
1

State-Retentive Power Gating of Register Files in
Multi-core Processors featuring Multithreaded

In-Order Cores
Soumyaroop Roy, Nagarajan Ranganathan, and Srinivas Katkoori

Department of Computer Science and Engineering
University of South Florida

Tampa, FL 33620
{sroy, ranganat, katkoori}@cse.usf.edu

Abstract—In this work, we investigate state-retentive power
gating of register files for leakage reduction in multi-core pro-
cessors supporting multithreading. In an in-order core, when a
thread gets blocked due to a memory stall, the corresponding
register file can be placed in a low leakage state through
power gating for leakage reduction. When the memory stall
gets resolved, the register file is activated for being accessed
again. Since the contents of the register file are not lost and
restored on wakeup, this is referred to as state-retentive power
gating of register files. While state-retentive power gating in single
cores has been studied in the literature, it is being investigated
for multi-core architectures for the first time in this work. We
propose specific techniques to implement state-retentive power
gating for three different multi-core processor configurations
based on the multithreading model: (i) coarse-grained multi-
threading, (ii) fine-grained multithreading, and (iii) simultaneous
multithreading. The proposed techniques can be implemented as
design extensions within the control units of the in-order cores.
Each technique uses two different modes of leakage states: low
leakage savings and low wake-up latency and high leakage savings
and high wake-up latency. The overhead due to wake-up latency
is completely avoided in two techniques while it is hidden for
most part in the third approach, either by overlapping the
wake-up process with the thread context switching latency or by
executing instructions from other threads ready for execution.
The proposed techniques were evaluated through simulations
with multiprogrammed workloads comprised of SPEC 2000
integer benchmarks. Experimental results show that in an 8-core
processor executing 64 threads, the average leakage savings were
42% in coarse-grained multithreading, while they were between
7% and 8% for fine-grained and simultaneous multithreading.

Index Terms—CGMT, FGMT, SMT, Niagara, M5, in-order.

I. INTRODUCTION

Advances in integrated circuit (IC) technology have helped
the semiconductor industry to keep pace with Moore’s law for
over five decades. Due to technology scaling, the minimum
feature size has continued to shrink while the chip density as
well as the transistor performance have continued to improve.
Thus, it has been possible to build increasingly complex
processor architectures with larger on-chip caches operating at
higher clock frequencies. In recent years, however, increased
power dissipation of chips has emerged as a fundamental
barrier that has severely restricted the upward scaling of clock
frequencies for further performance improvement [1].

Apart from the benefits offered by technology scaling,
advances in architectural design techniques have further im-
proved the performance of microprocessors. Superscalar CPU
architectures with multiple functional units were developed
so that several instructions could be executed simultane-
ously within a single clock cycle. Deeper pipelines and dy-
namic scheduling to allow out-of-order execution of instruc-
tion streams within a single thread are employed to exploit
instruction-level parallelism in the program. However, several
complex hardware units such as branch predictors, issue logic,
reorder buffers, etc. are needed to implement out-of-order
execution, which in turn requires higher power and die area
budgets. It has been reported that, with the same process
technology, a new microprocessor design with performance
improvement of 1.5x to 1.7x results in 2x to 3x increase in
the die area and 2x to 2.5x increase in the power consumption
[2]. Thus, power efficiency has become the epicenter of all
design efforts from an architectural standpoint as well.

One of the major reasons for the increase in power dissipa-
tion of circuits is the drastic increase in the leakage currents
in the deep submicron and nanometer technologies. It has
been reported that threshold voltage and gate oxide scaling
cause about 3-5X increase in the subthreshold and gate leakage
currents per generation [3]. Thus, combating leakage power
dissipation has become critical in nanoscale circuits, besides
dynamic and short circuit power. In this work, we explore
reducing leakage power in multi-core processor architectures
in the context of various multi-threading configurations.

While the CPU performance has been measured in terms
of the execution throughput of the single thread, lately, an
alternate metric, referred to as throughput performance, has
been gaining more prominence. Throughput performance is
defined as the number of threads that can complete execution
within per unit time by utilizing multiple CPU cores to perform
more computations in parallel. A survey of commercially
available multi-core processors can be found in [4]. As power
dissipation continues to be an increasingly difficult challenge,
there has been a shift in the paradigm in terms of CPU design.
Instead of building a large and complex out-of-order processor,
the designers are building multiple simple in-order proces-
sors within the same chip area. Each of those simple cores
could further support the simultaneous execution of multiple

Digital Object Indentifier 10.1109/TC.2010.249 0018-9340/10/$26.00 © 2010 IEEE

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

threads resident within the core. Such multi-core systems are
commercially available applied in high-end servers, gaming
platforms and embedded processors. Niagara [5] and Niagara2
[6] are multi-core general purpose microprocessors from Sun
Microsystems used in high end servers that feature up to
eight in-order cores. While each core in Niagara is capable
of executing four threads, each core in Niagara 2 is capable
of executing eight threads simultaneously. Intel’s Larrabee
architecture [2] for visual computing uses in-order CPU cores
that support an extended version of the x86 instruction set.
Each core supports execution of four hardware threads. The
number of CPU cores is implementation-dependent. MIPS
1004K coherent processing system [7] is comprised of 1-4
multi-threaded cores, where each core is capable of executing
two hardware threads simultaneously.

In this work, we propose a class of runtime control tech-
niques for fine-grained state-retentive power gating in integer
register files to save leakage energy in multi-core processors
featuring in-order cores that support hardware multithreading.
In state retentive power gating, the registers retain their states
through the power gating period. In an in-order core, when a
thread gets blocked due to a memory stall, the corresponding
register file can be placed in a low leakage state through
power gating for leakage reduction. When the memory stall
gets resolved, the register file is activated for being accessed
again. While state-retentive power gating in single cores has
been studied in the literature, it is being investigated for multi-
core architectures for the first time in this work.

The remainder of this paper is organized as follows. We
review various hardware multithreading approaches and the
power gating technique in Section II. The related works in the
area of power gating applied to reduce leakage in processors
are discussed. Section III describes the motivation for this
work and a schematic overview of the proposed techniques.
Sections IV, V, and VI describe the control details of register
file power gating for different multithreading approaches. The
experimental setup and results are presented in Section VIII.
Some conclusions are offered in Section X.

II. BACKGROUND AND RELATED WORK

In this section, we present an overview of various hardware
multithreading approaches followed by the power gating tech-
nique. Previous works relevant to the problem being addressed
in this paper are also presented in this section.

A. Hardware Multithreading

Hardware multithreading is an approach which enables a
processor to support the simultaneous execution of multiple
threads. A processor that supports hardware multithreading is
called a multithreaded processor. Multithreading approaches
are categorized according to how they are implemented in
hardware [8] and are briefly described here:

1) Coarse-Grained Multithreading (CGMT): In this ap-
proach (Figure 1a), a thread uses all CPU resources until a
long latency event, like a cache miss, a long latency operation,
etc., occurs. Such an event causes a context switch and another
ready thread is switched in, which runs till it encounters a

Switch
threads
during

long
latency
stalls

IF

ID

EX

MEM

WB

Single Core
Pipeline width = 1

Time t Time t+x

Thread T1 Thread T2

(a) (b) (c)

Fig. 1: Multithreading approaches: (a) coarse-grained multithreading
(CGMT); (b) fine-grained multithreading (FGMT); (c) simultaneous
multithreading (SMT); A 5-stage MIPS pipeline model is shown.

long latency event. This implementation has a context switch
latency associated with it. This is because, depending on the
pipeline stage where the long latency event is detected (e.g.,
I-cache miss happens in IF-stage but D-cache miss happens
in MEM-stage in a MIPS pipeline [9]), the instructions in the
preceding stages are squashed, while the instructions in the
succeeding stages are allowed to finish before the next thread
can be run. Each thread context has a private copy of the
register file, instruction fetch buffers, if any, and control logic
state, while the rest of the CPU resources are shared. This
approach is also known as blocked multithreading technique.

2) Fine-grained multithreading (FGMT): In this category
(Figure 1b), thread context switching happens at the boundary
of one of more clock cycles for ready threads (i.e. threads
that are not blocked due to long latency events). Each thread
context has a private copy of the register file and control
logic state, while the rest of the CPU resources are shared.
Instruction fetch-buffers may or may not be shared. FGMT is
also known as interleaved multithreading.

3) Simultaneous multithreading (SMT): In SMT
(Figure 1c), instructions from two or more threads are
scheduled simultaneously on different functional units
during the same cycle. SMT typically works on superscalar
processors that have hardware to support simultaneous
execution for two or more instructions in a single cycle.
Each thread context has a private copy of the register file,
instruction fetch buffers, interstage buffers, and control logic
state. The rest of the resources are shared.

B. Power Gating

Power gating is a multithreshold CMOS (MTCMOS) circuit
design technique that is widely used to reduce leakage power
during standby periods of circuit blocks [10]. In this technique,
a high threshold voltage (VT) transistor, known as a sleep
transistor, is inserted between the actual ground and the circuit
ground, called the virtual ground, as shown in Figure 2. When
the circuit block is idle, the sleep transistor is placed in the
cut-off mode, thereby cutting off the standby leakage path
(due to stack effect) between the supply and the ground. The
circuit is referred to be in the sleep or inactive state. During
this state, the virtual ground charges up to a steady state

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

Fig. 2: Power gating with a footer sleep transistor.

value that is determined by the resistive divider formed by
the other transistors in the stack. To bring the circuit back to
the active state, the virtual ground is restored to its nominal
value by placing the sleep transistor in the saturation mode.
Since this requires discharging the virtual ground node to
actual ground, there is a wake-up latency associated with
it. Moreover, since the deactivation and activation of the
circuit block involves discharging and charging the output
capacitances of the internal circuit nodes, it restricts how often
the circuit block can be transitioned between the two states to
achieve overall energy savings. The period of time that the
circuit block should be kept in sleep state before bringing it
back to the active state so that the leakage energy savings
equals the dynamic power overhead incurred circuit activation
is known as the breakeven period [11].

The leakage reduction in circuits depend on the effective-
ness of power gating which in turn is impacted by long
wakeup latency and when the period of idleness is larger
than the breakeven period. To improve the effectiveness of
power gating, Singh et al. [12] proposed a better method
called intermediate strength power gating in which multiple
sleep states with different leakage levels and wakeup latencies
are used to trade off between leakage reduction and wakeup
latency. In our work, we use the intermediate strength power
gating technique for state retentive power gating of the register
files in the multi-core processors.

C. Related Work

Due to its runtime controllability and the magnitude of
leakage savings it achieves, power gating has been widely used
in reducing leakage in CPU components in both research and
commercial products. It has been applied to reduce leakage
in caches [13], [14] by partitioning them and putting one or
more partitions to sleep when they are idle. Its effectiveness in
reducing leakage in arithmetic functional units in CPU cores
has been explored in numerous works [11], [15]–[21]. More
recently, power gating has also been used as a primary power
management technique in modern commercial processors [22],
[23].

Although there is significant work reported in the literature
on leakage power reduction in functional units, very few works
in the literature have tried to address leakage reduction in
register files. A multi-banked register file design to improve
access speed and reduce total power is presented in [24],

while low-leakage register files with dynamic controls have
been proposed in [25], [26]. A state-retentive register file
designed for the ARM processor was fabricated using 65-nm
[27] technology just to study the leakage aspects of a register
file in general. While this is an important work in the context
of state retentive register file design for leakage reduction, the
impact of its application in the context of multi-core processors
has not been explored. Thus, our work described in this paper
is the first such attempt, to the best of our knowledge, at
investgating fine-grained leakage reduction in the context of
multi-core processor architectures.

III. PROPOSED APPROACH

The motivation for our work arises from the simple ob-
servation that, in an in-order CPU, when an instruction from
a particular thread encounters a pipeline stall, no further
instructions from that thread (i.e., following instructions in
program order) may be executed till that stall gets resolved.
Thus, the thread gets blocked and the hardware units that are
private to that thread could be placed in a low-leakage state.
When the pipeline stall is resolved, the thread gets ready to run
and those hardware units need to be brought back to the active
state from the low-leakage state so that they are functional
again.

As discussed earlier, the datapath components that are repli-
cated to support hardware multithreading are the register files
and buffer structures such as, instruction fetch buffers, load-
store buffers, and, in some cases, pipeline registers. Among
these, the register files are the largest in area and at the same
time are the leakiest. For example, the SPARC architecture
uses windowed integer register files with eight windows [5].
In the Niagara processor, each thread requires 128 registers for
the eight windows (with 16 registers per window) and another
32 global registers, which makes a total of 160 registers
per thread. Since, each SPARC core supports four hardware
threads, there are a total of 640 registers in each SPARC core.
Each register is 64 bits in size and there are additional bits for
implementing error correcting codes (ECC). This makes each
integer register file in the Niagara processor a 5 KB storage
structure. If this is compared with the L1 data cache, which
is private to each core in the Niagara processor and is 8 KB
in size, the register file has more than 60% of the storage size
of the L1 data cache. Thus, placing parts of the register files
in a low-leakage state during pipeline stalls appears to be a
very attractive option for saving over all leakage energy in a
processor core.

Another observation is that when multiple CPU cores are
required to be accommodated to build a multi-core processor,
the caches that are private to each core are shrunk in size
to fit the chip within a given area limit. This results in an
increase in the cache miss rates experienced by each core.
For instance, as mentioned earlier, each core in the Niagara
processor features an 8 KB private L1 data cache which results
in average miss rates of around 10% [5]. However, having four
threads to run on a single core hides the latencies in stalls due
to access misses from the L1 and L2 caches very effectively.
Thus, as the number of cores and the number of threads per

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

core are increased, the fraction of time for which the integer
register files for each thread stays idle due to memory stalls
also increases.

The chip power breakdown for the Niagara [28] (Max 63 W
@1.2 GHz, 1.2V in 90 nm CMOS) and Niagara2 [6] (Max 84
W @ 1.4 GHz, 1.1 V in 65 nm CMOS) processors show that
the SPARC cores consume 27% and 31% of the total chip
power, respectively. The total leakage power is about 26%
and 22% of the total chip power, respectively. The rest of the
power is consumed primarily by the shared L2 cache and I/O.
However, the further breakdowns of the power consumption
of each core into its components are not published. Therefore,
we take the following approach to estimate the leakage power
contributed by the register file with respect to the total power
consumption of the SPARC core. The megacell specification
[29] for OpenSPARC T1 (open source version of Niagara)
indicates that the main components in each SPARC core are
the L1 data and instruction caches, the integer register file
sets (more than 60% in functional size of the L1 data cache),
and the integer ALU. The unified L2 cache and the floating
point unit are shared by all the eight cores. This indicates
that the functional size of the register file set in each SPARC
core is about 23% of the combined size of the L1 caches
and the register file set. We further reasonably assume that
the primary contributors of the leakage power in a core when
it is consuming its peak power rating are the L1 caches and
the register file set. It is estimated that the leakage power
is about 40% of the core dynamic power for multi-core
processors in sub 65-nm technologies [30]. According to the
above estimates, the component of leakage power consumed
by the register file set in each core is about 10% of the total
core power. The above calculation assumes that the number of
hardware thread contexts supported by each core is four (for
Niagara). If the number of TCs is increased beyond four (to
up to eight), this component is likely to be even larger.

To estimate the breakdown of the power consumption of
the register file in terms of dynamic and leakage components,
we take the following approach. We calculated that the per
thread register file activity factor is about 12% writes and 25%
reads averaged over all the number of register file reads and
writes over all the workloads. For the above activity factor,
using the power characterization tables published for 45-nm
Nangate D-flip-flops in the typical corner, we estimated that
the leakage power is about 71% of the total power consumed
by the register file. In the slow corner, the leakage power is
about 69%, while in the fast corner, the leakage power is about
82% of the total register file power.

It is important that any approach to reduce leakage based
on the stalls incurred by hardware threads meet two important
requirements:

1) The leakage reduction technique that is chosen to put
the register file to a low-leakage state should be state
retentive so that, when it is brought back to the active
state, its contents are preserved.

2) Every dynamic leakage reduction technique has a perfor-
mance overhead when transitioning between the active
and the low-leakage states. Thus, it is important to
ensure that the overhead does not negatively impact the

overall performance of the processor.
In this work, we apply state-retentive power gating to save

leakage in integer register files during memory stalls in mul-
tithreaded processor cores. Figure 3 illustrates the schematic
view of this approach for a core which supports execution
of four hardware threads. The fundamental idea is that when
a memory stall (cache miss) is detected, the running thread
either gets blocked or gets switched out and, therefore, its
register file is placed in a low-leakage state. Eventually, when
the stall gets resolved (following a cache line fill) the register
file is put back in the active state.

Fig. 3: Schematic view of the proposed approach.

An intermediate strength power gating technique presented
in [12] is applied to characterize 32 entry 64-bit integer register
file for leakage savings. The technique is also fine-grained in
that the wake-up latencies are between three and five clock
cycles (for a clock frequency of 1 GHz). We ensure that wake-
up latency associated with this technique is effectively hidden
by virtue of more than one thread sharing the CPU pipeline.
Further, the register files have two distinct low-leakage states
- one with lower leakage savings and lower wake-up latency;
and the other with higher leakage savings and higher wake-up
latency. Depending on the duration of the stall and the time
between when the stall gets resolved and the register file is
accessed again, it is placed is one of those low-leakage states.
This is elaborated in Figure 4. The register file is designed
to have two low-leakage states, sleep1 and sleep2. When an
L1 miss is incurred by an instruction from a particular thread,
that thread’s register file is placed in sleep1 state. If the L1
fill request further experiences an L2 miss, then the register
file is placed in the higher leakage savings state, sleep2 state.
When the L2 miss completes, the register file is brought back
to the sleep1 state. The wake-up latency, tw2, is overlapped
with the L1 fill latency and, thus, gets hidden. If, however, an
L2 miss is not experienced, it continues to stay in sleep1 state.
When the L1 miss completes, the register file is brought back
to the active state. The wake-up latency, tw1, is hidden very
effectively due to multiple threads running on the core.

The main contributions of this work are highlighted as
follows:

• We propose specific techniques to implement state-
retentive power gating for three different multi-core
processor configurations based on the multithreading
model: (i) coarse-grained multithreading (CGMT), (ii)
fine-grained multithreading (FGMT), and (iii) simultane-
ous multithreading (SMT).

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

Fig. 4: Intermediate strength power gating.

• The proposed techniques can be implemented as design
extensions to the control units of the in-order processor
core, with incurring negligible control overhead.

• The overhead due to wake-up latency is completely
avoided in two techniques while it is hidden for most
part in the third approach, either by overlapping the wake-
up process with the thread context switching latency or
by executing instructions from other threads ready for
execution.

IV. REGISTER FILE POWER GATING IN CGMT APPROACH

In the CGMT approach, whenever a thread is switched,
there is a multiple cycle penalty incurred due to the context
switching process. The penalty is due to either squashing (or
rolling back) of instructions from the pipeline or draining of
the pipeline following an event that triggers the context switch.
For instance, when a thread encounters a data load miss, all
the instructions in the pipeline following the load instruction
are squashed before a ready thread could be switched in.
Conversely, in the case of an instruction fetch miss, all the
leading instructions in the pipeline are allowed to finish before
the next ready thread is switched in. In both the cases, bubbles
are inserted into the pipeline that negatively affects the pipeline
performance. A direct approach to avoid this switch penalty
is to have copies of the pipeline registers at each stage,
which results in increased area and complexity of the CPU
core. However, for short pipelines, the context switch penalty
is only a few cycles and the additional hardware does not
justify the small improvement in performance (for e.g., IBM
Northstar/Pulsar [9]).

In this section, we describe the timing details involved in
putting an integer register file in and out of low-leakage state
following a memory stall. The wake-up latency of the register
file is completely overlapped with the thread switch latency
discussed above. We consider a CGMT model in which thread
context switching happens only during instruction fetch misses
(referred to as fetch misses in the remainder of the text) and
data load misses (referred to as load misses in the remainder of
the text). Also, the CPU pipeline is modeled around a MIPS
pipeline with instruction fetch (IF), instruction decode (ID),
execute (EX), memory (MEM), and writeback (WB) stages.

However, the register file is read during the first cycle in
the EX-stage and then dispatched to the arithmetic functional
units.

A. Power Gating Control During Fetch Miss

Figure 5 illustrates the scenario and explains the timing
details of putting a register file to sleep following a fetch miss.
The figure shows the state of the pipeline during clock cycle
c, when thread T1 is running while thread T2 is in the ready
state. The scenario described in this figure assumes that:

1) T2 was switched out earlier following a fetch miss and
was eventually put back in the ready state after its fetch
miss completed.

2) T2’s register file is currently in a low-leakage state and
needs 3 cycles to wake up before it can be accessed.

3) All the stages of the pipeline are busy executing T1’s
instructions, Ik−4 to Ik.

While fetching Ik, an instruction fetch miss is encountered
following which T1 starts to drain in cycle (c+1). This is done
so that instructions Ik−4 to Ik−1 finish before a thread context
switch happens. During this draining period, T1’s register file
needs to be active so that reads and writes may be performed
to it. Assuming that no other instruction in the pipeline gets
stalled, the last instruction, Ik−1, finishes in cycle (c + 3).
During this cycle, T2’s register file is signaled to wake up. In
cycle (c + 4), thread T2 gets switched in and it starts to fetch
instruction Ij , while T1’s register file is put to sleep. By the
time Ij reaches the EX-stage in cycle (c+6) and accesses T2’s
register file, it is already in active state. The wake-up latency is
overlapped with the context switching latency and, therefore,
the pipeline does not incur any stalls due to the unavailability
of the register file.

Eventually, as shown in Figure 6, T1’s fetch miss completes
at cycle (c + m) and T1 switches in to the ready state.
Then, we can consider waking up T1’s register file. Two

I(k) I(k−1)c

c+1

c+2

c+3

c+4

T2’s regfile will be accessed earliest in cycle c+6 in EX−stage (3 cycle wakeup)

T1 gets
switched

out, while T2
starts running

T1’s regfile
is put

to sleep

T2’s regfile
is signaled
to wake up

T1 is run−
ning, while
T2 is ready

to run

T1 drains,
while T2

waits for the
pipeline to

be available

Instructions
I(k−4) to

I(k−1)
finish

T1 encounters
a fetch miss

for I(k)
I(k−2) I(k−3) I(k−4)

I(k) I(k−1) I(k−2) I(k−3)

I(k−1) I(k−2)

I(k−1)

I(j)

IF ID EX MEM WB

Thread T2Thread T1

cycle

Fig. 5: Timing details for putting register files to sleep following an
instruction fetch miss.

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

c+m

T1’s fetch
miss

completes

c+n+1

T1 resumes execution from instruction I(k)

c+n

T1’s regfile will be accessed earliest in cycle c+n+3 in EX−stage (3 cycle wakeup)

Eventually, T2 encounters a fetch miss and finishes draining

T1 becomes
ready to run
from being

switched out

T2’s regfile
is put

to sleep

T1’s regfile
is signaled
to wake up

T2 gets
switched

out, while T1
starts running

T2 finishes
draining

I(l) I(l−1) I(l−2) I(l−3) I(l−4)

I(p)

I(k)

IF ID EX MEM WB

Thread T2Thread T1

cycle

Fig. 6: Wake-up details of T1’s register file if the pipeline is busy
when its fetch miss completes.

possible scenarios occur: (1) T2 is currently running; (2) T2

is switched out and the pipeline is currently idle. In scenario
1, there is no need to wake up T1’s register file because T1

will get to run only after T2 gets switched out following a
memory stall (assume a fetch stall again). This situation is
shown in Figure 6, when at cycle (c+n), T2 finishes draining
following a fetch stall and gets switched out. T1’s register file
is signaled to wake-up during this cycle. During the next cycle,
T1 resumes execution from Ik, which would need to access
the register file earliest during the EX-stage. This allows the
3-cycle wake-up period to for T1’s register file. In scenario 2
(Figure 7), however, T1 gets to run right after the fetch miss
completes because T2 is switched out and the pipeline is idle.
Therefore, T1’s register file is signaled to wake up at cycle
(c + m). Since T1 resumes execution (from instruction Ik) at
cycle (c + m + 1), T1’s register file does not get accessed till
cycle (c + m + 3) when it reaches the EX-stage. In 1, T1’s
register file stays in a low-leakage state for (n − 5) cycles,
while in 2 it stays in a low-leakage state for (m − 5) cycles.

B. Power Gating Control During Load Misses

During data store misses, the thread need not stall as long as
the result of the store instruction can be placed in a store buffer
(unless the store is part of a specialized atomic instruction).
However, during a data load miss, the thread gets stalled and

c+mT1’s fetch
miss

completes

I(k)c+m+1

T1 resumes execution from instruction I(k)

T1’s regfile will be accessed earliest in cycle c+m+3 in EX−stage (3 cycle wakeup)

If T2 is also in a switched out stage,
then T1’s regfile is signaled to wake up

T1 becomes
ready to run
from being

switched out

T2’s regfile
is put

to sleep

T1 starts
running

IF ID EX MEM WB

Thread T2Thread T1

cycle

Fig. 7: Wake-up details of T1’s register file if the pipeline is idle after
its fetch miss completes.

it starts the transition process towards being switched out.
At the same time, its register file is placed in a low-leakage
state. In case, a newly switched in thread always starts from
the IF-stage (as in Niagara), then the wake-up latency of the
register file can be hidden with the number of cycles that the
instruction takes to traverse from the IF-stage to the EX-stage.
However, if the load instruction that encounters the load miss
is placed in a load buffer in the MEM-stage so that it may
resume execution as soon as the load miss gets processed, then
efforts are need to hide the wake-up latency. Load instructions
write into the register file during the W-stage, and, therefore,
the register file needs to be in active state before it can be
written into.

IF ID EX MEM WB

I(k) I(k−1) I(k−2) I(k−3) I(k−4)c

c+1

c+2

c+m

T2’s regfile will be accessed earliest in cycle c+4 in EX−stage (3 cycle wakeup)

T2 does not switch out till it encounters a memory stall

T1 gets
switched

out, while T2
starts running

T1 becomes
ready to run
from being

switched out

T1 is run−
ning, while
T2 is ready

to run

Instruction I(k−4) finishes,
while I(k−3) is marked pending

T1 encounters
a load miss
for I(k−3)

Instructions
I(k−2) to I(k)

are
squashed

I(k) I(k−1) I(k−2)

I(k−3)

T2’s regfile
is signaled
to wake up,
while T1’s

regfile is put
to sleep

I(k−3)

I(l) I(l−1) I(l−2) I(l−3) I(l−4)

I(j)

I(k−3)

Eventually, T1’s load miss completes

Load miss

Thread T2Thread T1

cycle

Fig. 8: Timing details for putting a register file to sleep following a
data load miss.

Figure 8 shows the register file sleep strategy following a
load miss. As in Figure 5, this figure also shows the state of
the pipeline during clock cycle c, when thread T1 is running
and thread T2 is in the ready state. The scenario described in
this figure assumes that:

1) T2 was switched out earlier following a fetch miss and
was eventually put back in the ready state after its fetch
miss completed.

2) T2’s register file is currently in a low-leakage state and
needs 3 cycles to wake up before it can be accessed.

3) All the stages of the pipeline are busy executing T1’s
instructions, Ik−4 to Ik.

Following a load miss encountered by thread T1 while
executing instruction Ik−3 in the MEM-stage, instructions
Ik−2 to Ik are squashed in cycle (c+1), while Ik−3 is placed
in the load buffer. Since T2 will be switched in to be executed
during the next cycle, its register file is signaled to wake up,
while T1’s register file is put to sleep. In cycle (c + 2), T2

resumes execution by fetching instruction Ij , which does not
access the register file till cycle (c + 4), thereby giving it the
adequate number of cycles to become active.

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

c+n+1
I(k−3)

is
stalled

I(k−2) I(k−3)

I(p−3)T2 gets
switched
out, while
T1 starts
running

I(k−2) may read from T1’s regfile this
cycle in EX−stage (3 cycle wakeup)

c+n+2
I(k−3)
is still
stalled

I(k−1) I(k−3)

I(p−3)

I(k−2)

c+n+3
I(k−3)

writes into
T1’s regfile

(3 cycle
wakeup)

I(k−2) I(k−3)

I(p−3)

I(k−1)I(k)

c+n

Instruction
I(p−3)

is marked
pending

Instructions
I(p−2) to I(p)

are
squashed

I(p) I(p−1) I(p−2)

I(k−3)
T1’s regfile is signaled to wake up,

while T2’s regfile is put to sleep

I(p−3)

If there is a RAW hazard between I(k−3) and I(k−2) , data is forwarded
from the load buffer to the functional unit that needs it as an operand

IF ID EX MEM WB

Thread T2Thread T1

cycle

Fig. 9: Timing details for waking up T1’s register file from sleep after
its load miss completes and it gets ready to run.

Eventually, when T1’s load miss completes during a later
cycle, say (c + m), T1 transitions from switched out state to
the ready state. Again, the decision to wake up its register
file depends on whether T2 is running (condition shown in
Figure 9) or is switched out. In the former case, the register
file is signaled to wake up when T2 eventually encounters a
stall (a load miss this time) and gets switched out (cycle (c+n)
in Figure 9). In the following cycle, cycle (c+n+1) as shown
in the figure, T1 resumes execution from Ik−2 in IF-stage and
Ik−3 in W-stage. Since a load instruction needs to write into
the register file in the W-stage, it is stalled for three cycles
to allow the 3-cycle wake-up latency needed by the register
file. This timing also coincides with the earliest cycle that T1’s
register file need to be accessed by Ik−2 (when it reaches the
EX-stage). If, however, there is a read-after-write (RAW) data
dependency between Ik−3 and Ik−2, then the result of the load
operand is forwarded to the functional unit that needs it as a
operand to execute instruction Ik−2.

V. REGISTER FILE POWER GATING IN FGMT APPROACH

In contrast to the CGMT approach, FGMT and SMT
approaches do not typically suffer from multiple cycle thread
switch penalties. This is because, in these approaches, each
pipeline stage processes one or more instructions from mul-
tiple threads. If an instruction from a thread encounters a
stall, no further instructions from that thread are fetched to
be dispatched to the pipeline. Instead, instructions from one
or more of the ready threads are fetched and processed. The
policy to select a thread to fetch from may vary across designs.
For instance, Niagara uses round-robin (RR) policy to select
one thread among a list of ready threads, while Niagara2
implements a least recently fetched (LRF) policy to do the
same. As long as there are ready threads available to the CPU,
no bubbles are inserted into the pipeline. This very idea is

c

T1
encounters

a fetch
miss Fetch miss

T1 gets
switched out

c+1
T1’s register
file is put to

sleep

T1’s register
file might be

written into in
the W−stage

When, T1’s fetch miss completes, it transitions from blocked to ready.

c+m
T1’s regfile
is signaled
to wake up

c+m+1

T1’s regfile will be needed earliest in cycle c+m+3

T1 can
resume

execution
right away

T1’s
fetch miss
completes

Thread T2Thread T1 Thread T4Thread T3

IF ID EX MEM WB

cycle

Fig. 10: Timing details for putting a thread’s register file in and out
of low-leakage state following a fetch miss in FGMT.

utilized to hide the wakeup latency of the register files when
they are transitioning from the low-leakage state to the active
state.

A. Power Gating Control During Fetch Miss

A CPU that is designed to support the FGMT approach,
fetches an instruction from a new ready thread each cycle and
dispatches it to the pipeline. Figure 10 illustrates the timing
details of putting a thread’s register file in and out of low-
leakage state following an instruction fetch miss. It is assumed
that the CPU has 4 hardware threads, T1−4, and a round-robin
fetch policy is implemented. The pipeline contents are shown
for clock cycle c. Instruction from all four threads are currently
being processed by the different stages in the pipeline when
an instruction from T1 encounters a fetch miss. Therefore, in
the next cycle, (c+1), one of the ready threads is selected (T2

in the figure) and an instruction from that thread is fetched.
The decision to assert the sleep control to T1’s register file
depends on whether there are any instructions belonging to
T1 in the pipeline and require to access the register file. For
instance, as shown in the figure, one of T1’s instructions is
in the W-stage in cycle c. Therefore, it is imperative that the
register file be active till that instruction finishes writing into
the register file. In this case, T1’s register file is put to sleep
at the end of cycle (c + 1).

Eventually, when T1’s fetch miss completes at cycle (c+m),
it becomes ready to run. T1’s register file is signaled to wake
up right away. Assuming that it is indeed selected by the thread
scheduler in the next cycle, i.e., cycle (c+m+1), it will access
T1’s register file earliest in cycle (c+m+3), thereby providing
for the 3-cycle wake-up latency.

B. Power Gating Control During Load Miss

In FGMT processors, when a load miss is detected for
an instruction from a thread, all the instructions following
the load instruction in the pipeline are squashed (or rolled
back to the instruction buffer). However, since in each cycle

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

c
T1

encounters
a load miss

load miss

T1 is marked unavailable and an
instruction from T2 is fetched

c+1

T1’s regfile
is put to

sleep

T1’s load
instruction
is marked
pending

c+mT1’s load
miss

completes

T1’s regfile
is signaled
to wake up

c+m+1T1 can
resume

execution

T1’s register file is accessed earliest in cycle c+m+3 either by the pending load or the
new instruction. If there is a RAW hazard between the two T1’s instructions, data

is forwarded from the load buffer to the functional unit that needs it as an operand.

Writeback to
T1’s regfile

is stalled for
2 more cycles

When, T1’s load miss completes, it transitions from blocked to ready

Thread T2Thread T1 Thread T4Thread T3

IF ID EX MEM WB

cycle

Fig. 11: Timing details for putting a thread’s register file in and out
of low-leakage state following a data miss in FGMT.

a different thread is dispatched to the pipeline in an FGMT
approach, the number of instructions squashed is expected to
be much smaller than that in the case of CGMT. The load
instruction itself may also be squashed or it may be marked
pending at the MEM-stage (in a load buffer). The choice of
implementation here impacts the wake-up strategy applied to
wake up the register file for a stalled thread when its load
miss completes. In the former case (as in Niagara), the wake-
up latency of the register file is overlapped with the number of
cycles that the instruction takes to reach the EX-stage from the
IF-stage (described earlier in Section IV-B). However, in the
latter case (shown in Figure 11), the writeback to the register
file is deferred for additional cycles (2 cycles in the figure)
to account for the wake-latency. If there is a RAW hazard
between the two T1’s instructions in the pipeline, then data is
forwarded from the load buffer to the consuming instruction
when it reaches the EX-stage.

VI. REGISTER FILE POWER GATING IN SMT APPROACH

We model a simultaneous multithreading in-order core
processor [2], [31], in which each pipeline stage is capable of
processing multiple instructions from distinct threads during
the same clock cycle. To support this capability, each pipeline
stage is equipped with stage buffers for each thread context.
Once an instruction is processed by the stage, it is placed in the
stage buffer for its thread context for the next stage to process
it in a subsequent clock cycle. However, if an instruction gets
stalled at a stage due to a multicycle latency operation, like an
integer multiplication or a memory stall, it is marked blocked
or unavailable till the operation finishes. Along with that, all
the instructions from that thread in all the preceding stages are
also marked blocked. Each stage picks up instructions from
only ready threads to process during a clock cycle.

Fig. 12: Schematic view of a pipeline organization to support SMT
in in-order cores.

Figure 12 shows the schematic view of this structure. It
shows a snapshot of two back to back stages of the pipeline,
Sk−1 and Sk. Sk−1 processes instructions from threads T3

and T4 and places them in their respective thread buffers in
that stage. Sk, on the other hand, picks up instructions from
threads T1 and T4 from Sk−1’s stage buffers, processes them,
and places them in their respective thread buffers in this stage.
Thread T2 is shown to have been marked as unavailable (the
circular shape in the figure) or stalled in Sk−1 because it is
currently performing a multicycle latency operation. Also, an
instruction from T3 cannot be processed by Sk since the buffer
for thread T3 is full in this stage.

In this SMT core, placing the register file in and out of the
low-leakage state during both fetch misses and data misses is
very similar. Once a miss is detected, the thread is marked
blocked in all the stages in the pipeline so that the register
file may be put to sleep immediately. Note that this is different
from the regular case in which the thread is marked blocked
only in the preceding stages. When the miss completes, the
register file is signaled to wake up but the thread is marked
ready only after a few additional cycles to account for the
wake-up latency of the register file. As long as there are
instructions from other ready threads in the pipeline, the
additional blocked cycles do not result in any performance
degradation.

VII. DISCUSSION

A summary of the proposed techniques for CGMT, FGMT,
and SMT cores is presented in Table I. In the CGMT approach,
the wake-up latency of the register files is overlapped with the
latency associated with the latency of thread context switching.
It can also be observed that, since no more than one thread
is active simultaneously, the register files for all the other
threads, irrespective of whether they are stalled or ready, may
be kept in low-leakage states. Thus, as the number of threads
are increased in a CGMT approach, it is expected that the
leakage savings in the register files also increase linearly. On
the other hand, in the FGMT and SMT approaches, multiple
threads are simultaneously active in the CPU at the same time.
Therefore, the leakage savings achieved in these approaches
are not expected to scale with the number of hardware thread
contexts supported by the CPU. Instead, they are expected to
be proportional to the fraction of the time that the threads
spend waiting on memory stalls.

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

TABLE I: A Summary of the proposed techniques
Control Feature CGMT FGMT SMT

Sleep after a fetch miss Wait till the pipeline drains
Wait till there are no instructions
from the target thread in the
pipeline

Immediately; block all the
instructions belonging to this
thread in the entire pipeline

Wake up after the fetch miss
completes

When the thread gets switched in
(its state changes from ready to
run)

As soon as the fetch miss
completes

As soon as the fetch miss
completes

Performance degradation due to
wake-up overhead

Zero cycles; the thread resumes
execution from the IF-stage

Zero cycles; the thread resumes
execution from the IF-stage

Best case is zero; there are
instructions available from other
threads. Worst case is wake-up
latency number of cycles;
otherwise.

Sleep after a load miss
Immediately; any following
instructions in the pipeline are
squashed

Immediately; any following
instructions from that thread in the
pipeline are squashed

Immediately; block all the
instructions belonging to this
thread in the entire pipeline

Wakeup after the load miss
completes

When the thread gets switched in
(its state changes from ready to
run)

As soon as the load miss completes As soon as the load miss completes

Performance degradation due to
wake-up overhead

Zero cycles; either the load
instruction or the instruction
following the load resumes
execution from the IF-stage.

Zero cycles; either the load
instruction or the instruction
following the load resumes
execution from the IF-stage.

Best case is zero; there are
instructions available from other
threads. Worst case is wake-up
latency number of cycles;
otherwise.

Further, in the CGMT and FGMT cores, the latency of
putting a register file from a low-leakage state to the active
state can be overlapped completely, thereby not having to incur
any performance overhead. However, for the SMT cores, per-
formance degradation can happen when there are not enough
ready threads in the core and keeping a thread blocked for the
additional cycles inserts bubbles into the pipeline. However,
the likelihood of this scenario can be reduced by increasing
the number of threads that the SMT core is able to support.

A. Control Overhead

The techniques proposed for controlling the sleep and wake-
up of the register files impose a small overhead on the control
logic in terms of the logical complexity involved. This is
because for the following reasons:

• No additional thread states are required by the control
logic to support the proposed techniques. In a CGMT
core, a thread is one of running, ready, switched out,
and blocked. In FGMT and SMT cores, each thread is
in one of running, ready, and blocked states. In CGMT,
the wake-up of a register file is initiated as soon as the
corresponding thread transitions from ready to running.
In FGMT, the wake-up is initiated when the thread
transitions from blocked to ready state. Only in the SMT
approach, a thread is not allowed to transition from
blocked to ready state till its register file is active. This
would typically be an additional 1-2 cycle because, after
the cache fill is serviced, it usually takes 1-2 cycles for
the instruction or the data to be forwarded to the fetch
buffer or the load buffer, respectively [7], [32].

• The pipeline drain and squash mechanisms are already
implemented in the control logic to support multithread-
ing.

• Data-forwarding, which is used to supply the result of a
load instruction to a following instruction that has a RAW
dependency on that instruction, is also a very common
technique that is supported in almost any microprocessor
core.

VIII. EXPERIMENTAL SETUP AND RESULTS

In this section, we describe the experimental setup used
in this work to evaluate the effectiveness of the proposed
techniques in multi-core processors.

A. Integer Register File Characterization

For the purpose of estimating leakage characteristics and
the latency of a register file with intermediate-strength power
gating, we consider a 32-entry 64-bit flip-flop based NOR-
decoder register file (without any error correction code bits)
with two read ports and one write port in 45nm FreePDK
technology [33]. The layout design of a D-flip-flop from
the Nangate 45 nm open cell library [34] was extended
to include the two read ports and one write port. Instead
of laying out the entire register file and then extracting a
spice netlist with global parasitics, spice netlists with local
parasitics for a 1-bit flip-flop based cell, 1-bit NOR-decoder
slice, and the sleep transistor cells were extracted using the
RC extraction tool, Calibre by Mentor Graphics. The extracted
spice modules were structurally instantiated in spice to emulate
a cell-based extraction supported by Calibre. The read/write
latency, steady-state leakage, wake-up latency, and breakeven
period characterization of the register file was performed using
spice simulations using HSPICE. To measure the write latency,
200 randomly chosen 64-bit vectors were used to write into
written into 200 randomly chosen entires in the register file.
For each of the 200 instances of the writes, 100 entries were
read on each of the two read ports to measure the read latency.
The average latency was then computed as the arithmetic mean
of the latencies over all the simulation runs. The average
access latency was computed to be 0.89 ns using devices
in the typical corner. The supply voltage, VDD was set to
1.1 V and operating temprerature was set to 25◦ C. The
steady-state leakage was computed by setting the virtual VSS

to about 170 mV for leakage state sleep1 and about 250
mV for leakage state sleep2 for each of the 200 functional
states of the register file desribed above. We obtained steady-
state leakage reductions of 36% and 52%, respectively. The

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10

wake-up latency and the breakeven period were computed by
performing a transient analysis after asserting the gate of the
sleep transistors again for each of the 200 functional states of
the register file described above. Their wake-up latencies, for
a clock frequency of 1 GHz, were set at 3 cycles and 5 cycles,
respectively. The breakeven periods were shorter than the
wake-up latencies. These leakage reduction and the wake-up
latencies, tabulated in Table II, are used in the experimentation
phase with the architectural simulator, which is described in
Section VIII-B.

TABLE II: Register File Leakage States
Leakage Normalized Wakeup Latency

State Leakage (1 GHz Clock)
active 1 -
sleep1 0.64 3 cycles
sleep2 0.48 5 cycles

B. Processor Configurations and Workload Details

We used the M5 simulator [35] for modeling the multi-
core processors featuring multithreaded CPU cores. The M5
simulator supports four different CPU models to provide
simulation platforms for functional and detailed simulations.
Among them, O3CPU models a detailed out-or-order pro-
cessor core and the InOrderCPU models a detailed in-order
processor core. The in-order code has some default support
for both CGMT and SMT models. It was further extended to
provide comprehensive support to model the multithreading
approaches described in this paper. Since the M5 simulator,
particularly the in-order code, currently has the comprehensive
support for the DEC Alpha ISA in syscall emulation mode, we
run all our detailed simulations for the Alpha ISA. However,
we model the multi-core multithreaded processors based on
the Niagara 1 core, which is a SPARC processor, without the
floating point hardware.

TABLE III: SPEC 2000 Integer Benchmarks
Name Dynamic Instruction Count (Millions)
vpr 17.6
gap 44.8
vortex 88.3
twolf 91.9
eon 94.0
crafty 94.4
gcc 96.8
mcf 188.6
perlbmk 200.6
parser 267.8
gzip 601.9

- The dynamic instruction counts are for the small
reduced (smred) input sets [36].
- Benchmark bzip2 is not shown because it does
not have an smred input set.

Table III enumerates the integer benchmarks from the SPEC
2000 benchmark suite and their dynamic instruction counts
for the small reduced (smred) input sets [36]. The binaries are
tru64 binaries (COFF version 3.11-10) built with optimization
levels O2 and O3. We took the following approach for creating
the multiprogrammed workloads [37]. A multiprogrammed
workload for a n-core processor, such that each core is m-
way multithreaded, comprises of n · m SPEC 2000 inte-
ger programs. In our experimentation, n ∈ 2, 4, 8, while
2 ≤ m ≤ 8 (Table IV). Since 11 of the 12 SPEC2000

integer benchmarks (excluding bzip2) are chosen, there are(
11

m

)
ways to construct a multiprogrammed workload for one

processor such that all the binaries are distinct. All distinct
binaries were chosen to create each workload to avoid the
same dynamic runtime characteristics for two or more threads
running on the same core. Since the simulation runtime is
proportional to the total number of instructions simulated, the
number of simulations was determined based on the workload
size, in terms of the number of binaries. For workloads of size
40 or greater (i.e., for 8-core processor and 5-way to 8-way
support for multithreading), 4 simulation runs were performed.
For workloads of size 16 or more up to 32, 8 simulation
runs were performed. For the rest of the workload sizes, 12
simulation runs were performed. The harmonic means were
computed for the IPC and cache miss rates over all the
simulation runs, while arithmetic means were computed for
the leakage energy dissipated and saved (with and without
power gating). Each simulation was run till the first thread
finished execution.

We configure a number of multi-core processors comprising
of in-order CPU cores by varying the number of cores, the
number of hardware contexts that each core supports, and
a number of L1 and L2 cache parameters. The processor
parameters are tabulated in Table IV. The number of cores
is either two, four or eight. The number of hardware threads
that each core supports is scaled from two to eight in case of
CGMT, from three to eight in case of FGMT, and from four
to eight in case of SMT. We cap the number of threads per
core at eight threads because the cost growth for supporting
additional hardware threads is linear up to around eight threads
but is superlinear after that [38].

The in-order cores have simple specifications. In case of
CGMT and FGMT, the cores can process at most one instruc-
tion each cycle in each of its pipeline stages, while, in the case
of SMT, the cores can process two. Therefore, we provide two
integer ALUs to each core in case of SMT but only one integer
ALU to the cores in case of CGMT and FGMT. The count
of integer multipliers, however, is the same (one) for all the
cores. The execution latencies of the integer ALU and integer
multiplier are 1 cycle and 3 cycles, respectively. Furthermore,
we model a fully pipelined integer multiplier so that integer
multiply instructions that are not data dependent on each other
may be issued every clock cycle. The clock frequency is

TABLE IV: Multi-core Processor Parameters
Parameter Multithreading Approach

CGMT FGMT SMT
Clock 1 GHzSpeed

Number 2, 4, and 8of Cores
Number of 2-8 3-8 4-8Contexts

Pipeline
1 1 2Bandwidth

(in insts/cycle)
Functional 1 int ALU 1 int ALU 2 int ALU

Units 1 int Mult 1 int Mult 1 int Mult
Load/Store/Fetch 1 per threadBuffers

Fetch Select Round-robinPolicy

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

11

uniform (1 GHz) across all the processor configurations. Each
core has one load buffer, one store buffer, and one fetch buffer
per thread. The policy to select a thread to fetch instructions
from is set to round-robin.

TABLE V: Memory Access Latencies
Memory Unit Access Latency
L1 D-cache 1 cycle
L1 I-cache 1 cycle

L2 cache (shared) 10 cycles
Physical Memory 30 cycles

TABLE VI: L1 D-cache and I-cache Parame-
ters

Size 2 cores 4 cores 8 cores
64 KB 32 KB 16 KB

Set 2 TCs 3-4 TCs 5-8 TCs
Associativity 2 4 8

MSHRs as many as the number of TCs

TCs - Thread Contexts

The cache parameters are tabulated in Tables V, VI, and
VIII-B. We set the cache parameters based on the specifica-
tions of the Niagara series of processors. The hit latencies
for the private L1 caches (both I-cache and D-cache) and the
shared L2 cache are set to 1 cycle and 10 cycles, respectively.
The physical memory access latency is set to 30 cycles. The
cache line size for each cache is set to 64 bytes. As the number
of cores are increased, the private L1 caches are reduced in
size to have larger shared L2 caches. Therefore, while the L1
cache size is scaled down from 64 KB to 16 KB as the number
of cores is increased from 2 to 8, the size of the L2 cache is
scaled upward between 2 MB and 8 MB based on the number
of cores and the number of thread contexts (Tables VI and
VIII-B).

TABLE VII: L2 Cache Size (in MB)/Set Associativity/MSHR Count
Number Number of Cores

of Threads 2 4 8
2 2/4/4 3/6/6 4/8/8

3-4 3/6/6 4/8/8 6/12/12
5-8 4/8/8 6/12/12 8/16/16

When the number of cores and the number of thread
contexts increase, the set associativity for both L1 and L2
caches are increased to reduce the number of conflict misses
(Tables VI and VIII-B). The number of Miss Status Handling
Registers (MSHRs) in the L1 caches is also increased with the
number of thread contexts to allow at most one outstanding
L1 cache miss per thread (Table VI). The MSHR count for
the L2 cache is dependent on both the number of cores and
the number of thread contexts (Table VIII-B). During the
simulations, the caches are warmed up for the first 100,000
cycles.

C. Results

The instructions per cycle (IPC) counts for the workloads on
the different multi-core processor configurations are plotted in
Figures 13a, 13b, and 13c. The IPC for CGMT cores ranges
between 0.41 and 0.52, while for FGMT cores the IPC is be-
tween 0.61 and 0.68. This marked difference is primarily due
to the fact that the FGMT approach is very effective in hiding
stalls due to both long latency events (for e.g., cache misses)

0.4

0.45

0.5

0.55

2 3 4 5 6 7 8

Number of thread contexts

In
st

ru
ct

io
ns

 p
er

 c
yc

le

2-core 4-core 8-core

(a) Average IPC per core for CGMT approach

0.6

0.62

0.64

0.66

0.68

0.7

3 4 5 6 7 8

Number of thread contexts

In
st

ru
ct

io
ns

 p
er

 c
yc

le

2-core 4-core 8-core

(b) Average IPC per core for FGMT approach

0.9

1

1.1

1.2

1.3

4 5 6 7 8

Number of thread contexts

In
st

ru
ct

io
ns

 p
er

 c
yc

le

2-core 4-core 8-core

(c) Average IPC per core for SMT approach

Fig. 13: Average instructions per cycle (IPC) count per core for the
different multithreading approached

and short latency events (branch resolution, data dependency
resolution, etc.). However, CGMT switches threads to hide
stalls only due to long latency events. Moreover, the thread
switch penalty in CGMT cores may be more than one cycle,
whereas, in FGMT cores, this penalty is exactly one cycle
as long as there are ready threads available. The IPC counts
for the SMT cores are in the range of 0.91 and 1.22 because
the pipeline width for the SMT cores is double of that of the
CGMT and FGMT cores. For the same number of threads, the

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12

0

5

10

15

20

25

30

35

40

45

3 4 5 6 7 8

Number of thread contexts

L
ea

ka
ge

 s
av

in
gs

 (
%

)
2-core 4-core 8-core

Fig. 14: Average IRF leakage energy savings for CGMT cores

IPC reduces as the number of cores are increased because the
L1 cache sizes become smaller. It can also be observed that
while the IPC counts for the CGMT and FGMT cores tend to
saturate as the number of thread contexts is increased to eight,
the IPC for SMT cores increase more linearly indicating that it
could support more threads before its performance levels out.
It should be noted that the IPC drops when the number of cores
are increased because the L1 cache size reduces (Table VI).
However, to make sure that the drop in performance is not too
dramatic, the size of the shared L2-cache is increased as the
number of cores is increased. It should also be noted that the
IPC values plotted in Figures 13a, 13b, and 13c are per core.
So, for instance, the average IPC for the 8-core processor with
each core executing 8 threads is 0.62× 8 = 4.96, whereas the
same for a 2-core processor is 0.68 × 2 = 1.36.

The leakage savings in the integer register files in CGMT
cores is shown in Figure 14. As expected, the savings in the
CGMT processors scale very well with the number of thread
contexts. For 2 thread contexts, the savings are in the range
of 0.9% to 2.9%, while, for 8 thread contexts, the savings are
between 22% and 42%. This is because, in a CGMT approach,
only a single thread context is active at a time in the entire
pipeline till it experiences a long latency stall. Therefore, the
register files for the rest of the thread contexts, irrespective of
whether they are ready or stalled, may be put to sleep.

In contrast to this, in the FGMT and SMT approaches, in-
structions belonging to different thread contexts are processed
by different pipeline stages. Therefore, the savings do not scale
with the number of thread contexts but instead are proportional
only to the fraction of the time that is spent by the threads
waiting on memory stalls. For FGMT cores, the leakage
savings range from 0.8% to 2.02% for 3 thread contexts and
3.09% - 7.8% for eight thread contexts (Figure 15a). The total
latencies of L1 D-cache read misses, L1 I-cache read misses,
and L2 read misses (normalized over the total number of CPU
cycles) averaged over the number of threads are plotted in
Figures 15b, 15c, and 15d. For 4 TCs, as the number of cores
is varied between 2, 4, and 8, the L2 cache size is set as 3
MB, 4 MB, and 6 MB, respectively. However, for 5 TCs, the
sizes are 4 MB, 6 MB, and 8 MB, respectively. Therefore,
the capacity miss rate in case of 5 TCs is lower than that for
4 TCs. Further, the set-associativity and the MSHR count for

the L2 cache are also increased when the number of hardware
thread contexts increases from 4 to 5. Due to this, the conflict
misses reduce and the total outstanding cache misses that the
processor can support increase as the number of TCs increase
from 4 to 5. This the reason why the leakage savings for 4 TCs
is more than those for 5 TCs. However, as the number of TCs
varies from 5 to 8, the leakage savings increase monotonically.

For SMT cores, the leakage savings range from 1.02% to
2.23% for 4 thread contexts and 2.97% - 7.27% for eight
thread contexts (Figure 16). The degradation in performance
due to the proposed technique in SMT cores was calculated by
counting the number of cycles when an instruction could not
be processed by a pipeline stage because the register file was
not awake. For SMT cores, the degradation was 0.023% in
case of a 8-core processor with each core executing 8 threads.

IX. ACKNOWLEDGMENTS

We would like to thank the entire M5 development team,
especially Korey Sewell, and all the contributors and users of
M5 who provided valuable help with respect to using M5. We
are also thankful to the anonymous reviewers of the original
version of the manuscript whose valuable comments helped
improve the quality of this paper. We also acknowledge the
services provided by Research Computing, University of South
Florida.

X. CONCLUSIONS AND FUTURE WORK

In this work, we synchronize the sleep of a register file
private to a thread with the unavailability of that thread and
the wake-up with the readiness of that thread to run. This is
because the integer register file is accessed very frequently by
integer applications. In the future, we would like to extend
this work to in-order cores with floating point register files.
Floating point applications use both integer and floating point
register files and, therefore, the patterns of accesses to these
units may provide more opportunities of power gating the
register files. distributed between the two register files. For
instance, when a thread gets ready to execute after its stall
gets resolved, it may need to access only one of the register
files before the other. This means that the latter register file
has more time to wake-up than the former. Further, in floating
point applications, there are regions that are primarily integer
computation-intensive. When the application is executing in
such regions, the floating-point register file and even floating
point hardware units may be put to sleep for much longer
periods. Therefore, the fundamental approach that is at the
core of the techniques proposed in this paper will result in
conservative savings if directly applied in the case of floating
point register files.

In the future, we will also extend this work for parallel
applications. Parallel programs use atomic instructions for
synchronization purposes that gives ride to additional con-
cerns. Special considerations have to be made for atomic
instructions because they induce cache coherence issues. In
this work, we use multiprogrammed workloads that have
mutually exclusive address spaces. Due to this reason, the
techniques proposed in this work do not put register files to

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

13

0

2

4

6

8

3 4 5 6 7 8

Number of thread contexts

L
ea

ka
ge

 s
av

in
gs

 (
%

)
2-core 4-core 8-core

(a) Average IRF leakage energy savings for FGMT cores

0

2

4

6

8

3 4 5 6 7 8

Number of thread contexts

D
at

a
re

ad
 m

is
s

la
te

nc
y

pe
r

th
re

ad

(%
 o

f
to

ta
l c

yc
le

s)

2-core 4-core 8-core

(b) Data read miss latency per thread for FGMT cores

0

2

4

6

8

10

3 4 5 6 7 8

Number of thread contexts

F
et

ch
 m

is
s

la
te

nc
y

pe
r

th
re

ad
(%

 o
f

to
ta

l c
yc

le
s)

2-core 4-core 8-core

(c) Instruction fetch miss latency per thread for FGMT cores

0

2

4

6

8

3 4 5 6 7 8

Number of thread contexts

L
2

re
ad

 m
is

s
la

te
nc

y
pe

r
th

re
ad

(%

 o
f

to
ta

l c
yc

le
s)

2-core 4-core 8-core

(d) L2 read miss latency per thread for FGMT cores

Fig. 15: IRF leakage savings and cache miss latencies for the processors featuring FGMT CPUs

sleep when a cache write miss happens (following a memory
store instruction). However, in case of atomic instructions,
there will be opportunities to power gate register files during
cache write misses as well. Also, using a partitioned register
file for each thread could have further advantages. Instead of
waking up the entire register file at the same time, only the
partitions that needs to be accessed can be woken up more
urgently compared to the rest of the partitions.

0

2

4

6

8

4 5 6 7 8

Number of thread contexts

L
ea

ka
ge

 s
av

in
gs

 (
%

)

2-core 4-core 8-core

Fig. 16: Average IRF leakage energy savings for SMT cores

REFERENCES

[1] S. Borkar. Design Challenges of Technology Scaling. Proc. IEEE
MICRO, 19:23–29, 1999.

[2] L. Seiler et al. Larrabee: A Many-Core X86 Architecture for Visual
Computing. ACM Trans. Graph., 27(3):1–15, 2008.

[3] R.K. Krishnamurthy et al. High-Performance and Low-Voltage Chal-
lenges for Sub-45nm Microprocessor Circuits. Proc. Intl. Conf. on ASIC,
pages 283–286, 2005.

[4] A. Sodan et al. Parallelism via Multithreaded and Multicore CPUs.
IEEE Computer, 43(3):24–32, 2010.

[5] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-Way
Multithreaded Sparc Processor. Proc. IEEE MICRO, 25(2):21–29, 2005.

[6] P. Kongetira, K. Aingaran, and K. Olukotun. Implementation of an 8-
core, 64-thread, Power-Efficient SPARC Server on a Chip. IEEE JSSC,
43(1):6–20, 2008.

[7] MIPS. MIPS32 1004KTM CPU Family Software Users Manual. http:
//www.mips.com, 2009.

[8] T. Ungerer, B. Robič, and J Šilc. A Survey of Processors with Explicit
Multithreading. ACM Computing Surveys, 35(1):29–63, 2003.

[9] J. P. Shen and M. H. Lipasti. Modern Processor Design: Fun-
damentals of Superscalar Processors, 1st ed. McGraw-Hill Sci-
ence/Engineering/Math, 2004.

[10] K. Roy. Leakage Power Reduction in Low-Voltage CMOS Design. Proc.
IEEE ICECS, pages 167–173, 1998.

[11] Z. Hu et al. Microarchitectural Techniques for Power Gating of
Execution Units. Proc. ISLPED, pages 32–37, 2004.

[12] H. Singh et al. Enhanced Leakage Reduction Techniques using Interme-
diate Strength Power Gating. IEEE Trans. VLSI Sys., 15(11):1215–1224,
2007.

[13] S. Kaxiras, Z. Hu, and M. Martonosi. Cache Decay: Exploiting Gen-
erational Behavior to Reduce Cache Leakage Power. Proc. ACM/IEEE
ISCA, pages 240–251, 2001.

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14

[14] K. Flautner et al. Drowsy Caches: Simple Techniques for Reducing
Leakage Power. Proc. ACM/IEEE ISCA, pages 148–157, 2002.

[15] S. Rele et al. Optimizing Static Power Dissipation by Functional Units
Superscalar processors. Proc. Intl. Conf. on Compiler Construction,
pages 261–274, 2002.

[16] W. Zhang et al. Compiler Suppport for Reducing Leakage Energy
Consumption. Proc. DATE, pages 1146–1147, 2003.

[17] Y. You, C. Lee, and J.K. Lee. Compiler Analysis and Supports for
Leakage Power Reduction on Microprocessors. ACM TODAES, pages
147–164, 2006.

[18] N. Seki et al. A Fine-Grain Dynamic Sleep Control Scheme in MIPS
R3000. In Proc. IEEE ICCD, pages 612–617, 2008.

[19] S. Roy, N. Ranganathan, and S. Katkoori. A Framework for Power
Gating Functional Units in Embedded Microprocessors. IEEE Trans.
VLSI Sys., 17:1640–1649, 2009.

[20] H. Homayoun, K.F. Li, and S. Rafatirad. Functional Units Power Gating
in SMT Processors. In Proc. IEEE PACRIM, pages 125 –128, 2005.

[21] A. Youssef et al. On the Power Management of Simultaneous Multi-
threading Processors. IEEE Trans. VLSI Sys., PP(99):1 –1, 2009.

[22] S. Rusu et al. Power Reduction Techniques for an 8-core Xeon
Processor. In Proc. IEEE ESSCIRC, pages 340 –343, 2009.

[23] R. Kumar and G. Hinton. A Family of 45nm IA Processors. In Proc.
IEEE ISSCC, pages 58 –59, 2009.

[24] T. Saito et al. Design of Superscalar Processor with Multi-Bank Register
File. In IEEE ISCAS, pages 3507 – 3510, 2005.

[25] A. Agarwal, R. Kaushik, and R.K. Krishnamurthy. A Leakage-Tolerant
Low-Leakage Register File with Conditional Sleep Transistor. In Proc.
IEEE Intl. SOC Conf., pages 241 – 244, 2004.

[26] J. Lingling et al. Reduce Register Files Leakage Through Discharging
Cells. In Proc. IEEE ICCD, pages 114 –119, 2006.

[27] H. O. Kim et al. Supply Switching with Ground Collapse for Low-
Leakage Register Files in 65-nm CMOS. IEEE Trans. VLSI Sys.,
18(3):505 –509, 2010.

[28] A. S. Leon et al. A power-efficient high-throughput 32-thread sparc
processor. IEEE JSSC, 42(1):7–16, 2007.

[29] Sun Microsystems. OpenSPARC T1 Processor Megacell Specification.
http://www.sun.com, 2006.

[30] S. Li et al. Mcpat: An integrated power, area, and timing modeling
framework for multicore and manycore architectures. In Proc. IEEE
MICRO, pages 469–480, 12-16 2009.

[31] H. Q. Le et al. Ibm power6 microarchitecture. IBM J. Res. Dev.,
51(6):639–662, 2007.

[32] Sun Microsystems. OpenSPARC T1 Microarchitecture Specification.
http://www.sun.com, 2006.

[33] J.E. Stine et. al. FreePDK v2.0: Transitioning VLSI Education Towards
Nanometer Variation-Aware Designs. In Proc. IEEE Intl. Microelec-
tronic Sys. Education, pages 100 –103, 2009.

[34] Nangate. Nangate 45nm Open Cell Library. www.nangate.com/
openlibrary, 2008.

[35] N. L. Binkert et al. The M5 Simulator: Modeling Networked Systems.
IEEE MICRO, 26(4):52–60, 2006.

[36] A. J. KleinOsowski and D. J. Lilja. MinneSPEC: A New SPEC Bench-
mark Workload for Simulation-Based Computer Architecture Research.
IEEE Comput. Archit. Lett., 1(1):7, 2002.

[37] M. Jahre and L. Natvig. Performance effects of a cache miss handling
architecture in a multi-core processor. Norwegian Informatikkonferanse
(Nik) ”http://www.nik.no”, 2007.

[38] J. Burns and J. L. Gaudiot. SMT Layout Overhead and Scalability.
IEEE Trans. Parallel Distrib. Sys., 13(2):142–155, 2002.

Soumyaroop Roy (S’07) received B.E. in Elec-
tronics and Communication Engineering in 2001
from Birla Institute of Technology, Ranchi, India
and M.S. in Computer Engineering and Ph.D. in
Computer Science and Engineering in 2006 and
2010, respectively, from University of South Florida,
Tampa, FL. He is a Senior Design Engineer in the
Architecture Performance Modeling team at AMD,
Austin, TX. His research interests are in architecture
and compiler methodologies for low-power design of
microprocessors, architecture level performance and

power modeling, and low-power VLSI design. From 2001 to 2004, he was
a Software Engineer with the NCVHDL group at Cadence Design Systems,
Noida, India.

Nagarajan “Ranga” Ranganathan (S81-M88-
SM92-F02) received the BE (Honors) degree in elec-
trical and electronics engineering from the National
Institute of Technology, Tiruchirapalli, University of
Madras, India, 1983, and the PhD degree in com-
puter science from the University of Central Florida,
Orlando, in 1988. He is a distinguished university
professor of computer science and engineering at
the University of South Florida, Tampa. His research
interests include VLSI circuit and system design,
VLSI design automation, multimetric optimization

in hardware and software systems, biomedical information processing, com-
puter architecture, and parallel computing. He has developed many special
purpose VLSI circuits and systems for computer vision, image and video
processing, pattern recognition, data compression, and signal processing
applications. He has coauthored more than 250 papers in refereed journals
and conferences, four book chapters, and co-owns six US patents and three
pending. He has edited three books titled VLSI Algorithms and Architectures:
Fundamentals and VLSI Algorithms and Architectures: Advanced Concepts,
IEEE CS Press, 1993, VLSI for Pattern Recognition and Artificial Intelligence,
World Scientific Publishers, 1995, and coauthored a book titled Low Power
High Level Synthesis for Nanoscale CMOS Circuits, Springer, June 2008. He
was elected as a fellow of the IEEE in 2002 for his contributions to algorithms
and architectures for VLSI systems. He is a member of the IEEE Computer
Society, the IEEE Circuits and Systems Society, and the VLSI Society of India.
He has served on the editorial boards for several IEEE and ACM journals. He
served on the steering committee of the IEEE Transactions on VLSI Systems
during 1999-2003 and 2007-10 and as the editor-in-chief for two consecutive
terms during 2003-2007. He received the Distinguished University Professor
honorific title and the university gold medallion honor in 2007. He was a
corecipient of the Best Paper Awards at the International Conference on VLSI
Design in 1995, 2004, and 2006, as well as the IEEE Circuits and Systems
Society Transactions on VLSI Systems Best Paper Award in 2009.

Srinivas Katkoori received his doctoral degree in
computer engineering from the University of Cincin-
nati, Cincinnati, Ohio, in 1998. In Fall of 1997,
he joined the Department of Computer Science and
Engineering at the University of South Florida as
an Assistant Professor. In 2004, he was tenured and
promoted as an Associate Professor. His research
interests are in the general area of VLSI CAD Algo-
rithms and Design Methodologies. Specific research
areas include: High level synthesis, Low power
synthesis, FPGA Synthesis, and Radiation Tolerant

CAD for FPGAs. Dr. Katkoori is a recipient of 2001 National Science
Foundation (NSF) CAREER award. Besides NSF, his research sponsors
include Honeywell, NASA JPL, and Florida I4 High Tech Corridor Initiative.
He is the recipient of the inaugural 2002-03 University of South Florida
Outstanding Faculty Research Achievement Award. He is the recipient of
2005 Outstanding Engineering Educator Award from the IEEE Florida Council
(Region 3). He serves on technical committees of several VLSI conferences
and as a peer reviewer for several VLSI journals. Since 2006, he is serving
as an Associate Editor of IEEE Trans. on VLSI Systems. To date, he has
published over 50 peer-reviewed journal and conference papers. He holds one
US Patent (6,963,217). Dr. Katkoori is a senior member of ACM and IEEE.

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

