@thePort); { do this only once in a program. I

myScreenBase:= screenBits.baseAddr; { Good. Always works.

{Yet another QuickDraw global variable}

Using the latter approachis guaranteedto work, sinceQuickDraw hasto know whereto
draw, and the operatingsystemtells QuickDraw wherethe screencan be found. When
in doubt,askQuickDraw. This will work on Macintoshcomputersfrom now until forever,
so if you use this approachyou won’t have to revise your programjust becausethe
screenmoved in memory.

If you have a program (such as an INIT) that cannot rely upon QuickDraw being
initialized (via InitGraf), then it is possibleto usethe ScrnBaselow-memory global
variable(a long word at $824). This methodruns a distantsecondto askingQuickDraw,

but is sometimesnecessary.

How to find basescreeners

The easiestway to find basescreenersis to run the offending programon machinesthat
havedifferent screenaddresses.If any addressesare being usedin a basemanner,the
systemwill usually crash.The offending programmay also occasionallyrefuseto draw.
Some programsafflicted with this problem may also hang the computer(sometimes

known as accessingfunny space).Also, do a global find on the sourcecodeto look for
numberslike $7A700 or $1A700. When found, exercisecaution while altering the
offending lines. .
TechnicalNote #117 page8 of 28 Compatibllfty: Why & How



Assumingthat rowbytesis equal to the width of the screen

According to the definition of a bitMap found in InsideMacintosh(p 1-144), you cansee
that rowBytes is the numberof actualbytes in memorythat are usedto determinethe
bitMap. We know the screenis just a big hunk of memory,andwe know that QuickDraw
usesthat memoryasa bitMap. rowBytesaccomplishesthe translationof a big hunk of
memoryinto a bitMap. To do this, rowBytestells the systemhow long a given row is in
memoryand, more importantly,where in memorythe next row starts.For conventional
Macintoshes,rowBytes (bytesper Row) * 8 (Pixels per Byte) gives the final horizontal
width of the screenasPixelsper Row. This doesnot haveto be the case.It is possibleto
havea Macintoshscreenwherethe rowBytes extendsbeyondwhat is actually visible
on the screen.You can think of it as having the screenlooking in on a largerbitMap.
Diagrammatically,it might look like:

Big Hunk o’ Memory

4 RowBytes

—, screenBits.Bounds

‘I,
%,%,\ Visible Area _\,\,%

BaseAddr: ‘ ‘ ‘ , .. ‘ ‘ ‘ ‘

With an Ultra-Large screen,the numberof bytesusedfor screenmemorymay be in the
500,000byte range.Whenevercalculationsare being madeto find various locationsin
the screen,the variables used should be able to handle larger screensizes. For
example,a 16 bit Integerwill not be able to hold the 500,000number,so a Longlnt
would be required. Do not assumethat the screensize is 21,888bytes long, bitMaps
can be largerthan 32K or 64K.

Why it’s Bad

Programsthat assumethat all of the bytes in a row are visible may make bad
calculations,causingdrawing routines to produceunusual,and unreadable,results.
Also, programsthat usethe rowBytesto figure out the width of the screenrectanglewill
find that their calculatedrectangleis not the real screenBits.Bounds. Drawing into
areasthat are not visible will not necessarilycrashthe computer,but it will probablygive
erroneousresults,anddisplaysthat don’t matchthe normal outputof the program.

Programsthat assumethat the numberof bytes in the screenmemorywill be lessthan
32768 may have problemsdrawing into Ultra-Large screens,sincethosescreenswill
often have more memorythan a normal Macintoshscreen. Theseparticularproblems
do not evidencethemselvesby crashingthe system. They generallyappearas loss of

TechnicalNote #117 page9 of 28 Compatibility: Why & How



functionality (not being able to move a window to the bottom of the screen),or as
drawing routinesthat no longer look correct. Theseproblemscan preventan otherwise

wonderful programfrom being used.

How to avoid being a row byter

In any calculations,the rowBytesvariableshouldbe thoughtof asthe way to get to the

next row on the screen. This is distinct from thinking of it asthe width of the screen.The

width should always be found from s c r e e n B i t s . b o u n d s . r i g h t —

screenBits.bounds. left.

It is also inappropriateto use the rectangleto decide how many bytes there are on a
row. Programsthat do somethinglike:

bytesLine := screenBits.bounds.rightDIV 8; { bad use of bounds I

rightSide := screenBits.rowBytes* 8; { bad use of rowBytes

will find that the screenmay have more rowBytes than previously thought. The best
way to avoid being a row byter is to use the proper variablesfor the proper things.

Without the propermathematicalbasisto the screen,life becomesmuch more difficult.
Always do things like:

bytesLine := screenBits.rowBytes; { always the correct number

rightSide := screenBits.bounds.right; { always the correct screensize

It is sometimesnecessaryto do calculationsinvolving the screen. If so, be sureto use
Longlnts for all the math, and be sureto usethe right variables(i.e. useLonglnts).

For example,if we needto find the addressof the 500th row in the screen(500 lines

from the top):

VAR myAddress: Longlnt;

myRow: Longlnt; { so the calculationsdon’t round off.

myoffset: Longlnt; { could easily be over 32768 ...

bytesLine: Longlnt;

myAddress := ord4(screenBits.baseAddr);{start w/the real baseaddress

myRow := 500; {the row we want to address

bytesLine := screenBits.rowBytes; {the real bytes per line

myoffset := myRow * bytesLine; {lines * bytes per lines gives bytes

myAddress := myAddress + myOffset; {final addressof the 500th line

This is not somethingyou want to do if you can possiblyavoid it, but if you simply must

go directly to the screen,be careful. The big-screenmachines(Ultra-Largescreens)will

thankyou for it. If QuickDrawcannotbe initialized, there is also the low-memoryglobal

screenRow(a word at $106) that will give you thecurrentrowBytes.

How to find row byters

To find currentproblemswith row byter programs,run them on a machineequippedwith

Ultra-Largescreensand seeif any anomaliescrop up. Look for drawing sequencesthat

don’t work right, and for drawing that clips to an imaginary edge. For source-level

TechnicalNote #117 page1 0 of 28 Compatibility: Why & How



inspection, look for usesof the rowBytes variablesand be sure that they are being
usedin a mathematicallysoundfashion. Be highly suspiciousof any code that uses
rowBytes for the screenwidth. Any calculationsinvolving those systemvariables
should be closely inspectedfor round-off errors and improper use. Searchfor the
number8. If it is being usedin a calculationwhere it is the numberof bits per byte, then
watch that codeclosely for improperconceptualization.This is codethat could leapout
andgrabyou by the throatat anytime. Be careful!

TechnicalNote#117 page11 of 28 Compatibility: Why & How



Using nil Handlesor nil Pointers

A nil pointer is a pointer that hasa value of 0. Recognizethat pointersare merely
addressesin memory. This meansthat a nil pointer is pointing to memory location 0.
Any use of memory location 0 is strictly forbidden, since it is owned by Motorola.
Trespassersmay be shot on sight, but they may not die until much later. Sometimes
trespassersare only woundedand act strangely. Any useof memory location 0 can be
considereda bug, sincethereare no valid reasonsfor Macintoshprogramsto reador
write to that memory. However,nil pointersthemselvesare not necessarilybad. It is
occasionallynecessaryto passnil pointersto ROM routines. This should not be
confusedwith reading or writing to memory location 0. A pointer normally points to
(containsthe addressof) a location in memory. It could look like this:

Highest Memory

P: $E93lO

Higher Memory

Ps’: $3E4DE

This is how a Pointer

works. The addressof

the pointer variable itself

is $E9310 (@P) and is four

bytes long. The pointer points

to (contains the addressof)

the block at $3E4DE (P)

That memory location is where

the actual data resides (P”)

.
If a pointer hasbeenclearedto nil, it will point to memory location 0. This is OK as
long asthe programdoesnot try to readfrom or write to that pointer. An exampleof a
nil pointercould look like:

Highest Memory

P: $E9310:I

Higher Memory

$3E40E:I

(PS’)

This is a nil Pointer.

Note that the memory that

it points to (the address)

is 0 (PP’) . This is wrong.

There is no valid data at

memory location 0. Any

writing to or reading from

this pointer is a bug.

.

.

Memory 0

Memory 0

TechnicalNote #117 page1 2 of 28 Compatibility: Why & How



nil handlesare related to the problem, since a handle is merely the addressof a
pointer (or a pointerto a pointer). An exampleof what a normal handlemight look like
is:

Memory 0 1 1

This is how a Handle works.
The addressof the handle
variable itself (H) is $E9310.
That variable points (has the
address) to the master pointer
at location $2603C (H) . That
variable is a pointer also, and
points to the real data found
at $3E4DE (H”) . The dark grey
block is a Master pointer block. It
is a group (usually 64) of Master
Pointers. One of them is the Master
Pointer at address$2603C (H)

Whenthe first pointer (h) becomesnil, that implies that memorylocation 0 can be used
asa pointer. This is strictly illegal. Thereare no caseswhereit is valid to readfrom or
write to a nil handle. A pictorial representationof what a nil handlecould look like:

Highest Memory

H: $E9310:

Higher Memory

$3E4DE:J

$2603C:I

Memory 0

(H)

This is a nil Handle.
Note that the Handle usually
points to a Master Pointer, but
in this case it points at (has
the value of) 0 (H) . This is wrong.
Using what is at memory location
0 as a pointer is invalid, since
it is not known what will be there.

Points someplacestrange.

If the memoryat 0 containsan odd number(numericallyodd), then using it asa pointer
will causea systemerror with 10=2. This can be very useful, sincethat tells you exactly
wherethe programis using this illegal handle,making it easyto fix. Unfortunately,there
are caseswhere it is appropriateto passa nil handle to ROM routines (such as
GetScrap). Thesecasesare rare, and it is never legal to readfrom or write to a nil
handle.

Highest Memory

TechnicalNote #117 page13 of 28 Compatibility: Why & How



There is also the caseof an empty handle. An empty handleis one wherethe handle

itself (the first pointer) points to a valid place in memory; that place in memory is also a

pointer, and if it is nil the entire handleis termedempty. Thereare occasionswhere it

is necessaryto use the handle itself, but using the nil pointer that it containsis not

valid. An exampleof an empty handlecould be:

Highest Memory

H: $E9310:I

Higher Memory

$3E4DE.

H’: $2603C

Memory 0

(H’)

This is an Empty Handle.

Note that the handle itself

has a valid Master Pointer

addressin it $2603C (H) . The

Master Pointer is nil however,

which is the addressof location

0 in memory. It is wrong to use

the Master Pointer in this case,

although there are caseswhere

using the Handle itself is valid.

.

Fundamentally,any readingor writing to memoryusing a pointeror handlethat is nil is

punishableby death(of your program).

Why it’s Bad

The useof nil pointerscan lead to the use of make-believedata. This make-believe

dataoften changesfor different versionsof the computer. This changingdatamakesit

difficult to predict what will happenwhen a programusesnil pointers. Programsmay

not crashas a result of using a nil pointer, and they may behavein a consistent

fashion. This doesnot meanthat thereisn’t a bug. This merely meansthat the program

is lucky, and that it should be playing the lottery, not running on a Macintosh. If a

programactsdifferently on different versionsof the Macintosh,you should think “could

therebe a nastynil pointerproblem here?” Use of a nil handleusually culminatesin

readingor writing to obscureplacesin memory. As an example:

VAR myHandle: TEHaridle;

myHandle : nil;

That’s pretty straightforward,so what’s the problem? If you do somethinglike:

myHandle.viewRect:= myRect; { very bad idea with rnyHandle = nil

memory location zero will be usedasa pointerto give the addressof a TextEdit record.

What if that memorylocation pointsto somethingin the systemheap?What if it pointsto

the soundbuffer? In caseslike these,eight bytes of rectangledatawill be written to

wherevermemory location 0 points.

.

.
TechnicalNote#117 page14 of 28 Compatibility: Why & How



Use of a nil handlewill neverbe useful. This memory is reservedand usedby the
68000for various interrupt vectorsand ValuableStuff. This ValuableStuff is composed
of thingsthat you definitely do not want to change. When changed,the 68000finds out,
and decidesto get back at your program in the most strangeand wonderful ways.
Thesestrangeresultscan rangefrom a SystemError all the way to erasinghard disks
and destroyingfiles. There really is no limit to the havocthat can be wreaked. This
tendsto keepthe userson the edgeof their seat,but this is not really the desiredeffect.
As notedabove,it won’t necessarilycausetraumaticresults. A programcan be doing
naughtythings and not get caught. This is still a bug that needsto be fixed, since it is
nearly guaranteedto give different results on different versions of the Macintosh.
Programsexhibiting schizophreniahavebeenprovento be lessenjoyableto use.

How to avoid being a Niller

Whenevera program usespointersand handles,it should ensurethat the pointer or
handlewill not be nil. This could be termeddefensiveprogramming,since it assumes
that everyoneis out to get the program(which is not far from the truth on the Macintosh).
You shouldalwayscheckthe result of routinesthat claim to passbacka handle. If they
passyou back a nil handle,you could get in trouble if you usethem. Don’t trust the
ROM. The following exampleof a defensiveuse of a handle involves the Resource
Manager. The ResourceManagerpassesback a handleto the resourcedata. There
are any numberof placeswhere it may be forced to passback a nil handle. For
example:

VAR myRezzie: MyHandle;

myRezzie := MyHandle(GetResource(myResType,myResNumber));{ could be missing...)
IF myRezzie nil THEN ErrorHandler(’We almost got Nilled’)
ELSE myRezzie.myRect:= newRect; { We know it is OK

As anotherexample,think of how handlescan be purgedfrom memory in tight memory
conditions. If a block is markedpurgeable,the Memory Managermay throw it away at
any time. This createsan empty handle. The defensiveprogrammerwill always make
surethat the handlesbeing usedare not empty.

VAR myRezzie: myHandle;

myRezzie := myHandle(GetResource(myResType,myResNumber)); { could be
missing...

IF myRezzie = nil THEN ErrorHandler(’We almost got Nilled’)
ELSE myRezzie”.myRect := newRect; { We know it is OK
tempHandle := NewHandle (largeBlock); {might disposea purgeablemyRezzie}
IF myRezzie” = nil THEN LoadResource(Handle(myRezzie));{Re-load empty

handle)
IF ResError = noErr THEN

myRezzie””.StatusField:= OK; { guaranteednot empty, and actually
gets read back in, if necessary

Be especiallycareful of placeswhere memory is being allocated. The NewHandleand
NewPtr calls will return a nil handleor pointer if there is not enoughmemory. If you
usethat handleor pointerwithout checking,you will be guilty of being a Niller.

TechnicalNote #117 page15 of 28 Compatibility: Why & How



How to find Nillers

The bestway to find thesenastynil pointerproblemsis to set memory location zero to
be an odd number(a good choice is ‘NIL!’ = $4E494C21,which is numerically odd, as
well aspersonality-wise).PleaseseeTechnicalNote #7 for detailson how to do this.

If you useTMON, you can usethe extendeduserareawith Discipline. Discipline will set
memory location 0 to ‘NIL!’ to help catch those nasty pointer problems. If you use
Macsbug,just type SM 0 ‘NIL! andgo. Realizeof course,that if a programhasmadea
transgressionand is actually using nil pointers,this may makethe programcrashwith
an ID=2 systemerror. This is good! This meansthat you have found a bug that may
have beencausingyou untold grief. Once you know where a programcrashes,it is
usuallyvery easyto usea debuggerto find wherethe error is in the sourcecode. When
the program is compiled, turn on the debugginglabels (usually a $D+ option). Set
memory location 0 to be ‘NIL!’. Whenthe programcrashes,look at wherethe programis
executingandseewhat routine it was in (from a disassembly).Go backto that routine in
the sourcecodeand removethe offending codewith a grim smile on your face. Another
scurvy bug has beenvanquished. The intoxicating smell of victory wafts aroundyour
head.

Anotherway to find problemsis to use a debuggerto do a checksumon the first four
bytes in memory (from 0 to 3 inclusive). If the program ever traps into the debugger
claiming that the memory changed,see which part of the program altered memory
location 0. Any codethat writes to memory location zero is guilty of high treasonagainst
the stateandmust be removed. Rememberto say,“bugs are not my friends.”

.

0
TechnicalNote #117 page1 6 of 28 Compatibility: Why & How



Creatingor Using FakeHandles

A fake handleis one that was not manufacturedby the system,but was createdby the
programitself. An exampleof a fake handleis:

CONST aMem = $100;
VAR myHandle: Handle;

myPointer: Ptr;

myPointer := Ptr (aMem); { the addressof some memory
myHandle : @myPointer; (the addressof the pointer variable. Very bad.)

The normal way to createand usehandlesis to call the Memory ManagerNewHandlefunction.

Why it’s Bad

A handlethat is manufacturedby the programis not a legitimate handleas far as theoperatingsystemis concerned.Passinga fake handleto routinesthat use handlesis agoodway to discoverthe meaningof “Death by ROM.” For example,think how confusedthe operatingsystemwould get if the fake handlewere passedto DisposHandle.Whatwould it dispose? It neverallocatedthe memory, so how can it releaseit? Programs
that manufacturehandlesmay find that the operatingsystemis no longertheir friend.

When handlesare passedto various ROM routines, there is no telling what sorts ofthingswill be doneto the handle. Thereare any numberof normal handlemanipulation
calls that the ROM may use,suchasSetHandleSize,HLock, HNoPurge,MoveHHi and
so on. Sincea programcannotguaranteethat the ROM will not be doing things like this
to handlesthat the programpassesin, it is wise to makesurethat a real handleis being
used,so that all thesetype of operationswill work as the ROM expects. For fakehandles,the calls like HLock and SetHandleSizehave no bearing. Fakehandlesarevery easyto create,and they are very bad for the health of otherwise upstanding
programs. Wheneveryou needa handle,get onefrom the Memory Manager.

As a particularlybaduseof a fake handle:

VAR myHandle: Handle;
myStuff: myRecord;

myHandle := NewHandle (SIZEOF(myStuff)); { createa new normal handle ImyHandle’ := @myStuff; {YOW! Intendedto make myHandle a handle to
the myStuff record. What it really does is
blow up a Master Pointer block, Heap corruption,
and death by Bad Heap. Never do this.

This can be a little confusing,since it is fine to use your own pointers,but very bad to
use your own handles. The difference is that handlescan move in memory, and
pointerscannot,hencethe pointersare not dangerous.This doesnot meanyou should
usepointersfor everythingsincethat causesotherproblems. It merely meansthat you
haveto be careful how you usethe handles.

The useof fake handlesusually causessystemerrors,but can be somewhatmysterious

TechnicalNote #117 page17 of 28 Compatibility: Why & How



in its effects. Fakehandlescan be particularlyhardto track down sincethey often cause

damagethat is not uncoveredfor many minutesof use. Any use of fake handlesthat

causesthe heapto be altered will usually crash the system. Heap corruption is a

common failure mode. In clinical studies, 9 out of 10 programmersrecommend

uncorruptedheapsto their userswho useheaps.

How to avoid being a fakir

The correctway to makea handleto somedatais to makea copy of the data:

VAR myHandle: Handle;

myStuff: myRecord;

errCode := PtrToHand (@myStuff, myHandle, SIZEOF(myStuff));

IF errCode <> noErr THEN ErrorHandler (‘Out of memory’);

Always, always, let the Memory Managerperform operationswith handles. Neverwrite

codethat assignssomethingto a masterpointer, like:

VAR myDeath: Handle;

myDeath” : stuff; { Don’t change the Master pointer. I

If thereis code like this, it usually meansthe heapis being corrupted,or a fake handleis

being used. It is, however,OK to passaroundthe handleitself, like:

myCopyHandle := myHandle; { perfectly OK, nobody will yell about this.

This is far different than using the operatorto accidentallymodify things in the system.

Wheneverit is necessaryto write code to use handles,be careful. Watch things

carefully asthey are being written, It is much easierto be careful on the way in than it is

to try to find out why somethingis crashing. Be very careful of the @ operator. This

operatorcan unleashuntold problemsupon unsuspectingprograms. If at all possible,

try to avoid using it, but if it is necessary,be absolutelysureyou know what it is doing. It

is particularly dangeroussince it turns off the normal type checkingthat can help you

find errors (in Pascal). In short, don’t get crazy with pointerand handlemanipulations,

andthey won’t get crazywith you.

How to find fakirs

Problemsof this form are particularly insidious becauseit can be very difficult to find

them after they have beencreated. They tend to not crashimmediately,but ratherto

crashsometimelong after the real damagehasbeendone. The bestway to find these

problemsis to run the programwith Discipline. (Discipline is a programmer’stool that

will checkall parameterspassedto the ROM to seeif they are legitimate. Discipline can

be found as a stand-alonetool, but the most up-to-dateversion will be found in the

ExtendedUser Area for the TMON debugger. The User Area is public domain, but

TMON itself is not. TMON hasa numberof otheruseful features,and is well worth the

price.) Discipline will checkhandlesthat are passedto the ROM to seeif they are real

handlesor not, and if not, will stop the programat the offending call. This can lead you

backto the sourceat a point that may be closeto wherethe bad handlewascreated. If

a programpassesthe Discipline test, it will be a healthy, robustprogramwith drastically

TechnicalNote #117 page18 of 28 Compatibility: Why & How



improved oddsfor compatibility. Programsthat do not passDiscipline can sleeppoorly
at night, knowing that they havebrokenat leastone or two of the “rules.”

A way to find programsthat are damagingthe heapis to use a debugger(TMON or
Macsbug)andturn on the HeapCheckoperation. This will checkthe heapfor errorsat
eachtrap call, and if the heapis corruptedwill break into the debugger. Hopefully this
will be closeto wherethe codeis that causedthe damage. Unfortunately,it may not be
closeenough;this will force you to look further back.

Looking in the sourcecode, look for all usesof the @ operator,and examinethe code
carefully to seeif it is breakingthe rules. If it is, changeit to stepin line with the rest of
the happyprogramshere in happyvalley. Also, look for any codethat changesa master
pointer like the myHandle” := stuff. Any code of this form is highly suspect,and
probably a memberof the Anti-Productivity League. The APL has beenaccusedof
preventingsoftwaresalesandthe rise of the Yen. Theseproblemscan be quite difficult
to find at times, but don’t give up. Thesefake handlesare high on the list of guilty
parties,andshouldneverbe trusted.

TechnicalNote #117 page1 9 of 28 Compatibility: Why & How



Writing code that modifies itself

Self-modifying code is softwarethat changesitself. Codethat altersitself runs into two

main groupings: codethat modifies the codeitself and codethat changesthe block the

codeis storedin. Copy protectioncodeoften modifies the codeitself, to changethe way

it operates(concealingthe meaningof what the codedoes). Changingthe codeitself is

very tricky, and also prone to having problems,particularly when the microprocessor

itself changes. There are third-party upgradesavailable that add a 68020 to a

Macintosh. Becauseof the 68020’s cache,programsthat modify themselvesstanda

goodchanceof having problemswhen run on a 68020. This is a compatibility point that

should not be missed(nudge,nudge,wink, wink). Code that changesother code (or

itself) is proneto be incompatiblewhenthe microprocessorchanges.

The secondgroup is codethat changesthe block that the code is stored in. Keeping

variablesin the CODE segmentitself is an exampleof this. This is uncommonwith

high-level languages,but it is easyto do in assemblylanguage(using the DC directive).

Variablesdefinedin the codeitself shouldbe read-only(constants). Codethat modifies

itself hassigneda tacit agreementthat says“I’m being tricky, if I die, I’ll reviseit.”

Why it’s Bad

Thereare now threedifferent versionsof the microprocessor,the 68000,68010,andthe

68020. They are intendedto be compatiblewith eachother, but may not be compatible

with code that modifies itself. As the Macintosh evolves, the system may have

compatibility problemswith programsthat try to “push the envelope.”

How to avoid being an abuser

Well, the obviousansweris to avoid writing self-modifying code. If you feel obliged to

write self-modifying code,then you are taking an oath to not complain when you break

in the future. But don’t worry aboutaccidentallytaking the oath: you won’t do it without

knowing it. If you chooseto abuse,you also agreeto personalvisits from the Apple

thoughtpolice, who will be hired assoonaswe find out.

How to find abusers

Run the programon a 68020system. If it fails, it could be relatedto this problem, but

since there are other bugs that might causefailures, it is not guaranteedto be a

self-modifying code problem. Self-modifying code is often used in copy protection,

which brings us to the next big topic.

.
TechnicalNote #117 page20 of 28 Compatibility: Why & How



Code designedstrictly as copy protection

Copy protection is usedto make it difficult to make copies of a program. The basic
premiseis to make it impossibleto copy a programwith the Finder. This will not be adiscussionasto the pros and consof copy protectiOn. Everyonehasan opinion. Thiswill be a descriptionof reality, as it relatesto compatibility.

Why it’s Bad

Systemchangeswill neverbe mademerely to causecopy protectionschemesto fail,
but given the choice betweenimproving the systemand making a copy protection
schemeremaincompatible,the systemimprovementwill alwaysbe chosen.

• Copy protectionis numberoneon the list of why programsfail the compatibility test.
• Copy protectionby its very naturetendsto do the most “illegal” things.
• Programsthat arecopy protectedareassumedto havesigneda tacit agreementto

revisethe programwhenthe systemchanges.

Copy protectionitself is not necessarilybad. What is bad is when programsthat wouldotherwisebe fully compatibledo not work due only to the copy protection. This is very
sad, since it requiresextra work, revisions to the software, and time lost while the
revision is being produced. The usersare not generally humoredwhen they can no
longer use their programs. Copy protectionschemesthat fail generallycausesystem
errorswhenthey are run. They alsocan refuseto run whenthey should.

How to avoid being a protectionist

The simple answer is to do without copy protection altogether. If you think ofcompatibility as a probability game, if you leave out the copy protection,your odds of
winning skyrocket. As noted above,copy protection is the single biggest reasonwhy
programsfail on the variousversionsof the Macintosh. For thosewho are requiredto
usecopy protection, try to rely on schemesthat do not require specific hardwareand
makesurethat the schemeusedis not performing illegal operations. If a programruns,
an experiencedMacintosh programmerarmedwith a debuggercan probably make a
copy of it, (no matter how sophisticatedthe copy protection scheme)so a moderate
schemethat doesnot breakthe rules is probablya bettercompatibility bet. The trickier
and moredeviousthe scheme,the higherthe chanceof breakinga rule. Treadlightly.

How to find protectionists

The easiestway to seeif a schemeis being overly tricky is to run it on a MacintoshXL.
Since the floppy disk hardwareis different this will usually demonstratean unwanted
hardwaredependency.Be wary of schemesthat don’t allow installation on a hard disk.
If the programcannotbe installedon a hard disk, it may be relying upon things that are
proneto change. Don’t useschemesthat accessthe hardwaredirectly. All Macintosh
softwareshouldgo throughthe variousmanagersin the ROM to maintaincompatibility.
Any code that sidestepsthe ROM will be viewed as having said “It’s OK to make me
revisemyself.”

TechnicalNote #117 page21 of 28 Compatibility: Why & How



Checkerrors returnedas function results

All of the OperatingSystemfunctions, as well as someof the Toolbox functions, will

return result codesas the value of the function. Don’t ignore theseresult codes. If a

program ignores the result codes,it is possibleto have any numberof bad things

happento the program. The result codeis thereto tell the programthat somethingwent

wrong; if the program ignores the fact that something is wrong, that program will

probably be killed by whateverwent wrong. (Bugs do not like to be ignored.) If a

programcheckserrors, an anomalycan be nipped in the bud, before somethingreally

bizarre happens.

Why it’s Bad

A programthat ignoresresult codesis skipping valuable information. This information

canoften preventa programfrom crashingandkeep it from losing data.

How to avoid becominga skipper

Always write codethat is defensive. Assumethat everyoneand everythingis out to kill

you. Trust no one. An exampleof errorcheckingis:

myRezzie := GetResource(myResType, myResld);

IF myRezzie = nil THEN ErrorHandler (‘Who stole my resource...’);

Anotherexample:

fsErrCode := FSOpen (‘MyFile’, myVRefNum, myFileRefNum);

IF fsErrCode <> noErr THEN ErrorHandler (fsErrCode, ‘File error’);

And another:

myTPPrPort := PrOperiDoc (myTHPrint, nil, nil);

IF PRError <> noErr THEN ErrorHandler (PRError, ‘Printing error’);

Any use of Operating Systemfunctions should presumethat something nasty can

happen,and have code to handle the nasty situations. Printing calls, File Manager

calls, ResourceManager calls, and Memory Manager calls are all examplesof

OperatingSystemfunctionsthat shouldbe watchedfor returningerrors. Always, always

checkthe result codesfrom Memory Managercalls. Big memory machinesare pretty

commonnow, and it is easyto get cavalieraboutmemory,but realizethat someonewill

always want to run the program underSwitcher, or on smallerMacintoshes. It never

hurls to check,and alwayshurtsto ignore it.

How to find skippers

This is easy: just do weird things while the program is running. Put in locked or

unformatteddisks while the program is running. Use unconventionalcommand

sequences.Run out of disk space. Run on 128K Macintoshesto seehow the program

dealswith running out of memory. Run underSwitcherfor the samereason. (Programs

that die while running underSwitcherare often not Switcher’s fault, and are in fact due

TechnicalNote#117 page22 of 28 Compatibility: Why & How



to faulty memory management.)Print with no printer connectedto the Macintosh. Pop
disks out of the drives with the Command-Shiftsequence,and seeif the programcan
dealwith no disk. When a disk-switchdialog comesup, pressCommand-periodto pass
back an error to the requestingprogram (128K ROMs only). Torturing otherwisewell-
behavedprogramscan be quite enjoyable,and a numberof usersenjoy torturing the
programas much asthe programenjoystorturing them. For the truly malicious, run the
debuggerand alter error codesas they come back from various routines. Sure it’s a
dirty low-down rotten thing to do to a program,but we want to seehow far we can push
the program. (This is also a goodway to checkyour error handling.) It’s onething to be
an optimist, but it’s quite anotherto assumethat nothing will go wrong while a program
is running.

TechnicalNote #117 page23 of 28 Compatibility: Why & How



Accessinghardwaredirectly

Sometimesit is necessaryto go directly to the Macintosh hardwareto accomplisha
specific task for which there is no ROM support. Early hard disks that usedthe serial
ports had no ROM support. Thosedisks neededto use the SCC chip (the 8530
communicationchip) in a high-speedclockedfashion. Although it is a valid function, it is

not somethingthat is supportedin the ROM. It wasthereforenecessaryto go play with
the SCC chip directly, setting and testing various hardwareregistersin the chip itself.

Anotherexampleof a valid function that hasno ROM supportis the useof the alternate
video pagefor page-flipping animation. Since there is no ROM call to flip pages,it is

necessaryto go play with the right bit in the VIA chip (6522 Versatile InterfaceAdapter).

Going directly to the hardwaredoes not automatically throw a program into the

incompatiblegroup, but it certainly lowers its odds.

Why it’s bad

Going directly to the hardwareposesany numberof problemsfor enlightenedprograms

that aretrying to maintaincompatibility acrossthe variousversionsof the Macintosh. On

the MacintoshXL for example,a lot of the hardwareis found in different locations,and in
somecasesthe hardwaredoesn’texist. On the XL there is no soundchip. Programs

that go directly to the soundhardwarewill find they don’t work correctlyon an XL. If the

sameprogramwere to go throughthe SoundManager,it would work fine, althoughthe
soundwould not be the sameas expected. Sincethe Macintosh is heavily orientedto

the softwareside of things, expectingvarious hardwareto always be available is not a

safebet. Choosyprogrammerschooseto leavethe hardwareto the ROM.

How to avoid having a hard attack

Don’t reador write the hardware. Exhaustevery possibleconventionalapproachbefore

decidingto really get down and dirty. If thereis a Managerin the ROM for the operation

you wish to perform, it is far better to use the Managerthan to go directly to the

hardware. Compatibility at the hardware level can very rarely be maintained,but

compatibility at the Managerlevel is a prime consideration. If a programis down to the

last ditch effort, andcannotget the supportfrom the ROM that is desired,then accessthe

hardwarein an enlightenedapproach. The really bad way to do it:

VIA := Pointer ($EFE1FE); { sure it’s the base addresstoday...}

This is bad. Hard-codednumber.

The with-it, inspiredprogrammerof the eightiesdoessomethinglike:

TYPE LongPointer = ‘LongInt;

VAR VIA: LongPointer;

VIABase: Longlnt;

VIA := Pointer ($1D4); { the addressof the low-memory global.

VIABa5e := VIA’; { get the low—memory variable’s value

Now VIABase has the addressof the chip I

0
TechnicalNote #117 page24 of 28 Compatibility: Why & How



The point here is that the bestway to get the addressof a hardwarechip is to ask the
systemwhere it currently is to be found. The systemalwaysknows wherethe piecesof
the systemare, and will alwaysknow for every incarnationof the Macintosh. Thereare
low-memory global variablesfor all of the piecesof hardwarecurrently found in the
Macintosh. This includesthe VIA, the SCC, the SoundChip, the IWM, and the video
display. Wheneveryou are stuck with going to the hardware,use the low-memory
globals. The fact that a programgoesdirectly to the hardwaremeansthat it is risking
imminent incompatibility, but using the low-memoryglobal will ensurethat the program
hasthe bestodds. It’s like going to Las Vegas: if you don’t gambleat all, you don’t lose
any money;if you haveto gamble,play the gamethat you losethe leaston.

How to find hard attacks

Run the suspiciousprogram on the Macintosh XL. Nearly all of the hardwareis in a
different memory location on the XL. If a programhasa hard-codedhardwareaddress
in it, it will fail. It may crash,or it might not perform the desiredtask, but it won’t work as
advertised. This unfortunately,is not a completelylegitimatetest, sincethe XL doesnot
have some of the hardwareof other Macintoshes,and some of the hardwarethat is
therehasthe registermappingdifferent. This meansthat it is possibleto play by the rule
of using the low-memoryglobal and still be incompatible.

TechnicalNote #117 page25 of 28 Compatibility: Why & How



Don’t use bits that are reserved

Occasionallyduring the life of a Macintosh programmer,therecomesa time when it is

necessaryto bite the bullet and usea low-memory global. Theseare very sad days,

since it has been demonstrated(by history) that low-memory global variablesare a

mysteriouslot, and not altogetherfriendly. One fellow in particularis known asR0M85, a

word locatedat $28E. This particular variable has been documentedas the way to

determineif a programis running on the 128K ROMs or not. Notably, the top most bit of

that word is the determiningbit. This meansthat the rest of the bits in that word are

reserved,since nothing is describedaboutany further bits. Remember,if it doesn’tsay,

assumeit’s reserved. If it’s reserved,don’t dependupon it. Take the cautiousway out

and assumethat the other bits that aren’t documentedare used for Switcher local

variables,or somethingequally wild. An exampleof a badway to do the comparisonis:

VAR Rorn85Ptr: WordPtr;

RomsAre64: Boolean;

Rom85Ptr := Pointer ($28E); { point at the low—memory global

IF Rom85Ptr’ = $7FFF THEN RomsAre64 := False { Bad test.

ELSE RornsAre64 := True;

This is a badtestsincethe comparisonis testingthe value of all of the bits, not only the

one that is valid. Sincethe otherbits are undocumented,it is impossibleto know what

they are usedfor. Assumethey are usedfor somethingthat is arbitrarily random,and

takethe safeway out.

How to avoid being bitten

VAR ROM85Ptr: Ptr

Rom85Ptr := Pointer ($28E); { point at the low-memory global

IF BitTst(RO1’485Ptr,O) THEN RomsAre64 True {Good——tests only hi—bit)

ELSE RomsAre64 False;

This techniquewill ensurethat when thosebits aredocumented,your programwon’t be

using themfor the wrong things. Bewareof trojan bits.

Don’t use undocumentedstuff. Be very careful when you use anything Out of the

ordinary streamof a high-level language. For instance,in the R0MS5 case,it is very

easyto makethe mistakeof checkingfor an absolutevalue insteadof testingthe actual

bit that encodesthe information. Whenevera programis using low-memoryglobals, be

surethat only the information desiredis being used,and not someundocumented(and

hencereserved)bits. It’s not alwayseasyto determinewhat is reservedand what isn’t,

so conservativeprogrammersalwaysuseas little as possible. Be wary of the strange

bits, and acceptrides from none of them. The ride you take might causeyou to revise

your program.

TechnicalNote #117 page26 of 28 Compatibility: Why & How



How to find those bitten

Sincethereare sucha multitude of possibleplacesto get killed, there is no simple way
to seewhat programsare using illegal bits. As time goesby it will be possibleto find
more of thesecasesby running on various versionsof the Macintosh, but there will
probably neverbe a comprehensiveway of finding out who is acceptingstrangerides,
and who is not. Wheneverthe useof a bit changesfrom reservedstatusto active, it will
be possibleto find thosebugs via extensivetesting. From a sourcelevel, it would be
advisableto look over any use of low-memory globals, and eye them closely for
inappropriatebit usage. Do a global searchfor the $ (which describesthoseubiquitous
hexadecimalnumbers),and when found see if the use of the numberis appropriate.
Trust no one that is not known. If they are documented,they will stay wherethey are,
and have the samemeaning. Be very careful in realmsthat are undocumented.Bits
that suddenlyjump from reservedto active statushavebeenknown to causemore than
one programto havea suddenanxiety attack. It is very unnervingto watch a program
go from calm and reassuringto rabid status. Users have been known to drop their
keyboardsin suddenshock(which is bad on the keyboards).

TechnicalNote #117 page27 of 28 Compatibility: Why & How



Summary

So what doesall this mean? It meansthat it is getting harderand harderto get away

with minor bugsin programs. The minor bugsof yesterdayare the major onesof today.

No onewill yell at you for having bugsin your program,sinceall programshavebugsof

one form or another. The goal should be to make the programsrun as smoothly and

effortlesslyaspossible. The end-userswill neverobject to bug-reducedprograms.

What is the bestway to testa program? A reasonablycomprehensivetest is to exercise

all of the program’sfunctionsunderthe following situations:

• Use Discipline to be surethe programdoesnot passillegal thingsto the ROM.

• Use heap scrambleand heap purge to be sure that handlesare being used

correctly,andthat the memorymanagementof the programis correct.

• Run with a checksumon memory locations0...3 to seeif the programwrites to these

locations.
• Run on a 128K Macintosh,or underSwitcherwith a small partition, to seehow the

programdealswith memory-criticalsituations.

• Run on a 68020systemto seeif the programis 68020-compatibleand to makesure

that changingsystemspeedwon’t confusethe program.

• Run on a MacintoshXL to be surethat the programdoesnot assumetoo much about

the operatingsystem,andto testscreenhandling.

• Run on an Ultra-Largescreento be surethat the screenhandling is correct,and that

thereare no hard-codedscreendimensions.

• Run on 64K ROM machinesto be surenewtrapsare not being usedwhen they don’t

exist.
• Run underboth HFS and MFS to be surethat the programdealswith the file system

correctly. (400K floppiesare usually MFS.)

If a programcan live throughall of this with no Discipline traps,no checksumbreaks,no

systemerrors, no anomalies,no data loss and still get useful work done, then you

deservea gold medal for programmingexcellence. Maybe even an extra medal for

conductaboveand beyondthe call of duty. In any case,you will know that you have

done your job about as well as it can be done, with today’s version of the rules, and

today’s programmingtools.

Soundslike a foreboding task, doesn’t it? The engineersin Macintosh Technical

Supportare availableto help you with compatibility issues(we won’t always be able to

talk about new products,sincewe love our jobs, but we can give you somehints about

compatibility with what the future holds).

Good luck.

TechnicalNote #117 page28 0128 Compatibility: Why & How



Macintosh
TechnicalNotes

DeveloperTechnicalSupport

#118: How To Checkand HandlePrinting Errors
Revisedby: Pete‘Luke” Alexander October1990
Written by: GingerJernigan May 1987

This TechnicalNoteformerly describedhow to checkandproperlyhandleerrorsthatoccurduring
printing with thePrintingManager.
ChangessinceMarch 1988: Mergedcontentsinto TechnicalNote #161.

This Note formerly describedhow to checkandproperlyhandlePrinting Managererrors. This
informationis now containedin TechnicalNote#161,A PrintingLoop ThatCares...,which also
includesa tableof PrintingManagererrorcodes

#118: How To CheckandHandlePrintingErrors 1 of 1





Macintosh Technical Notes

#119: DeterminingIf Color QuickDrawExists

See: TechnicalNote #129—SysEnvirons

Written by: Jim Friedlander May 4, 1987
Updated: March 1, 1988

This noteformely describedaway to determineif Color QuickDrawis present
on a particularmachine.We now recommendthat you call SysEnvironsto
find out, asdescribedin TechnicalNote#129.

TechnicalNote #119 page 1 of 1 DeterminingIf Color QuickDrawExists



.

.

.



Macintosh
TechnicalNotes

DeveloperTechnicalSupport

#120: Principia Off-ScreenGraphicsEnvironments
Updatedby: ForrestTanaka March 1992Written by: ForrestTanaka October1991Inspiredby: Jim Friedlander,Rick Blair, andRich Collyer

Using Color QuickDrawto draw off screenis a commonrequirementof applicationsand otherkinds of programsthatrun on the Macintosh.This Notediscusseswhat Color QuickDrawneedsina graphicsenvironmentand how to createone for off-screendrawing. A brief discussionofGWorlds,which are off-screengraphicsenvironmentsthat are setup by the system,is given tohelp you decidewhetherto usethem or the do-it-yourselftechniquesdescribedin this Note forsettingup an off-screengraphicsenvironment.The author’s intent is to provide conceptsandroutinesfor creatingan off-screengraphicsenvironment,andalsoto explainwhy existingroutinesfor off-screendrawingact astheydo.

Many, manythanksgo to Guillermo Ortiz, KonstantinOthmer,Bruce Leak, andJon Zap for alltheir expertiseon this subject,Rich Collyer, Rick Blair, andJim Friedlanderfor pavingthe way,
andespeciallyto all peoplewho inspiredthis updateby askinggreatoff-screendrawingquestions.

Changessince October1991: A very embarrassingbug was found in CreateOffScreenandUpdateOffScreen.If you try to createa 16- or 32-bit off-screengraphicsenvironment,you’ll justget a paramErr.It won’t do thatnow.

Off-Screening

The Macintosh,as with everyotherCPU evermadeby Apple, hasmemory-mappedvideo. Thatis, what you seeon the screenis just the visualrepresentationof a part of memorythat’sreservedfor the videohardware(that’s stretchingthe truth just a bit in the caseof the text screensof theoriginal Apple computer,the Apple II line, and the Apple ifi becausethere’salso a charactergeneratorin those,but the overallprocessstill looks roughly the same).If you changethe contentsof a memorylocationin this part of memory,then you’ll seethe correspondinglocation on thescreenchangewhenthe video hardwaredrawsthe next frameor field of video. Theresidentrastergraphicspackage,QuickDraw in the caseof the Macintosh,drawsimagesby stuffing the rightvaluesinto the right placesin the part of memoryreservedfor the video display. The resultingimageon the screenlooks like a line or perhapsan oval if you askedQuickDrawto draw a line oran oval, or it could be an entire complex imageif you askedQuickDraw to draw one. This isnormal,on-screendrawing.

Becausevideo memoryis apart of RAM just like any otherpartof RAM in thememorymapof theMacintosh(or almostlike; videomemorymight existon aNuBusvideo card,but it’s still RAM),QuickDrawcanbe told to draw into a part of memorythat isn’t reservedfor the video hardware,maybeinto a part of your own application’sheap.Whenyou tell QuickDrawto draw into apartofmemorythat’s not reservedfor the video hardware,you can’t seeany of the results.This is off-

#120: PrincipiaOff-ScreenGraphicsEnvironments 1 of 49



MacintoshTechnicalNotes

screenthawing.Thereareplenty of perfectlygoodreasonsto do this, suchas providing storage
for a paint-styledocumentor to smoothlyanimatean image,but the assumptionhereis that you
havea perfectlygoodreasonto do this so you’re more interestedin the “how” of it insteadof the

“why” of it. If you needto know why, thereare severalbooksthat coveroff-screendrawingand
the perfectly good reasonsto do such a thing. A good place to start is Scott Knaster’sbook,
MacintoshProgrammingSecrets,referencedat theendof this Note.

This Noteis divided into thesemajorsections:

• The introductionis thepartthatyou’re readingnow.

• “The Building Blocks” providesan overviewof the datastructuresthatyou needto tell Color
QuickDrawto thawoff screen.

• “Building theBlocks” discussesthe constructionand initialization of thesedatastructures.

• “Playing With Blocks” showsan exampleof the useof thesestructuresto draw off screen.

• “Put That CheckbookAway!” discussessomevariationsof thesetechniquesto handleoff-
screendrawingfor specialcases.

• “The GWorld Factor” providesa brief overview of GWorlds, how to use them, and how
theycompareandcontrastto the manualtechniquesthataredescribedin mostof this Note.

Thoseof you who aren’t quite surewhetherto useGWorldsor the do-it-yourselftechniquesmight
want to skip aheadfor a momentto “The GWorld Factor”just in casedoing it yourselfis a waste
of time. In any case,it’s a goodideato readthis wholeNote becausethe conceptsaremostly the

samewhetheryou’re usingGWorldsor not. GWorldsjust makethe processa lot easier,andthey

let you takeadvantageof the 8.24GC video card.But, we’re not in that sectionof the Noteyet.

The Building Blocks

Before you can tell QuickDraw to draw off of the screen,you’ll needto build threemajor data
structures:a CGrafPort,a PixMap, anda GDevice.You’ll alsoneeda coupleof tablesthatdefme

the colorsinvolvedwith thawingto andcopyingfrom the off-screenimage:the color tableandthe
inversetable.Of course,you’ll needthe pixel imageitself, which is oftencalledthe“pixel buffer”
or the “image buffer” or the “off-screenbuffer” or just “the buffer.” It’s alwayscalledthe “pixel
image” in this Note. It doesn’tnecessarilybuffer anythinganyway.

The CGrafPort

A CGrafPortdescribesa drawing environment,and it’s the color version of the GrafPort

structurethat’sdescribedon pages147 through155 in the QuickDrawchapterof insideMacintosh

Volume I. The thawingenvironmentconsistsof, amongotherthings,the sizeand location of the

graphicspen,the foregroundandbackgroundcolorsto usewhen somethingis drawn,the pattern

to use,the region to clip all drawing to, and the portion of a pixel imagethat the CGrafPort

logically existsin. Any initialized CGrafPortor GrafPortcanbe setasthe currentport through
the_Setportroutine.The currentport is a set of parametersthat are implicitly passedto most

QuickDrawroutines.

0
2 of 49 #120:PrincipiaOff-ScreenGraphicsEnvironments



DeveloperTechnicalSupport March 1992

Themostimportantreasonto build anew CGrafPortwhenyou draw off screenratherthanusing
an existingCGrafPortis so that switchingbetweendrawingto an off-screengraphicsenvironmentanddrawingto one or more windows (eachof which is an extendedGrafPortOr CGrafPort
structure)on the screenis veiy easy.Somepeopleusejust one CGrafPortto sharebetweenon-
screenand off-screengraphicsenvironments,and switch their p i zMap structuresto switch
betweendrawingon screenanddrawingoff screen.That doeswork, but if the off-screenandon-
screengraphicsenvironmentshavea differentclipRgn,visRgn,pencharacteristic,portRect,or
any othercharacteristicsthat are different, then thosemust be switchedat that time too. If you
insteadcreatea CGrafPortthat’s dedicatedto one graphicsenvironment,then a simplecall to
_SetPorteffectively switchesall thesethingsfor you at once.That’s why everywindow on the
screencomeswith its own port. A simplecall to SetPortswitchesbetweenthe characteristicsof
eachwindow evenif eachwindow hasradicallydifferentdrawingcharacteristics.

The CGrafPortdatastructureis morecompletelydescribedin the “Color QuickDraw” chapterof
insideMacintoshVolume V, pages49 through52, and in the “Graphics Overview” chapterof
insideMacintoshVolume VI, pages16-12through 16-13.

The PixMap

A pixel image alone is just a formlessblob of memory. Pixel maps,defmedby the PixMap
structure,describepixel images,giving them a form and structurethat’s suitable for Color
QuickDrawto draw into themandcopy from them.The PixMap structuretells you thedimensions
andlocationin memoryof thepixel image,its coordinatesystem,andthedepthandformatof the
pixels. Pixel mapsthatdescribeindexed-colorpixel imagesadditionallydescribethecolorsthatare
representedby thevaluesof thepixels in thepixel image.This is donethroughthecolor table,also
known as the color look-up tableor CLUT. Color tablesare attachedto pixel mapsthroughtheir
pmTablefield. Direct-colorpixel imageshavepixel valuesthatdescribetheir own colors,andso
color tablesaren’tneededfor those.

The PixMap structureis describedin the “Color QuickDraw” chapterof insideMacintoshVolume
V. pages52 through55, andin the “GraphicsOverview” chapterof insideMacintoshVolume VI,
pages16-11 through 16-12.The conceptof direct-colorand indexed-colorpixels is describedin
this samechapteron pages16-16through16-18,andalsoin the “Color QuickDraw” chapterof the
samevolumeon pages17-4 through17-10.

The GDevice

Graphicsdevices,definedby the GDevice structure,describecolor environments.They’re the
mostmisunderstooddatastructurewhen it comesto off-screengraphicsenvironmentsfor three
majorreasons:first, they’re not originally documentedas beingrelevantto humans;second,they
look as thoughthey’re only for screens;and third, it looks as thoughcolor tablesdescribecolor
environments.We can disposeof thesemythshere:graphicsdevicesare documentedas being
useful to humanityin this Note at least; they’re critically important for both on-screenand off-
screendrawing;andcolor tablesdescribethe colors in pixel images,not color environments.

What’sall this aboutcolor environments?In theory,therearevirtually threehundredtrillion colors
availablewith ColorQuickDrawthroughthe48-bit RGBCo1orrecord.In reality, thereareneverthis
manycolorsavailable,andin fact theremight be only two. Color QuickDrawmapsthe theoretical
color that you specify to the pixel value of the closestavailable color in the current color
environment.This canbe donewith acolor table,but that’snot very efficient. Findingtheclosestavailablecolor to an RGBC01orin a color tablemeanssearchingthe entirecolor tablefor that one
closestcolor. If that’s donejust once,thenperformanceisn’t much of an issue,but if it’s done
manytimes,theperformancehit could besignfficant.A very badcaseof this is _CopyBits,where
everypixel value in the sourceimageis convertedto an RGBC01orby looking it up in the color

#120:PrincipiaOff-ScreenGraphicsEnvironments 3 of 49



MacintoshTechnicalNotes

tableof the sourcePixMap. If thecolor tableof the destinationPixMap hadto be searchedto find

the closestavailablecolor for everypixel in the sourcePixNap,thentheperformanceof eventhe
moststraightforward_CopyB±tscall could be a lot slowerthanit hasto be.

To avoid this performancehit, the currentGDeviceprovidesan inversetable and a devicetype
which areusedto determinethe availablesetof colors.Inversetablesare anticolortables.Where
color tablesgive you a color for a given pixel value, inversetablesgive you a pixel value for a
given color. Everyconceivablecolor tablehasa correspondingconceivableinversetable,just as
everypositiverealnumberhasa correspondingnegativerealnumber,or everyMr. Spockhasa
correspondingMr. Spockwith a goatee.The devicetype specifieswhetherthe color environment
usesthe indexed-color,fixed-color, or direct-colormodel. In the direct-colormodel,the inverse
tableis empty.Only the indexed-coloranddirect-colormodelsaredescribedin this Note.

Whenyou specifya color in an indexed-colorenvironment,Color QuickDrawtakesthe RGBCo1or

specificationandconvertsit into a valuethat canbe usedasan index into the inversetableof the
currentGDevice.To do this conversion,Color QuickDraw takesthe top few significantbits of
eachcolor componentand combinesthem into part of a 16-bit word, blue bits in the least
significantbits, greenbits right aboveit, andthe red bits right abovegreenbits. Any unusedbits
are in the mostsignificantbits of the 16-bit word. The resulting16-bit word is usedas an index
into the inversetable. The value in the inversetable at that index is the pixel value which best
representsthatcolor in the currentcolor environment.The numberof bits of eachcomponentthat

are usedis determinedby what’s called the “resolution” of the inversetable.Almost always,the
resolutionof an inversetableis four bits, meaningthe mostsignificantfour bits of eachcomponent
are usedto form the index into the inversetable. Figure 1 showshow an RGBC010rrecord is
convertedto an index into an inversetablewhenthe inverse-tableresolutionis four.

red

I
RGBCo1orrecord L Lt:1 I I 1=$5678

I blue

I I N l4 Ili$Ii I •=$9ABC

44444
InversetableindexiI I II I I t1 . I t)I=$O159

Figure1 Conversionof RGBCo1orRecordto Inverse-TableIndex

The sameprocessis usedwhen_CopyBitsis calledwith an indexed-colordestination.Eachpixel

in thesourcepixel imageis convertedto an RGBCo1oreitherby doinga tablelook-up of the source
pixel map’scolor table if the sourcepixel imageusesindexedcolors,or by expandingthe pixel
valueto an RGBCo1orrecordif the sourcepixel imageusesdirect colors.The resultingRGBCo10r

is thenusedto look up a pixel value in the inversetable of the currentGOevice,and this pixel
valueis put into the destinationpixel image.

If you specifya color in adirect-colorenvironment,thenthe resultingRGBCo1oris convertedto a
direct pixel value by the processesthat are shown on pages17-6 through 17-9 of the “Color

QuickDraw” chapterof InsideMacintoshVolume VI.

4 of 49 #120:PrincipiaOff-ScreenGraphicsEnvironments



DeveloperTechnicalSupport March 1992

Usually, inverse-tablelook-upinvolvesan extrastepto find whatarecalled“hiddencolors” usingproprietaryinformationthat’s storedat theendof the inversetable.With an inverse-tableresolutionof four, only 16 shadesof any particularcomponentcan be distinguished,and that’s often notenough.An inversetablewith a resolutionof five is much larger, but it still only gives you 32shadesof any component.Hiddencolorsare lookedup after the normalinverse-tablelook-up togive a muchmoreaccuraterepresentationof the specifiedcolor in the currentcolor environmentthan the inverse-tablelook-up alonecanproduce.Sometimes,mostnotably whenthe arithmetictransfermodesareusedor if ditheringis used,thehiddencolorsare ignored.

Whenanew color tableis assignedto a Pix1apor whenits existingcolor tableis modified,thenanew correspondinginversetable should be generatedfor the GDevice that’ll be usedwhendrawinginto thatenvironment.Normally, this happensautomaticallywithout you havingto do anymorethaninform Color QuickDrawof thechange.This is describedin moredetail in “Changingthe Off-ScreenColorTable” later in this Note.

Graphicsdevicesaredocumentedin the “GraphicsDevices”chapterof InsideMacintoshVolumeVI which supersedesthe “GraphicsDevices”chapterof InsideMacintoshVolumeV. They’re alsodiscussedin the “GraphicsOverview” chapterof Inside MacintoshVolume VI, pages16-13through16-14.The inverse-tablemechanismis describedin the “Color Manager”chapterof InsideMacintoshVolumeV, pages137 through139.

All Together Now

Thereare a lot of different waysto put the threestructurestogether,and this Note discussesthearchitecturethat’s shownin Figure2. This architectureis usefulwhenyou want a simple,atomic,off-screengraphicsenvironment.

CGrafPort

portPixMapj j
Color Table

I
Figure2 RelationshipsBetweenStructuresfor Off-ScreenDrawing

Noticethat there’sno way to get to the GDevicefrom the CGrafPort,nor is therea way to get tothe CGrafPortfrom the GDevice,thoughthe PixMap can be found througheither one. Yourapplicationmustkeeptrack of both the CGrafPortandthe GDevice.

GDevice
InverseTable

PixMap

#120:PrincipiaOff-ScreenGraphicsEnvironments 5 of 49



MacintoshTechnicalNotes

Building the Blocks

As with just aboutany algorithm,therearemanywaysto put thedifferentstructurestogetherthat

form anoff-screengraphicsenvironment.This sectioncoversjust oneway to build the architecture

that’s shownin Figure2.

Building the CGrafPort

The CGrafPortstructureis the easiestone to put togetherbecausethe _OpenCPortroutine

initializessomanyof the fields of the CGrafPortstructurefor you. It alsoallocatesandinitializes

the structuresthat are attachedto every CGrafport,suchas the visRgn,clipRgn,grafVars

handle,andso forth. Most of theseareinitialized with valuesthat arefme for generalpurposes,but

the visRgn,clipRgn,andportRectfields shouldbe set to the desiredboundaryrectangleof the

off-screengraphicsenvironment.What follows is an overviewof eachof the fields that you have

to worry aboutwhenyou’re settingup a CGrafPortfor drawingoff screen.

portPixMap handleto the off-screenPixMap._OpenCPortinitializesthis field to a copy
of the PixMap that’sattachedto the gdPMapfield of the currentGDevice.An
overview of setting up this PixMap for drawing off screenis given in
“Building thePixMap” laterin this Note.

portRect specifiesthe rectangulararea of the associatedpixel image that this
CGrafPortcontrols.This field shouldbe setto thedesiredrectangulararea
of the off-screenimagebecause_opencPortdoesn’tnecessarilyinitialize it
to this size.Usually, the top-left cornerof this rectanglehasthecoordinates
(0, 0), but not necessarilyso.

visRgn handleto theregionthatspecifiesthe visible areainto which you candraw.

_OpenCportdoesn’tnecessarilyinitialize it to the size of the off-screen
image,so it shouldbe setto the samesizeandcoordinatesasthe portRect

and left at that. This field is more importantfor windowsbecausepartsof
themcanbe hiddenby otherwindows.

clipRgn handleto theregionthatspecifiesthe logical areainto which you candraw.
_OpenCPortinitializes it to coverthe entireQuickDrawcoordinateplane.
It’s usually a good ideato set it to the samesize and coordinatesas the
portRectto avoid problemsif the clipRgn is scaledor translated,which
causesits signedintegercoordinatesto overflow andturn it into an empty
region.One of the mostcommoncasesof this occurswhena picturethat’s
createdin this CGrafPort is drawn into a destinationrectanglethat’s any
largerthanor translatedfrom the original picture frame.Everythingin the
picture,including theclip region,is scaledto fit the destinationrectangle.If

the clip region coversthe entire QuickDraw coordinateplane, then its

coordinatesoverflow their signed integer bounds,and the clip region
becomeslogically empty.Theresultis thatnothingis drawn.

The CreateOffScreenroutine in Listing I createsan off-screengraphicsenvironment,given a

boundaryrectangle,pixel depth,andcolor table,and it returnsa new off-screenCGrafportand

GDevice,alongwith an errorcode.The desiredpixel depthin bits perpixel is given in the depth

parameter.If thepixel depthis eight or less,thenan indexed-colorgraphicsenvironmentis created

anda color table is requiredin the colorsparameter.If the pixel depthis 16 or 32 bits perpixel

and32-Bit QuickDraw is available,then a direct-colorgraphicsenvironmentis createdand the

6 of 49 #120:PrincipiaOff-ScreenGraphicsEnvironments



DeveloperTechnicalSupport March 1992

colorsparameteris ignored.If 32-Bit QuickDraw isn’t available,then a pixel depthof 16 or 32bits perpixel resultsin CreateOffScreendoingnothingmore thanreturninga parametererror. Adescriptionof CreateOffScreenis given following the listing.

MPW PascalListing 1

FtJNCTION CreateOffScreen
bounds: Rect;
depth: Integer;
colors: CTabflandle;
VAR retPort: CGrafPtr;
VAR retGDevice: GDHandle

OSErr;

(Bounding rectangleof off—screen)
(Desired number of bits per pixel in off—screen)
(Color table to assignto off—screen)
(Returns a pointer to the new CGrafPort}
(Returns a handle to the new GDevice)

CONST
kNaxRowBytes = S3FFE; (MaxImum number of bytes in a row of pixels)

VAR

BEGIN

newport:
newPixMap:
newDevice:
qdVersion:
savedPort:
savedScate:
bytes?erRow:
error:

CGrafPtr;
PixMapHandle;
GDHandle;
Longlnt;
GrafPtr;
SignedByte;
Integer;
OSErr;

(Pointer to the new off—screen CGrafPort)
(Handle to the new off—screen PixMap)
(Handle to the new off—screen GDevice)
(Version of QuickDraw currently in use)
(Pointer to GrafPort used for save/restore)
(Saved state of color table handle)
(Number of bytes per row in the PixMap}
(Returnserror code)

(* Initialize a few things before we begin *)

newPort := NIL;
newPlxMap := NIL;
newDevice := NIL;
error := noErr;

(* Save the color table’s current state and make sure it isn’t purgeable *)
IF colors <> NIL THEN

BEGIN
savedState:= HGetState(Handle(colors));
HNoPurge(Handle(colors));

END;

(* Calculatethe number of bytes per row In the off—screen PlxMap *)
bytesPerRow := ((depth * (bounds.right— boundsdeft) + 31) DIV 32) *

(* Get the current QuickDraw version *)
error := Gestalt(gestaltQuickdrawVersion,qdVersion);
error noErr;

(* Make sure depth is indexed or depth is direct and 32—Bit QD installed *)
IF (depth = 1) OR (depth = 2) OR (depth = 4) OR (depth = 8) OR

(((depth = 16) OR (depth 32)) AND (qdVersion >= gestait32BitQD() THEN
BEGIN

(* Maximum number of bytes per row is 16,382; make sure within range *)
IF bytesPerRow<= kNaxRowBytes THEN

BEGIN

END
ELSE

(* Make sure a color table is provided if the depth is indexed *3
IF depth <= 8 THEN

IF colors = NIL THEN
(* Indexed depth and clut is NIL; is parametererror *3
error := paramErr;

(* # of bytes per row is more than 16,382; is parametererror *3

#120:PrincipiaOff-ScreenGraphicsEnvironments 7 of 49



MacintoshTechnicalNotes

error paramErr;

END
ELSE

(* Pixel depth isn’t valid; is parametererror *)

error := paramErr;

(* If sanity checks succeed, then allocate a new CGrafPort *)

IF error = noErr THEN

BEGIN
newPort := CGrafPtr(NewPtr(SizeOf(CGrafPor:)H;

IF newPort <> NIL THEN

BEGIN
(* Save the current port *)

GetPort(savedPort);

(* Initialize the new CGrafPort and make it the current port *)

OpenCPort(newPort);

(* Set portRect, visRgn, and clipRgn to the given bounds rect )

newPort”.portRect bounds;

RectRgn(newPort”.visRgn,bounds);

ClipRect(bounds);

(* Initialize the new PixMap for off—screen drawing *)

error := SetUpPixMap(depth,bounds, colors, bytesPerRow,

newport”.portPixMap);

IF error = noErr THEN

BEGIN
(* Grab the initialized PixMap handle *)

newPixMap := newPort”.portPixMap;

(* Allocate and initialize a new GDevice *)

error := CreateGDevice(newPixMap, newDevice);

END;

(* Restore the savedport *)

SetPort(savedPort);
END

ELSE
error := MemError;

END;

(* Restorethe given state of the color table *)

IF colors <> NIL THEN

HSetState(Handle(colors), savedState);

(* One Last Look Around The House Before We Go... *)

IF error <> noErr THEN

BEGIN
(* Some error occurred; disposeof everything we allocated)

IF newPixMap <> NIL THEN

BEGIN
DisposCTable(newPixMap”” .pmTable);

DisposPtr(newPixMap”” . baseAddr);

END;
IF newDevice <> NIL THEN

BEGIN
DisposHandle(Handle(newDevice”” . gdlTableH;

DisposHandle(Handle(newDeviceH;

END;

IF newPort <> NIL THEN

BEGIN
CloseCPort(newport);

8 of 49 #120:PrincipiaOff-ScreenGraphicsEnvironments



DeveloperTechnicalSupport March 1992

END
ELSE

BEGIN

DisposPtr(Ptr (newPort));
END;

(* Everything’s OK; return refs to off—screen CGrafPort and GDevice )
retport := newPort;
retGDevice newDevice;

END;
CreateOffScreen error;

END;

MPW C Listing 1

#define kMaxRowBytes Ox3FFE I Maximuni number of bytes in a row of pixels *1

OSErr CreateOffScreen
Rect *bounds,
short depth,
CTabHandlecolors,
CGrafPtr *retport,
GDHandle * retGDevice)

/* Bounding rectangleof off—screen *7
1* Desired number of bits per pixel in off—screen */
/ Color table to assignto off—screen *1
/ Returns a pointer to the new CGrafPort /
7* Returns a handle to the new GDevice /

7* Initialize a few things before we begin */
newPort = nil;
newPixMap = nil;
newDevice = nil;
error noErr;

/* Save the color table’s current state and make sure it isn’t purgeable*1
if (colors nil)

savedState= HGetState( (Handle)colors);
HNoPurge( (Handie)colors);

7* Calculate the number of bytes per row in the off—screen PixMap *1
bytesPerRow= ((depth * (bounds—>right — bounds—>left) + 31) >> 5) << 2;

/* Get the current QuickDraw version /
(void) Gestalt( gestaltQuickdrawVersion,&qdVersion );

7* Make sure depth is indexed or depth is direct and 32—Bit QD installed */
if (depth = 1 H depth ==2 II depth == 4 H depth == 8 H

((depth == 16 I depth == 32) && qdVersion >= gestalt32BitQD))

/* Maximum number of bytes per row is 16,382; make sure within range “/
if (bytesPerRow<= kNaxRowBytes)

/* Make sure a color table is provided if the depth is indexed /
if (depth <= 8)

if (colors == nil)
7* Indexed depth and clut is NIL; is parametererror /
error = paramErr;

CGrafPtr newPort; / Pointer to the new off—screen CGrafport /
PixMapl-landle newPixMap; /* Handle to the new off—screen PixMap *1
GDhandle newDevice; /* Handle to the new off—screen GDevlce /
long qdVersion; 7* Version of QuickDraw currently in use */
GrafPtr savedPort; 7* Pointer to GrafPort used for save/restcre/
SignedByte savedState; / Saved state of color table handle *7
short bytesPerRow; /* Number of bytes per row in the PixMap */
OSErr error; / Returnserror code */

#120:PrincipiaOff-ScreenGraphicsEnvironments 9 of 49



MacintoshTechnicalNotes

else
7* * of bytes per row is more than 16,382; is parametererror /

error = paramErr;

else
/* Pixel depth isn’t valid; is parametererror /

error = paramErr;

7* If sanity checks succeed,then allocate a new CGrafPort */

if (error == noErr)

newPort = (CGrafPtr)Newptr(sizeof (CGrafPort) );

if (newPort nil)

7* Save the current port *7

GetPort( &savedPort );

7* Initialize the new CGrafPort and make it the current port *1

OpenCPort(newPort );

7* Set portRect, visRgn, and clipRgn to the given bounds rect *7

newPort—>portRect= *bounds;

RectRgn( newPort—>vlsRgn, bounds );

ClipRect( bounds );

7* Initialize the new PixMap for off—screen drawing *7

error = SetupPixMap(depth, bounds, colors, bytesPerPow,

newPort—>portPixMap

if (error == noErr)

7* Grab the initialized PixMap handle */

newPixMap = newPort—>oortPixMap;

7* Allocate and initialize a new GDevioe /

error = CreateGDevice(newPixMap, &newDevice );

7* Restorethe savedport *7

SetPort( savedPort);

else
error = MemErrorO;

7* Restorethe given state of the color table *7

if (colors nil)

HSetState( (Handle)colors, savedState);

7* One Last Look Around The House Before We Go... /

if (error noErr)

7* Some error occurred; disposeof everything we allocated/

if (newPixMap 1= nil)

DisposCTabie( (**newpixMap) .pmTable );

DisposPtr( (**newpixMap) .baseAddr );

if (newDevice nil)

DisposHandle( (Handle) (**newDevice) .gdlTable );

DisposHandle( (Handle)newDevice);

if (newport nil)

10 of 49 #120:PrincipiaOff-ScreenGraphicsEnvironments



DeveloperTechnicalSupport March 1992

CloseCPort(newPort );
DisposPtr( (Ptr)newPort );

else

/ Everything’s OK; return refs to off—screen CGrafPort and GDevice /*retPort = newPort;
*retGDevice newDevice;

return error;

CreateOffScreenbeginsby making surethat the color table, if there is one,doesn’tget purged
during the time that the off-screengraphicsenvironmentis created.Then,a sanitycheckis done
for thegivendepth,bounds,andcolor table.The depthmustbe either 1, 2, 4, or 8 bits perpixel,
or additionally 16 or 32 bits perpixel if 32-Bit QuickDrawis available.If theseconditionsaren’t
satisfied,then it’s decidedthat there’san error in the parameterlist, and CreateOffScreendoes
nothingmore.To determinewhether32-Bit QuickDrawis availableor not, the Gestaltroutineis
used.If Gestaltreturnsa value that’s equalto or greaterthan the constantgestalt32BitQD,
then32-Bit QuickDrawis availableanddepthsof 16 and32 bits perpixel aresupported.It’s not
necessaryto determinewhether_Gestaltis availableor not becauseit’s implementedasgluecodein the MacintoshProgrammer’sWorkshop.

A checkis thendoneto determinewhetherthenumberof bytesin eachrow of the off-screenpixelimageis too much for QuickDraw to handle.Color QuickDraw can handleup to and including
16,382($3FFE)bytesin eachrow of any pixel image.If the requirednumberof bytesper row
exceedsthis amount,thenCreateOffScreendecidesthat there’san error in the parameterlist and
doesnothing more. The minimum numberof bytes in a row that’s enoughto cover the givenboundaryrectangleat thegivenpixel depthis calculatedwith theformula:

bytesPerRow ((depth * (bounds.right - bcunds.left) + 31) DIV 32) * 4;

This formula multiplies the numberof pixels acrossthe PixMap by the pixel depth to get the
numberof bits, andthen this is dividedby eight to get the numberof bytes.This division by eight
looks very strangebecausethe numberof bytesper row must be even, so this formula takes
advantageof integerdivision andmultiplicationto makethe resultcomeout even.This particular
formulaadditionallymakessurethat the numberof bytesperrow is a multiple of four. This helps
optimizethe performanceof Color QuickDraw operationsbecauseit allows Color QuickDrawto
referto eachrow beginningon a long word boundaryin memory.

The last sanity check is to make sure that a color table is given as a parameterif it’s needed.
Indexed-colorgraphicsenvironmentsneedcolor tables,so if the given pixel depthis eight or less(which implies an indexed-colorgraphicsenvironment)and the given color table is NIL, then
CreateOffScreendecidesthat there’san error in the parameterlist anddoesnothingmore. If the
given pixel depth is 16 or 32 (which implies a direct-color graphicsenvironment),then
CreateOffScreenignoresthegiven color table.

If all the sanity checkssucceed,then the off-screenCGrafPort is allocatedusing a call to
NewPtr,and then it’s initialized and openedasa CGrafPortby passingthe resultingpointerto

_OpenCPort.Because_OpenCPortmakesthe new CGrafPortthe currentport, the currentport is
first savedsothatit canberestoredasthe currentport whenCreateOffScreenis done.

As mentionedabove,the OpenCPortdoesn’tnecessarilyinitialize the portRect,visRgn,and
clipRgn of the new CGrafPortto the areasthatareneededfor anyparticularoff-screengraphics

#120:PrincipiaOff-ScreenGraphicsEnvironments 11 of 49



MacintoshTechnicalNotes

environment.So, the given boundaryrectangleis assignedto the portRectfield, _RectRgnis
calledto makethe visRgnequalto the given boundaryrectangle,and_ClipRect is calledto set
the clipRgn so that it’s equalto the given boundaryrectangle.

The PixMap in the portPixMap field needsto be initialized for off-screendrawing, and that’s
handledby theSetUpPixMaproutinethat’sdescribedanddefinedin “Building the PixMap” laterin
this Note. Similarly, the off-screenGDevicemustbecreatedandinitialized. That’shandledby the
CreateGDeviceroutinethat’sdescribedanddefinedin “Building theGDevice” laterin this Note.

Oncethesethingsaredone,CreateOffScreenreturnsa pointerto the off-screenCGrafPortin the

retPortparameterandahandleto theoff-screenGDevicein the retGDeviceparameter.The way

to usethesereferencesis describedin “Playing With Blocks” later in this Note.

Building the PixMap

_Opencportinitializes the portpixMap field of the CGrafPortit’s initializing with a copy of the

PixMap of theCurrentGDevice.Whenthe CreateOffScreenroutinedescribedearlierexecutes,the

currentGDevice is unknown.So, all the fields of the PixMap that the new CGrafportreceives

mustbe initialized so that it canbe usedfor drawingoff screen.*What follows is an overview of

eachof the PixNap fields andhow they shouldbe initialized for off-screendrawing.

baseAddr pointerto the off-screenpixel image.The off-screenpixel imageis allocated
as a nonrelocatableblock in the heap.The size of this block of memoryis
calculatedfrom the rowBytes field, describednext, multiplied by the
numberof rows in the given boundaryrectangle.

rowBytes numberof bytes in eachrow of the pixel image.This value is calculated
from the formula that’s given in the CreateOffScreenroutine. The most
significant bit of this field shouldbe set so that Color QuickDraw knows
that this is a PixHap ratherthana BitMap. The maximum value, ignoring
the mostsignificantbit, is 16,382.

bounds definesthe coordinatesystemand the dimensionsof the pixel image.For
mostoff-screendrawing, this shouldbe a rectanglethat coversthe entire
off-screengraphicsenvironment.

prnVersion setof internallyandexternallydefinedflags. As of 32-Bit QuickDraw 1.2,
only the baseAddr32flag is definedexternally.This flag is describedin
“Choosing Your Off-ScreenMemory” later in this Note. For most off-
screendrawing,this field is setto zero.

packType image compressionschemefor pictures.The options for this field are
discussedin the “GraphicsOverview” chapterof InsideMacintoshVolume
VI, pages17-22 through 17-23. In this Note, image compressionisn’t
discussedso this field is setto zero.

*
This part of theseroutinesreally bothersme becauseit feels impure to initialize all the P1xMap fields when

_OpenCPorthasinitialized themalready,just not in a way that’sany good for off-screendrawing. I tried creatingthe

GDeviceand PixMap first andthencalling _Openc?ortso that it initializes its PixMap for off-screendrawing,but

then you end up with two pixel mapsand that makesthis tougher to explain, or you have to disposeof one

PixMap which seemsworsethan the methodI’m using.

0
12 of 49 #120:PrincipiaOff-ScreenGraphicsEnvironments



DeveloterTechnicalSuonort March 1992

packSize

hRes

internallyusedfield. This field is alwaysset to zero.

horizontalresolutionof the pixel map.By default,the QuickDrawresolution
is 72 dots per inch,whichis the valuethis Note uses.This is a fixed-point
field, so theactualvaluein this field is $00480000.

vRes

pixelType

pixelSize

vertical resolutionof the pixel map.Seethe hResdescription.

format of the pixels. In indexed-colorpixel maps,this field holds zero. In
direct-colorpixel maps,this field holds the RGBDir€Ct constant,which is
equalto 16.

numberof bits in everypixel. For indexed-colorpixels, this is 1, 2, 4, or 8
bits perpixel. For direct-colorpixels, this is 16 or 32 bits perpixel.

numberof componentsin everypixel. In indexed-colorpixel maps,this
field is set to 1. In direct-colorpixel maps,this field is setto 3. Sometimes
it’s handyto setthis field to 4 in 32-bit deeppixel mapswhenthey’re being
savedin a picture.Seethe “Color QuickDraw” chapterof insideMacintosh
Volume VI, page17-23,for detailsaboutthis.

cmpSize numberof bits in eachcolor component.In indexed-colorpixel maps,this
field is setto the samevaluethat’s in the pixelsizefield. In 16-bit deep
directpixel maps,this field is setto 5. In 32-bit deepdirectpixel maps,this
field is setto 8.

planeBytes not currentlydefined.This field is setto zero.

pmTable handleto the color tablefor indexed-colorpixel maps.A methodto createa
color table is given in “About ThatCreationThing. . .“ later in this Note. In
direct-colorpixel maps,this field containsa handleto a dummycolor table,
and building one of theseis shownin the SetUpPixMaproutine in Listing
2.

pmReserved not currentlydefined.This field is setto zero.

The SetUpPixMaproutine in Listing 2 initializes the PixMap that’spassedto it in the aPixMapparameterso that it canbe usedin an off-screengraphicsenvironment.The depth,bounds,and
color parametersare the same as the ones passedto the CreateOffScreenroutine. The
bytesPerRowparameteris the numberof bytes in eachrow of the off-screenpixel image.Adescriptionof SetUpPixMapfollows the listing.

MPW PascalListing 2

FUNCTION SetupPixMap
depth: Integer;
bound: P.ect;
colors: CTabHandle;
bytesPerP.ow:Integer;
aPixMap: PixMapHandle

OSErr;

CONST

(Desired number of bits/pixel in off—screen)
(Bounding rectangleof off—screen)
(Color table to assignto off—screen)
(Number of bytes in each row of pixels)
(Handle to the PixMap being initialized)

cmpCount

#120:PrincipiaOff-ScreenGraphicsEnvironments 13 of 49



MacintoshTechnicalNotes

kDefaultRes $00480000; (Default resolution is 72 DPI; Fixed type)

VAR

newColors: CTabHandle; (Color table used for the off—screen PixMap}

offBaseAddr: Ptr; (Pointer to the off—screen pixe. image)

error: OSErr; {Returns error code)

BEG:N
error := noErr;
newColors := NIL;

offBaseAddr : NIL;

(* Clone the clut if indexed color; allocate a dummy clut if direct color *)

IF depth <= 8 THEN
BEGIN

newColors := colors;

error := HaridToHand(Handle(newColorsH;

END
ELSE

BEGIN
newColors := CTabHandle(NewHandle(SizeOf(ColorTable) —

SizeOf(CSpecArray)));
error : MemError;

END;
IF error = r.oErr THEN

BEGIN
(* Allocate pixel image; long integer multiplication avoids overflow *)

offBaseAddr := NewPtr(Longlnt(bytesPerRow)* (bound.bottom—

bound.top))
IF of fBaseAddr <> NIL THEN

WITH aPixMap DO
BEGIN

(* Initialize fields common to indexed and direct PixMaps *)

‘oaseAddr := offBaseAddr; (Point to image)

rowBytes := BOR(bytesPerRow, (MSB set for PixMap)

$8000);
bounds := bound; (Use given bounds)

pmVersion := 0; (No special stuff)

packType := 0; (Default PICT pack)

packSize := 0; (Always zero when in memory)

hRes := kDefaultRes; (72 DPI default resolution)

vRes := kDefaultRes; (72 DPI default resolution)

pixelSize := depth; (Set number of bits/pixel)

plarieBytes := 0; (Not used)

prnReserved:= 0; (Not used)

(* Initialize fields specific to indexed and direct PixMaps *)

IF depth <= 8 THEN

BEGIN
(* PixMap is indexed )

pixelType := 0; (Indicates indexed)

cmpCount := 1; {Have 1 component)

cmpSize := depth; (Component size=depth}

pmTable := newColors; (Handle to CLUT)

END
ELSE

BEGIN
(* PixMap is direct *)

pixelType := RGBDirect; (Indicatesdirect)

cmpCount := 3; (Have 3 components)

IF depth = 16 THEN
cmpSize := 5 (5 bits/component)

ELSE

14 of 49 #120:PrincipiaOff-ScreenGraphicsEnvironments



DeveloperTechnicalSupport March 1992

cmpSize := 8; (8 bits/component)

( Initialize fields of the dummy color table *

newCo1ors’.ctSeed := 3 * aPixMap”.crnpSize;
newColors.ctFlags 0;
newColors’.ctSize := 0;
pmTable := newColors;

END;
END

ELSE
error := MemError;

END
ELSE

newColors NIL;

(* If no errors occurred, return a handle to the new off—screen PixMap *)
IF error <> noErr THEN

BEGIN
IF newColors c> NIL THEN

DisposCTable(newColors);
END;

(* Return the error code *)

SettipPixMap error;
END;

MPW C Listing 2

#define kDefaultRes 0x00480000 /* Default resolution is 72 DPI; Fixed type ‘/

OSErr SettipPixMap(
short depth, /‘ Desired number of bits/pixel in off—screen */
Rect *bounds, /* Bounding rectangleof off—screen */
CTabHandle colors, /* Color table to assignto off—screen */
short bytesPerRow, /* Number of bytes per row in the PixMao */
PixMapHandle aPixMap) /* Handle to the PixHap being initialized */

CTabHandlenewColors; /* Color table used for the off—screen PixHap */
Ptr of fBaseAddr; /* Pointer to the off—screen pixel image */
OSErr error; / Returns error code */

error = noErr;
riewColors = nil;
of fBaseAddr = nil;

/* Clone the clut if indexed color; allocate a dummy clut if direct color */
if (depth <= 8)

newColors = colors;
error = HandToHand( (Handle *)&newColors );

else

newColors = (CTabHandle)NewHandie(sizeof (ColorTabie) -

sizeof (CSpecArray) );
error = MemErrorO;

if (error == noErr)

/* Allocate pixel image; long integer multiplication avoids overflow */
offBaseAddr = NewPtr( (unsignedlong)bytesPerRow* (bounds—>bottom—

bounds—>top) );
if (offBaseAddr 1= nil)

#120:PrincipiaOff-ScreenGraphicsEnvironments 15 of 49



MacintoshTechnicalNotes

else

(**aPixMap) .bounds = *bounds;

(**aPixMap)pmVersion = 0;
(**apixMap) .packType = 0;
(**apixMap) .packSize= 0;
(**aPixMap)hRes = kDefaultRes;
(**apixMap) .vRes = kDefaultRes;
(**apjxMap) .pixelSize = depth;
(**aPiap) .planeBytes= 0;
(*apixMap) .prnReserved= C;

7* PixMap is indexed *7

(**apixMap) .pixelType = 0;
(**apixMap) .cmpCount = 1;
(**apixMap) .cmpSize depth;
(**apixMap) .pmTable = newColors;

7* Use given bounds */
/ No special stuff *7
/ Default PICT pack */

7* Aways zero in mem /

/ 72 DPI default res /

/ 72 DPI default res */

7* Set # bits/pixel */

/* Not used */

/* Not used/

/* Indicatesindexed/
7* Have 1 component *7

1* Component size=depth/

/* Handle to CLUT */

/* PixNap is direct /
(**apixMap) .pixelType = RGBDirect; 7* Indicatesdirect *7

(**apixMap) .cmpCount = 3; /* Have 3 components*/

if (depth == 16)
(**apjxMap) .cmpSize = 5; / 5 bits/component*7

else
(**apixMap) .cmpSize = 8; 7* 8 bits/component/

(**newcolors) .ctSeed= 3 * (**apixMap) .crnpSize;

(**newcolors) .ctFlags 0;
(**newColors)ctSize = C;
(**apixMap) .pmTable = newCclors;

newcolors nil;

/* If no errors occurred, return a handle to the new off—screen PixMap *1

if (error != noErr)

if (newColors 1= nil)
DispcsCTable(newColors );

/ Return the error code */

return error;

7* Initialize fields common to indexed and direct PixMaps *7

(**api4ap) .baseAddr offBaseAddr; /* Point to image *1

(**apixNap)rowBytes = bytesPerRow 7* MSB set for Pixap *7

0x8000;

/* Initialize fields specific to indexed and direct PixMaps /

if (depth <= 8)

else

else
error = MemError()

.

.

.

SetUpPixMapbeginsby copyingthegivencolor tableif an indexed-colorgraphicsenvironmentis
beingbuilt, or allocatinga dummycolortableif a direct-colorgraphicsenvironmentis beingbuilt.
A copy of the color table is madebecausethis allows the given color table and the off-screen
graphicsenvironment’scolor tableto bemanipulatedindependentlywithout interferingwith each
other,andthis letsthe off-screengraphicsenvironmentroutinesmanipulatethecolor tablewithout
needingto worry aboutwhetherthe color tableis a ‘clut’ resourceor not. The dummycolor tableis
madeso that routineswhich assumethat everyPixMap has a color table won’t do something

16 of 49 #120:PrincipiaOff-ScreenGraphicsEnvironments



DeveloperTechnicalSupport March 1992

catastrophicif they find a ML color table. The off-screenpixel image is then allocatedas anonrelocatableblock in theapplication’sheap.

Someof the fields of a PixMap haveto be initialized differently dependingupon whethertheindexed-colormodel or the direct-colormodel is being used.So, the fields that are the sameregardlessof the color modelthat’s beingusedareassignedfirst. Thenthe desiredpixel depthiscomparedto 8. If the depthis lessthanor equalto 8, thentherestof thefields areinitialized for theindexed-colormodel.Otherwise,the restof the fields areinitialized for the directcolor model. Inthe caseof the direct-colormodel, the dummy color table is initialized to haveno CspecArrayentriesandits ctSeedfield is setto threetimesthe componentsize.This dummycolor table is theninstalledinto the PixMap.

OnceSetUpPixMapcompletes,the PixMap of the new CGrafPortis readyto hold an off-screenimage. It’s not quite readyto be drawn into with Color QuickDraw though.To do that, the off-screenGDeviceis still needed;the constructionandinitialization of the GDevicearecoveredin thenextsection.

Building the GDevice

The OpencPortroutineautomaticallyallocatesand initializes a P ixMap, andthe SetUpPixMaproutinereinitializesthatexistingPixMap._OpenCPortdoesn’tallocatenor initialize a GDevice,SOone has to be createdfrom scratch.Pages21-20 through 21-21 of “The GraphicsDevicesManager”chapterof insideMacintoshVolume VI describethe_NewGDeviceroutine.This routineseemsasthoughit’s the ticket to gettinga GDevicefor off-screendrawing,but it alwaysallocatesthe new GDevice in the systemheap.That’s not so goodbecauseif your programunexpectedlyquits or if you just forget to disposeof the GOevicebeforeyou quit for real, the GOevicegetsorphanedin the systemheap.To preventthis from happening, NewGDeviceshouldbe ignoredandthe off-screenGDeviceshouldinsteadbe allocatedandinitialized from scratch.What followsis a descriptionof how eachfield of the GDevice structureshouldbe initialized.

gdRefNum referencenumberof video driver. Off-screengraphicsenvironmentsdon’tneedto havevideo driversbecausethere’sno video deviceassociatedwiththem,so this field is set to zero.

gdID usedto identify specificGDevicestructuresfrom color-searchprocedures.This isn’t necessaryfor off-screendrawing,so this is normallysetto zero.

gdType type of GDevice. This field is setto the constantclutType (equalto zero)for an indexed-colorenvironmentandsetto the constantdirectType(equalto 2) for adirect-colorenvironment.

gcllTable handleto the inversetable.Initially, this field is set to an arbitrarily smallhandle.Later, the _MakelTableroutine is usedto resizeand initialize thishandleto a real inversetable.

gdResPref inverse-tableresolution.When_MakelTableis calledby QuickDraw,thevalueof this field is usedasthe inverse-tableresolution.Almost all inversetableshave a resolutionof 4. There are somecaseswhen a inverse-tableresolutionof 5 is useful,particularlywhenthe arithmetictransfermodesareusedwith CopyBits.See“The GDevice”earlierin this Note.

gdSearchProc pointerto the color-searchprocedure.If acolor-searchprocedureis needed,this field canbe setlaterby calling the_AddSearchroutine(seethe “Color

#120:PrincipiaOff-ScreenGraphicsEnvironments 17 of 49



MacintoshTechnicalNotes

Manager”chapterof InsideMacintoshVolumeV. pages145 through 147).
Usually,this field is just setto NIL andleft at that.

gdCompProc pointer to the color-complementprocedure.If a color-complement
procedureis needed,this field can be set later by calling the _AddCornp

routine (seethe “Color Manager”chapterof InsideMacintoshVolume V,
pages145 through147). Usually, this field is setto NIL and left at that.

gdFlags flags indicatingcertainstatesof the GDevice.This field shouldinitially be
set to zeroes.After the GDevicehasbeenbuilt, theseflags canbe setwith
the_SetDeviceAttrsroutine(seethe “GraphicsDevicesManager”chapter
of InsideMacintoshVolume VI, pages21-10and21-22).

gdPMap handleto a PixMap. A handleto the PixMap of the CGrafPortthat was
createdearlieris put into this field.

gdRefCon miscellaneousdata. _CalcCMaskand _SeedCFilluse this field as
describedon pages71 through72 of InsideMacintoshVolume V. Initially,
this field is set to zero.

gdNextGD handleto next GDevice in the GDevice list. The systemmaintainsa linked
list of GDevicerecordsin which there’soneGDevicefor everyscreen,and
the links arekept in this field. Off-screenGDevicestructuresshouldnever
be put into this list, so this field shouldbe setto NIL.

gdRect rectangleof GDevice.Strictly speaking,this field is usedonly for screens,
but it shouldbethe sameasthe boundsrectangleof the off-screenPixMap.

gdMode currentvideo mode.This field is usedby video driversto keeptrack of the
currentmodethat the video deviceis in. For off-screenGDevicestructures,
this field shouldbe setto -1.

gdCC... Thesefour fields are usedonly with GDevice structuresfor screens.For
off-screenGDevicestructures,thesefields shouldbe setto zero.

gdReserved not currentlydefined.This field is setto zero.

The CreateGDeviceroutineshownbelow in Listing 3 allocatesandinitializes a GDevicestructure.
It takesthe initialized off-screenPixMap in the basePixMapparameterandreturnsthe initialized
GDevice in the retGDeviceparameter.If any error occurs,any memory that’s allocatedis

disposedof andthe resultcodeis returnedas a function result.

MPW PascalListing 3

FUNCTION CreateGDevice
basepixMap: PixHapHandle; (Handle to the PixMan to base GDevice on)

VAR retGDevice: GDHandle (Returns a handle to the new GDevice}

OSErr;

CONST
klTabRes = 4; (Inverse—tableresclution)

VAR
newDevice: GDHandle; (Handle to the new GDevice}

ernbryolTab: ITabHandle; (Handle to the embryonic inverse table)

18 of 49 #120:PrincipiaOff-ScreenGraphicsEnvironments



DeveloperTechnicalSupport March 1992

BEGIN
(* Initialize a few things before we begin *)

error := noErr;
newDevice := NIL;
ernbryolTab := NIL;

IF embryolTab <> NIL THEN
BEGIN

(* Initialize the new GDevice fields *)

WITH newDevice DO
BEGIN

gdRefNum : 0;
gdID := 0;
IF basePixMap”pixelSize

gdType := clutType
ELSE

gdType := directType;
gdlTable := embryolTab;
gdRespref := klTabRes;
gdSearchProc:= NIL;
gdCorrpProc := NIL;
gdFlags := 0;
gdPMap := basepixMap;
gdRefCon := 0;
gdNextGD := NIL;
gdRect := basePixMap’.bounds;
gdMode := —1;
gdCCBytes := 0;
gdCCDepth := 0;
gdCCXData := NIL;
gdCCXMask := NIL;
gdReserved:= 0;

END;

(Only used for screens)
{Won’t normally use)

(Depth>8; direct device)
12—byte handle for now)
(Normal mv table res)
(No color—searchproc)
(No complementprod
(Will set these later)
(Referenceour PixMap}
(Won’t normally use)
(Not in GDevice list)
(Use PixMap dimensions)
(For nonscreens}
(Only used for screens)
(Only used for screens)
(Only used for screens)
(Only used for screens)
(Currently unused)

END
ELSE

END
ELSE

(‘ Set color—devicebit if PixMap isn’t black & white *)

IF basePixMap. pixelSize > 1 THEN
SetDeviceAttribute(newDevice, gdoevType, true);

(* Set bit to indicate that the GDevice has no video driver *)

SetDeviceAttribute(newDevice, noDriver, true);

(* Initialize the inverse table *)

IF basePixMap”.pixelSize <= 8 THEN
BEGIN

WakelTable(basePixMap.omTable, newDevice”.gdlTable,
newDevice”” gdResPref);

error := QDError;
END;

error := MemErrcr;

error := MemError;

(* Handle any errors along the way *)
IF error <> noErr THEN

error: OSErr; (Error code)

(* Allocate memory for the new GDevice *)

newDevice : GDI-{andle (NewHandle(SizeOf(GDevice)));
IF newDevice <> NIL THEN

BEGIN
(* Allocate the embryonic inverse table *)

embryclTab := ITabHandle(NewHandleClear(2H;

<= 8 THEN
(Depth8; clut device)

#120:PrincipiaOff-ScreenGraphicsEnvironments 19 of 49



MacintoshTechnicalNotes

END
ELSE

retGDevice := newDevice;

(* Return a handle to the new GDevice *)

CreateGDevice:= error;

END;

MPW C Listing 3

#define kiTabRes 4 / Inverse—tableresolution *1

OSErr CreateGDevice
PixMapHandlebasePixNap, 7* Handle to the PixMap to baseGDevice on /

GDHandle *retGDevice) / Returns a handle to the new GDevice /

GDHandle newDevice; 7* Handle to the new GDevice *7

ITabHaridle ernbryolTab; 7* Handle to the embryonic inverse table */

Rect deviceRect; 7* Rectangleof GDevice */

OSErr error; 7* Error code *7

/* Initialize a few things before we begin *7

error = noErr;
newDevice nil;
embryolTab = nil;

7* Allocate memory for the new GDevice *7

newDevice (GDHandle)NewHandle(sizeof (GDevice) );

if (newDevice 1= nil)

7* Allocate the embryonic inverse table J

embryolTab = (ITabHandle)NewHandleCiear(2

if (embryolTab != nil)

J Set rectangleof device to PixMap bounds */

deviceRect= (**basepixMap) .bounds;

.

/* Initialize the new GDevice fields /
(**newDevice) .gdRefNum = 0;
(**newDevice).gdID = 0;
if ((**basepixMap) .pixelSize <= 8)

(**newDevice) .gdType clutType;

else
(**newDevice)•gdType = directType;

(**newDevice) .gdlTable = embryolTab;
(**newDevice) .gdResPref= klTabRes;
(**newDevice) .gdSearchProc nil;
(**newDevice) .gdCornpProc= nil;
(**newDevice).gdFlags= 0;
(**newDevice) .gdPMap = basePixMap;
(**newDevice) .gdRefCon = 0;
(**newDevice) .gdNextGD = nil;
(**newDevice) .gdRect deviceRect;
(**newDevice) .gd4ode = —1;
(**newDevice) .gdCCBytes= 0;
(**newDevice) .gdCCDepth = 0;
(**newDevice) .gdCCXData = 0;
(**newDevice) .gdCCXNask = 0;

7* Only used for screensI
/ Won’t normally use /

7* Depth8; clut device *7

7* Depth>8; direct device */

/* 2—byte handle for now
/* Normal ir.v table res /

/ No color—searchproc *7

/ No complement proc *1
7* Will set these later /

7* Referenceour PixMap *7

/* Won’t normally use /

7* Not in GDevice list /

/ Use PixMap dimensions/
7* For nonscreens/
7* Only used for screens/

7* Only used for screens/

7* Only used for screens/
7* Only used for screens/

BEGIN
IF erftbryolTab <> NIL THEN

DisposHandle(Handle(embryolTab));

IF newDevice <> NIL THEN

DisposHandle(Handle(newDeviceN;

.

20 of 49 #120:PrincipiaOff-ScreenGraphicsEnvironments



DeveloperTechnicalSupport March 1992

(**newDevice) .gdReserved= 0; /‘ Currently unused */

/* Set color—devicebit if PixMap isn’t black & white */

if ((**basepixMap) .pixelSize > 1)
SetDeviceAttribute(newDevice, gdDevType, true );

/* Set bit to indicate that the GDevice has no video driver *1
SetDeviceAttribute(newDevice, noDriver, true );

/* Initialize the inverse table */
if ((**basePixMap).pixelSize <= 8)

4akeITable( (**base?ixMap).prnTabie, (newDevice).gdlTabie,
(**newDevice) .gdResPref);

error = QDErrorQ;

else
error MemErrorO;

else
error = MemError;

1* Handle any errors along the way */

if (error != noErr)

if (ernbryolTab nil)
DisposHandle( (Handle)ernbryolTab );

if (newDevice nil)
DisposHandle( (Handle)newDevice );

else
*retGDevice = newDevice;

/* Return a handle to the new GDevice */

return error;

CreateGDevicebeginsby allocatingthe GDevicestructureand an embryonicform of the inverse
tablein the currentheap.The inversetable is allocatedas two zero bytesfor now; it’ll be resizedand initialized to be areal inversetable later in this routine.Then,eachof the GDevicefields areinitialized asdescribedearlier.

After all the fields havebeeninitialized, the gdFlagsfield is setthrough_SetDeviceAttribute.
If the desiredpixel depthis greaterthan 1, then the gdDevTypebit is set. This indicatesthat the
GDeviceis for acolorgraphicsenvironment.This bit shouldbe setevenif a gray-scalecolor tableis usedfor this off-screengraphicsenvironment.The noDriver bit is set becausethis is an off-screenGDeviceandso there’sno associatedvideo devicedriver.

Finally, the inversetableis resizedandinitialized by calling the_MakelTableroutine.A handletothe two-byteembryonicinversetable that was createdearlier in CreateGDeviceis passedas aparameter,asis ahandleto the off-screencolor tableandthe preferredinverse-tableresolution.

All Fall Down

Now thatwe havea way to createan off-screengraphicsenvironment,therehasto be a way to getrid of it too. The DisposeOffScreenroutine shown in Listing 4 doesthis. The CreateOffScreenroutine returns an off-screengraphicsenvironmentthat’s representedby a CGrafPort and
GDevice. The DisposeOffScreenroutine takesthe off-screenCGrafPortand GDevice and

#120:PrincipiaOff-ScreenGraphicsEnvironments 21 of 49



MacintoshTechnicalNotes

deallocatesall the memorythat’s associatedwith themincludingthe CGrafportand its dependent
structures,the GDevice,the PixMap, thecolor table,andthe inversetable.

MPW PascalListing 4

PROCEDURE DisposeOffScreen

doomedPort: CGrafPtr; {Pointer to the CGrafPort we’re getting rid of)

doomedGDevice:GDHandle (Handle to the GDevice we’re getting rid of)

VAR
currPort: CGrafPtr; (Pointer to the current port)

currGDevice: GDHandie; (Handle to the current GDevice)

BEGIN
(* Check to see whether the doomed CGrafPort is the current port *)

GetPort(GrafPtr(currPortH;

IF currPort doomedPortTHEN

BEGIN
(* It is; set current port to Window Manager CGrafPort *)

GetCwMgrPort(currPort);

SetPort(GrafPtr(currPortH;

END;

(* Check to see whether the doomed GDevice is the current GDevice *)

currGDevice GetGDevice;

IF currGDevice = doomedGDeviceTHEN
(* It is; set current GDevice to the main screen’sGDevice *)

SetGDevice(GetMainDevice);

( Throw everything away *)

doomedGDevice”. gdPMap NIL;

DisposGDevice(doomedGDevice);

DisposPtr(doomedPort. portPixMap”.baseAddr);

IF doornedPort”. portPixMap”.prnTable <> NIL THEN

DisposCTable(doomedPort.portPixMap’.pmrable);

CloseCPort(doomedPort);

DisposPtr(Ptr(doomedPortH;

END;

MPW C Listing 4

void DisposeOffScreen

CGrafPtr doomedPort, /* Pointer to the CGrafPort to be disposedof */

GDHandle doomedGDevice) /* Handle to the GDevice to be disposedof */

CGrafPtr currPort; /* Pointer to the current port *1

GDHandle currGDevice; /* Handle to the current GDevice */

/* Check to see whether the doomed CGrafPort is the current port *1

GetPort( (GrafPtr *)&currport );
if (currPort == doomedPort)

/* It is; set current port to Window Manager CGrafPort ‘/

GetCWMgrPort( &currPort );
SetPort( (GrafPtr)curr?ort

J* Check to see whether the doomed GDevice is the current GDevice /

currGDevice = GetGDeviceO;

if (currGDevice == doomedGDevice)
/* It is; set current GDevice to the main screen’sGDevice /

22 of 49 #120:PrincipiaOff-ScreenGraphicsEnvironments



DeveloperTechnicalSupport March 1992

SetGDevice(GetMainDevice() );

/* Throw everything away *1
(**doomedGDevjce).gdPMap nil;
DisposGDevice(doornedGDevice);
DisposPtr( (**doomedport_>portPixMap).baseAddr );
jf ((**doomedport_>portPixMap).pmTable nil)

DisposCTable( (**doomedPort_>portPixMap).pmTable );
CloseCPort(doomedPort 1;
DisposPtr( (Ptr)doomedport);

Onemildly tricky aspectof this is that we shouldn’tdisposeof thecurrentgraphicsenvironment.To preventthis, thecurrentport is retrievedby a call to _Getport.If it returnsa pointerto thesameport that DisposeOffScreenis disposing,then the current port is set to the WindowManager’sCGrafPort.That was an arbitrary choice, but it’s the most neutral. Similarly, thecurrentGDeviceis retrievedby a call to _GetGDevice.If it returnsa handleto the sameGDevice
that DisposeOffScreenis disposing,then the currentport is set to the main screen’sGDevice.Again, that’san arbitrary,neutralchoice.

The inversetable,GOevice,pixel image,andcolor tablearedisposedof. Beforedisposingof thecolor table,a checkis first madeto seewhetherit’s NIL. That’s becauseit’s reasonable,thoughnot normal,for the PixMap not to haveevena dummycolor table if thedirect-colormodelis beingused. Then the CGrafPort is closed which deallocatesall the piecesassociatedwith the
CGrafPort,includingthe PixMap. Oncethis is done,all the structuresthat werecreatedby callingCreateOffScreenaredeallocated.

Playing With Blocks

Now that thesefour routineswith two entry pointscan createanddisposeof off-screengraphicsenvironments,how are they used?There are severalphasesto using an off-screengraphicsenvironment:creatingit, drawinginto it, switchingbetweenit andotheroff-screenandon-screengraphicsenvironments,copying imagesto and from it, and disposingof it. Listing 5 showsaroutinecalledExerciseOffScreenwhich is a very basicexampleof all of thesephases.

MPW PascalListing 5

PROCEDEJPE ExerciseOffScreen;

CONST
kOffDepth = 8; (Number of bits per pixel in off—screen environment)
rGrayClut = 1600; (ResourceID of gray—scaleciut)
rCoiorClut = 1601; (ResourceID of full—color clut}

VAR
grayPort: CGrafPtr; (Graphics environment for gray of f screen)
grayDevice: GDHandle; {Coior environment for gray off screen)
colorPort: CGrafPtr; (Graphics environment for color of f screen)
colorDevice: GoHandle; (Color environment for color off screen)
savedPort: GrafPtr; (Pointer to the savedgraphicsenvironment)
savedDevice:GDHandle; (Handle to the saved color environment)
of fColors: CTabHandie; (Colors for off—screen environments)
offRect: Rect; (Rectangleof off—screen environments)
circleRect: Rect; (Rectanglesfor circle—drawing)
count: Integer; (Generic counter)
aColor: RGBColor; (Color used for drawing of f screen)
error: OSErr; (Error return from off—screen creation)

#120:PrincipiaOff-ScreenGraphicsEnvironments 23 of 49



MacintoshTechnicalNotes

BEGIN
(* Set up the rectangle for the off—screen graphicsenvironments*)

SetRect(offRect,0, 0, 256, 256);

(* Get the color table for the gray off—screen graphicsenvironment *)

of fColors := GetCTable(rGrayClut);

(* Createthe gray off—screengraphicsenvironment *)

error := CreateOffScreen(offRect,kOffDepth, offColors, grayPort,

grayDevice);

IF error = noErr THEN
BEGIN

(* Get the color table for the color off—screen graphicsenvironment )

offColors := GetCTable(rColorClut);

(* Create the color off—screen graphicsenvironment *)

error CreateOffScreen(offRect,kOffDepth, offColors, colorPort,

colorDevice);

IF error = noErr THEN
BEGIN

(* Save the current graphicsenvironment )
GetPort(savedPort);
savedDevice:= GetGDevice;

( Set the current graphicsenvironment to the gray one )

SetPort(GrafPtr(grayPortH;

SetGDevice(grayDevice);

(* Draw gray—scale ramp into the gray off—screen environment *)

FOR count := 0 TO 255 DO

BEGIN
aColor.red := count * 257;

aColor.green:= aColor.red;

aColor.blue aColor.green;

RGBForeColor(aColor);
MoveTo(0, count);
LineTo(255, count);

END;

(* Copy gray ramp into color off—screen colorized with green )

SetPort(GrafPtr(colorPort));

SetGDevice(colorDevice);

aColor.red := $0000; aColor.green := $FFFF; aColor.blue := $0000;

RGBForeColor(aColor);

CopyBits(GrafPtr(grayPort) .portBits,

GrafPtr(colorPort).portBits,

grayPort.portRect,
colorPort portRect,

srcCopy + ditherCopy, NIL);

(* Draw red, green, and blue circles *)

PenSize(8,8);
aColor.red := $FFFF; aColor.green := $0000; aColor.biue := $0030;

RGBForeColor(aColor);
circleRect colorPort”.portRect;

FrameOval(circieRect);

aColor.red := $0000; aColor.green := $FFFF; aColor.blue := $0000;

RGBForeColor(aColor);

InsetRect(circleRect,20, 2C);
FrameOval(circleRect);

aColor.red := $0000; aColor.green := $0000; aColor.blue := $FFFF;

24 of 49 #120:PrincipiaOff-ScreenGraphicsEnvironments



DeveloperTechnicalSupport March 1992

RGBForeCoior(aColor);
InsetRect(circleRect,20, 20);
FrameOval(circieRect);

(* Copy the color off—screen environment to the current port *)

SetPort(savedPort);
SetGDevice(savedflevice);
Copysits(GrafPtr(colorPort)-‘ .portBits, savedPort.portBits,

colorPort portRect, savedPorffportRect,
srcCopy, NIL);

(* Dispose of the off—screengraphicsenvironments*)

DisposeOffScreen(grayPort, grayDevice);
DisposeOffScreen(colorPort, colorDevice);

END;
END;

END;

MPW C Listing 5

#define kOffDepth 8 /* Number of bits per pixel in off—screen environment/
#define rGrayCiut 1600 7* ResourceID of gray—scaleclut *7
#define rColorCiut 1601 7* ResourceID of full—color clut /

void ExerciseOffScreen0

CGrafPtr grayPort; 7* Graphicsenvironment for gray of f screen *7
GDHandle grayDevice; ! Color environment for gray of f screen */
CGrafPtr colorPart; / Graphicsenvironment for color of C screen *7
GDHandle colorDevice; /* Color environment for color off screen/
GrafPtr savedPort; / Pointer to the saved graphicsenvironmentI
GDHandle savedDevice;7* Handle to the saved color environment/
CTabHandleoffColors; 7* Colors for off—screen environments/
Rect offRect; 7* Rectangleof off—screen environments*/
Rect circieRect; 7* Rectanglesfor circle—drawing *7
short count; / Generic counter *7
RGBCo10r aColor; 7* Color used for drawing of f screen/
OSErr error; 7* Error return from off—screen creation */

7* Set up the rectangle for the off—screen graphicsenvironments/
SetRect( &offRect, 0, C, 256, 256 );

1* Get the color table for the gray off—screen graphicsenvironmentJ
of fColors = GetCTable( rcrayClut );

7* Create the gray off—screen graphics environment /
error = CreateOffScreen(&offRect, kOffDepth, offColors,

&grayPort, &grayoevice );

if (error == noErr)

7* Get the color table for the color off—screen graphics environment/
offCoiors = GetCTable( rCoiorCiut );

7* Create the color off—screen graphicsenvironment /
error = CreateOffScreen(&offRect, kOffDepth, offColors,

&colorPort, &colorDevice

if (error == noErr)

7* Save the current graphicsenvironment/
GetPort( &savedPort );
savedDevice= GetGDevice0;

#120:PrincipiaOff-ScreenGraphicsEnvironments 25 of 49



MacintoshTechnicalNotes

! Set the current graphicsenvironment to the gray one

SetPort( (GrafPtr)grayPort);
SetGDevice(grayDevice );

/ Draw gray—scale ramp into the gray off—screen environment *7

for (count = 0; count < 256; +count)

aColor.red= aColor.green= aColor.blue= count * 257;

RGBForeColor( &aColor );
MoveTo( 0, count );
LineTo( 255, count );

* copy gray ramp into color off—screen colorized with green */

SetPort( (GrafPtr)colorPort

SetGDevice(colorDevice );
acolor.red= 0x0000; aColor.green= OxFFFF; aColor.blue 0x0000;

RGBForecolor( &aCoior );
copyBits( & ( (GrafPtr)grayPort)—>portBits,

& ( (GrafPtr)colorPort)—>portBits,

&grayPort—>portRect,

&coiorPort—>portRect,

srcCopy ditherCopy, nil

1* Draw red, green, and blue circles /

PenSize(8, 8 );
acolor.red= OxFFFF; aColor.green= Ox0000; aColor.blue= Ox0000;

RGBForeColor( &acolor );
circleP.ect = colorPort—>portRect;

FrameOval( &circleRect );
aColor.red= Ox0000; acolor.green= OxFFFF; aColor.blue= Ox0000;

RGaForecolor(&acolor );
InsetRect( &circleRect, 20, 20 );
FrameOval( &circleRect );
acolor.red= 0x0000; acoior.green= 0x0000; aColor.blue = OxFFFF;

RGBForecolor( &acolor );
lnsetRect(&circleRect, 20, 29 );

FrameOval( &circleRect );

* copy the color off—screen environment to the current port *7

SetPort( savedPort);
SetGDevice( savedDevice);
copyBits( & ( (GrafPtr)colorPort)—>portBits, &savedPort—>portBits,

&colorPort—>portRect, &savedPort—>portRect,

srcCopy, nil );

7* Dispose of the off—screengraphicsenvironments*7

DisposeOffScreen(grayPort, grayDevice );

DisposeOffScreen(colorPort, colorDevice );

Two off-screengraphicsenvironmentsarecreatedin the sameway. A rectanglethat’s 256 pixels
wide by 256 pixels high and with its top-left coordinateat (0, 0) is createdin the offRect local
variable.‘clut’ resourcesare loadedfrom the application’sresourcefork to useas the color tables
of the two off-screengraphicsenvironments;a gray-scale‘clut’ in the first caseand a full-color
‘clut’ in the secondcase.Then,CreateOffScreenis called with the rectangle,color table, and a
hard-codedpixel depthof eightbits perpixel.

.
26 of 49 #120:PrincipiaOff-ScreenGraphicsEnvironments



DeveloperTechnicalSupport March 1992

If CreateOffScreenreturnsnoErr in bothcases,thenthecurrentgraphicsenvironmentis savedso
that it can be restoredlater. GraphicsenvironmentsConsistof the currentport and the current
GDevice.The currentGrafPortor CGrafPortis savedwith _GetPort.The currentGDeviceiS
savedwith _GetGDevice.

The gray-scaleoff-screengraphicsenvironmentis set as the currentgraphicsenvironmentby
calling_SetPortwith its CGrafPortandcalling_SetGDevicewith its GDevice.A verticalgray
rampis drawninto this graphicsenvironmentwith theusualsetof QuickDrawcalls.This graphics
environment’spixel imageis then copiedto the full-color off-screengraphicsenvironmentwith
dithering and colorization with green (dithering requires32-Bit QuickDraw and consistent
colorization requiressystemsoftware version 7.0; both of thesefeaturesare describedin
KonstantinOthmer’sarticle“QuickDraw’s CopyBitsProcedure:BetterThanEverin System7.0”
in Issue6 of develop).Beforethis copy happens,the full-color off-screengraphicsenvironment
mustbe setas the currentone. Oncethis is done,_CopyBitscanproperly mapcolors from the
gray-scaleoff-screengraphicsenvironmentto the full-color onewhich getsa greenrampimage.

Red, green, and blue concentric circles are drawn into the full-color off-screengraphics
environmentoverthe greenramp.This imageis thencopiedto the graphicsenvironmentthatwas
the currentonewhenExerciseOffScreenwascalled.To do this, the savedgraphicsenvironmentis
set as the currentone by what shouldnow be the familiar calls to SetPortand_SetGDevice.
Theoff-screenimageis thencopiedto the savedgraphicsenvironmentwith _CopyBits.

Finally, the two off-screengraphicsenvironmentsaredisposedof by calling the DisposeOffScreen
routinethat’sdefinedin the section“All Fall Down” earlierin this Note.

Put That CheckbookAway!

The previoussectioncoveredthe basicsof creatingandusingoff-screengraphicsenvironments.
This is goodenoughfor many,if not most,needsof off-screendrawing.But therearevariationsto
creatingand maintainingan off-screengraphicsenvironmentfor specific cases.This section
discussesa few of themorecommoncases.

About That Creation Thing.

The CreateOffScreenroutine,defmedin Listing 1, takesthreepiecesof information: the boundary
rectangle,the desiredpixel depth,and the desiredcolor table. But there’smuch more to these
piecesthanExerciseOffScreenshows.This sectiondescribesthesepiecesin moredetail.

The first parameterto CreateOffScreenis a rectanglewhich determinesthe size andcoordinate
systemof theoff-screengraphicsenvironment.Usually, the top-left cornerof the rectanglehasthe
coordinate(0, 0) becauseit’s usuallyeasiestto draw everythingusingcoordinatesthat canalsobe
thoughtof asthehorizontalandvertical distancein pixels from the top-left cornerof the graphics
environment.But in somecases,it’s more convenientto have the (0, 0) coordinatesomewhere
else,andpassingCreateOffScreena rectanglewith a nonzerocoordinatein the top-left corneris an
easy way to do this. The coordinatesystemcan be translatedafter the off-screengraphics
environmentis createdby usingthe _Setcriginroutine that’s describedon pages153 through
155 of InsideMacintoshVolume I.

Warning: As InsideMacintoshVolume I, page154, notes,the clip regionof the port
“sticks” to the coordinatesystem when you call _SetOrigin.If
_setoriginoffsetsthe coordinatesystemby a largeamount,thenthe clip
regionmight be movedcompletelyoutsideof the port’s drawingarea,and

#120:PrincipiaOff-ScreenGraphicsEnvironments 27 of 49



MacintoshTechnicalNotes

nothingcan be drawninto thatport. After calling_Setorigin,you should
settheclip regionso thatyou cancontinuedrawinginto theport.

The numberof bits per pixel implies the maximumnumberof availablecolors in a graphics
environment,at leastroughly speaking.Therelationshipbetweenthenumberof bits perpixel and
the numberof availablecolors is discussedin the “Graphics Overview” chapterof inside
MacintoshVolume VI, pages16-8 through16-9.

If an indexed-colorgraphicsenvironmentis being made,then a color table must be passedto
CreateOffScreen.In ExerciseOffScreen,the color tableis retrievedfrom a ‘clut’ resourcethat’s in
the application’sresourcefork with a call to _GetCTable.BecauseCreateOffScreenclonesthis
color table, this ‘clut’ resourcecan be purgeableso that it can be thrown out if its memory is
neededfor otherpurposes._GetCTablecan also be passedsomespecialconstantsthat tell it to
allocatevarioussystemcolor tablesthat can also be passedto CreateOffScreen.Thesespecial
constantsare describedon page17-18 of the “Color QuickDraw” chapterof Inside Macintosh
Volume VI. _GetcTableallocatesmemory for thesesystemcolor tables,so they should be
disposedof afteryou’re donewith them.

A color tablecould also be built from scratchby allocatingit with a call to _NewHandleandthen
initializing it by hand.TheColorTablestructureis documentedon pages48 through49 of Inside
MacintoshVolumeV. Here’swhateachof the fields shouldbe setto:

CtSeed identificationvalue.This is an arbitraryvaluethat shouldbe changedany
time the contentsof the color tablechangeso that the inversetablecan be
kept current. When Color QuickDraw draws anything, it comparesthe
ctSeedof the color tableof the PixMap of the currentGOeviceagainstthe
iTabSeedfield of the inversetable of the currentGDevice. If they’re the
same,thenColor QuickDraw usescolorsaccordingto that inversetable. If
they’re different, then Color QuickDraw first rebuilds the inversetable
accordingto the new color table’scontentsand its iTabSeedis set to the
valueof the new color table’sctSeed;thentherebuilt inversetableis used.

When CopyBits is called with the srcCopytransfermode, the ctSeed

fields of the sourceanddestinationpixel mapsarecompared.If they’re the
same,then_CopyBits simply transfersthe sourcepixels to the destination
with no mappingof colors. If they’re different, then _CopyBits checks
eachentry of the color tablesto determinewhetherthey havethe same
colorsfor the samepixel values.If they do, then_CopyBitsagainsimply
transfersthe sourcepixels to the destinationwith no mappingof colors. If
theydon’t, then_copyBitsmapscolorsin the sourcePixMap to the colors
in the currentgraphicsenvironmentaccordingto the inversetable of the
current GDevice.The ctSeedfield of a color table should be changed
wheneverits contentsare changedso that _CopyBits doesn’tmake the
wrong assumptionsaboutthe equality of the sourceand destinationcolor
tables.

You cangeta seedvaluefor anewcolor tableby assigningto it theresultof
the_GetCTSeedroutine, documentedin the “Color Manager”chapterof
InsideMacintoshVolume V, page143. If the contentsof an existingcolor
table are changed,then it shouldbe passedto the _CTabChangedroutine
which assignsa new valueto its ctSeedfield. If the_CTabChangedroutine
isn’t available(it’s availablewith 32-Bit QuickDrawand is includedwith the

.
28 of 49 #120:PrincipiaOff-ScreenGraphicsEnvironments



DeveloperTechnicalSupport March 1992

systembeginningwith systemsoftwareversion7.0), thenthe ctSeedfield
shouldbegiven anew valuewith anothercall to _GetCTSeed.

ctFlags indicatesthe Booleancharacteristicsof a color table. if the mostsignificant
bit of ctFlagsis clear,then the valuefield of eachcolorspecentry in the
ctTablearrayis interpretedasthepixel valuefor the color that’s specified
in the rgb field in the sameColorSpecentry. You canbuild a color table
with nonconsecutivepixel valuesthis way. If this bit is set, then all the
valuefields in thecolor tableareignoredandthe indexof eachColorSpec
recordin the ctTablearray is that record’spixel value. It’s your choice
whetherto clearthis bit andsetthe valuefields or setthis bit and ignorethe
valuefields; traditionally this bit is clearfor off-screencolor tables.

If the next mostsignificant bit of ctFlagsis set,then the value field of
eachColorSpecrecordin the ctTablearray is usedby _CopyBitsas an
index into the colorpalettethat’sattachedto the destinationwindow, and the
rgb field is ignored.This is documentedin the “PaletteManager”chapterof
insideMacintoshVolume VI, page20-17.

The otherbits are reservedfor future use. If you createa color tablefrom
scratch,theseotherbits mustbe set to zero. If you usea color table that’s
generatedby the system,thenthesebits mustbepreserved.

ctSize thenumberof color tableentriesminus 1. Normally, this field is set to 1, 3,
15, or 255 for 1-, 2-, 4-, and 8-bitsperpixel, respectively.In specialcases,
it’s reasonableto haveless than the maximumnumberof entriesfor the
pixel depth. For example,a color table for an 8-bit per pixel graphics
environmentcould havejust 150 entries,in which casethe ctSize field
shouldhold 149. For this case,it’s still importantto allocateasmuchspace
in the color table for the maximumnumberof entriesfor a pixel depthand
clear the entries you’re not using to zero becausesomeparts of Color
QuickDrawassumethesizeof a color tablebasedon thepixel depth.

ctTable arrayof colorsandpixel values.This tabledefinesall the availablecolorsin
the color tableand their pixel values.The value field of eachColorSpec
record indicatesthat color’s pixel value if the most significant bit of
ctFlagsis clear. It’s ignoredif the mostsignificant bit of ctFlagsis set.
Thevalue field is usedasan index into apaletteif thenext mostsignificant
bit of ctFlags is set, in which casethe rgb field is ignored. See the
discussionof the ctFlagsfield earlierin this Note for moredetails.

Warning: Color QuickDraw’stext-drawingroutinesassumethat the color tableof the
destinationgraphicsenvironmenthasthemaximumnumberof colorsfor the
pixel depthof the graphicsenvironment,andthat white is the first entry in
thecolor tableandblack is the lastentry. if theseconditionsaren’t satisfied,
then theresultingimageis unpredictable.

The codefragmentin Listing 6 showshow to allocatea 256-entrycolor tablefrom scratch.Color
tableshavea variablesize,so the _NewHandlecall hasto calculatethe size of the ColorTable
recordplusthemaximumnumberof color tableentriesfor thepixel depthmultiplied by thesizeof
a ColorSpecrecord.kNumColors - 1 is usedin the calculationbecausethe sizeof the ColorTable
recordincludesthe sizeof oneColorspecentry in mostdevelopmentenvironments.

#120:PrincipiaOff-ScreenGraphicsEnvironments 29 of 49



MacintoshTechnicalNotes

MPW PascalListing 6

CONST

kNumColors = 256; (Number of color table entries)

VAR
newColors: CTabHandle; (Handle to the new color table)

index: Integer; (Index into the table of colors)

(* Allocate memory for the color table *)

newtolors := CTabI-Iandle(NewHandleClear(SizeOf(ColorTable) +

SizeOf(ColorSpec) * (kNumColors — 1)));
IF newColors <> NIL THEN

BEGIN
(* Initialize the fields *)

newColors ctSeed := GetCTSeed;
newColorsctFlags := 0;
newColors’.ctSize := kNumColors — 1;

(* Initialize the table of colors *)

FOR index := 0 TO kNumColors - 1 DO

BEGIN
newcolors’”’.ctTable[jndexj.value := index;
newColors”.ctTable[index] rgb. red := someRedValue;

newColors”.ctTable[indexj rgb.green := sorneGreenValue;

newColors.ctTable(index).rgb.biue:= someBlueValue

END
END

MPW C Listing 6

#define kNumColors 256 /* Number of color table entries /

CTabhandlenewColors; /* Handle to the new color table */

short index; /* Index into the table of colors /

/* Allocate memory for the color table */

newColors (CTabHandle)NewHaridleClear(sizeof (ColorTable) +

sizeof (ColorSpec) * (kNumColors — 1) );
if (riewColors nil)

/ Initialize the fields */

(*newColors)ctSeed= GetCTSeedQ;
(**neolors) .ctFlags = 0;
(**neolors) .ctSize = kNumColors — 1;

/* Initialize the table of colors */

for (index = 0; index < kNumColors; index++)

(**newcolors) .ctTable[iridex].value = index;
(**newcolors) .ctTable[indexl rgb. red someRedValue;

(**newcolors) .ctTable[index rgb.greeri = someGreenValue;

(**newColors) .ctTable[indexj rgb.blue = someBlueValue;

ChangingYour Environment

After you createan off-screengraphicsenvironmentwith certaindimensions,you might laterwant
to changeits size,depth,or color table without creatinga completelynew graphicsenvironment
from scratchand without needingto redrawthe existingimage.The UpdateOffScreenroutine in

30 of 49 #120:PrincipiaOff-ScreenGraphicsEnvironments



DevelooerTechnicalSuooort March 1992

Listing 7 showsjust oneway to do this. It takesthesameparametersthatCreateOffScreen(defined
in Listing 1) does,but insteadof creatinga new CGrafPortandGDevice,it altersthe onesthat
you passthroughthe updPortandupdGDeviceparameters.If the newBoundsparameterspecifies
anemptyrectangle,thentheexistingboundaryrectanglefor the off-sciengraphicsenvironmentis
used.Similarly, if newDepth is zero, then the existing depth is used; and if the newColors
parameteris NIL, then the existing color table is used. UpdateOffScreenalters the given
CGrafPortandGDeviceto the new settings,but it completelyreplacesthe PixNap.After all the
alterationsaremade,the old PixNap’S imageis copiedto the new PixMap’s image,andthenthe
old PixMap andits imagearedisposed.

MPW PascalListing 7

FUNCTION UpdateOffScreen
newBounds: P.ect;
newDepth: Integer;
newColors: CTabHandle;
updPort: CGrafPtr;
updGDevice: GDHandle

OSErr;

(New bounding rectangleof of f—screen)
(New number of bits per pixel in off—screen)
(New color table to assign to off—screen)
(Returns a pointer to the updatedCGrafPort)
(Returns a handle to the updatedGDevice)

CONST
kMaxRowBytes = $3FFE; (Maximum number of bytes per row of pixels)

VAR

BEGIN

newPixMap:
oidPixMap:
bounds:
depth:
bytesPerRow:
colors:
saved-Fore:
savedBack:
aColor:
qdVersion:
savedPort:
saved-Device:
savedState:
error:

PixMapHandle;
PixMapHandle;
Rect;
Integer;
Integer;
CTabHandle;
RGBColor;
RGBColor;
RGBColor;
Longlnt;
GrafPtr;
GDHandle;
Signed-Byte;
OSErr;

(Handle to the new off—screen PixMap)
(Handle to the old off—screen PixMap}
(Boundary rectangleof off—screen)
(Depth of the off—screen PixMap)
(Number of bytes per row in the PixMap)
(Colors for the off—screen PixMap}
(Saved foregroundcolor)
(Savedbackgroundcolor)
(Used to set foregroundand background-color)
(Version of QuickDraw currently in use)
(Pointer to GrafPort used for save/restore)
(Handle to GDevice used for save/restore)
(Saved stateof color table handle)
(Returnserror code)

(* Initialize a few things before we begin *)

newPixMap := NIL;
error := noErr;

(* Keep the old bounds rectangle, or get the new one *)

IF EmptyRect(newBounds) THEN
bounds := updPort”.portRect

ELSE
bounds := newBounds;

(* Keep the old depth, or get the old one *)

IF newDepth 0 THEN
depth := updPort”.portPixMap.pixelSize

ELSE
depth := newDepth;

(* Get the old clut, or save new clut’s stateand make it nonpurgeable)
IF newColors = NIL THEN

colors := updPort.portPixMap.pmTable
ELSE

BEGIN
saved-State:= HGetState(Handle(newCoiorsH;

#120:PrincipiaOff-ScreenGraphicsEnvironments 31 of 49



MacintoshTechnicalNotes

HNoPurge(Handle(newColors));

colors newColors;

END;

(* Calculatethe number of bytes per row in the off—screen PixMap *)

bytesPerRow:= ((depth * (bounds.right — bounds.left) + 31) DIV 32) *

(* Get the current QuickDraw version *)

error := Gestalt (gestaltQuickdrawVersion,qdVersicn);

error := noErr;

(* Make sure depth is indexed or depth is direct and 32—Bit QD installed *)

IF (depth = 1) OR (depth = 2) OR (depth = 4) OR (depth = 8) OR

(((depth 16) OR (depth = 32)) AND (qdVersion >= gestalt32BitQD)) THEN

BEGIN
(* Maximum number of bytes per row is 16,382; make sure within range *)

IF bytesPerRow<= kNaxRowBytes THEN

BEGIN
(* Make sure a color table is provided if the depth is indexed *)

IF depth <= 8 THEN
IF colors = NIL THEN

(* Indexed depth and clut is NIL; is parametererror *)

error := paramErr;
END

ELSE
(* # of bytes per row is more than 16,382; is parametererror *)

error := paramErr;

END
ELSE

(* Pixel depth isn’t valid; is parametererror *)

error paramErr;

(* If sanity checks succeed,attempt to update the graphicsenvironment *)

IF error = noErr THEN
BEGIN

(* Allocate a new PixMap *)

newPixMap := PixMapHandle(NewHandieCear(SizeOf(PixMap)));

IF newPixMap <> NIL THEN
BEGIN

(* Initialize the new PixMap for off—screen drawing ‘)

error := SetUpPixMap(depth,bounds, colors, bytesPerRow,

newPixMap);
IF error = noErr THEN

BEGIN
(* Save old PixMap and install new, initialized one )
oldPixMap := updPort.portPixMap;

updPort.portPixMap := newPixMap;

(* Save current port & GDevice; set ones we’re updating *)

GetPort(savedport);
savedDevice := GetGDevice;

SetPort(Grafptr(updPortH;
SetGDevice(updGDevice);

(* Set portRect, visRgn, clipRgn to given bounds rect *)

updPort’.portRect := bounds;

RectRgn(updPort”.visRgn,bounds);

ClipRect(bounds);

(* Update the GDevice *)

IF newPixMap.pixelSize <= 8 THEN
updGDevice’.gdType cutType

ELSE .
32 of 49 #120:PrincipiaOff-ScreenGraphicsEnvironments



DeveloperTechnicalSupport March 1992

updGDevice”.gdType := directType;
updGDevice”.gdPMap:= newPixMap;
updGDevice”.gdRect newPixNap.bounds;

(* Set color—devicebit if PixMap isn’t black & white )
IF newPixMap.pixelSize > 1 THEN

SetDeviceAttribute(updGDevice, gdDevType, TRUE);
else

SetDeviceAttribute(updGDevice, gdDevType, FALSE);

(* Save current fore/back colors and set to B&W *)

GetForeColor(savedFore);
GetBackColor(saved.Back);
aColor.red := 0; aColor.green:= 0; aColor.blue : 0;
RGBForeColor(aCoior);
aColor.red $FFFF;
aColor.green:= SFFFF;
aColor.blue := $FFFF;
RGBBackColor(aColor);

(* Copy old image to the new graphicsenvironment )
HLock (Handle(oldPixMapH;
CopyBits(BitMapPtr(oldPixNap)’,GrafPtr(updPortV’.portBits,

oldPixMap.bounds, updPort.oortRect,
srcCopy, NIL>;

HUnlock (Handle(oldPixMapH;

(* Restorethe foreground/backgroundcolor )
RGBForeColor(savedFore);
RGBBackColor(savedBack);

(* Restorethe savedport *)

SetPort(savedPort);
SetGDevice(savedDevice>;

(* Get rid of the old PixMap and its dependents)
DisposPtr(oldPixMap” . baseAddr);
DisposeCTable(oldPixNap’”’ . pmTable>;
DisposHandle(Handle(oidPixNapH;

END;
END

ELSE
error := MernError;

END;

(* Restore the given stateof the color table )
IF colors <> NIL THEN

HSetState(Handle(colors), savedState);

(* One Last Look Around The House Before We Go... *)

IF error <> noErr THEN
BEGIN

IF newPixMap <> NIL THEN
BEGIN

IF newPixMap. poTable <> NIL THEN
DisposCTable(newPixMap. prnTable);

IF newPixMap”.baseAddr <> NIL THEN
DisposPtr(newPixMap’”’.baseAddr);

DisposHandie(Handle(newPixMap));
END;

END;
UpdateOffScreen error;

END;

#120:PrincipiaOff-ScreenGraphicsEnvironments 33 of 49



MacintoshTechnicalNotes

MPW C Listing 7

#define kMaxRowBytes Ox3FFE 7* Maximum number of bytes in a row of pixels *7
.

PixMapHandle
PixMapHandle
Rect
short
short
CTabHandle
RGBColor
RGBC01or
RGBC010r
long
GrafPtr
GDHandle
SignedByte
OSErr

newPixMap;
oldPixMap;

bounds;
depth;
bytesPerRow;
colors;
savedFore;
savedBack;
aColor;
qdVersion;
savedPort;
savedDevice;
savedState;
error;

7* Initialize a few things before we begin */

newPixMap = nil;
error = noErr;

7* Keep the old bounds rectangle, or get the new one /

if (EmptyRect( newBounds ))
bounds = updPort—>portRect;

else
bounds = *newBounds;

/* Keep the old depth, or get the old one /

if (newDepth = C)
depth = (*updPort_>portPixMap).pixelSize;

else
depth = newDepth;

/ Get the old clut, or save new clut’s stateand make it nonpurgeable/

if (newColors nil)
colors = (**updPort_>portPixMap).pmTable;

else

savedState= HGetState( (Handle)newColors);

HNoPurge( (Handle)newColors);
colors = newColors;

/ Calculate the number of bytes per row in the off—screen PixMap /

bytesPerRow= ((depth * (bounds.right— bounds.left) + 31) >> 5) << 2;

/ Get the current QuickDraw version /

(void) Gestalt( gestaltQuickdrawVersion,&qdVersion );

/* Make sure depth is indexed or depth is direct and 32—Bit QD installed */

if (depth 1 I I depth == 2 I I depth == 4 I depth == 8 I

((depth == 16 ) ) depth = 32) && qdVersion >= gestalt32BitQD))

/* Maximum number of bytes per row is 16,382; make sure within range I

.

.

OSErr UpdateOffScreen
Rect *newBounds

short newDepth,

CTabHandlenewColors,

CGrafPtr updPort,

GDHandle updGDevice)

7* New bounding rectangleof off—screen *7

/* New number of bits per pixel in off—screen ‘/

7* New color table to assignto off—screen *7

/* Returns a pointer to the updatedCGrafPort *7
/* Returns a handle to the updatedGDevice /

I Handle to the new off—screen PixMap /
/* Handle to the old off—screen PixMap *7
/* Boundary rectangleof off—screen *7
7* Depth of the off—screen PixMap *7
/* Number of bytes per row in the PixMap *7
/* Colors for the off—screen PixMap *1
/* Saved foregroundcolor I
/* Saved backgroundcolor *7

I Used to set foreground and backgroundcolor */

/* Version of QuickDraw currently in use /

/* Pointer to GrafPort used for save/restore*/

/* Handle to GDevice used for save/restore*7

I Saved state of color table handle *7

/* Returns error code *7

34 of 49 #120:PrincipiaOff-ScreenGraphicsEnvironments



DeveloperTechnicalSupport March 1992

if (bytesPerRow<= kaxRowBytes)

/ Make sure a color table is provided if the depth is indexed /
if (depth <= 8)

if (colors = nil)
7* Indexed depth and clut is NIL; is parametererror */

error = paramErr;

else
7* # of bytes per row is more than 16,382; is parametererror /
error = pararnErr;

else
/* Pixel depth isn’t valid; is parametererror /
error pararnErr;

/* If sanity checks succeed,attempt to createa new graphicsenvironment/
if (error == noErr)

7* Allocate a new PixNap *7
newPixMap = (PixMapHandle)NewHandleClear(sizeof (PixMap) );
if (newpixMap 1= nil)

/* Initialize the new PixMap for off—screen drawing *7
error = SetupPixMap(depth, &bounds, colors, bytesPerRow,newPixMap );
if (error == noErr)

7* Save the old PixMap and install the new, initialized one /
oidPixMap = updPort—>portPixMap;
updPort—>portPixMap= newPixMap;

/* Save current port & GDevice and set ones we’re updating *7
GetPort( &savedPort );
savedDevice= GetGDeviceO;
SetPort( (GrafPtr)updPortI;
SetGDevice( updGDevice );

/ Set portRect, visRgn, and clipRgn to the given bounds rect *7
updPort—>portRect= bounds;
RectRgn( updPort—>visRgn, &bounds );
ClipRect( &bounds );

/* Update the GDevice /

if ((**newpixMap) .pixelSize <= 8)
(**updGDevice) .gdType = clutType;

eise
(**updGDevice) .gdType = directType;

(**updGDevice) .gdPMap = newPixMap;
(**njpdGDevjce) .gdRect = (**newPixMap) .bounds;

/ Set color—devicebit if PixMap isn’t black & white ‘/
if ((**newpixMap).pixelSize > 1)

SetDeviceAttribute(updGDevice, gdDevType, true );
eise

SetDeviceAttribute(uodGDevice, gdDevtype, false

/* Save current foreground/backgroundcolors and set to B&W *7
GetForeColor( &savedFore );
GetBackColor( &savedBack
aColor.red = aColor.green= aColor.blue= 0;
RGBForeColor( &aColor );
aColor.red = aColor.green= aColor.blue= OxFFFF;
RGBBackColor( &aColor );

/* Copy old image to the new graphics environment */

#120:PrincipiaOff-ScreenGraphicsEnvironments 35 of 49



MacintoshTechnicalNotes

HLock( (Handle)oldPixMap );
CopyBits ( (BitMapPtr)*oldpixMap, & ((GrafPtr) updPort)—>portBits,

& (**oldPixMap) .bounds, &updPort—>portRect,

srcCopy, nil );
HUnlock( (Handle)oldPixMap 1;

/* Restorethe foreground/backgroundcolor /

RGBForeColor( &savedFore );

RGBBackColor( &savedBack );

/* Restorethe savedport *1

SetPort( savedPort);
SetGDevice(savedDevice);

/* Get rid of the old PixMap and its dependents/

Disposptr( (**oldPixMap) .baseAddr );

DisposeCTable((**oldpixMap).pmTabie ) ;

DisposHandle( (Handle>old.PixMap);

else
error = MemErrorO;

1* Restorethe given state of the color table */

if (colors nil)
HSetState( (Handle)coiors, savedState);

/* One Last Look Around The House Before We Go... */

if (error noErr)

/* Some error occurred; disposeof everything we allocated/

if (newPixMap nil)

if .prnTabie)

DisposCTabie( (**newpixMap) .pmTabie H
jf ((**newpjxMap) .baseAddr)

DisposPtr ( (**newpixMap) .baseAddr );

DisposHandle( (Handle)newPixMap );

return error;

UpdateOffScreenbeginsby checkingthe boundaryrectangle,depth,or color tablefor emptiness,
zero, or NIL, respectively.If any thesesatisfy that condition, then the existingcharacteristicis
used.Next, the samesanitycheckthatCreateOffScreenusesis done.If this sanitychecksucceeds,
thenanew PixMap is allocated,andthenit’s initialized by the SetUpPixMaproutinethat’sgiven in
Listing 2 which givesthe new PixMap a new pixel imageandits own copy of the color table.This
new PixMap is installedinto the CGrafportaftersavingthe referenceto the old PixNap.Then, the
portRect,visRgn,andclipRgn of the CGrafPortare set to the new boundaryrectangle,as is
the gdRectof the GDevice.The gdTypeof the GDevice is set either for the indexed-coloror
direct-colormodel,the gdPMapis setto the new PizMap,andthe deviceattributesaresetaccording
to thepixel depth.Detailsaboutthe settingsfor the CGrafPortandGDeviceare in “Building the
CGrafPort”and“Building theGDevice,”respectively,earlierin this Note.

At this point, the off-screengraphicsenvironmentis readywith its new characteristics,but it has
garbagefor an imagebecausenothinghasbeendrawn into it yet. The old PixMap, pixel image,
andcolor table are still around,so _CopyBit$ transfersthe old imageinto the alteredgraphics
environment._CopyBitshandlesthe mappingfrom the old image’scharacteristicsto the new

36 of 49 #120:PrincipiaOff-ScreenGraphicsEnvironments



DeveloperTechnicalSupport March 1992

characteristics,so the alteredgraphicsenvironmentgetsthe bestpossiblerepresentationof the old
imageaccordingto its new characteristics.

Changingthe Off-Screen Color Table

Sometimes,it’s usefulto changesomeor all of thecolorsin an off-screencolor table,or to replace
the off-screencolor tablewith anotherone,so thattheexistingimagein an indexed-colorgraphics
environmentappearswith new colors. For example,if you hadan off-screenimageof a blue car
andwantedto seewhat it looked like in green,you could changeall of the shadesof blue in the
off-screencolor tableto green,and then_CopyBits the imageto the screen.Notice that this is
different from calling the UpdateOffScreenroutine in the previoussectionwith a differentcolor
table.Thatroutinetries to reproducethecolorsfrom the original imageasbestit canin thenew set
of colors.This sectiondiscussesthecasein which you want the image’scolorsto change.

Themostobviouspart of doingthis is simply to get the color tablefrom the off-screenpixel map’s
pmTable field and modify the entries,or to disposeof the off-screengraphicsenvironment’s
currentcolor table and assignthe new one to it. There’sone more step to completethe process
though.The discussionaboutGDevicerecordsin “The Building Blocks” in this Note discusses
inversetablesand how they go hand-in-handwith color tables.If you alter or replacethe color
table,you haveto makesurethat the inversetableof the off-screendrawingenvironmentis rebuilt
accordingto thenew colorsbecauseColor QuickDrawusesthat inversetableto know whatpixel
valuesto usefor thespecifiedcolor. You don’t haveto rebuild the inversetableexplicitly as long
asyou tell Color QuickDraw that the color tablechanged.To do this, all you haveto do is make
surethat the ctSeedof thechangedor alteredcolor tableis set to a new value. And to do this, you
cansimply call CTabchanged,which is documentedon page 17-26 of the “Color QuickDraw”
chapterof inside Macintosh Volume VI. _CTabChanqedis availablebeginningwith 32-Bit
QuickDraw andit’s availablein systemsoftwareversion7.0. If this routine isn’t available,then
you canstill tell Color QuickDrawthat thecolor tablehasbeenchangedby calling_GetCTSeedand
assigningits resultdirectly to your new color table’sctSeedfield.

The next time you draw into this off-screendrawingenvironment,Color QuickDrawchecksthe
ctSeedof the environment’scolor table againstthe iTabSeedof the inverse table of the
environment’sGDevice.Becauseyou changedthe ctSeedof the color table either through
_CTabChangedor _GetCTSeed,thesetwo seedsaredifferent so Color QuickDrawautomatically
rebuildstheinversetableof the currentGDevice andthenit copiesthe CtSeedof thecolor tableto
the iTabSeedof therebuilt inversetable.Thendrawingcontinuesnormally.

Follow That Screen!

One commonneedof off-screengraphicsenvironmentsis that they havea depthandcolor table
that matchesa screen.The CreateOffScreenroutine requiresa color table for indexed-color
environments,and a pixel depth. Becausethere can be more than one screenattachedto a
Macintoshsystem,you have to decidewhich screen’sdepth and color table you shoulduse.
Typically, the depth and color table of the deepestscreenthat containsthe areathat you’re
interestedin (probablythe areaof a window) is used.Anotheroption is to usethedepthandcolor
tableof thescreenthathasthe largestareaof intersectionwith the areathatyou’re interestedin. To
find the depthand color table of the screenon which you want to basean off-screengraphics
environment,you mustusethe list of graphicsdevicesfor all screenswhich is maintainedby the
system.Every GDevicerecordfor a screenhasa handleto that screen’sPixMap, andyou canfmd
the screen’sdepthandcolor tablethere.

Listing 8 showsa routine called CreateScreenOffScreenwhich createsan off-screengraphics
environmentthathasthe depthandcolor table of a selectedscreen.The first parameter,bounds,
specifiesthe rectangularpart of the screenareain which you’re interestedin global coordinates.

#120:PrincipiaOff-ScreenGraphicsEnvironments 37 of 49



MacintoshTechnicalNotes

The screenOptionparameterspecifieshow you want the screento be chosen.If you pass

kDeepestScreenin this parameter,CreateScreenOffScreencreatesthe new off-screengraphics

environmentwith the depth and color table of the deepestscreenthat intersectsthe bounds

rectangle.If you insteadpass kLargestScreenArea,then the new off-screengraphics

environmentis createdwith the depth and color table of the screenwith the largestareaof

intersectionwith theboundsrectangle.

MPW PascalListing 8

TYPE
ScreenOpt (kDeepestScreen,kLargestAreaScreen);

FUNCTION CreateScreenOffScreen

bounds: Rect;

screenOption: ScreenOpt;

VAR retPort: CGrafPtr;

VAR retGDevice: GDHandle

): OSErr;

(Global rectangleof part of screento save)

(Use deepestor largest intersectionarea screen?)

(Returns a pointer to the new CGrafPort}

(Returns a handle to the new GDevlce)

VAR
baseGDevice:
aGDevice:
basePixMap:
maxArea:
area:
cornmonRect:
norrnalBounds:
error:

GDHandle;
GDHandle;
PixMaoHandle;
Longlnt;
Longlnt;
Rect;
Rect;
Integer;

(GDevice to base off—screen on)

(Handle to each GDevice in the GDevice list)

(baseODevice’S PixMap}

(Largest intersectionarea found)

(Area of rectangleof intersection)

(Rectangleof intersection)

(bounds rectanglenormalizedto (C, C))

(Error code)

BEGIN
error := noErr;

(* Different screenoptions require different algorithms *)

IF screenOption= kDeepestScreenTHEN
(* Graphics Devices Manager tells us the deepestintersectingscreen *)

baseGDevice := GetMaxDevice(bounds)

ELSE IF screenOption= kLargestAreaScreenTHEN

BEGIN
(* Get a handle to the first GDevice in the GDevice list )

aGOevice := GetDeviceList;

(* Keep looping until all GDevices have been checked *)

maxArea := 0;
baseGDevice:= NIL;

WHILE aGDevice <> NIL DO

BEGIN
(* Check to see whether screen rectangleand bounds intersect)

IF SectRect(aGDevice.gdRect,bounds, commonRect) THEN

BEGIN
(* Calculatearea of intersection)

area := Longlnt(commonRect.bottom— commonRect.too) *

Longlnt (cornmonRect.right — comrnonRect.left);

(* Keep track of largest area of intersectionso far *)

IF area > maxArea THEN

BEGIN
maxArea := area;

baseGDevice:= aGDevice;

END;

.

.

END;

(* Go to the next GDevice in the GDevice list *)

38 of 49 #120: PrincipiaOff-ScreenGraphicsEnvironments



DevelonerTechnicalSuooort March 1992

END
ELSE

aGDevice := GetNextDevice(aGDevlce);

END;

error paramErr;

( If no screensintersectthe bounds, baseDeviceis NIL *)

IF (baseGDevice<> NIL) AND (error = noErr) THEN

BEGIN
(* Normalize the bounds rectangle)

norrnalBounds := bounds;

Off setRect(normalBounds, —normalBounds.left, —norrnalBounds.top);

(* Createoff—screen graphics environmentw/ depth, clut of screen *)

basePixMap baseGDevice.gdpMap;

error := CreateOffScreen(norrnalBounds,basePixMap”.pixelSize,

basePixMap”.pmTable,retPort, retGDevice);

END;

CreateScreenOffScreen:= error;

END;

MPW C Listing 8

enuni

kDeepestScreen,
kLargestAreaScreen,

OSErr CreateScreenOffScreen

Rect *bounds, 7*

short screenOption,1*

CGrafPtr *retport, /*

GoFiandie *retGDevice) /

error = noErr;

Global rectangleof part of screento save *1

Use deepestor largest intersectionarea screen/

Returns a pointer to the new CGrafport ‘/

Returns a handle to the new GOevice ‘/

1* Different screenoptions require different algorithms */

if (screenOption== k.DeepestScreen)
7* Graphics Devices Manager tells us the deepestintersectingscreen/

baseGDevice= GetMaxDevice( bounds );

else if (screenOption== kLargestAreaScreen)

7* Get a handle to the first GDevice in the GDevice list /

aGDevice = GetDeviceListQ;

7* Keep looping until all GDevices have been checked */

maxArea = 0;
baseGDevice= nil;

while (aGDevice = nil)

7* Check to see whether screen rectangleand bounds intersect/

if (SectRect(&(**aGDevice).gdRect, bounds, &commonRect ))

7* Calculatearea of intersection*7

GDHandle baseGDevice; 1* GDevice to base off—screen on /

GDHandle aGDevice; /* Handle to each GDevice in the GDevice list *7

PixMapHandlebasePlxMap; / baseGDevice’sPixMap */

long maxArea; 7* Largest intersectionarea found *7

long area; 7* Area of rectangleof intersection*7

Rect commonRect; /* Rectangleof intersection‘I

Rect normalBounds;/ bounds rectanglenormalized to (0, 0) ‘/

short error; 7* Error code /

#120:PrincipiaOff-ScreenGraphicsEnvironmenLs 39 of 49



MacintoshTechnicalNotes

area = (long) (cornmonRect.bottom— commonRect.top) *

(long) (commonRect.right — commonRect.left);

7* Keep track of largest area of intersectionfound so far I
if (area > maxArea)

maxArea = area;
baseGDevice= aGDevice;

/* Go to the next GDevice in the GDevice List I
aGDevice = GetNextDevice(aGDevice );

else
error = paramErr;

/* If no screensintersectthe bounds, baseDeviceis NIL *7
if (baseGDevice£= nil && error == noErr)

/* Normalize the bounds rectangle*/

normalBounds *bounds;
Off setRect( &normalBounds, —norralBounds.Ieft,—r.ormal8ounds.tco);

7* Create off—screen graphicsenvironment wI depth, clut of screen *7
basePixMap= (**baseGDevice).gdPMap;
error = CreateOffScreen(&normalBounds, (**basePixkap).pixelSize,

(**basepixMap).pmTable,retPort, rotC-Device );

return error;

Finding the deepestscreenthat intersectsan on-screenareais trivially easybecausethere’saGraphicsDevicesManagerroutinethat finds it called_GetMaxDevicewhich is documentedonpage21-22 of the “GraphicsDevicesManager”chapterof Inside MacintoshVolume VI. Therectanglein global coordinatesof the screenareayou’re interestedin is passedto _GetMaxDevice,and it returnsahandleto thedeepestscreenthat intersectsthat area,evenif the areaof intersectionis assmall asonepixel. If no screensintersectthatarea,then GetMaxDevicereturnsNIL.

Finding the GDeviceof the screenthathasthe maximumareaof intersectionwith the screenareayou’re interestedin isn’t quite soeasybecausethere’sno singleGraphicsDevicesManagerroutineto find this GDevice you haveto searchtheGOevicelist yourself.You canget a handleto the first
GDevice in the list by calling _GetDeviceList,and you can get a handleto eachsuccessive
GDeviceby calling _GetNextDevice._GetDeviceListis documentedon pages21-21 through21-22 of the “Graphics Devices Manager” chapterof Inside Macintosh Volume VI, and
_GetNextDeviceis documentedon page21-22of the samechapter.For eachGDevice in the list,the areaof intersectionbetweenthe boundsand the gdRectof the GDevice is calculated.If thecalculatedareais the largestareaof intersectionfound so far, then that areaand the GDeviceof thatscreenareremembered.

Oncea winning GOevicehasbeenchosen,eitherby beingthedeepestintersectingGDeviceor the
GDevicewith the largestintersectingarea,thenCreateOffScreenroutineis calledwith the pixeldepthandcolor tableof the PixMap of the GDevice,and the boundsrectanglenormalizedso thatits top-left coordinatehasthe coordinates(0, 0). CreateOffScreenreturnswith thenew off-screengraphicsenvironment,andCreateScreenOffScreenreturnsthis to the caller.

.40 of 49 #120:PrincipiaOff-ScreenGraphicsEnvironments



DeveloperTechnicalSupport March 1992

Choosing Your Off-Screen Memory

The CreateOffScreenroutinein Listing 1 createsan off-screengraphicsenvironmentwith its pixel
imageallocatedasa nonrelocatableblock in the application’sheap.But this isn’t the only way that
thepixel imagecanbe allocated.Pixel imagescanbe big, andbig blocksof nonrelocatablememory
in your heapcan be expensivein termsof performance,and they can causea bad caseof heap
fragmentation.Why not put thepixel imagein a relocatableblock of memoryinstead?If thereisn’t
much free memoryin your heapand if MultiFinder or systemsoftwareversion7.0 is running,
there’s memory that’s not being used by any open applications,called temporary memory
(formerly calledMultiFinder temporarymemory).Why not usethis areaof memoryfor the pixel
image?SomepeoplehaveNuBuscardswith plenty of memoryon them.Why not movethepixel
imageout of theheapsaltogetherandinsteaduseNuBusmemoryfor the pixel image?All of these
things can be donewith simple modificationsto what’s beendiscussedin this Note, and these
modificationsarediscussedin thenext few paragraphs.

How canpixel imagesbe relocatable?After all, pixel imagesarereferredto only by the baseAddr
field of a PixMap, andthebaseAddris apointer,not a handle.It’s true that while QuickDraw is
being usedto draw into a graphicsenvironment,the pixel imagehad betternot move or else
QuickDrawwill startdrawingover the areaof memorythatthepixel imageusedto be ratherthan
whereit is. But if QuickDrawisn’t doing anythingwith thegraphicsenvironment,thenit doesn’t
carewhathappensto thepixel imageas long asthe baseAddrpointsto it onceQuickDrawstarts
drawing into the graphicsenvironment.This implies a strategy:allocatethe pixel image as a
relocatableblock andlet it float in the heap;whenQuickDrawis aboutto to draw into thegraphics
environmentor to copy from it, lock thepixel imageandcopy its masterpointerinto the baseAddr
field of the PixMap; whenthe drawing or copyingis fmished,unlock the pixel image.Thereare
manywaysto implementthis, andListing 9 showsa codefragmentfor one very simplemethod.

MPW PascalListing 9

(* Allocate the pixel image; use long multiplication to avoid overflow )
offBaseAddr := NewHandle(Locglnt(bytesPerRow) (bounds.bcttom—

bounds.topH;
:F of fBaseAddr <> NIL THEN

BEGIN
(* Initialize fields common to indexed and direct PixMaps *)

aPixMap”.baseAddr:= Ptr(offBaseAddr); (* Referencethe image *)

PROCEDURE LockOffScreen
offScreenPort:CGrafPtr {Ptr to off—screen CGrafPor:)

VAR
off ImageHnd: Handle; {Handle to the off—screen pixel image)

BEGIN
(* Get the saved handle to the off—screen pixel image *)

of flmageHnd := Handle(offScreenPort.portPixMap.baseAddr);

(* Lock the handle to the pixel image *)

HLock (off ImageHnd);

(* Put pixel image masterpointer into baseAddrso that QuickDraw can use it *)

off ScreenPort.portPixMap.baseAddr := of flmageHnd”;
END;

#120:PrincipiaOff-ScreenGraphicsEnvironments 41 of 49



MacintoshTechnicalNotes

PROCEDURE UnlockOffScreen(
of fScreenPort:CGrafPtr (Ptr to off—screen port)

VAR
offlmagePtr: Ptr; (Pointer to the off—screenpixel image)

off ImageHnd: Handle; (Handle to the off—screenpixel image)

BEGIN
(* Get the handle to the off—screen pixel image *)

off ImagePtr := off ScreenPort’.portPixMap.baseAddr;

of flmageHnd RecoverHandle(offlmagePtr);

(* Unlock the handle *)

HUnlock (off ImageHnd);

(* Save the handle back in the baseAddr field *)

of fScreenPort.portPixMap.baseAddr Ptr(offlmageHnd);

END;

MPW C Listing 9

;* Allocate the pixel image; use long multiplication to avoid overflow */

offBaseAddr = NewHandle( (unsignedlong)bytesPerRow* (bounds—>bottom—

bounds—>top) );
if (offBaseAddr 1= nil)

/* Initialize fields common to indexed and direct PixMaps */

(**apixMap).baseAddr= (Ptr)offBaseAddr; 7 Referencethe image /

• .
void LockOffScreen

CGrafPtr offScreenPort) 7* Pointer to the off—screen CGrafPort /

Handle of flmageHnd; / Handle to the off—screenpixel image *7

/* Get the savedhandle to the off—screen pixel image *1

of flmageHnd = (Handle) (**offScreenPort_>portPixMap).baseAddr;

1* Lock the handle to the pixel image *7

HLock( off ImageHnd

7* Put pixel image masterpointer into baseAddr so that QuickDraw can use it /
(**off5creenport_>portpjxp).baseAdcir *offlmageHnd;

void UnlockOffScreen

CGrafPtr offScreenPort) /* Pointer to the off—screen CGrafPort /

Ptr offlmagePtr; 7* PoInter to the off—screen pixel image */

Handle off ImageHnd; 7* Handle to the off—screenpixel image *7

7* Get the handle to the off—screen pixel image /

off ImagePtr = (**offScreenport_>portPixMap).baseAddr;

off ImageHnd = RecoverHandle(offlmagePtr );

/* Unlock the handle */

HUnlock( off ImageHnd );

/* Save the handle back in the baseAddr field *7

42 of 49 #120:PrincipiaOff-ScreenGraphicsEnvironments



DeveloperTechnicalSupport March 1992

(*offScreenport_>portpjMap).baseAddr= (Ptr) off ImageHnd;

Listing 9 startswith a code fragmentfrom the SetUpPixMaproutine that’s modified so that itallocatesanewhandlefor the off-screenpixel imageinsteadof anewpointer.This handleis savedin the baseAddrfield for now. When you’re about to draw into the off-screengraphicsenvironmentor to copy from it, the LockOffScreenroutine in Listing 9 shouldbe calledwith apointerto the off-screengraphicsenvironment’sCGrafPortastheparameter.It takesthehandletothe pixel imagefrom the baseAddrfield of the off-screengraphicsenvironment’sPixMap andpassesit to _HLock which makessure the pixel imagecan’t move in the heap.Then, the pixelimage’shandleis dereferencedto get themasterpointerto thepixel image,andthis masterpointeris copiedinto the baseAddrfield. Now, QuickDraw can draw into or copy from the off-screengraphicsenvironment.

Whenyou’re finisheddrawinginto the off-screengraphicsenvironment,the pixel imageshouldbeunlocked,and the UnlockOffScreenroutine in Listing 9 doesthis. The baseAddrfield of the
PixMap holds the pixel image’smasterpointer,so this is passedto _RecoverHandleto get thepixel image’shandle.This handleis passedto HUnlock to let the pixel imagefloat in the heapagain,andthenthis handleis savedin the baseAddrfield.

Onepotentiallyuseful addition to the LockOffScreenroutine would be a call to _MoveHHi justbeforethecall to _HLock. This helpsreduceheapfragmentationwhile the pixel imageis lockedbymoving it up ashigh in theheapaspossiblebeforelocking it, allowing theotherrelocatableblocksto movewithout tripping overit. You haveto becarefulwith _MoveHHi thoughbecauseit not onlymovesthehandleashigh in theheapaspossible,it movesotherrelocatableblocksout of the top oftheheapto makeroom for the handle.This could involve movinghugeamountsof memory,andit’s not unusualfor _MoveHHi to takeseveralsecondsto do this.

How do you makean off-screengraphicsenvironmentthat usestemporarymemoryfor the pixelimage?Temporarymemoryis allocatedashandles,so there’salmostno differencebetweenusingtemporarymemoryandusingrelocatableblocks in your own heapin the way that Listing 9 shows.All you haveto do is replacethe calls to _NewHandle, HLock, and _HUnlock with calls to
_TempNewHandle,_TempHlock,and_TempHUnlock.If temporarymemoryhandlesare real, thenyou don’t even have to replacethe _HLock and_HUnlock calls—they work properly withtemporarymemoryhandlesthat arereal.Youcantell whethertemporarymemoryhandlesarereal ornot by caiiing Gestaltwith the gestaltoSAttrselector.If the gestaltRealTempMemorybit isset,thenall temporarymemoryhandlesarereal. Seethe sections“About TemporaryMemory” and“Using TemporaryMemory” of InsideMacintoshVolume VI, pages28-33 through28-40.

How do you makean off-screengraphicsenvironmentthat storesthe pixel imageon a NuBusmemorycard?The MacintoshMemory Managerdoesn’tkeeptrack of heapson NuBusmemorycardsso it can’t be usedto allocatememoryon thosecards,but if applicationscanusethatcard’smemoryat will, thenan applicationcan setup the off-screengraphicsenvironmentwith its pixelimage in the NuBuscard’s memorysimply by setting the addressof the card’s memory in the
baseAddrfield of the off-screengraphicsenvironment’sPixMap insteadof allocatinganything.

If your NuBus memorycard doesn’trequire32-bit addressingmodeto accessits memory, thensettingthe baseAddrto the addressof the NuBus card’s memory is all you haveto do. SomeNuBusmemorycardsrequireits memoryto be accessedin 32-bit addressingmode.Without 32-Bit QuickDraw,thesememorycardscan’t be usedfor storing the pixel image of an off-screengraphicsenvironmentbecauseColor QuickDraw without 32-Bit QuickDraw alwaysreadsandwrites pixel imagesin 24-bit addressingmoderegardlessof whetherthe pixel image is in mainmemory,on a NuBus video card, or on a NuBusmemorycard. With 32-Bit QuickDraw, ColorQuickDraw automaticallyswitchesto 32-bit addressingmode beforereadingor writing a pixel

#2O: PrincipiaOff-ScreenGraphicsEnvironments 43 of 49



MacintoshTechnicalNotes

imagethat’s on a video card.It won’t know to switch to 32-bit addressingmodeif your off-screen
graphicsenvironmentusesapixel imageon aNuBusmemorycardthat’snot a videocard,but you
can tell it to makethis switch by settingbit 2 of the pmversionfield of the PixMap for the off-
screengraphicsenvironment.This is normallydoneby logically ORing the pmversionfield with
the predefinedconstantbaseAddr32.See“About 32-Bit Addressing”in Issue6 of develop,page
36, for moredetailsabouthow QuickDrawhandlesaddressingmodes.

The GWorid Factor

In May 1989,32-Bit QuickDrawwas introducedas an extensionto the system.While it had a lot
of new features,the GWorld mechanismwasthe one that madethe big news.GWorldsare off-
screengraphicsenvironmentsthat you can havethe systemput togetherin one call. There’sno
needfor routineslike CreazeOffScreen,SetUpPixMap,or CreateGDevice—allof the off-screen
graphicsenvironmentis setup with _NewGWorld.You canchangemostof its characteristicswith
_UpdateGWorld,setthe currentoff-screengraphicsenvironmentwith _SetGworld,andget rid of
the off-screengraphicsenvironmentwith _DisposeGworld.All the GWorld routinesaredescribed
in the “GraphicsDevicesManager”chapterof Inside MacintoshVolume VI. As an example,
Listing 10 showsthe sameroutineasthe ExerciseOffScreenroutinethat’sshownin Listing 5, but
Listing 10 usesGWorldsratherthanthedo-it-yourselfroutinesthat aredefinedin this Note.

MPW PascalListing 10

PROCEDURE ExerciseOffScreen;

CONST
kOffDepth 8; (Number of bits per pixel in off—screen environment)

rGrayClut = 1600; {Resource ID of gray—scaleclut)

rColorClut = 1601; (ResourceID of full—color clut)

VAR
grayPort: GWorldPtr; {Graphics environment for gray of f screen)

colorPort: GworldPtr; (Graphics environment for color off screen)

savedPort: GrafPtr; (Pointer to the savedgraphicsenvironment}

savedDevice:GDHandle; (Handle to the saved color environment)

of fColors: CTabHandle; (Colors for off—screen environments)

offRect: Rect; {Rectangle of off—screen environments)

circleRect: Rect; (Rectanglesfor circle—drawing)

count: Integer; (Generic counter)

aColor: RGBColor; (Color used for drawing off—screen)

error: OSErr; (Error return from off—screen creation)

BEGIN
(* Set up the rectanglefor the off—screen graphicsenvironments*)

SetRect(offRect,0, 0, 256, 256);

(* Get the color table for the gray off—screen graphics environment *)

offColors := GetCtable(rGrayClut);

(* Create the gray off—screen graphicsenvironment *)

error := NewGworld(grayPort, koffDepth, of fRect, of fColors, NIL, [J);

IF error = noErr THEN
BEGIN

(* Get the color table for the color off—screen graphicsenvironment *)

offColors := GetCTable(rColorClut);

(* Create the color off—screen graphicsenvironment *)

44 of 49 #120:PrincipiaOff-ScreenGraphicsEnvironments



DeveloperTechnicalSupport March 1992

error NewGworld(colorPort, kOffDepth, of fRect, of fColors, NIL, (H;

IF error = noErr THEN
BEGIN

(* Save the current graphicsenvironment *)

GetGWorld(savedPort,savedDevice);

(* Set the current graphicsenvironmentto the gray one *)

SetGWorld(grayPort,NIL);

(* Draw gray—scale ramp into the gray off—screen environment *)

FOR count := 0 TO 255 DO
BEGIN

aColor.red := count * 257;
aColor.green := aColor.red;
aColor.blue := aColor.green;
RGBForeColor(aColor);
MoveTo(0, count);
LineTo (255, count);

END;

(* Copy gray ramp into color off—screen colorized with green *)

SetGWorld(colorPort,NIL);
aColor.red := $0000; aColor.green := $FFFF; aColor.bue := $0000;
RGBForeCoior(aColor);
CopyBits(GrafPtr(grayPort).portBits,

GrafPtr(colorport)“.portBits,
grayPort’ portRect,
colorPort portRect,
srcCopy + ditherCopy, NIL);

(* Draw red, green, and blue circles *)

PenSize(8, 8);
aColor.red := $FFFF; aColor.green:= $0000; aColor.blue $0000;
RGBForeColor(aColor);
circleRect colorPort”.portRect;
FrameOval(circleRect);
aColor.red := $0000; aColor.green := $FFFF; aColor.olue $0000;
RGBForeColor(aColor);
InsetRect(circleRect,20, 20);
FrarneOval(circieRect);
aColor.red := $0000; aColor.green := $0000; aColor.blue := $FFFF;
RGBForeColor(aColor);
InsetRect(circleRect,20, 20);
FrameOval(circleRect);

(* Copy the color off—screen environmentto the current port *)

SetGWorld(savedport,savedDevice);
CopyBits(GrafPtr(colorPort)“.portBits,

savedPort”. portBits,
colorPort” portRect,
savedPort”.portRect,
srcCopy, NIL);

( Dispose of the off—screen graphicsenvironments*)

DlsposeGworldgrayPort);
DisposeGWorld(colorPort);

END;
END;

END;

MPW C Listing 10

*define kOffDepth 8 /* Number of bits per pixel in off—screen environment /

#120:PrincipiaOff-ScreenGraphicsEnvironments 45 of 49



MacintoshTechnicalNotes

#define rGrayClut 1600 / ResourceID of gray—scaleclut *7

#define rColorClut 1601 7* ResourceID of full—color clut *7

void ExerciseOffScreenU

GWorldPtr grayPort; /* Graphics environment for gray off screen/

GworldPtr colorPort; 7* Graphicsenvironment for color off screen/

CGrafPtr savedPort; 7* Pointer to the saved graphicsenvironment/

GDHandle savedDevice;7* Handle to the saved color environment */

CTabHandieof fCoiors; / Colors for off—screen environments/

Rect of fflect; 7* Rectangleof off—screen environments/

Rect circleRect; 7* Rectanglesfor circle—drawing */

short count; /* Generic counter “7
RGBColor aColor; 7* Color used for drawing off—screen */

OSErr error; 7* Error return from off—screen creation *7

7* Set up the rectanglefor the off—screen graphicsenvironments/

SetRect( &offRect, 0, 0, 256, 256 );

7” Get the color table for the gray off—screen graphicsenvironment *7

offColors = GetCTable( rGrayClut );

7* Create the gray off—screengraphicsenvironment *7

error = NewGorld( &grayPort, kOffDepth, &offRect, offColors, nil, 0

if (error == noErr)

7* Get the color table for the color off—screen graphicsenvironment “I
of fColors = GetCTable( rColorClut );

/ Create the color off—screen graphicsenvironment,

error = NewGWorld( &colorPort, kOffDepth, &offRect, of fColors, nil, 0 );

if (error == noErr)

7* Save the current graphicsenvironment /

GetGWorld( &savedPort, &savedDevice );

7* Set the current graphicsenvironment to the gray one “7

SetGWorld( grayPort, nil );

I” Draw gray—scale ramp intc the gray off—screen environment /

for (count = 0; count < 256; count+)

aColor.red= aColor.green= aColor.blue= count * 257;

RGBForeColor( &aColor );
MoveTo( 0, count );
LineTo( 255, count );

/* Copy gray ramp into color off—screen colorized with green *7

SetGWorld( colorPort, nil );
aColor.red Ox0000; aColor.green= OxFFFF; aColor.blue = Ox0000;

RGBForeColor( &aColor );
CopyBits( & ((GrafPtr)grayPort)—>portBits,

& ( (GrafPtr)colorPort)—>portBits,

&grayPort—>portRect,

&colorPort—>portRect,

srcCopy ditherCopy, nil );

7* Draw red, green, and blue circles *7

PenSize(8, 8 );
aColor.red= OxFFFF; aColor.green= Ox0000; aColor.blue = Ox0000;

46 of 49 #120:PrincipiaOff-ScreenGraphicsEnvironments



DeveloperTechnicalSupport March 1992

RGBForeColor( &aColor );
circieRect = colorPort—>pcrtRect;
FrameOval( &circleRect );
aColor.red= Ox0000; aColor.green OxFFFF; aColor.blue = Cx0000;
RGBForeColor( &aColor );
InsetRect(&circleRect, 20, 20 );
FrameOval( &circleRect );
aColor.red= Ox0000; aColor.green Ox0000; aColor.blue= OxFFFF;
RGBForeColor( &aColor );
InsetRect(&circleRect, 20, 20 );
FrameOval( &circleRect );

/ Copy the color off—screen environmentto the current port *1
SetGWorld( savedPort, savedDevice);
CopyBits( &((Grafptr)colorPort)—>portBits,

& ( (GrafPtr)savedPort)—>oortBits,
&colorPort—>portRect,
&savedPort—>portRect,
srcCopy, nil );

/* Dispose of the off—screen graphicsenvironments/
DisposeGWorld( grayPort );
DisposeGWorld(colorPort );

_NewGWorldcreatesan off-screengraphicsenvironmentby creatinga CGrafPort,PixMap, and
GDevice—thesamestructuresthat you normally put togetherwhen you make an off-screen
graphicsenvironmentyourself. In this aspect,and in fact in most aspects,there’snothingmagical
aboutGWorlds.Do GWorldsmakethe CreateOffScreen,DisposeOffScreen,and theirdependents
useless?That dependson what your needsare. What follows are a few issuesaboutoff-screen
drawingandhow thatdetermineswhetheryou useyour own routines,suchasCreateOffScreen,to
createandmaintainoff-screengraphicsenvironmentsor whetheryou useGWorldsfor the same
purpose.

I Want the Best Performance!

As mentionedin the lastparagraph,there’snothingmagicalaboutGWorlds in mostaspects.In one
majoraspect,therecertainlyis: the versionof Color QuickDrawthatrunswith the 8.24GC video
card’saccelerationon knows aboutGWorldsandcancachetheir CGrafPort,PixMap, GDevice,
inversetable,color table,andpixel imageon the 8.24 GC card if there’senoughmemoryon it.
Whenthis is done,QuickDrawoperationson the GWorld can be much fasterthanthey’d normally
be becausethe imagedatacanstay in the card’s memorywhere the fast microprocessoris, and
imagedatadoesn’thaveto moveacrossNuBusin transferoperationsbetweentheGWorld andthe
screen.Additionally, theseoperationsare executedasynchronouslywhich increasesthe overall
speedof your programs.For detailsabouthow the 8.24GC card andGC QuickDraw work, see
Guillermo Ortiz’s article, “Macintosh Display Card 8.24 GC: The NakedTruth,” in Issue5 of
develop.

8.24GC QuickDrawdoesn’tknow abouttheoff-screengraphicsenvironmentsthatyou create,so
it doesn’tcacheits structures.All QuickDrawcommandsthat move imagedatabetweenthe off-
screengraphicsenvironmentandthe screenhaveto move the dataacrossNuBus,and that slows
down the operationin comparisonto keepingall the imagedataon the card.

If you want the highestpossibledrawingand copyingperformancewith the 8.24GC card, you
mustuseGWorldsfor your off-screengraphicsenvironments.

#120:PrincipiaOff-ScreenGraphicsEnvironments 47 of 49



MacintoshTechnicalNotes

1 Want to Use a NuBus Memory Card for My GWorld’s Off-Screen Pixel Image

Onecommondesireis to useaNuBusmemorycardto hold a pixel image.BecauseGWorldsare
so easyto setup, andbecauseGWorldshaveall thesamepartsthat you canmakefor an off-screen
graphicsenvironment,it’s tempting to make a GWorld and then point the baseAddrof the
GWorld’s PixMap at the NuBuscard’smemory.But GWorlds are designedto be fairly atomic
structures,so they can’t be changedin this way. You can changea GWorld’s dimensions,depth,
andcolor tablebecausethere’saroutineCupdateGWorld)that is designedto changethesethings,
but you can’t changethepixel imagewithoutrisking futurecompatibility.

If you want to havean off-screengraphicsenvironmentusea NuBusvideocardto storethepixel
image, you shouldset up your own off-screengraphicsenvironmentratherthan useGWorlds.
This is coveredearlierin this Notein “ChoosingYour Off-ScreenMemory.”

I Want My Programto Work on All SystemSoftwareReleases

GWorldshavebeenaroundsince32-Bit QuickDrawwasreleased(while systemsoftwareversion
6.0.3 wascurrent).Until systemsoftwareversion7.0, 32-Bit QuickDraw was an optionalpartof
the system,so you aren’tguaranteeduseof GWorldsevenunderrecentsystemsoftwarereleases.
Obviously,if GWorldsaren’t availableandyour programstill hasto work with off-screengraphics
environments,thenthere’sno choicebut to useyour own routinesfor creating,maintaining,and
disposingof off-screengraphicsenvironments.What’s usuallydonein thesecasesis to checkvia
_GestaltwhetherGWorlds are availableor not. If they aren’t, then you createyour off-screen
graphicsenvironmentwith your own routines.If they are, then you can use GWorlds without
havingto takeup memorywith yourcodefor creatingoff-screengraphicsenvironmentsyourself.

Are We There Yet?

Reliable,understandable,and maintainableoff-screendrawingroutinesmeansnot taking short
cuts. The most commonproblemsthat peoplerun into with off-screendrawing routinesis the
appearanceof strangecolorsandthe gradualdegradationof reliability as the programdoesmore
off-screendrawing. Building an off-screengraphicsenvironmentout of a CGrafPort,GDevice,
and PixMap or by usingGWorlds, combinedwith an understandingof how Color QuickDraw
usesoff-screengraphicsenvironments,helpsgetrid of theseproblems.Hopefully, this Notehelps
you understandthesethingsso thatyou canget betterprogramsout thedoorfaster.

Further Reference:

• Apple Computer,Inc., InsideMacintoshVolume I, Addison-Wesley,Reading,MA, 1985

• Apple Computer,Inc., InsideMacintoshVolume V, Addison-Wesley,Reading,MA, 1988.

• Apple Computer,Inc., InsideMacintoshVolume VI, Addison-Wesley,Reading,MA,
1991.

• Knaster,S., MacintoshProgrammingSecrets,Addison-Wesley,Reading,MA, 1988.

• Leak, B., “Realistic Color For Real-WorldApplications,”develop,January1990,4-21.

• Ortiz, G., “Braving OffscreenGWorlds,”develop,January1990,28-40.

.
48 of 49 #120:PrincipiaOff-ScreenGraphicsEnvironments



DeveloperTechnicalSupport March 1992

• Ortiz, G., “Deaccelerated_CopyBits& 8.24GC QuickDraw,”MacintoshTechnicalNote
#289,January1991.

• Ortiz, G., “MacintoshDisplayCard8.24GC: TheNakedTruth,” develop,July 1990,
332-347.

• Othmer,K., “QuickDraw’s CopyBitsProcedure:BetLerThanEverin System7.0,”
develop,Spring 1991, 23-42.

• Tanaka,F., “Of Time andSpaceand_CopyBits,”MacintoshTechnicalNote#277,June
1990.

• Zap,J., F. Tanaka,J. Friedlander,and0. Jernigan,“Drawing Into an Off-Screen
Bitmap,” MacintoshTechnicalNote#41,June1990.

NuBusis a trademarkof Texas Instruments.

#120:PrincipiaOff-ScreenGraphicsEnvironments 49 of 49



.

.



Macintosh Technical Notes

#121: Using the High-Level AppleTalk Routines

Seealso: The AppleTalk Manager
InsideAppleTalk
AppleTalk ManagerUpdate

Written by: FredA. Huxham May 4, 1987Updated: March 1, 1988

What you needto do in orderto usehigh-level AppleTalk routinesdependsuponthe interfacesyou areusing.Somedifferencesareoutlinedbelow.

MPW before 2.0

When calling the old high-level AppleTalk routines,many programmersget mysterious“resourcenot found” errors (-192) from suchseeminglyharmlessroutinesasMPPOpen.The resourcethat is not being found is ‘atpl’, a resourcethat containsall the glue codeto the high-level routines. In orderto usethe high-level routines,your application musthave this resourcein its resourcefork. The ‘atpl’ resourceis included in a file called“AppleTalk” with any compilersthat usethis outdatedversionof the AppleTalk interface.

MPW 2.0 and newer

A newerversionof the alternateinterfacesis availablein MPW 2.0; it includesbug fixesand increasedMacintosh II compatibility. With this version of the interface, the ‘atpl’resourceis no longerused.Glue codeis now linked into your application.

This will be the final releaseof the current-styleinterface. It will be supportedfor sometime asthe alternateinterface.We have movedto a more straightforwardand simplepreferredinterface,which is also implementedin MPW 2.0 and newer, and isdescribedin the AppleTalk Managerchapterof Inside Macintoshvol. V. Developersarefree to continueto usethe alternateinterface,but in the long run it will be advantageousto moveto the preferredinterface.

Third Party Compilers

Third party compilersuse interfacesthat are built from Apple’s MPW interfaces.Somecompilers may not have upgradedto the new interfacesyet. Contact the individualcompilermanufacturersfor more information.

TechnicalNote #121 page 1 of 1 Using the High-Level AppleTalk Routines



. .



Macintosh Technical Notes

#122: Device-IndependentPrinting

Seealso: The Printing Manager

Written by: GingerJernigan May 4, 1987Updated: March 1, 1988

The Printing Manager was designedto give Macintosh applications a deviceindependentmethodof printing, but we haveprovided device-dependentinformation,suchasthe contentsof the print record.Due to the large numberof printer-typedriversbecoming available (even for non-printer devices) device independenceis morenecessarythan ever. What this meansto you, as a developer,is that we will no longerbe providing (or supporting) information regardingthe internal structureof the printrecord.

We realizethat therearesituationswherethe applicationmay know the bestmethodforprinting a particulardocumentand may want to bypassour dialogs. Unfortunately,usingyour own dialogsor not using the dialogsat all, requiressettingthe necessaryfields inthe print recordyourself.Therearea numberof problems:

• Many of the fields in the print record are undocumented,and, as we changetheinternal architectureof the Printing Managerto accommodatenew devices,thoseundocumentedfields are likely to change.

• Each driver usesthe private, and many of the public, fields in the print recorddifferently. The implications are that you would need intimate knowledgeof howeachfield is usedby eachavailabledriver, and you would haveto set the fields inthe recorddifferently dependingon the driver chosen.As the numberof availableprinter-typedrivers increases,this can becomea cumbersometask.

Summary

To be compatiblewith future printer-like devices,it is essentialthat your applicationprintin a device-independentmanner.Avoid testing undocumentedfields, setting fields in theprint record directly and bypassingthe existing print dialogs. Use the Printing Managerdialogs,PrintDefaultandPrValidateto setup the print recordfor you.

Technica’Note #122 page 1 of 1 Device-IndependentPrinting



. .



Macintosh Technical Notes

#123: Bugs in LaserWriterROMs

Seealso: The Printing Manager
PostScriptLanguageReferenceManual, AdobeSystems

Written by: GingerJernigan May 4, 1987Modified by: GingerJernigan July 1, 1987Updated: March 1, 1988

Theseare LaserWriterbugs that your usersmay encounterwhen printingfrom any Macintoshapplication.Theseare for your information;you cannotcode around them. The bugs describedhere occur in the 1.0 and 2.0LaserWriterROMs.

To determinewhich ROMs their LaserWritercontains,userscan look at the test pagethat the LaserWriterprints at start-uptime. In additionto other information (detailedin theLaserWriteruser’s manual),the ROM version is shown at the bottom of the line graph.The original LaserWriter contained version 1 .0 ROMs. The currently shippingLaserWriterandthoseupgradedto the LaserWriterPluscontainversion2.0 ROMs.

Thesearesomeof the problemswe know of:

1. If the level of paperin the papertray is getting low, and the userprints a documentthat will causethe tray to becomeempty,a PostScripterror may occur. This problemexists in both the 1 .0 and 2.0 LaserWriter ROM5 and will not be fixed in the nextROM version.

2. If a userprints more than 15 copiesof a document,a timeout condition may occurcausingthe print job to abort. With LaserShare,this problemcan occur with as fewas9 copies.This problemis a result of the LaserWriterturning AppleTalk off while itis printing. It doesn’t sendout any packetsto tell the world it’s still alive while it isprinting, so the connectiontimes out after about2 minutes.This problem exists inboth the 1 .0 and 2.0 LaserWriter ROMs and will not be fixed in the next ROMversion.

3. When printing a documentthat containsmore than 10 patterns,usersmay receiveintermittent PostScripterrors. This usually occurs when trying to print a lot ofpatterns,and a bitmap image on the samepage.The code for imaging patternsallocatesalmostall of the availableRAM for itself, so when the bitmap imaging codetries to allocatespace,and there isn’t enough(and it doesn’t know how to reclaimmemory from the previousoperation),a limitcheck error occurs.This problemexists in 2.0 LaserWriterROMs. It will be improved but not fixed in the next ROMversion.

TechnicalNote #123 page 1 of 2 Bugs in LaserWriterROMs



4. If a userchoosesUS Letteror B5 paperand hasa different sizedtray in the printer,

and prints using manual feed, the LaserWriterwill print assumingthat the paper

being fed manually is the samesize asthat in the tray. For example,if they havea

US letter tray in the LaserWriterand print a documentformattedfor B5 letter using

manualfeed, the imagewill not be centeredon the page.The printer assumesthat

the manually fed paper is also US letter size and prints the image positioned

accordingly,despitethe driver’s instructions.This is a bug in the Note operatorin

PostScript,which the driver usesfor specifying the US letter and B5 letter paper

sizes.The workaroundis to tell the userto put an B5 tray in the printer when printing

B5 manually. This problem exists in the 1.0 and 2.0 ROMs and will not be fixed in

the next ROM version.

By the way, an interesting,but annoying, occuranceof this bug happenswhen

manuallyprinting Legal sizeddocumentswith the 4.0 LaserWriterdriver. When the

Larger Print Area option in the style dialog is deselected(which is the default) the

driver usesthe Note operatorto specify the pagesize. When the userprints the

documentusing manualfeed, and has a US letter tray in the printer, the image is

shifted up on the pagecutting off the top of the image. if you tell the userto turn on

the Larger Print Area option in the style dialog, the driver specifiesthe pagesize

using Legal insteadof Note andthe imageis printed properly.

.

.
TechnicalNote #123 page 2 of 2 Bugs in LaserWriterROMs



Macintosh Technical Notes

#124: Using Low-Level Printing Calls With AppleTalk ImageWriters
Seealso: The Printing Manager

Written by: GingerJernigan May 4, 1987Updateby: Scott “ZZ” Zimmerman Febuary?,1988Updated: March 1, 1988

When you usethe low-level printer driver to print, you don’t get the benefitsof the errorchecking that is done when you use the high-level Printing Manager.So, if the userprints to an AppleTalk lmageWriter(including an AppleTalk lmageWriterLQ) that is busyprinting anotherjob, the driver doesn’t know whetherthe printer is busy, offline, ordisconnected.Becauseof this, PrErrorwill return (and PrintErr will contain)abortErr.

Sincethereis no way to tell when you are printing to an AppleTalk lmageWriter,the onlyworkaroundfor this is to usehigh-level Printing Managerinterface.

TechnicalNote#124 page 1 of 1 Low-Level Printing Calls With the ATIW



.

.



Macintosh Technical Notes

#125:The Effect of Spool-a-page/Print-a-pageon SharedPrinters
Seealso: Printing Manager

TechnicalNote #72—
Optimizing for the LaserWriter—Techniques

Written by: GingerJernigan May 4, 1987Updated: March 1, 1988

This technical note discussesdrawbacksof using the spool-a-page!print-a-pagemethodof printing.

The “spool-a-page/print-a-page”methodof printing prints eachpageof a documentas aseparatejob instead of calling PrpicFile to print the entire picture file. Manyapplicationsadoptedthis methodof printing to avoid running out of disk spacewhile thelmageWriterdriver was spoolingthe documentto disk. As long asyou are printing to adirectly connectedlmageWriter,you’re fine, but if you are printing to remoteor shareddevices(like the AppleTalk lmageWriterand the LaserWriter),this methodmay createsignificant problemsfor the user.

When a job is initiated by the application,the driver establishesa connectionwith theprinter via AppleTalk. When the job is completed,the driver closesthe connection,allowing anotherjob the opportunity to print. If each page is a job in itself, then theconnectionis closedand reopenedbetweeneachpage,allowing anotherapplicationtoprint betweenthe pagesof the document,which, asyou might imagine,could presentasignificant problem. If two peopleare printing to the sameAppleTalk lmageWriterat thesametime andtheir applicationsusethe “spool-a-page/print-a-page”methodof printing,the pagesof eachdocumentwill be interleavedat the printer.

Although thereare good reasonsfor using this methodof printing, it is only useful for adirectly connectedprinter. From a compatibility point of view, this methodof printing isbuilt-in devicedependence.Also, this methodcould createseriousproblemsfor othertypesof remotedevices.Therefore,we are recommendingthat applicationsavoid usingthis methodindiscriminately.You shouldcheckavailabledisk spaceto seehow muchroom you have beforeyou print. If there isn’t enoughspacefor your entire document,then print as much asyou can (to minimize the interleaving)beforestartinganotherjob.Wheneverpossible,applicationsshould usethe print loop describedon page11-155 inThe Printing Managerchapterof InsideMacintosh.

TechnicalNote #125 page 1 of 1 Spool/Printon SharedPrinters



.



Macintosh
TechnicalNotes

DeveloperTechnicalSupport
#126: Sub(Launching)from a High-Level Language
Revisedby: Rich Collyer & Mark Johnson April 1989Written by: Rick Blair & JimFriedlander May 1987
Note: DeveloperTechnicalSupporttakestheview that launchingandsublaunchingarefeatureswhich arebestavoidedfor compatibility (andother)reasons,but we wantto makesurethatwhenit is absolutelynecessaryto implementit, it is donein thesafestpossibleway.

This TechnicalNote discussesthe “safest”methodof calling_Launchfrom a high-level languagethat supportsinline assemblylanguagewith the option of launchingor sublaunchinganotherapplication.
ChangessinceAugust 1988: IncorporatedTechnicalNote #52 on calling _Launchfrom ahigh-level language,changedthe exampleto offer a choicebetweenlaunchingor sublaunching,addeda discussionof the _Launchtrap underMultiFinder, and updatedthe MPW C codetoincludeinline assemblylanguage.

The SegmentLoaderchapterof InsideMacintosh11-53 statesthe following aboutthe_Launchtrap:

“The routinesbelowareprovidedfor advancedprogrammers;they canbe calledonlyfrom assemblylanguage.”

While this statementis technicallytrue, it is easyto call _Launchfrom any high-level languagewhich supportsinline assemblycode,and this Note providesexamplesof calling LaunchinMPW PascalandC.

Beforecalling Launch,you needto declarethe inline procedure,which takesa variableof typepLaunchStructas a parameter.Sincethe compilerpushesa pointerto this parameteron thestack,you needto includecodeto put this pointerinto AU. The way to do this is with a MOVE . L(SP) +, AO instruction,which is $205F in hexadecimal,so the first word after INLINE is$205F. This instructionsetsup AO to containa pointerto the filenameand 4 (AO) to containtheconfigurationparameter,so the lastpartof the inline is the Launchtrap itself, which is $A 9F2in hexadecimal.The configurationparameter,which is normally zero,determineswhethertheapplicationusesalternatescreenandsoundbuffers. Sincenot all Macintoshmodelssupportthesealternatebuffers, you shouldavoid using them unlessyou havea specific circumstancewhichrequiresthem.

The Finderdoesa lot of hiddencleanupandothertaskswithout userknowledge;therefore,it isbestif you do not try to replacetheFinderwith a “mini” or try to launchotherprogramsandhavethem return to your application. In the future, the Finder may provide better integrationforapplications,and you will circumventthis if you try to act in its place by sublaunchingotherprograms.

#126: Sub(Launching)From a High-LevelLanguage
1 of 6



MacintoshTechnicalNotes

If you havea situationwhereyour applicationmustlaunchanotherandhaveit return,andwhere

you are not worried about incompatibility with future SystemSoftwareversions,there is a

“preferred”way of doing this which fits into the currentsystemwell. Systemfile version4.1 (or

later) includes a mechanismfor allowing a call to anotherapplication; we term this call a

“sublaunch.” You canperforma sublaunchby addinga setof simpleextensionsto theparameter

block you passto the_Launchtrap.

Launch and MultiFinder

UnderMultiFinder, a sublaunchbehavesdifferently thanunderthe Finder. The applicationyou

sublaunchbecomesthe foregroundapplication,and when the userquits that application,the

systemreturnscontrol to thenextfrontmostlayer,which will not necessarilybeyour application.

If you set both high bits of LaunchFlags,which requestsa sublaunch,your applicationwill

continueto executeafterthecall to Launch. UnderMultiFinder, the actuallaunch(andsuspend

of your application)will not happenin the _Launchtrap, but ratherafter a call or more to

WaitNextEvent.

UnderMultiFinder,_Launchcurrentlyreturnsan errorif thereis not enoughmemoryto launch

the desiredapplication,if it cannotlocatethe desiredapplication,or if the desiredapplicationis

alreadyopen. In the latter case,that applicationwill not be madeactive. If you attemptedto

launch,MultiFinder will call SysBeep,your applicationwill terminate,andcontrol will given to

the next frontmostlayer. If you attemptedto sublaunch,control will return to your application,

andit is up to you to reporttheerrorto theuser.

Currently, Launchreturnsan error in registerDO for a sublaunch,andyou shouldcheckit for

errors(DO<O) afterany attemptsat sublaunching.If DO>=O thenyour sublaunchwassuccessful.

You shouldrefer to theProgrammer’sGuide to MultiFinder (APDA) andMacintoshTechnical

Notes#180,MultiFinder Miscellaneaand#205,MultiFinder Revisited: The 6.0 SystemRelease,

for furtherdiscussionof the_Launchtrap underMukiFinder.)

Working Directories and SublaunchingWith the Finder

Puttingasidethecompatibility issuefor themoment,theonly problemsublaunchingcreatesunder

the current systemis one of Working Directory Control Blocks (WDCBs). Unless the

applicationyou arelaunchingis at the root directoryor on an MFS volume,you mustcreatea new

WDCB andsetit as thecurrentdirectorywhenyou launchthe application.

In the examplewhich follows, the new working directory is opened(allocated)by StandardFile

andits WDRefNumis returnedin reply . vRefNum. If you do not useStandardFile andcannot

assume,for instance,that the applicationwasin the blessedfolderor root directory, thenyou must

opena new working directoryexplicitly via a call to _OpenWD. You shouldgive the new WDCB

a WDProcID of ‘ERII<’, so theFinder(or anothershell) would know to deallocatewhenit sawit

wasallocatedby a “sublaunchee.”

Although the sublaunchingprocessis recursive(i.e., programswhich are sublaunchedmay, in

turn, sublaunchotherprograms),thereis a limit of 40 on the numberof WDCBs which can be

created. With this limit, you could run out of availableWDCBs very quickly if manyprograms

wereplaying the shell gameor neglectingto deallocatethe WDCBs they hadcreated. Make sure

you checkfor all errorsaftercalling_PBOpenwD.A tMWDOErr (—121) meansthat all available

2 of 6 #126: Sub(Launching)From a High-LevelLanguage



DeveloperTechnicalSupport
April 1989

WDCBs havebeenallocated,and if you receivethis error, you shouldalert the userthat thesublaunchfailed andcontinueasappropriate.

Warning: Although the exampleincludedin this Note coverssublaunching,DeveloperTechnicalSupportstronglyrecommendsthatdevelopersnot usethis featureof the_Launchtrap. This trap will changeinthe not-too-distantfuture, and when it doeschange,applicationswhich performsublaunchingwill break. The only circumstanceinwhich you could considersublaunchingis if you are implementingan integrateddevelopmentsystemandarepreparedto dealwith thepossibility of revisingit everytime Apple releasesa newversionofthe SystemSoftware.

MPW Pascal

{It is assumedthat the Signals are caught elsewhere; see TechnicalNote #88 for more information on the Signal mechanism)

(the extendedparameterblock to Launch}
TYPE

pLaunchStruct ‘LaunchStruct;
LaunchStruct RECORD

pfName : StringPtr;
param : INTEGER;
LC : PACKED ARRAY[O..1] OF CHAR; (extendedparameters:)extBlockLen : LONGINT; (number of bytes in extension 6)fFlags : INTEGER; (Finder file info flags (see below)launchFlags : LONGINT; (bit 31,30=1 for sublaunch, others reserved)END; {LaunchStruct}

FUNCTION Launchlt(pLaunch:pLaunchStruct): OSErr; (< 0 means error)INLINE $205F, $A9F2, $3E80;
pops pointer into AO, calls Launch, pops DO error code into result:MOVE.L (A7)+,AO
Launch

MOVE.W DO, (A?) ; since it MAY return

PROCEDURE Dobaunch(subLaunch:BOOLEAN); (Sublaunch if true and launch if false)

VAR
myLaunch : LaunchStruct; (launch structure)
where : Point; (where to display dialog)reply : SFReply; (reply record)
myFileTypes : SFTypeList; (we only want APPL5)numFileTypes : INTEGER;
myPH : CInfoPBRec;
dirNameStr : str255;

BEGIN
where.h := 20;
where.v := 20;
numFileTypes:=1;
myFileTypes(0J:= APPL; (applicationsonly!)(Let the user choosethe file to Launch)
SFGetFile(where, “, NIL, numFileTypes, myFileTypes, NIL, reply);

#126: Sub(Launching)From a High-LevelLanguage 3 of 6



MacintoshTechnicalNotes

IF reply.good THEN BEGIN

dirNameStr:= reply.fName; {initialize to file selected)

(Get the Finder flags)

WITH rnyPB DO BEGIN

ioNamePtr:= @dirNameStr;

ioVRefNum:= reply.vRefNum;

ioFDirlndex:= 0;

ioDirlD:= 0;

END; (WITH)

Signal(PBGetCatlnfo(@MyPB,FALSE));

(Set the current volume to where the target application is)

Signal(SetVol(NIL, reply.vRefNum));

(Set up the launch parameters)

WITH myLaunch DO BEGIN

pfName := @reply.fName; (pointer to our fileName)

param := 0; (we dont want alternatescreenor sound buffers)

LC := LC; (here to tell Launch that there is non—junk next)

extBlockLen := 6; (length of param. block past this long word)

(copy flags; set bit 6 of low byte to 1 for RO access:)

fFlags : myPB.ioFlFndrlnfo.fdFlags; (from GetCatlnfo)

(Test subLaunchand set LaunchFlagsaccordingly)

IF subLaunchTHEN

LaunchFlags : $C0000000 (set BOTH high bits for a sublaunch}

ELSE
LaunchFlags := $00000000; (Just launch then quit)

END; (WITH)

(launch; you might want to put up a dialog which explains that

the selectedapplication couldnt be launched for some reason.)

Signal(Launchlt(@myLaunch));

END; (IF reply.good)

END; {DoLaunch}

4 of 6 #126: Suh(Launching)From a High-LevelLanguage



DeveloperTechnicalSupport

MPWC
April 1989

typedef struct LaunchStruct
char *pfName;
short mt param;
char LC[2];
long mt extBlockLen;
short mt fFlags;
long mt launchFlags;

*pLaunchstruct;

7* pointer to the name of launchee *1

I*extended parameters:*I
/*number of bytes in extension 6*!
/*Finder file info flags (see below) */
/*bit 31,30==l for sublaunch, others reserved*/

pascal OSErr Launchlt( pLaunchStructpLnch) 1* < C means error *1= (0x205F, CxA9F2, 0x3E80};

OSErr DoLaunch(subLaunch)
Boolean

1* DoLaunch *1
struct LaunchStruct
Point
SFReply
SFTypeList
short mt
HFilelnfo
char
OSEr r

myLaunch;
where;
reply;
myFileTypes;
numFileTypes=l;
myPB;
*dirNameStr;
err;

where.h = 80;
where.v = 90;
myFileTypes[0J = ‘APPL’; 7* we only want APPLS *7/*Let the user choosethe file to Launch*!
SFGetFile(where, nil, numFileTypes, myFileTypes, nil, &reply);

if (reply.good)

dirNameStr &reply.fName; /*initialize to file selected*!

/*Get the Finder flags*/
myPB. ioNamePtr=dirNameStr;
myPB. ioVRefNum= reply.vRefNum;
myPB.iorDirlndex= 0;
myPB.ioDirlD = 0;
err PBGetCatlnfo((CInfoPBPtr)&myPB,false);if (err != noErr)

return err;

/*Set the current volume to where the target application is/err = SetVol(nil, reply.vRefNum);
if (err noErr)

return err;

/*Set up the launch pararneters*!
myLaunch.pfName= &reply.fName;
myLaunch.param= 0;

/*pointer to our fileName*/
!*we don’t Want alternatescreen

or sound buffers*//*set up LC so as to tell Launch that there is non-junk next*/myLaunch.LC[0) = ‘L’; myLaunch.LC[l) = ‘C’;
myLaunch.extBlockLen= 6; /*length of param. block past

this long word*!/*copy flags; set bit 6 of low byte to 1 for RO access:*!
myLaunch.fFlags= myPB.ioFlFndrlnfo.fdFlags; /*from GetCatlnfo*/

7* pops pointer into AC, calls Launch, pops DO error code into result:MOVE.L (A7)+,A0
_Launch
MOVE.W DO, (A7) ; since it MAY return /

subLaunch; 7* Sublaunchif true and launch if false */

/*where to display dialog*/
/*reply record*/

we only want APPLs *7

#126: Sub(Launching)From a High-LevelLanguage
5 of 6



MacintoshTechnicalNotes

1* Test subLaunchand set launchFlagsaccordingly */

if ( subLaunch

myLaunch.launchFlags OxC0000000; /*set BOTH hi bits for a sublaunch *1

else
myLaunch.launchFlags= Ox00000000; 1* Just launch then quit *1

err = Launchlt(&myLaunch); 1* call Launch

if (err < 0)

/* the launch failed, so put up an alert to inform the user /

LaunchFailed;

return err;

else
return noErr;

/*if reply.good*/

/*DoLaunch*I

Further Reference:
• InsideMacintosh,Volumes1-12, 11-53, & IV-83, TheSegmentLoader

• Programmer’sGuideto MultiFinder (APDA)

• TechnicalNote#129,_SysEnvirons:System6.0 andBeyond

• TechnicalNote#180,MukiFinderMiscellanea

• TechnicalNote#205,MultiFinderRevisited: The 6.0 SystemRelease

.

6 of 6
#126: Sub(Launching)From a High-LevelLanguage



Macintosh Technical Notes

#127:TextEdit EOL Ambiguity

Seealso: TextEdit

Written by: Rick Blair May 4, 1987Updated: March 1, 1988

TESetSelectmay be usedto positionthe insertionpoint at the endof a line.Thereis an ambiguity, though;shouldthe insertionpoint appearat the endofthe precedingline or the startof the following one?It is possibleto determinewhatwill happen,asyou areaboutto see.

There is an internal flag usedby TextEdit to determinewherethe insertion point at theend of a line appears.This flag is part of the clikStuff field in the TERec. It is theremainly for the useof TEClick, but it is also usedby TESetSelect(althoughit defaultsto the right sideof the previousline).

The following codecan be usedto force the insertion point to appearat the left of thefollowing line when it is positionedat the endof a line; in MPW Pascal:
TEDeactivate(tH);
tH”.clikStuff := 255; {position caret on left)TESetSelect(eolcharpos,eolcharpos,tH); {arnbiguous point)TEActivate(ti!);

In MPWC:

TEDeactivate(ti!);
(**tH) .clikStuff = 255; /*position caret on left*/TESetSelect(eolcharpos,eolcharpos,ti!); /*ambiguous point*/
TEActivate(tH);

If you want to ensurethat thecaretis on the right side (to which it normally defaults)thensubstitutea zerofor the 255.

TechnicalNote #127 page 1 of 1 TextEdit EOL Ambiguity



.

.



Macintosh Technical Notes

#128: PrGeneral

Seealso: The Printing Manager
TechnicalNote #118—

How to Checkand Handle Printing Errors

Written by: GingerJernigan May 4, 1987Updated: March 1, 1988

The Printing Managerarchitecturehas been expandedto include a newprocedurecalled PrGeneral.The featuresdescribedhere are advanced,special-purposefeatures, intended to solve specific problems for thoseapplications that need them. The calls to determine printer resolutionintroducea gooddealof complexity into the application’scode,andshouldbeusedonly whennecessary.

Version 2.5 (and later) of the lmageWriterdriver and version 4.0 (and later) of theLaserWriterdriver implementa genericPrinting Managerprocedurecalled PrGeneral.This procedureallows the Print Managerto expandin functionality, by allowing printerdrivers to implementvariousnew functions.The Pascaldeclarationof PrGeneralis:

PROCEDURE PrGeneral (pData: Ptr);

The pData parameteris a pointer to a data block. The structureof the data block isdeclaredas follows:

TGnlData = RECORD {lst 8 bytes are common for all PrGeneralcalls)iOpCode : INTEGER; {input}
iError INTEGER; {output)
lReserved : LONGINT; {reserved for future use)
{more fields here, dependingon particular call}

END;

The first field is a 2-byte opcode, iOpCode,which acts like a routine selector.Thecurrently availableopcodesare describedbelow.

The secondfield is the error result, iError, which is returnedby the print code. Thiserror only reflectserror conditionsthat occurduring the PrGeneralcall. For example,ifyou usean opcodethat isn’t implementedin a particularprinter driver then you will get aOpNotlmpl error.

TechnicalNote #128 page 1 of 7 PrGeneral



Here arethe errorscurrently defined:

CONST

noErr = 0; (everything’s hunky}

NoSuchRsl = 1; (the resolution you chose isn’t available)

OpNotlmpl = 2; (the driver doesn’t support this opcode}

After calling PrGeneralyou shouldalwayscheckPrError. If noErr is returned,then

you can proceed.If ResNotFoundis returned,then the current printer driver doesn’t

supportPrGeneraland you shouldproceedappropriately.SeeTechnicalNote #118for

detailson checkingerrors returnedby the Printing Manager.

lError is followed by a four byte reservedfield (that meansdon’t useit). The contentsof

the rest of the datablock dependson the opcodethat the application uses.There are

currently five opcodesusedby the lmageWriterand LaserWriterdrivers.

The Opcodes

Initially, the following calls are implementedvia PrGeneral:

• GetRslData(get resolutiondata): iOpCode = 4

• SetRsl(set resolution): iOpCode = 5

• DraftBits (bitmapsin draft mode): iOpCode 6

• noDraftBits (no bitmapsin draft mode): iOpCode = 7

• GetRotn(get rotation): iOpCode = 8

The GetRslDataand SetRslallow the applicationto find out what physical resolutions

the printer supports, and then specify a supported resolution. DraftBits and

noDraftBits invoke a new featureof the lmageWriter, allowing bitmaps(imagedvia

Copysits)to be printed in draft mode. GetRotn lets an application know whether

landscapehasbeenselected.Below is a detaileddescriptionof how eachroutine works.

The GetRslDataCall

GetRslData(iopcode = 4) returns a record that lets the application know what

resolutionsare supportedby the current printer. The applicationcan then use SetRsl

(descriptionfollows) to tell the printerdriver which one it will use.This is the format of the

input datablock for the GetRslDatacall:

TR5IRg = RECORD (used in TGetRslBlk}

iMin, iMax: Integer; (0 if printer only supportsdiscrete resolutions)

END;

TRslRec = RECORD (used in TGetRslBlk}

iXRsl, iYRsl: Integer; (a discrete, physical resolution)

END;

TechnicalNote #128 page 2 of 7 PrGeneral



TGetRslBlk = RECORD (data block for GetRslDatacall)
iOpCode: Integer; (input; = getRslDataOp}
iError: Integer; (output)
iReserved: Longlnt; (reservedfor future use)
iRgType: Integer; {output; version number)
XRs1Rg: TRs1Rg; (output; range of X resolutions)
YR51Rg: TRs1Rg; (output; range of Y resolutions)
iRslRecCnt: Integer; (output; how many RslRecs follow)
rgRslRec: ARRAY[1. .27] OF TRslRec; (output; number filled dependson

printer type)
END;

The iRgType field is much like a version number; it determinesthe interpretationof thedatathat follows. At present,a iRgTypevalue of 1 appliesboth to the LaserWriterandtothe lmageWriter.

For variable-resolutionprinters like the LaserWriter,the resolution rangefields xRslRgand YRs1Rg expressthe rangesof valuesto which the X and Y resolutionscan be set.For discrete-resolutionprinters like the lmageWriter, the values in the resolution rangefields arezero.

Note: In general,X and Y in theserecordsare the horizontal and vertical directionsofthe printer, not the document!In landscapeorientation,X is horizontal on the printer butvertical on the document.

After the resolution range information there is a word which gives the number ofresolution records that contain information. These records indicate the physicalresolutionsat which the printer can actually print dots. Each resolutionrecordgives an Xvalueand a Y value.

Whenyou call PrGeneralyou passin a datablock that looks like this:

OpCode=4 iword

Error Code 1 word

Reserved 2 words

RangeType= 1 1 word
X ResolutionRange:
min=O,max=O 2words

Y ResolutionRange: 2 wordsmm =0, max = 0

ResolutionRecordCount =0 1 word

ResolutionRecord#1: 2 wordsX = 0, V =0

ResolutionRecord#2..27

TechnicalNote #128 page 3 of 7 PrGeneral



Below is the datablock returnedfor the LaserWriter:

OpCode=4 1 word

Error Code(0 = okay) 1 word

Reserved 2 words

RangeType= 1 1 word

X ResolutionRange:
min=72,max=1500

2words

Y ResolutionRange: 2 words

mm = 72, max 1500

ResolutionRecordCount= 1 1 word

ResolutionRecord#1: 2 words

X = 300, Y = 300

Note that all the resolutionrangenumbershappento be the samefor this printer. There

is only one resolutionrecord, which gives the physical X and Y resolutionsof the printer

(300x300).

Below is the datablock returnedfor the ImageWriter.

OpCode=4 1 word

Error Code(0 = okay) 1 word

Reserved 2 words

RangeType= 1 1 word

X ResolutionRange: 2 words
mm =0, max = 0

Y ResolutionRange: 2 words

mm = 0, max = 0

ResolutionRecordCount = 4 1 word

ResolutionRecord#1: 2 words

X= 72, Y=72

ResolutionRecord#2: 2 words

X=144,Y= 144

ResolutionRecord#3: 2 words

X = 80, Y =72

ResolutionRecord#4: 2 words

X=160,Y= 144

All the resolution range values are zero, becauseonly discrete resolutionscan be

specifiedfor this printer. Thereare four resolutionrecordsgiving thesediscretephysical

resolutions.

Note that GetRslDataalways returns the same information for a particular printer

type—it is not dependenton what the userdoesor on printerconfigurationinformation.

TechnicalNote #128 page 4 of 7 PrGeneral



The SetRsl Call

SetRsl(iopcode = 5) is usedto specify the desired imaging resolution, after usingGetRslDatato determinea workable pair of values. Below is the format of the datablock:

TSetRslBlk = RECORD {data block for SetRsl call)
iOpCode: Integer; (input; = setRslOp}
iError: Integer; (output)
iReserved: Longlnt; (reservedfor future use}
hPrint: THPrint; (input; handle to a valid print record)
iXRsl: Integer; (input; desiredX resolution)
iYRsl: Integer; (input; desiredY resolution)

END;

hprint should be the handle of a print record that has previously been passedtoPrValidate.If the call executessuccessfully,the print record is updatedwith the newresolution;the datablock comesbackwith 0 for the error and is otherwiseunchanged.

However, if the desiredresolutionis not supported,the error is set to noSuchRslandtheresolutionfields are set to the printer’s default resolution

Note that you can undo the effect of a previouscall to SetRslby making anothercall thatspecifiesan unsupportedresolution (suchas OxO), forcing the default resolution.

The DraftBits Call

DraftB±ts (iOpCode 6) is implementedon both the lmageWriterand the LaserWriter.(On the LaserWriter it doesnothing, since the LaserWriteris always in draft mode andcan alwaysprint bitmaps.)Below is the format of the datablock:

TDftBitsBlk = RECORD (data block for DraftBits and NoDraftBits calls}iOpCode: Integer; (input; = draftBitsOp or noDraftBitsOp)
iError: Integer; (output)
lReserved: Longlnt; (reservedfor future use)
hPrint: THPrint; {input; handle to a valid print record)

END;

hPrint should be the handle of a print record that has previously been passedtoPrValidate.

This call forcesdraft-mode(i.e., immediate)printing, and will allow bitmapsto be printedvia CopyBits calls. The virtue of this is that you avoid spooling large massesof bitmapdataonto the disk, and you also get betterperformance.

The following restrictionsapply:

This call should be madebefore bringing up the print dialogsbecauseit affectstheirappearance.On the ImageWriter,calling DraftBits disablesthe landscapeicon inthe Style dialog, and the Best, Faster,and Draft buttonsin the Jobdialog.

TechnicalNote #128 page 5 of 7 PrGeneral



• if the printer doesnot supportdraft mode, already prints bitmaps in draft mode, or

doesnot print bitmapsat all, this call doesnothing.

• Only text and bitmapscan be printed.

• As in the normal draft mode, landscapeformat is not allowed.

• Everything on the page must be strictly Y-sorted, i.e. no reversepaper motion

betweenone string or bitmap and the next. Note that this meansyou can’t havetwo

or more objects(text or bitmaps)side by side; the top boundaryof eachobject must

be no higherthanthe bottom of the precedingobject.

The last restriction is important. If you violate it, you will not like the results.But note that if

you want two or more bitmaps side by side, you can combine them into one before

calling CopyBits to print the result. Similarly, if you are just printing bitmapsyou can

rotatethem yourself to achievelandscapeprinting.

The NoDraftBits Call

NoDraftBits (iOpCode = 7) is implementedon both the lmageWriter and the

LaserWriter. (On the LaserWriterit doesnothing, sincethe LaserWriteris always in draft

modeandcan alwaysprint bitmaps.)The format of the datablock is the sameasthat for

the DraftBits call.

This call cancelsthe effect of any precedingDraftBits call. if therewas no preceding

DraftBits call, or the printer does not supportdraft-modeprinting anyway, this call

doesnothing.

The GetRotn Call

GetRotn(iOpCode= 8) is implementedon the imageWriterand LaserWriter.Here is the

format of the datablock:

TGetRotnBlk = RECORD (data block for GetRotn call)

iopCode: Integer; (input; = getRotnOp}

iError: Integer; {output}

lReserved: Longlnt; (reservedfor future use)

hPrint: THPrint; {input; handle to a valid print record)

fLandscape:Boolean; (output; Boolean flag}

bXtra: SignedByte; (reserved)

END;

hPrint should be the handle to a print record that has previously been passedto

PrValidate.

If landscapeorientationis selectedin the print record,then fLandscapeis true.

.
TechnicalNote #128 page 6 of 7 PrGeneral



How To Use The PrGeneralOpcodes
The SetRslandDraftBits calls may requirethe print codeto suppresscertainoptions• in the Style and/orJobdialogs,thereforethey shouldalwaysbe called beforeany call tothe Style or Jobdialogs.An applicationmight usethesecalls as follows:

• Get a new print record by calling PrintOefault,or take an existing one from adocumentandcall PrValidateOn it.

• Call GetRslDatato find out what the printer is capableof, and decide whatresolutionto use.CheckPrErrorto be surethe PrGeneralcall is supportedon thisversionof the print code;if the error is ResNotFound,you haveolder print codeandmustprint accordingly.But if the PrErrorreturn is 0, proceed:

• Call SetRslwith the print recordandthe desiredresolutionif you wish.

• Call DraftBits to invoke the printing of bitmapsin draft modeif you wish.
Note that if you call eitherSetRslor DraftBits, you shoulddo so beforethe userseeseitherof the printing dialogs.

TechnicalNote#128 page 7 of 7 PrGeneral



.



Macintosh
TechnicalNotes

DeveloperTechnicalSupport

#129: Gestalt & _SysEnvirons—aNever-EndingStory
Revisedby: DaveRadcliffe May 1992Written by: Jim Friedlander May 1987

This TechnicalNote discussesthe latestchangesand enhancementsin the _Gestaltand_SysEnvironscalls.

Changessince October1991: Clarified information on Gestalt information for MacintoshPowerBook computers and added information on the Macintosh LC II and the
gestaltHardwareAttrselector.

Introduction

Previousversionsof this Note provided the latest documentationon new information the
SysEnvironstrap could return. DTS will continue to revise this Note to provide thisinformation; however,as the Gestalt trap is now the preferredmethodfor determininginformationabouta machineenvironment,this Note will alsoprovideup-to-dateinformationon
Gestaltselectors.

Gestalt

This Note now documents Gestaltselectorsand return valuesaddedsince the releaseofinsideMacintoshVolume VI. Pleasenote that this is supplementalinformation; for the completedescriptionof Gestaltand its use,pleaserefer to InsideMacintoshVolume VI.

The MacintoshLC II is identical to the MacintoshLC, exceptfor the presenceof an MC68030processor,so it returnsthe samegestaitMachineTyperesponseas the MacintoshLC (i.e. 19).Developersareremindedthat the gestaitMachineTypeselectoris for informationalpurposesonlyand should not be usedas a basis for programmaticdecisions. As always, developersareencouragedto testfor the specific featuresthey needandnot to rely on any particularmachinehavinga particularsetof features.

Note: TheMacintoshPowerBook100DeveloperNotesandthe MacintoshPowerBook740/170DeveloperNotes, available from APDA and on the Developer CD Seriesdisc and
AppleLink, incorrectly documentgestaitMachineTyperesponsevalues for theMacintoshPowerBookcomputers.The following valuesare, and havealways been,thecorrectvalues.

#129: _Gestalt& _SysEnvirons—aNever-EndingStory I of 5



MacintoshTechnicalNotes

Additional Gestalt ResponseValues

gestaltMachineTyperesponsevalues

gestaltQuadra900 20; ( Macintosh Quadra 900

gestaltPowerBookl7o 21; { Macintosh PowerBook 170

gestaltQuadra700 = 22; { Macintosh Quadra 700

gestaltClassicll = 23; { Macintosh Classic II

gestaltPowerBookl0o 24; ( Macintosh PowerBook 100

gestaltPowerBookl4o = 25; { Macintosh PowerBook 140

gestaltxeyboardTyperesponsevalues

gestaltPwrBookADBKbd = 12; { PowerBook Keyboard

qestaltPwrBooklSOADBKbd 13; { PowerBook Keyboard (ISO)

gestaltHardwareAttrSelector

The gestaltHardwareAttrselectorhasbeena sourceof confusionfor developerssince

originally documentedin Inside MacintoshVolume VI. This sectionwill try to reducethat

confusionandalsointroduceadditionalinformationreturnedby the selector.But be warnedthat

use of this selectorfor anything other than informational purposesshould be deemeda

compatibility risk. In other words, if you are dependenton the information returnedby this

selectorto function on existingcomputers,you will almostcertainly haveproblemson future

systems.

The reasonfor this is that gestaltHardwareAttrreturns very low-level hardware

information. If you needto usethis information,it implies you are too hardwaredependent.So

be very carefulaboutusingthis information.

Theprincipal sourceof confusionis bit 7, describedasgestaltHasSCSl.What this bit really

meansis the machineis equippedwith SCSIbasedon the 53C80chip, which wasintroducedin

the MacintoshPlus. This bit will be zero on the MacintoshIIfx and the MacintoshQuadra

computersbecausethey havea different low-level SCSIimplementation.TheMacintoshIIfx has

a 53C80compatiblechip thatalsosupportsSCSIDMA. It reportsthis informationusingbit 6 of

the gestaltHardwareAttrresponse.The MacintoshQuadracomputershaveyet another

SCSI implementationbasedon the 53C96chip and so reportdifferent information(seebelow).

Anothersourceof confusionis bit 4 (gestaltHasSCC).The MacintoshIIfx andMacintosh

Quadra900 haveintelligent I/O processors(lOPs) that normally isolatethe hardwareandmake

direct accessto the SCCimpossible.Normally, thesemachineswill reportthat they do not have

an SCC implying, correctly, that were you to attempt to accessit directly, you would fail.

However,if the userhasusedthe Compatibility Switch control panel to enablecompatibility

mode, gestaltHasSCCwill report true indicating you may accessthe SCC directly. But

rememberthat doingso meansyou aredoingdirecthardwareaccessand that theremay be a day

whenyou can’t accessthe SCCunderany circumstances.

New gestaltHardwareAttrValues for Macintosh QuadraComputers

Below are the new bits supportedby the MacintoshQuadracomputers.Any otherbits remain

undocumentedandsubjectto change.

gestaltHasSCSI96l = 21; { 53C96 SCSI controller on internal bus .
2 of 5 #129: _Gestalt& _SysEnvirons—aNever-EndingStory



DeveloperTechnicalSupport
May 1992

gestaltHasSCSI962
= 22; { 53C96 SCSI controller on external bus

_SysEnvirons

_SysEnvironswas the standardway to determinethe featuresavailableon a given machine.The preferred method to get this information is now _Ge s t a 1 t; information on_SysEnvironsis now providedonly for backwardcompatibility.

As originally conceived,_SysEnvironswould checkthe versionRequestedparametertodeterminewhat level of information you were preparedto handle,but this techniquemeansupdating SysEnvironsfor every new hardwareproductApple produces.With systemsoftwareversion 6.0, SysEnvironsintroducedversion 2 of environsVersion toprovide informationaboutnew hardwareas we introduceit; this new versionreturnsthe sameSysEnvRecas version 1.

Beginning with system software version 6.0.1, Apple releasesa new version ofSysEnvironsonly whenengineeringmakeschangesto its structure(that is, whenthey addnew fields to SysEnvRec);all existingversionsreturnaccurateinformationaboutthe machineenvironmenteven if part of that information was not originally definedfor the version yourequest.For example,if you call SysEnvironswith versionRequested= 1 on aMacintoshIIfx, it returnsa machineTypeof envMacllfx even though this machinetypeoriginally wasnot definedfor version 1 of thecall.

You shoulduseversion2 of SysEnvironsuntil Apple releasesa newerversion.MPW 3.0definesa constantcurSysEnvVers,which canbe usedto minimize the needfor sourcecoderevisions when SysEnvironsevolves. Regardlessof the version used, however,yoursoftwareshouldbe preparedto handleunexpectedvaluesand shouldnot make assumptionsabout functionality basedon current expectations.For example,if your softwarecurrentlyrequiresa MacintoshII, testing for machineType >= envMacll may result in yoursoftwaretrying to run on a machinethat doesnot supportthe featuresit requires,so test forspecific functionality (that is, hasFPU,hasColorQD,andso on).

Warning: This test for specific functionality is particularly true of FPUs (floating-pointunits). Some CPUs, such as the Macintosh Ilsi, may have optional, user-installedFPUs; therefore,an applicationshouldnot assumethatany Macintoshwith a microprocessorgreaterthan a 68000 (for example,68020, 68030 or68040)hasan FPU (68881/68882or built-in for the 68040). If an applicationmakesa conditionalbranchto executefloating-pointinstructionsdirectly, then itshouldfirst explicitly checkfor the presenceof theFPU.

You shouldalwayscheckthe environsVersionwhen returningfrom SysEnvironssince the glue always returnsas much information as possible,with environsVersionindicating the highestversion available,evenif the call returnsan envSeiTo oB ± g (—5502)error.

Calling _SysEnvironsFrom a High-Level Language
Due to a documentationerror in InsideMacintoshVolume V, DTS still receivesquestionsabouthow to call _SysEnvironsproperlyfrom PascalandC. InsideMacintoshdefinesthe Pascalinterfaceto SysEnvironsas follows:

#129:_Gestalt& _SysEnvirons—aNever-EndingStory 3 of 5



MacintoshTechnicalNotes

FUNCTION SysEnvirons (versRequested:INTEGER; VAR theWorid: SysEnvRecPtr) : OSErr;

BecausetheWorld is passedby reference(as a VAR parameter),it is not correct to passa

SysEnvRecPtr in the secondargument.Pascalwould then generatea pointer to this pointer

and passthat to the SysEnvironstrap in AO. (The assembly-languageinformation is

essentiallycorrect;_SysEnvironsreally doeswant a pointer to a SysEnvRecin AO.) The

correctPascalinterfaceto SysEnvironsis therefore:

FUNCTION SysEnvlrons (versionRequested:INTEGER; VAR theWorid: SysEnvRec) : OSErr;

In this case,Pascalpushesa pointerto theworidon the stack.The Pascalinterfaceglue then

pops this pointer off the stack directly into AO and calls SysEnvirons.Everything is

copacetic.

C programmersshouldrecognizetheir correspondinginterface:

pascal OSErr SysEnvirons (short versionRequested,SysEnvRec *theWorld)

InsideMacintoshdefinesthe type SysEnvPtr “SysEnvRec.It also sometimesrefersto

this type asSysEnvRecPtr.The inconsistencyis insignificantbecausein reality MPW does

not defineany suchtype, undereithername;therefore,it is neverneeded.

InsideMacintoshalsostatesthat “all of the ToolboxManagersmustbe initialized beforecalling

SysEnvirons.”This statementis not necessarilytrue. Startupdocuments(INITs), for instance,

may wish to call SysEnvironswithout initializing any of the Toolbox Managers.Keep in

mind that the atDrvrVersNumfield returnsa zero result if the AppleTalk drivers are not

initialized. The systemversion, machine type, processortype, and other key data return

normally.

Additional SysEnvironsConstants

The following are new SysEnvironsconstantswhich are not documentedin inside

Macintosh; however, you should refer to Inside Macintosh Volume V-i, Compatibility

Guidelines,for the restof the story.

machineType
envMacllx = 5; { Macintosh IIx

envMacllcx = 6; { Macintosh IIcx

envSE3O = 7; ( Macintosh SE/30

envPortable = 8; ( Macintosh Portable

envMacllci = 9; ( Macintosh lId

envMacllfx = 11; Macintosh IIfx

envMacClassic 15; { Macintosh Classic

envMacllsi 16; { Macintosh Ilsi I

envMacLC = 17; { Macintosh LC

envMacQuadra900 = 18; Macintosh Quadra 900

envMacPowerBookl7o = 19; ( Macintosh PowerBook 170

envMacQuadra700 20; { Macintosh Quadra 700

envMacClasslcll 21; ( Macintosh Classic II

envMacPowerBooklO0 22; ( Macintosh PowerBook 100

envMacPowerBookl10 23; ( Macintosh PowerBook 140 .
4 of 5 #129: _Gestalt& _SysEnvirons—aNever-EndingStory



DeveloperTechnicalSupport
May 1992

processor
env68030 4; { M068030 processorenv6SO4O 5; { MC68040 processor

keyBoardType
envPrtblADBKbd

= 6; ( Portable KeyboardenvPrtbllSOKbd = 7; { Portable Keyboard (ISO)envStdISOADBKbd
= 8; ( Apple StandardKeyboard (ISO)envExtISOADBKbd
= 9; { Apple Extended Keyboard (ISO)

envADBKbdII
= 10; { Apple Keyboard IIenvADBISOKbdII 11; { Apple Keyboard II (ISO)envPwrBkADBKbd 12; { PowerBook KeyboardenvPwrBklSOKbd
= 13; { PowerBook Keyboard (ISO)

Further Reference:
InsideMacintosh,VolumesV andVI, CompatibilityGuidelines

#129:_Gesialt& _SysEnvirons—aNever-EndingStory 5 of 5



. . .



Macintosh Technical Notes

#130:Clearing ioCompletion

Seealso: The File Manager

Written by: Jim Friedlander May 4, 1987Updated: March 1, 1988

When making synchronouscalls to the File Manager, it is not necessaryto clearioCompletion field of the parameterblock, sincethat is donefor you.

Someearliertechnotesexplicitly clearedioCompletion, with the knowledgethat thiswas unnecessary,to try to encouragedevelopersto fill in all fields of parameterblocksas indicatedin Inside Macintosh.

By the way, this is true of all parametercalls—you only have to set fields that areexplicitly required.

TechnicalNote #130 page 1 of 1 ClearingioCompletion



. .



Macintosh Technical Notes

#131:TextEdit Bugs in System4.2

Written by: Chris Derossi June1, 1987
Updated: March 1, 1988

This note formerly describedthe known bugs with the version of StyledTextEdit thatwasprovidedwith System4.1. Many of thesebugswerefixed inSystem4.2. This updatedTechnical Note describesthe remaining knownproblems.

TEStylinsert

Calling TEStyllnsertwhile the TextEdit record is deactivatedcausesunpredictableresults,so makesureto only call TEStyllnsertwhen the TextEdit recordis active.

TESetStyle

When using the doFacemodewith TESetStyle, the style that you passasa parameteris ORed into the style of the currently selectedtext. If you passthe empty set (no styles)though, TESetStyleis supposedto remove all styles from the selectedtext. But
TESetStyle checksan entire word insteadof just the high-orderbyte of the tsFacefield. The style information is containedcompletely in the high-order byte, and thelow-order byte may containgarbage.

If the low-orderbyte isn’t zero, TESetStylethinks that the tsFacefield isn’t empty, so itgoesaheadand ORs it with the selectedtext’s style. Sincethe actualstyle portion of the
tsFacefield is zero, no changeoccurswith the text. If you want to have TESetStyleremoveall stylesfrom the text, you can explicitly setthe tsFacefield to zero like this:

VAR

myStyle TextStyle;
anlntPtr : Integer;

BEGIN

anlntPtr := @myStyle.tsFace;
anIntPtr := 0;
TESetStyle(doFace,myStyle, TRUE, textH);

END;

TechnicalNote #131 page 1 of 2 TextEdit Bugs



TEStylNew

The line heightsarray doesnot get initialized when TEStylNew is called. Becauseof

this, the caret is initially drawn in a random height. This is easily solved by calling

TECalText immediatelyafter calling TEStylNew. Extra calls to TECalText don’t hurt

anythinganyway,so this will be compatiblewith future Systems.

An extra characterrun is placedat the beginning of the text which correspondsto the

font, size, and style which were in the grafPortwhen TEStylNew was called. This can

causethe line height for the first line to be too large. To avoid this, call TextSizewith

the desiredtext size beforecalling TEStylNew. If the text’s style information cannotbe

determinedin advance,then call TextSizewith a small value (like 9) before calling

TEStylNew.

TEScroll

The bug documentedin Technical Note #22 remainsin the new TextEdit. TEScroll

called with zero for both vertical and horizontaldisplacementscausesthe insertion point

to disappear.The workaroundis the sameas before;checkto makesurethat dV anddH

are not both zero beforecalling TEScroll.

Growing TextEdit Record

TextEdit is supposedto dynamically grow and shrink the LineStartsarray in the

TERecso that it hasone entry per line. Instead,when lines are added,TextEdit expands

the array without first checking to see if it’s already big enough. In addition, TextEdit

neverreducesthe size of this array.

Becauseof this, the longera particularTextEdit record is used,the larger it will get. This

can be particularly nasty in programsthat use a single TEReC for many operations

during the program’sexecution.

RestoringSavedTextEdit Records

Applications have useda techniquefor saving and restoringstyled text which involves

savingthe contentsof all of the TextEdit record handles.When restoring,TEStylNew is

called and the TextEdit record’s handlesare disposed.The savedhandlesare then

loaded and put into the TextEdit record. This techniqueshould not be used for the

nulistyle handlein the style record.

Instead,when TEStylNew is called, the nuliStyle handlefrom the style recordshould

be copied into the savedstyle record. This will ensurethat the fields in the null-style

recordpoint to valid data.

.
TechnicalNote #131 page 2 of 2 TextEclit Bugs



.

The declarationof a FCBPBReCis wrong in InsideMacintoshVolume IV and
earlyversionsof MPW. This hasbeenfixed in MPW 1 .0 and newer.

An error was made in the declarationof an FCBPBRecparameterblock that is used in
PBGetFCBInf0calls. The field ioFCBlndx was incorrectly listed as a LONGINT. The
following declaration(found in Inside Macintosh):

ioRefNum:
filler:
ioFCBlndx:
1oFCBF1Nm:

should be changedto:

ioRefNurn:
filler:
ioFCBlndx:
ioFCBFillerl:
ioFCBF1Nm:

INTEGER;
INTEGER;
LONGINT;
LONGINT;

INTEGER;
INTEGER;
INTEGER;
INTEGER;
LONGINT;

,-

Macintosh Technical Notes

#87: Error in FCBPBRec

Seealso: The File Manager

Written by: Jim Friedlander August 18, 1986
Updated: March 1, 1988

TechnicalNote #87 page 1 ofi Error in FCBPBRec



I

I

4



Macintosh Technical Notes

#88: Signals

Seealso: Using AssemblyLanguage(Mixing Pascal& Assembly)

Written by: Rick Blair August 1, 1986
Updated: March 1, 1988

Signalsare a form of intra-programinterrupt which can greatly aid clean,
inexpensiveerror trappingin stackframe intensive languages.A program
may invoke the Signal procedureand immediately return to the last
invocationof CatchSignal,including the completestackframestateat that
point.

Signals allow a program to leave off executionat one point and return control to a
convenienterror trap location, regardlessof how many levels of procedurenestingare
in between.

The example is provided with a Pascal interface, but it is easily adaptedto other
languages.The only qualification is that the languagemust bracket its procedures(or
functions) with LINK and UNLK instructions.This will allow the signal codeto clean up at
procedureexit time by removing Catchsignalentriesfrom its internal queue.Note:
only proceduresand/orfunctionsthat call CatchSignalneedto be bracketedwith LINK
and UNLK instructions.

Important:InitSignalsmust be called from the main programso that A6 can be set
up properly.

Note that there is no limit to the numberof local CatchSignalswhich may occurwithin
a single routine. Only the last one executedwill apply, of course, unless you call
FreeSignal.FreeSignalwill “pop” off the last CatchSignal.If you attemptto Signal
with no CatchSignalspending,Signalwill halt the programwith a debuggertrap.

InitSignalscreatesa small relocatableblock in the application heap to hold the
signal queue.If CatchSignalis unableto expandthis block (which it does5 elements
at a time), then it will signal backto the last successfulCatchSignalwith code= 200. A
Signal(0) actsas a NOP, so you may passOSErrs,for instance,after making File
Systemtype calls, and, if the OSErr is equalto NoErr, nothing will happen.

TechnicalNote #88 page 1 of 6 Signals



CatchSignalmay not be usedin an expressionif the stack is usedto evaluatethat

expression.For example,you can’t write:

c:= 3*catchsignal;

4
“Gotcha” summary

1. Routineswhich call CatchSignalmusthavestackframes.

2. InitSignalsmustbe called from the outermost(main) level.

3. Don’t put the CatchSignalfunction in an expression.Assign the result to an

INTEGER variable; i.e. i:=CatchSignal.

4. It’s safestto call a procedureto do the processingafter Catchsignalreturns.See

the PascalexampleTestSignalsbelow. This wiN preventthe use of a variable

which may be held in a register.

Below are threeseparatesourcefiles. First is the Pascalinterfaceto the signaling unit,
then the assemblylanguagewhich implementsit in MPW Assemblerformat. Finally,

thereis an exampleprogramwhich demonstratesthe useof the routinesin the unit.

(File ErrSignal.p}

UNIT ErrSignal;

INTERFACE

(Call this right after your other initializations (InitGraf, etc.)——in other

words as early as you can in the application)

PROCEDURE InitSignals;

(Until the procedurewhich enclosesthis call returns, it will catch

subsequentSignal calls, returning the code passedto Signal. When

CatchSignalis encounteredinitially, it returns a code of zero. These calls

may “nest”; i.e. you may have multiple CatchSignalsin one procedure.

Each nestedCatchSignalcall uses 12 bytes of heap space

FUNCTION CatchSignal: INTEGER;

(This undoes the effect of the last CatchSignal.A Signal will then invoke

the CatchSignalprior to the last one.}

PROCEDURE FreeSignal;

(Returns control to the point of the last CatchSignal. The program will then

behaveas though that CatchSignalhad returnedwith the code parameter

supplied to Signal.)

PROCEDURE Signal(code:INTEGER);

END.

(End of ErrSignal.p}

TechnicalNote #88 page 2 of 6 Signals



Here’s the assemblysourcefor the routinesthemselves:

ErrSignal code w. IriitSignal, CatchSignal,FreeSignal,Signal
defined

Version 1.0 by Rick Blair

PRINT OFF

INCLUDE ‘Traps.a’
INCLUDE ‘Too lEqu . a’
INCLUDE ‘QuickEqu.a’

INCLUDE ‘SysEqu.a’
PRINT ON

CatchSigErrEQU 200 ;“insufficient heap” message
SigChunks EQU 5 ;number of elementsto expand by
FrameRet EQU 4 ;return addr. for frame (off A6)
SigBigA6 EQU $FFFFFFFF ;maximuin positive A6 value

A template in MPW Assemblerdescribesthe layout of a collection of data
without actually allocating any memory space. A templatedefinition starts

with a RECORD directive and ends with an ENDR directive.

To illustrate how the template type feature works, the following template
is declaredand used. By using this, the asseiiersource appromixatesvery
closely Pascalsource for referencingthe correspondinginformation.

;template for our table elements
SigElement RECORD 0 ;the zero is the template origin
SigSP DS.L 1 ;the SP at the CatchSignal—(DS.Ljust like EQU)
SigRetAddr DS.L 1 ;the addresswhere the CatchSigrial returned
SigFRet DS.L 1 ;return addr. for end, procedure
SigElSize EQU * ;just like EQU 12

ENDR

The global data used by these routines follows. It is in the form of a
RECORD, but, unlike above, no origin is specified, which means that memory
space *will* be allocated.
This data is referencedthroug)n a WITH statementat the beginning of the
procs that need to get at this data. Since the Assembler knows when it is
referencingdata in a data module (since they must be declaredbefore they
are accessed),and since such data can only be accessedbasedon A5, there
is no need to explicitly specify AS in any code which referencesthe data
(unless indexing is used) . Thus,, in this program we have omitted all A5
referenceswhen referencingthe data.

SigGlobals RECORD ;no origin means this is a data record
;not a template(asabove)

SigEnd DS.L 1 ;current end of table
SigNow DS.L 1 ;the MRU element
SigHandle DC.L 0 ;handle to the table

ENDR

TechnicalNote #88 page 3 of 6 Signals



InitSignals PROC EXPORT ;PROCEDURE InitSignals;

IMPORT CatchSignal

WITH SigElement,SigGlobals

;the above statementmakes the template SigElement and the global data

;record SigGlobals available to this procedure

MOVE . L

NewHandle

BNE S

MOVE . L

MOVE. L

MOVE . L

MOVE . L

forgetit RTS
ENDP

CatchSignalPROC

IMPORT
WITH

*SigChunks*SigElSize,DO

;try to get a table

forgetit ;we couldn’t get that!?

AO,SigHandle ;save it

#—SigElSize,SigNow;point “now” before start

#SigChunks*SigElSize,SigEnd;save the end

#SigBigA6,A6 ;make A6 valid for Signal

EXPORT ; FUNCTION CatchSignal:INTEGER;

SiggySetup,Signal,SigDeath

SigElement,SigGlobals

MOVE L

MOVE . L

BEQ
MOVE . L

MOVE . L

ADD - L

MOVE . L

CMP . L
BNE. S

(5P)+,A].

SigHandle,DO

SigDeath

DO,AO

SigNow,DO

#SigElSize,DO

DO, SigNow

SigEnd,DO

catchit

ADD.L #SigChunks*SigElSize,DO;we’ll try to expand

MOVE.L DO,SigEnd ;save new (potential) end

SetHandleSize

BEQ.S @0 ;uinp around if it worked!

4

signals, we use ‘em

MOVE . L

MOVE . L

SUB. L

MOVE.W

JSR

ourselves

SigNow,SigEnd ;restoreold ending offset

#SigElSize,DO

DO,SigNow ;ditto for current position

*catchSigErr,(SP) ;we’ll signal a “couldn’t

catch” error

Signal ;never returns of course

@0 MOVE.L SigNow,00

catchit MOVE.L

ADD . L

MOVE . L

MOVE . L

CMP . L

BEQ.S

MOVE . L

(AO) ,AO

DO,AO

SP,SigSP(AO)

Al, SigRetAddr

#SigBigA6,AG

@0

deref.

;point to new entry

;save SP in entry

(AO) ;save return addressthere

;are we at the outer level?

;yes, no frame or cleanup needed

FrameRet(A6),SigFRet(AO);saveold frame return

address

;grab return address

;handle to table

;if NIL then croak

;put handle in A-register

;save new position

;have we reachedthe end?

;no, proceed

TechnicalNote #88 page 4 of6 Signals



LEA
MOVE L

CLR W

JMP

EXPORT ;PROCEDURE FreeSignal;
S iggySetup
SigElernent,SigGlobals
SiggySetup ;get pointer to current entry
SigFRet(AO),FrarneRet(A6);“pop” cleanup code
#SigElSize,DO
DO,SigNow ;“pop” the entry

EXPORT

SiggySetup,SigDeath
SigElement,SigGlobals
4(SP),D1 ;get code

;processthe signal if
(SP),AO ;save return address
#6,SP ;adjust stack pointer
(AO) ;return to caller(code

SigLoop UNLK
SigLoopi CMP.L

BLO. S
MOVE . L
MOVE L
MOVE.W

JMP

A6

SigSP(AO),A6
S igLoop

SigSP(AO) , SP
SigRetAddr(AO)
Dl, (SP)
(AO)
(or Hooston

;unlink stack by one frame
;is A6 beyond the saved stack?
;yes, keep unlinking
;bring back our SP

,AO ;get return address
;return code to Catchsignal
;Houston, boost the Signal!

if you’re from the Negative Zone)

;deref.
;to set CCR
;nil handle means trouble
;grab table offset to entry
;if no entries then give up
;poirit to current element

SigDeath _Debugger

END?

END

;a signal sans catch is bad news

0

SiggyPop,AO
AO,FrameRet(A6)
(SP)
(Al)

SiggySetup

SigFRet(AO) ,AO
#SigElSize,DO
DO, SigNow

(AO)

;set cleanup code address
;no error code (before its time)
;done setting the trap

;get pointer to element
;get proc’s real return address

;“pop” the entry
gone

@0

SiggyPop JSR

MOVE . L
SUB . L
MOVE . L
JMP
END?

FreeSignal PROC

IMPORT
WITH
JSR

MOVE . L
SUB . L
MOVE L
RT S
END?

Signal PROC

EXPORT
WITH

MOVE . W
BNE . S
MOVE . L
ADDQ . L
JMP

@0 JSR

BRA. S

;PROCEDURE Signal(code:INTEGER);

SiggySetup

SigLoopi

code is non—zero

was 0)

;get pointer to entry

SiggySetup MOVE . L
MOVE . L
MOVE . L
BEQ.S
MOVE . L
BMI . S
ADD . L
RTS

SigHandle,AO

(AO),AO
AO,DO

SigDeath

SigNow,DO
SigDeath
DO,AO

TechnicalNote #88 page 5 ot6 Signals



Now for the examplePascalprogram:

PROGRAM TestSignals;

USES ErrSignal;

VAR i:INTEGER;

PROCEDURE DoCatch(s:STR255; code:INTEGER);

BEGIN
IF code<>O THEN BEGIN

Writein (5, code);

Exit (TestSignals);

END;

END; {DoCatch}

PROCEDURE Easy;

PROCEDURE Never;

PROCEDURE DoCatch(s:STR255; code:INTEGER);

BEGIN

IF code<>O THEN BEGIN

Writeln(s,code);

Exit (Never);

END;

END; (DoCatch)

BEGIN (Never)

i : =CatchSignal;

DoCatch(’Signalcaught from Never, code ‘, i );

i :=CatchSignal;

IF i<>O THEN DoCatch(’Shouldnever get here!’,i); 4
FreeSignal; {“free the last CatchSignal)

Signal(7); (Signal a 7 to the last CatchSignal)

END; {Never)

BEGIN (Easy)

Never;

Signal(69); (this won’t be caught in Never)

END; (Easy) (all local CatchSignalsare freed when a procedureexits.)

BEGIN (PROGRAM)

InitSignals; (You must call this early on!)

(catch Signals not otherwise caught by the program)

i : =CatchSignal;

IF i<>O THEN

DoCatch(’Signalcaught from main, code =

Easy;

END.

The exampleprogramproducesthe foflowing two lines of output:

Signal Caught from Never, code = 7

Signal Caught from main, Code = 69

TechnicalNote #88 page 6 of 6 Signals



.

Earlierversionsof this notedescribeda bug in DrawPicture.This bug never
occurredon 64K ROM machines,and has beenfixed in System3.2 and
newer. Use of Systemsolder than 3.2 on non-64K ROM machinesis no
longer recommended.

Macintosh Technical Notes c3
#89: DrawPictureBug

Written by: GingerJernigan August 16, 1986
Updated: March 1, 1988

TechnicalNote #89 page 1 ofi DrawPictureBug



a a a



.

Earlierversionsof this notedescribeda problemwith SANE andSystem2.0.

Useof System2.0 is only recommendedfor Macintosh 128 machines,which

containthe 64K ROMs. Information specificto 64K ROM machineshasbeen

deletedfrom MacintoshTechnicalNotesfor reasonsof clarity.

Macintosh Technical Notes

#90: SANE Incompatibilities

Written by: Mark Baumwell August 14, 1986

Updated: March 1, 1988

TechnicalNote #90 page 1 ofi SANE Incompatibilities



S a



Macintosh Technical Notes

#91: Optimizing for the LaserWriter—PictureComments

Seealso: The Print Manager
QuickDraw
TechnicalNote #72—

Optimizing for the LaserWriter—Techniques
TechnicalNote #27—MacDrawPictureComments
PostScriptLanguageReferenceManual, Adobe Systems
PostScriptLanguageTutorial andCookbook,

Adobe Systems
LaserWriterReferenceManual

Written by: GingerJernigan November15, 1986
Modified by: GingerJernigan March 2, 1987
Updated: March 1, 1988

This technicalnote is a continuationof TechnicalNote #72. This technical
notediscussesthe picturecommentsthat the LaserWriterdriver recognizes.

This technical note has been modified to include correcteddescriptionsof
the SetLinewidth,PostScriptFi.leandResourcePScommentsand to
includesomeadditionalwarnings.

The implementationof QuickDraw’spicCommentfacility by the LaserWriterdriver allows
you to takeadvantageof features(like rotatedtext) which are availablein PostScriptbut
may not be availablein QuickDraw.

Warning: Using PostScript-specificcommentswill make your code printer-dependent
and may causecompatibility problemswith non-PostScriptdevices,so don’t use them
unlessyou absolutelyhaveto.

Someof the picture commentsbelow are designedto be issuedalong with QuickDraw
commandsthat simulatethe commentedcommandson the Macintoshscreen.When the
commentsare used,the accompanyingQuickDraw commentsare ignored. If you are
designing a picture to be printed by the LaserWriter, the structureand use of these
commentsmust be precise,otherwisenothing will print. If anotherprinter driver (like the
lmageWriterI/Il driver) hasnot implementedthesecomments,the commentsare ignored
andthe accompanyingQuickDrawcommandsare used.

TechnicalNote #91 page 1 of 18 LaserWriterPictureComments



Below are the picture commentsthat the LaserWnterdriverrecognizes:

Type Kind DataSize Data Description

* DashedLine
* DashedStop

SetLineWidth

180

181

182

TDashedLine

NIL

Point

* PostScriptBegin190
* PostScriptEnd 191
* PostScriptHandlel92
* PostScriptFile 193
* TextlspostScript194
* ResourcePS 195

0 NIL

0 NIL

— PSData

- FileName

0 NIL

8 Type/ID/Index

Set driver state to PostScript

Restore QuickDraw state

PostScriptdata in handle

FileName in data handle

QuickDraw text is sent as Postscript

PostScriptdata in a resource file

**RotateBegin

**RotateEnd
* * RotateCenter

**Formsprinting 210
**EndFormsprinting211

* These
** These

Don’t clear print buffer after each page
End forms printing after PrClosePage

t Thesecommentsare not availablewhen backgroundprinting is enabled.

Each of thesecommentsare discussedbelow in six groups: Text, Polygons, Lines,
PostScript,Rotation,and Forms.Codeexamplesare given whereappropriate.For other
examplesof how to use picture commentsfor printing pleaseseethe Print example
program in the SoftwareSupplement(currently availablethrough APDA as “Macintosh
ExampleApplicationsand Sources1.0”).

Note: The examplesusedin the LaserWriterReferenceManualare incorrect. Please
usethe examplespresentedhere instead.

TextBegin

TextEnd

StringBegin

StringEnd

TextCenter

* LineLayoutOff
* LineLayoutOn

PolyBegin

PolyEnd

Polylgnore

PolySmooth

picPlyClo

150

151

152

153

154

155

156

160

161

163

164

165

TTxtPicRec

NIL

NIL

NIL

TTxtCenter

NIL

NIL

NIL

NIL

NIL

P0lyVe rb

NIL

6

0

0

0

8

0

0

0

0

0

1

0

0

4

Begin text function

End text function

Begin pieces of original string

End pieces of original string

Offset to center of rotation

Turns LaserWriter line layout off

Turns LaserWriter line layout on

Begin special polygon

End special polygon

Ignore following poly data

Close, Fill, Frame

Close the poly

Draw following lines as dashed

End dashedlines

Set fractional line widths

200 4 TRotation Begin rotated port
201 0 NIL End rotation

202 8 Center Offset to center of rotation

0 NIL

O NIL

comments areonly implementedin LaserWriterdriver 3.0 or later.
comments areonly implementedin LaserWriterdriver 3.1 or later.

TechnicalNote #91 page2 ofl8 LaserWriterPictureComments



Text

In orderto support theWhat-You-See-Is-What-You-Getparadigm,the LaserWriterdriver
usesa line layout algorithmto assurethat the placementof the line on the printer closely
approximatesthe placementof the line on the screen.This meansthat the printer driver
getsthe width of the line from QuickDraw,then tells PostScriptto place thetext in exactly
the sameplacewith the samewidth.

The TextBegincommentallows the applicationto specify the layout andthe orientation
of the text that follows it by specifyingthe following information:

TTxtPicRec = PACKED RECORD

tJus: Byte; {0,1,2,3,4 or greater=> none, left, center, right, full

justification

tFlip: Byte; (0,1,2 => none, horizontal, vertical coordinateflip

tRot: INTEGER; (0. .360 => clockwise rotation in degrees

tLine: Byte; (1,2,3.. => single, 1-1/2, double., spacing

tCmnt: Byte; (Reserved

END; { TTxtPicRec

Left, right or centerjustification, specifiedby tJust,tells the driver to maintain only the
left, right or centerpoint, without recalculatingthe interword spacing.Full justification
specifiesthat both endpointsbe maintainedand interword spacingbe recalculated.This
meansthat the driver makessurethat the specifiedpoints are maintainedon the printer
without caring whetherthe overall width has changed.Full justification meansthat the
overall width of the line has beenmaintained.tFlip and tRot specify the orientationof
the text, allowing the applicationto take advantageof the rotation featuresof PostScript.
tLine specifiesthe interline spacing.When no TextBegin comment is used, the
defaults arefull justification, no rotation and single-spacedlines.

String Reconstruction

The StringBeginand StringEndcomments areusedto bracket shortstringsof text
that are actually sectionsof an original long string. MacDraw, for instance,breakslong
strings into shorterpiecesto avoid stackoverflow problemswith QuickDraw in the 64K
ROM. When thesesmaller stringsare bracketedby StringBeginand StringEnd,the
LaserWriterdriver assumesthat the enclosedstringsare partsof one long string and will
perform its line layout accordingly. Erasing or filling of backgroundrectanglesshould
take place beforethe StringBegincommentto avoid confusingthe processof putting
the smallerstringsbacktogether.

Text Rotation

In order to rotate a text object, PostScriptneedsto have information concerningthe
centerof rotation. The TextCentercommentprovidesthis information when arotation
is specified in the TextBegin comment.This commentcontainsthe offset from the
presentpen location to the centerof rotation. The offset is given as the y-component,
then the x-component,which are declaredas fixed-point numbers.This allows the
centerto be in the middle of a pixel. This commentshouldappearafter the TextBegin

comment andbeforethe first following StringBegincomment.

TechnicalNote #91 page3 of 18 LaserWriterPictureComments



The associatedcommentdatalooks like this:

TTxtCenter = RECORD

y,x: Fixed; (offset from current pen location to center of rotation}

END; { TTxtCenter

Right after a TextBegincomment,the LaserWriterdriver expectsto seea TextCenter

commentspecifying the centerof rotation for any text enclosedwithin the text comment
calls. It will ignore all further CopyBits calls, and print all standardtext calls in the
rotation specifiedby the information in TTxtpicRec.The centerof rotation is the offset
from the beginningposition of the first string following the TextCentercomment.The
printer driver also expectsthe string locations to be in the coordinatesystemof the
currentQuickDraw port. The printer driver rotatesthe entire port to draw the text so it can
draw severalstrings with one rotation commentand one centercomment. It is good
practice to enclosean entire paragraphor paragraphsof text in a single rotation
commentso that the driver makesthe fewestnumberof rotations.

The printer driver can draw non-textualobjectswithin the boundsof the text rotation
commentsbut it must unrotateto drawthe object,then re-rotateto draw the next string of
text. To do this the printer driver must receiveanotherTextCentercommentbefore
each new rotation. So, rotated text and unrotatedobjectscan be drawn inter-mixed
within one TextBegin/TextEndcommentpair, but performanceis slowed.

Note that all bit mapsand all clip regionsare ignored during text rotation so that clip
regionscan be usedto clip out the stringson printersthat can’t take advantageof these
comments.This hasthe unfortunateside effect of not allowing rotatedtext to be clipped.

Rotatedtext commentsare not associatedwith landscapeand portrait orientationof the
printer paperas selectedby the PageSetupdialog. Theseare rotationswith reference
to the currentQuickDraw port only.

All of the abovetext commentsareterminatedby a TextEndcomment.

Turning Off Line Layout

If your application is using its own line layout algorithm (it usesits own characterwidths
or doesits own characteror word placement),the printer driverdoesn’tneedto do it too.
To turn off line layout, you can usethe LineLayoutOff comment.LineLayoutOnturns
it on again.

Turning on FractEnablefor the 128K ROMs hasthe sameeffect asLineLayoutOff.

When the driver detectsthat FractEnablehas beenturned on, line layout is not
performed.The driver assumesthat all text being printed is alreadyspacedcorrectly for
the LaserWriterandjust sendsit as is.

TechnicalNote #91 page4 of 18 LaserWriterPictureComments



Polygons

The polygon commentsare recognizedby the LaserWriterdriver becausethey are used
• by MacDrawasan alternatemethodof defining polygons.

The PolyBeginand PolyEnd commentsbracket polygon line segments,giving an
alternateway to specify a polygon. All StdLine calls betweenthesetwo commentsare
part of the polygon.The endpointsof the lines are the verticesof the polygon.

The picPlyClo commentspecifiesthat the current polygon should be closed. This
comesimmediatelyafterPolyBegin, if at all. It is not sufficient to simply checkfor begPt
= endPt,sinceMacDraw allows you to createa “closed” polygon that isn’t really closed.
This commentis especiallycritical for smoothcurvesbecauseit can makethe difference
betweenhaving a sharpcorneror not in the curve.

Thesecommentsalso work with the StdPolycall. If a FillRgn is encounteredbefore
the PolyEndcomment,then the polygon is filled. Unlike QuickDraw polygons,comment
polygonsdo not requirean initial MoveTo call within the scopeof the polygon comment.
The polygon will be drawn using the current pen location at the time the polygon
commentis received.The pen mustbe setbeforethe polygon commentis called.

Splines

A spline is a method usedto determinethe smallestnumberof points that define a
curve. In MacDraw, splinesare usedas a methodfor smoothingpolygons.The vertices
of the underlying unsmoothedpolygon are the control nodesfor the quadraticB-spline
curve which is drawn. PostScripthas a direct facility for cubic B-splines and the
LaserWritertranslatesthe quadraticB-spline nodesit getsinto the appropriatenodesfor
a cubic B-spline that will exactly emulatethe original quadraticB-spline.

The PolySmoothcommentspecifiesthat the currentpolygon should be smoothed.This
commentalso containsdatathat providesa meansof specifying which verbsto use on
the smoothedpolygon (bits 7 through3 are not currentlyassigned):

TPolyVerb = PACKED RECORD
f7, f6, f5, f4, f3, fPolyClose, fPolyFill, fPolyframe Boolean;

END; { TPolyVerb I

Although the closing information is redundantwith the picPlyClo comment, it is
includedfor the convenienceof the LaserWriter.

The LaserWriterusesthe pen size at the time the PolyBegincommentis receivedto
framethe smoothedpolygon if framing is called for by the TPolyverb information. When
the Polylgnorecommentis receivedby the LaserWriterdriver, all further StdLine
calls are ignoreduntil the PolyEndcommentis encountered.For polygonsthat areto be
smoothed,set the initial pen width to zero after the PolyBegincommentso that the
unsmoothedpolygon will not be drawn by otherprintersnot equippedto handlepolygon
comments.To fill the polygon, call StdRgnwith the fill verb and the appropriatepattern
set, aswell asspecifying fill in the PolySmoothcomment.

TechnicalNote #91 page5 of 18 LaserWriterPictureComments



Lines

The DashedLineandDashedLineStopcommentsare usedto communicatePostScript

information for drawing dashedUnes.

The DashedLinecommentcontainsthe foflowing additionaldata:

TDashedLine= PACKED RECORD

offset: SignedByte; (Offset as specified by PostScript)

centered:SignedByte; (Whether dashedline should be

centeredto begin and end points}

dashed: Array[0. .1] of SignedByte; (1st byte is * bytes following)

END; { TDashedLine I

The printer driver setsup the PostScriptdashedline command,asdefinedon page214

of Adobe’s PostScriptLanguageReferenceManual, using the parametersspecified in

the comment.You can specify that the dashedline be centeredbetweenthe begin and

end points of the lines by making the Centeredfield nonzero.

The SetLineWidth commentallows you to setthe pen width of all subsequentobjects

drawn. The additionaldata is a point. The vertical portion of the point is the numerator

and the horizontal portion is the denominatorof the scaling factor that the horizontal and

vertical componentsof the pen are then multiplied by to obtain the new pen width. For

example, if you havea pen size of 1,2 and in your line width commentyou use 2 for the

horizontal of the point and 7 for the vertical, the pen size will then be (7/2)*1 pixels wide

and (712)2 pixels high.

Below is an exampleof how to usethe line comments:

PROCEDURE LineTest;

(This procedureshows how to do dashedlines and how to change the line width)

CQNST

DashedLine= 180;

DashedStop 181;

SetLineWidth = 182;

TYPE

DashedHdl = ‘DashedPtr;

DashedPtr= TDashedLine;

TDashedLine = PACKED RECORD

offset: SignedByte;

Centered: SignedByte;

dashed: Array[0. .1] of SignedByte; { the 0th element is the length

END; { TDashedLine

widhdl = “widptr;

widptr = “widpt;

widpt Point;

VAR

arect : rect;

Width : Widhdl;

dashedin : DashedHdl;

TechnicalNote #91 page6 of 18 LaserWriterPictureComments



BEGIN {LirieTest}
Dashedln := dashedhdl(NewHandle(sizeof(tdashedlineH);
Dashedln.offset 0; { No offset)
Dashedln.centered 0; { don’t center)
Dashedln’”’.dashed[OJ 1; { this is the length
Dashedln.dashed[l]:= 8; { this means 8 points on, 8 points off

Width := widhdl(NewHandle(sizeof(widpt)));
Width”.h := 2; { denominatoris 2)
Width.v := 7; { numerator is 7}

myPic := OpenPicture(theWorld);
SetPen(l,2); ( Set the pen size to 1 wide x 2 high
ClipRect(theWorid);
MoveTo (20, 20)
DrawString(’Do line test’);
PicComment(DashedLine,GetHandleSize(Handle(dashedin)) ,Handle(dashedln));
PicComment(SetLineWidth,4,Handle(width)); {SetLineWidth}
SetRect(arect,100, 100, 500,500)
FrameRect(aRect);
MoveTo(500,500)
Lineto(100,100);
PicCornment(DashedStop,0,riil); {DashedStop}

ClosePicture;
DisposHandle(handle(width)); {Clean up)
DisposHandle(handle(dashedin));
PrintThePicture; (print it please}
KiliPicture (MyPic)

END; {LineTest}

Technica’Note #91 page7 of 18 LaserWriterPictureComments



PostScript

The PostScriptcommentstell the printer driver that the application is going to be

communicatingwith the LaserWriter directly using PostScriptcommandsinstead of

QuickDraw. The driver sendsthe accompanyingPostScriptto the printer with no

preprocessingand no error checking.The applicationcan specify data in the comment

handleitself or point to anotherfile which containstext to sendto the printer. When the

applicationis finishedsendingPostScript,the PostScriptEndcommenttells the printer

driver to resumenormal QuickDraw mode.

Any Quickdraw drawing commands made by the application between the

PostScriptBegin and PostScriptEndcommentswill be ignored by PostScript

printers. In order to use PostScriptin a device independentway, you should always

include two representationsof your document.The first representationshould be a

seriesof Quickdrawdrawing commands.The secondrepresentationof your document

should be a seriesof PostScriptcommands,sentto the Printing Managervia picture

comments.This way, when you are printing to a PostScriptdevice,the picture comments

will be executed, and the Quickdraw commands ignored. When printing to a

non-PostScriptdevice, the picture commentswill be ignored, and the Quickdraw

commandswill be executed.This methodallows you to use PostScript,without having

to askthe deviceif it supportsit. This allows your applicationto get the best resultswith

any printer, without being devicedependent.

Here are someguidelinesyou needto remember:

• The graphicstateset up during QuickDraw calls is maintainedand is not affectedby

PostScriptcalls madewith thesecomments.

• The headerhas changeda numberof parametersso sometimesyou won’t get the

resultsyou expect.You may want to take a look at the headerlisted in The LaserWriter

ReferenceManualavailablethrough APDA.

• The headerchangesthe PostScriptcoordinatesystemso that the origin is at the

top-left cornerof the pageinsteadof at the bottom-left corner.This is doneso that the

QuickDraw coordinatesthat are useddon’t have to be remappedinto the standard

PostScriptcoordinatesystem. If you don’t allow for this, all drawing is printed upside

down. Pleaseseethe PostScriptLanguageReferenceManual for details about

transformationmatrices.

• Don’t call showpage.This is donefor you by the driver. If you do, you won’t be able to

switch backto QuickDraw mode and an additional pagewill be printed when you call

PrClosePage.

• Don’t call exitserver.You may get very strangeresults.
• Don’t call initgraphics.Graphicsstatesare alreadysetup by the header.

• Don’t do anythingthat you expectto live acrossjobs.

• You won’t be able to interrogatethe printer to get information backthroughthe driver.

TechnicalNote #91 page8 of 18 LaserWriterPictureComments



The PostScriptBegincommentsetsthe driver stateto preparefor the generationof
PostScriptby the application by calling gsaveto savethe current state. PostScriptis
then sentto the printer by using comments192 through 195. The QuickDrawstateof the
driver is then restoredby the PostScriptEndcomment.All QuickDrawoperationsthat
occur outside of thesecommentsare performed;no clipping occursas with the text
rotation comments.

PostScriptFrom a Text Handle

When the PostScriptHandJ.ecommentis used,the handle PSDatapoints to the
PostScriptcommandswhich are sent. PSDatais a generichandlethat points to text,
without a length byte. The text is terminatedby a carriage return. This comment is
terminatedby a PostScriptEndComment.

Note: Due to a bug in the 3.1 LaserWriterdriver, PostscriptEndwill not restorethe
QuickDrawstateafter the useof a PostScriptHandlecomment.The workaroundis to
only use this comment at the end of your drawing, after you have madeall the
QuickDrawcalls you need.This problem is fixed in more recent versionsof the driver.

Here’s an exampleof how to usethis comment:

PROCEDURE PostHdl;

{this procedureshows how to use Postscript from a text Handle)
CONST

PostscriptBegin= 190;
PostScriptEnd= 191;
PostScriptHandle= 192;

VAR
MyString : Str255;
ternpstr : String[l];

MyHandle : Handle;
err : OSErr;

BEGIN { PostHdl
MyString := ‘/Times—Roman findfont 12 scalefont setfont 230 600 moveto

(Hello World) show’;

ternpstr:=’ ‘;

tempstr(1) chr(13); (has to be terminatedby a carriage return
MyString := Concat(MyString, ternpstr); { in order for it to execute)
err : PtrToHand (Pointer(ord(@myString)+1),MyHandle, length(MyString));
MyPic := OpenPicture(theWorld);

ClipRect(theWorld);

MoveTo(20,20);

DrawString(’PostScriptfrom a Handle’);
PicComment(PostScriptBegin,0,nil); (Begin PostScript}
PicCornment(PostScriptHandle,length(mystring) ,MyHandle);
PicComment(PostScriptEnd,0,nil); {PostScript End)

ClosePicture;
DisposHandle(MyHandle); (Clean up)
PrintThePjcture; (print it please)
KillPicture (MyPic);

END; { PostHdl

TechnicalNote #91 page9 of 18 LaserWriterPictureComments



Defining PostScriptas QuickDraw Text

All QuickDrawtext following the TextIsPostScriptcommentis sentas PostScript.No

error checking is performed. This comment is terminated by a PostScriptEnd

comment.

Here is an example:

PROCEDURE PostText;

(Shows how to use PostScript in strings in a QuickDraw picture)

CONST

PostScriptBegin 190;

PostScriptEnd= 191;

TextlsPostScript= 194;

BEGIN { PostTest

MyPic := OpenPicture(theWorld);

ClipRect(theWorid);

MoveTo (20, 20)

DrawString(’TextlsPostScriptComment’);

PicComment(PostScriptBegin,0,nil);

PicComment(TextlsPostScript,0,nil);

DrawString(’O 728 translate’);

DrawString(’l —1 scale’);

DrawString(’newpath’);

{Begin Postscript)

(following text is PostScript)

(move the origin and rotate the)

(coordinatesystem)

DrawString(’lOO 470 moveto’);

DrawString(’500 470 lineto’);

DrawString(’lOO 330 moveto’);

DrawString(’500 330 lineto’);

DrawString(’230 600 moveto’);

DrawString(’230 200 lineto’);

DrawString(’370 600 moveto’);

DrawString(’370 200 lineto’);

DrawString(’lO setlinewidth’);

Drawstring( ‘stroke’);

Drawstring(‘/Times—Roman findfont

DrawString(’230 600 moveto’);

DrawString(’(Hello World) show’);

PicCornment(PostScriptEnd,0, nil);

ClosePicture;

PrintThePicture;

KillPicture (MyPic);

END; { PostText

12 scalefont setfont’);

(PostScriptEnd}

(print it please)

TechnicalNote #91 pagelOot 18 LaserWriterPictureComments



PostScriptFrom a File

The PostScriptFileandResourcePScommentsallow you to sendPostScriptto theprinter from a resourcefile. Before thesecommentsare describedthere are somerestrictionsyou needto foflow:

• Don’t ever copy a picture containingthesecommentsto the clipboard. If it is pastedinto anotherapplicationand the specifiedfile or resourceis not available,printing will
be abortedand the userwon’t know what went wrong. This could be very confusingtoa user. If you want the PostScriptinformation to be available when printed fromanotherapplication,useone of the othercommentsand include the information in thepicture.

• Don’t keep the PostScriptin a separatefile from the actual data file. If the data fileever gets moved without the PostScriptfile, when the picture is printed the datafilemay not be found and the print job will be aborted,again without the userknowingwhat went wrong. Keepingthe dataand PostScriptin the samefile will forestall manyheadachesfor you and the user.

Now, a descriptionof the comments:

The PostScriptFilecommenttells the driver to use the POST type resourcescontainedin the file FileNameString.FileNarneStringis declaredasa Str255.

When this commentis encountered,the driver calls OpenResFileusing the file name
specified in FileNamestring.It then calls GetResource(’POST’,thelD);repeatedly, where thelD begins at 501 and is incrementedby one for each
GetResourcecall. If the driver gets a ResNotFounderror, it closesthe specifiedresourcefile. If the first byte of the resourceis a 3, 4, or 5 then the remainingdatais sentand the file is closed.

The format of the POSTresourceis asfollows: The IDs of the resourcesstart at 501 andare incrementedby one for eachresource.Each resourcebeginswith a 2 byte datafieldcontainingthe datatype in the first byte and a zero in the second.The possiblevaluesforthe first byte are:

0 ignorethe restof this resource(a comment)
1 datais ASCII text
2 datais binary and is first convertedto ASCII beforebeingsent
3 AppleTalk endof file. The rest of thedata,if thereis any, is interpretedasASCII textandwill be sentafter the EOF.
4 openthe datafork of the currentresourcefile andsendthe ASCII text there
5 endof the resourcefile

The secondbyte of the field must always be zero. Resourcesshould be kept small,around2K. Text and binary should not be mixed in the sameresource.Make sure youinclude eithera spaceor a return at the end of eachPostScriptstring to separateit fromthe following command.

TechnicalNote #91 page 1 lot 18 LaserWriterPictureComments



Here’s an example:

PROCEDURE PostFile;

(This procedureshows how to use PostScript from a specified FILE}

CONST
PostScriptBegin= 190;

PostScriptFile= 193;

PostScriptEnd= 191;

VAR

NyString : Str255;

MyHandle : Handle;

err : OSErr;

BEGIN { PostFile

(You should never do this in a real program. This is only a test.)

MyString : ‘HardDisk:MPW:Print Examples:PSTestDoc’;

err := PtrToHand(pointer(MyString),MyI-!andle, length(MyString) + 1);

MyPic : OpenPicture(theWorld);

ClipRect(theworld);

MoveTo(20,20);

DrawString(’PostScriptFileComment’);

PicComment(PostScriptBegin,0,nil); (Begin PostScript}

PicCornment(PostScriptFile,GetHandleSize(Myliandle),MyHandle);

PicCorninent(PostScriptEnd,0, nil); (PostScriptEnd}

MoveTo(50,50);

DrawString(’PostScriptEndhas terminated’);

ClosePicture;

DisposHandle(MyHandle);(Clean up)

PrintthePicture; (print it please)

KillPicture (MyPic);

END; { PostFile }

Here are the resources:

type ‘POST’

switch

case Comment: /* this is a comment *1

key bitstring[8] = 0;

fill byte;

string;

case ASCII: /* this is just ASCII text /

key bitstring[8) = 1;

fill byte;

string;

case Bin: /* this is binary *1

key bitstring[8] = 2;

fill byte;

string;

case ATEOF: /* this is an AppleTalk EOF *1

key bitstring[8) = 3;

fill byte;

string;

TechnicalNote #91 page 1 2of 18 LaserWriterPictureComments



case DataFork: /* send the text in the data fork */
key bitstring[8J = 4;
fill byte; -

case EOF: no more /
key bitstring[8) = 5;
fill byte;

resource ‘POST’ (501)
ASCII{”O 728 translate“}};

resource ‘POST’ (502)
ASCII{”l —1 scale “}};

resource ‘POST’ (503)
ASCII{ “newpath “} };

resource ‘POST’ (504)
ASCII{”lOO 470 moveto “));

resource ‘PoST’ (505)
ASCII{”500 470 lineto “1);

resource ‘POST’ (506)
ASCII{”lOO 330 moveto “});

resource ‘POST’ (507)
ASCII{”500 330 lineto “1);

resource ‘POST’ (508)
ASCII{”230 600 moveto “1);

resource ‘POST’ (509)
ASCII{”230 200 lineto “));

resource ‘POST’ (510)
ASCII{”370 600 moveto “));

resource ‘POST’ (511)
ASCII{”370 200 lineto “});

resource ‘POST’ (512)
ASCII{”10 setlinewidth “}};

resource ‘POST’ (513)
ASCII{”stroke “)};

resource ‘POST’ (514)
ASCII(”/Tjmes—Roman findfont 12 scalefontsetfont “}};

resource ‘POST’ (515)
ASCII{”230 600 moveto “H;

resource ‘POST’ (516)
ASCII{”(FIello World) show “}};

TechnicalNote #91 page1 3o1 18 LaserWriterPictureComments



/* It will stop reading and close the file after 517 */

resource ‘POST’ (517)

EOF

1* it never gets here *1

resource ‘POST’ (518)

DataFork

(1);

When the ResourcePScommentis encountered,the LaserWriterdriver sendsthe text

containedin the specifiedresourceas PostScriptto the printer. The additional data is

definedas

PSRsrc = RECORD

PSType : ResType;

PSID INTEGER;

PSlndex: INTEGER;

END;

The resourcecan be of type STR or STR#. If the Type is STR thenthe index shouldbe 0.

Otherwisean index shouldbe given.

This comment is essentiallythe sameas the PrintF control call to the driver. The

imbeddedcommandstring it usesis ‘“r”n’, which basicallytells the driver to sendthe

string specifiedby the additional data,then senda newline. For more information about

printercontrol calls seethe LaserWriterReferenceManual.

Here’s an example:

PROCEDURE P0stRSRC;

(This procedureshows how to get PostScript from a resourceFILE}

CONST

PostScriptBegin= 190;

PostScriptEnd= 191;

ResourcePS= 195;

TYPE

theRSRChdl= ‘theRSRCptr;

theRSRCptr= ‘theRSRC;

theRSRC = RECORD

theType: ResType;

thelD: INTEGER;

Index: INTEGER;

END;

VAR

temp : Rect;

TheResource : theRSRChdl;

i,j : INTEGER;

myport : GrafPtr;

err : INTEGER;

atemp : Booleari;

TechnicalNote #91 page 1 4of 18 LaserWriterPictureComments



BEGIN { PostRSRC
TheResource theRSRChdl(NewHandle(SizeOf(theRSRC)));
TheResource’.theID:= 500;
TheResource.Index:= 0;
TheResource.theType:= ‘STR ‘;

HLock (Handle(TheResource));
MyPic := OpenPicture(theWorld);
DrawString(‘Resource?S Commentl);

PicComrnent(PostScriptBegin,0,nil); {Begin PostScript)
PicComment(ResourcePS,8,Handle(TheResource));{Send postscript)
PicComrnent(PostScriptEnd,0,nil); {PostScriptEndj
Close?icture;
DisposHandle(Handle(TheResource));(Clean up)
PrintthePicture; (print it please)
KiliPicture (MyPic);

END; ( P0stRSRC

Here’s the resource:

resource ‘STR ‘ (500)
(“0 728 translate 1 —1 scale newpath 100 470 moveto 500 470 lineto 100 330
moveto 500 330 lineto 230 600 moveto 230 200 lineto 370 600 moveto 370 200
lineto 10 setlinewidth stroke /Times-Romanfindfont 12 scalefont setfont 230
600 moveto (Hello World> show”

TechnicalNote #91 page 1 5of 18 LaserWriterPictureComments



Rotation

The conceptof rotation doesn’tapply to text alone. PostScriptcan rotateany object. The

rotation commentswork exactly like text rotation exceptthat all objectsdrawn between

the two commentsaredrawn in the rotatedcoordinatesystemspecifiedby the centerof

rotation comment, not just text. Also, no clipping of CopyBits calls occurs. These

commentsonly work on the 3.1 and newerLaserWriterdrivers.

The RotateBegincommenttells the driver that the following objectswill be drawn in a

rotatedplane.This commentcontainsthe following datastructure:

Rotation RECORD

Flip: INTEGER; 10,1,2 => none, horizontal, vertical coordinateflip

Angle: INTEGER; 10. .360 => clockwise rotation in degrees

END; { Rotation I

When you are finished, the RotateEndcommentreturnsthe coordinatesystemto

normal, terminatingthe rotation.

The relative centerof rotation is specifiedby the RotateCentercommentin exactly

the samemannerasthe TextCentercomments.The difference,however,is that this

commentmustappearbeforethe RotateBegincomment.The datastructureof the

accompanyinghandleis exactly like that for the TextCentercomment.

Here’s an exampleof how to use rotation comments:

PROCEDURE Test;

{This procedureshows how to do rotations)

CONST

RotateBegin 200;

RotateEnd= 201;

RotateCenter= 202;

TYPE

rothdl = “rotptr;

rotptr = “trot;

trot = RECORD

flip : INTEGER;

Angle : INTEGER;

END; { trot

centhdl = “centptr;

centptr = “cent;

Cent PACKED RECORD

ylnt: INTEGER;

yFrac: INTEGER;

xlnt: INTEGER;

xFrac: INTEGER;

END; { Cent

VAR

arect : Rect;

rotation : rothdl;

center : centhdl;

TechnicalNote #91 page 1 6of 18 LaserWriterPictureComments



BEGIN { Test
rotation := rothdl(NewHandle(sizeof(trot)));
rotation’.flip : 0; (no flip)
rotation”.angle := 15; {15 degree rotation)

center := centhdl(NewHandle(sizeof(cent)));
center.xInt : 50; (center at 50,50)
center”.ylnt := 50;
center.xFrac:= 0; (no fractional part)
center’”.yFrac := 0;

rnyPic := OpenPicture(theWorld);
ClipRect(theWorld);
MoveTo(20,20);
DrawString(’Begin Rotation’);

(set the center of Rotation)
PicComrnent(RotateCenter,GetHandleSize(Handle(center)) ,Handle(center));
(Begin Rotation)

PicComment(RotateBegin,GetHandleSize(Handle(rotation)) ,Handle(rotation));
SetRect(arect,100, 100,500,500)
FrarneRect(aRect);
MoveTo(500,500)
Lineto (100, 100)
PicCorrunent(RotateEnd,0,nil); {RotateEnd)

ClosePicture;
DisposHandle(handle(rotation)); (Clean up)
DisposHandle(handle(center));
PrintThePicture; (print

it please)
Killpicture(MyPic);

END; ( Test

TechnicalNote #91 page 1 7of 18 LaserWriterPictureComments



Forms

The two form printing commentsallow you to preparea templateto use for printing.

When the FormsBegincommentis used,the LaserWriter’sbuffer is not clearedafter

PrClosePage.This allows you to downloada form then changeit for eachsubsequent

page, inserting the information you want. FormsEndallows the buffer to be clearedat

the next PrClosePage.

a

TechnicalNote#i page1 8of 18 LaserWriterPictureComments



Macintosh Technical Notes

•
#92: The Appearanceof Text

Seealso: The Printing Manager
The Font Manager
TechnicalNote #91—

Optimizing for the LaserWriter—PictureComments

Written by: GingerJernigan November15, 1986
Updated: March 1, 1988

This technical note describeswhy text doesn’t always look the way you
expectdependingon the environmentyou are in.

There are a number of Macintosh text editing applicationswhere layout is critical.
Unfortunately,text on a newermachinesometimesprints differently than text on a 64K
ROM Macintosh.Let’s examinesomedifferencesyou shouldexpectand why.

The differenceswe will considerhereare only differencesin the layout of text lines (line
layout), not differencesin the appearanceof fonts or the differencesbetweendifferent
printers. Differencesin line layout may affect the position of line, paragraphand page
breaks.The four variablesthat can affect line layout are fonts, the printer driver, the font
managermode,and ROMs.

Fonts

Every font on a Macintoshcontainsits own table of widths which tells QuickDraw how
wide charactersare on the screen.For every style point size there is a separatetable
which may contain widths that vary from face to face and from point size to point size.
Characterwidths can vary betweenpoint sizesof characterseven in the sameface. In
otherwords, fonts on the screenare not necessarilylinearly scalable.

Non-linearity is not normally a problem since most fonts are designedto be as closeto
linear as possible.A font face in 6 point hasvery nearly the samescaledwidths of the
same font face in 24 point (plus or minus round-off or truncation differences).
QuickDraw, however, requiresonly one face of any particularfont to be in the System
file to useit in any point size. If only a 10 point face actuallyexists,QuickDraw mayscale
that faceto 9, 18, 24 (or whateverpoint size) by performinga linear scaleof the 10 point
face.

TechnicalNote #92 page 1 of 3 The Appearanceof Text



This can causeproblems.Supposea documentis createdon one Macintoshcontaining

a font that only exists in that Systemfile in one point size, say 9 point. The documentis

then takento anotherMacintoshwith a Systemfile containingthat samefont but only in

24 point. The documentmay, in fact, appeardifferently on the two screens,and when it

is printed, will have line breaks (and thus paragraphand page breaks) occurring in

different placessimply becauseof the differencesin characterwidths that exist between

the 9 point and 24 point faces.

The Printer Driver

Even when the printer you are using hasa much higherresolutionthan what the screen

can show, printer drivers perform line layout to match the screenlayout as closely as

possible.

The line layout performedby printer drivers is limited to single lines of text and doesnot

changeline break positionswithin multiple lines. The driver suppliesmetric information

to the application about the pagesize and printable areato allow the application to

determinethe bestplaceto make line and pagebreaks.

Printer driver line layout doesaffect word spacing,characterspacingand even word

positioning within a line. This may affect the overall appearanceof text, particularly

when font substitutionsare madeor various forms of pageor text scaling are involved.

But print drivers NEVER changeline, paragraphor pagebreakpositionsfrom what the

application or screenspecified. This meansthat where line breaks appearon the

screen,they will alwaysappearin the sameplace on the printer regardlessof how the

line layout may affect the appearancewithin the line. 4

Operating Systemand ROMs

In this context,operatingsystemrefersto the ROM trap routineswhich handlefonts and

QuickDraw. Changeshave occurredbetweenthe ROMs in the handling of fonts. Fonts

in the 64K ROMs containwidth tables(as describedabove)which are limited to integer

values. Severalnew tables, however, have beenaddedto fonts for the newer ROMs.

The newerROMs add an optional global width table containingfractional or fixed point

decimal values. In addition, there is anotheroptional table containing fractional values

which can be scaledfor the entire rangeof point sizesfor any one face. There is also an

optional table which provides for the addition (or removal) of width to a font when its

style is changedto anothervalue such as bold, outline or condensed.It is also possible,

under the 128K ROMs, to add fonts to the system with inherent style properties

containing their own width tablesthat producedifferent characterwidths from derived

style widths.

I

TechnicalNote #92 page 2 of 3 The Appearanceof Text



One or all of the abovetables may or may not be invoked dependingon, first, their
presence,and second,the mode of the operatingsystem.The Font Managerin the
newerROMs allows the applicationto arbitrarily operatein eitherthe fractional mode or

• integermode(determined,in mostcases,by the settingof FractEnable)as it chooses,
with the default being integer. There is one casewhere fractional widths will be used if
they exist even though fractional mode is disabled. When FScaleDisableis used
fractional widths are alwaysusedif they exist regardlessof the settingof FractEnable.

Differencesin line layout (and thus line breaks)may be affectedby any combinationof
the presenceor absenceof the optional tables,andthe operatingmode, eitherfractional
or integer,of the application.Any of the combinationscan producedifferent resultsfrom
the original ROMs (and from eachother).

The integermodeon the newerROMs is very similar to, but not exactlythe sameas, the
original 64K ROMs. When fonts with the optional tables present are used on
Macintosheswith 64K ROMs, they continue to work in the old way with the integer
widths. However, on newerROMs, even in the integermode,there may be variationsin
line width from what is seenon the old ROMs. In the plain text style there is very little if
any difference(exceptif the global width table is present),but asvarioustype stylesare
selected,line widths may vary more betweenROMs.

Variations in the above options, by far, account for the greatestvariation in the
appearanceof lines when a documentis transportedbetweenone Macintosh and
another.Line breaksmay changeposition when documentscreatedon one system(say
a Macintosh)are movedto anothersystem(like a MacintoshPlus). Variations are more
pronouncedasthe numberandsizesof varioustype styles increasewithin a document.

In all cases,however, a printer driver will produceexactly the same line breaksas
appearon the screenwith any given systemcombination.

TechnicalNote #92 page 3 of 3 The Appearanceof Text



I

4

4



Macintosh Technical Notes

• #93: MPW: {$LOAD}; _Datalnit%_MethTables

Seealso: MPW ReferenceManuals

Written by: Jim Friedlander November15, 1986
Modified by: Jim Friedlander January12, 1987
Updated: March 1, 1988

This technicalnotediscussesthe Pascal ‘ $LOAD } directiveaswell ashow to
unloadthe_Datalnitand %_MethTablessegments.

{$LOAD}

MPW Pascalhasa { $LOAD } directive that candramaticallyspeedup compiles.

{$LOAD HD:MPW:PLibraries:PasSyrnDump)

will combine symbol tablesof all urlils following this directive (until another $ LOAD
directive is encountered),anddumpthem out to HD:MPW:PLibraries:PasSymDump.In
orderto avoid using fully specifiedpathnames,you can use { $LOAD } in conjunctionwith
the -k option for Pascal:

Pascal —k “{PLibraries} mjfile

combinedwith the following lines iri myf ile

USES
{$LQAD PasSymDump}

MemTypes,QuickDraw,7OSIntf, Toollntf, Packlntf,
{$LOAD) {This “turns Dff” $LOAD for the next rniit}

Nonoptimi zed,
1$LOAD MyLibDump)

MyLib;

will do the following: the stlime a programcontainingtheselines is compiled, two
symbol table dump files (in this casePasSyrnDumpand MyLibDump) will be createdin
the directoryspecifiedby the —k option (in this case(PLibraries}). No dump file will
be generatedfor the unit NonOptimized.The compiler will compile MemTypes,
QuickDraw, OSIntf, Toollntf, Packlntf (quite time consuming)and dump those
units’ symbolsto PasSyrnDumpand it wilt compile the interfaceto MyLib and dump its
symbolsto MyLib. For subsequentcompliesof this program (or any programthat uses
the samedump file(s)), the interfacefiles won’t be recompiled,the compiler will simply
read in the symbol table.

Compiling a samplefive line programon a MacintoshPIusIHD2OSCtakes62 seconds

TechnicalNote #93 page 1 of 3 MPW: {$LOAD} ;_Datalnit;%_MethTables



without using the {$LOAD) directive. The sameprogramtakes 10 secondsto compile

using the { $ LOAD directive (once the dump file exists). For further details about this

topic, pleaseseethe MPW PascalReferenceManual.

Note: If any of the units that are dumpedinto a dump file change,you needto make

surethat the dump file is deleted,so that it can be regeneratedby the Pascalcompiler

with the correct information. The best way to do this is to usea makefile to checkthe

dump file againstthe files it dependson, and deletethe dump file if it is out of datewith

respectto any of the units that it contains.An excellent(and well commented)example

of doing this is in the MPW WorkshopManual.

The _Datalnit Segment

The Linker will generatea segmentwhoseresourcenameis %A5Init for any program

compiled by the C or Pascalcompilers.This segmentis called by a program’s main

segment.This segmentis loadedinto the applicationheapand locked in place. It is up

to your program to unload this segment(otherwise, it will remain locked in memory,

possiblycausingheapfragmentation).To do this from Pascal,usethe following lines:

PROCEDURE Datalnit; EXTERNAL;

BEGIN (main PROGRAM)

UnloadSeg(@_Datalnit);

(remove data initialization code before any allocations)

From C, usethe following lines:

extern Datalnit0;

/ main /

UnloadSeg(Datalnit);

/*remove data initialization code before any allocations*/

For further detailsaboutData Initialization, seethe MPW ReferenceManual.

I

TechnicalNote #93 page 2 of 3 MPW: {$LQAD} ;_Datalnit;%_MethTables



%_MethTablesand %_SelProcs

Object use in Pascalproducestwo segmentswhich can causeheapproblems.These
are % MethTablesand % SeiProcswhich are usedwhen methodcalls are made.
MacApp dealswith them correctly, so this only appliesto Object Pascalprogramsthat
don’t use MacApp. You can make the segmentslocked and preloaded(probably the
easiestroute), so they will be loaded low in the heap, or you can unload them
temporarily while you are doing heap initialization. In the latter case,make sure there
are no method calls while they are unloaded. To reload % MethTablesand
%SelProcs,call the dummy procedure%_InitQbj. %_InitObj loads %MethTables
—calling any methodwill then load %SelProcs.

Reminder: The linker is casesensitivewhen dealing with module names.Pascal
converts all module namesto upper-case(unlessa routine is declaredto be a C
routine). The Assemblerdefault is the sameas the Pascaldefault, though it can be
changedwith the CASE directive. C preservesthe caseof module names(unlessa
routine is declaredto be pascal,in which casethe modulenameis convertedto upper
caseletters).

Make surethat any externalroutinesthat you referenceare capitalizedthe samein both
the external routine and the externaldeclaration(especiallyin C). If the capitalization
differs, you will get the following link error (library routine = findme, programdeclaration
= extern FindNe () ;):

#* Link: Error Undefined entry, name: FindNe

TechnicalNote #93 page 3 of 3 MPW: {$LOAD} ;_Datalnit;%_MethTabies



I

4

(



Macintosh Technical Notes

#94: Tags

Seealso: The File Manager

Written by: Bryan Stearns November15, 1986
Updated: March 1, 1988

Apple has decidedto eliminate support for file-system tags on its future
products;this technicalnote explainsthis decision.

Someof Apple’s disk products(and somethird-party products) havethe ability to store
532 bytesper sector, insteadof the normal 512. Twelve of the extrabytes are usedto
store redundantfile systeminformation, known as “tags”, to be usedby a scavenging
utility to reconstructdamageddisks.

Apple hasdecidedto eliminatesupportfor thesetagson its products;this was decided
for severalreasons:

1) Tags were implementedback when we had to deal with “Twiggy” drives on Lisa.
Thesedrives were lessreliable than currentdrives, and it was expectedthat tagswould
be neededfor dataintegrity.

2) We’re working on a scavengingutility (Disk First Aid), and we’ve found that tagsdon’t
help us in reconstructingdamageddisks (ie, if we can’t fix it without using tags, tags
wouldn’t help us fix it). So, atleastthe first two versionsof our scavengingutility will not
use tags,and a third version (which we’ve planned for, but will probably never
implement)can probablywork without them.

3) 532-byte-per-sectordrives and controllerstend to cost more, even at Apple’s
volumes.Thus, the demiseof tags savesus (and our customers)money. The Apple
Hard Disk 2OSCcurrentlysupportstags;this maynot alwaysbe the case,however;we’ll
probablydrop the largesectorswhen werun out of our currentstockof drives.

The Hierarchical File System(HFS) documentationdidn’t talk about tags becausethe
writer had no information availableabout how they worked underHFS. Becauseof this
decision, it is unlikely that we’ll ever havedocumentationon how to correctly implement
them underHFS.

.

TechnicalNote #94 page 1 ofl Tags



4

4

4



Macintosh Technical Notes

#95: How To Add Itemsto the Print Dialogs

Seealso: The Printing Manager
The Dialog Manager

Written by: GingerJernigan November15, 1986
Lew Rollins

Updated: March 1, 1988

This technical note discusseshow to add your own items to the PrintingManager’sdialogs.

When the Printing Managerwas initially designed,great care was taken to make theinterfaceto the printer drivers as genericas possiblein order to allow applicationstoprint without being device-specific.There are times, however, when this type ofnon-specificinterfaceinterfereswith the flexibility of an application.An application mayrequire additional information before printing which is not part of the general PrintingManagerinterface.This technical note describesa methodthat an applicationcan useto add its own itemsto the existing style andjob dialogs.

Before continuing, you need to be aware of some guidelinesthat will increaseyourchancesof being compatiblewith the printing architecturein the future:

• Only add items to the dialogsasdescribedin this technical note. Any other methodswill decreaseyour chancesof survival in the future.

• Do not changethe position of any item in the current dialogs. This meansdon’tdeleteitems from the existing item list or add items in the middle. Add items only atthe end of the list.

• Don’t count on an item retaining its current position in the list. If you dependon theDraft button being a particularnumberin the ImageWriter’sstyle dialog item list, andwe changethe Draft button’s item numberfor somereason,your program may nolongerfunction correctly.

• Don’t usemore than half the screenheight for your items. Apple reservesthe right toexpandthe items in the standardprint dialogsto fill the top half of the screen.

• If you are adding lots of items to the dialogs (which may confuseusers),you shouldconsider having your own separatedialog in addition to the existing PrintingManagerdialogs.

TechnicalNote #95 page 1 of 14 How To Add Itemsto the Print Dialogs



The Heart

Before we talk about how the dialogs work, you needto know this: at the heart of the

printer dialogs is a little-known data structure partially documentedin the MacPrint

interfacefile. It’s a recordcalled TPrD1g and it looks like this: I
TPrD1g = RECORD {Print Dialog: The Dialog Streamobject.)

dig : DialogRecord; {dialog window)

pFltrProc : ProcPtr; {filter proc.)

plternProc : ProcPtr; {item evaluatingproc.)

hPrintUsr THPrint; {user’s print record.)

fDolt : BOOLEAN;

fDone : BOOLEAN;

lUserl : LONGINT; {four longs reservedby Apple}

lUser2 : LONGINT;

lUser3 : LONGINT;

lUser4 : LONGINT;

iNurnFst : INTEGER; lnumeric edit items for std filter)

iNumLst : INTEGER;

{... plus more stuff neededby the particular printing dialog.)

END;

TPPrD1g TPrDlg; {== a dialog ptr}

All of the information pertainingto a print dialog is kept in the TPrD1g record.This record

will be referredto frequently in the discussionbelow.

How the Dialogs Work

Whenyour applicationcalls PrStlDiaiogand PrJobDiaiog,the printer driver actually

calls a routine calledPrDigMain. This function is declaredasfollows:

FUNCTION PrDlgMain (hprint: THPrint; pDlglnit: ProcPtr): BOOLEAN;

PrDigMain first calls the pDlglnit routine to set up the appropriatedialog (in Dig),

dialog hook (pltemProc)anddialog eventfilter (pFilterProc in the TPrD1g record

(shown above).For the job dialog, the addressof PrJoblnit is passedto PrDigMain.

For the style dialog, the addressof PrStllnit is passed.Theseroutinesare declared

as follows:

FUNCTION PrJoblnit (hPrint: THPrint) : TPPrD1g;

FUNCTION PrStllnit (hPrint: THPrint) : TPPrD1g;

After the initialization routine setsup the TPrD1g record,PrDlgMain calls ShowWindow

(the window is initially invisible), then it calls ModalDialog, using the dialog eventfilter

pointed to by the pFltrProc field. When an item is hit, the routine pointed to by the

pltemProcfield is called and the items are handledappropriately.When the OK button

is hit (this includes pressingReturn or Enter) the print record is validated. The print

recordis not validatedif the Cancelbutton is hit.

TechnicalNote #95 page 2 of 14 How To Add Itemsto the Print Dialogs



How to Add Your Own Items

To modify the print dialogs, you needto changethe TPrD1g record beforethe dialog isdrawn on the screen.You canaddyour own items to the item list, replacethe addressesof the standarddialog hook and eventfilter with the addressesof your own routinesandthen let the dialog codecontinueon its merry way.

For example,to modify the job dialog, first call PrJoblnit.PrJoblnitwill fill in the
TPrD1g recordfor you and return a pointerto that record.Then call PrDlgMain directly,passing in the addressof your own initialization function. The example code’sinitialization function addsitemsto the dialog item list, savesthe addressof the standarddialog hook (in our global variableprPltemProc)and puts the addressof our dialoghook into the pltemProcfield of the TPrD1g record. Pleasenote that your dialog hookmustcall the standarddialog hook to handleall of the standarddialog’s items.

Note: If you wish to have an event filter, handle it the sameway that you do a dialoghook.

Now, hereis an example(written in MPW Pascal)that modifiesthe job dialog. The samecodeworks for the style dialog if you globally replace‘Job’ with ‘Stl’. Also included is afunction (AppendDITL) providedby Lew Rollins (originally written in C, translatedfor thistechnicalnote to MPW Pascal)which demonstratesa methodof adding itemsto the itemlist, placing them in an appropriateplace,and expandingthe dialog window’s rectangle.

The MPW PascalExampleProgram

PROGRAM ModifyDialogs;

USES
$LOAD PasDu.mp. dump}

MemTypes,QuickDraw,OSIntf,Toollritf, Packlntf,MacPrint;

CONST
MyDITL = 256;
MyDFirstSox = 1; {Item number of first box in my DITL}
MyDSecondBox = 2;

VAR

PrtJobDialog: TPPrD1g; { pointer to job dialog I
hPrintRec : THPrint; { Handle to print record I
FirstBoxValue, value of our first additional box
SecondBoxValue:Integer; { value of our secondaddtl. box
prFirstltem, { save our first item here
prPltemProc Longlnt; { we need to store the old iternProc here IitemType : Integer; { neededfor GetDltem/SetDltemcalls
itemH : Handle;
itemBox Rect;
err : OSErr;

PROCEDURE _Datalnit;
EXTERNAL;

TechnicalNote #95 page 3 of 14 How To Add Itemsto the Print Dialogs



(—
I

PROCEDURE CalllternHandler(theDialog:DialogPtr; theltern: Integer; theProc:

Longlnt);

INLINE $205F,$4E90; { MOVE.L (A7)-f-,A0

JSR (AC) } (
this code pops off theProc and then does a JSR to it, which puts the

real return addresson the stack.

FUNCTION AppendDITL(theDialog: DialogPtr; theDITLID: Integer) : Integer;

version 0.1 9/11/86 Lew Rollins of Human—SystemsInterface Group)

this routine still needs some error checking

This routine appendsall of the items of a specifiedDITL

onto the end of a specifiedDLOG — We don’t even need to know the format

of the DLOG

this will be done in 3 steps:

1. appendthe items of the specifiedDITL onto the existing DLOG

2. expand the original dialog window as required

3. return the adjustednumber of the first new user item

TYPE
DITLItem = RECORD { First, a single item

itmHndl: Handle; { Handle or procedurepointer for this item

itmRect: Rect; ( Display rectanglefor this item

itmType: SignedByte; { Item type for this item — 1 byte

itmflata: ARRAY (0. .0] OF SignedByte; { Length byte of data

END; {DITLItem}

pDITLItem = DITLItem;

hDITLItem = pDITLItem;

ItemList = RECORD { Then, the list of items

digMaxlndex: Integer; { Number of items minus 1 I

DITLItems: ARRAY [0. .0] OF DITLItem; { Array of items

END; {ItemList}

pltemList = ‘ItemList;

hltemList = pItemList;

IntPtr = Integer;

VAR

offset : Point; { Used to offset rectanglesof items being appended

maxRect : Rect; { Used to track increasesin window size I

hDITL : hltemList; ( Handle to DITL being appended

pltem : pDITLItem; { Pointer to current item being appended

hltems : hltemList; f Handle to DLOG’s item list I

firstltem : Integer; { Number of where first item is to be appendedI

newitems, { Count of new items

dataSize, { Size of data for current item I

i : Integer; { Working index

USB : RECORD (we need this becauseitmData[0] is unsigned)

CASE Integer OF

TechnicalNote #95 page 4 of 14 How To Add Itemsto the Print Dialogs



1:
(SBArray: ARRAY [0..l] OF SignedByte);

2:
(Int: Integer);

END; {tJSB}

BEGIN {AppendDITL}

Using the original DLOG

1. Rememberthe original window Size.
2. Set the offset Point to be the bottom of the original window.
3. Subtract 5 pixels from bottom and right, to be added

back later after we have possibly expandedwindow.
4. Get working Handle to original item list.
5. Calculateour first item number to be returnedto caller.
6. Get locked Handle to DITL to be appended.
7. Calculatecount of new items.

maxRect := DialogPeek(theDialog).window.port.portRect;
offset.v := maxRect.bottom;
offset.h : 0;
maxRect.bottom:= maxRect.bottom- 5;
maxRect.right := maxRect.right- 5;
hltems : = hltemList (DialogPeek(theDialog) . items);
firstltem : hItems’”.dlgMaxIndex + 2;
hDITL := hlternList(GetResource(’DITL’,theDITLID));
HLock (Handle(hDITL));
newltems := hDITL.dlgMaxIndex + 1;

each item,
Offset the rectangleto follow the original window.
Make the original window larger if necessary.
fill in item Handle accordingto type.

pltem := @hDITL’.DITLIterns;
FOR i := 1 TO newltems DO BEGIN
OffsetRect(pItern.itmRect,offset.h,offset.v);
UnionRect(pItem . itmRect,maxRect,maxRect);

USB.Int := 0; {zero things out)
USB.SBArray(1] := pItem’.itrnData(0);

Strip enablebit since it doesn’t matter here.
WITH pItem DO

CASE BAND(itmType,$7F) OF
userltern: { Can’t do anything meaningful with user items.

itmHndl
ctrlltem

itmHndl

NIL;
+ btnCtrl,ctrlltem + chkCtrl,ctrlltem + radCtrl:{build Control

: Handle(NewControl(theDialog,{ theWindow
itmRect, ( boundsRect
StringPtrUitmData(0J)’, { title
true, ( visible
0,0,1, { value, mm, max
BAND(itmType,$03), { proclD I
0)); { refCon

ctrlltem + resCtrl: BEGIN { Get resourcebasedControl

For
1.
2.
3.

TechnicalNote #95 page 5 o114 How To Add Itemsto the Print Dialogs



itmHndl := Handle(GetNewControl(IntPtr(@itmData[l]), { controlID

theDialog)); { theWindow

ControlHandle(itmHndl).contrlRect:= itmRect; {give it the right

rectangle

{An actionProcfor a Control should be installedhere)

END; (Case ctrlltem + resCtrl}

statText,editText: { Both need Handle to a copy of their text.

err := PtrToHand(t3itmData[l), ( Start of data

itmHndl, { Address of new Handle

USB.Int); { Length of text

iconltem: { Icon needs resourceHandle.

pItem.itmHndl : GetIcon(IntPtr(@itrnData[l])); { ICON reslD

.picltem: { Picture needs resourceHandle.

pItem’.itmHndl := Handle(Getpicture(IntPtr(@itxnData[1])’ii;{PICTreslD)

OTHERWISE

itmHndl := NIL;

END; {Case}

dataSize: BAND(USB.Int + 1,$FFFE);

{now advanceto next item)

pltem := pDITLItem(Ptr(ord4(@pItem) + dataSize+ sizeof(DITLItem)));

END; (for)

err := PtrAndHand

(@hDITL.DITLItems,Handle(hItems),GetHandleSize(Handle(hDITL)));

hIterns”.dlgMaxIndex := hItems.dlgMaxIndex+ newltems;

HUnlock (Handle(hDITL));

ReleaseResource(Handle(hDITL));

maxRect.bottorn:= maxRect.bottom+ 5;

maxRect.right := maxRect.right+ 5;

SizeWindow(theDialog,maxRect.right,maxRect.bottom,true);

AppendDITL := firstltem;

END; {AppendDITL}

PROCEDURE MyJobltems(theDialog:DialogPtr; itemNo: Integer);

This routine replacesthe routine in the pltemProc field in the

TPPrD1g record. The steps it takes are:

1. Check to see if the item hit was one of ours. This is done by “localizing”

the number, assumingthat our items are numberedfrom 0. .n

2. If it’s one of ours then case it and Handle appropriately

3. If it isn’t one of ours then call the old item handler

VAR

Myltem, firstltem: Integer;

thePt : Point;

thePart : Integer;

theValue : Integer;

debugPart : Integer;

BEGIN {MyJobltems)

firstltem : prFirstltern; { remember, we saved this in myJobDlglnit

Myltem := itemNo — firstltem + 1; { “localize” current item No

IF Myltem > 0 THEN BEGIN ( if localized item > 0, it’s one of ours

find out which of our items was hit

GetDltem(theDialog,itemNo,itemType,itemH, itemBox);

TechnicalNote #95 page 6 of 14 How To Add Itemsto the Print Dialogs



CASE Myltexn OF
MyDFirstBox: BEGIN

invert value of FirstBoxValue and redraw it
FirstBoxValue : 1 - FirstBoxValue;
SetCtlValue(ControlHandle(iteml-1),FirstBoxValue);

END; (caseMyDFirstBox}
MyDSecondBox: BEGIN

invert value of SecondBoxValueand redraw it
SecondBoxValue: 1 — SeconciBoxValue;
SetCtlValue(ControiHandle(iteml-1) , SecondBoxValue);

END; {case MyDSecondBox}
OTHERWISE

Debug; ( OH OH — We got an item we didn’t expect
END; (Case

END { ifMyltern>O
ELSE ( chain to standarditem handler, whose addressis saved

in prPltemProc I
CallltemHandler(theDialog,itemNo,prPlternProc);

END; { MyJobltems I

FUNCTION MyJobDlglnit(hPrint: TH?rint) : TPPrD1g;

This routine appendsitems to the standardjob dialog and sets up the
user fields of the printing dialog record TPRD1g
This routine will be called by PrDlgMain
This is what it does:
1. First call PrJoblnit to fill in the TPPrD1g record.
2. Append our items onto the old DITL. Set them up appropriately.
3. Save the addressof the old item handler and replace it with ours.
4. Return the Fixed dialog to PrDlgMain.

VAR

firstltem : Integer; { first new item number I

BEGIN {MyJobDlglnit
firstltern := AppendDITL(DialogPtr(PrtJobDialog),MyDITL);

prFirstltem := firstltem; { save this so MyJobltems can find it I

now we’ll set up our DITL items — The “First Box”
GetDltern(DialogPtr(PrtJobDialog),firstltem,itemType,itemH, itemBox);
SetCtlValue(ControlHandle(itemH),FirstBoxValue);

now we’ll set up the secondof our DITL items — The “Second Box”
GetDltern(DialogPtr(PrtJobDialog), firstltem + 1,itemType,itemH, itemBox);
SetCtlValue(ControiHandle(itemH) , SecondBoxValue);

Now comes the part where we patch in our item handler. We have to save
the old item handler address,so we can call it if one of the standard
items is hit, and put our item handler’s address
in pltemProc field of the TPrDlg struct)

prPlternProc := Longlnt(PrtJobDialog’.pltemProc);

Now we’ll tell the modal item handler where our routine is

.

TechnicalNote #95 page 7 of 14 How To Add Itemsto the Print Dialogs



PrtJobDialog’.pItemProc:= ProcPtr(@MyJobltems);

PrDlgMain expectsa pointer to the modified dialog to be returned....

MyJobDlglnit := PrtJobDialog;

END; {rnyJobDlglnit

FUNCTION Print: OSErr;

VAR

bool : BOOLEAN;

BEGIN (Print)

hPrintRec := THPrint(NewHandle(sizeof(TPrint)));

PrintDefault(hPrintRec);

bool := PrValidate(hPrintRec);

IF (PrError <> noErr) THEN BEGIN

Print : PrError;

Exit (Print);

END; (If}

call PrJoblnit to get pointer to the invisible job dialog

PrtJobDialog := PrJoblnit(hPrintRec);

IF (PrError <> noErr) THEN BEGIN

Print := PrError;

Exit (Print);

END; (If)

{Here’s the line that does it all!)

IF NOT (PrDlgMain(hPrintRec,@MyJobDlglnit))THEN BEGIN

Print := cancel;

Exit (Print);

END; (If}

IF PrError <> noErr THEN Print := PrError;

that’s all for now

END; { Print

BEGIN {PROGRAM}

UnloadSeg(@_Datalnit); (remove data initialization code before any

allocations)

InitGraf (@thePort);

InitFonts;

FlushEvents(everyEvent,0);

InitWindows;

InitMenus;

TEInit;

InitDialogs(NIL);

InitCursor;

call the routine that does printing I

Technic& Note #95 page 8 of 14 How To Add Itemsto the Print Dialogs



FirstBoxValue : 0; { value of our first additional box
SecondBoxValue := 0; { value of our secondaddtl. box
PrOpen; { Open the Print Manager
IF PrError = noErr THEN
err Print { This actually brings up the modified Job dialog

ELSE BEGIN
{tel.]. the user that PrOpen failed}

END;

PrClose; { Close the Print Manager and leave
END.

TechnicalNote #95 page 9 of 14 How To Add Itemsto the Print Dialogs



The LightspeedC ExampleProgram

/* NOTE: Apple reservesthe top half of the screen (where the current DITL

items are located) . Applications may use the bottom half of the

screento add items, but should not change any items in the top half

of the screen. An application should expand the print dialogs only

as much as is absolutelynecessary.

*7

1* Note: A global searchand replaceof ‘Job’ with ‘Sti’ will produce

code that modifies the style dialogs */

#include <DialogMgr.h>

#include <MacTypes.h>

#include <Quickdraw.h>

#include <ResourceMgr. h>

#include <WindowMgr . h>

#include <pascal.h>

#include <printmgr.h>

#define nil OL

static TPPrD1g PrtJobDialog; / pointer to job dialog */

7* This points to the following structure

Struct
DialogRecord

ProcPtr

ProcPtr

THPrint

Boolean

Boolean

(Four longs

long

long

long
long

*TpPrDlg;

(The Dialog window)

(The Filter Proc.)

(The Item evaluatingproc. --

we’ll change this)

hPrintUsr; (The user’s print record.)

fDolt;

fOone;

-— reservedby Apple Computer)

lUseri;

itiser2;

lUser3;

lUser4;

/* Declare ‘pascal’ functions

pascal Boolean ProlgMainO;

pascal TPPrD1g PrJoblnitO;

pascal TPPrD1g MyJobDlglnitQ;

pascal void MyJobltemsO;

#define MyDITL 256

THPrint hPrintRec;

short FirstBoxValue = 0;

short SecondBoxValue= 0;

long prFirstltem;

long prPltemProc;

I

4

Dig;

pFltrProc;

pltemProc;

TPrDlg;
*7

and procedures*/

/ Print manager’sdialog handler *7

/* Gets standardprint job dialog. */

/ Our extention to PrJoblnit /
I Our modal item handler *7

/ resourceID of my DITL to be spliced

on to job dialog *1

/* handle to print record */

/* value of our first additional box */

/* value of our secondaddtl. box */

/ save our first item here */

we need to store the old itemProc here */

TechnicalNote #95 page lOot 14 How To Add Itemsto the Print Dialogs



1*
_*/

WindowPtr MyWindow;
OSErr err;
Str255 myStr;

rnain()

Rect myWRect;

InitGraf (&thePort);
InitFonts0;
mitWindowsQ;
InitMenus;
InitDialogs(nil);
InitCursorO;
SetRect(&myWRect, 50, 260,350,340)

/* call the routine that does printing *1
Propen0;
err = PrintO;

PrClose0;
/ main /

1*
*

/

OSErr Print()

1* call PrJoblnit to get pointer to the invisible job dialog */
hPrintRec = (THPrint) (NewHandle(sizeof(TPrint)));
PrintDefault(hPrintRec);
PrValidate(hPrintRec);
if (PrError() ! noErr)

return PrError;

PrtJobDialog= PrJoblnit(hPrintRec);
if (PrError() != noErr)

return PrError;

if (!PrDlgMain(hPrintRec, &MyJobDlglnit)) / this line does all the
stuff */

return Cancel;

if (PrError() != noErr)
return PrError;

/* that’s all for now

/ Print /

1*
*

/

pascal TPPrD1g MyJobDlglnit (hPrint)
THPrint hPrint;

TechnicalNote #95 page 11 of 14 How To Add Itemsto the Print Dialogs



/* this routine appendsitems to the standardjob dialog and sets up the

user fields of the printing dialog record TPRD1g

This routine will be called by PrDlgMain /

short firstltern; 7* first new item number */

short iternType; /* neededfor GetDltem/SetDltemcall */

Handle itemH;

Rect iternBox;

firstltem = AppendDITL (PrtobDialog, MyDITL>; /*call routine to do

this /

prFirstltem = firstltem; / save this so MyJobltems can find it /

, now we’ll set up our DITL items —— The “First Box” /

GetDltem(PrtiobDialog,firstltem,&itemType,&itemH,&iternBox);

SetCtlValue(itemH,FirstBoxValue);

7* now we’ll set up the secondof our DITL items -- The “Second Box” */

GetDltern(PrtJobDialog,firstltern+l,&itemType,&iternH,&itemBox);

SetCtlValue(iternH, SecondBoxValue);

/ Now comes the part where we patch in our item handler. We have to save

the old item handler address,so we can call it if one of the

standarditems is hit, and put our item handler’s address

in pltexnProc field of the TPrD1g struct

*7

prPltemProc= (long> PrtJobDialog—>plternProc;

/ Now we’ll tell the modal item handler where our routine is /

PrtJobDialog->plternProc (ProcPtr)&MyJobltems;

7* PrDlgMain expects a pointer to the modified dialog to be returned....*/

return PrtJobDialog;

/*myJobDlglnit*/

7*
*7

7* here’s the analogueto the SF dialog hook J

pascal void MyJobltems(theDialog,iternNo)

TPPrD1g theDialog;

short itemNo;

7* MyJobitems /

short myltem;

short firstltem;

short itemType; / neededfor GetDltem/SetDltemcall */

Handle iternH;

Rect itemBox;

firstltem = prFirstltem; 7* remember, we saved this in myJobDlglnit

*7

TechnicalNote #95 page 120114 How To Add Itemsto the Print Dialogs



myltem = itemNo—firstltem+1; / “localize” current item No *1

if (myltem > 0) / if localized item > 0, it’s one of ours /

1* find out which of our items was hit */

GetDltem(theDialog,itemNo,&itemType,&itemH,&itemBox);

switch (myltem)

case 1:
/ invert value of FirstBoxValue and redraw it */

FirstBoxValue = 1;

SetCtlValue(itemH,FirstBoxValue);

break;

case 2:
/ invert value of SecondBozcValueand redraw it *1
SecondBoxValue ‘= 1;

SetCtlValue(itemH, SecondBoxValue);

break;
default: DebuggerO; 1* OH OH /

1 /* switch */

7* if (myltem > 0) */

else /* chain to standarditem handler, whose addressis saved in
prPltemProc *7

CailPascal(theDialog,iternNo,prPltemproc);

1* MyJobitems *7

TechnicalNote #95 page 1 3of 14 How To Add Itemsto the Print Dialogs



The RezSource

#include “types.r”

resource ‘DITL’ (256)
7* array DlTLarray: 2 elements *7

/* [1] */

{8, 0, 24, 112),

CheckBox

enabled,

“First Box”

/* [2] */

{8, 175, 24, 287},

CheckBox

enabled,

“Second Box”

I
TechnicalNote #95 page 1 4o1 14 How To Add Itemsto the Print Dialogs



Macintosh Technical Notes 0
• #96: SCSI Bugs

Seealso: The SCSI Manager
SCSI Developer’sPackage

Written by: SteveFlowers October1, 1986
Modified by: Bryan Stearns November15, 1986
Modified by: Bo3b Johnson July 1, 1987
Updated: March 1, 1988

Therearea numberof problemsin the SCSI Manager;this note lists the ones
we know about,along with an explanationof what we’re doing aboutthem.
Changesmadefor the 2/88 releaseare madeto more accuratelyreflect the
stateof the SCSI Manager.System4.1 and4.2 arevery similar; onebug was
fixed in System4.2.

Thereare severalcategoriesof SCSI Managerproblems:

1. Thosein the ROM boot code
(Before the Systemfile hasbeenopened,and hence,beforeany patchescould possibly
fix them.)
2. Thosethat havebeenfixed in System3.2
3. Thosethat havebeenfixed in System4.1/4.2
4. Thosethat are new in System4.1/4.2
5. Thosethat havenot yet beenfixed.

The problemsin the ROM boot codecan only be fixed by changingthe ROMs. Most of
the bugs in the SCSI Manageritself have beenfixed by the patch code in the System
3.2 file. Thereare a few problems,though, that are not fixed with System3.2—mostof
thesebugshavebeencorrectedin System4.1/4.2.Any that are not fixed will be detailed
here. ROM codefor future machineswill, of course,includethe corrections.

ROM boot code problems

In the processof looking for a bootableSCSI device, the boot code issuesa SCSI
bus resetbeforeeachattemptto readblock 0 from a device, If the readfails for any
reason,the boot codegoeson to the next device. SCSI deviceswhich implementthe
Unit Attention condition asdefinedby the Revision 17B SCSI standardwill fail to
boot in this case.The readwill fail becausethe drive is attemptingto reportthe Unit
Attention condition for the first commandit receivesafter the SCSI bus reset.The
boot codedoesnot readthe sensebytesand doesnot retry the failed command;it
simply resetsthe SCSI busandgoeson to the next device.

TechnicalNote #96 page 1 of 7 SCSI Bugs



If no otherdevice is bootable,the boot codewill eventuallycycle back to the same

SCSI device ID, resetthe bus (causingUnit Attention ifl the drive again),and try

to readblock 0 (which fails for the samereason).

The ‘new’ Macintosh Plus ROMs that are included in the platinum Macintosh Plus

have only onechange.The changewas to simply do a single SCSI Bus Resetafter

powerup insteadof a Reseteachtime throughthe SCSI boot loop. This wasdoneto

allow Unit Attention drives to be bootable.It was an object codepatch (affecting

approximately30 bytes) and no other bugs were fixed. For details on the three

versionsof MacintoshPlus ROMs, seeTechnicalNote #154.

We recommendthat you choosean SCSI controllerwhich doesnot requirethe Unit

Attention feature cither an oldercontroller (mostof the SCSI controllerscurrently

available were designed before Revision 17B), or one of the newer

Revision-i7B-compatiblecontrollerswhich can enable/disableUnit Attention as

a formatting option (such as those from Seagate,Rodime, et al). Since the vast

majority of Macintosh Plus computershave the ROMs which cannot use Unit

Attention drives, we still recommendthat you choosean SCSI controllerthat does

not requirethe Unit Attention feature.

If an SCSI devicegoesinto the Statusphaseafter being selectedby the boot code,

this leadsto the SCSI bus being left in the Statusphaseindefinitely, and no SCSI

devicescan be accessed.The current Macintosh Plus boot code doesnot handle

this changeto Statusphase,which meansthat the presenceof an SCSI device

with this behavior (as in sometape controllerswe’ve seen)will preventany SCSI

devicesfrom being accessedby the SCSI Manager,even if they alreadyhad drivers

loadedfrom them. The result is that any SCSI peripheralthat is turned on at boot

time must not go into Statusphaseimmediately after selection; otherwise,the 4
MacintoshPIus SCSI bus will be left hanging.UnlesssubstantiallyrevisedROMs are

releasedfor the Macintosh Plus (highly unlikely within the next year or so), this

problem will never be fixed on the Macintosh Plus, so you should design for old

ROMs.

The MacintoshPlus would try to read256 bytesof blocks 0 and 1, ignoring the extra

data.The MacintoshSE and Macintosh II try to read512 bytesfrom blocks 0 and 1,

ignoring errors if the sectorsize is larger (but not smaller) than 512 bytes. Random

accessdevices(disks, tapes,CD ROMS, etc.) can be bootedas long as the blocks

are at least512 bytes,blocks 0, 1 andother partition blocks are correctly set up, and

there is a driver on it. With the new partition layout (documentedin Inside Macintosh

volume V), more than 256 bytes per sectormay be required in somepartition map

entries.This is why we droppedsupportfor 256-bytesectors.Disks with tag bytes

(532-byte sectors)or larger block sizes (1K, 2K, etc.) can be booted on any

Macintoshwith an SCSI port. Of course,the driver hasto take careof datablocking

andde-blocking,sinceHFS likes to work with 512-bytesectors.

TechncaINote #96 page 2 of 7 SCSI Bugs



Problemswith ROM SCSI Managerroutines

Note that the following problemsare fixed after the Systemfile hasbeenopened;for a
device to boot properly, it must not dependon thesefixes. The sampleSCSI driver,
availablefrom APDA, containsan exampleof how to find out if the fixes are in place.

Prior to Systemfile 3.2, blind transfers(both readsand writes) would not work
properly with many SCSI controllers. Since blind operationdependson the drive’s
ability to transferdatafast enough,it is the responsibilityof the driver writer to make
sureblind operationis safefor a particulardevice.

Prior to Systemfile 3.2, the SCSI Managerdroppeda byte when the driver did
two or more SCSIReadsor SOSIRBlinds in a row. (Each Reador RBlind hasto
have a TransferInformation Block (TIB) pointer passedin.) The TIB itself can be as
big and complexas you want—it is the processof returning from one SOSIReador
SOSIRBlind and enteringanotherone (while still on the sameSCSI command)that
causesthe first byte for the otherSOSIReadsto be lost.

Note that this precludesuse of file-systemtags. Apple no longer recommendsthat
you supporttags;seeTechnicalNote #94 for more information.

• Prior to Systemfile 3.2, SOS1Stat didn’t work; the new version works correctly.

• Running underSystemfile 3.2, the SCSI Managerdoesnot check to make sure
that the last byte of a write operation (to the peripheral) was handshakedwhile
operatingin pseudo-DMA mode.The SCSI Managerwrites the final byte to the NCR
5380’s one-byte buffer and then turns pseudo-DMA mode off shortly thereafter
(reportedto be 10-15 microseconds).If the peripheralis somewhatslow in actually
readingthe lastbyte of data, it assertsREQ after the Macintoshhasalreadyturnedoff
pseudo-DMAmode and never gets an ACK. The CPU then expectsto go into the
Statusphasesince it thinks everythingwent OK, but the peripheralis still waiting for
ACIC. Unlessthe driver can recoverfrom this somehow,the SCSI bus is ‘hung’ in the
DataOut phase.In this case,all successiveSCSI Managercalls will fail until the
bus is reset.

• Running underSystemfile 4.1/4.2,the SCSI Managerwaits for the last byte of
a write operationto be handshakedwhile operatingin pseudo-DMAmode; it checks
for a final DRQ (or a phasechange)at the endof a SCSIWriteor SCSIWB1indbefore
turning off the pseudo-DMAmode. Drivers that could recoverfrom this problemby
writing the last byte again if the bus was still in a Data Out phasewill still work
correctly, as long asthey werecheckingthe busstate.

• Running underSystemfile 3.2, the SCSI Managerdoes not time out if the
peripheralfails to finish transferringthe expectednumberof bytes for polled reads
andwrites. (Blind operationdoespoll for the first byte of eachrequesteddatatransfer
in the TransferInformation Block.)

TechnicalNote #96 page 3 of 7 SCSI Bugs



• Running under Systemfile 4.1/4.2,SCSIReadand SCSIWrite return an error
to the caller if the peripheralchangesthe bus phasein the middle of a transfer,as
might happenif the peripheralfails to transferthe expectednumberof bytes. The
computeris no longer left in a hung state.

• Running underSystemfile 3.2, the Selectiontimeout value is very short (900
microseconds).Patchesto the SCSI Managerin System4.1/4.2 ensurethat this
value is the recommended250 milliseconds.

• Running underSystemfile 3.2, the SCSI Manager routine SCSIGet (which
arbitratesfor the bus) will fail if the BSY line is still asserted.Somedevicesare a bit
slow in releasingBSY after the completionof an SCSI operation,meaningthat BSY

may not havebeenreleasedbeforethe driver issuesa SCSIGetcall to start the next
SCSI operation.A work-aroundfor this is to call SCSIGetagain if it failed the first
time. (Rarelyhas it beennecessaryto try it a third time.) This assumes,of course,that
the bus has not been left ‘hanging’ by an improperly terminatedSCSI operation
beforecalling SCSIGet.

• RunningunderSystemfile 4.1/4.2,the SCSIGet function has been made more
tolerant of devicesthat are slow to releasethe BSY line after a SCSI operation.The
SCSI Managernow waits up to 200 millisecondsbefore returningan error.

Problemswith the SCSI Managerthat haven’t beenfixed yet

Theseproblemscurrently exist in the Macintosh Plus, SE, and II SCSI Manager.We
plan to fix theseproblemsin a future releaseof the SystemTools disk, but in the mean
time, you shouldtry to work aroundthe problems(but don’t “require” the problems!).

• Multiple calls to SCSIReador SCSIRB1indafter issuing a commandand before
calling SCSICompletemay not work. Supposeyou want to readsomemodesense
datafrom the drive. After sendingthe commandwith SCSICmd,you might want to call
SCSIReadwith a TIB that readsfour bytes(typically a header).After readingthe field
(in the four-byte header)that tells how many remaining bytes are available, you
might call SCSIReadagain with a TIB to read the remaining bytes. The problem is
that the first byte of the secondSCSIReaddatawill be lost becauseof the way the
SCSI Managerhandlesreadsin pseudo-DMAmode. The work-aroundis to issue
two separateSCSIcommands:the first to readonly the four-byte header,the second
to readthe four-byte headerplus the remaining bytes.We recommendthat you not
use a clever TIB that containstwo data transfers,the secondof which gets the
transferlength from the first transfer’s receiveddata (the header).Thesetwo step
TIBs will not work in the future. This bug will probablynot be fixed.

• On readoperations,somedevicesmay be slow in deassertingREQ after sendingthe
last byte to the CPU. The current SCSI Manager(all machines)will return to the
caller without waiting for REQ to be deasserted.Usually the next call that the driver
would makeis SCSIComplete.On the MacintoshSE and II, the ScslCompletecall
will checkthe bus to be surethat it is in Statusphase.If not, the SCSI Managerwill
return a new error codethat indicatesthe bus was in Data In/Data Out phasewhen
SCSICompletewas called. The combinationof the speedof the Macintosh II and a 4

TechnicalNote #96 page 4 of 7 SCSI Bugs



slow peripheralcan causeSCSICompleteto detectthat the bus is still in Data In
phasebefore the peripheral has finally changedthe bus to Statusphase.This
resultsin a falseerror being passedbackby SCSIComplete.

• The scComp (compare)TIB opcodedoesnot work in System4.1 on the Macintosh
Plus only. It returns an error code of 4 (bad parameters).This has been fixed in
System4.2.

Other SCSI Manager Issues

• At leastone third-party SCSI peripheraldriver usedto issueSCSI commandsfrom a
VBL task. It didn’t checkto seeif the bus was in the free statebefore sendingthe
command!This is guaranteedto wipe out any other SCSI commandthat may have
beenin progress,sincethe SCSI Manageron the MacintoshPlus doesnot maskout
(or use) interrupts.

We strongly recommendthat you avoid calling the SCSI Managerfrom interrupt
handlers(suchasVBL tasks).If you must sendSCSi commandsfrom a VBL task (like
for a removablemediasystem),do a SCSIStatcall first to seeif the bus is currently
busy. If it’s free (Bsi is not asserted),then it’s probablysafe;otherwisethe VBL task
should not sendthe command.Note that you can’t call SCSIStatbeforethe System
file fixes are in place. Since SCSI operationsduring VBL are not guaranteed,you
shouldcheckall errorsfrom SCSI Managercalls.

• A new SCSI Managercall will be addedin the future. This wi’l be a high-level call; it
will have somekind of parameterblock in which you give a pointer to a command
buffer, a pointerto your TIB, a pointerto a sensedatabuffer (in casesomethinggoes
wrong, the SCSI Managerwill automaticallyreadthe sensebytes into the buffer for
you), and a few otherfields. The SCSI Managerwill take careof arbitration,selection,
sendingthe command,interpretingthe TIB for the datatransfer,and getting the status
and messagebytes (and the sensebytes, if therewas an error). It should makeSCSI
devicedrivers much easierto write, sincethe driver will no longerhaveto worry about
unexpectedphasechanges,getting the sensebytes, and so on. In the future, this will
be the recommendedway to usethe SCSI Manager.

• The SCSI Manager (all machines)does not currently support interrupt-driven
(asynchronous)operations.The MacintoshPlus can neversupportit sincethere is no
interrupt capability, although a polled schememay be implementedby the SCSI
Manager.The Macintosh SE hasa maskableinterrupt for IRQ, and the Macintosh II
hasmaskableinterruptsfor both IRQ and DRQ. Apple is working on an implementation
of the SCSI Managerthat will supportasynchronousoperationson the Macintosh II
and probably on the SE as well. Becausethe interrupt hardware will interact
adversely with any asynchronousschemesthat are polled, it is strongly
recommendedthat third partiesdo not attemptasynchronousoperationsuntil the new
SCSI Manageris released.Apple will not attemptto be compatiblewith any products
that bypasssomeor all of the SCSI Manager. In orderto implementsoftware-based
(polled) asynchronousoperationsit is necessaryto bypassthe SCSI Manager.

TechnicalNote #96 page 5 o17 SCSI Bugs



The SCSI Manager section of the alpha draft of Inside Macintosh volume V

documentedthe Disconnectand Reselectroutineswhich were intendedto be used

for asynchronousI/O. Those routinescannot be used. Those routines have been

removedfrom the manual. Any software that usesthose routines will have to be

revisedwhen the SCSI Managerbecomesinterrupt-driven.Drivers which sendSCSI

commandsfrom VBL tasksmay also haveto be modified.

Hardware in the SCSI

There is someconfusionon how manyterminatorscan be usedon the bus, andthe best

way to usethem. Therecan be no more than two terminatorson the bus. If you have

more than one SCSI drive you must have two terminators.If you only haveone drive,

you shouldusea single terminator. If you have more than one drive, the two terminators

should be on oppositeendsof the chain. The idea is to terminateboth endsof the wire

that goesthrough all of the devices.One terminatorshould be on the end of the system

cablethat comesout of the Macintosh.The otherterminatorwould be on the very end of

the last device on the chain. If you havean SE or II with an internal hard disk, there is

alreadyoneterminatoron the front of the chain, inside the computer.

On the Macintosh SE and II, there is additional hardwaresupport for the SCSI bus

transfersin pseudo-DMAmode.The hardwaremakesit possibleto handshakethe data

in Blind modeso that the Blind modeis safefor all transfers.On the MacintoshPlus, the

Blind transfersare heavily timing dependentand can overrun or underrunduring the

transferwith no error generated.Assunngthat Blind mode is safeon the Macintosh Plus

dependsupon the peripheralbeing used.On the SE and II, the transferis hardware

assistedto preventoverrunsor underruns.

Changesin SCSI for SE and II

The changesmadeto the SCSI Managerfound in the Macintosh SE and Macintosh II

are primarily bug fixes. No new functionality was added.The newerSCSI Manageris

more robust and has more error checking. Since the Macintosh Plus SCSI Manager

only did limited error checking,it is possibleto havecodethat would function (with bugs)

on the Macintosh Plus, but will not work correctly on the SE or II. The Macintosh Plus

could mask some bugs in the caller by not checking errors. An example of this is

sendingor receiving the wrong numberof bytes in a blind transfer.On the Macintosh

Plus, no error would be generatedsincetherewas no way to be sure how many bytes

were sentor received.On the SE and II, if the wrong numberof bytesare transferredan

error will be returnedto the caller. The exacttiming of transfershaschangedon the SE

and II aswell, sincethe computersrun at different speeds.Devicesthat are unwittingly

dependentupon specific timing in transfers may have problems on the newer

computers.To find problemsof this sort it is usually only necessaryto examinethe error

codesthat are passedback by the SCSI Manager routines. The error codes will

generallypoint out wherethe updatedSCSI Managerfound errors.

TechnicalNote #96 page 6 of 7 SCSI Bugs



To report other bugs or make suggestions

Pleasesendadditional bug reportsand suggestionsto us at the addressin Technical, Note #0. Let us know what SCSI controller you’re using in your peripheral,and whether
you’ve had any particularly good or bad experienceswith it. We’ll add to this note as
more information becomesavailable.

TechnicalNote #96 page 7 of 7 SCSI Bugs



I

4



Macintosh Technical Notes

#97: PrSetErrorProblem

Written by: Mark Baumwell November15, 1986
Updated: March 1, 1988

This note formerly describeda problem in Lisa Pascal glue for the
PrSetErrorroutine. The glue in MPW (and most, if not all, third party
compilers)doesnot havethis problem.

TechnicalNote #97 page 1 of 1 PrSetErrorProblem



w



/-

Macintosh Technical Notes

#98: Short-CircuitBooleansin Lisa Pascal

Written by: Mark Baumwell November15, 1986
Updated: March 1, 1988

This note formerly describedproblemswith the Lisa Pascalcompiler. These
problemshavebeenfixed in the MPW Pascalcompiler.

TechnicalNote #98 page 1 of 1 Short-CircuitBooleansin Lisa Pascal



4

4



Macintosh Technical Notes

#99: StandardFile Bug in System3.2

Seealso: The StandardFile Package

Written by: Jim Friedlander November15, 1986
Updated: March 1, 1988

This note formerly describeda bug in StandardFile in System3.2. This bug
hasbeenfixed in more recentSystems.

TechnicalNote #99 page 1 of 1 StandardFile Bug in System3.2





Macintosh Technical Notes

#100: Compatibility with Large-ScreenDisplays

Seealso: TechnicalNote #2—MacintoshCompatibility Guidelines

Written by: Bryan Stearns November15, 1986
Updated: March 1, 1988

A numberof third-party developershave announcedlarge-screendisplay
peripheralsfor Macintosh.One of them, Radius Inc., has issueda set of
guidelinesfor developerswho wish to remain compatiblewith their Radius
FPD; unfortunately, one of their recommendationscan causesystem
crashes.This notesuggestsa morecorrectapproach.

On the first pageof the appendixto their guidelines,“How to be FPD Aware,” Radius
recommendsthe following:

“First, to detectthe presenceof a RadiusFPD, you shouldcheckaddress$C00008...”

Unfortunately,this assumesthat you’re running on a Macintoshor Macintosh Plus; this
test will not work on MacintoshXL, nor on a Macintosh II. Sincethesedisplaysweren’t
designedto work with systemsother than Macintosh and Macintosh Plus, you should
make sure you’re running on one of thesesystemsbefore addressingI/O locations
(suchasthosefor an add-ondisplay).

Before testing for the presenceof any large-screendisplay, you should first checkthe
machineID; it’s the byte locatedat (ROMBASE) +8 (that is, take the long integerat the
low-memory location ROMBASE [$2AE], and add 8 to get the addressof the machineID
byte. On a Macintosh or Macintosh Plus, this addresswill work out to be $400008;
however,usethe low-memory location, to be compatiblewith future systemsthat may
havethe ROM at a different address!).

The machineID byte will be $00 for all currentMacintoshsystems.If the value isn’t $00,
you can assumethat no large-screendisplay is present,but don’t forget to follow
TechnicalNote #2’s guidelinesfor screensize independence!

Note: If you are a developerof an add-onlarge-screendisplay, we’d be happy
to review your guidelines for developersin advanceof distribution;
pleasesendthem to us at the addressfor commentsin Technical Note
#0. Futureversionsof this note may recommendgeneralguidelinesfor
dealing with add-on large-screendisplays.

TechnicalNote #100 page 1 of 1 Compatibility with Large-ScreenDisplays



e



Macintosh Technical Notes

#101: CreateResFileandthe PoorMan’s SearchPath

Seealso: The File Manager
The ResourceManager
TechnicalNote #77—HFSRuminations

Written by: Jim Friedlander January12, 1987
Updated: March 1, 1988

CreateResFlie checksto see if a resourcefile with a given nameexists,
and if it does,returnsa dupFNErr (—48) error. Unfortunately,to do this check,
CreateResFileusesa call that follows the PoorMan’s SearchPath(PMSP).

CreateResFilechecksto seeif a resourcefile with a given nameexists,and if it does,
returnsa dupFNErr (—48) error. Unfortunately,to do the check, CreateResFilecalls
PBOpenRF,which usesthe Poor Man’s SearchPath (PMSP). For example,if we have a
resourcefile in the Systemfolder named ‘MyFile’ (and no file with that name in the
current directory) and we call CreateResFile( ‘MyFile’), ResErrorwill return a
dupFNErr,since PBopenRFwill searchthe current directory first, then searchthe
blessedfolder on the samevolume. This makesit impossibleto useCreateResFileto
createthe resourcefile ‘MyFile’ in the current directory if a file with the samename
alreadyexists in a directorythat’s in the PMSP.

To make sure that CreateResFilewill createa resourcefile in the currentdirectory
whetheror not a resourcefile with the same name already exists further down the
PMSP,call _Create(PBCreateor Create)beforecalling createResFile:

err Create(’MyFile’,O,inyCreator,myType);
{O for VRefNum means Current volume/directory)

CreateResFile( ‘MyFile’);
err := ResError; (check for error)

In MPW C:

err = Create(”\pMyFile”,O,myCreator,myType);
CreateResFile(“\pMyFile”);
err = ResErrorO;

This works because_Createdoesnot usethe PMSP. If we alreadyhave ‘MyFile’ in
the currentdirectory, Createwill fail with a dupFNErr,then, if ‘MyFile’ hasan empty
resourcefork, CreateResFilewill write a resourcemap, otherwise,CreateResFile
will return dupFNErr. If thereis no file named‘MyFile’ in the currentdirectory, Create
will createone andthen CreateResFilewill write the resourcemap.
Notice that we are intentionally ignoring the error from Create,sincewe are calling it
only to assurethat a file named‘MyFile’ doesexist in the currentdirectory.

TechnicalNote #101 page 1 of 3 CreateResFileandthe PMSP



Pleasenote that SFPutFile doesnot use the PMSP, but that FSDeletedoes.

SFPutFlie returnsthe vRefNum/WDRefNumof the volume/folderthat the userselected.

If your programdeletesa resourcefile beforecreatingone with the samenamebased

on information returnedfrom SFPutFile,you can use the following strategyto avoid

deleting the wrong file, that is, a file that is not in the directory specified by the

vRefNum/WDRefNumreturnedby SFPutFile,but in someotherdirectory in the PMSP:

VAR

wher : Point;

reply : SFReply;

err : OSErr;

oldVol : Integer;

wher.h : 80; wher.v := 90;

SFPutFile(wher, ‘‘, ‘‘ ,NIL, reply)

IF reply.good THEN BEGIN

err := GetVol(NIL,oldVol); {So we can restore it later)

err := SetVol(NIL,reply.vRefNum);(forthe CreateResFilecall}

(Now for the Create/CreateResFilecalls to create a resourcefile that

we know is in the current directory)

err := Create(reply.fNarne,reply.vRefNurn,rnyCreator,myType);

CreateResFile(reply.fName);(we’ll use the ResError from this ...)

CASE ResError OF

noErr:{the createsucceeded,go aheadand work with the new

resourcefile -- NOTE: at this point, we don’t know 4
what’s in the data fork of the file!!)

dupFNErr: BEGIN (duplicate file name error)

(the file already existed, so, let’s delete it. We’re now

sure that we’re deleting the file in the current directory)

err:= FSDelete(reply.fName,reply.vRefNum);

(now that we’ve deletedthe file, let’s create the new one,

again, we know this will be in the current directory)

err:= Create(reply.fName,reply.vRefNum,myCreator,mvType);

CreateResFile(reply. fName);

END; (CASE dupFNErr}

OTHERWISE (handle other errors)

END; (Case ResError)

err SetVol(NIL,oldVol);{restore the default directory)

END; (If reply.good}

TechnicalNote #101 page 2 of 3 CreateResFileandthe PMSP



In MPW C:

Point wher;

SFReply reply;

OSErr err;

short oldVol;

wher.h = 80; wher.v = 90;

SFPutFile(wher,””,““,nil, reply);

if (reply.good

err = GetVol(nil,&oldVol);

/*So we can restore it later*/

err = SetVol(nil,reply.vRefNum);/*forthe CreateResFilecall*/

/*Now for the Create/CreateResFilecalls to createa resourcefile

that we know is in the current directory*/

err = Create(&reply.fName,reply.vRefNum,myCreator,myType);

CreateResFile(&reply. fNarne);

/*weIll use the ResError from this .
. ./

switch (ResError)

case noErr:;/*the create succeeded,go aheadand work with the

new resourcefile —— NOTE: at this point, we don’t

know what’s in the data fork of the file! !*/

break; /* case noErr*/

case dupFNErr: /*duplicate file name error*/

/*the file alreadyexisted, so, let’s delete it.

We’re now sure that we’re deleting the file in the

current directory*/

err= FSDelete(&reply.fName,reply.vRefNum);

/* that we’ve deletedthe file, let’s createthe

new one, again, we know this will be in the current

directory*/

err= Create(&reply.fName,reply.vRefNurn,

myCreator,myType);

CreateResFile(&reply.fName);

break; /*case dupFNErr*/

default:; /*handje other errors*/

/* switch */

err = SetVol(nil,oldVol);/*restorethe default directory*/

/*if reply.good*/

Note: OpenResFileusesthe PMSPtoo, so you may haveto adoptsimilar strategiesto

makesurethat you areopeningthe desiredresourcefile andnot someotherfile further

down the PMSP.This is normally not a problemif you useSFGetFile,Since

SFGetFiledoesnot usethe PMSP,in fact, SFGetFiledoesnot openor closefiles, so

it doesn’trun into this problem.

TechncaINote #101 page 3 of 3 CreateResFileandthe PMSP



S a



Macintosh Technical Notes

#102: HFS Elucidations

Seealso: The File Manager
TechnicalNote #77—HFSRuminations

Written by: Bryan “Bo3b” Johnson January12, 1987
Updated: March 1, 1988

This technicalnote will describea few problems thatcan occurwhile using
HFS. It will alsodescribewaysto avoid theseproblems.

This technicalnote will discussthe following problems:

1) It is very importantto be careful about how files are openedand closed.There must
be no more than one closefor everyopen.

2) Don’t use Driver names,like .Bout, .Print or .Sony, in place of file namesor the
file systemwill becomeconfused.

3) Be aware of the ioFlVersNum byte in all file calls. A numberof piecesof the
Macintosh system do not use, and may in fact ignore, files createdwith non-zero
ioFlVersNums.

Eachof thesecan lead to strangeoccurrences,aswell as problemsfor the users.Doing
any or all of thesemarginally illegal operationswill not necessarilylead to a System
Error. In somecasesthe confusiongeneratedmay be worsethana SystemError.

One Close is always enough

If a file is closedtwice, it is possibleto corrupt the file systemon a disk. If a programhas
beencreatingunreadabledisks, this maybe the cause.

One aspectof the file systemthat is not well documentedis how it allocatesaccess
pathsto files that are currently open. As a result of this, it is possibleto get a rather
cavalierattitude about opening andclosing files. This discussionwill explain why it is
necessaryto be very careful aboutopeningand closing files.

When the File Managerreceivesan Open call, it will look at the parameterspassedin
the parameterblock andcreatea new accesspath for the file that is being opened.The
accesspath is how the File Managerkeepstrack of whereto senddatathat is written,
and whereto get datathat is readfrom that file. An accesspath is nothing morethan: 1)
a buffer that the file systemusesto read andwrite data,and 2) a File Control Block that
describeshow the file is storedon a disk.

TechnicalNote #102 page 1 of 7 HFS Elucidations



A call like:

ErrStuff FSOpen (‘FirstFile’, theVRefNuxn, FirstRefNum);

will createthe accesspath asa buffer anda File Control Block (FCB) in the FCB queue.

Note: The following information is here for illustrative purposesonly; dependenceon it
may causecompatibility problemswith future systemsoftware.

The structureof the queuecan be visualizedas:

FCBSPtr ($34E) Buffer Length

2

First FCB Record

2FCBLength

Second FCB Record

Last FCB Record

where FCBSPtr is a low-memory global (at $34E) that holds the addressof a
nonrelocatableblock. That block is the File Control Block buffer, and is composedof the
two byte headerwhich gives the length of the block, followed by the FCB records
themselves.The recordsare of fixed length, and give detailed information about an
open file. As depicted, any given record can be found by adding the length of the
previousFCB recordsto the start of the block, adding 2 for the two byte header;giving
an offset to the recorditself. The size of the block, andhencethe numberof files that can
be open at any given time, is determinedat startuptime. The call to open ‘FirstFile’

abovewill passbackthe File ReferenceNumberto that file in FirstRefNum.This is the
numberthat will be usedto accessthat file from that point on. The File Managerpasses
back an offset into the FCB queueasthe RefNum. This offset is the numberof bytespast
the beginning of the queueto that FCB record in The queue.That FCB record will
describethe file that was opened.An exampleof a numberthat might get passedback
as a RefNum is $ 1DB. That also meansthatThe FCB recordis $1DB bytes into the FCB
block.

TechnicalNote #102 page 2 of 7 HFS Elucidations



A visual exampleof a recordbeing in use,and how the RefNum is relatedis:

Base 0
2

Base—4—ReftT.1

Base is merely the addressof the nonrelocatableblock that is the FCB buffer. FCBSPtr

points to it. The RefNum (a numberlike $108) is addedto Base,to give an addressin the
block. That addressis what the file systemwill use to read and write to an open file,
which is why you are requiredto passthe RefNum to the PBReadand PBWrite calls.

Since that RefNum is merely an offset into the queue,let’s stepthrough a dangerous
imaginarysequenceand seewhat happensto a given record in the FCB Buffer. Here’s
the sequencewe will stepthrough:

ErrStuff := FSOpen (‘FirstFile’, theVRefNum, FirstRefNum);

ErrStuff : FSClose ( FirstRefNum );

ErrStuff := FSOpen (‘SecondFile’, theVRefNum, SecondRefNum);

ErrStuff := FSClose ( FirstRefNwn ); {the wrong file gets closed! !

(the above line will close ‘SecondFile’, not ‘FirstFile’, which is already

closed}

Before any operations:
the recordat $108 is not used.

Base Q
2

Base+RefNurn

TechnicalNote #102 page 3 of 7 HFS Elucidations



After the call:
ErrStuff : FS0peri (‘FirstFile’, theVRefNum, FirstRefNurn);

FirstRefNuxn= $1D8 andthe recordis in use.

After the call:
ErrStuff := FSClose (FirstRefNurn);

FirstRefNuin is still equal to $1D8, but the FCB record is unused.

Base+Ref N urn

IBase

Base

Technic& Note #102 page 4 of7 HFS Elucidations



After the call:
ErrStuff := FSOpen (‘SecondFile’, theVRefNuxn, SecondRefNum);

SecondRefNum= $].D8, FirstRefNum = $1D8, and the record is reused.

Base 0
2

Base+RefNum

After the call:
ErrStuff : FSClose (FirstRefNum);

The FirstRefNum = $1D8, SecondRefNum= $1DB,

the queueelementis cleared.This happens,eventhoughFirstFile wasalready
closed.Actually, SecondFilewasclosed:

Base 0
2

Base+RefNum

Note that the secondclose is using the old RefNum. The secondclosewill still close a
file, and in fact will return noErr as its result. Any subsequentaccessesto the
SecondRefNumwill return an error, sincethe file ‘SecondFile’was closed.The File
Control Blocks are reused,and sincethey are just offsets, it is possibleto get the same
file RefNum back for two different files. In this case,FirstRefNum= SecondRefNum
since ‘FirstFile’ wasclosedbeforeopening ‘SecondFile’andthe sameFCB record
wasreusedfor ‘SecondFile’.

TechnicalNote #102 page 5 of 7 HFS Elucidations



Thereare worsecasesthan this, however.As an example,think of what can happenif a

programwere to close a file, then the user insertedan HFS disk. The FCB could be

reusedfor the CatalogFile on that HFS disk. If the programhad a genericerror handler

that closedall of its files, it could inadvertentlyclose“its” file again. If it thought “its” file

was still open it would do the close,which could closethe Catalogfile on the HFS disk.

This is catastrophicfor the disk sincethe file could easily be closed in an inconsistent

state.The result is a baddisk that needsto be reformatted.

Thereare any numberof nastycasesthat can arise if a file is closedtwice, reusingan

old RefNum. A common programmingpractice is to have an error handleror cleanup

routine that goesthrough the files that a programcreatesand closesthem all, even if

somemay alreadybe closed. If an FCB elementwas not reused,the Closewill return

the expectedfnOpnErr. lithe FCB had beenreused,then the Closecould be closing

the wrong file. This can be very dangerous,particularly for all thoseparanoidhard disk

users.

How to avoid the problem:

A very simple techniqueis to merely clear the P.efNurnafter eachclose. If the variable

that the program usesis clearedafter eachclose, then there is no way of reusing a

RefNum in the program.An exampleof this techniquewould be:

ErrStuff := FSOpen (‘FirstFile’, theVRefNum, FirstRefNuxn);

ErrStuff := FSClose (FirstRefNurn);

FirstRefNum : 0; { We just closed it, so clear our refnum

ErrStuff := FSOpen (‘SecondFile’, theVRefNuxn, SecondRefNum);

ErrStuff := FSClose (FirstRefNum); { returns an error

This makesthe secondClosepassback an error. In this case,the secondclosewill try

to close RefNum = 0, which will passback a fnOpnErr and do no damage.Note: Be

sureto use0, which will neverbe a valid RefNum, sincethe first FCB entry is beyondthe

FOB queuelength word. Don’t confusethis with the 0 that the ResourceManageruses

to representthe Systemfile.

Thus, if an error handlerwere cleaning up possiblyopen files, it could blithely close all

the files it knew about, since it would legitimately get an error back on files that are

already closed. This is not done automatically, however. The programmermust be

careful aboutthe openingand closing of files. The problem can get quite complex if an

error is received halfway through opening a sequenceoften files, for example. By

merely clearing the RefNum that is storedafter eachclose, it is possibleto avoid the

complexitiesof trying to track which files are openand which are closed.

This .file name looks outrageous.

There is a potential conflict betweenfile namesand driver names. If a file name is

namedsomethinglike .Bout, .Print or .Sony,thenthe file systemwill openthe driver

insteadof the file. Drivers have priority on the 128K ROMs, and will always be opened

beforea file of the samename.This may meanthat an applicationwill get an error back 4

TechnicalNote #102 page 6 of 7 HFS Elucidations



when openingthesetypesof files, or worse,it will get backa driver RefNum from the call.
What the applicationthoughtwas a file open call was actually a driver opencall. If the
programusesthat accesspath asa file RefNum, it is possibleto get all kinds of strange

• things to happen.For example,if . Sony is opened,the Sonydriver’s RefNum would be
passedback, insteadof a file RefNurn. If the applicationdoesa Write call using that
RefNum, it will actually be a driver call, using whateverparametershappento be in the
parameterblock. Disks may be searchingfor new life after this type of operation. If a
programcreatesfiles, it shouldnot allow a file to be createdwhosenamebeginswith ‘.‘.

This file’s not my type.

This has beendiscussedin other places,but anotheraspectof the File Managerthat
can causeconfusion is the ioFlversNumbyte that is passedto the low-level File
Managercalls. This is called ioFileType from Assembly,and should not be confused
with ioFVersNum.This byte must be set to zero for normal Macintoshfiles. Thereare a
numberof partsof the systemthat will not deal correctly with files that havethe wrong
versions: the Standard File package will not display any file with a non-zero
ioFlVersNum; the SegmentLoader and ResourceManagercannotopen files that
have non-zero ioFlVersNums. It is not sufficient to ignore this byte when a file is
created.The byte must be cleared in order to avoid this type of problem. Strictly
speaking,it is not a problem unlessa file is being createdon an MFS disk. The current
systemwill easilyallow the userto access400K disks however,so it is betterto be safe
than confused.

TechnicalNote #102 page 7 of 7 HFS Eucidations



4



Macintosh Technical Notes

• #103: Using MaxApplZoneandMoveHHi from AssemblyLanguage

Seealso: Using AssemblyLanguage
The Memory Manager
TechnicalNote #1 29—SysEnvirons

Written by: Bryan “Bo3b” Johnson January12, 1987
Updated: March 1, 1988

When calling MaxApplZone andMoveHHi from assemblylanguage,be sure
to get the correctcode.

MaxAppiZoneand MoveHHi were marked[Not in ROM] in Inside Macintosh, Volumes
I-Ill. They are ROM calls in the 128K ROM. Since they are not in the 64K ROM, if you
want your programto work on 64K ROM routinesit is necessaryto call the routinesby a
JSR to a glue (library) routine insteadof using the actualtrap macro. The glue calls the
ROM routines if they are available, or executesits copy of them (linked into your
program)if not.

How to do it:

Wheneveryou needto usethesecalls, just call the library routine. It will checkROMB5 to
determinewhich ROMs are running, and do the appropriatething.

For MDS, includethe Memory . Rel library in your link file anduse:

XREF Movel*ii ; we need to use this ‘ROM’ routine

SR MoveHi-li ; jump to the glue routine that will check R0M85 for us

For MPW link with Interface.o anduse:

IMPORT MoveHHi ; we need to use this

JSR MoveHHi ; jump to the glue routine that will check R0M85 for us

Avoid calling _MaxApplZoneor MoveHHi directly if you want your softwareto work on
the 64K ROMs, sincethat will assembleto an actualtrap, not to a JSRto the library.

If your programis going to be run only on machineswith the 128K ROM or newer, you
can call the trapsdirectly. Be sureto checkfor the 64K ROMs, and report an error to the
user. You can check for old ROMs using the SysEnvironstrap as describedin
TechnicalNote #129.

TechnicalNote #103 page 1 of 1 Using MaxAppiZoneandMoveHHi



a a a



.

This technicalnotedemonstrateshow to accessMPW Pascaland MPW C
globalsfrom the MPW Assembler.

To allow accessof MPW Pascalglobalsfrom the MPW Assembler,you needto identify

the variablesthat you wish to accessas external. To do this, usethe {$z+} compiler

option. Using the $z÷ } option can substantiallyincreasethe size of the object file due

to the additional symbol information (no additional code is generatedand the symbol

information is strippedby the linker). If you areconcernedaboutobject file size, you can

“bracket” the variablesyou wish to accessas externalvariableswith { $ z + } and { $ z - }.
Here’s a trivial example:

PascalSource

PROGRAM MyPascal;

USES

VAR

MemTypes,QuickDraw,OSIntf,Toollntf;

!TlyWRect: Rect;

{$Z+} (make the following external)

mylnt: Integer;

{$Z—} (make the following local to this file (not lexically local)

err: Integer;

PROCEDURE MyAsrn; EXTERNAL; (routine doubles the value of mylnt)

BEGIN (PROGRAM)

mylnt:= 5;

MyAsm; {call the routine, mylnt will be 10 riow}

writeln(’The value of mylnt after calling myAsm is ‘, mylnt:1);

END. (PROGRAM)

AssemblySourcefor Pascal

CASE

MyAsm PROC

IMPORT

ASL.W

RTS

END

OFF

EXPORT

mylnt :DATA

#1,mylnt

;treat upper and lower case identically

;CASE OFF is the assembler’sdefault

;we need :DATA, the assemblerassumesCODE

;multiply by two

;all done with this extensiveroutine, whew!

Macintosh Technical Notes

#104: MPW: AccessingGlobalsFrom AssemblyLanguage

Seealso: MPW ReferenceManual

Written by: Jim Friedlander January12, 1987
Updated: March 1, 1988

TechnicalNote #104 page 1 of 2 AccessingGlobalsFrom AssemblyLanguage



The variable mylnt is accessiblefrom assembler. Neither myWRect nor err are
accessible. If you try to accessmyWRect, for example,from assembler,you will get the
following linker error:

### Link: Error Undefined entry name: MYWRECT.

C Source

In an MPW C program,one needonly makesurethat MyAsm is declaredasan external
function, that mylnt is a global variable (capitalizationsmust match)and that the CASE
ON directive is usedin the Assembler:

#include <types. h>

#include <quickdraw.h>
#include <fonts . h>

#include <windows.h>

#include <events. h>

#include <textedit.h>

#include <dialogs. h>
#include <stdio.h>

extern MyAsmO; /* assemblyroutine that doubles the value of mylnt *1
short mylnt; /* we’ll change the value of this variable from MyAsm *1

main()

WindowPtr MyWindow;

Rect myWRect;

mylnt = 5;
MyAsmO;
printf(” The value of mylnt after calling myAsm is %d\n”,mylnt);

/*majfl*/

Assemblysourcefor C

CASE ON ;treat upper and lower case distinct

MyAsm PROC EXPORT ;this is how C treats upper and lower case
IMPORT mylnt:DATA ;we need :DATA, the assemblerassumesCODE
ASL.W #1,mylnt ;multiply by two
RTS ;ail done with this extensiveroutine, whew!
END

TechnicalNote #104 page 2 of 2 AccessingGlobalsFrom AssemblyLanguage



Macintosh Technical Notes

#105: MPW ObjectPascalWithout MacApp

Seealso: TechnicalNote #93—{$LOAD};_Datalnit;%_MethTables

Written by: Rick Blair January12, 1987
Updated: March 1, 1988

Object Pascalmust havea CODE segmentnamed 1ethTab1esin order to access
object methods.In MacApp this is takencareof “behindlthe scenes”so you don’t haveto
worry about it . However, if you are doing a straight Objec± Pascalprogram,you must
makesurethat %_MethTablesis aroundwhen you needit. if it’s unloadedwhen you
call a method, your Macintosh will begin executingwild noncodeand die a gruesome
and horrible death.

The MPW Pascalcompilermust seesomedeclarationof an object in orderto producea
referenceto the magic segment.You can achievethis cheaply by simply including
Objlntf.p in your Usesdeclaration.This must bein the main program,by the way. The
compilerwill producea call to % InitObj which is in %MethTables.

If you’re a more adventuroussoul, you can call % InitObj explicitly from the
initialization sectionof your main program(you must usethe { $%+ } compilerdirective to
allow the use of “%“ in identifiers). This will load the % MethTablessegment.See
Technical Note #93 for ideas about locking down segmentsthat are neededforever
without fragmentingtheheap.

TechnicalNote #105 page 1 of 1 MPW ObjectPascalWithout MacApp





Macintosh Technical Notes

• #106:The Real Story: VCBs and Drive Numbers

Seealso: The File Manager
TechnicalNote #36—Drive QueueElementFormat

Written by: Rick Blair January12, 1987
Updated: March 1, 1988

The top of pageIV-1 78 in The File Managerchapterof Inside Macintoshin attemptsto
explain the behaviorof two fields in a volume control block when the correspondingdisk
is offline or ejected.Due to the fact that a little bit is left unsaid,this paragraphis rather
misleading.The two fields in questionare vcbDrvNum and vcbDRefNum(referredto as
ioVDrvlnfo and iovDRefNum in C and Pascal). PBHGetVInfocan be usedto access
thesefields.

Off line

When a mountedvolume is placedoffline, vcbDrvNum is clearedand vcbDRefNumis
set to the two’s complementof the drive number. Since drive numbersare assigned
positive values(starting with one), this will be a negativenumber. If vcbDrvNum is zero
and vcbDRefNumis negative,you know that the volume is offline.

Ejected

When a volume is ejected,vcbDrvNum is clearedand vcbDRefNumis setto the positive
drive number. If vcbDrvNum is zero and vcbDRefNum is positive, you know that the
volume is ejected.Ejection implies being offline. There is no such thing as “premature
ejection”.

Summary

pnlinp pffline ejected
vcbDrvNum >0 (DrvNum) 0 0
vcbDRefNum <0 (DRefNum) <0 (-DrvNum) >0 (DrvNum)

Pleaserefrain from assuminganything about a VCB queueelementbeyondwhat is
documentedin Inside Macintosh,and don’t expectit to always be 178 bytes in size. It
grew when we went from MFS to HFS, and it may grow again. It’s safestto usecalls like
PBHGetVInfo to get the information that you need.

TechnicalNote #106 page 1 of 1 The RealStory: VCBs andDrive Numbers



I

4



.

Some applications(loosely speakingso as to include Desk Accessories,INITs, and
what-have-you)generateor renamespecialfiles on the fly so that they are not explicitly
namedby the uservia SFPutFile.Sincethe Macintoshfile systemis very liberal about
filenamesand only excludescolons from the list of acceptablecharacters,this can lead
to somedifficulties, both for the end userand for writers of other programswhich may
seethesefiles.

Other programswhich might be backing up your disk or somethingsimilar may get
confused.A programwritten in C will think it hasfound the end of a string when it hits a
null (ASCII code0) character,so nulls in filenamesare especiallyrisky.

As a rule, filenamesshould only include characterswhich the usercan seeand edit.
The only reasonableexceptionmight be invisible files, but it can be arguedthat they are
of dubious value anyway. You can argue “but what about my help file, I don’t want it
renamed”but we alreadyhave what we think is the best approachfor that situation. If
you can’t find a configuration or other file becausethe userhas renamedor moved it,
then call SFGetFileand let the userfind it. If the usercancels,and you can’t run without
the file, then quit with an appropriatemessage.

Pleaseconsidercarefully beforeyou put non-displayingcharactersin filenames!

Macintosh Technical Notes

#107: Nulls in Filenames

Seealso: The File Manager

Written by: Rick Blair March 2, 1987
Updated: March 1, 1988

TechnicalNote #107 page 1 oIl Nulls in Filenames



a a a



Macintosh Technical Notes

#108: _AddDrive, _Drvrlnstall, and_DrvrRemove

Seealso: TechnicalNote #36, Drive QueueElements
SCSI DevelopmentPackage(APDA)

Written by: Jim Friedlander March 2, 1987
Revisedby: PeteHelme December1988

AddDrive, Drvrlnstall, and DrvrRemoveare used in the sample
SCSI driver in the SCSI DeveloprñentPackage,which is available from
APDA. This TechnicalNote documentsthe parametersfor thesecalls.
Changessince March 1, 1988: Updatedthe Drvrln stall text to
reflect the useof registerAC, which should conta[i a pointer to the driver
when called. Also addedsimple glue code for _Drvrlnstall and

DrvrRemovesincenoneis availablein the MPW interfaces.

_AddDrive

_AddDrive addsa drive to the drive queue,and is discussedin more detail in
TechnicalNote #36, Drive QueueElements:

FUNCTION AddDrive(DQE:DrvQE1;driveNum,refNurn: INTEGER) :OSErr;

AO (input) -4 pointerto DQE
DO high word(input) — drive number
DO low word(input) —, driver RefNum
DO (output) errorcode

noErr (alwaysreturned)

Drvrlnstall

Drvrlnstall is usedto install a driver. A DCE for the driver is createdand its handle
enteredinto the specifiedUnit Table position (—1 through—64). If the unit numberis —4
through—9, the correspondingROM-baseddriver will be replaced:

FUNCTION Drvrlnstall(drvrHandle:Handle;refNum: INTEGER) : OSErr;

AO (input) — pointerto driver
DO (input) —* driver RefNum (—1 through—64)
DO (output) 4— error code

floE r r
badUnitErr

TechnicalNote #108 page1 of 2 _AddDrive,_Drvrlnstall, and_DrvrRemove



DrvrRemove

DrvrRemove is usedto removea driver. A RAM-baseddriver is purgedfrom the

systemheap(using ReleaseResource).Memory for the DCE is disposed:

FUNCTION DrvrRemove(refNum: INTEGER) : OSErr;

DO (input) —, Driver RefNum

DO (output) errorcode
noErr

qEr r

Interfaces

Through a sequenceof cataclysmicevents,the glue code for _Drvrlnstal]. and

_DrvrRemovewas neveractually addedto the MPW interfaces(i.e., “We forgot.”), so

we will include simple glue hereat no extraexpenseto you.

It would be advisableto first lock the handleto your driver with _HLock beforemaking

eitherof thesecalls since memorymay be moved.

FUNCTION DRVRInstall(drvrHandle:Handle;refNum:INTEGER);OSErr;

DRVRInstall PROC EXPORT

MOVEA.L (SP)+, Al ; pop return address

MOVE.W (SP)+, DO driver referencenumber

MOVEA.L (SP)+. AO ; handle to driver

MOVEA.L (AO), AD ; pointer to driver

Drvrlnstall ; $AO3D

MOVE.W DO, (SP) ; get error

JMP (Al) ; & split

EN OPPROC

FUNCTION DRVRRemove(refNum:INTEGER):OSErr;

DRVRRemove PROC EXPORT

MOVEA.L (SP)+, Al ; pop return address

MOVE.W (SP)÷, DO ; driver referencenumber

DrvrRemove ; $AO3E

MOVE.W DO, (SP) get error

JMP (Al) & split

ENDPPROC

TechnicalNote #108 page2 of 2 _AddDrive,_Drvrlnstall, and_Drvrflemove



r

Macintosh Technical Notes

#109: Bug in MPW 1.0 LanguageLibraries

Seealso: MPW ReferenceManual

Written by: ScottKnaster March 2, 1987
Updated: March 1, 1988

This note formerly describeda problem in the languagelibraries for MPW1.0. This bug is fixed in MPW 1.0.2,availablefrom APDA.

TechnicalNote #109 page 1 of 1 Bug in MPW 1.0 LanguageLibraries





Macintosh
TechnicalNotes

DeveloperTechnicalSupport
#110: MPW: Writing Stand-AloneCode
Revisedby: Keith Rollin February1990Written by: Jim Friedlander March 1987
MPW PascalandC canbeusedto write stand-alonecodesuchas ‘WDEF’, ‘LDEF’, ‘IN IT’,and ‘FKEY’ resources.This TechnicalNote,which is not intendedto beacompletediscussionofthe issuesinvolvedin writing stand-alonecoderesources,showshow to producesuchstand-alonecodeusing the MPW Pascaland C compilersand the linker, and includesan exampleof an‘INIT’ andasheliformakinga‘WDEF’.
Changessince March 1988: Added a note about the 32K size limit on stand-alonecoderesources;includedanexampleof how to load andexecutestand-alonecodefrom an application;andaddedreferencesto TechnicalNote#256,Globalsin Stand-AloneCode,concerningtheuseofglobal variables,and TechnicalNote #240, Using MPW for Non-Macintosh68000 Systems,concerningbreakingthe 32K limit.

SizeDoes Matter

Thereis a somewhathardsizelimit of 32K byteson codesegments,including ‘CODE’ resourcesin an applicationand stand-alonecode such as ‘XCMD’, ‘FKEY’, ‘DRVR’, and ‘WDEF’resources.This limitation existsbecauseMacintoshcodehasto be relocatable,requiringthe useofPC-relativeinstructions. Unfortunately,the 68000 supportsonly 16-bit signedoffsets for thepurpose. Theseoffsetslimit codeto a maximumjump of 32K byteseitherforwardor backward.For a procedureat the beginningof a codesegmentto branchto a procedureat the very end,thatprocedurecannotbe morethan32K bytesaway.

This limitation appliesto all codesegments,includingthosethatcomprisean application. All thosewhizzy 790K word processorsand spreadsheetsareactuallycomposedof many,many ‘CODE’resources,all of which are smaller than 32K. However, special support is available forapplicationsin the form of a jump table. This jump tablekeepstrack of the entry pointswithinthesecodesegments,so that thereis a way to branchfrom one to another. Unfortunately,youcannotdo the samething for stand-alonecoderesources,asthe systemdoesn’tsupportthe useofmore than one jump table. For more information on the jump table, seeInside Macintosh,VolumeII, The SegmentLoader.

The reasonwhy this 32K limit is only a “somewhathard” limit is because,if you are reallydetermined,you canbreakthis limit. If you canwrite yourcodein sucha way thatyou don’t everneedto makea jump that is longer than 32K bytes,then you shouldbe able to get away withstretchingthe limit. Formoreof thegory details,seethe section“SegmentingandtheJumpTable”in TechnicalNote#240,UsingMPW for Non-Macintosh68000Systems.

#110: MPW: Writing Stand-AloneCode
1 of 9



MacintoshTechnicalNotes

Calling Stand-AloneCode From An Application

Assumethatyou arewriting anapplicationandwould like to supportexternalroutinesin the form

of stand-alonecode. Applications like HyperCardand Apple File Exchangesupportsuch a

mechanism.How do you go aboutputtingin this functionality?

The first thing to do is establishsomestandardmeansfor communicating. This is shownwith

HyperCard ‘XCMD’ resources,where a clearly definedparameterblock is passedbetween

HyperCardandthe ‘XCMD’.

XCmdBiock RECORD

paramCount: INTEGER;

params: ARRAY [1. .161 OF Handle;

returnValue: Handle;

passFlag: BOOLEAN;

entryPoint: ProcPtr; (to call back to HyperCard)

request: INTEGER;

result: INTEGER;

inArgs: ARRAY [1. .81 OF LONGINT;

outArgs: ARRAY (1. .41 OF LONGINT;

END;
XCmdPtr = ‘XCmdBlock;

WhenHyperCardcalls an ‘xCMD ‘, it passesa pointerto this parameterblock. Theentry point to

suchan ‘XCMD’ couldbedeclaredasfollows:

PROCEDURE XStringWidth(paraiPtr: XCzndPtr);

To call the ‘xcMo’, you needto load it into memory,lock it down,fill in a parameterblock, and

thencall the ‘XCMt’. Whenyou aredone,you needto removethe ‘XCMD’ from memory:

h :— GetlNamedResource(’XCMD’, XStringWidth);

HLock (s);
WITH parameterBlockDO BEGIN

< fill it in >

END;
Ca11XCMD(@pararneterBlock,h);

HUn lock (h);

Ca11XCMD is somein-line codethat takesthe Handleh and executesthe necessarymachine

languagecommandsto jump to it. It doesthis by taking thehandleoff of thestack,turning it into

a pointerto the stand-alonecode,andperforminga JSRto it. In this way, theparameterblock is

left on the stackfor the stand-alonecodeto access:

PROCEDURE Ca11XCMD(pb: XCMDPtr; XCMD: Handle);

INLINE $205F, ( MOVE.L (A7)+,A0 I

$2050, ( MOVE.L (A0),A0 I

$4E90; { JSR (A0)

2 of 9 #110: MPW: Writing Stand-AloneCode



DeveloperTechnicalSupport
February1990

Writing an ‘INIT’ in Pascal
An IN IT’ resourceis stand-alonecodethat is executedon startupin themannerspecifiedin theSystemResourceFile andStartupManagerchaptersof InsideMacintosh. ‘INIT’ resourcesarecommonlywritten is assemblylanguage,but canalsobe written in high-levellanguagessuchasPascaland C. Following is the sourcefor a simple,but nonethelesshighly obnoxious, ‘IN IT’written in MPW Pascal:

UNIT Mylnit; (stand—alonecode is written as a UNIT}

INTERFACE

USES
MernTypes, QuickDraw, OSIntf, Toollntf;

PROCEDURE BeepTwice;

IMPLEMENTATION

PROCEDURE Beeprwice;

VAR finalTicks: Longlnt;

BEGIN {BeepTwice}
SysBeep(l);
Delay(120, finalTicks); (Delay two seconds,thisll annoy ‘em!)SysBeep(l);

END; {BeepTwice)

END. (UNIT)

That’s all thereis to thePascal. Now you cancompileandlink the codeto producea stand-alonemodule. Following arethe commandsthatyou use:

pascal Init.p

Compiletheunit to outputfile Init.p.o.

link a
—rt INITO a * resourcetype and ID-ra l6 * INITs must be locked—m BEEPTWICE a * Pascalgeneratesuppercasemodule namesInit.p.o a * Link this object file first!!! Then“(Libraries)”Interface.oa * need this for the glue for Delay()—o Mylnit * output to this file

This links theINT1’, putsit in the file Mylnit andgivesthe INIT theresourcetype ‘IN IT’, ID =0. You shouldalsosetthe “locked” bit in the resourceattributesof the INIT (‘ INIT’ resourcesmustbemarkedlockedbecauseIN1T 31 doesnot lock them). Themainentrypoint is specifiedbythe —m option. PascalUnits do not have a main entry point, and, sinceyou are linking with“(Libraries}“Interface.o (you needthe glue for _Delay ), you needto tell the linker what to stripagainst. You could link this without the —m option, but then all the code for“{Libraries)”Interface.owould wind up in the ‘INIT’, makingit muchlargerthanit needsto be.Notice alsothatyou needto capitalizeBEEPTWICE,sincePascalconvertsmodulenamesto uppercase.

Next you specify the files with which you wish to link. Sincethe linker links files in the orderthey arespecified,you needto list Imt.p.o first, otherwisethe first instructionfor your codeis not

#110: MPW: Writing Stand-AloneCode
3 of 9



MacintoshTechnicalNotes

BeepTwice,but ratherthe glue for Delay (which is disastrous). ‘IN IT’ resourcesare

enteredat thebeginning,regardlessof wherethemainentrypoint is.

If you haveanydoubtsaboutwhattheentrypoint is (andyou canreadassembler)you canusethe

commandDumpCode Mylnit —rt INIT to look at thecode. In this case,the first codethat is

executedshouldbe:

LINK A6, $$FFFC make room for the local var ‘long’

If you hadincorrectlyspecified“(Libraries)“Interface.ofirst, the first codeexecutedwould have

beenthe following glue for _Delay (and the code for the ‘IN IT’ would neverhavebeen

executed):

MOVE.L (A7)+,DO ; executeourselves

MOVE.L (A7)+,Al ; addressof VAR parameter

finish getting ready for Delay

_Delay ; do the Delay

MOVE.L DO, (Al) ; the VAR parameter

RTS ; return — but to where???

LINK A6, #$FFFC ; the correct code, but it’ll never

be executed

SetFile Mylnit —t INIT —c JAF1 && a
duplicate —y Mylnit “{SystemFolder)”

This commandsetsthe file typeof Mylnit to “INIT” (so that the INIT 31 mechanismruns it) and

the creatorto “JAF1”. (Yes, JAF1 is registeredwith DeveloperTechnicalSupport. Is your file

type?) If the SetFile succeeds,you then courageouslyduplicatethe INIT into the system

folder, soit is executedthe next time the systemis rebooted.

That’s aU thereis to it.

Now for a coupleof caveats.First of all, you cannoteasilyuseglobalsin stand-alonecode. If

you put the line VAR gLong: Longint; right after the keyword INTERFACE, the code

compilesand links okay, andprobablyexecutesokay. You get no warning that you are using

someoneelse’sglobal space. If you usethe statementgLong : = 4; the long word valuefour is

placedat —4 (A5), thusdestroyingwhateverwas there(generally,the startof the application’s

globals). This is not really a problemwith ‘INIT’ resources(it definitely is a problemin the

WDEF’ examplebelow),but, in general,you shouldnot useglobalsin stand-alonecode.

Another limitation of stand-alonecode is that it cannotuseotherglobals such as QuickDraw

globals. For example,if you try to makea QuickDrawcall such as SetPort(@thePort);

(which usesthe QuickDrawglobalvariablethePort)you areinformedaboutyour transgression:

### link: Error Undefined entry, name: QUICKDRAW

Referencedfrom: BEEPTWICE in file: Init.p.o

You canaccessQuickDrawglobalsfrom stand-alonecodeby usingA5 (availablefrom high-level

languagesin the low-memoryglobal CurrentA5 (a long word at $904))which is a pointerto a

pointerto thePort((thePort = (A5)). Someof thestandardPascallibrary routinesrequire

the useof globals,you get similar linker errorsif you usetheseroutines.

If somethingisn’t working correctly,you might look for inadvertentuseof globals. If your useof

globalsis intentional,thenmakesureyou areusingthemin accordancewith TechnicalNote#256,

Globalsin Stand-AloneCode.

4 of 9 #110: MPW: Writing Stand-AloneCode



DeveloperTechnicalSupport
February1990

Writing an ‘INIT’ in C

Following is thesourcefor thesame‘INIT’ in MPW C:
tinclude <OSUtils.h>

void BeepTwice()

long mt finalTicks;

SysBeep(l);
Delay(120,&finalTicks);
SysBeep(l);

The link instructionfor C is:

link a
—rt INIT0 a • resourcetype—ra =16 a # INITs must be locked—m BeepTwice a * note that C is case sensitiveTNllOInit.c.o a )i link this object file first!!! then“(CLibrariesYClnterface.oa * need this for the glue for Delay()—o tnllOINIT * output to this file

Writing a ‘WDEF’ in Pascal
Writing a ‘WDEF’ is like writing an ‘IN IT’, exceptthat ‘WDEF’ resourceshave standardheadersthat are incorporatedinto the code. In this example, the ‘WDEF’ is the PascalMyWindowDef. To createtheheader,you useanassemblylanguagestub:

StdWDEF MAIN EXPORT ; this will be the entry pointIMPORT MywindowDef ; name of PascalFUNCTION that is the WDEF
we IMPORT externally referencedroutines
from Pascal (in this case, just this one)BRA.S @0 ; branch around the headerto the actual codeDC.W 0 ; flags wordDC.B WDEF ; type

DC.W 3 ; ID number
DC.W 0 ; version@0 JNP MyWindowDef ; this calls the PascalWDEFEND

Now for thePascalsourcefor the ‘WDEF’. Only the shell of whatneedsto be doneis listed, theactualcodeis left as an exercisefor thereader(for further informationaboutwriting a ‘WDEF’,seeInsideMacintosh,VolumeI, TheWindow Manager(pp. 297-302).
UNIT WDef;

INTERFACE

USES MemTypes, QuickDraw, OSIntf, Toollntf;

(this is the only external routine)
FUNCTION MyWindowDef(varCode: Integer; theWindow: WindowPtr; message:Integer;param: Longlnt): Longlnt; (As defined in IM p. 1—299)

IMPLEMENTATION

#110: MPW: Writing Stand-AloneCode
5 of 9



MacintoshTechnicalNotes

FUNCTION MyWindowDef(varCode: Integer; theWindow: WindowPtr; message:Integer;

param: Longlnt) : Longlnt;

TYPE
RectPtr Rect;

VAR

aRectPtr : RectPtr;

(here are the routines that are dispatchedto by MyWindowDef)

PROCEDURE DoDraw(thewind: WindowPtr; DrawParam: Longlnt);

BEGIN (DoDraw}

(Fill in the code!)

END; (DoDraw)

FUNCTION DoHit(theWind: WindowPtr; theParan:Longlnt): Longlnt;

BEGIN (DoHit)
(Code for this FUNCTION goes here)

END; (DoHit)

PROCEDURE DoCalcRgns(theWind: WindowPtr);

BEGIN (DoCalcRgns)

(Code for this PROCEDURE goes here)

END; {DoCalcRgns)

PROCEDURE DoGrow(theWind: WindowPtr; theGrowBect: Rect);

BEGIN (DoGrow)

(Code for this PROCEDURE goes here)

END; (DoGrow}

PROCEDURE DoDrawSize(theWind:WindowPtr);

BEGIN (DoDrawSize)

(Code for this PROCEDURE goes here)

END; (DoDrawSize)

(now for the main body to MyWindowDef)

BEGIN ( MyWindowDef

(case out on the messageand jump to the appropriateroutine)

MyWindowDef : 0; (initialize the function result)

CASE messageOF

wDraw: ( draw window frame)

DoDraw(theWindow,param);

wHit: { tell what region the mouse was pressedin)

MyWindowDef := DoHit(theWindow,param);

wCalcRgns: ( calculatestructRgn and contRgn)

DoCalcRgns(theWindow);

wNew: ( do any additional initialization)

we don’t need to do any)

wDispose:{ do any additional disposalactions)

we don’t need to do any)

wGrow: { draw window’s grow image)

BEGIN
aRectPtr := RectPtr(param);

DoGrow(theWindow,aRectPtr);

END; (CASE wGrow)

6 of 9 #110: MPW: Writing Stand-AloneCode



DeveloperTechnicalSupport
February1990

wDrawGlcon:( draw Size box in content region}
DoDrawSize(thewindow);

END; (CASE)
END; (MywindowDef)

END. (of UNIT)

Following arethe MPW shell commandsnecessaryto build this ‘WDEF’:

pascal MyWDEF.p
asm MyWDEF.a
link —rt WDEF3 a

MyWDEF.a.o a # MUST link with this first
MyWDEF.p.o a
“(Libraries)“Interface.o a
—o MyWDEF3

Notice thatyou do not needthe —m option; sinceMyWDEF.a.ocontainsthemainentrypoint, thelinker knowswhat to strip against.

That’sall thereis to it.

Writing a ‘WDEF’ in C

Writing a ‘WDEF’ in MPW C is very similar to writing one in Pascal. You can usethe sameassemblylanguageheader,andall you needto makesureof is that the main dispatchroutine(inthis case:MyWindowDef) is first in your sourcefile. Here’sthe same ‘WDEF’ shell in MPW C:
I first, the mandatory includes */
tinclude <types.h>
linclude <quickdraw.h>
tinclude <resources.h>
tinclude <fonts.h>
tinclude <windows.
tinclude <menus.h>
tinclude <textedit.h>
tinciude <events.h>

1* declarations*/

void DoDrawSizeO;
void DoGrowO;
void DoCalcRgns0;
long mt DoHitO;
void DoDrawU;

1*
Main Proc within WDEF */pascal long mt MyWindowDef (varCode,theWindow,message,param)short mt varCode;

WindowPtr theWindow;
short mt message;
long mt param;

1* MyWindowDef *1

Rect *aRectptr;
long mt theResult=O; /*this is what the function returns, mit to 0 *1

#110: MPW: Writing Stand-AloneCode
7 of 9



MacintoshTechnicalNotes

switch (message)

casewDraw: /* draw window frame*/

DoDraw(theWindow,param);

break;
casewHit: 1* tell what region the mouse was pressedin*/

theResult — DoHit (theWindow,param);

break;
casewcalcRgns: /* calculatestructRgn and contRgn*/

DocalcRgns(theWindow);

break;

casewNew: /* do any additional initialization*/

break; 1 nothing here */

casewDispose: /* do any additional disposalactions*/

break; / we don’t need to do any*/

casewGrow: /* draw window’s grow image*/

aRectPtr (Rect *)param;

DoGrow(theWindow,*aRectptr);

break;

casewDrawGlcon: 1* draw Size box in content region*/

DoDrawSize(theWindow);

break;
/* switch */

return theResult;
1* MyWindowDef *1

/* here are the routines that are dispatchedto by MyWindowDef

1* DoDraw functio *1

void DoDraw(WindToDraw,DrawParam)

WindowPtr WindToDraw;

long mt Drawparam;

1* DoDraw *1
/* code for DoDraw goes here *1

1* DoDraw *1

1* DoHit functio *1

long mt DoHit (WindToTest,theParam)

WindowPtr WindToTest;

long mt theParam;

{ 1* Doliit I
1* code for DoHit goes here *1

1* DoHit /

1* DoCalcRgnsprocedure *1

void DoCalcRgns(WindToCalc)

WindowPtr WindroCalc;

1* DoCalcRgns *1
/* code for DoCalcRgnsgoes here */

1* DocalcRgns *1

1* DoGrow procedur *1

void DoGrow(WindToGrow,theGrowRect)

WindowPtr WindToGrow;

Rect theGrowRect;

1* DoGrow *1
/* code for DoGrow goes here *1

1* DoGrow *1

8 of 9 #110: MPW: Writing Stand-AloneCode



DeveloperTechnicalSupport
February1990

I— DoDrawSize pocedur *1void DoDrawSize(WindToDraw)
WjndowPtr WindTooraw;

1* DoDrawSize *1
1* code for DoDrawSize goes here */

} 1* DoDrawSize *1

Tolinkthis ‘WDEF’,youcanusethefollowinglinkcommand:
Link —rt WDEF—3 a

tnhlO.WDEFHeader.a.oa # must link with this first
tnllO.wdef.c.o a
“(CLibraries) “Clnterface.oa
—o tnhlO.wdef

Further Reference:
• InsideMacintosh,VolumeI, TheWindow Manager• InsideMacintosh,VolumeII, The SegmentLoader• InsideMacintosh,VolumeII, The SystemResourceFile• InsideMacintosh,VolumeV, The StartManager• MPWReferenceManual
• TechnicalNote#240,UsingMPW for Non-Macintosh68000Systems• TechnicalNote#256,Globalsin Stand-AloneCode?

$110: MPW: Writing Stand-AloneCode
9 of 9



a a



Macintosh Technical Notes

#111: MoveHHi andSetResPurge

Seea’so: The Memory Manager
The ResourceManager

Written by: Jim Friedlander March 2, 1987Updated: March 1, 1988

SetResPurge(TRUE) is called to make the Memory Managercall the ResourceManagerbefore purging a block specified by a handle. If the handle is a handleto aresource,and its resChangedbit is set, the resourcedata will be written out (usingWriteResource).

When MoveHHi is called, even though the handle’sblock is not actually being purged,the resourcedataspecifiedby the handlewill be written out. An applicationcan preventthis by calling SetResPurge(FALSE) before calling MoveHHi (and then callingSetResPurge(TRUE) afterthe MoveHHi call).

TechncaINote #111 page 1 of 1 MoveHHi andSetResPurge



a S



.

FindDItem is a potentially useful call which returnsthe numberof a dialog item given apoint in local coordinatesand a dialog handle. It returns an item numberof —1 if noitem’s rectangleoverlapsthe point. This is all well and good, exceptyou don’t get backquite what you would expect.

The item numberreturnedis zero-based,so you haveto addone to the result:
theitem FindDltem(theDialog, thePoint) + 1;

Macintosh Technical Notes

#112: FindDltem

Seealso: The Dialog Manager

Written by: Rick Blair March 2, 1987Updated: March 1, 1988

TechnicalNote #112 page 1 oti FindDftem,win D prize



I

4



Macintosh Technical Notes (3
#113:Boot Blocks

Seealso: The SegmentLoader

Written by: Bo3b Johnson March 2, 1987Updated:
March 1, 1988

There are two undocumentedfeaturesof the Boot Blocks. This note wifldescribehow they currentlywork.

Warning:The format and functionality of the Boot Blocks will changein thefuture; dependenceon this information may causeyour programto fail onfuture hardwareor with future Systemsoftware.

The first two sectorsof a bootableMacintoshdisk are usedto store information on howto start up the computer.The blocks containvariousparametersthat the systemusestostartupsuchas the nameof the systemfile, the nameof the Finder, the first applicationto run at boot time, the numberof eventsto allow, etc.

Changing System Heap Size

The boot blocks dictatewhat size the systemheapwill be after booting. Any commonsectorediting program wiH allow yci. to changethe data in the boot blocks. Changingthe systemheapsize is accomplishedby changingtwo parametersin the boot blocks:the long word value at location $86 in Block 0 indicatesthe size of the systemheap;theword value at location $6 is the versionnumberof the boot blocks. Changingthe versionnumberto be greaterthan $14 ($15 is recommended)tells the ROM to usethe value at$86 for the systemheapsize, otherwisethe value at $86 is ignored. The $86 locationonly appliesto computerswith more than 128K of RAM.

SecondarySound and Video Pages

Another occasionallyuseful featureof The boot blocks is the ability to specify that thesecondarysound and video pagesbe allocatedat boot time. This is done before adebuggeris loaded,so the debuggerwill load below the alternatescreen.This is usefulfor debuggingsoftwarethat usesthe alternatevideo page,like page-flippingdemosorgames.To allocatethe secondvideo andsoundbuffers, changethe two bytesstartingatlocation $8 in the boot blocks. Changethe value (normally 0) to a negativenumber($FFFF) to allocate both video and sound buffers. Changethe value to a positivenumber($0001)to allocateonly the secondarysoundbuffer.
Warning: MacsBug may not work properly if you allocateadditional pagesfor soundand video.

Technica’Note #113 page 1 of 1
Boot Blocks



a a



.

A rumor has beenspreadthat if you usea pre-AppleShareFinder on a workstation toaccessAppleShare volumes, you can bypass AppleShare’s “access privilege”mechanisms.

This is not true. Accesscontrolsare enforcedby the server,not by the Finder. If you usean older Finder, you are still prevented(by the server)from gaining accessto protectedfiles and folders; however,you will not get the properuser-interfacefeedbackthat youwould if you were using the correctFinder: for instance,folders on the serverwill alwaysappearplain white (that is, without the permissionfeedbackyou’d normally get), anderror messageswould not be as explanatoryas thosefrom Findersthat “know” aboutAppleShareservers.

,-Macintosh Technical Notes

#114:AppleShareandOld Finders

Seealso: AppleShareUser’sGuide

Written by: Bryan Stearns March 2, 1987Updated: March 1, 1988

TechnicalNote #114 page 1 otl AppleShareandOld Finders



a



Macintosh Technical Notes -

#115:Application Configurationwith StationeryPads

Seealso: The File Manager
TechnicalNote #116—AppleShare-ableApplications

TechnicalNote #47—CustomizingSFGetFile

TechnicalNote #48—Bundles
“Application Developmentin a SharedEnvironment”

Written by: Bryan Stearns March 2, 1987

Updated: March 1, 1988

With the introductionof AppleShare(Apple’s file server)thereare restrictions

on self-modification of application resourcefiles and the placementof

configurationfiles. This notedescribesoneway to get aroundthe necessity

for configurationfiles.

Configuration Files

Some applicationsneedto store information about configuration;otherscould benefit

simply from allowing usersto customizedefault ruler settings,window placement,fonts,

etc.

There are applicationswhich store this information as additional resourcesin the

application’s resourcefile; when the userchangesthe configuration, the application

writes to itself to changethe savedinformation.

AppleShare,however, requiresthat if an application is to be used by more than one

userat a time, it must not needwrite accessto itself. This meansthat the abovemethod

of storing configurationinformation cannotbe used.(For more information aboutmaking

your applicationsharable,seeTechnical Note #116.)

Storing configuration in a specialconfiguration file can be a problem; the user must

keepthe file in the systemfolder or the applicationmust searchfor it. This processhas

designissuesof its own.

An alternativeto configurationfiles: StationeryPads

A basisfor one solution to this problem was a user-interfacefeatureof the Lisa Office

System architecture. Lisa introduced the concept of “stationery pads”, special

documentsthat createdcopies of themselvesto allow users to save a pre-set-up

documentfor future use. On Lisa, this wasthe way Untitled documentswerecreated.

TechnicalNote #115 page 1 ot 2 Application Configurationwith StationeryPads



Your Macintoshapplicationcan provide the option of savinga documentas a stationerypad, to provide similar functionality. Here’s how:

You’ll needto add a checkboxto your SEPutFiledialog box (if you don’t knowhow to do this, checkOut Technical Note #47); if the userchecksthis box, savethe documentasyou normally would, but usea different file type (the file type of adocumentis usually set when the documentis created,using the File ManagerCreateprocedure,or later using SetFileInfo).

tAr...

A Documentand its Stationerypad

• Be sureto usea different but similar icon for the stationerypad file. This is easyifyou differentiate betweenstationeryand normal files solely by file type—theFinder usesthe type to determinewhich icon to display, seeTechnical Note #48for help with the “bundle” mechanismusedto associatea file type with an icon.

• When opening a stationery pad file, the window should come up named“Untitled”, with the contentsof the stationerypad file.

• “Revert” should re-readthe stationerypad file.

• Don’t forget to add the stationerypad’s file type to the file-types list that you passto StandardFile, so that the new files will appearin the list when the userchoosesOpen. This file type should be registeredwith Macintosh DeveloperTechnicalSupport.

TechnicalNote #115 page 2 of 2 Application Configurationwith StationeryPads



Macintosh Technical Notes

#116:AppleShare-ableApplicationsandthe ResourceManager

Seealso: The ResourceManager
“Application Developmentin a SharedEnvironment”
TechnicalNote #40—FinderFlags

Written by: Bryan Stearns March 2, 1987
Updated: March 1, 1988

Normally, applicationson an AppleShareservervolumecannotbe executed
by more than one userat a time. This technicalnote explainswhy, and tells
how you canenableyour applicationto be shared.

The ResourceManagerversusSharedFiles

Part of the explanationof why applicationsare not automaticallysharableis basedon
the designof the ResourceManager. The ResourceManageris a great little database.
It was originally conceivedas a way to keep applicationslocalizable (a task it has
performedadmirably), and was found to be an excellent foundation for the Segment
Loader,Font Manager,and a large part of the rest of the Macintoshoperatingsystem.

However, it was never designedto be a multi-user database.When the Resource
Manageropensa resourcefile (suchasan application), it readsthe file’s resourcemap
into memory. This map remains in memory until the resourcefile is closed by the
SegmentLoader, which regainscontrol when the application exits. Sometimesit is
necessaryto wnte the map out to disk; normally, this is only done by UpdateResFile
andCloseResFile.

If two usersopenedthe sameresourcefile at the sametime, and one of them had write
accessto the file and addeda resourceto it, the other user’s ResourceManager
wouldn’t know about it; this would make the other user’s copy of the file’s original
resourcemap invalid. This could cause(at least)a crash;if both usershad write access,
it’s not unlikely that the resourcefile involved would becomecorrupted.Also, although
you can tell the ResourceManagerto write out an updatedresourcemap, there’s no
way for anotheruserto tell it to refreshthe copy of the map in memoryif the file changes.

TechnicalNote #116 page 1 of 3 AppleShare-ableApplications



What doesall this have to do with running my applicationtwice?

Your applicationis storedas a resourcefile; codesegments,alert and dialog templates,

etc., are resources.If you write to your application’sresourcefile (for instance,to add

configurationinformation, like print records),your applicationcan’t be shared.

In Apple’s compatibility testing of existing applications (during developmentof

AppleShare),we found quite a few applications,someof them quite popular,that wrote

to their own resourcefiles. So we decided,to improve the safetyof using AppleShare,to

always launch applicationsusing a combinationof accessprivilegessuchthat only one

user at a time could use a given application (theseprivileges will be discussedin a

future Technical Note). In fact, AppleShareopensall resourcefiles this way, unlessthe

resourcefile is openedwith OpenRFPermand read-onlypermissionis specified.

But my applicationdoesn’twrite to itself!

We realize that many applicationsdo not. However, there are other considerations

(coveredin detail, with suggestionsfor fixes, in “Application Developmentin a Shared

Environment”,availablefrom APDA). In brief, hereare the big oneswe know about:

• Doesyour applicationcreatetemporaryfiles with fixed namesin a fixed place (such

as the directory containing the application)?Without AppleShare’sprotection, two

applicationstrying to usethe sametemporaryfile could be disastrous.

• Is your application at least “conscious” of the fact that it may be in a multi-user

environment?For instance,doesit work correctly if a volume containingan existing

documentis on a locked volume?Does it checkall result codesreturnedfrom File

Managercalls, andResErrorafter relevantResourceManagercalls?

OK, I follow the rules. What do I do to make my application
sharab I e?

Thereis a flag in eachfile’s Finder information (storedin the file’s directoryentry) known

as the “shared” bit. If you set this bit on your application’s resourcefile, the Finder will

launch your application using read-only permissions;if anyone else launchesyour

application,they’ll also get it read-only(their Finderwill seethe same“shared” bit set.).

Three importantwarningsaccompanythis information:

• The definition of the “shared” bit was incorrect in previousreleasesof information and

softwarefrom Apple. This includesthe June16, 1986 version of Technical Note #40

(fixed in the March 2, 1987 version), as well as all versionsof ResEditbefore and

including 1 .1 b3 (includedwith MPW 2.0). For now, the most reliable way to set this bit

is to get the 1.1b3 versionof ResEdit,useit to Get Info on your application,and check

the box labeled“cached” (the incorrectdocumentationupon which ResEdit[et al.] was

basedcalled the real sharedbit “cached”; the bit labeled as “shared” is the real

cachedbit [a currentlyunusedbut reservedbit which shouldbe left clear]).

Technica’Note #116 page 2 of 3 AppIeShare-abeAppcations



• By checkingthis bit, you’re promising (to your users)that your application will work
entirely correctly if launchedby more than one user. This meansthat you follow the
other rules, in addition to simply not writing to your application’sown resourcefile.
See“Application Developmentfor a SharedEnvironment,”and test carefully!

• Setting this bit has nothing to do with allowing your application’sdocumentsto beshared;you must design this feature into your application (it’s not somethingthatApple systemsoftwarecan take careof behindyour application’sback.). You shouldrealize from reading this note, however, that if you store your document’sdata inresource files, you won’t be able to allow multiple users to accessthemsimultaneously.

TechnicalNote #116 page 3 of 3 AppleShare-ableApplications



S



Macintosh Technical Notes

#117: Compatibility: Why & How

SeeAlso: TechnicalNote #2—CompatibilityGuidelines
TechnicalNote #7—A Few Quick DebuggingTips

Written by: Bo3b Johnson February9, 1987
Updated: March 1, 1988

While creating or revising any programfor the Macintosh, you should be
awareof the mostcommonreasonswhy programsfail on variousversionsof
the Macintosh.This note will detail somecommonfailure modes,why they
occur, and how to avoid them.

We’ve tried to explain the issuesin depth, but recognizethat not everyoneis interested
in every issue.For example,if your applicationis not copy protected,you’re probablynot
very interestedin the sectionon copy protection.That’s why we’ve included the outline
form of the technicalnote. The first two pagesoutline the problemsandthe solutionsthat
are detailedlater. Feel free to skip aroundat wifl, but rememberthat we’re sendingthis
enormoustechnical note becausethe suggestionsit provides may save you hasty
compatibility revisionswhen we announcea new machine.

We know it’s a lot, and we’re hereto help you if you needit. Our address(electronicand
physical) is on pagethree—contactus with any questions—that’swhat we’re herefor

TechnicalNote #117 page1 of 28 Compatibllfty: Why & How



Compatibility: the outline

Don’t assumethe screenis a fixed size
To get the screensize:

• checkthe QuickDrawglobal screenBits.boinds

Don’t assumethe screenis in a fixed location
To get the screenlocation:

• checkthe QuickDraw global screenBits.baseAddr

Don’t assumethat rowBytes is equalto the widtti of the screen
To get the numberof byteson a line:

• checkthe QuickDrawglobal screenBitsrowByt-es

To get the screenwidth:
• checkthe QuickDrawglobal screenBits.bounds right

To do screen-sizecalculations:
• Use Longlnts

Don’t write to or readfrom nil Handlesor nil Pointers

Don’t createor Use FakeHandles
To avoid creatingor using fake handles:

• Always let the Memory Managerpertormoparatiriswith handles
• Neverwrite codethat assignssomethingto a masterpointer

Don’t write codethat modifies itself
Self modifying codewill not live acrossincarnationsof the 68000

Think carefully aboutcodedesignedstrictly ascopy protection
To avoid copy protection-relatedincompatibilities:

• Avoid copy protectionaltogether
• Rely on schemesthat don’t requirespecific hardware
• Make sure your schemedoesn’tperform illegal operations

Don’t ignoreerrors
To get valuableinformation:

• Checkall pertinentcalls for errors
• Always write defensivecode

Don’t accesshardwaredirectly
To avoid hardware-relatedincompatibilities:

• Don’t reador write the hardware
• If you can’t get the supportfrom the fROM, askthesystemwherethe hardwareis
• Use low-memory globals

Don’t usebits that are reserved
To avoid compatibility problemswhen bit statuschanges:

• Don’t useundocumentedstuff
• When using low-memoryglobals,checkonly what you want to know

Technica’Note #117 page2 of 28 Compatibility: Why & How



Summary
Minor bugsare getting harderand harderto get awaywith:

• Good luck
• We’ll help
• AppleLink: MacDTS, MCI: MacDTS
• U.S. Mail: 20525 Mariani Ave.; MIS 27-T; Cupertino,CA 95014

TechnicalNote #117 page3 of 28 Compatibility: Why & How



What it Is

The basic idea is to make sure that your programswill run, regardlessof which

Macintoshthey are being run on. The currentsystemsto be concernedwith include:

• Macintosh128K • Macintosh512Ke

• Macintosh512K • MacintoshPlus

• MacintoshXL • MacintoshSE
Macintosh II

If you perform operationsin a genericfashion, there is rarely any reasonto know what

machineis running. This meansthat you should avoid writing codeto determinewhich

versionof the machineyou are running on, unlessit is absolutelynecessary.

For the purposesof this discussion,the term “programs” will be usedto describeany

code that runs on a Macintosh. This includes applications, INITs, FKEYs, Desk

Accessoriesand Drivers.

What the “Rules” mean

Compatibility acrossall Macintoshcomputers(which may sound like it involves more

work for you) may actually mean that you have less work to do, since it may not be

necessaryto reviseyour programeachtime Apple brings out a new computeror System

file. Users,asa group, do not understandcompatibility problems;all they seeis that the

programdoesnot run on their system.

The benefitsof being compatibleare many-fold: your customers/usersstay happy, you

have less programmingto do, you can devoteyour time to more valuablegoals, there

are fewerversionsto deal with, your codewill probablybe more efficient, your userswill

not curseyou undertheir breath,and your outlook on life will be much merrier.

Now that we know what being compatible is all about, recognizethat nobody is

requiring you to be compatiblewith anything. Apple does not employ roving gangsof

thought police to be sure that developersare following the recommendedguidelines.

Furthermore, when the guidelines comprise 1200 pagesof turgid prose (Inside

Macintosh), you can be expectedto miss one or two of the “rules.” It is no sin to be

incompatible, nor is it a punishableoffense. If it were, there would be no Macintosh

programs,since virtually all developerswould be incarcerated.What it does mean,

however, is that your program will be unfavorablyviewed until it stepsin line with the

currentsystem(which is a moving target). If a program becomesincompatiblewith a

new Macintosh, it usually requiresrethinking the offending code, and releasinga new

version.You may readsomethinglike “If the developersfollowed Apple guidelines,they

would be compatiblewith the transverse-hingeddiatomic quark realignmentsystem.”

This meansthat if you madeany mistakes(you read all 1200 pagescarefully, right?),

you will not be compatible. It is extremely difficult to remain completely compatible,

particularly in a systemas complex as the Macintosh.The rules haven’t changed,but

what you can get awaywith has.Thereare, however,a numberof thingsthat you can do

to improve your odds—someof which will be explainedhere.

TechnicalNote #117 page4 of 28 Compatibilily: Why & How



It’s your choice

It is still your choicewhetheryou will be concernedwith compatibility or not. Apple will
not put out a warrantfor your arrest.However, if you are doing thingsthat are specifically
illegal, Apple will also not worry about“breaking” your program.

Bad Things

The following list is not intended to be comprehensive,but these are the primary
reasonswhy programsbreakfrom one version of the systemto the next. Theseare the
currenttop ten commandments:

I Thou shalt not assumethe screenis a fixed size.
II Thou shalt not assumethe screenis at a fixed location.
Ill Thou shalt not assumethat rowBytes is equalto the width of the screen.
IV Thou shalt not usenil handlesor nil pointers.
V Thou shalt not createor usefake handles.
VI Thou shalt not write codethat modifies itself.
VII Thou shalt think twice aboutcodedesignedstrictly ascopy protection.
VIII Thou shaltcheckerrorsreturnedasfunction results.
IX Thou shalt not accesshardwaredirectly.
X Thou shalt not useany of the bits that are reserved(unusedmeansreserved).

This hasbeendeterminedfrom extensivetestingof our diversesoftwarebase.

TechnicalNote #117 page5 of 28 Compatibily:Why & How



Assumingthe screenis a fixed size

Do not assumethat the Macintosh screen is 512 x 342 pixels. Programsthat do
generally have problemson (or specialcasefor) the Macintosh XL, which has a wider
screen.Most applicationshave to createthe bounding rectanglewhere a window can
be dragged.This is the boundsRectthat is passedto the call:

DragWindow (myWindowPtr, theEvent.where, boundsRect);

SomeiN-advisedprogramscreatethe boundsRectby somethinglike:

SetRect (boundsRect, 0,0,342,512); { oops, this is hard—coded...)

Why it’s Bad

This is bad becauseit is never necessaryto specifically put in the bounding rectangle
for the screen.On a Macintosh XL for example, the screensize is 760x364 (and
sometimes608x431 with alternate hardware). If a program uses the hard-coded
0,0,342,512as a bounding rectangle,end userswill not be able to move their windows
pastthe fictitious boundaryof 512. If somethingsimilar were done to the GrowWindow

call, it would make it impossiblefor usersto grow their window to fill the entire screen.
(Always a saddeningwasteof valuablescreenreal-estate.)

Assumingscreensize makesit more difficult to usethe program on Macintosheswith
big screens,by making it difficult to grow or move windows, or by drawing in strange
placeswhere they should not be drawing (outside of windows). Considerthe caseof
running on a Macintosh equippedwith one of the full page displays, or Ultra-Large
screens.No one who paid for a big screenwants to be restrictedto using only the
upper-leftcornerof it.

How to avoid becoming a screeningfascist

Never hard code the numbers512 and 342 for screendimensions.You should avoid
using constantsfor systemvaluesthat can change.Parameterslike theseare nearly
alwaysavailable in a dynamicfashion. Programsshould read the appropriatevariables
while the programis running (at run-time, not at compile time).

Here’s how smartprogramsget the screendimensions:

InitGraf(@thePort); { QuickDraw global variables have to be initialized.)

boundsRect screenBits.bounds; { The Real way to get screensize

Use QuickDraw global variable.

This is smart, becausethe program never has to know specifically what the numbers
are. All referencesto rectanglesthat needto be relatedto the screen(like the drag and
grow areasof windows) should use screenBits.boundsto avoid worrying aboutthe
screensize.

TechnicalNote #117 page6 of 28 Compatibily: Why & How



Note that this doesnot do anything remotely like assumethat “if the computeris not a
standardMacintosh,then it must be an XL.” Specialcasingfor the variousversionsof
the Macintosh hasalways beensuspiciousat best; it is now groundsfor breaking. (At
leastwith respectto screendimensions.)

By the way, rememberto take into accountthe menu bar height when using this
rectangle.On 128K ROMs (and later) you can usethe low-memoryglobal mEarHeight

(a word at $BAA). But since we didn’t provide a low-memory global for the menu bar
height in the 64K ROMs, you’ll haveto hardcode it to 20 ($14). (You’re not the only ones
to forget the future holds changes.)

How to find fascist screenismin current programs

The easiestway is to exercise your program on one of the Ultra-Large screen
Macintoshes.Thereshould be no restrictionson sizing or moving the windows, and all
drawing should haveno problems. If there are any anomaliesin the program’susage,
there is probablya lurking problem.Also, do a global find in the sourcecodeto seeif the
numbers512 or 342 occur in the program. If so, and if they are in referenceto the
screen,excisethem.

TechnicalNote #117 page7 of 28 Compatibility: Why & How



Assumingthe screenis at a fixed location

Someprogramsuse a fixed screenaddress,assumingthat the screenlocation will be

the sameon various incarnationsof the Macintosh.This is not the case.For example,

the screenis locatedat memorylocation $1A700 on a 128K Macintosh,at $7A700 on a

512K Macintosh,at $F8000on the MacintoshXL, and at $FA700 on the MacintoshPlus.

Why it’s Bad

When a programrelies upon the screenbeing in a fixed location, Murphy’s Law dictates

that an unknowing userwill run it upon a computerwith the screenin a different location.

This usually causesthe systemto crash, since the offending program will write to

memorythat was usedfor somethingimportant. Programsthat crashhave beenproven

to be lessuseful thanthosethat don’t.

How to avoid being a basescreener

Suffice it to saythat thereis no way that the addressof the screenwill remainstatic, but

thereare rare occasionswhere it is necessaryto go directly to the screenmemory. On

theseoccasions,thereare bad ways and not-as-badwaysto do it. A badway:

myScreenBase:= Pointer ($7A700); { not good. Hard—codednumber.

A not-as-badway:

InitGraf(@thePort); { do this only once in a program. I

myScreenBase:= screenBits.baseAddr; { Good. Always works.

{Yet anotherQuickDraw global variable}

Using the latter approachis guaranteedto work, sinceQuickDraw hasto know whereto
draw, and the operatingsystemtells QuickDraw wherethe screencan be found. When
in doubt, ask QuickDraw. This will work on Macintoshcomputersfrom now until forever,
so if you use this approachyou won’t have to revise your programjust becausethe
screenmoved in memory.

If you have a program (such as an INIT) that cannot rely upon QuickDraw being
initialized (via InitGraf), then it is possibleto usethe ScrnBaselow-memory global
vanable(a long word at $824). This methodruns a distantsecondto askingQuickDraw,
but is sometimesnecessary.

How to find basescreeners

The easiestway to find basescreenersis to run the offending programon machinesthat
havedifferent screenaddresses.If any addressesare being usedin a basemanner,the
systemwill usually crash.The offending programmay also occasionallyrefuseto draw.
Some programsafflicted with this problem may also hang the computer(sometimes
known as accessingfunny space).Also, do a global find on the sourcecodeto look for
numberslike $7A700 or $1A700. When found, exercisecaution while altering the
offending lines.

4

TechnicalNote #117 page8 of 28 CompatibiIy: Why & How



Assumingthat rowbytesis equal to the width of the screen

According to the definition of a bitMap found in Inside Macintosh(p 1-144), you can see
that rowBytes is the numberof actual bytes in memorythat are usedto determinethe
bitMap. We know the screenis just a big hunk of memory,andwe know that QuickDraw
usesthat memoryasa bitMap. rowBytesaccomplishesthe translationof a big hunk of
memoryinto a bitMap. To do this, rowBytestells the systemhow long a given row is in
memoryand, more importantly, where in memorythe next row starts.For conventional
Macintoshes,rowBytes (bytesper Row) * 8 (Pixels per Byte) gives the final horizontal
width of the screenasPixelsper Row. This doesnot haveto be the case.It is possibleto
have a Macintoshscreenwherethe rowBytes extendsbeyondwhat is actually visible
on the screen.You can think of it as having the screenlooking in on a largerbitMap.
Diagrammatically,it might look like:

Big Hunk o’ Memory

4 RowBytes

- screenBits.Bounds

4’,,

Visible Area

With an Ultra-Largescreen,the numberof bytesusedfor screenmemorymay be in the
500,000byte range.Whenevercalculationsare being madeto find various locationsin
the screen,the variables used should be able to handle larger screensizes. For
example,a 16 bit Integerwill not be able to hold the 500,000number,so a Longlnt
would be required. Do not assumethat the screensize is 21,888bytes long, bitMaps
can be largerthan 32K or 64K.

Why it’s Bad

Programsthat assumethat all of the bytes in a row are visible may make bad
calculations,causingdrawing routinesto produce unusual,and unreadable,results.
Also, programsthat usethe rowBytesto figure out the width of the screenrectanglewill
find that their calculatedrectangleis not the real screenBits.Bounds. Drawing into
areasthat are not visible will not necessarilycrashthe computer,but it will probablygive
erroneousresults,anddisplaysthat don’t matchthe normal output of the program.

Programsthat assumethat the numberof bytes in the screenmemorywill be lessthan
32768 may have problemsdrawing into Ultra-Large screens,since thosescreenswill
often have more memory than a normal Macintoshscreen. Theseparticularproblems
do not evidencethemselvesby crashingthe system. They generallyappearas loss of

TechnicalNote #117 page9 of 28 CompatibiIy: Why & How



functionality (not being able to move a window to the bottom of the screen),or as

drawing routinesthat no longer look correct. Theseproblemscan preventan otherwise

wonderful programfrom being used.

How to avoid being a row byter

In any calculations,the rowBytesvariableshouldbe thoughtof as the way to get to the

next row on the screen. This is distinct from thinking of it asthe width of the screen. The

width should always be found from s c r e enB i t s . b o u n d s . r ± g h t —

screenBits.bounds. left.

It is also inappropriateto use the rectangleto decide how many bytes there are on a

row. Programsthat do somethinglike:

bytesLine : screenBits.bounds.rightDIV 8; { bad use of bounds

rightSide screenBits.rowBytes* 8; { bad use of rowBytes I

will find that the screenmay have more rowBytes than previously thought. The best

way to avoid being a row byter is to use the propervariablesfor the proper things.

Without the propermathematicalbasisto the screen,life becomesmuch more difficult.

Always do things like:

bytesLine screenBits.rowBytes; ( always the correct number

rightSide : screenBits.bounds.right; { always the correct screensize

It is sometimesnecessaryto do calculationsinvolving the screen. If so, be sureto use

Longlnts for all the math, and be sureto usethe right variables(i.e. use Longlnts).

For example, if we needto find the addressof the 500th row in the screen(500 lines

from the top):

VAR myAddress: Longlnt;

myRow: Longlnt; ( so the calculationsdon’t round off.

my0ffset: Longlnt; { could easily be over 32768

bytesLine: Longlnt;

myAddress : ord4(screenBits.baseAddr);(start w/the real base address

myRow : 500; (the row we want to address

bytesLine : screenBits.rowBytes; (the real bytes per line I

myOffset := myRow * bytesLine; (lines * bytes per lines gives bytes

myAddress := myAddress + myoffset; (final addressof the 5th line

This is not somethingyou want to do if you can possiblyavoid it, but if you simply must

go directly to the screen,be careful. The big-screenmachines(Ultra-Largescreens)will

thank you for it. If QuickDrawcannotbe initialized, there is also the low-memory global

screenRow(a word at $106)that will give you the currentrowBytes.

How to find row byters

To find currentproblemswith row byter programs,run them on a machineequippedwith

Ultra-Largescreensand seeif any anomaliescrop up. Look for drawing sequencesthat

don’t work right, and for drawing that clips to an imaginary edge. For source-level

TechnicalNote #117 page1 0 of 28 Compatibihty:Why & How



inspection, look for usesof the rowBytes variablesand be sure that they are being

used in a mathematicallysoundfashion. Be highly suspiciousof any code that uses

rowBytes for the screenwidth. Any calculationsinvolving those systemvariables

should be closely inspectedfor round-off errors and improper use. Searchfor the

number8. If it is being usedin a calculationwhere it is the numberof bits per byte, then

watch that codeclosely for improperconceptualization.This is codethat could leap out

and grabyou by the throat at anytime. Be careful!

TechnicalNote #117 page11 of 28 Compatibility: Why & How



Using nil Handlesor nil Pointers

A nil pointer is a pointer that has a value of 0. Recognizethat pointersare merely

addressesin memory. This meansthat a nil pointer is pointing to memory location 0.

Any use of memory location 0 is strictly forbidden, since it is owned by Motorola.

Trespassersmay be shot on sight, but they may not die until much later. Sometimes

trespassersare only woundedand act strangely. Any useof memorylocation 0 can be

considereda bug, sincethere are no valid reasonsfor Macintosh programsto read or

write to that memory. However,nil pointersthemselvesare not necessarilybad. It is

occasionallynecessaryto passnil pointersto ROM routines. This should not be

confusedwith reading or writing to memory location 0. A pointer normally points to

(containsthe addressof) a location in memory. It could look like this:

Highest Memory

P: $E9310

Higher Memory

P: $3E4DE:I

Memory 3

This is how a Pointer

works. The addressof

the pointer variable itself

is 5E9310 (@P) and is four

bytes long. The pointer points

to (contains the addressof)

the block at S3E4DE (P)

That memory location is where

the actual data resides (P)

4

If a pointer hasbeenclearedto nil, it will point to memory location 0. This is OK as

long as the programdoesnot try to readfrom or write to that pointer. An exampleof a

nil pointercould look like:

Highest Memory

P: $E9310

Higher Memory

$3E4DE:1

(p-)

This is a nil Pointer.

Note that the memory that

it points to (the address)

is 0 (P) . This is wrong.

There is no valid data at

memory location 0. Any

writing to or reading from

this pointer is a bug.

4

Memory 0

TechnicalNote #117 page1 2 of 28 Compatibily:Why & How



nil handlesare related to the problem, since a handle is merely the addressof a

pointer (or a pointer to a pointer). An exampleof what a normal handle might look like

is:

Highest Memory

H: $E9310:l

Higher Memory

$3E40E

H: $2603C

Memory 0

This is how a Handle works.

The addressof the handle

variable itself (H) is $E9310.

That variable points (has the

address) to the master pointer

at location S2603C (H) . That

variable is a pointer also, ana

points to the real data found

at S3E4DE (H) . The dark grey

block is a Master pointer block. It

is a group (usually 64) of Master

Pointers. One of them is the Master

Pointer at addressS2603C (H)

Whenthe first pointer (h) becomesnil, that implies that memorylocation 0 can be used

asa pointer. This is strictly illegal. Thereare no caseswhere it is valid to readfrom or

write to a nil handle. A pictorial representationof what a nil handlecould look like:

Highest Memory

H: $E9310:

Higher Memory

$3E4DE:,

$2603C:

Memory 0

(H)

This is a nil Handle.

Note that the Handle usually

points to a Master Pointer, but

in this case it points at (has

the value of) 0 (H( . This is wrong.

Using what is at memory location

0 as a pointer is invalid, since

it is not known what will be there.

Points someplacestrange...

If the memoryat 0 containsan odd number(numericallyodd), then using it as a pointer

will causea systemerror with ID=2. This can be very useful, sincethat tells you exactly

wherethe programis using this illegal handle,making it easyto fix. Unfortunately,there

are caseswhere it is appropriateto passa nil handle to ROM routines (such as

GetScrap). Thesecasesare rare, and it is never legal to readfrom or write to a nil

handle.

TechnicalNote #117 page1 3 of 28 CompatibiIy: Why & How



There is also the caseof an empty handle. An empty handleis one wherethe handle
itself (the first pointer) points to a valid place,in memory; that place in memory is also a
pointer, and if it is nil the entire handleis termedempty. Thereare occasionswhere it
is necessaryto use the handle itself, but using the nil pointer that it containsis not
valid. An exampleof an empty handlecould be:

This is an Empty Handle.

Note that the handle itself

has a valid Master Pointer

addressin it S2603C (H”) . The

Master Pointer is nil however,

which is the addressof location

0 in memory. It is wrong to use

the Master Pointer in this case,

although there are caseswhere

using the Handle itself is valid.

Fundamentally,any readingor writing to memoryusing a pointeror handlethat is nil is
punishableby death(of your program).

Why it’s Bad

The useof nil pointerscan lead to the use of make-believedata. This make-believe
dataoften changesfor different versionsof the computer. This changingdatamakesit
difficult to predict what will happenwhen a programusesnil pointers. Programsmay
not crash as a result of using a nil pointer, and they may behave in a consistent
fashion. This doesnot meanthat there isn’t a bug. Thismerely meansthat the program
is lucky, and that it should be playing the lottery, not running on a Macintosh. If a
programactsdifferently on different versionsof the Macintosh, you should think “could
therebe a nastynil pointerproblem here?” Use of a nil handleusually culminatesin
readingor writing to obscureplacesin memory. As an example:

VAR myHandle: TEHandle;

myHandle : nil;

That’s pretty straightforward,so what’s the problem? If you do somethinglike:

myHandle”.viewRect := myRect; { very bad idea with rnyHandle = nil I

memory location zero will be usedas a pointerto give the addressof a TextEdit record.
What it that memorylocation pointsto somethingin the systemheap?What if it points to
the soundbuffer? In caseslike these,eight bytes of rectangledata will be written to
wherevermemory location 0 points.

Highest Memory

Higher Memory

TechnicalNote #117 page14 of 28 Compatibility: Why & How



Use of a nil handlewill neverbe useful. This memory is reservedand usedby the

68000for various interrupt vectorsand ValuableStuff. This ValuableStuff is composed

of things that you definitely do not want to change. When changed,the 68000finds out,. and decidesto get back at your program in the most strangeand wonderful ways.

Thesestrangeresultscan rangefrom a SystemError all the way to erasinghard disks

and destroyingfiles. There really is no limit to the havoc that can be wreaked. This

tendsto keepthe userson the edgeof their seat,but this is not really the desiredeffect.

As noted above, it won’t necessarilycausetraumaticresults. A programcan be doing

naughtythings and not get caught. This is still a bug that needsto be fixed, since it is

nearly guaranteedto give different results on different versions of the Macintosh.

Programsexhibiting schizophreniahavebeenprovento be lessenjoyableto use.

How to avoid being a Niller

Whenevera program usespointers and handles,it should ensurethat the pointer or

handlewill not be nil. This could be termeddefensiveprogramming,since it assumes

that everyoneis out to get the program(which is not far from the truth on the Macintosh).

You should alwayscheckthe result of routinesthat claim to passback a handle. If they

passyou back a nil handle,you could get in trouble if you usethem. Don’t trust the

ROM. The following exampleof a defensiveuse of a handle involves the Resource

Manager. The ResourceManagerpassesback a handleto the resourcedata. There

are any number of placeswhere it may be forced to passback a nil handle. For

example:

VAR myRezzie: MyHandle;

myRezzie := MyHandle(GetResource(myResType,myResNumber)); { could be missing...)

IF myRezzie = nil THEN ErrorHandler(’We almost got Nilled’)

ELSE myRezzie.myRect:= newRect; { We know it is OK

As anotherexample,think of how handlescan be purgedfrom memory in tight memory

conditions. If a block is markedpurgeable,the Memory Managermay throw it away at

any time. This createsan empty handle. The defensiveprogrammerwill always make

surethat the handlesbeing usedare not empty.

VAR myRezzie: myHandle;

myRezzie := myl-{andle(GetResource(myResType,myResNurnber)); { could be

missing...

IF myRezzie = nil THEN ErrorHandler(’We almost got Nilled’)

ELSE myRezzie’”’.myRect := newRect; { We know it is OK

tempHandle := NewHandle (largeBlock); (might disposea purgeablemyRezzie)

IF myRezzie’ nil THEN LoadResource(Handle(myRezzie));{Re-load empty

handle

IF ResError = noErr THEN

myRezzie.StatusFie1d: OK; { guaranteednot empty, and actually

gets read back in, if necessary

Be especiallycareful of placeswhere memory is being allocated. The NewHandleand

NewPtr calls will return a nil handleor pointer if there is not enoughmemory. If you

usethat handleor pointerwithout checking,you will be guilty of being a Niller.

TechnicalNote #117 page1 5 of 28 Compatibily: Why & How



How to find Nillers

The bestway to find thesenastynil pointerproblemsis to set memorylocation zero to
be an odd number(a good choice is ‘NIL!’ = $4E494C21,which is numericallyodd, as
well aspersonality-wise).PleaseseeTechnicalNote #7 for detailson how to do this.

If you useTMON, you can usethe extendeduserareawith Dcipline. Discipline will set
memory location 0 to ‘NIL!’ to help catch those nasty pointer problems. If you use
Macsbug,just type SM 0 ‘NIL! andgo. Realizeof course,that if a programhasmadea
transgressionand is actually using nil pointers,this may makethe programcrashwith
an ID=2 systemerror. This is good! This meansthat you have found a bug that may
have been causingyou untold grief. Once you know where a program crashes,it is
usuallyvery easyto usea debuggerto find wherethe error is in the sourcecode. When
the program is compiled, turn on the debugginglabels (usually a $D+ option). Set
memorylocation 0 to be ‘NIL!’. When the programcrashes,look at wherethe programis
executingandseewhat routine it was in (from a disassembly).Go backto that routine in
the sourcecodeand removethe offending codewith a grim smile on your face. Another
scurvy bug has beenvanquished. The intoxicating smell of victory wafts around your
head.

Another way to find problemsis to use a debuggerto do a checksumon the first four
bytes in memory (from 0 to 3 inclusive). If the program ever traps into the debugger
claiming that the memory changed,see which part of the program altered memory
location 0. Any codethat writes to memorylocation zero is guilty of high treasonagainst
the stateand must be removed. Rememberto say, “bugs are not my friends.”

TechnicalNote #117 page1 6 of 28 Compatibily:Why & How



Creatingor Using FakeHandles

A fake handle is one that was not manufacturedby the system,but was createdby the

programitself. An exampleof a fake handleis:

CONST aMem = $100;

VAR myHandle: Handle;

myPointer: Ptr;

rnyPointer : Ptr (aMem); { the addressof some memory

rnyHandle := @myPointer; (the addressof the pointer variable. Very bad.)

The normal way to createand usehandlesis to call the Memory ManagerNewHandle

function.

Why it’s Bad

A handlethat is manufacturedby the program is not a legitimate handleas far as the

operatingsystemis concerned.Passinga fake handleto routinesthat use handlesis a

good way to discoverthe meaningof “Death by ROM.” For example,think how confused

the operatingsystemwould get if the fake handlewere passedto DisposHandle.What

would it dispose? It neverallocatedthe memory, so how can it releaseit? Programs

that manufacturehandlesmay find that the operatin9systemis no longertheir friend.

When handlesare passedto various ROM routines, there is no telling what sorts of

things will be doneto the handle. Thereare any numberof normal handlemanipulation

calls that the ROM may use,suchasSetHandleSize,HLock, HNoPurge,MoveHHi and

so on. Sincea programcannotguaranteethat the ROM will not be doing things like this

to handlesthat the programpassesin, it is wise to makesurethat a real handleis being

used, so that all thesetype of operationswill work as the ROM expects. For fake

handles,the calls like HLock and SetHandleSizehave no bearing. Fake handlesare

very easy to create, and they are very bad for the health of otherwise upstanding

programs. Wheneveryou needa handle,get one from the Memory Manager.

As a particularlybad useof a fake handle:

VAR myHandle: Handle;

myStuff: myRecord;

myHandle := NewHandle (SIZEOF(myStuff)); { create a new normal handle I

myHandle’ := @myStuff; {YOW! Intendedto make myHandle a handle to

the myStuff record. What it really does is

blow up a Master Pointer block, Heap corruption,

and death by Bad Heap. Never do this.

This can be a little confusing,since it is fine to use your own pointers, but very bad to

use your own handles. The difference is that handlescan move in memory, and

pointerscannot,hencethe pointersare not dangerous.This doesnot meanyou should

usepointersfor everythingsincethat causesotherproblems. It merely meansthat you

haveto be careful how you usethe handles.

TechnicalNote #117 page1 7 of 28 CQmpatibility: Why & How



The useof fake handlesusuallycausessystemerrors, but can be somewhatmysterious
in its effects. Fake handlescan be particularly hard to track down sincethey often cause
damagethat is not uncoveredfor many minutesof use. Any use of fake handlesthat
causesthe heapto be altered will usually crash the system. Heap corruption is a
common failure mode. In clinical studies, 9 out of 10 programmersrecommend
uncorruptedheapsto their userswho use heaps.

How to avoid being a fakir

The correctway to makea handleto somedatais to makea copy of the data:

VAR myHandle: Handle;

rnyStuff: myRecord;

errCode : PtrToHand (@myStuff, myHandle, SIZEOF(myStuff));

IF errCode <> noErr THEN ErrorHandler (‘Out of memory’);

Always, always, let the Memory Managerperform operationswith handles. Neverwrite
codethat assignssomethingto a masterpointer, like:

VAR myDeath: Handle;

myDeathA := stuff; { Don’t change the Master pointer.

If there is codelike this, it usually meansthe heapis being corrupted,or a fake handleis
being used. It is, however,OK to passaroundthe handleitself, like:

myCopyHaridle : myHandle; { perfectly OK, nobody will yell about this.

This is far different than using the A operatorto accidentallymodify things in the system.
Wheneverit is necessaryto write code to use handles,be careful. Watch things
carefully asthey are being written. It is much easierto be careful on the way in than it is
to try to find out why somethingis crashing. Be very careful of the @ operator. This
operatorcan unleashuntold problemsupon unsuspectingprograms. If at all possible,
try to avoid usingit, but if it is necessary,be absolutelysureyou know what it is doing. It
is particularly dangeroussince it turns off the normal type checking that canhelp you
find errors (in Pascal). In short, don’t get crazy with pointerand handlemanipulations,
and they won’t get crazywith you.

How to find fakirs

Problemsof this form are particularly insidious becauseit can be very difficult to find
them after they have beencreated. They tend to not crash immediately, but ratherto
crashsometimelong after the real damagehasbeendone. The bestway to find these
problemsis to run the programwith Discipline. (Discipline is a programmer’stool that
will checkall parameterspassedto the ROM to seeif they are legitimate. Discipline can
be found as a stand-alonetool, but the most up-to-dateversion will be found in the
ExtendedUser Area for the TMON debugger. The User Area is public domain, but
TMON itself is not. TMON hasa numberof other useful features,and is well worth the
price.) Discipline will checkhandlesthat are passedto the ROM to seeif they are real
handlesor not, and if not, will stop the programat the offending call. This can leadyou
backto the sourceat a point that may be closeto wherethe bad handlewas created. If

TechnicalNote #117 page18 of 28 Compatibily: Why & How



a programpassesthe Discipline test, it will be a healthy, robustprogramwith drastically
improved oddsfor compatibility. Programsthat do not passDiscipline can sleeppoorly
at night, knowing that they havebrokenat leastone or two of the “rules.”

A way to find programsthat are damagingthe heap is to use a debugger(TMON or
Macsbug)and turn on the HeapCheckoperation. This will checkthe heapfor errorsat
eachtrap call, and if the heapis corruptedwill break into the debugger. Hopefully this
will be closeto wherethe codeis that causedthe damage. Unfortunately, it may not be
closeenough;this will force you to look further back.

Looking in the sourcecode, look for all usesof the @ operator,and examinethe code
carefully to seeif it is breakingthe rules. If it is, changeit to stepin line with the rest of
the happyprogramshere in happyvalley. Also, look for any codethat changesa master
pointer like the myHandle” := stuff. Any codeof this form is highly suspect,and
probably a memberof the Anti-Productivity League. The APL has been accusedof
preventingsoftwaresalesandthe rise of the Yen. Theseproblemscan be quite difficult
to find at times, but don’t give up. Thesefake handlesare high on the list of guilty
parties,and should neverbe trusted.

TechncaINote #117 page19 of 28 Compatibility: Why & How



Writing code that modifies itself

Self-modifying code is softwarethat changesitself. Codethat alters itself runs into two

main groupings: codethat modifies the codeitself and codethat changesthe block the

code is storedin. Copy protectioncodeoften modifies the codeitself, to changethe way

it operates(concealingthe meaningof what the codedoes). Changingthe codeitself is

very tricky, and also prone to having problems,particularly when the microprocessor

itself changes. There are third-party upgradesavailable that add a 68020 to a

Macintosh. Becauseof the 68020’s cache,programsthat modify themselvesstanda

good chanceof having problemswhen run on a 68020. This is a compatibility point that

should not be missed(nudge, nudge,wink, wink). Code that changesother code (or

itself) is proneto be incompatiblewhen the microprocessorchanges.

The secondgroup is code that changesthe block that the code is stored in. Keeping

variablesin the CODE segmentitself is an exampleof this. This is uncommonwith

high-level languages,but it is easyto do in assemblylanguage(using the DC directive).

Variablesdefined in the code itself should be read-only(constants).Codethat modifies

itself hassigneda tacit agreementthat says“I’m being tricky, if I die, I’ll revise it.”

Why it’s Bad

Thereare now threedifferent versionsof the microprocessor,the 68000, 68010, andthe

68020. They are intendedto be compatiblewith eachother, but may not be compatible

with code that modifies itself. As the Macintosh evolves, the system may have

compatibility problemswith programsthat try to “push the envelope.”

How to avoid being an abuser

Well, the obvious answeris to avoid writing self-modifying code. If you feel obliged to

write self-modifying code,then you are taking an oath to not complain when you break

in the future. But don’t worry aboutaccidentallytaking the oath: you won’t do it without

knowing it. If you chooseto abuse,you also agreeto personalvisits from the Apple

thoughtpolice, who will be hired assoonaswe find out.

How to find abusers

Run the programon a 68020system. If it fails, it could be relatedto this problem, but

since there are other bugs that might causefailures, it is not guaranteedto be a

self-modifying code problem. Self-modifying code is often used in copy protection,

which brings us to the next big topic.

TechnicalNote #117 page20 of 28 Compatibility: Why & How



Code designedstrictly as copy protection 4

Copy protection is usedto make it difficult to make copies of a program. The basic
premiseis to make it impossibleto copy a programwith the Finder. This will not be a
discussionas to the pros and consof copy protection. Everyonehas an opinion. This

will be a descriptionof reality, as it relatesto compatibility.

Why it’s Bad

Systemchangeswill neverbe made merely to causecopy protection schemesto fail,

but given the choice between improving the systemand making a copy protection
schemeremaincompatible,the systemimprovementwill alwaysbe chosen.

• Copy protectionis numberone on the list of why programsfail the compatibility test.

• Copy protectionby its very naturetendsto do the most “illegal” things.
• Programsthat arecopy protectedare assumedto havesigneda tacit agreementto

revisethe programwhen the systemchanges.

Copy protection itself is not necessarilybad. What is bad is when programsthat would
otherwisebe fully compatibledo not work due only to the copy protection. This is very
sad, since it requiresextra work, revisions to the software, and time lost while the
revision is being produced. The usersare not generallyhumoredwhen they can no
longer use their programs. Copy protectionschemesthat fail generallycausesystem
errorswhenthey are run. They also can refuseto run whenthey should.

How to avoid being a protectionist

The simple answer is to do without copy protection altogether. If you think of
compatibility as a probability game, if you leave out the copy protection, your odds of
winning skyrocket. As noted above,copy protection is the single biggest reasonwhy
programsfail on the variousversionsof the Macintosh. For thosewho are requiredto
use copy protection,try to rely on schemesthat do not require specific hardwareand
makesurethat the schemeusedis not performing illegal operations. If a programruns,
an experiencedMacintosh programmerarmedwith a debuggercan probably make a
copy of it, (no matter how sophisticatedthe copy protection scheme)so a moderate
schemethat doesnot breakthe rules is probablya bettercompatibility bet. The trickier
and more deviousthe scheme,the higherthe chanceof breakinga rule. Tread lightly.

How to find protectionists

The easiestway to seeif a schemeis being overly tricky is to run it on a MacintoshXL.
Since the floppy disk hardwareis different this will usually demonstratean unwanted
hardwaredependency.Be wary of schemesthat don’t allow installation on a hard disk.
If the programcannotbe installed on a hard disk, it may be relying upon things that are
proneto change. Don’t useschemesthat accessthe hardwaredirectly. All Macintosh
softwareshould go through the various managersin the ROM to maintaincompatibility.
Any code that sidestepsthe ROM will be viewed as having said “It’s OK to make me
revise myself.”

TechnicalNote #117 page21 of 28 Compatibility: Why & How



Check errors returnedas function results

All of the Operating Systemfunctions, as well as some of the Toolbox functions, will
return result codesas the value of the function. Don’t ignore theseresult codes. If a
program ignores the result codes, it is possible to have any number of bad things
happento the program. The result codeis thereto tell the programthat somethingwent
wrong; if the program ignores the fact that something is wrong, that program will
probably be killed by whateverwent wrong. (Bugs do not like to be ignored.) If a
programcheckserrors, an anomalycan be nipped in the bud, before somethingreally
bizarre happens.

Why it’s Bad

A programthat ignores result codesis skipping valuable information. This information
can often preventa programfrom crashingand keepit from losing data.

How to avoid becoming a skipper

Always write codethat is defensive. Assumethat everyoneand everything is out to kill
you. Trust no one. An exampleof errorcheckingis:

myRezzie : GetResource(myResType, myResld);

IF myRezzie = nil THEN ErrorHandler (‘Who stole my resource...’);

Another example:

fsErrCode : FSOpen (‘MyFile’, myVRefNum, myFileRefNurn);

IF fsErrCode <> noErr THEN ErrorMandler (fsErrCode, ‘File error’);

And another:

myTPPrPort := PrOpenDoc (myTHPrint, nil, nil);

IF PRError <> noErr THEN ErrorHandler (PRError, ‘Printing error’);

Any use of Operating System functions should presumethat something nasty can
happen,and have code to handle the nasty situations. Printing calls, File Manager
calls, ResourceManager calls, and Memory Manager calls are all examplesof
OperatingSystemfunctionsthat shouldbe watchedfor returning errors. Always, always
checkthe result codesfrom Memory Managercalls. Big memory machinesare pretty
common now, and it is easyto get cavalieraboutmemory, but realizethat someonewill
always want to run the program underSwitcher, or on smaller Macintoshes. It never
hurtsto check,and alwayshurtsto ignore it.

How to find skippers

This is easy: just do weird things while the program is running. Put in locked or
unformatted disks while the program is running. Use unconventionalcommand
sequences.Run out of disk space. Run on 128K Macintoshesto seehow the program
dealswith running out of memory. Run underSwitcherfor the samereason. (Programs
that die while running underSwitcherare often not Switcher’s fault, and are in fact due

TechnicalNote #117 page22 of 28 CompatibiIy:Why & How



to faulty memorymanagement.)Print with no printer connectedto the Macintosh. Pop

disks out of the drives with the Command-Shiftsequence,and seeif the program can

deal with no disk. When a disk-switchdialog comesup, pressCommand-periodto pass

back an error to the requestingprogram (128K ROMs only). Torturing otherwisewell-

behavedprogramscan be quite enjoyable,and a numberof usersenjoy torturing the

programas much asthe programenjoystorturing them. For the truly malicious, run the

debuggerand alter error codesas they come back from various routines. Sure it’s a

dirty low-down rotten thing to do to a program,but we want to seehow far we can push

the program. (This is also a good way to checkyour error handling.) It’s one thing to be

an optimist, but it’s quite anotherto assumethat nothing will go wrong while a program

is running.

TechnicalNote #117 page23 of 28 Compatibility: Why & How



Accessinghardwaredirectly

Sometimesit is necessaryto go directly to the Macintosh hardwareto accomplisha
specific task for which there is no ROM support. Early hard disks that usedthe serial
ports had no ACM support. Those disks neededto use the SCC chip (the 8530 (
communicationchip) in a high-speedclockedfashion. Although it is a valid function, it is
not somethingthat is supportedin the ROM. It was thereforenecessaryto go play with
the SCC chip directly, setting and testing various hardwareregistersin the chip itself.
Anotherexampleof a valid function that hasno ROM supportis the use of the alternate
video pagefor page-flippinganimation. Since there is no ROM call to flip pages,it is
necessaryto go play with the right bit in the VIA chip (6522 Versatile InterfaceAdapter).
Going directly to the hardware does not automatically throw a program into the
incompatiblegroup, but it certainly lowers its odds.

Why it’s bad

Going directly to the hardwareposesany numberof problemsfor enlightenedprograms
that are trying to maintaincompatibility acrossthe variousversionsof the Macintosh. On
the MacintoshXL for example,a lot of the hardwareis found in different locations,and in
somecasesthe hardwaredoesn’t exist. On the XL there is no soundchip. Programs
that go directly to the soundhardwarewill find they don’t work correctlyon an XL. If the
sameprogramwere to go through the SoundManager,it would work fine, althoughthe
soundwould not be the sameas expected. Sincethe Macintosh is heavily orientedto
the softwareside of things, expectingvarious hardwareto always be availableis not a
safebet. Choosyprogrammerschooseto leavethe hardwareto the ROM.

How to avoid having a hard attack

Don’t reador write the hardware. Exhausteverypossibleconventionalapproachbefore
deciding to really get down and dirty. If thereis a Managerin the ACM for the operation
you wish to perform, it is far better to use the Managerthan to go directly to the
hardware. Compatibility at the hardware level can very rarely be maintained,but
compatibility at the Managerlevel is a prime consideration. If a program is down to the
last ditch effort, andcannotget the supportfrom the ROM that is desired,thenaccessthe
hardwarein an enlightenedapproach. The really bad way to do it:

VIA := Pointer ($EFE1FE); { sure it’s the base addresstoday...)
This is bad. Hard-codednumber.

The with-it, inspiredprogrammerof the eightiesdoessomethinglike:

TYPE LorigPointer = “Longlnt;

VAR VIA: LongPointer;
VIABase: Longlnt;

VIA := Pointer ($1D4); { the addressof the low-memory global.
VIABase := VIA”; { get the low-memory variable’s value

Now VIABase has the addressof the chip I

TechnicalNote #117 page24 of 28 Compatibility: Why & How



The point here is that the bestway to get the addressof a hardwarechip is to ask the

systemwhere it currently is to be found. The systemalwaysknows wherethe piecesof

the systemare, and will always know for every incarnationof the Macintosh. Thereare

low-memory global variablesfor all of the piecesof hardwarecurrently found in the

Macintosh. This includesthe VIA, the SCC, the SoundChip, the IWM, and the video

display. Wheneveryou are stuck with going to the hardware,use the low-memory

globals. The fact that a programgoesdirectly to the hardwaremeansthat it is risking

imminent incompatibility, but using the low-memory global will ensurethat the program

hasthe bestodds. It’s like going to Las Vegas: if you don’t gambleat all, you don’t lose

any money; if you haveto gamble,play the gamethat you lose the leaston.

How to find hard attacks

Run the suspiciousprogram on the Macintosh XL. Nearly all of the hardwareis in a

different memory location on the XL. If a programhasa hard-codedhardwareaddress

in it, it will fail. It may crash,or it might not performthe desiredtask, but it won’t work as

advertised. This unfortunately,is not a completelylegitimatetest, sincethe XL doesnot

have some of the hardwareof other Macintoshes,and some of the hardwarethat is

therehasthe registermappingdifferent. This meansthat it is possibleto play by the rule

of using the low-memoryglobal and still be incompatible.

TechnicalNote #117 page25 of 28 Compatibility: Why & How



Don’t use bits that are reserved

Occasionallyduring the life of a Macintoshprogrammer,therecomesa time when it is
necessaryto bite the bullet and use a low-memory global. Theseare very sad days,
since it has been demonstrated(by history) that low-memory globalvariablesare a
mysteriouslot, and not altogetherfriendly. One fellow in particularis known asR0M85, a
word locatedat $2 BE. This particularvariable has been documentedas the way to
determineif a programis running on the 128K ROMs or not. Notably, the top most bit of
that word is the determiningbit. This meansthat the rest of the bits in that word are
reserved,since nothing is describedaboutany further bits. Remember,if it doesn’tsay,
assumeit’s reserved. If it’s reserved,don’t dependupon it. Take the cautiousway out
and assumethat the other bits that aren’t documentedare used for Switcher local
variables,or somethingequally wild. An exampleof a bad way to do the comparisonis:

VAR Rom85Ptr: WordPtr;

RomsAre64: Boolean;

RomB5Ptr Pointer ($28E); { point at the low—memory global
IF Rom85Ptr’ = $7FFF THEN RomsAre64 : False { Bad test.
ELSE RomsAre64 True;

This is a bad testsincethe comparisonis testingthe value of all of the bits, not only the
one that is valid. Sincethe other bits are undocumented,it is impossibleto know what
they are usedfor. Assumethey are usedfor somethingthat is arbitrarily random,and
take the safeway out.

How to avoid being bitten

VAR ROM85Ptr: Ptr

Rom85Ptr := Pointer ($28E); { point at the low-memory global
IF BitTst(ROM85Ptr,O) THEN RomsAre64 := True {Good——tests only hi—bit}
ELSE RomsAre64 := False;

This techniquewill ensurethat when thosebits are documented,your programwon’t be
using them for the wrong things. Bewareof trojan bits.

Don’t use undocumentedstuff. Be very careful when you use anything out of the
ordinary streamof a high-level language. For instance,in the R0M85 case,it is very
easyto makethe mistakeof checkingfor an absolutevalue insteadof testingthe actual
bit that encodesthe information. Whenevera program is using low-memory globals, be
surethat only the information desiredis being used,and not someundocumented(and
hencereserved)bits. It’s not alwayseasyto determinewhat is reservedand what isn’t,
so conservativeprogrammersalwaysuseas little as possible. Be wary of the strange
bits, and acceptrides from none of them. The ride you take might causeyou to revise
your program.

TechnicalNote #117 page26 of 28 Compatibily:Why & How



How to find those bitten

Sincethereare sucha multitude of possibleplacesto get killed, there is no simple way

to seewhat programsare using illegal bits. As time goesby it will be possibleto find

more of thesecasesby running on various versionsof the Macintosh, but there will

probably neverbe a comprehensiveway of finding out who is acceptingstrangerides,

and who is not. Wheneverthe useof a bit changesfrom reservedstatusto active, it will

be possibleto find thosebugs via extensivetesting. From a sourcelevel, it would be

advisableto look over any use of low-memory globals, and eye them closely for

inappropriatebit usage. Do a global searchfor the $ (which describesthoseubiquitous

hexadecimalnumbers),and when found see if the use of the number is appropriate.

Trust no one that is not known. If they are documented,they will stay wherethey are,

and have the samemeaning. Be very careful in realmsthat are undocumented.Bits

that suddenlyjump from reservedto active statushavebeenknown to causemore than

one programto havea suddenanxiety attack, It is very unnervingto watch a program

go from calm and reassuringto rabid status. Users have been known to drop their

keyboardsin suddenshock(which is bad on the keyboards).

TechnicalNote #117 page27 of 28 Compatibility: Why & How



Summary

So what doesall this mean? It meansthat it is getting harderand harderto get away
with minor bugs in programs. The minor bugsof yesterdayare the major onesof today.
No one will yell at you for having bugsin your program,sinceall programshavebugsof
one form or another. The goal should be to make the programsrun as smoothly and
effortlesslyas possible. The end-userswill neverobject to bug-reducedprograms.

What is the bestway to test a program? A reasonablycomprehensivetest is to exercise
all of the program’sfunctionsunderthe following situations:

• Use Discipline to be surethe programdoesnot passillegal thingsto the ROM.
• Use heap scrambleand heap purge to be sure that handlesare being used

correctly, andthat the memorymanagementof the programis correct.
• Run with a checksumon memorylocations0...3 to seeif the programwrites to these

locations.
• Run on a 128K Macintosh,or underSwitcherwith a small partition, to seehow the

programdealswith memory-criticalsituations.
• Run on a 68020systemto seeif the programis 68020-compatibleand to makesure

that changingsystemspeedwon’t confusethe program.
• Run on a MacintoshXL to be surethat the programdoesnot assumetoo much about

the operatingsystem,andto testscreenhandling.
• Run on an Ultra-Largescreento be surethat the screenhandling is correct,and that

thereare no hard-codedscreendimensions.
• Run on 64K ROM machinesto be surenew trapsare not being usedwhen they don’t

exist.
• Run underboth HFS and MFS to be surethat the programdealswith the file system

correctly. (400K floppies are usually MFS.)

If a programcan live through all of this with no Discipline traps, no checksumbreaks,no
system errors, no anomalies,no data loss and still get useful work done, then you
deservea gold medal for programmingexcellence. Maybe even an extra medal for
conductaboveand beyondthe call of duty. In any case,you will know that you have
done your job aboutas well as it can be done, with today’s version of the rules, and
today’s programmingtools.

Sounds like a foreboding task, doesn’t it? The engineersin Macintosh Technical
Supportare availableto help you with compatibility issues(we won’t always be able to
talk about new products,sincewe love our jobs, but we can give you somehints about
compatibility with what the future holds).

Good luck.

Technica’Note #117 page28 ot28 Compatibility: Why & How



(j

Macintosh Techrncal Notes

#1 18: How to Checkand HandlePrinting Errors

Seealso: The Printing Manager

Written by: GingerJernigan May 4, 1987

Updated: March 1, 1988

This technicalnote describeshow to checkand properly handleerrorsthat

occurduring printing with the high-level printing calls.

Most people are aware of the need for checking File Manager errors, Resource

Managererrors, andthe like, but sometimesPrinting Managererrorsget neglected;you

should always check for error conditionswhile printing. This can be done by calling

PrError. Errors returnedby PrError will include any Printing Managererrors (and

someAppleTalk and OS errors)that occurduring printing.

The bestplaceto start is with the codefragmenton page155 of inside Macintosh,vol. II:

myPrPort := PrOpenDoc (prRecHdl, NIL, NIL); {open printing grafPort}

FOR pg := 1 TO myPgCount DO (page loop: ALL pages of document)

IF PrError = noErr THEN

BEGIN

PrOpenPage(myPrPort,NIL); (start new page}

IF PrError = noErr THEN

MyDrawingProc(pg); (draw page with QuickDraw)

PrClosePage(myPrPort); {end current page)

END;

PrCloseDoc(myPrPort);

IF prRecHdl.prJob.bJDocLoop= bSpoolLoop AND PrError = noErr THEN

BEGIN

MySwapOutProc; (swap out code and data)

PrPicFile(prRecHdl,NIL,NIL,NIL,myStRec); (print spooleddocument)

END;

IF PrError <> noErr THEN MyPrErrAlertProc; {report any errors)

Here are someerror-handlingguidelines:

You should avoid calling PrErrorwithin your PrIdle procedure;errorsthat occur

while it is executing are usually temporaryand serve only as internal flags for

communicationwithin the printer driver—theyare not intendedfor the application. If

you absolutelymust call PrError within your idle procedure,and an error occurs,

neverabort printing within the idle procedureitself. Wait until the last called printing

procedurereturnsandthen checkto seeif the errorstill remains.Attempting to abort

printing within an idle procedureis a guaranteeof certaindeath.

TechnicalNote #118 page 1 of 2 How to Checkand HandlePrinting Errors



• If you detectthat an error hasoccurredafterthe completionof a printing routine, just
stop whereyou are, i. e. stop drawing. Proceedto the next print procedureto close
any opencalls you havemade. For example,if you called PrOpenDocand received
an error, skip to the next PrCloseDoc.Or if you called PrOpenPageand got an
error, skip to the next PrClosePageand PrCloseDoc.Rememberthat if some
PrOpen... procedurehas been called, then you must call the corresponding
PrClose...procedureto ensurethat pnnting closesproperly and that all temporary
memoryallocationsare releasedand returnedto the heap.

• Do not raise any alertsor dialogsto report an error until the end of the print loop. At
the end of the print loop, checkfor the error again; if there is no error assumethat
printing completednormally. If it’s still there,you can raisean alert.

This is important for two reasons.First, if an alert is raisedin the middle of the print
loop, it can causeerrorsthat will terminatean otherwisenormal job. For example,if
the printer is an AppleTalk printer, the connectioncan be terminatedabnormally.
While your alert is sitting there waiting for a responsefrom the user, the driver is
unable to respondto AppleTalk requestscoming in from the printer. If the printer
doesn’t hearfrom the Macintoshwithin a short time period (30 seconds)then it will
timeout, assumingthat the Macintosh is no longer there. This results in the
connectionbeing broken prematurelycausinganothererror that the applicationhas
to respondto.

The driver may also have alreadyput up its own alert in responseto the error. In
this instance,the driver will post an error to let your applicationknow that something
went wrong and that it’s time to abort printing. For example,when the driver detects
that the version of Laser Prep that has been downloadedto the LaserWriter is 4different from the version that the useris trying to print with, the LaserWriterdriver
raisesthe appropriatealert telling the userthat the printer was initialized with an
incompatibleversion of the driver and gives the option of reinitializing. If the user
choosesto cancel,the driver postsan error to let the applicationknow that it needs
to abort, but since the driver has alreadytaken care of the error by putting up an
alert, the error is resetto zero beforethe printing loop is complete. The application
shouldcheckfor the error againat the end of the printing loop and if it still indicates
an error, it shouldraisean alert.

TechnicalNote #118 page 2 of 2 How to Checkand Handle Printing Errors



I-

Macintosh Technical Notes

#1 19: Determiningif Color QuickDraw Exists

See: TechnicalNote #1 29—SysEnvirons

Written by: Jim Friedlander May 4, 1987
Updated: March 1, 1988

This noteformely describeda way to determineif Color QuickDrawis present
on a particularmachine.We now recommendthat you call SysEnvironsto
find out, asdescribedin TechnicalNote #129.

TechnicalNote #119 page 1 of 1 DeterminingIf Color QuickDraw Exists





Macintosh
TechnicalNotes

DeveloperTechnicalSupport

#120: Drawing Into an Off-ScreenPixel Map

This TechnicalNote providesa.simpleexampleof drawingto, thencopying from, an off-screenpixel map.
Changessince October18: Made changesto the code which convert GDevice color
look-up tables (clut) to pixi map color look-up tablesso CopyBits will copy the colorinformationcorrectly. Thisinhirmationis especiallyimportantfor color printing.

The following exampledemonstrateshow to draw somethingin an off-screenpixel map,andthen
use CopyBits to copyut %ack to the screen. It handlesthe caseof multiple screenswithdifferent pixel depths. Beforemaking any calls to Color QuickDraw,you mustmake sureit ispresent(refer to TechnicalNie #129, SysEnvirons:System6.0 andBeyond).

MPW Pascal

CONST

VAR

BitMapPtr

offRowBytes
sizeOfOff
myBits
destRect
globRect
bRect
theoepth
1

err
syCGrafPort
niyCGrafPtr
ourCMHandle
theMaxDevice
oidDevice

‘BitMap; (for type coercion in the _CopyBits call)

LONGINT;
LONGINT;
Ptr;
Rect;

Rect;
Rect;
INTEGER;
INTEGER;
INTEGER;
CGrafPort;
CGrafPtr;
CTabHandle;
GDHandle;
GDHandle;

Revisedby: Rich Collyer April 1989Written by: Jim Friedlander&Rick Blair May 1987

TYPE

OffLeft =

Of fTop = 00;
Of fBottom = 25.0;
OffRight

(These constantsfsrr tha bounds of the off—screen PixMap are chosen becausewe
know what the eWeit of the drawing will be and we want to restrict the size of
the map as much az possi.ble.

#120: Drawing Into an Off-ScreenPixel Map I of 7



MacintoshTechnicalNotes

First you createa color window, thenyou needto determinethe devicewith the maximumdepthto

which you will copy theoff-screenimagewith _CopyBits.

myCWindow := GetNewCWindow(SornelD,NIL,WindowPtr(-l));

SetPort(myCWindow); (set to this port for the localToGlobals that follow)

SetRect(bRect,OffLeft.Of fTop, Of fRight, Of fBottom)

IF NOT SectRect(myCWindow’.portRect,bRect,globRect)THEN

NothingToCopy; (nothing to do, clean up and EXIT)

(still here, so let’s convert to giobals)

LocalToGlobal(globRect.topLeft);

LocaiToGlobal(globRect.botRight);

(figure out how much spacewe need for our pixel image.

we will call GetMaxDevice and get the pixel map from that --

we do this to covet the case where the pixel image that we wish

to CopyBits to spansmultiple devices (of possibly different depths)

theMaxDevice:=GetNaxDevice(globRect); (get the maxDevice)

You needto settheGDeviceto the devicewith the maximumpixel depth(the oneyou found in

the last step),so the pixel map of the new CGrafPortwill be copiedfrom oneof the proper

depth. Now you shouldopena new CGrafPortto usefor your off-screendrawing.

oldDevice := GetGDevice; (save theGDevice so we can restoreit later)

SetGoevice(theMaxOevice); (Set to the maxdevice)

myCGrafPtr @myCGrafPort; (initialize this guy)

OpenCPort(myCGrafPtr); (open a new color port — this calls InitCPort)

theDepth:=myCGrafPtr.portPixMap.pixelSize;

You are now readyto calculatethe size of the pixel imageyou will need,then you can set the

location-specificand size-specificinformation of the pixel map. Since Color QuickDraw

distinguishesbetweena bitmapanda pixel mapby checkingthehigh bit of rowBytes,you need

to add$8000to OffRowBytesasshown.

(similar formula to Technical Note #41, except we must include pixel depth)

offRowBytes ((((theDepth * (OffRight — OffLeft)) + 15)) DIV 16) * 2;

(make sure LONGINT math is done on the next line!)

sizeOfOff LONGINT(OffBottom — OffTop) * offRowBytes;

OffSetRect(bRect,— OffLeft, — OffTop); (adjust for local coordinates)

(Set up baseAddr, rowBytes,boundsand pixelSize of the PixMap in our fresh, new CPort)

myBits Newptr(sizeOfOff); (allocate spacefor the pixel image)

(real programs do error checking here)

WITH myCGrafPtr’.portPixMap” DO BEGIN

baseAddr := myBits;

rowbytes offRowBytes + $8000; {remember to be a ?ixNap)

bounds bRect;

END; (with)

2 of 7 #120: Drawing Into an Off-ScreenPixel Map



DeveloperTechnicalSupport April 1989

Next you canclonethecolor tableof themaxDeviceandput it into your off-screenpixel map.

. ourCMHandle : theMaxDevice. gdPMap”.pmTable;
err := HandToHand(Handle(ourCMHandleH; (clone it)
(real programs do error checking here)
FOR i := 0 TO ourCMHandle. ctSize DO

ourCMHandle.ctTable[i] .value := i;
ourCMHandle.ctFlags BAnd (ourCMHandle.ctFlags,$7fff);
ourCMHandle.ctSeed:= GetCTSeedO;

This code is necessaryfor converting GDevice cluts to Pixmap cluts

(put the cloned, correctly set—up Color Table into the off—screen map)
myCGrafPtr . portPixMap”.pmTable ourCMHandle;
(Set the port to the off—screen port)
SetPort(GtafPtr(myCGrafPtr));

Now you can call Drawlt (which in turn calls FillInColor) to draw an image in the off-
screenport.

FUNCTION FilllnColor(r,g,b: Integer): RGBC010r;
(small utility routine to return an RGBC010r)

VAR
theColor : RGBColor;

BEGIN (FilllnColor)
WITH theColor DO BEGIN

red := r;
green :=

blue := b;
END;
FilllnColor := theColor;

END; {FilllnColor}

PROCEDURE Drawlt;

VAR

OvalRect : Rect;
myRed,myBlue,myWhite,
rnyGreen, myBlack : RGBColor;

BEGIN ( Drawlt
(get our colors set up)
myRed := FilllnColor(—1,0,0);
myBlue := FillInColor(0,0,—l);
myGreen FillInColor(0,—l,0);
myWhite := FilllnColor(—l,—1,—1);
myBlack := FilllnColor(0,O,0);
PenMode(PatCopy);
RGBBackColor(myBlue); (set the backcolor of the current port)
EraseRect(thePort’.portRect); (blue it out)
RGBBackColor(myWhite); (set back to white)

RGBForeColor(myRed); (set the forecolor of the current port)
SetRect(OvalRect,30,30,190,150);
PaintOval(OvalRect);

InsetRect(OvalRect,1,20);
EraseOval(OvalRect); (eraseoval to white)

RGBForeColor(myGreen); (draw the final oval in green)
InsetRect(OvalRect,40, 1);
PaintOval(OvalRect)
RGBForeColor(myBlack);

END; ( Drawlt

#120: Drawing Into an Off-ScreenPixel Map 3 of 7



MacintoshTechnicalNotes

Sinceyou aredonedrawing,you needto set thePortandtheGDevicebackto their former

values,and then you candraw the imageon the screenby calling CopyBits to copy the bits

from theportPixof theoff-screenpixel mapto theportPixof MyCWindow.

SetPort(MyCWindow);

SetGDevice(oldDevice);

destRect := bRect;

Of fSetRect(destRect,Offteft,Off7op); (adjust for coordinates)

CopyBits(BitMapptr (MyCGrafPtr”.port?ix!ap)“, MyCWindow .portBits,

bRect, destRect, 0, NIL);

Finally, you cleanup afteryourselfby closingtheCGrafPortyou created,freeingthe spaceyou

reservedfor the pixel imageof the off-screenpixel map, and disposingof the color table you

allocated.

CloseCPort(myCGrafPtr); (Close our port)

DisposPtr(MyBits); (clean up)

DisposHaridle(Handle(ourCMHandle)); (get rid of color table we cloned)

MPWC

You shouldnotethatmostof thePascalcommentsalsoapply to this C code,so if you arenot sure

whattheC codeis doing, try referringto the equivBlentPascalcodeandcommentsto gain a better

understanding.

/* Define constantsfor the Off—Screen Rect */

#define OffLeft 30

4(define OfiTop 30

4ftiefine OffBottom 250

4define Of fRight 400

1* typedef BitMapPtr for use during CopyBits operation *1

typedef BitI’lap *BltMapptr;

long of fRowBytes, sizeOfOff;

Ptr myBits;

Rect destRect,globRect, bRect;

mt theDepth, i, err;

CGrafPort tnyCGrafPort;

CCrafPtr myCGrafptr;

CTabHandle ourCMliandle;

GDHandie theMaxDevjce, oldDevice;

Pcint tempP;

Createa color window on screen. In MPW C,nywindowis declaredas a WindowPtr,not a

CWindowPtr,which is contraryto the wayInsideMacintosh,VolumeV documentsit.

mywindow GetNewCWindow(SomeID,nil, (WidowPtr) -1);

/ set to this port for the localToGiobals that follow */

SetPort( (Windowptr) rnywindow);

SetRect(&bRect,OffLeft,OffTop,OffRight,DffBottorn);

if (!SectRect(&(*myWindow).portRect,bRect,&globRect))

ExitToShelH); /*nothing to do, clean up and EXIT*/

4 of 7 #120: Drawing Into an Off-ScreenPixel Map



DeveloperTechnicalSupport April 1989

SinceMPW doesnot havetopLeft or botRightelementsfor Rectstructures,you needto set

the tempPoint,call LocalToGlobal,thenresetglobRect.

tempp.v = globRect.top;

tempP.h = globRect.ieft;

LocalToGlobal(&tempp);
globRect.top= tempP.v;

globRect.left = ternpP.h;

ternpP.v = globRect.bottorn;

tempP.h = globRect.right;

LocalToGlobal(&tempp);
globRect.bottom= tempP.v;

globRect.right= tempP.h;

theMaxDevice = GetMaxDevice(&globRect); /*get the rnaxDevice*/

oldDevice = GetGDevice(); /*save theGDevice so we can

restoreit later*/

SetGDevicetheMaxDevjce); /*Set to the maxdevice*/

Now you cansetup the off-screenpixel map.

myCGrafPtr &myCGrafPort; /*initialize this guy*/

OpenCPort(myCGrafPtr); /*open a new color port,

this calls InitCPort*/

theDepth (**(*mycGrafptr) .portPixMap) .pixelSize;

/ Bitshift and adjust for local coordinates*/

offRowBytes = (((theDepth * (OffRight — OffLeft)) + 15) >> 4) << 1;

sizeOfOff = (long) (OffBottorn OffTop) * offRowBytes;

OffsetRect(&bRect, - OffLeft, — Of f Top);

myaits NewPtr(sizeOfOff);

/* Remember to be a PixMap *1
(**(*myccrafptr) .portPixMap).baseAddr = rnyBits;
(**(*myCGrafptr) .portPixMap).rowBytes = offRowBytes + 0x8000;
(** (*myCGrafPtr) .portPixMap).bounds bRect;

ourCMHandle = (**(**theMaxDevice) .gdPMap) .pmTable;

err = HandToHand(&((Handle)ourCMHandie));
/* Real programs do error checking here */

for (j 0; < (**ourcMHandle ) .ctSize; ++i)
(**ourCMHandle ) .ctTable[i] .value =

(**ourcMHandle ) .ctFlags &= Ox7fff;
(**ourCMHandie ).ctSeed= GetCTSeed;
/ This code is necessaryfor converting GDevice cluts to Pixmap cluts *1

(**(*myccrafptr) .portpjxMap) .pmTable = ourCMHandle;

SetPort( (GrafPtr) mycGrafptr)

#120: Drawing Into anOff-ScreenPixel Map 5 of 7



MacintoshTechnicalNotes

/ *****************************************

1* *1
function for setting the wanted color */

1*
/ ********t**************.*.*****.*************.****/

RGBCo10r F.illInColor(r,g,b)
mt r,g.b;

/*FillInCoior*/

RCBCoI0r theColor;

theColorred=

theColor.green=

theColorblue=

return (theColor);

/
******************************************************/

1* *1
1* Drawing routine which makes the backgroundblue */
/ then draws a red oval, white oval, and green oval *7
/ After drawing to the off—screen it CopyBits to the */

1* screen *7
*7

/ ***********************************************.******f
void Drawlt()

Rect OvaiRect;
RGBColor myRed.myBlue,rnywhite,myCreen.myBlack;

myRed = FilllnColor (—1, 0,0);
myBlue FilllnColor(0,0,—l);
myGreen = FilllnColor(0,-1,0);
mywhite FilllnColor(—l,—l,—l);
myalack = FilllnColor(0,0,0);
PenMode(patCopy);
RGBBackColor(&myBlue);
EraseRect(& (*qd.thePort).portRect);
RGBBackColor(&mywhite);

RGBForeColor(&inyRed);
SetRect(&OvalRect,30,30,190, 150);

PaintOval(&OvalRect);

InsetRect(&OvalRect,1,20);
EraseOva].(&OvalRect)

RGBForeColor(&myGreen);
InsetRect(&OvalRect,40,1);
PaintOval(&OvalRect);
RGBForeColor(&myBlack);

SetPort (WindowPtr) myWindow);
SetGDevice(oldDevice);

destRect= bRect;
Of f setRect( & destRect, Of f Left, Off Top)

CopyBits( (BitMapPtr) * (*myCGrafr) ..portPixMap,
&(*myWindow).portBits.,&bRect, &destRect, 0, nil);

return;

6 of 7 #120: DrawingInto an Off-ScreenPixel Map



DeveloperTechnical Support April 1989

Onceagain,you cleanup afteryourself.

CloseCPort(myCGrafPtr);
Disposptr(rnyBits) ;
DisposHandleC (Handle) ourCMHandle);

Note: For optimal performance,you want to makesure that the sourceanddestination
pixel mapsarealigned.

Further Reference:
• InsideMacintosh,VolumesI-il & 1V-23, QuickDraw
• InsideMacintosh,VolumeV-39, Color QuickDraw
• TechnicalNote#41,Drawing Into an Off-ScreenBitmap
• TechnicalNote#129,_SysEnvirons:System6.0 andBeyond

#120: Drawing Into an Off-ScreenPixel Map 7 of 7



a a a



Macintosh Technical Notes

#121: Using the High-Level AppleTalk Routines

Seealso: The AppleTalk Manager
InsideAppleTalk
AppleTalk ManagerUpdate

Written by: FredA. Huxham May 4, 1987
Updated: March 1, 1988

What you needto do in order to use high-level AppleTalk routinesdepends
upon the interfacesyou areusing. Somedifferencesareoutlined below.

MPW before 2.0

When calling the old high-level AppleTalk routines,many programmersget mysterious
“resourcenot found” errors (-192) from suchseeminglyharmlessroutinesas MPPOpen.
The resourcethat is not being found is ‘atpl’, a resourcethat containsall the glue code
to the high-level routines. In orderto usethe high-level routines,your application must
have this resourcein its resourcefork. The ‘atpl’ resourceis included in a file called
“AppleTalk” with any compilersthat usethis outdatedversionof the AppleTalk interface.

MPW 2.0 and newer

A newerversion of the alternateinterfacesis available in MPW 2.0; it includesbug fixes
and increasedMacintosh II compatibility. With this version of the interface, the ‘atpl’
resourceis no longerused.Glue code is now linked into your application.

This will be the final releaseof the current-styleinterface. It will be supportedfor some
time asthe alternateinterface.We have movedto a more straightforwardand simple
preferredinterface, which is also implementedin MPW 2.0 and newer, and is
describedin the AppleTalk Managerchapterof Inside Macintoshvol. V. Developersare
free to continueto usethe alternateinterlace,but in the long run it will be advantageous
to moveto the preferredinterface.

Third Party Compilers

Third party compilersuseinterfacesthat are built from Apple’s MPW interfaces.Some
compilers may riot have upgradedto the new interfacesyet. Contact the individual
compiler manufacturersfor more information.

TechnicalNote #121 page 1 of 1 Using the High-Level AppleTalk Routines



a a a



Macintosh Technical Notes

#122: Device-IndependentPrinting

Seealso: The Printing Manager

Written by: GingerJernigan May 4, 1987
Updated: March 1, 1 988

The Printing Manager was designedto give Macintosh applications a device-

independentmethod of printing, but we have provided device-dependentinformation,

such as the contentsof the print record. Due to the large numberof printer-typedrivers
becoming available (even for non-printer devices) device independenceis more

necessarythan ever. What this meansto you, as a developer,is that we will no longer

be providing (or supporting) information regardingthe internal structureof the print
record.

We realizethat thereare situationswherethe applicationmay know the bestmethodfor
printing a particulardocumentand may want to bypassour dialogs. Unfortunately,using
your own dialogs or not using the dialogs at all, requiressetting the necessaryfields in
the print recordyourself. Thereare a numberof problems:

• Many of the fields in the print record are undocumented,and, as we changethe
internal architectureof the Printing Managerto accommodatenew devices,those
undocumentedfields are likely to change.

• Each driver usesthe private, and many of the public, fields in the print record
differently. The implications are that you would need intimate knowledgeof how
eachfield is usedby eachavailabledriver, and you would haveto set the fields in
the record differently dependingon the driver chosen.As the numberof available
printer-typedrivers increases,this can becomea cumbersometask.

Summary

To be compatiblewith future printer-like devices,it is essentialthat your applicationprint
in a device-independentmanner.Avoid testing undocumentedfields, setting fields in the
print record directly and bypassingthe existing print dialogs. Use the Printing Manager
dialogs,PrintDefaultandPrValidateto setup the print recordfor you.

TechnicalNote #122 page 1 of 1 Device-IndependentPrinting





Macintosh Technical Notes

#123: Bugs in LaserWriterROMs

Seealso: The Printing Manager
PostScriptLanguageReferenceManual, Adobe Systems

Written by: GingerJernigan May 4, 1987
Modified by: GingerJernigan July 1, 1987
Updated: March 1, 1988

Theseare LaserWriterbugs that your usersmay encounterwhen printing
from any Macintoshapplication.Theseare for your information; you cannot
code around them. The bugs describedhere occur in the 1.0 and 2.0
LaserWriterROMs.

To determinewhich ROMs their LaserWritercontains,userscan look at the test page
that the LaserWriterprints at start-uptime. In addition to other information (detailedin the
LaserWriteruser’s manual),the ROM version is shown at the bottom of the line graph.
The original LaserWriter contained version 1.0 ROMs. The currently shipping
LaserWriterandthoseupgradedto the LaserWriterPlus containversion2.0 ROMs.

Theseare someof the problemswe know of:

1. If the level of paperin the papertray is getting low, and the userprints a document
that will causethe tray to becomeempty, a PostScripterror may occur. This problem
exists in both the 1 .0 and 2.0 LaserWriterROMs and will not be fixed in the next
ROM version.

2. If a userprints more than 15 copiesof a document,a timeout condition may occur
causingthe print job to abort. With LaserShare,this problem can occur with as few
as 9 copies.This problem is a result of the LaserWriterturning AppleTalkoff while it
is printing. It doesn’t sendout any packetsto tell the world it’s still alive while it is
printing, so the connectiontimes out after about 2 minutes.This problem exists in
both the 1.0 and 2.0 LaserWriter ROMs and will not be fixed in the next ROM
version.

3. When printing a documentthat containsmore than 10 patterns,usersmay receive
intermittent PostScripterrors. This usually occurs when trying to print a lot of
patterns,and a bitmap image on the samepage.The code for imaging patterns
allocatesalmostall of the availableRAM for itself, so when the bitmap imaging code
tries to allocatespace,and there isn’t enough(and it doesn’t know how to reclaim
memory from the previousoperation),a limit check error occurs. This problem
exists in 2.0 LaserWriterROMs. It will be improved but not fixed in the next ROM
version.

TechnicalNote #123 page 1 of 2 Bugs in LaserWriterROMs



4. If a userchoosesUS Letter or B5 paperand hasa different sizedtray in the printer,
and prints using manual feed, the LaserWriterwill print assumingthat the paper
being fed manually is the samesize as that in the tray. For example,if they havea
US letter tray in the LaserWriterand print a documentformattedfor B5 letter using
manualfeed, the image will not be centeredon the page.The printer assumesthat
the manually fed paper is also US letter size and prints the image positioned
accordingly,despitethe driver’s instwctions.This is a bug in the Note operatorin
PostScript,which the driver usesfor specifying the US letter and B5 letter paper
sizes.The workaroundis to tell the userto put an B5 tray in the printer when printing
B5 manually. This problem exists in the 1.0 and 2.0 ROMs and will not be fixed in
the next ROM version.

By the way, an interesting, but annoying, occuranceof this bug happenswhen
manuallyprinting Legal sizeddocumentswith the 4.0 LaserWriterdriver. When the
Larger Print Area option in the style dialog is deselected(which is the default) the
driver usesthe Note operatorto specify the pagesize. When the userprints the
documentusing manual feed, and has a US letter tray in the printer, the image is
shifted up on the pagecutting off the top of the image. If you tell the userto turn on
the Larger Print Area option in the style dialog, the driver specifiesthe pagesize
using Legal insteadof Note and the image is printed properly.

TechnicalNote #123 page 2 of 2 Bugs in LaserWrerROMs



Macintosh Technical Notes

#124: Using Low-Level Printing Calls With AppleTalk lmageWriters

Seealso: The Printing Manager

Written by: GingerJernigan May 4, 1987

Updateby: Scott “ZZ” Zimmerman Febuary?, 1988

Updated: March 1, 1988

When you usethe low-level printer driver to print, you don’t get the benefitsof the error

checking that is done when you use the high-level Printing Manager.So, if the user

prints to an AppleTalk lmageWriter(including an AppleTalk lmageWriterLQ) that is busy

printing anotherjob, the driver doesn’t know whetherthe printer is busy, offline, or

disconnected.Becauseof this, PrErrorwill return (and PrintErr will contain)abortErr.

Sincethereis no way to tell when you are printing to an AppleTalk lmageWriter,the only

workaroundfor this is to usehigh-level Printing Managerinterface.

TechnicalNote #124 page 1 of 1 Low-Level Printing Calls With the ATIW



I



Macintosh Technical Notes

#125:The Effect of Spool-a-page/Print-a-pageon SharedPrinters

Seealso: Printing Manager
TechnicalNote #72—

Optimizing for the LaserWriter—Techniques

Written by: GingerJernigan May 4, 1987

Updated:
March 1, 1988

This technical note discussesdrawbacksof using the spool-a-page/

print-a-pagemethodof printing.

The “spool-a-page/print-a-page”methodof printing prints eachpageof a documentas a

separatejob instead of calling PrpicFile to print the entire picture file. Many

applicationsadoptedthis methodof printing to avoid running out of disk spacewhile the

lmageWriterdriver was spooling the documentto disk. As long as you are printing to a

directly connectedImageWriter, you’re fine, but if you are printing to remoteor shared

devices(like the AppleTalk lmageWriterand the LaserWriter),this methodmay create

significant problemsfor the user.

When a job is initiated by the application, the driverestablishesa connectionwith the

printer via AppleTalk. When the job is completed,the driver closesthe connection,

allowing anotherjob the opportunity to print. If each page is a job in itself, then the

connectionis closedand reopenedbetweeneachpage,allowing anotherapplicationto

print betweenthe pagesof the document,which, as you might imagine,could presenta

significant problem. If two peopleare printing to the sameAppleTalk ImageWriterat the

sametime and their applicationsusethe “spool-a-page/print-a-page”methodof printing,

the pagesof eachdocumentwill be interleavedat the printer.

Although thereare good reasonsfor using this methodof printing, it is only useful for a

directly connectedprinter. From a compatibility point of view, this methodof printing is

built-in device dependence.Also, this methodcould createseriousproblemsfor other

typesof remotedevices.Therefore,we are recommendingihat applicationsavoid using

this method indiscriminately.You should checkavailabledisk spaceto seehow much

room you have before you print. If there isn’t enoughspacefor your entire document,

then print as much as you can (to minimize the interleaving)beforestartinganotherjob.

Wheneverpossible,applicationsshould use the print loop describedon page 11-155 in

The Printing Managerchapterof insideMacintosh.

TechnicalNote #125 page 1 of 1 Spool/Printon SharedPrinters



a



Macintosh
TechnicalNotes

DeveloperTechnicalSupport

#126: Sub(Launching)from a High-Level Language

Revisedby: Rich Collyer & Mark Johnson April 1989

Written by: Rick Blair & Jim Friedlander
May 1987

Note: Developer.TechnicalSupporttakesthe view that.launchingand sublaunchingare

featureswhich arebestavoidedfor compatibility (andother)reasons,but we want

to makesurethat when it is absolutelynecessaryto implementit, it is donein the

safestpossibleway.

This TechnicalNotediscussesthe “safest”methodof calling Launchfrom a high-level language

that supportsinline assemblylanguagewith the optionof launchingor sublaunchinganother

application.
ChangessinceAugust 1988: IncorporatedTechnicaliNote #52 on calling Launchfrom a

high-level language,changedthe exampleto offer a choicebetweenlaunchingor sublaunching,

addeda discussionof the Launchtrap underMultiFinder, and updatedthe MPW C code to

includeinline assemblylanguage.

The SegmentLoaderchapterof InsideMacintosh11-53 statesthe following aboutthe_Launch

trap:

“The routinesbelow areprovidedfor advancedprogrammers; they canbe called

onlyfrom assemblylanguage.”

While this statementis technicallytrue, it is easyto call launchfrom any high-level language

which supportsinline assemblycode,and this Note prowdesexamplesof calling Launchin

MPW PascalandC.

Beforecalling Launch,you needto declarethe inlinerocedure,which takesa variableof type

pLaunchStructasa parameter.Sincethe compilerpushesa pointerto this parameteron the

stack,you needto includecodeto put this pointerinto AO. The way to do this is with a MOVE . L

(SP) +, AC instruction, which is $205F in hexadecimal,so the first word after INLINE is

$205F. This instructionsetsup A0 to containa pointerto the filenameand 4 (AC) to containthe

configurationparameter,so the lastpartof the inline is th Launchtrap itself, which is $A9F2

in hexadecimal. The configurationparameter,which is normally zero, determineswhetherthe

applicationusesalternatescreenandsoundbuffers. Sincenot all Macintoshmodelssupportthese

alternatebuffers, you should avoid using them unlessyou havea specific circumstancewhich

requiresthem.

The Finderdoesa lot of hiddencleanupand othertaskswithout userknowledge;therefore,it is

bestif you do not try to replacetheFinderwith a “mini” or try to launchotherprogramsandhave

them return to your application. In the future, the Findermay provide better integration for

applications,and you will circumventthis if you try to act in its place by sublaunchingother

programs.

#126: Sub(Launching)From a High.LevelLanguage
1 of 6



MacintoshTechnicalNotes

If you havea situationwhereyour applicationmust launchanotherandhaveit return,andwhereyou are not worried about incompatibility with future SystemSoftwareversions,there is a“preferred” way of doing this which fits into the currentsystemwell. Systemfile version4.1 (orlater) includesa mechanismfor allowing a call to anotherapplication; we term this call a“sublaunch.” You canperforma sublaunchby addinga setof simpleextensionsto the parameterblock you passto the Launchtrap.

Launch and MultiFinder
UnderMultiFinder, a sublaunchbehavesdifferently than underthe Finder. The applicationyousublaunchbecomesthe foregroundapplication,and when the userquits that application,thesystemreturnscontrol to the next frontmostlayer, which will not necessarilybe your application.
If you set both high bits of LaunchFlags,which requestsa sublaunch,your applicationwillcontinueto executeafter the call to _Launch. UnderMultiFinder, the actuallaunch(andsuspendof your application)will not happenin the Launchtrap, but ratherafter a call or more toWaitNextEvent.

UnderMultiFinder, Launchcurrentlyreturnsan error if thereis not enoughmemoryto launchthe desiredapplication,if it cannotlocatethe desiredapplication,or if the desiredapplicationisalreadyopen. In the latter case,that applicationwill not be madeactive. If you attemptedtolaunch,MultiFinder will call _SysBeep,your applicationwill terminate,andcontrol will given tothe next frontmostlayer. If you attemptedto sublaunch,control will return to your application,and it is up to you to reporttheerror to the user.

Currently, Launchreturnsan error in registerDO for a sublaunch,and you shouldcheckit forerrors(DO<O) afterany attemptsat sublaunching.If DO>=O thenyour sublaunchwassuccessful.
You shouldrefer to the Programmer’sGuide to MultiFinder (APDA) and MacintoshTechnicalNotes#180,MultiFinder Miscellaneaand#205,MultiFinder Revisited: The 6.0 SystemRelease,for furtherdiscussionof the_Launchtrap underMultiFinder.)

Working Directories and SublaunchingWith the Finder
Puttingasidethecompatibility issuefor the moment,the only problemsublaunchingcreatesunderthe current systemis one of Working Directory Control Blocks (WDCBs). Unless theapplicationyou are launchingis at theroot directoryor on an MFS volume,you mustcreatea newWDCB andsetit asthecurrentdirectorywhenyou launchthe application.
In the examplewhich follows, the new working directory is opened(allocated)by StandardFileand its WDRefNumis returnedin reply . vRefNum. If you do not useStandardFile andcannotassume,for instance,that the applicationwasin the blessedfolderor root directory,thenyou mustopena new working directoryexplicitly via a call to OpenWD. You shouldgive the new WDCBa WDPr0cID of ‘ERIK’, so theFinder(or anothershell) would know to deallocatewhen it sawitwasallocatedby a “sublaunchee.”

Although the sublaunchingprocessis recursive(i.e., programswhich are sublaunchedmay, inturn, sublaunchotherprograms),thereis a limit of 40 on the numberof WDCBs which can becreated. With this limit, you could run out of availableWDCBs very quickly if manyprogramswereplaying the shell gameor neglectingto deallocatethe WDCBs they hadcreated. Make sureyou checkfor all errorsafter calling PBOpenWD. A tMWDOErr (—121) meansthat all available

2 of 6
#126: Sub(Launching)From a High-LevelLanguage



DeveloperTechnicalSupport
April 1989

WDCBs have been allocated,and if you receivethis error, you should alert the user that the

sublaunchfailed andcontinueasappropriate.

Warning: Although the exampleincludedin this Note coverssublaunching,

DeveloperTechnicalSupportstronglyrecommendsthat developers

not usethis featureof the Launchtrap. This trap will changein

the not-too-distantfuture, and when it doeschange,applications

which perform sublaunchingwill break. The only circumstancein

which you could considersublaunchingis if you are implementing

an integrateddevelopmentsystemandarepreparedto deal with the

possibility of revisingit everytime Apple releasesa new versionof

theSystemSoftware.

MPW Pascal

(It is assumedthat the Signals are caught elsewhere; see Technical

Note #88 for more information on the Signal mechanism)

(the extendedparameterblock to Launch)

TYPE
pLaunchStruct= LaunchStruct;

LaunchStruct= RECORD

pfName : StringPtr;

pararn : INTEGER;

LC PACKED ARRAY[O..1} OF CHAR; (extendedparameters:)

extBlockLen : LONGINT; (number of bytes in extension= 6)

fFlags : INTEGER; (Finder file info flags (see below)

launchFlags : LONGINT; (bit 31,30=1 for sublaunch, others reserved)

END; (LaunchStruct)

FUNCTION Launchlt(pLaunch:pLaunchStruct): OSErr; (< 0 means error)

INLINE $205F, SA9F2, $3E80;

pops pointer into AD, calls Launch, pops DO error code into result:

MOVE.L (A7)+,AD

_Launch

MOVE.W DO, (A7) s.irce it MAY return

PROCEDURE DoLaunch(subLaunch:BOOLEAN); (Sublaunch if true and launch if false)

VAR
myLaunch : LaunchStruct; (launch structure)

where : Point; (where to display dialog)

reply : SFReply; (reply record)

myFileTypes : SrTypeList; (we only want APPLs)

numFileTypes INTEGER;

myPB : CInfoPBRec;

dirNameStr str255;

BEGIN
where.h := 20;

where.v := 20;

numFileTypes:=1;

myFileTypes[O):= APPL’; (applicationsonly!)

(Let the user choosethe file to Launch)

SFGetFile(where, ‘, NIL, numFileTypes, myFileTypes, NL, reply);

#126: Sub(Launching)From a High-Level Language 3 of 6



MacintoshTechnicalNotes

IF reply.goocl THEN BEGIN
dirNameStr:= repiy.fNarne; (initialize to file selected)

(Get the Finder flags)
WITH rnyPB DO BEGIN

ioNamePtr:= @dirNarneStr;
ioVRefNurn:= reply.vRefNum;
ioFDirlndex:= 0;
ioDirlD:= 0;

END; (WITH)
Signal(PBGetCatlnfo(@MyPB,FALSE));

(Set the current volume to where the target application is)
Signal(SetVoi(NIL, reply.vRefNum));

(Set up the launch ararneters)
WITH myLaunch DO BEGIN

pfName := @reply.fName; (pointer to our fileName)
param 0; (we don’t want alternatescreen or sound buffers)
LC := ‘LC’; (here to tell Launch that there is non—junk next)
extBlockLen := 6; (length of param. block past this long word)
{copy flags; set bit 6 of low byte to 1 for BC access:)
fFlags : myPB.ioFlFndrlnfo.fdFlags; (from GetCatlnfo)

(Test subLaunchand set LaunchFlagsaccordingly)
IF subLaunch THEN

LaunchFiags := SC0000000 (set BOTH high bits for a sublaunch)
ELSE

LaunchFiaqs := $00000000; (.Just launch then quit)
END; (WITH)

(launch; you might want to put up a dialog which expiains that
the selectedapplication couldn’t be launched for some reason.)

Signal(Launchlt(@myLaunch));
END; (IF reply.good}

END; (DoLaunch)

I
4 of 6 #126: Sub(Launching)From a High-Level Language



DeveloperTechnicalSupport April 1989

MPWC

typedef struct LaunchStruct

char *pfName; /* pointer to the name of launchee *1

short mt param;

char LC[2]; /*extended parameters:*/

long mt extBlockLen; /*number of bytes in extension 6*!

short mt fFlags; /*Finder file info flags (see below)*/

long mt launchFlags; /*blt 3l,30==l for sublaunch, others reserved*/

*pLaunchstruct;

pascal OSErr Launchlt( pLaunchStructpLnch) /* < 0 means error !

= (Ox2O5F, OxA9F2, Ox3E8O);

1* pops pointer into AO, calls Launch, pops DO error code into result:

MOVE.L (A7)+,AO
_Launch
MOVE.W DO, (A7) ; since it MAY return *1

OSErr DoLaunch(subLaunch)
Boolean subLaunch; 1* Sublaunch if true and launch if false */

1* DoLaunch /
struct LaunchStruct myLaunch;

Point where; /*where to display dialog*/

SFReply reply; !*repiy record*!

SFTypeList myFileTypes; ! we only want APPLs */

short mt numFileTypes=1;

ilFilelnfo myPB;

char *dirNameStr;

OSErr err;

where.h 80;
where.v = 90;
myFileTypes[O] = ‘APPL’; ! we only want APPL5 *1

/*Let the user choose the file to Launch*!

SFcetFile(where,‘“‘, nil, numFileTypes, myFileTypes, nil, &reply);

if (reply.good)

dirNameStr = &reply.fNarne; !*initialize to file selected*/

/*Get the Finder flags*/

myPB.ioNamePtr=dirNameStr;

myPB.ioVRefNum= reply.vRefNum;
myPB.ioFDirlndex= 0;
rnyPB.ioDirlD 0;
err PBGetCatlnfo((CInfoPBPtr)&myPB,false);

if (err != noErr)
return err;

/*Set the current volume to where the target application i*/

err = SetVol(nil, repiy.vRefNurn(;

if (err noErr)
return err;

/*Set up the launch parameters*!

rnyLaunch.pfName= &reply.fName; !*pointer to our fileName*/

rnyLaunch.pararn= 0; !*we don’t want alternatescreen

or sound buffers*!

/*set up LC so as to tell Launch that there is non—junk next*!

myLaunch.LC(OJ = ‘L’; myLaunch.LC[l] = ‘C’;

myLaunch.extBiockLen= 6; /length of prar. block past

this long word*!

/*copy flags; set bit 6 of low byte to 1 for RO access:*!

myLaunch.fFlags= myPB.ioFlFndrlnfo.fdFlags; /*from GetCatinfo*/

#126: Sub(Launching)From a High-Level Language 5 of 6



MacintoshTechnicalNotes

/* Test subLaunch and set launchFlagsaccordingly */

if ( subLaunch
rnyLaunch.launchFlags= OxC0000000; /*set BOTH hi bits for a sublaunch *1

else

myLaunch.launchFlags= Ox00000000; 1* Just launch then quit *1

err Launchlt(&myLaunch); /* call Launch *1
if (err < 0)

/* the launch failed, so put up an alert to inform the user /

LaunchFailedU;
return err;

else
return noErr;

/*if reply.good’/
/*DoLaunch*/

Further Reference:
• InsideMacintosh,Volumes1-12, 11-53, & IV-83, The SegmentLoader
• Programmer’sGuideto MultiFinder (APDA)
• TechnicalNote#129,_SysEnvirons:System6.0 andBeyond
• TechnicalNote#180,MultiFinder Miscellanea

TechnicalNote#205,MultiFinder Revisited: The 6.0SystemRelease

6 of 6 #126: Sub(Launching)From a High-Level Language



Macintosh Technical Notes
(3

#127:TextEditEOL Ambiguity

Seealso: TextEdit

Written by: Bick Blair May 4, 1987

Updated:
March 1, 1988

TESetSelectmay be usedto position the ins1npoint at the endof a line.

Thereis an ambiguity, though;shouldthe inserfbnpoint appearat the end of

the precedingline or the starti the following om9? l is possibleto determine

what will happen,asyou areaboutto see.

There is an internal flag usedby TextEdit to determhe‘wh,e the insertion point at the

end of a line appears.This fi.g is part of the c1ikSt field in the TERec. It is there

mainly for the useof TEClick, but it is also usedby J’ c1tSe1ect(althoughit defaults

to the right side of the previousline,).

The following code can be usedto force the insertioniint to appearat the left of the

following line when it is positionedat the end of a line;: 1MPW Pascal:

TEDeactivate(tH);

tH .clikStuff := 255;
:{pSition caret on left}

TESetSelect(eoicharpos,eo1charpo.,tH4; ibiguous point}

TEActivate(tH);

In MPW C:

TEDeactivate(tH);

(**tH) .clikStuff = 255;
,/position caret on left *7

TESetSelect(eolcharpos,eo2tnarpos,tH); iguous point*/

TEActivate(tH);

If you want to ensurethat the carethsvn the right side which it normally defaults)then

substitutea zero for the 255.

TechnicalNote #127 page 1 of I TextEdit EOL Ambiguity



. a



Macintosh Technical Notes 3

#128: PrGeneral

Seealso: The Printing Manager
TechnicalNote #118—

How to Check and Handle Printing Errors

Written by: GingerJernigan May 4, 1987

Updated: March 1, 1988

The Printing Managerarchitecturehas been expandedto include a new

procedurecalled PrGeneral.The featuresdescribedhere are advanced,

special-purposefeatures, intended to solve specific problems for those

applications that need them. The calls to determineprinter resolution

introducea gooddealof complexity into the application’scode,andshouldbe

usedonly when necessary.

Version 2.5 (and later) of the lmageWriterdriver and version 4.0 (and later) of the

LaserWriterdriver implementa genericPrinting Managerprocedurecalled PrGeneral.

This procedureallows the Print Managerto expandin functionality, by allowing printer

drivers to implementvariousnew functions.The Pascaldeclarationof PrGeneralis:

PROCEDURE PrGeneral (pData: Ptr);

The pData parameteris a pointer to a data block. The structureof the data block is

declaredasfollows:

TGnlData = RECORD (1st 8 bytes are common for all PrGeneralcalls)

iOpCode : INTEGER; (input)

iError INTEGER; (output)

iReserved LONGINT; (reservedfor future use)

(more fields here, dependingon particular call)

END;

The first field is a 2-byte opcode, iOpCode, which acts like a routine selector.The

currently availableopcodesare describedbelow.

The secondfield is the error result, iError, which is returnedby the print code. This

error only reflectserror conditionsthat occurduring the PrGeneralcall. For example,if

you usean opcodethat isn’t implementedin a particularprinterdriver then you will get a

OpNotlmpl error.

TechnicalNote #128 page 1 of 7 PrGeneral



Here are the errorscurrently defined:

C ONST

noErr = 0; {everything’s hunky)
NoSuchRsl = 1; {the resolution you chose isn’t available)
OpNotlmpl = 2; (the driver doesn’t support this opcode}

After calling PrGeneralyou should alwayscheckPrError. If noErr is returned,then
you can proceed.If ResNotFoundis returned,then the current printer driver doesn’t
supportPrGeneraland you shouldproceedappropriately.SeeTechnicalNote #118 for
detailson checkingerrors returnedby the Printing Manager.

lError is followed by a four byte reservedfield (that meansdon’t useit). The contentsof
the rest of the datablock dependson the opcodethat the application uses.There arecurrently five opcodesusedby the lmageWriterand LaserWriterdrivers.

The Opcodes

Initially, the following calls are implementedvia PrGeneral

• GetRslData(get resolutiondata): iOpCode = 4
• SetRsl(set resolution):i0pCode = 5
• DraftBits (bitmapsin draft mode): iQpCode = 6
• noDraftBits(nObitmapSifldraftmOde)iOpCode= 7
• GetRotn(get rotation): iOpCode = 8

The GetRslDataand SetRslallow the applicationto find out what physical resolutions I
the printer supports, and then specify a supported resolution. DraftBits and
noDraftBits invoke a new featureof the lmageWriter, allowing bitmaps (imagedvia
CopyBits) to be printed in draft mode. GetRotn lets an application know whetherlandscapehasbeenselected.Below is a detaileddescriptionof how eachroutine works.

The GetRslDataCall

GetRslData(iOpCode = 4) returns a record that lets the application know what
resolutionsare supportedby the current printer. The applicationcan then use SetRsl(descriptionfollows) to tell the printerdriver which one it will use.This is the format of theinput datablock for the GetRslDatacall:

TRslRg = RECORD (used in TGetRslBlk}
iMin, iMax: Integer; (0 if printer only supportsdiscrete resolutions)END;

TRslRec = RECORD {used in TGetRslBlk}
iXRsl, iYRsl: Integer; (a discrete, physical resolution)

END;

I
TechnicalNote #128 page 2 of 7 PrGeneral



TGetRslBlk = RECORD (data block for GetRslDatacall)

iOpCode: Integer; (input; = getRslDataOp}

iError: Integer; (output)

iReserved: Longlrit; (reservedfor future use)

iRgType: Integer; (output; version number)

XRs1Rg: TRs1Rg; (output; range of X resolutions)

YRs1Rg: TRs1Rg; (output; range of Y resolutions)

iRslRecCnt: Integer; (output; how many RslRecs follow)

rgRslRec: ARRAY[1. .27] OF TRslRec; (output; number filled dependson

printer type)

END;

The iRgType field is much like a version number; it determinesthe interpretationof the
datathat follows. At present,a iRgType value of 1 appliesboth to the LaserWriterandto
the lmageWriter.

For variable-resolutionprinters like the LaserWriter, the resolution rangefields XRslRg

and YRs1Rg expressthe rangesof valuesto which the X and Y resolutionscan be set.
For discrete-resolutionprinters like the lmageWriter, the values in the resolution range
fields arezero.

Note: In general,X and Y in theserecordsare the horizontal and vertical directionsof
the printer, not the document! In landscapeorientation,X is horizontal on the printer but
vertical on the document.

After the resolution range information there is a word which gives the number of
resolution records that contain information. These records indicate the physical
resolutionsat which the printer can actually print dots. Each resolution recordgives an X
value and a Y value.

When you call PrGeneralyou passin a datablock that looks like this:

QpCode= 4 1 word

Error Code 1 word

Reserved 2 words

RangeType 1 1 word

X ResolutonRange:
min=0,max=0 2words

Y ResolutionRange: 2 words
mm =0, max = 0

ResolutionRecordCount =0 1 word

ResolutionRecord#1: 2 words
X = 0, V =0

ResolutionRecord#2..27

TechnicalNote #128 page 3 of 7 PrGeneral



Below is the datablock returnedfor the LaserWriter:

OpCode 4 1 word

Error Code(0 okay) 1 word

Reserved 2 words

RangeType= 1 1 word

X ResolutionRange:
2 words

mm 72, max 1500

Y ResolutionRange: 2 words
mm 72, max = 1500

ResolutionRecordCount — 1 1 word

ResolutionRecord#1: 2 words
X = 300, V = 300

Note that all the resolutionrangenumbershappento be the samefor this printer. There
is only one resolutionrecord,which gives the physical X and V resolutionsof the printer
(300x300).

Below is the datablock returnedfor the lmageWriter.

OpCode= 4 1 word

Error Code(0 = okay) 1 word

Reserved 2 words

RangeType 1 1 word

X ResolutionRange:
mm =0, max =

2 words

Y ResolutionRange: 2 words
mm — 0, max = 0

ResolutionRecordCount 4 1 word

ResolutionRecord#1: 2 words
X = 72, V =72

ResolutionRecord#2: 2 words
X =144, Y= 144

ResolutionRecord#3: 2 words
X = 80, V =72

ResolutionRecord#4: 2 words
X= 160,Y= 144

All the resolution range values are zero, becauseonly discrete resolutionscan be
specifiedfor this printer. Thereare four resolutionrecordsgiving thesediscretephysical
resolutions.

Note that GetRslDataalways returns the sameinformation for a particular printer
type—it is not dependenton what the userdoesor on printer configurationinformation.

TechnicalNote #128 page 4 of 7 PrGeneral



The SetRsl Call

SetRsl(iOpCode = 5) is usedto specify the desiredimaging resolution, after using. GetRslDatato determinea workable pair of values. Below is the format of the data

block:

TSetRslBlk = RECORD (data block for SetRsl call)

iOpCode: Integer; (input; = setRslOp}

iError: Integer; (output)

iReserved: Longlnt; (reservedfor future use)

hprint: THPrint; {input; handle to a valid print record)

iXRsl: Integer; (input; desiredX resolution)

iyRsl: Integer; (input; desiredY resolution)

END;

hprint should be the handle of a print record that has previously been passedto
PrValidate.If the call executessuccessfully,the print record is updatedwith the new
resolution;the datablock comesbackwith 0 for the error and is otherwiseunchanged.

However, if the desiredresolutionis not supported,the error is setto noSuchRsland the
resolutionfields are set to the printer’s default resolution

Note that you can undothe effect of a previouscall to SetRslby making anothercall that
specifiesan unsupportedresolution (suchas 0x0), forcing the default resolution.

The DraftBits Call

DraftBits (iOpCode= 6) is implementedon both the lmageWriterand the LaserWriter.
(On the LaserWriterit doesnothing, since the LaserWriteris always in draft mode and
can alwaysprint bitmaps.)Below is the format of the datablock:

TDftBitsBlk = RECORD (data block for DraftBits and NoDraftBits calls)

iopCode: Integer; (input; = draftBitsop or noDraftBitsop)

iError: Integer; (output)

lReserved: Longlnt; (reservedfor future use)

hPrint: THPrint; {input; handle to a valid print record)

END;

hPrint should be the handle of a print record that has previously been passedto
PrValidate.

This call forcesdraft-mode(i.e., immediate)printing, and will allow bitmapsto be printed
via CopyBits calls. The virtue of this is that you avoid spooling large massesof bitmap
dataonto the disk, and you also get betterperformance.

The following restrictionsapply:

• This call shouldbe madebeforebringing up the print dialogs becauseit affectstheir
appearance.On the lmageWriter,calling DraftBits disablesthe landscapeicon in
the Style dialog, andthe Best, Faster,and Draft buttonsin the Jobdialog.

TechnicalNote #128 page 5 of 7 PrGeneral



• If the printer doesnot supportdraft mode, alreadyprints bitmaps in draft mode, or

doesnot print bitmapsat all, this call doesnothing.

• Only text and bitmapscan be printed.

• As in the normal draft mode, landscapeformat is not allowed.

• Everything on the page must be strictly Y-sorted, i.e. no reversepaper motion

betweenone string or bitmap and the next. Note that this meansyou can’t havetwo

or more objects(text or bitmaps)side by side; the top boundaryof eachobject must

be no higherthanthe bottom of the precedingobject.

The last restriction is important. If you violate it, you will not like the results.But notethat if

you want two or more bitmaps side by side, you can combine them into one before

calling CopyBits to print the result. Similarly, if you are just printing bitmaps you can

rotatethem yourself to achievelandscapeprinting.

The NoDraftBits Call

NoDraftBits (iOpCode = 7) is implementedon both the imageWriter and the

LaserWriter. (On the LaserWriterit doesnothing, sincethe LaserWriteris always in draft

modeand can alwaysprint bitmaps.)The format of the datablock is the sameasthat for

the DraftBits call.

This call cancelsthe effect of any precedingDraftBits call, if therewas no preceding

DraftBits call, or the printer does not supportdraft-modeprinting anyway, this call

doesnothing.

The GetRotn Call

GetRotn(iOpCode= 8) is implementedon the ImageWriterand LaserWriter.Here is the

format of the datablock:

TGetRotnBlk = RECORD (data block for GetRotn call)

iOpCode: Integer; {iriput; = getRotriOp)

iError: Integer; {output}

iReserved: Longlnt; (reservedfor future use)

hPrint: THPrint; (input; handle to a valid print record)

fLandscape:Boolean; (output; Boolean flag)

bXtra: Signed.Byte; (reserved)

END;

hPrint should be the handle to a print record that has previously been passedto

PrValidate.

If landscapeorientationis selectedin the print record,then fLandscapeis true.

a
TechnicalNote #128 page 6 of 7 PrGeneral



How To Use The PrGeneralOpcodes

The SetRslandDraftBits calls may requirethe print codeto suppresscertainoptions
in the Style and/orJob dialogs, thereforethey shouldalwaysbe called beforeany call to

the Style or Jobdialogs.An applicationmight usethesecalls as follows:

• Get a new print record by calling PrintDefault,or take an existing one from a

documentandcall PrValidateon it.

• Call GetRslDatato find out what the printer is capableof, and decide what

resolutionto use.CheckPrErrorto be surethe PrGeneralcall is supportedon this
versionof the print code;if the error is ResNotFound,you haveolder print codeand

mustprint accordingly.But if the PrError return is 0, proceed:

• Call SetRslwith the print recordandthe desiredresolutionif you wish.

• Call DraftBits to invoke the printing of bitmapsin draft modeif you wish.

Note that if you call either SetRslor DraftBits, you shoulddo so beforethe usersees

either of the printing dialogs.

TechnicalNote #128 page 7 of 7 PrGeneral



4

4



Macintosh
TechnicalNotes

DeveloperTechnicalSupport

#129: SysEnvirons: System6.0 and Beyond
Revisedby: GuillermoOrtiz & DaveRadcliffe October1989Written by: JimFriedlander May 1987

This TechnicalNotediscusseschangesandenhancementsin the_SysEnvironscall in SystemSoftware6.0 andlater.
ChangessinceApril 1989: AddedmachineTypeconstantsfor the MacintoshPortableandilci. Also addedkeyBoardTypeconstantsfor thePortableandISO keyboards.

_SysEnvironsand New Machines

SysEnvironsis the standardway to determinethe featuresavailableon a givenmachine,andus main characteristicis that it continuallyevolvesto provide the necessaryinformation asnewmachinesandSystemSoftwareappear. As originally conceived,_SysEnvironswould checkthe versionRequestedparameterto determinewhat level of informationyou werepreparedtohandle,but this techniquemeansupdating_SysEnvironsfor every new hardwareproductApple produces. With SystemSoftware 6.0, _SysEnvironsintroducedversion 2 ofenvironsVersionto provide informationaboutnew hardwareas we introduceit; this newversionreturnsthe sameSysEnvRecasversion 1.

Beginningwith SystemSoftware6.0.1,Apple only releasesa new versionof _SysEnvironswhenengineeringmakechangesto its structure(i.e., whenthey addnew fields to SysEnvRec);all existingversionswill returnaccurateinformationaboutthemachineenvironmentevenif partofthat informationwasnot originally definedfor the versionyou request. For example,if you call_SysEnvironswith versionRequested= 1 on a Macintoshlix, it will return amachineTypeof envMaclIx even thoughthis machinetype originally was not definedforversion 1 of thecall.

You shoulduseversion2 of SysEnvironsuntil Apple releasesa newerversion. Regardlessof the versionused,however,your softwareshouldbepreparedto handleunexpectedvaluesandshouldnot makeassumptionsaboutfunctionalitybasedon currentexpectations.Forexample,ifyour softwarecurrentlyrequiresa MacintoshII, testingfor machineType>= envMacll mayresultin your softwaretrying to run on a machinewhich will not supportthe featuresit requires,so testfor specificfunctionality (i.e., hasFPU,hasColorQD,etc.).

You shouldalwayscheckthe environsVersion whenreturningfrom _SysEnvironssincethegluealwaysreturnsasmuchinformationaspossible,with environsVersion indicatingthehighestversionavailable,evenif thecall returnsan envSelTooBig(—5502)error.

#129: _SysEnvirons:System6.0 andBeyond 1 of 2



MacintoshTechnicalNotes

New Constants

Thefollowing arenew_SysEnvironsconstantswhich arenot documentedin insideMacintosh;

however,you shouldrefer to insideMacintosh,Volume V-i, Compatibility Guidelines,for the

restof the story.

machineType
envMacIlx = 5 {Macintosh lix)

envMacllcx = 6 {Macintosh IIcx}

envSE3O = 7 {Macintosh SE/30}

envPortable= 8 (Macintosh Portable}

envMacllci = 9 (Macintosh IIci}

processor
env68030 = 4 {MC68030 processor)

keyBoardType
envPortADBKbd = 6 (PortableKeyboard)

envPortISOADBKbd = 7 (PortableKeyboard (ISO) }

envStdISOADBKbd= 8 (Apple StandardKeyboard (ISO) }

envExtISOADBKbd = 9 {Apple ExtendedKeyboard (ISO) }

Further Reference:
• InsideMacintosh,VolumeV-i, CompatibilityGuidelines

2 of 2 #129: _SysEnvirons:System6.0 andBeyond



r-Macintosh Technical Notes

#130: Clearing ioCompletion

Seealso: The File Manager

Written by: Jim Friedlander May 4, 1987
Updated: March 1, 1988

When making synchronouscalls to the File Manager, it is not necessaryto clear
ioCompletionfield of the parameterblock, sincethat is donefor you.

Someearlier technotesexplicitly clearediocornpletion, with the knowledgethat this
was unnecessary,to try to encouragedevelopersto fill in all fields of parameterblocks
as indicatedin Inside Macintosh.

By the way, this is true of all parametercalls—you only have to set fields that are
explicitly required.

TechnicalNote #130 page 1 of 1 ClearingioCompletion



C

I

I



Macintosh Technical Notes

#131:TextEdit Bugs in System4.2

Written by: Chris Derossi June1, 1987
Updated: March 1, 1988

This note formerly describedthe known bugs with the version of Styled
TextEdit thatwasprovidedwith System4.1. Many of thesebugswerefixed in
System4.2. This updatedTechnical Note describesthe remaining known
problems.

TEStylinsert

Cafling TEstyllnsertwhile the TextEdit record is deactivatedcausesunpredictable
results,so makesureto only call TEStyllnsertwhen the TextEdit record is active.

TESetStyle

When using the doFacemodewith TESetStyle,the style that you passasa parameter

Is ORed into the style of the currentlyselectedtext. If you passthe emptyset (no styles)

though, TESetStyleis supposedto,xemoveall styles from the selectedtext. But
TESetStylechecksan entire word insteadof just the high-orderbyte of the tsFace

field. The style information is containedcompletely in the high-order byte, and the

low-order byte may containgarbage.

If the low-order byte isn’t zero, TESetStylethinks that the tsFacefield isn’t empty, so it

goesaheadand ORs it with the selectedtext’s style. Sincethe actualstyle portion of the
tsFacefield is zero, no changeoccurswith the text. If you want to have TESetStyle

removeall stylesfrom the text, you can explicitly setthe tsFacefield to zero like this:

VAR

myStyle : TextStyle;

anlritPtr : “Integer;

BEGIN

anlntPtr @myStyle.tsFace;

anlntPtr” : 0;
TESetStyle(doFace,myStyle, TRUE, textH);

END;

TechnicalNote #131 page 1 ot2 TextEdit Bugs



TEStylNew

The line heightsarray doesnot get initialized when TEStylNew is called. Becauseof
this, the caret is initially drawn in a random height. This is easily solved by calling
TECalText immediatelyafter calling TEStylNew. Extra calls to TECalText don’t hurt
anythinganyway,so this will be compatiblewith future Systems.

An extra characterrun is placedat the beginning of the text which correspondsto the
font, size, and style which were in the grafPort when TEStylNew was called. This can
causethe line height for the first line to be too large. To avoid this, call TextSize with
the desiredtext size beforecalling TEStylNew. If the text’s style information cannotbe
determinedin advance,then call TextSizewith a small value (like 9) before calling
TEStylNew.

TEScrolI

The bug documentedin Technical Note #22 remainsin the new TextEdit. TEScroll

called with zero for both verticaland horizontaldisplacementscausesthe insertion point
to disappear.The workaroundis the sameas before;checkto makesurethat dV and dH

are not both zerobeforecalling TEScroll.

Growing TextEdit Record

TextEdit is supposedto dynamically grow and shrink the LineStartsarray in the
TERecso that it hasone entry per line. Instead,when lines are added,TextEdit expands (the array without first checking to see if it’s alreadybig enough. In addition, TextEdit
neverreducesthe size of this array.

Becauseof this, the longera particularTextEdit record is used,the larger it will get. This
can be particularly nasty in programsthat use a single TERec for many operations
during the program’sexecution.

RestoringSavedTextEdit Records

Applications have useda techniquefor saving and restoringstyled text which involves
savingthe contentsof all of the TextEdit record handles.When restoring,TEStylNew is
called and the TextEdit record’s handlesare disposed.The savedhandlesare then
loaded andput into the TextEdit record. This techniqueshould not be used for the
nuliStyle handlein the style record.

Instead,when TEStylNew is called, the nuliStyle handlefrom the style recordshould
be copied into the savedstyle record. This will ensurethat the fields in the null-style
recordpoint to valid data.

TechnicalNote #131 page 2 of 2 TextEdit Bugs



Macintosh Technical Notes

#132:AppleTalk InterfaceUpdate

Seealso: The AppleTalk Manager
InsideAppleTalk (for ZIP information)
TechnicalNote #121—

Using the High-Level AppleTalk Routines

Written by: Bryan Stearns July 1, 1987
Updated: March 1, 1988

Technical Note #121 announcedthat we would be moving to a simplified
AppleTalk Managerinterface.That interfaceis availablenow, aspart of MPW
2.0 andnewer.

Documentationfor this new interfaceis containedin the AppleTalk Manager
chapterof InsideMacintoshVolume V. This technicalnotecontainssomeof
the preliminary documentationfor this interface and some useful points
aboutinformation aboutit, andAppleTalk in general.

The original AppleTalk Pascal Interfaces,known as ABPaslntf, were designedto

simplify use of AppleTalk from high-level languages.Instead,they’ve causedus a few

compatibility problems.We’ve decidedoencourageuse of the sameinterface that

assembly-languageAppleTalk uses,a parameter-blockinterface in the samestyle as

the low-level interfacesto the File and Device Managers.

The original calls are still supported(and will be for a while) as an “alternate” interface,

but we suggestthat you considermoving to the new “preferred” calls. Be warnedthat

use of the original calls may causecompatibii’ty problemswith future systemsoftware.

Also, new protocols (like ASP, the AppleTalk SessionProtocol) are only provided with

the new interfaces.

The new interface usesparameterblocks hike those used by the File and Device

Managers;you fill out the call-specific fields oil itthe bbck, and a small amountof glue

code (provided with developmentenvironmentstke MPW) turns the parameterblock

into a Control call to the appropriateAppleTalkdriver.

Most calls havean interfacelike:

FUNCTION PSomeCall(thePBPtr:ATPPBptr; asyncFlag: BOOLEAN): OSErr;

The glue fills in the fields csCodeand loRefNur With the appropriatevalue for the call
you’re making.

TechnicalNote #132 page 1 of 2 AppleTalk PascalInterfaceUpdate



Synchronousand Asynchronouscalls

You can still make calls synchronously(“do it now”) or asynchronously(“start it now,
finish it soon”). If you chooseto make a call asynchronously,be sure to provide a
completion routine in the ioCompletion field (to be called when the call finally
finishes),or poll the ioResuit field of the parameterblock (the call is done if loResuit
is lessthan or equalto 0).

You must not move or disposeof a parameterblock before the call finishes;when the
call doescomplete,you are responsiblefor throwing the parameterblock away (if you
allocatedit using Memory Managerroutines).

Note that the alternate interfacesgenerateda network event on completion of an
asynchronouscall; this service is not provided by the preferred interfaces,partly
becauseof future compatibility problems. See Technical Note #142 for background
information.

Packeddata structures

Severalof the datastructuresusedby the new interfacesare packed;Pascaldoesn’t
deal well with thesestructures.Special calls are provided for building LAP and DPP
write-datastructures,NBP names-tableelements,andATP buffer datastructures.

For example, when registering a name (using PRegisterName), you’ll use a
NamesTableEntrystructure.This structureconsistsof a few unpackedfields, followed
by an entity-name:three strings (representingthe object, type, and zone fields of the
name) packed together. You can call NBPSetNTE to pack the strings into the
NamesTableEntrystructure.When you removethe name (PRemoveName),you’ll use
the entity-nameby itself; you can useNBPSetEntityto pack it in.

Zone Interface Protocol

A function, GetBridgeAddress,is providedto obtain the node ID of a bridge, for use in
ZIP transactions(zero is returnedif no bridge is presenton your network). You makeZIP
calls using ATP requests,asdescribedin the InsideAppleTalkchapteron ZIP.

TechnicalNote *132 page 2 of 2 AppleTalk PascalInterfaceUpdate



Macintosh Technical Notes

• #133:Am I Talking To A Spooler?

Seealso: PostScriptLanguageReferenceManual
Adobe SystemsDocumentStructuringConventions

Written by: GingerJernigan July 1, 1987
Updated: March 1, 1988

When the LaserSharespooleris on an AppleTalk network, it actslike a LaserWriter-type

device, which can be chosenand communicatedwith much like a real LaserWriter.

Some applications, however, must communicatewith a LaserWriter directly, not a

spooler. If this is true for your application,you can checkwhetheryou are actuallytalking

to a real LaserWriterby sendingto the LaserWriterthe following query:

% ! PS-Adobe-i.2 Query

%%Title: Query to Spooler/Non—Spoolerstatus

% % ?BeginSpoolerQuery

(0) = flush

%%?EndSpoolerQuery1

%%EOF

(The query hasto be sentusing the Printer AccessProtocol (PAP). The object codefor
PAP is availablefrom Licensing.) If the string returnedbeginswith a ‘%%‘ then it is a

statusstring and you can ignore it and wait for anotherstring. If the LaserWriter is

actually a LaserSharespooler, then the string that is returned will be ‘1’. If the

LaserWriteris a real LaserWriterthen the string returnedwill be ‘0’.

TechnicalNote #133 page 1 of 1 Am I Talking To A Spooler?



4



Macintosh Technical Notes

#134: Hard Disk Medic & Booting Camp

Seealso: Hard Disk UsersManual

TechnicalNote 154—MacintoshPlus ROMs

TechnicalNote 113—BootBlocks

TechnicalNote 67—Findingthe ‘BlessedFolder’

Written by: Bo3b Johnson July 1, 1987

Updated:
March 1, 1988

The deathof a hard disk with megabytesworth of datacan be exceedingly

traumatic.This technicalnote will describetechniquesfor recoveringa hard

disk and the datathat is on it. The discussionwill also include sometips on

how to avoid problems.

You should neverneedthis information. However,softwareproblemscan wreak havoc

upon otherwisefunctional disks. When they havethe equivalentof a heart attack, there

are a numberof stepsthat can be takento try to recoverthe disk. Thereare occasions

when the disk itself is not bad, and it may be possibleto correctthe disk without having

to reformatthe disk and restorethe datafrom a backup.This note will describesomeof

the stepsthat can be usedwith Apple Hard Disks, but most of the information pertainsto

all hard disks. For example,the HD SC Setupprogram is specific to the Apple drives,

but there is probablya similar utility for every hard disk. This is primarily a discussionof

what to do from the user standpoint,but there are a few suggestionson ways of

retrieving datavia programmaticmeans.

This discussionwill focus on the SCSI disks sincethey are more complex in termsof the

booting sequence.For other hard disks, like the standardHD-20, mostof the information

still applies, but SCSI-specificsequencescan be ignored. For example,the standard

HD-20 also hasan installer program,althoughit is different than HD SC Setup.

Attack of the Nasties

Thereare a numberof unusualconditionsthat a harddisk may get itself in:

1) The datais intact, but the hard disk won’t boot.

2) The SCSI disk won’t boot and only showsup after running HD SC Setup.

3) The disk will boot but hangspart way throughthe boot process.

4) Thereare dataerrorswhile the disk is running.

5) The disk is very slow returningto the Finder.

6) The computercrashesor hangswhen returningto the Finder.

7) The disk appearsin a “This disk is bad” dialog.

TechnicalNote #134 page 1 of 12 Hard Disk Medic & Booting Camp



8) The disk nevershowsup at all.
Theseproblemscan develop from a number of sources,including systemcrashes,
rebooting at bad times, power fluctuations, malicious software, old software, buggy
software, etc. In general,theseproblemswill be software-related,since the hardware
itself is very rarely defective.

This technicalnote wiN discuss:

1) The normal stagesin the booting process.
2) Resultsof errorsduring the variousstagesin the booting process.
3) A step-by-stepprocedureto follow in orderto maximize your chancesof recovering

the disk andthe data.

A Boot to the Head

This discussionwill detail a normal boot processof a Macintoshwith a single hard disk
attached.For clarity, this section will deliberately ignore potential problemsand the
complexitiesinvolved in different configurations.The following sectionswill detail some
errors that may occur, and give more information in terms of what the ROM will do to
boot the system.A SCSI disk can be thoughtof in the following fashion:

The PhysicalDisk

Block N+2: Macintosh
MasterDirectory Block

Block N+1: 2nd Macintoshboot block.

Restof Disk:
OtherOperatingSystems
or otherpartitions

The importantthing to note from this diagramis that the Macintoshvolume is a subsetof
the entire SCSI Disk. Therecan be more than one Macintoshvolume on a given disk, or
evenothervolumesthat are not Macintoshvolumes.

I

The MacintoshVolume

BlockBlock Block 3lockBlockBlock 3lock • • • BlockBlock
0 1 2 N N+1 N+2 N+3 N+M X

Often the
SCSI Driver

Block 0: SCSI partition information

Block N: First block of HFS volume
Macintoshboot block.

\Lastblock on Volume:
Copy of MasterDirectory
Block

TechnicalNote #134 page 2 of 12 Hard Disk Medic & Booting Camp



1) Check the SCSI port:

Immediatelyafter the RAM check, the systemlooks at the SCSI port to seeif there are

any drives connected.If a SCSI drive is found the system readsthe SCSI partition

information in block 0. This block is specific to SCSI drives and is alwaysfound at block

0 of the disk. The SCSI Managerthen readsin the SCSI driver from the disk. Oncethe

driver is loadedinto memory,the systemwill usethe driver to readand write blocks from

the disk, insteadof the ROM boot code.The driver readsand writes blocks relative to the

beginningof the Macintoshvolume on the SCSI drive, which can start anywhereon the

physical disk.

2) Decide which disk is to be the startupdisk:

The Macintoshthen looks at the floppy disks to seeif there is a disk that it should try to

use. If so, it will alwaysboot from the floppy, If thereare no floppy disks, the startuphard

disk is chosen.The Macintoshboot blocksare readoff of the chosendisk to determineif

the volume is bootable.The two Macintosh boot blocks (sameboot blocks as those

found on floppies) are readusing the SCSI Driver. The Macintoshboot blocks are found

asthe first two blocks on the Macintoshvolume, but are much higher in termsof where

they are found on the disk itself. See the figure for the difference between the

Macintosh volume and the SCSI disk. The driver cannot normally read the SCSI

partition information, or any blocks outsideof the Macintoshvolume.

3) Executethe Macintosh boot blocks:

The boot blocks are composedof strings and parameterswhich determinevarious

systemfunctions,andcodethat finishesthe job of bootingthe system.

The hard disk is mountedasa volume, using the PBMountVol call. The volume hasthe

two Macintoshboot blocks, aswell asthe volume header.The PBMountVol will usethe

driver to readthe volume headerand other information from the disk. Oncethe volume

is mounted,thereare only volume readsand writes, and the driver is responsiblefor the

actual SCSI disk reads.

The Systemfile is openedon the volume. The patch code for the current ROM is read

into the system,including the patchesto the SCSI Manager.

The Finder is launched.

4) The Finderusesthe Desktopfile on the volumeto draw the desktop.

The Icons that make up the desktoprepresentationof the Macintoshvolume are stored

in the Desktopfile. The Desktopfile is invisible and usedonly by the Finder.

That is a rathersimplistic view of the boot process.Thereare a numberof complications

that arisedue to the wild variety of devicesthat can be attachedto a Macintosh.The full

boot processis essentiallya seriesof specialcases,leading to the final bootedSystem

at the Finder’s desktop(or in the startupapplication).The following sectionwill go into

painstakingdetail in orderto give you enoughinformation to determinewhat step in the

boot processfailed.

TechnicalNote #134 page 3 of 12 Hard Disk Medic & Booting Camp



Tough Boots

To further explain the boot process:

1) Check the SCSI port:
a) Before startingthe boot process,the screenwill be filled with a grey pattern.
b) Before the Macintoshwill checkfor any SCSI devices,it will first resetthe SCSIbus using a SCSIReset.This is to makesurethe buswas not left in a badstate.
C) The Macintosh will then start a cycle through all 7 SCSI IDs (from 6..O) to seewhich disksareconnected,and keepsa table of all disks that areconnected.
d) For eachdisk that is connectedto the Macintosh,the ROM boot codewill usetheSCSI Managerto read in the SCSI partition information to find wherethe driver islocated on the disk. The signature of the SCSI partition information is also

checkedto be surethat the device is valid.
e) The SCSI Managerwill then be usedto read the driver into memory. Once thedriver is loadedfor a given disk, the driver is called to install itself. The driver will

usuallyposta Disk Insertedeventto have its volume mountedby the Finder.f) Stepsd and e are repeatedfor eachdisk connected.At this point, there may be anumberof drivers in memory, but there are no volumes, since none have beenmountedyet. Generallythere is one driver per disk, but somedrivers can handle
morethan one disk at a time.

2) Decide which disk is to be the startupdisk:
a) The next stageis to determinewhich volume will becomethe startupdisk. If thereis a floppy available it will alwaysbe the startupdisk. During this processthe disk

chosenas the startupdisk is not known to be valid. The Systemfile and bootblocksare checkedlater.
b) The standardHD-20 is connectedto the systemin a fashionthat is very similar to afloppy, so if a bootableHD-20 is connectedit will be the startupdisk.
C) There is no searchfor floppy deviceslike there is for SCSI disks since the driverfor the floppies will post a Disk Insertedeventwhen it detectsa floppy in the drive.The first floppy device that is found will be usedas the startupdisk. If there aremultiple floppy devices,the otherswill be mountedby the Finder, not at boot time.The SCSI devicesthat are online are not mountedat this time, either. There is apendingDisk Insertedeventfor eachdisk that will be handledby the Finder.
d) At boot time, there is only one volume that is mounted(during executionof theMacintoshboot blocks). The otherswill be mountedwhen their Disk Insertedeventis processedat a GetNextEventcall.
e) On the new Control Panel there is a Control Device (cdev) called the StartupDevice. This Startup Device cdev allows the user to choosewhich device thesystemshould try to boot from first. This can only be usedon the Macintosh II andSE. The drive number,driver referencenumber,and driver OS type are storedinparameterRAM to allow a chosendeviceto be the boot disk. The floppy driveswillstill haveprecedenceover the SCSI devices.The standardHD-20 can be chosenas the StartupDevice as well, since it usesa different driver referencenumber. Ifthe drive numberthat is storedasthe StartupDevice is invalid, or had a read/writeerror, then anotherdisk in the chain will be chosenasthe next bootablecandidate.Rememberthat there is only one boot/startup/systemdisk, and it is the only onethat is explicitly mountedat boot time. All other devices in the system will behandledoncethe systemis booted.

Technica’Note #134 page 4 of 12 Hard Disk Medic & Booting Camp



3) Execute the Macintosh bocks:

a) Oncethe StartupDisk hasbeeiichosen(whetherfloppy, SCSI or otherdisk) then

it is time to read the tvIacintotctbIocks off of blocks 0 and 1 of the volume.

Thoseboot blocksdeterminevanousparametersin the system,suchas whethera

Macsbug-like debuggerwiH be Icaded, the name of the startup program (not

alwaysthe Finder), how big trie theeventqueue,how big to makethe system

heap,andso on. They alsovrr asiratureidentifying them as Macintoshboot

blocks, andaversionnumberto dff e te betweendifferent boot blocks.

b) After the boot blocks are readandthes:natureverified, the smiling Macintoshis

displayed on the screen.The Jin Aacintosh basically meansthat valid

Macintoshboot blocks weeifo.und.

c) On 64K ROMs the boot bbdksareeeciheby jumping to the codethat follows the

headerinformation in boot tblGdk 0. Otn the newer Macintoshesthe boot block

version numberis checkead if it s ‘old’ the boot blocks will be skipped.The

samecode that would havetheen1oijrid in the boot blocks is found in the ROM

itself. Regardlessof which kind of Mabkitcsh it is, the following stepsapply. For the

newer Macintoshesthe bout biodcsai usually used only for the parameters

storedin the header.
d) Do the PBMountVol on itre tchosentup volume. If PBMountVol fails, the

processstarts over at the ipoini where a startup disk is being chosen(step 2

above).The failing volume is naikedout of the list of candidatesso that it won’t be

usedagain.
e) Find the Systemfile and creea Working Directory, if needed,for the System

folder. This is only donefor WS volumesof course,and the directory ID is set to

the blessedfolder. The blessedfolder is savedin the volume headeras part of the

Finderlnfo field. SeeTechnrcalNote #67 for more information on the blessed

folder. If the directory ID is wro’ng, the Systemfile won’t be found, causingit to start

over again (at step2 above). if the Working Directory was createdsuccessfully,

ihatwDRefNuinis setasthedefaultvolume with SetVol. -.

f) The Systemfile is openedwittr DpenResFile.If the file could not be opened,the

processstarts over again at the point where a suitable boot device is being

chosen(step2 again).
g) The StartupScreenis loadedarid displayed. If therewas no StartupScreen,the

normal “Welcome to MacintatTi” nssagewill be displayed.The StartupScreenor

“Welcome...” meansthat theSrrnfile was found and openedsuccessfully.On

the Macintosh Plus and 4IC DI nachines,the Startup Screenis displayed

beforethe Systemfile is oper&t. (veestepsf andg)

h) The debuggeranddisasse rtaIIed if foutrd. The namesof the debugger

and disassemblerare fourn m the headerof the boot blocks and are usually

Macsbugand Disassemblerrspec1iy.

i) The data fork of the SystenffiIe pecnedand executed.The datafork contains

codeto readin the PTCHrrshrpatchthe ROM.

j) The INITs that are in theSeiwflUe aexecuted.The last INIT is INIT 31 which

then looks in the SystemF dElr tor N:ITs to be executed.

k) The file specifiedby the boot dw asthe startupapplication (Set Startupat the

Finder) is found on the voIirrne, trsing anotherfield in the Finderlnfo field of the

volumeheaderin orderto gettheThrtory ID. If the file exists, it is launched.If not,

the Finder is launched.If the rtIer is not found, SysError is called with error

codeof 41 which is the “Can’i ‘aih Finder” alert.

TechnicalNote #134 uff 12 Hard Disk Medic & Booting Camp



4) The Finder usesthe Desktop file on the volume to draw the desktop.

If the startupapplicationwas the Finder, it opensthe Desktopfile on the startupvolume
in order to draw the desktop. When it finishes with the startup volume, it calls
GetNextEvent.If there are any pendingDisk Insertedevents,the volume specifiedis
mounted(by the ROM) andthe result passedto the Finder. If PBMountVol failed for any
reason,the bad result will be passedto the Finder. At that point the Finderwould put up
the “This disk is damaged”alert and ask if the volume should be initialized or ejected.If
ejected,the driver for that volume still exists, but the volume is unmounted.For each
volume that the Finder sees, it opensthe Desktop file on the volume to get the
information that it needsto build the desktop. If the Desktop file was not found on a
volume, it is created.If thereare any errorswhile creatingor using the Desktopfile, the
Finder will display the “This disk needsminor repairs” message.If the OK button is
clicked, the Finderwill deletethe old file andcreatea new one. If that fails, the volume is
unmountedand deemedunusableby. the Finder. This happensif the disk is locked, or
too full to add a Desktopfile. If that was the startupvolume, the computeris rebooted
since it was forced to unmountthe startupvolume, and cannotrun if there is no startup
volume.

If you follow the previoussequenceclosely, you can predict what errors are causinga
given end result. For example, if you have the effect where the smiley Macintosh
appears,but immediatelygoesaway and the disk doesnot boot, you can look through
the sequenceto seewhat might be going wrong. In this case,we know that the boot
blocks were found on our startupvolume, sincethe smiley Macintoshwasdisplayed.We
know that the Systemfile was not found, or failed to open, since we never got the
Welcomemessage.This usuallycalls for throwing away all of the SystemFolderson the
volume, and startingagainwith a new SystemFolder to fix the problem. If there is more
than oneSystemFolderon a volume it is possibleto confusethe system.

Othertidbits of information that may be useful (in no particularorder) somewhich will be
mentionedin the step-by-stepoperationbelow:
1) The SCSI cableshavea lot of wires in them, and are ratherbulky becauseof it. ft is

best to avoid bendingthe cablestoo much or too often, since the wires inside will
break if overstressed.Don’t put wild kinks in the cable in orderto make it fit behind
the Macintosh.

2) If there is no default volume stored in the parameterRAM with the StartupDevice
cdev, then the first drive that is in the drive queuewill be the StartupDevice. Since
SCSI drivesare addedin highest ID order, that meansthe largerSCSI IDs will have
a higher ‘priority’. Macintoshus will default to the internal hard disk.

3) If the parameterRAM is trashedfor somereason,the boot processcan fail since a
driver OS type is storedaswell. If the OS type is wrong, the ROM will skip that driver,
making the disk unbootable.On the Macintosh Il/SE, the battery is no longer
removableto fix parameterRAM problems.To correct this problem the Control
Panelnow hasa featurethat will allow you to clear parameterRAM. Holding down
the Option-Command-Shiftkeys while opening the Control Panel will reset
parameterRAM, forcing it to be rebuilt and thereforelosing all of your settings,but
possiblyfixing somebooting problems.

TechnicalNote #134 page 6 of 12 Hard Disk Medic & Booting Camp



4) The Macintosh II and SE both have a new featurethat will allow you to skip having

the any hard disk mounted. Holding down the Option-Command-Shift-Delete

combinationwill havethe startupcodeskip the SCSI hard disks on the system.This

can be useful if you are booting an old Systemfile that doesnot understandHFS

disks (like System2.0/Finder4.1), and want to avoid having your hard disks on line

while you do somethingshaky. With externalhard disks it is easierto just turn them

off, but with internaldisks it is not so easy.

5) Since the parameterRAM can be trashedin a mannerthat makesit impossibleto

boot a volume (looking for the wrong OS type), a new featurewas addedto the HD

SC Setupprogramto have it fix this problem as well. If you have version 1.3 or

greater,the parameterRAM bytes that determinebooting will be resetto fix some

boot problemsthat occur. The parameterRAM is fixed when the Update button is

clicked. This doesnot invalidatethe rest of parameterRAM, it merely fixes the bytes

usedfor the StartupDevice.

6) When the Finder copies a new System Folder onto a disk that does not already

have a SystemFolder, that new folder will becomethe blessedfolder. Its Directory

ID will be savedin the volume header.In addition, the Macintoshboot blocks will be

copied from the currentstartupdeviceto the destinationdevice.This is the bestway

to fix System Folder or Macintosh boot block problems. In order for the blessed

folder to be setcorrectly, all SystemFolderson the volume shouldbe deletedbefore

copying the new folder there.
7) If the Desktopfile is damagedfor whateverreason,it can be deletedwith a number

of programs.This will force the Finderto rebuild it from scratch.You can also have

the Finder rebuild the Desktop file by holding down the Option-Commandkeys

when the Finder is launched.When the Desktopfile is rebuilt you lose the Finder

Commentsin the Get Info boxes.

8) On the 64K ROMs, wheneversomethinggoeswrong during booting (like Systemfile

not found, bad boot blocks, and so on) the Sad Mac Icon is displayed.Starting with

the 128K ROMs, wheneversomethinggoeswrong the ROM jumps backto the start

to try to find anotherdisk to use.

Bo3b’s Boot Repair

This section will detail step-by-stepprocessesthat can be usedto fix somecommon

booting and volume problems. It is not intendedto cover every possiblecase.The

purposeof the precedingsectionswas to give you the information that will allow you to

figure out what might be going wrong.

For most hard disk users, it is not sufficient to merely have the device running. It is

generallya good ideato makethe systemas robustas possiblein orderto avoid some

of the problemsthat might causea volume to becomewholly unreadable.The ultimate

fix is to reinitialize the volume from scratchand rebuild the volume with the Finder or a

restoreoperationthat usesthe File Manager.This is guaranteedto fix anything except

hardwareproblems,and will give you the most solid system. If your systemis acting

funny, you can try the following sequencethat is the next best thing to initializing the

disk. This sequencewill not make you rebuild the disk, but can be fooled by somedisk

problems. If everythingpasses,then the disk is in good shape;maybe not perfect, but

good.

TechnicalNote #134 page 7 of 12 Hard Disk Medic & Booting Camp



1) Powerdown the entire system,including the harddisk that is suspect.
2) Run the HD SC Setupprogram (or equivalent)and Updatethe drivers on the disk.

For HD SC, this also fixes the parameterRAM. For non-Apple drives, the parameter
RAM can be resetwith the Control Panel.

3) Run the Test Disk option in HD SC Setup (or equivalent). If the test fails, reinitialize
the volume, since it is not worth risking future problems.

4) Run the Disk First Aid utility. This utility will work on all HFS volumes. Have it check
the volume for consistency.If it reportsany errors,you can have it fix the problem, but
the safesttack is to reinitialize. There are someproblemsthat Disk First Aid won’t
catch. If Disk First Aid saysthe volumecannotbe verified, it is time to reinitialize.

5) Rebuild the Desktopfile by holding down Option-Commandwhen returning to the
Finder.

If you cansuccessfullyperform all of thesesteps,the volume will be assolid as it can get
without reinitializing the disk. If things are still funny, it is time to take the last recourse,
reinitialize.

Basedon the previoussections,it is now time to go through all of the Nastiesto give a
step-by-stepsequencefor fixing theseproblems.

1) The data is intact, but the hard disk won’t boot.

This is for the casewhere the volume won’t boot, but if the computeris bootedwith a
floppy disk the volume showsup at the desktopand can run normally. For this case,we
know that the driver is being loadedand working, since the volume shows up at the
desktop.The volume is also mountable,since it showsup with no problem.This implies
that the Macintoshboot blocks are wrong, or the blessedfolder is wrong. Cluessuchas
the smiling Macintoshcan tell you how far the processgot before it failed. For example,
if the smiling Macintoshneverappeared,we know that Macintoshboot blocks were not
readsuccessfully.When the volume is fixed and bootable,it would be a good idea to go
throughthe stepsaboveto makethe volume assolid as possible.

The sequenceto follow:
a) Powerdown the entire computer, including the hard disk. Try to boot again. If it

works, you aredone.
b) Use the Control Panel’sStartupDevice to set the hard disk asthe StartupDevice.

This will also resetsomeof the bytes in parameterRAM. Try rebootingto seeif it
hasfixed the problem.

C) Run HD SC Setup (or equivalent)and perform the Update Drivers procedure.In
the HD SC Setupcasethis will also rewrite the parameterRAM. If you are not
using HD SC Setup, blast the parameterRAM with the Control Panel. Try
rebooting.

d) Delete all System Folders from the hard disk. Using Find File or something
similar, be sure that there are no stray copiesof the Systemor Finder buried in
somelong lost folder. Copy a new SystemFolder to the volume, using the Finder.
This processwill fix bad boot blocks, as well as a bad blessedfolder. Try
rebooting.

e) If it still won’t boot, there is somethingvery strangehappening.Wheneverthings
get too weird it is usually time to startover: reinitialize.

TechnicalNote #134 page 8 of 12 Hard Disk Medic & Booting Camp



2) The disk won’t boot and only shows up after running HD SC Setup.

The disk doesnot evenshow up at the Finder when the systemis bootedwith a floppy.

After running the HD SC Setup (or equivalent)the volume will appearon the desktop

and be usable. The HD SC Setup and most similar utilities will do an explicit

PBMountVol of the volume in orderto makethe volume usable.Sincethe volume does

not show up at the Finderat first, this implies that the driver itself is not getting loadedor

is working improperly, sincetherewas no Disk InsertedEvent for the Finderto use.

The sequence:
a) Powerdown completely,including the hard disk.

b) Run HD SC Setup(or equivalent)and Updatethe Drivers. For non-Apple drives,

updatethe drivers on the volume (this rewritesthe SCSI partition information as

well) using the utility that camewith the disk. Resetthe parameterRAM using the

Control Panel.
C) If it still cannotbe bootedor doesnot show up at the Finder after booting with a

floppy, the volume is too weird and shouldbe reinitialized.

3) The disk will boot but hangspart way through the boot process.

This is when you can seethe volume is being accessedby the run light (LED) on the

front panel,andthe booting seemsto work but nevermakesit to the Finder. This implies

that allis well until the Systemtries to actually launchthe Finderor StartupApplication.

It could also be that the Systemfile is causingsomethingto hang.

The sequence:
a) Powerdown completely.
b) Boot with a floppy so that the floppy is the startupdisk and the volume in question

can be seenat the Finder.
c) Delete all SystemFolderson the hard disk. Put a new SystemFolderon the disk.

This will presumablyfix a corruptedSystemfile.

d) If still funky, showthe disk who’s boss.

4) There are data errors while the disk is running.

This caseusually evidencesitself by messagesat the Finderwhen trying to copy files.

Messageslike uThe file AO could not be read and was skipped” usually meanthat the

drive is passingback I/O errors.This usually meansthat there is a hardwarefailure, but

it can occasionallybe causedby bad sectorson the disk itself. If the sectorsare actually

bad, it is generallynecessaryto reinitialize the volume.

The sequence:
a) Powerdown completely.Rebootandseeif the samefile gives the sameerror.

b) Run the HD SC Setup(or utility that camewith your drive) and perform the Test

operation.This will fail if there are bad blocks on the device. If there are bad

blocks, it is necessaryto reinitialize the volume.

C) Checkthe SCSI terminatorsto be surethey are pluggedin correctly. Therecan be

no more than two terminatorson the bus. If you have more than one SCSI drive

you must havetwo terminators.If you only haveonedrive, usea single terminator.

If you have more than one drive, the two terminatorsshould be on oppositeends

of the chain. The idea is to terminateboth endsof this wire that goesthrough all of

the devices. If you have a Macintosh II or SE with an internal drive, that drive will

alreadyhavea terminatorinsidethe Macintoshat the front of the cable.

TechnicalNote #134 page 9 otl2 Hard Disk Medic & Booting Camp



d) Make surethe SCSI cablesyou are using are OK, by swappingthem with known
good ones.If the problemdisappears,the cable is suspect.

e) Swapthe terminatorsin usewith known goodonesto be surethey are OK.
f) Try the drive andcableon a different Macintoshto be surethe Macintoshis OK.

5) The disk is very slow returning to the Finder.

If the computerhas gotten slowerwith age, it is probably due to a problem with the
Desktopfile. If a volume hasbeenusedfor a long time, the Desktopfile can grow to be
very large (Hundredsof K). Readingand using a file that big can slow down the Finder
when it is drawing the desktop.If you have a large numberof files in the root directory,
this will also slow the computerdown. A large number (500-1000) of files in a given
folder can causeperformanceproblemsas well. If a volume has been usedfor a long
time, it can also havebecomefragmented.

The sequence:
a) Rebuild the Desktopfile andseeif it getsfaster.
b) Look for large numbersof files in a given directory and breakthem up into other

folders if needed.
c) Run Disk First Aid to be surethe volume is not damaged.
d) Reinitialize the volume and restorethe data using File Managercalls to fix a

fragmentationproblem. Using the Finder, or a backup programthat readsand
writes files is a way to useonly File Managercalls. You cannotfix a fragmentation
problem by doing an imagebackupand restore.

6) The computercrashesor hangswhen returning to the Finder.

This can happenif the Desktopfile becomescorrupted.There are occasionswhen this (can happenif the HFS structureson the volumeare damaged.
The sequence:
a) Rebuild the Desktopfile.
b) Run Disk First Aid to be surethe volume is not damaged;a boot floppy with the Set

Startup set to Disk First Aid can allow you to test a volume that cannot be
displayedat the Finder.

C) The path of ultimate recourseif nothing elseseemswrong with the volume.

7) The disk appearsin a “This disk is bad” dialog.

This is the worst of the possible errors that generally happento hard disks. If the
messageis “This disk is bad” or “This is not a Macintoshdisk”, the HFS structureson the
volume havebeendamaged.In particular,the MasterDirectory block on the volume has
beendamaged.The driver and SCSI partition information are probably OK, sincethis
dialog showsup when the Findertries to mount a damagedvolume. This meansthat the
PBMountVoJ.call failed. Don’t click the Initialize button unlessyou are sureyou want the
volume to be erased.In thesecases,it is nearly always better to just reinitialize the
volume after you havesavedwhateverinformation you can.

TechnicalNote #134 page lOot 12 Hard Disk Medic & Booting Camp



The sequence:
a) Power down completely. Occasionallythe controller in the hard disk itself can

crash.
b) Run Disk First Aid. For thesecases,it is usually necessaryto createa boot floppy

with Set Startupset to Disk First Aid. When the floppy is booted,Disk First Aid will

be run before the Disk Insertedeventsare processed.When Disk First Aid sees

the Disk Insertedevent it will checkthe result from the PBMountVol and still allow

you to testthe volume, evenif it can’t be mounted.

c) If Disk First Aid cannotrepairthe disk, it might be worth writing a simple programto

call the driver to read and write blocks. There is a copy of the Master Directory

Block on the end of the volume, and the volume can sometimesbe fixed by

copying that block over a damagedblock in sector2. You canwrite a programthat

will find out how big the volume is by looking in the Drive QueueElementfor the

volume, readingthe block that is one sectorfrom the end (N-i), and writing that

copy over sector2. At this point, the volume is probably inconsistent,but it may

allow you to use it long enoughto get information off of it. fl is sometimespossible

to have Disk First Aid repairthe volume at this point as well. Copyingthe sectors

can also be done with sectoredit utilities, if you can get them to recognizethe

volume at all.
d) If making a new copy of sector2 doesnot work, but the driver is still being loaded

at boot time, it is possibleto write a programthat will read sectorsfrom the disk

looking for information that you might need.You can have a readerprogram go

through blocks looking for a specificpattern,like a known file name.This is usually

done in desperation,but sometimesthere is no otherchoice. If the datadesired

can be found in someform, it can sometimesbe massagedbackto a useful form

much easierthan recreatingit.

e) Sometimesthe volume will be so badly damagedthat the SCSI partition

information is also damagedand cannotbe fixed with the Update in the hard disk

utility. In this case,it is usually still possibleto perform direct SCSI reads,without

going through the driver. Using the driver is preferable,since it knows how to talk

to the drive betterthan you would, but sometimesthe driver is not available.Using

direct SCSI readsshould be a last ditch effort since the SCSI Managercan be

very challengingto use.This should only be usedif there is irreplaceabledataon

the volume that cannotbe readby any othermeans.

f) Even if the volume is recovered,it still should be reinitialized (after the data is

recovered)to be surethat any hiddendamageis repaired.

8) The disk never shows up at all.

The disk appearsto be missing.The volume doesnot show up at the Finder, and does

not showup in HD SC Setup.At boot time the accesslight (LED) doesnot flash. This is

usually a hardwareproblemaswell. The drive is not respondingto SCSI requestsat all,

so the systemcannottell a drive is attached.

The sequence:
a) Powerdown the system,including the hard disk.

b) Make sure that the SCSI ID on the drive doesnot conflict with any other in the

system,including the Macintosh,which is ID 7. (If you havean internal hard drive,

it shouldbe ID 0.)

TechnicalNote #134 page 11 of 12 Hard Disk Medic & BootingCamp



C) Checkthe SCSI terminatorsto be surethey arepluggedin correctly. Therecan be
no more than two terminatorson the bus. If you have more than one SCSI drive
you must havetwo terminators.If you only haveone drive, you shouldusea single
terminator, If you have more than one drive, the two terminatorsshould be on
oppositeendsof the chain. The idea is to terminateboth ends of this wire that
goesthrough all of the devices.If you have a Macintosh II or SE with an internal
drive, that drive will alreadyhave one terminatorinside the Macintoshat the front
of the cable.

d) Make surethe SCSI cablesyou are using are OK, by swappingthem with known
good ones.

e) Swapthe terminatorsin usewith known goodonesto be surethey are OK.
f) Try the drive andcableon a different Macintoshto be surethe Macintoshis OK.

Theseboots are madefor wokking

Remember,the goal here is to makethe systembe as stableas possible. If things areacting strange,it doesn’t hurt to go through the entire processof testingthe drive. Thetest proceduretakesa little time but is non-destructivefor the data that is there. Ifsomethingcatastrophichas happenedto the disk, it is better to spendsome timebacking up the data, initializing the volume, and restoringthe datathan it is to lose somework later on due to someotherpermutationof the sameproblem. Unlessyou are sure
that the volume is in an undamagedstate,you are betteroff using a file-by-file backupoperationthan an imagebackup.,siice‘tt’ie imagebackupwill copy any damageas wellasthe data.

If thereare situationsthat you run into that are not coveredby this technicalnote, pleaselet us know so that they can added.

If this technical note helps even one personsavesomedatathat would otherwisebelost, it will havebeenworthwhile. Hope it helps.

I
TechnicalNote #134 page I2of 12 Hard Disk Medic & Booting Camp



Macintosh Technical Notes

#135: GettingthroughCUSToms

Seealso: TechnicalNote #88—Signals

TechnicalNote #11O—MPW: Writing StandaloneCode

Written by: Rick Blair July 1, 1987

Updated:
March 1, 1988

This technical note providesa way for developersto allow sophisticated

usersto addcodeto an off-the-shelfapplication. Using this scheme,the user

can easily install the codemodule;the applicationhasto know how to call it

and, optionally, be able to respondto a set of predefinedcalls from the

custompackage.

Note

The following code makes heavy use of featuresof the Macintosh Programmer’s

Workshop. It also assumesa basic familiarity with the standardSample program

includedwith MPW. The Pascalcode(which is hereonly asan exampleimplementation

of the mechanism)is presentedasonly thosesectionswhich differ from Sample.p.The

assemblylanguagecode also includes MPW-only features,such as record templates.

Someof theseare explainedin TechnicalNote #88, “Signals.”

In addition, sincethe order in which parametersto variousroutinesarepassedis critical,

specialcarewill haveto be taken in writing interfacesfor usewith C. It is probablybest

to declarethem as Pascalin the C source.

Concepts

Basically, we createa code resourceof type CUST with an entry point at the beginning

which takesseveralparameterson the stack; this code is reachedvia a dispatching

routine which is written in assemblylanguage.

The datapassedon the stackto this dispatcherincludes:

• a selector(to specifythe operationdesired)

• the addressof a sectionof applicationglobals (for communicationback and forth

betweenthe applicationandthe modulewhen the stackparametersare insufficient)

• a handlewhich referencesthe customcoderesourceon the stack.

TechnicalNote #135 page 1 of 14 GettingthroughCUSToms



Other parametersmay be added(as long as they are pushedon the stackbefore therequired ones) if desired. Since these extra parameterswould always have to beincluded in any calls to a given package,it might be more convenientto use theapplicationglobal spaceareawhich is accessedthroughthe appaddrparameter.

Template

Your application must contain the following global dataand proceduredeclarationstosupportthis model:

VAR

custhandle:Handle;

(the following globals constitutethe data known to the custom code)appdispatch:ProcPtr; (addressof dispatch routine custom code can call)(examplesof further applicationglobals for the custom package:)(*

paramptr: Ptr; (general pointer used as param. to appdispatchcode)paramwordl: INTEGER;
pararnword2: INTEGER;
CUSTerr: INTEGER;

{any other globals the module should get at)

{the two assemblylanguageglue routines‘which are linked into theapplication}
PROCEDURE Customlnit(reslD: INTEGER; VAR custharidle: Handle);EXTERNAL; (the routine used to set up the custhandleresourcehandle)

PROCEDURE CustomCall((application& package—specificpararnters}
selector: INTEGER; appaddr: UNIV Ptr; ourhandle: Handle);EXTERNAL; {this is the code dispatcher)

(this is called by the custom packageto perform a service which is moreeasily provided by the application; since we pass a pointer to it to thepackage, CustDispatchmust be at the outermostnesting level in the mainsegmentI
PROCEDURE CustDispatch(selector:INTEGER);

BEGIN
CASE selectorOF

END; (CASE)
END; {CustDispatch)

(your initialization code should contain the following:

(Custom packageinitialization stuff)
appdispatch : @CustDispatch; (put pointer where the packagecan see it)Customlnit(69,custhandle); (our CUST resourcehas ID = 69)

(then whenever you want to invoke the packageyou use CustomCall) (
TechnicalNote #135 page 2 of 14 GettingthroughCUSToms



You must also assembleCustomlnit and CustomCall and link them with into your

application. The custom packageitself can be written in any languagewhich can

producestand-alonecode. SeeTechnicalNote #110 for how to write stand-alonecode

in MPW Pascal.

The example

CustomCall is only referencedonce in this example.When a variety of unrelated

functionsare provided, however, it is more convenientto provide a separateinterfacing

procedureto invoke eachone and havethem maketheir own CustomCallcalls.

Note that this exampleis somewhatcontrived; you probably wouldn’t “externalize” the

codefor finding a word or sequenceof characterslike this. This is an idealizedsituation.

More realistic useswould be: to add-on special routines to a databaseto perform

customcalculationsor the like; allow for localizationwhen code is required (and hooks

aren’t already provided); let documentscarry around code which may vary among

softwareversions,etc. so that older documentswould be able to work alongsidethe

new ones,etc.

What it does

We simply add a new menu to the sampleprogramwhich allows Find by charactersor

word. We just passthe menu item to the packageand let it do the finding; it then calls

back to the application dispatch routine to highlight text or display the “not found”

message.

The Pascalsourcefor the exampleapplicationappearsfirst:

{$R—}

{$D+}

PROGRAM F;

USES

{$LOAD : :Plnterfaces:most.durnp)

Merntypes,Quickdraw,OSIntf,Toollntf,Packlntf{,MacPrint}

$ LOAD

{$U ErrSignal.p} ErrSignal;

CONST

applelD = 128; (resourceIDa/menu lOs for Apple, File and Edit menus)

fileID = 129;

editiD 130;

findlD = 131;

appleM = 1; (index for each menu in myMenus (array of menu handles)

fileM 2;

editM = 3;

findM = 4;

menuCount = 4; (total number of menus)

TechnicalNote #135 page 3 of 14 GettingthroughCUSToms



windowlD = 128; (resourceID for application’s window)

undoCornmand= 1; (menu item numbers identifying commands in Edit menu)cutCommand= 3;
copyCornrnand 4;
pasteComrnand= 5;
clearCommand= 6;

findcharsCommand= 1; (menu items for Custom menu)firidwordComrriand = 2;

aboutMeComrnand= 1; (menu item in apple menu for About sample item)

aboutMeDLOG = 128;
findDLOG = 129;
infoDLOG 130;

(application dispatchingcode selectors)
hilightSel = 0;
notifySel = 1;

VAR

errCode: INTEGER;
dlogString: Str255;
custhandle:Handle;

(here is the area known to the custom code)
appdispatch:ProcPtr; (addressof dispatch routine custom code can call)(examplesof further application globals for the custom package)pararnptr: Ptr; (generalpointer used as param. to appdispatchcode)paramwordl: INTEGER;
paramword2: INTEGER;
(any other globals the module should get at)

PROCEDURE Customlnit(reslD: INTEGER; VAR custhandle:Handle);EXTERNAL; (the routine used to set up the custhandleresourcehandle)

PROCEDURE CustomCall(text: Ptr; count: INTEGER; findstr: StringPtr;selector: INTEGER; appaddr: UNIV Ptr; ourhandle: Handle);EXTERNAL; (this is the code dispatcher)

(this will do the “about” dialog and the info dialog requestedby thecustom pack.)

PROCEDURE ShowADialog(meDlog: INTEGER);

CONST

okButton = 1;
authorltem= 2;
languageltem= 3;
infoltem = 2;

TechnicalNote #135 page 4 of 14 GeningthroughCUSToms



VAR

iternHit, iternType: INTEGER;

itemHdl: Handle;

itemRect: Rect;

theDialog: DialogPtr;

BEGIN

theDialog : GetNewDialog(meDlog,NIL,WindowPtr(- 1));

CASE meDlog OF

aboutMeDLOG: BEGIN

GetDitem(theDialog,authorltem,itemType,iternHdl, iternRect);

SetlText(itemHdl, ‘Ming The Vaseless’);

GetDitem(theDialog,languageltern,itemType,itemHdl, iternRect);

SetlText(itemHdl, ‘Pascal et al’)

END;

irifoDLOG: BEGIN {display the messagerequestedby the custom

package)

GetDitem(theDialog,infoltem, iternType,iternHdl, iternRect);

SetlText(itemHdl,StringPtr(paramptr)‘S);

END;

END; {CASE)

REPEAT

ModalDialog(NIL, itemHit)

UNTIL (itemMit = okButton);

CloseDialog(theDialog);

END; {of ShowADialog)

{this will put up the Find dialog to allow the user to type in the

charactersto searchfor)

FUNCTION DoCustomDialog: BOOLEAN;

CONST
okButton = 1;

cancelButtori = 2;

fixedltem = 3;

editltem = 4;

VAR

itemHit, itemType: INTEGER;

itemHdl: Handle;

iternRect: Rect;

theDialog: DialogPtr;

BEGIN

theDialog := GetNewDialog(findDLOG,NIL,Windowptr(- 1));

GetDitem(theDialog,editltem,itemType,itemHdl, itemRect);

SetlText(itemHdl,dlogString);

TESetSelect(O,MAXINT,DialogPeek(theDialog)‘.textH);

TechnicalNote #135 page 5 of 14 GettingthroughCUSToms



REPEAT
ModalDialOg(NIL, itemHit)

UNTIL (itern!-iit IN [okButton,cancelButton]);

GetlText(itemHdl,dlogString);

DoCustoinDialog : itemHit = okButton;

CloseDialog(theDialog);

END; (of DoCustornDialog}

PROCEDURE DoCommand(mResult:LONGINT);

(* partial procedurefragment *)

{here is one of the case sectionsfor the DoComxnand procedure)

findlD:

IF DoCustornDialogTHEN

BEGIN

MoveHHi(Handle(textH)); (stop it from fragmenting the heap)

WITH textH’ DO BEGIN

HLock(hText); (since we don’t know what the package might

be up to)

(now call the packageto find charactersor words)

CustomCall(POINTER(ORD(hText’)+ selEnd),
teLength — selEnd, @dlogString, theltem, @appdispatch,

custhandle);

HUnLock(textH.hText);

END; (WITH)

END;

END; (OF menu CASE) (to indicate completion of command,

HiliteMenu(O); (call Menu Manager to unhighlight I

(menu title (highlighted by

{MenuSelect)

END; (OF DoCommand)

(this is called by the custom packageto set the new selectionor display a

message;it trust be in CODE 1 at the outermost lexical level)

PROCEDURE CustDispatch(selector:INTEGER);

BEGIN

CASE selectorOF

hilightSel: (hilight the charactersselectedby the custom pack.)

{paramptr=pointerto text to select, paramwordl&paramword2=start,end

chars)

WITH textH’” DO

{we’ll subtract the start of text from paramptr to get the base

offset...)
TESetSelect(ORD(paramptr)— StripAddress (ORD(hText)) +

paramwordl, ORD(paramptr) — StripAddress (ORD(hText’))
+ pararnword2,textH);

TechnicalNote #135 page 6 of 14 GettingthroughCUSToms



notifySel: (put up messageper request from custom pack.)

{paramptr points to string to display)

ShowADialog(infoDLOG);

END; (CASE)

END; {CustDispatch)

BEGIN (main program)

Initialization

InitGraf(@thePort); (initialize QuickDraw)

InitFonts; (initialize Font Manager)

FlushEvents(everyEvent- diskMask,O); (call OS Event Mgr to discard

non-disk—insertedevents)

InitWindows; (initialize Window Manager)

InitMenus; (initialize Menu Manager)

TEInit; (initialize TextEdit)

InitDialogs(NIL); (initialize Dialog Manager)

InitCursor; (call QuickDraw to make cursor (pointer) an arrow)

mit Signals;

errCode := CatchSignal;

IF errCode <> 0 THEN BEGIN

Debugger;
Exit (P);

END;

SetupMenus; (set up menus and menu bar)

UnLoadSeg(@SetupMenus);(remove the once-only code)

(Custom packageinitialization stuff)

appdispatch @CustDispatch;

Customlnit(69,custhandle);(should test custhandlefor NIL and alert

the user}

dlogString :=

(etc. with the rest of initialization and the main event loop)

END.

now for the assemblylanguagecode

first, the dispatchingand initializing code that must be linked into

; the application

CustomCalling

Custom packagesinitializing and dispatching

Rick Blair May, 1987

PRINT OFF

INCLUDE ‘Traps.a’

INCLUDE ‘ToolEqu.a’

INCLUDE ‘QuickEqu . a’

INCLUDE ‘SysEqu.a’

PRINT ON

LOAD ‘most.dxnp’ ; froi e dump of the files above

appdata EQU 12

TechnicalNote #135 page 7 of 14 GettingthroughCUSToms



;Initialize a custom module

Pascalcall format:

Customlnit(reslD:INTEGER;VAR custhandle:Handle);

This will load the CUST module with the given resourceID, install a

handle to it in custhandle,and set the module’s appdatapointer to

point to the addressappaddr.

reslD EQU 8

custhandle EQU 4

Customlnit PROC EXPORT

SUBQ.L #4,A7 ;make room for handle from GetResource

MOVE.L #‘CUST’,-(A7)
MOVE.W reslD+8(A7),-(A7);resourceID

GetResource

MOVE.L (A7)+,A0

MOVE.L custhandle(A7),Al

MOVE.L AC, (Al) ;store handle in app’s custhandleglobal

(return with nil handle if GR failed)

MOVE.L (A7),A0 ;get return address

ADD.L #lO,A7 ;strip everything

JMP (AC) ;adieu

;Call a custom module

;Pascalformat:

CustomCall( {parametersas desired} selector: INTEGER; appaddr: Ptr;

module: Handle);

;This will call the code whose handle is passedon the stack. If the

;application was written in assemblylanguageyou would just

;dereferencethe handle and call it directly (you wouldn’t need this at

all)

CustomCall PROC EXPORT

IMPORT Signal

MOVE.L 4(A7),A0 ;get handle

MOVE.L (A0),D0
BNE.S @0 ;if hasna’ been purged, ga’ ahead

MOVE.L A0,-(A7) ;push handle

Lo adResource
MOVE.W ResErr,-(A7)

JSR Signal ;Signal is a NOP if a zero is passedto it

MOVE.L 4(A7),A0 ;handle again

we don’t lock the handle here (we can’t save it so we can unlock it

later), so it’s up to the packageto lock/unlock itself

@0 MOVE.L (A0),A0 ;dereference

JMP (AC) ;call CUST code

END

TechnicalNote #135 page 8 of 14 Getting throughCUSToms



here is the module for the custom package itself

CustomPack

Example custom code package

Rick Blair May, 1987

This demonstratesthe recommendstructureof a code module which a

sophisticateduser could add to an existing application which supported

this mechanism.Aside from allowing for multiple routines within the

module (via a selector), provision is made for calling a routine

dispatcherwithin the application itself.

;Finding text

;We support a call to find a string anywhere within a block of text

(selector=0), and one to find the string only as a separate“word”

with spacesaround it (selector=1)
;PROCEDURE CustomCall(text:Ptr;count:INTEGER; findstr:’STRING;

selector:INTEGER; appaddr: UNIV Ptr; ourhandle:Handle);

;Rather than return a result indicating whether they succeededor not,

;these routines take whatever action is appropriate (the application

;may not even know what these routines actually do)
;Once a call succeedsor fails, it then takes action by making a call to
;one of the servicesprovided by the application. In this case the two

;functions provided are just what we need; the ability to select text and

;the ability to put up a messagesaying “Text not found”.

STRING ASIS

PRINT OFF

INCLUDE ‘Traps.a’
INCLUDE ‘Too lEqu . a’
INCLUDE ‘QuickEqu.a’
INCLUDE ‘SysEqu. a’
PRINT ON

LOAD ‘most.dmp’ ; from a dump of the files above

CustPack PROC EXPORT

BRA.S Entry ;skip header

DC.W 0 ;flags

DC.B ‘CUST’ ;custom add-on code module
DC.W 69 ;resourceID (picked by Mr. Peabody &

Sherman)

DC.W $10 ;version 1.0

StackFrame RECORD {A6Link},DECR

paramsize EQU
call—specific parameters...(optional)

text DS.L 1 ;pointer to text block
count DS.W 1 ;word count of charactersin text
findstr DS.L 1 ;pointer to p—string to find

selector(word,optional - you might only have 1 call)
selector DS.W 1

TechnicalNote #135 page 9 of 14 GettingthroughCUSToms



fcharsCrnd EQU 1 ; selector for “find characters”

fwordCrnd EQU 2 selector for “find word”

pointer to app. globals(long)

appaddr DS.L 1

handle to this resource(long)

ourhandle DS.L 1

TOS:return address (long)

return DS.L 1

;the stack link is built off the origin of the saved old A6 on the stack

A6Link DS.L 1

LocalSize EQU *

ENDR

;offsets into our application globals area

AppGlobals RECORD {appdispatch},DECR

appdispatchDS.L 1

paramptr DS.L 1

paramwordl DS.W 1

paramword2 DS.W 1

;CUSTerr DS.W 1 ;if we had possibleerrors

ENDR

Entry
WITH StackFrarne,AppGlobals

LINK A6, #LocalSize

MOVEM.L ... ;we’d save any non-trashableregs here

;first lock us down...

MOVE.L ourhandle(A6),AO

H Lock

MOVE.W selector(A6),DO

CMP.W #fcharsCmd,00

BEQ.S charfind ;go find characters

CMP . W #fwordCmd,DO

BEQ.S wordfind ;go find a word

;well, M. App didn’t call us with a selectorwe know, so...

;unlock ourselves,clean up, return

(if we wanted to return an error code we could stuff it into the app.

global area)

duhn MOVE.L ourhandle(A6),AO

HUnLock

MOVEM.L ... ;restoreany registershere

UNLK A6

MOVE.L (A7)+,AO ;return address

ADD.L #paramsize,A7;stripparameters

JMP (AO)

;selectorcodes for calls to application

hilight EQU 0 ;highlight characters,please

notify EQU 1 ;beep a little

;find the string “findstr” anywhere in the block “text”

charfind

JSR findchars ;see if findstr is anywhere ir text

BEQ.S nofind ;if not then skip

JSR calcsels ;compute seistartand selend

didfind MOVE.L appaddr(A6),AO ;get pointer to appl, glohals area

TechnicalNote #135 page 10 of 14 GettingthroughCUSToms



MOVE L

MOVE . W

MOVE . W

MOVE . W

MOVE . L

JSR

appaddr(A6),A0 ;get pointer to appi. globals area

oopstring,A1 ;get pointer to “Not found” message

A1,paramptr(A0) ;put string pointer in “paramptr”

#notify,—(A7) ;tell app. to display message

goapp

;figure seistartand selend

calcsels NEG.W

SUBQ.W

ADD . W

MOVE. L

MOVE . B
EXT.W Dl

ADD.W 00,01

;find the

beg.)

;we could

wordfind

RTS

JSR

BEQ. S

MOVE N

JSR

MOVE . L

TST.W

BEQ . S

CM? . B

BNE . S

CMP . W

BEQ. S

CMP . B

BEQ. S

;this wasn’t paydirt, so keep

@1 MOVE.W D2,00

BMI.S nofind

JSR bigloop

BRA.S wloop

panning

;restorechars remaining count

;forget it if we ran out of text

;keep looking

will find the string if it lies anywhere in the text

MOVE.L text(A6),A0 ;point AD to chars to search

MOVE.W count(A6),00;sizeof text block

bigloop MOVE.L findstr(A6),Al;point Al to chars to find

MOVE.W (Al)+,Dl ;get length byte and 1st char. (skip ‘em)

CMP.W *255,01

BGT. S

ADDQ . L

;enter loop if length<>0

;strip firidchar’s return address

;return having done nothing

goapp

nofind

text(A6),paramptr(AO) ;setup text pointer and...

D0,paramwordl(A0) ;start characterposition,

D1,paramword2(AO) ;end characterposition

#hilight,—(A7) ;pass proper selector

appdispatch(A0),A0;get dispatch address

(AD) ;call the application to select the range

BRA.S duhn ;return to application (deja vu)

MOVE . L

LEA

MOVE . L

MOVE . N

BRA.S

DO ;negate # charactersunskipped in text

#1,00 ;include 1st character

count(A6),00;compute1st characterposition for select

findstr (A6) ,A1

(Al),Dl ;get length of string

;compute last char. pos. for select

characters,but only if surroundedby space (including end or

extend the test to check for other delimiters (“;“,“.“,etc.)

findchars

wloop

@0

nofind

00,02 ;save count of text remaining

calcsels ;figure start and end offsets

text(A6),A1 ;point to text

DO ;start=beginningof text?

@0 ;yep, so it passes

#‘ ‘,—l(Al,DO) ;precededby a space?

@1 ;nope, keep looking

count(A6),D1 ;D1=length of text?

didfind ;yep, so it passes

#‘ ‘, (A1,D1) ;followed by a space?

didfind ;yes, so we’ve found it

;this code

findchars

BRA

@1
#4,A7

duhri

TechnicalNote #135 page 11 of 14 Getting throughCUSToms



;search for first character
@0 CMP.B (A0)+,D]. ;this one match 1st character?
@1 DBEQ D0,@0 ;branch until found or done ‘em all

BNE.S cnofind ;skip out if no match on 1st character

MOVE.B -2(A1),D1 ;length of findstr
EXT.W Dl
SUBQ.W #l,D1 ;length sans 1St character
BEQ.S cfound ;if Length(findstr)=1, we’re done
CMP.W D1,D0
BLT.S cnofind ;fail if findstr is longer than text left
MOVE.L A0,D2 ;save this characterposition
CMP.W D1,D1 ;force EQuality
BRA.S @3 ;enter loop

@2 CMP.B (A0)+, (Al)+ ;match so far?
@3 DBNE D1,@2 ;check until mismatch or end of findstr

MOVEA.L D2,A0 ;restoreposition (cc’s unaffected)
BNE.S bigloop ;if no match then keep looking

cfound MOVEQ #1,D1 ;return TRUE
RT S

cnofind SUB.W D1,D1 ;return FALSE
RT S

STRING PASCAL
oopstring DC.B ‘Pattern not found.

END

#additions to the resourcefile

resource ‘DLOG’ (129, “Find dialog”)
{72, 64, 164, 428),
dBoxProc,
visible,
noGoAway,
OxO,
129,
“Find”

resource ‘DLOG’ (130, “Info”)
(66, 102, 224, 400),
dboxproc, visible, nogoaway, OxO, 130,

I
TechnicalNote #135 page 12 of 14 GettingthroughCUSToms



resource ‘DITL’ (130)

/* 1 */ (130, 205, 150, 284),

button
enabled,

“OK already”

/* 2 / (8, 32, 120, 296),
/* info */

statictext
disabled,
I I

resource ‘DITL’ (129)
1* array DiTLarray: 4 elements*/

1* [1] */

{64, 48, 84, 121),

Button
enabled,

OK

/* [2] */

(64, 231, 84, 304),

Button
enabled,

“Cancel”

/* [3] */

(8, 8, 24, 352),

StaticText

disabled,

“Find what?”

1* [4] */

(32, 8, 48, 352),

EditText
disabled,

resource ‘MENU’ (131, “Custom”, preload)

131, textMenuProc, 0x3, enabled, “Custom”,

“Find Chars...”,

noicon, “F”, nomark, plain;

“Find Word...”,

noicon, “W”, nomark, plain

TechnicalNote #135 page 13 of 14 GettingthroughCUSToms



type ‘CTST’ as ‘STR ;

resource ‘CTST’ (0)
“Custom Application — Version 1.0”

include “CustomPack.code”;

# This makefile puts the program together mci. the CUST pack.

CustomTest ff CustomCallirig.a.oCustomTest.p.oErrSignal.a.o
* the predefinedrule for assemblywill build CustomCalling.a.o,
* CustornPack.code

Link CustomTest.p.oCustomCalling.a.oErrSignal.a.oa
“(Libraries) “Interface.o a
“(Libraries } “Runt ime .0 a
“{PLibraries}”Paslib.o a
—o CustomTest

CustomPack.code I CustomPack.a.o
Link Custompack.a.o—rt CUST=69 —o CustomPack.code

* Put the resourcefile together (including the custom code resource)
CustomTest If CustomTest.rCustomPack.code

Rez CustomTest.r-a -o CustomTest

TechnicalNote #135 page 140114 Getting throughCUSToms



Macintosh Technical Notes

#136: RegisterAS Within GrowZoneFunctions

Seealso: The Memory Manager
TechnicalNote #25—RegisterA5 Within Trap Patches

Written by: Chris Derossi July 1, 1987
Updated: March 1, 1988

If you have a grow zone function, it may get called when a systemroutine is trying to

allocatememory. Becausethis can happen,you can’t be guaranteedthat registerAS will

be correct.

If your grow zonefunction dependson A5, you shouldsaveregisterA5, load A5 from the

low-memoryglobal CurrentA5 (a long word at $904), and restorethe caller’s A5 before

you exit.

From high-level languages,you can also use the Operating System Utility calls

SetUpA5andRestoreA5(page386 of InsideMacintoshVolume II). SetUpA5storesthe

‘old’ A5 on the stackand puts the value storedat CurrentA5 into A5. Make sureto call

RestoreA5when you’re doneso that it can pop the savedvalue of A5 off the stack.

Your grow zonefunction dependson A5 if it doesany of the following:

• Accessesyour application’sglobal variables(which are storedat negativeoffsets

from A5).

• Accessesthe QuickDraw globals. (A5 containsthe addressof a pointer to the

QuickDraw global variables.)

• Makesany ROM trap calls.

• Makes any intersegmentcalls to routinesin your application.

To do any of these,A5 needsto containthe value from CurrentA5.Pleasenote that this

is different than the method for calling the ROM from trap patches,where A5 should

retain the value it had upon entry to your patch.

TechnicalNote #136 page 1 of 1 RegisterA5 Within GrowZoneFunctions



I

4



Macintosh Technical Notes

.
#137:AppleShare1.1 ServerFPMoveBug

Seealso: AppleTalkFiling Protocol

Written by: Rich Andrews June16, 1987
Modified by: Bryan Stearns July 1, 1987
Updated: March 1, 1988

A bug has been discoveredin AppleShare1.1’s implementationof the
AppleTalk Filing Protocol FPMove call. This bug only affects developers
implementingcustomworkstationaccesscodethat will accessAppleShare
1.1 serversfrom non-Macintoshsystems(such as MS-DOS systems);if the
guidelinesbelow arenot followed, dataloss may result.

The AppleSharefile serversupportsan AFP call known as FPMove, usedto move a file
or directory tree from one placeto anotheron an AppleSharevolume. In addition to
moving, the caller can specify a new name for the file or directory being moved; in
essence,a move and a renamecan be accomplishedby a single call.

The AppleShare1.1 serverimplementsthis call as follows: the file is moved from the
source directory to an invisible holding directory, renamed, then moved to the
destinationdirectory. The problemoccurswhen a locked file is moved and renamedin
this manner:the initial move succeeds,the renamefails, and the file is left in the holding
directory (essentiallylost, as it will be deletedwhen theserveris shutdown).

Macintosh AppleShare 1.1 workstation software never uses the move-and-rename
combination, so this problem cannot occur on a Macintosh; however, if you’re
implementing your own workstation-accesssoftware for some other machine or
operatingsystem,and wish to usethis feature,you must follow this procedure:

When a move and rename call comes from the native file system, issue an
FPGetFileDirParmscall to see if the object is a locked file. If it is, issue an
FPSetFileParmscall to unlock the file, Then issue the FFMove call, followed by
anotherFPSetFileParmscall to lock the file again.

AFP doesnot allow locked files to be renamed,whereassomenative file systems(such
as MS-DOS) do. You must therefore preflight for this condition to maintain
transparency.

This problemwill be correctedin a future version of the AppleShareserversoftware.

TechnicalNote #137 page 1 of 1 AppleShare1 .1 ServerFPMoveBug



a a a



Macintosh Technical Notes

#138: Using KanjiTalk with a non-JapaneseMacintoshPlus

Seealso: KanjiTalk UsageNotes
ScriptManagerDevelopersPackage

Written by: Priscilla Oppenheimer July 1, 1987

Updated: March 1, 1988

This Technical Note describesthe minor differences between using

KanjiTalk with the JapaneseMacintosh Plus and KanjiTalk with a standard

MacintoshPlus.

There are two differencesbetweenthe JapaneseMacintosh Plus and the standard

Macintosh Plus: The JapaneseMacintosh Plus hasthe Kanji 12 and 18 point fonts in

ROM and it is shippedwith the Kana keyboard.It is not necessaryto havethis keyboard

in order to use KanjiTalk. (Seethe KanjiTalk UsageNotes for details on how to use it

with a non-Kanakeyboard.)It is, however, necessaryto have 12 point Kanji in orderto

use KanjiTalk; the 18 point Kanji is optional.

When using KanjiTalk with a standard(non-Japanese)Macintosh, the user supplies

thesefonts on disk andthe Macintoshloadsthem into RAM. At boot time, the Macintosh

looks for the 1 2 point Kanji font file in the systemfolder of the boot disk. If it cannotfind

the font, it will look throughthe root directoryof all mountedvolumes.(The font hasto be

at the root level; it cannotbe in a folder.) If it still doesn’t find the font, it will prompt the

userto insert a disk with the font file in the root directory. Once KanjiTalk finds the 12

point font, it will go throughthe sameprocesslooking for the 1 8 point font. The usercan

cancelthis searchif the optional 1 8 point font is not necessary.

When KanjiTalk finds the fonts, it loadsthem into memory. The 12 point font takesup

approximatelylOOK of memory and the optional 18 point font takesup approximately

250K of memory.The KanjiTalk codeitself takesup about180K of memory. Becausethe

fonts take up quite a bit of memory, many applicationswill not work on a Macintosh

512K with the Kanji fonts installed.

Accessingthe fonts from ROM is faster, but we have not noticed any significant speed

problemswhen the fonts are accessedfrom RAM. There is, however, a noticeable

differencein speedwhen the Macintosh is booted. It takesa couple of secondsto load

the 12 point font and about6 secondsto load the 18 point font.

Note that the JapaneseMacintosh is unique; Apple has not producedother foreign

versionsof the Macintosh for different scripts. The introduction of the Arabic Interface

System,for example,did not include an Arabic ROM version.

TechnicalNote #138 page 1 of 1 KanjiTalk with.a non-JapaneseMacintoshPlus



a a



Macintosh Technical Notes

#139: MacintoshPlus ROM Versions

Written by: CameronBirse July 1, 1987
Updated: March 1, 1988

ReadersDigest condensedversion of Macintosh Plus ROM history, or the truth
accordingto Bo3bdarthe everpresent:

1st version (Lonely Hearts, checksum4D 1E EE El):

Bug in the SCSI driver; won’t boot if externaldrive is turnedoff. We only producedabout
one and a half monthsworth of these.

2nd version (Lonely Heifers, checksum4D 1E EA El):

Fixed boot bug. This version is the vast majority of beigeMacintoshPluses.

3rd version (Loud Harmonicas,checksum4D iF 81 72):

Fixed bug for drives that return Unit Attention on power up or reset. Basically took the
SCSI bus Resetcommandout of the boot sequenceloop, so it will only reset once
during boot sequence.This versionshippedwith the platinum MacintoshPluses.

And Bo3bdarsaith: “Thou shalt not rev themdamn ROMs no more!”

Laterthat sameday...

Bo3bdarSaith Also:

Lonely Heifer was abouta 2 byte change,
Loud Harmonicawas about30 byte change.
No other bug fixes in SCSI or elsewhere.
Modified object codedirectly.
Not possibleto get a specific ROM sincethey are all the samepart number.
Shouldn’t rely on a specific ROM, therewill be no upgrade.
Bo3b Bo3b a boola, a wiff Ba2m Bolom.

TechnicalNote #139 page 1 of 1 MacintoshPlus ROMs



a a a



Macintosh Technical Notes

#140:Why PBHSetVoI is Dangerous

Seealso: The FHe Manager

Written by: Chris Derossi July 1, 1987

Updated: March 1, 1988

This note explainsPBHSetVo1,andwhy its useis not recommended.

PBHSetV01,like SetVol and PBSetVo1,allows you to set the currentdefault volume

and directory to be used with subsequentFile Managercalls. Unlike SetVol and

PBSetV01,though,PBHSetVol lets you specifythe volume andthe directoryseparately,

using the iovRefNumand IoWDDirID fields.

PBHSetVo1 lets you specify a WDRefNum for the iovRefNum in addition to a partial

pathnamein ioNamePtr. PBHSetVo1will start at the specifiedworking directory and

use the partial pathnameto determinethe final directory. This directory might not

correspondto an alreadyexisting working directory, so the File Managercannotrefer to

this directory with a WDRefNum. Insteadit must usethe actual volume refNurn and the

‘dir ID number(which is assignedwhen the directory is created,and doesn’tchange).

The net effect of all of this is, if you call PBHSetVol,the File Managerstoresthe actual

volume RefNum asthe defaultvolume, and the defaultDirID separately.This happens

on all calls to PBHSetVol. Subsequentcalls to GetVol or PBGetVol will return only the

volume RefNum in the ioVRefNum field of the parameterblock. If any codetries to use

the RefNum returnedby GetVol, it will be accessingthe root of the volume, and not the

currentdefault directory as expected.

This is particularly nasty for desk accessoriesbecausethey don’t know that your code

hascalledPBHSetVo1and they don’t get what they expectif they call GetVol.

It is thereforerecommendedthat you avoid using PBHSetVol becauseof this side effect.

Noneof the other ‘H’ calls that allow you to specifya Dir ID do this, so they’re still OK.

TechnicalNote #140 page 1 of 1 Why PBHSetVol is Dangerous



a a



Macintosh Technical Notes

#141: Maximum Numberof Resourcesin a File

Seealso: The ResourceManager

Written by: CameronBirse July 1, 1987

Updated: March 1, 1988

This note describesthe limitation of the numberof resourcesin a single

resourcefile.

There is a limit to the numberof the resourcesin a single resourcefile. This limitation is

imposedby the resourcemap. Thereare two bytesat the end of the resourcemap which

are the offset from the beginning of the resourcemap to the beginningof the resource

nameslist. If thereis only one type of resource,then the overhead,from the beginningof

the resourcemapto the beginningof the referencelist, is 38 bytes. Sincethe offset is a

two byte value, and is a signednumber,its highestpossiblevalue is 32767. This is the

limitation. If you subtract38 bytes for the overhead,and divide the differenceby 1 2 (the

numberof bytes for each reference)you get about 2727.4—thelimit to the numberof

resourcesin a single file is 2727.

The ResourceManagerwas not intendedto managelarge numbersof resources,and

as a result, its performanceis particularly bad with many resources.Becauseof these

restrictions,we recommendthat developersavoid using the ResourceManageras a

databasetool.

TechnicalNote #141 page 1 of 1 Maximum Numberof Resourcesin a File



S



Macintosh Technical Notes

#142:Avoid Useof Network Events

Seealso: AppleTalk Manager

Written by: Bryan Stearns July 1, 1987

Updated: March 1, 1988

FutureSystemsoftwareenhancementswill not supportnetwork events.This

notegiveshints on weaningyour applicationfrom the useof networkevents.

What are network events?

When the Event Managerwas designed,an event numberwas reservedfor future

supportof “network events”. Later, when the AppleTalk PascalInterfaceswere written, a

completion routine was createdthat, when an asynchronousAppleTalk operation

finished, would postan eventusing networkEvt in the evtNum field.

Only the AppleTalk Pascal Interfacesgeneratenetwork events.Assembly-language

usersof the AppleTalk drivers (and thosewho called the AppleTalk drivers directly from

high-level languages,using PBControl calls) either provide a completion routine of

their own, or poll the ioResult field of the parameterblock passedwith the call (when

loResultbecamenegativeor zero, the call is complete).

Why not use network events?

In somecases,network eventscan be lost. If the Event Managerfinds that the queueis

full while posting an event, it discardsthe oldestevent. In a situation (suchas a server)

where multiple asynchronousATP requestsmay completeat once, there is a chance

that eventsmay be droppedoff the end of the queue.This is more likely if the same

machineis also handling user-interfaceevents(like keypressesand mouseactions).

Also, in developingimprovementsto our operatingsystem,it hasbecomeapparentthat

to continue support of network events, we would have to compromise future

enhancementsto our system.So, future versionsof the Macintosh operatingsystem

may ignore network eventsinsteadof passingthem to the appUcation.

TechnicalNote #142 page 1 of 2 Avoid Useof Network Events



How can I tell that my calls have completedwithout using network
events?

As describedon page11-275 of Inside Macintosh,you can poll the abResultfield of the
call’s ABusRecord;when this value becomesnegativeor zero, the call hascompleted.
You can do this in your main event loop.

With this technique,you can ignore any network eventsreturnedby GetNextEvent,
sincethe AppleTalk PascalInterfaceswill be posting eventsanyway. If your application
startsenoughasynchronousoperations,it’s possiblethat their network eventswill cause
other non-network events to be lost. To prevent this, you should call
FlushEvents(networkMask,0) frequentlyto purgeany accumulatednetwork events
from the eventqueue.

You may also considerusing the new preferredhigh-level interfacecalls; seeTechnical
Note #132 for more information.

I

I

TechnicalNote #142 page 2 of 2 Avoid Useof Network Events



Macintosh Technical Notes 3

#143: Don’t Call ADBReInIt on the SE with System4.1

Seealso: The Apple DesktopBus

Written by: Mark Baumwell July 1, 1987

Updated: March 1, 1988

Becauseof a bug (which causesauto-repeat)in the ROM version of the Macintosh SE

keyboarddriver, a patch was placed in System4.1. If ADBReInit is called, the ROM

version of the keyboarddriver will be reloaded,and the RAM version of the driver with

the patcheswill not be used. Therefore, it is recommendedthat ADBReInit not be

called on the Macintosh SE until the problem is fixed. (There is no need to call

ADBReInit.) This problem will not occur with the Macintosh U ROM version of the

keyboarddriver.

TechnicalNote #143 page 1 of 1 Don’t Call ADBReInIt



S a



Macintosh
TechnicalNotes

DeveloperTechnicalSupport

#144: MacintoshII Color Monitor Connections
Revisedby:
Written by:

WayneCorreia
Mark Baumwell

February1990
July 1987

This TechnicalNotedescribeshow to connecttheMacintoshII Video Cardto third-partymonitors.
Changessince March 1988: Updatedfor newerMacintoshII Video Cards,including the
Macintoshilci On-BoardVideo (OBV).

Following arethepinoutdescriptionsof the MacintoshII Video Cardsandthe Macintoshilci On-
BoardVideo (OBV):

Macintosh II
Video Card Pin Signal Name
1,6,11,13,14 Ground
2 Red
3 C-Sync(compositesync)
4 Monitor ID, Bit 1 (groundthis pin to signal

thata 640x 480monitor is connected)
5,12 Green(with sync)
7 Monitor ID, Bit 2
9 Blue
10 MonitorlD,Bit3
8,15 Not connected

Note: TheMacintoshII High-ResolutionDisplayVideo Cardis the newerreplacementfor
theoriginal four- andeight-bitMacintoshII Video Card(M021 1 andM5640). This
new card is sold in four- and eight-bit configurations(M0322 and M0324,
respectively).

Note: The newerMacintoshII Video CardsandMacintoshilci OBV requirethat pin 4
(Monitor ID, Bit 1) beconnectedto Groundto signalthe connectionof a 640x 480
monitor. Do not connectpins 7 or 10 as they areunusedon original MacintoshII
Video Cardsandtherearebuilt-in pullup resistorson the newerMacintoshII Video
CardandMacintoshlici to terminatethesepinswhennot in use.

#144: MacintoshII Color Monitor Connections 1 of 2



MacintoshTechnicalNotes

Sony Multiscan (CPD-1302)

To connecta MacintoshII to a SonyMultiscanmonitor,you needto makean adaptercablefrom
the video card to the monitor (which hasa 9-pin D-type connector). Following is the pinout
descriptionfor the adaptercable(usingthe automaticsync-on-greenconfiguration):

Macintosh II Sony
Video Card Pin Pin Signal Name
1 1 Ground
2 3 Red
4 1 Ground
5 4 Green(sync)
9 5 Blue

NEC MultiSync (JC-1401P3A)

To connecta MacintoshII to a NEC MultiSyncmonitor, you needto makean adaptercablefrom
the video card to the monitor (which hasa 9-pin D-type connector). Following is the pinout
descriptionfor the adaptercable(usingthe automaticsync-on-greenconfiguration):

Macintosh II NEC
Video Card Pin Pin Signal Name
1 6,7,8,9 Ground
2 1 Red
4 6,7,8,9 Ground
5 2 Green(sync)
9 3 Blue

Themonitormustbe setto AnalogmodeandManualmode. This adaptorcablealsoworks with an
equivalentmonitorsuch astheTaxanSuperVision 770.

2 of 2 #144: MacintoshII Color Monitor Connections



0

It is often more convenientto enterthe debuggerusing the keyboardrather
than having to reach aroundto pressthe interruptswitch. Thistechnicalnote
showshow to makea simple FKEY thatwiN trap to the debugger.

This technicalnoteshowshow to makea simple FKEY that will trap to the debugger.It is
written in MPW Assembler.The assemblersourceis given below.

MPW Assemblersourcefile listing:

File: DebugKey.a

An FKEY to invoke the debuggervia comrnand-shift-8

To build this:

Asm Debugkey.a

Link DebugKey.a.o-o “(SysternFolder}System”-rt FKEY=6

DebugKey MAIN

BRA. S

;standardheader

Ca11DB ;Invoke the debugger

Ca11DB DC.W

RT S

END

$A9FF ;Debugger trap

Macintosh Technical Notes c3
#145: DebuggerFKEY

Written by: Mark Baumwell July 1, 1987
Updated: March 1, 1988

DC.W $0000 ;flags
DC.L ‘FKEY’ ;‘FKEY’ is 464B4559 hex
DC.W $0008 ;FKEY Number
DC.W $0000 ;Version number

TechnicalNote #145 page 1 oIl DebuggerFKEY



a a



Macintosh Technical Notes

#146: Noteson MPW Pascai’s-mc68881Option

Seealso: Apple NumericsManual
MPW PascalReference

Written by: Bryan Stearns July 1, 1987
Updated: March 1, 1988

For improved performance,the MPW Pascalcompiler (version 2.0 and
newer) representsExtendedvalues in 96 bits (instead of 80, as with
softwareSANE) when the -mc68881option is used.This can causeproblems
when using non-SANEsystemcalls that expect80-bit Extendedvalues.

The PascalCompiler and Extendedvalues

The MPW 2.0 Pascalcompiler providesa command-lineoption, —mc68881,to generate
inline code to use the Motorola 68881 Floating-Point Coprocessor(included with
Macintosh II). This allows you to sacrifice compatibility with other Macintosh systems
(those not equipped with the 68020/68881 combination) in exchange for
much-increasednumericperformance.

When this option is used,the compiler storesall Extendedvalues in the 96-bit format
usedby the 68881, insteadof the 80-bit softwareSANE format:

79 78 63 0

1-bit 15-bit 64-bit
sign exponent mantissa

80-bit SoftwareSANE Format

95 94 79 63 0
// ///7//A

1-bit 15-bit 16-bit 7/7 64-bit
sign exponent ZERO mantissa

//////

96-bit 68881 Format

This affects all proceduresthat accept floating-point values as arguments,since all
floating-point argumentsare convertedto Extendedbefore being passed,no matter
how they’re declared(that is, Real,Single,Double,or Comp).
You must link with a specialSANELib library file (“SANE881Lib.o”) when compiling with

TechnicalNote #146 page 1 of 3 MPW Pascal’s-mc68881Option



this option; the interface source file “SANE.p” contains conditional-compilation

statementsto makesurethat the correct library’s interfaceis compiled. In this situation,

SANE proceduresare usedfor certain transcendentalfunctions only (see note below),

and thesefunctions (in “SANE881Lib.o”) expect their Extendedparametersin 96-bit

format.

However, numeric routines that are not compiled by Pascal (such as any

assembly-languageroutinesthat you’ve written) have no way of finding out that their

parameterswill be in 96-bit format. If you don’t wish to (or can’t) rewrite theseroutines

for 96-bit values, you can use the SANELib routines x96ToX8O and X8OToX96 to

convertback andforth; it might be simplestto define a new interfaceroutine to makethe

conversionshappenautomatically:

(An assembly—languagefunction that accepts

(an 80—bit Extendedparameterand returns an)

{80—bit result (We’ve changedthe types to

(reflect that these are not 96-bit values)

FUNCTION FPFunc(x: Extended80) Extended80; EXTERNAL;

{Given that we’re compiling in -mc68881 mode,)

{call our assembly—languagefunction. Note

{that the compiler thinks that Extended

(values are 96 bits long, but FPFunc wants an)

(80—bit parameterand producesan 80-bit

(result; we convert.

FUNCTION FPFunc96(x: Extended): Extended; {x is a 96-bit extended!

BEGIN

(convert our argument, call the function, then convert the result)

MyFPFunc X8OToX96(FPFunc(X96ToX8O(x))); (call the real FPFunc}

END;

It’s bestto avoid compilingsomeparts of an applicationwith the —mc68881 option on,

and other partswith it off; very strangebugs can occur if you try this. Note that 80-bit

codeand 96-bit codecannotreferencethe sameExtendedvariables.There is no way

to tell whethera given storedvalue is in 80-bit format or 96-bit format.

SANE on Macintosh II

The version of SANE provided in the Macintosh II ROM recognizesthe presenceof the

68881 and uses it for most calculations automatically. SANE still expects (and

produces)80-bit-formatExtendedvalues;it convertsto and from 96-bit format internally

when using the 68881.

TechnicalNote #146 page 2 of 3 MPW Pascal’s-mc68881Option



A Note about 68881 Accuracy and Numeric Compatibility

SANE is more accuratethan the 68881 when calculating results of certain functions

(Sin, Cos, Arctan, Exp, Ln, Tan, Expi, Exp2, Lnl, and Log2). To maintainthis accuracy,

SANE doesn’t use 68881 instructionsto directly perform thesefunctions. Thus, the

resultsyou’ll get from SANE calculationswill still be identical on all Macintoshsystems.

To preservethis numericcompatibility with other SANE implementations,MPW Pascal

normally doesn’t generateinline 68881 calls to the above functions, even when the

—mc68881option is used;instead,it generatesSANE calls to accomplishthem. If you’re

willing to sacrifice numeric compatibility to gain extra speed,you can override this

compiler feature with the compile-time variable Elems88l; include the option “-d

Elems8Sl=TRtJE”on the compiler commandline to causethe compiler to generate

direct 68881 instructions.

For certain othertranscendentalfunctionsprovided by the 68881 that aren’t provided by

SANE, MPW Pascalwill generatedirect 68881 calls if the -mc68881 Option is on,

independentof the setting of the ElemsS8lvariable. Theseoperationsare Arctanh,

Cosh, Sinh, Tanh, LoglO, ExplO, Arccos, Arcsin, and Sincos.

Technica’Note #146 page 3 013 MPW Pascars-mc68881Option



a a a



.

The Finder has undergonea couple of changesyou should keep in mind
when creating the“bundle” information for your application.

CreatorString will be the default“Get Info” commenttext

The “creator” (or “signature”) string (contained in a resourcewhose type is your
application’sfour-charactercreatortype, and whose ID is 0) wiN be usedas the default
for the commenttext displayedby the Finder’s “Get Info” command.Thus, you shouldset
up this string (when you build your application)to containthe nameof your programand
a versionnumberand date.

Icon Masks should match their icons

Your application’s BNDL (“bundle”) resourceties the file types that it usesfor its
documentswith the icons to be displayedfor thosedocuments.For eachicon, a “mask”
icon is also provided; this mask is usedto punch a hole in the gray desktopbefore
drawing the icon.

Someapplicationsuse a cleverly-modified mask to provide an“action icon” that looks
different when it’s selected.This causesproblems;it is importantthat the mask be what
it’s supposedto be (a solid black copy of the icon).

Macintosh Technical Notes

#147: FinderNotes:“Get Info” Default & Icon Masks

Seealso: TechnicalNote #48—Bundles

Written by: Bryan Stearns July 1, 1987
Updated: March 1, 1988

TechnicalNote #147 page 1 of 1 FinderNotes:“Get Info” Default & Icon Masks



a a a



Macintosh Technical Notes

#148: Suppliersfor MacintoshII Board Developers

Seealso: DesigningCardsandDrivers
for the Macintosh II and MacintoshSE

Written by: Mark Baumwell July 1, 1987
Updated: March 1, 1988

This note lists suppliersof partsthat may be helpful for Macintosh II board
developers.If your companysuppliestheseparts, but is not listed here,
pleasesenda messageto us (at the addresson TechnicalNote #0) andwe’ll
includeyou in the next revisionof this technicalnote.

This is a list of companiesthat sipply the Macintosh II expansionport cover (p/n
805-5064-05) (Foldout 2 in Designing Cards and Drivers or the Macintosh II and
MacintoshSE). It is not intendedto be an endorsementor an indication of quality; it is
just our list of known suppliers.

Galgon Industries,Inc.
37399 CentralmontPlace
Fremont,CA 94536
Attn: RonNaddox—GeneralSales
(415) 792-8211

Vector Electronics
12460GladstoneAve
Syirnar, CA 91342
(818) 365-9661
FAX# 818-356-5718
Attn: Norm Brunell

North American Tool and Die
999 BeecherStreet
San Leandro,CA 94577
(415) 632-9263
Attn: Glenn Erikson

In addition to supplyingthe expansionprt cover, Vector EIectrnicssuppliesMacintosh
II NuBus extenderboardsand prototypfrrg boards.

TechnicalNote #148 page 1 of 1 Supp’iersfii1acintoshII Board Developers



I

4

4



Macintosh Technical Notes

#149: DocumentNamesandthe Printing Manager

Seealso: The Printing Manager
TechnicalNote #122—Device-IndependentPrinting

Written by: Bryan Stearns July 1, 1987
Updated: March 1, 1988

Our compatibility testing for LaserShare(Apple’s LaserWriterspooler) has
turned up a numberof applicationsthat do not provide the Printing Manager
with a documentname;althoughthis feature is not required, it is nice for
usersthat shareprinters.

Someprinters (usually thosethat are sharedbetweenmany users,like the LaserWriter)
can provide the namesof the userswho are printing and the documentsthat are being
printed to othersinterestedin using the printer.

If the chosenprinter usesa documentname,the Printing Managergets the namefrom
the frontmostwindow’s title. If there is no front window, or if the window’s title is empty,
the Printing Managerdefaultsto “unknown.”

This methodwas chosenbecauseit works most transparentlyto applications:however,
it won’t work if your application doesn’t display windows when printing (for instance,
many applicationsthat use windows for their documentsdo not open their documents
when printing in responseto a Finder “Print” command).

As a generalsolution to this problem, you can put up a window containinga message
like “Press€—. to cancelprinting”, and give it the document’stitle. If the window is one
that doesn’t have a title bar (like dBoxProc),this title will not be displayed. MacApp
takesthis approach.If for somereasonyou don’t want to put up a visible window, you
can create a tiny window and hide it behind the menu bar: for instance, global
coordinatesof (1,1,2,2).Make sureyou usea plainDBox, so that no title will be drawn
(otherwise, in the unlikely casethat a user is using a Macintosh II with two stacked
screens,main screenon the bottom, the title might be visible on the upperscreen).

Since the Printing Managerchecksthe nameat PrValidatetime, call PrValidate
afterPrCloseDocand beforethe next PrOpenDoc,if you want unique names.

A numberof applicationsset the documentnamein the print recorddirectly. You should
not do this becausea) not all printerssupportthis field, and b) none are guaranteedto
support it in the future. (Apple does not guaranteethat internal fields of the Printing
Manager’sdata structureswill remain the same,the Printing Manageris targetedfor
substantialinternal change!)

Technica’Note #149 page 1 of 1 DocumentNamesand the Printing Manager



a a a



S

A bug in the MacintoshSE ROMs causesthe top drive to be slowerthan the

bottomone in two-drive machines.This bug is fixed in System4.2 and newer.

.

Macintosh Technical Notes

#150: MacintoshSE Disk Driver Bug

Written by: Mark Baumwell July 1, 1987

Updated: March 1, 1988

TechnicalNote #150 page 1 otl MacintoshSE Disk Driver Bug



a a



Macintosh Technical Notes

#151: SystemError 33, “zcbFreehasgonenegative”

Seealso: The Memory Manager

Written by: Bryan Stearns July 1, 1987
Updated: March 1, 1988

System3.2 introduceda new systemerror, ID=33, generatedby the MemoryManagerwhen it noticesthat a heaphad beencorruptedin a certain way.
This error is listed in the file “SysErr.a”as“negzcbFreeErr”.

The Memory Managerwill trigger an “ID=33” systemerror when, during someoperation
which scansthe objects in the heap, it seesthat its running count of free bytes
(zcbFree,an internal value) has becomenegative (an impossible feat in normal
operation).This is nearly always causedby writing zeros past the end of one of the
Memory Manager’sheap blocks (overwriting and corrupting the next block’s header,
making it appearto be a free block).

If you get this error, use a debugger(like Macsbugor TMON) when you attempt to
reproducethe error, to checkthe consistencyof the heapup to the point wherethe error
occurs. You may need to do this repeatedlyuntil you isolate the operation that is
corrupting the heap.

Note that althoughthe heapmay becomecorruptedduring a systemcall, this doesn’t
mean you’ve found a bug in the ROM; your code could be passingincorrect or invalid
parametersto this or a previoussystemcall, or could have corrupteda datastructure
used by a system call. More debugging is usually in order in this case; tools like
Discipline (included in TMON; also availablefrom users’groupsand electronicservices)
can help detectinvalid parametersin systemcalls. Also, there is a Macsbugcommand,AH, that can check the consistencyof the heap on every system call. See thedocumentationthat camewith your debuggerto seewhat specialfeaturesit offers.

A note about “SysErr.a”

TechnicalSupport is often askedfor an up-to-datelist of error codes. In general,this is
provided in “SysErr.a”, the file of error numbersshippedwith the most currentversion ofMPW. Admittedly, the documentationvalue of “SysErr.a” is sometimeslow (as in thecaseof negZCBFreeErr),but it may give you a clue asto what the error might mean.

.

TechnicalNote #151 page 1 of 1 SystemError 33, “zcbFreehasgonenegative”



I


















































































































































































































































































































































































































































































