
2010 International Conference On Computer Design And Appliations (ICCDA 2010)

MPI and OpenMP Paradigms on Cluster with multicores and its application on
FFT

Yongjin Li Weichang Shen Anlei Shil Lidong Hel Dong
Zhao School of Infonnation Science and

Technology, Northwest University
NWU

School of Infonnation Science and
Technology, Northwest University

NWU
School of Infonnation Science and
Technology, Northwest University

NWU Xi' an, China Xi' an, China
E-mail: lyj2003_02@163.com E-mail: jzbi@nwu.edu.cn Xi' an, China

Abstract-At present the cluster of workstation with
multicores is most popular in high performance architecture.
However, pure MPI paradigm can't benefit from the

computing capability of multicores. Parallel programming can
combine distributed memory parallelization with shared

memory parallelization. And hybrid MPI+OpenMP may be a
superior solution because of its less communication, declined

consumption of the memory, and improved load balance. In
this paper, we propose an improved parallel FFT algorithm

based on hybrid architecture and the results shows the

algorithm has good scalability and high efficiency.

Keywords- Parallel FFT; MPI; OpenMP; COW;MultiCores

I. INTRODUCTION

The cluster of workstation (COW) provides an economic
solution for high-perfonnance calculation (HPC). Nowadays,
the emergency of multicores processor (Intel Core Duo,
Intel Core2Duo, AMD multicores) greatly enhanced the
computing capability of COW. Figure 1 shows the structure
of this architecture. The multi-core shared-memory
computing nodes are coupled via high-speed interconnects.
Inside the node, details like UMA (Unifonn Memory
Access), while outside with NUMA (Non-Unifonn Memory
Access).

Programming Environment & Applications

Efficient Singular System Mapping Facility

as

Node

as as

Node Node

as: Opcr<llion System; MB: Memory Bus; LD: Local Disk;
1}/e: Processor and Cache; NIC: Network Interface Circuitry

Figure 1. cluster of workstation with multicores

MPI may be the best choice for distribute system.
However, we can't make good use of the multi-core.
Although the MPI programming model also supports

E-mail: sailor0105@163.com

multithreads, the implementations of multithreads can not
shows the superiority of the multi-core computer. And
OpenMP can't be applied into distribute system.
Consequently, it seems that it will be reasonable to employ a
hybrid programming model, a hybrid programming model
adopts OpenMP for parallelization inside the node and
adopts MPI for message passing between nodes.

The hybrid programming model MPI+OpenMP are
useful to solve the problems of load balancing of parallel
applications independently of the architecture [I]. A hybrid
MPI+OpenMP programming is currently being implemented
to obtain high efficiency codes on the hybrid computer. In
this paper, we propose a hard FFT algorithm base on this
hybrid programming model and the hybrid FFT algorithm
outperfonns better than pure MPI. In this paper, we propose
a parallel FFT algorithm in hybrid program which can
maximize the utilization of the computing capability
supplied by this architecture. And the parallel programming
mode [8] used in this paper is shown in figure 2.

+ + +
HybridM Pl+OpenM P

Pure
PureMPI OpenMP

MPI :inter-node
One MPI

Communication
Distributed

Process Virtual
Per core

OpenMP:inside of
Shared

node
memory

I
+ +

Masteronly
Overlapping

Communicationwith
No comm/comp overlap

Computation
MPI only outside

outside parallel
MPI comm.by one or

few threads while
parallel regions

others compute

Figure 2. Taxonomy of parallel programming models on hybrid
platforms.

II. RELATED WORKS

The Fast Fourier Transfonn (FFT) plays an important
role in many branches of computing applications. FFT
perfonnance is so critical that its algorithms have been

978-1-4244-7164-51$26.00 © 2010 IEEE VI-23 Volume I

2010 International Conference On Computer Design And Appliations (ICCDA 2010)

studied extensively. The Cooley-Tukey algorithm is by far
the most common FFT algorithm. This algorithm factorizes
the original FFT size of N into N = Nl X N2 smaller sizes.

Then it reduces the complexity from 0 (n2) to 0
(n log2 n). Since then, many variations of the FFT have
been suggested.

Many parallel FFT algorithms which based on DSP,
FPGA and other different architectures are proposed in
recently years. However there is so little parallel FFT
algorithms based on COW with multicores. In this paper, we
propose a parallel FFT algorithm which can make full use of
the computing capability provided by this architecture.
Linux has a well support for much parallel architecture
nowadays. And because of its mature implementation of
MPI and OpenMP, it is the best platform for parallel
computing.

III. PARALLEL FFT ALGORITHM

Our parallel FFT algorithm can be separated into three
steps. The first step is that original data is need to be
rearranged in bit-reverse order and is divided into p blocks,
where p is the total number of computing nodes and N is the
size of data for FFT. The second step is the actual
transformation. For a serial FFT algorithm, log2 N steps of
butterfly operations are required. During the second step
where the transform is executed, these operations are
decomposed into p nodes or cp CPUs, where c is the cores
of every node. In other words, every node completes the first
log2 (N / P) stages of original N-point FFT where data
rearranged is not needed. The last step is the main node
finishes the rest stages of iterations with the help of other
nodes. Without loss of generality, N, p and c are all powers
of 2.

Figure 3 shows the executing produce of input data
(fO�f7). The number of workstation is 2. Arrow crosses
stand for butterfly operation.

Step I Step2

Figure 3. All butterflies for N=8.

FO

FI

F2

F3

F4

F5

F6

F7

A. Prepare data for FFT

In this step, the data of size N is bit-reversed by c cores
of main node (see the line 3 in Algorithm 1). Then the
reordered data is scattered into p blocks in which the data
size is Nip.

Algorithm 1 Preprocessing (Step I)

1: Input: a=(ao,ap ... ,aN_1)
2: Output: b=(bo,bp ... ,bN_1)
3: #pragma omp parallel for

fori�O to N
4: bi = abitReverse(i)
5: end for
6: Scatter data into p nodes, every node process Nip

elements and stored in d = (do, d1 , ... , d N I p-l)

B. First log2(Nlp) stages butterfly

During this produce, there is no communication between
nodes because all operations adopted the received Nip data
locally. This computation is decomposed into c cores. The
algorithm can be separated into 2 steps. The first step is
executing the first log2 (N /(pc)) stages of NIP-point FFT
where the data used by every core reside one by one(seen
form the lines 4 to 16 in Alogrithm 2}.Then the parallel
LocalFFT algotithm represents the rest of log2 C stages.
The details are showed in algorithm2.

Algorithm 2 LocalFFT(Local NIP-Point FFT by
multicores on each node)

1: Input! Output: d = (do ,dp ... , dn_1) (n=N/p)

2: I> Stepl: The first log2 (N /(pc)) stages of N/p
point FFT by c cores

3: #pragma omp parallel num_threades(c) 1* c is
the number of threads *1

4: do part�n/c
5: for s � 1 to log2 part

6:

7:

do m� 2s

OJ � e21ti1m
m

8: fork� cipartto (ci + 1) part by m

1* ci is the thread ID *1

9: for j �O to ml2-1

10: ak+ j � ak+j+ OJ�ak+j+mI2
11:

12:
13:

ak+j+mI2 � ak+j - OJ�ak+j+mI2
end for

end for

VI-24 Volume 1

2010 International Conference On Computer Design And Appliations (ICCDA 2010)

14: end for
15: for s�1 to log2 c

16: do m�
2s+log2 parI

17: OJ f- e27li1m
m

18: for k�O to n-l by m
19: #pragma omp parallel for
20: for j �O to m/2-1

21:

22: ak+}+mI2 � ak+} - OJ�ak+}+mI2
23: end for
24: end for
25: end for

C. The last log2P-stage

In this method, every node sends out either of the upper
or the lower nl2 data to the paired node. So the computation
load among these nodes is well balanced. The amount of
data exchange is 2n.

Algorithm 3 the rest stages
1: Input / Output: d = (do,dp ... ,dn_l) (n=N/p)

2: for s�1 to log2 C
2s+log2 n

3: do m�
4: if (rank%2 == 0) then 1* even node *1
5: Send upper nl2 data stored in d[nl2]-d[n-l] to the

(i+ 1)th node.
6: Receive nl2 data from (i+ 1)th node and store them

to upper n/2 location of d[]
7: do LocalFFT (do,dp ... ,dnI2_1)
8: Send upper n/2 data stored in d[nl2]-d[n-l] to the

(i-1)th node
9: Receive the nl2 data from (i+ 1)th node and store

them back to upper nl2 location of d[]
10: else
11: Send lower n/2 data stored in d[O]-d[nl2-1] to the

(i-1)th node
12: Receive nl2 data from (i-1)th node and store them

to lower n/2 location of d[]
13: do LocaIFFT(do,dp ... ,dnI2_1)
14: Send lower nl2 data stored in d[0]-d[nl2] to the

(i-1)th node
15: Receive the nl2 data from (i-1)th node and store

them back to lower nl2 location of d[]
16: end if
17: end for

IV. RESULTS OF THE EXPERIMENT

The COW system proposed in this paper is comprised of
four HPxw4400 dual-core servers connected via 1000Mbps.
The software environment of the system is Red Hat
Enterprise Linux AS 5, and the parallel operating
environment is MPICH1.2.7, and the compiler is GCe. Each
HPxw4400 dual-core servers as a computing node in the
COW with CPU of Inter Pentium D 3.40GHz, 2.00 GB of
memory, 80 GB of hard discs. A network adapter of
Broaadcom NetXtreme Gigabit Ethernet Network
Connection Construct a local area ethement by
interconnecting all these computing nodes via 1000Mbps
switch each node in the COW can be added or deleted
according to future demand. Therefore, the COW is
extensible.

The parallel FFT algorithm described in this paper was
tested and the execution time for completing all stages was
measured. The result is shown in Table 1.

TABLE 1. TIME FOR PARALLEL FFT ALGORITHM
Data Number of workstation (2) Number of workstation (4)
Size MPI MPI+OpenMP MPI MPI+OpenMP
2M 1.588654 1.052151 1.103251 0.832051
8M 8.062108 5.003131 5.404251 1.702432

32M 35.578878 18.009979 19.010979 6.006979

The result shows that MPI+OpenMP strategy requires
much fewer time than pure MPI. As a result, the proposed
algorithm using hybrid MPI+OpenMP is effective in
utilizing the parallel processing capability of the architecture
and achieves scalable performance.

V. CONCLUSION

This paper proposes a parallel FFT algorithm based on
the MPI+OpenMP hybrid parallelization paradigm under the
environment of cluster of workstation with multi-core.
Hybrid programming model is better than pure MPI, and it
can make full use of the cluster architecture. The results
from the improved algorithm which focus on exploring the
design of parallel algorithms and load balancing has shown
that hybrid paradigm can achieve high efficiency and good
scalable performance.

REFERENCES

[I] Julita Corbalan, Alejandro Duran, Jesus Labarta. "Dynamic Load
Balancing of MPI+OpenMP applications". Proceedings of the 2004
International Conference on Parallel Processing (ICPP'04).

[2] Series of teaching materials prepared by multi-core group. Multi-core
programming . Tsinghua University Press, Beijing. 2007.

[3] Zhou WeiMing. Multi-core computing and programming [M].
Huazhong University of Science and Technology Press, Wuhan.2009.

[4] Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest Clifford
Stein(America). Introduction to Algorithms. Machinery Industry
Press, Beijing. 2008.

[5] Zhang LingBo, Chi XueBin , Mo ZeRao, Li Yan. Introduction to
Parallel Computing. Tsinghua University Press,Beijing.2006.

[6] Michael J.Quinn, Parallel Programming in C with MPI and OpenMP.
Tsinghua University Press, Beijing. 2004.

VI-25 Volume 1

2010 International Conference On Computer Design And Appliations (ICCDA 2010)

[7] Chen GuoLiang. Practice of Parallel Algorithms, Higher Education
Press, Beijing. 2004.

[8] Rolf Rabenseifner, Georg Hager, Gabriele Jost. "Hybrid
MPIIOpenMP Parallel Programming on Clusters of Multi-Core SMP
Nodes". Proceedings of the Parallel, Distributed and Network-based
Processing . 2009 IEEE. DOl 10.1109/.43.

[9] Jun Ho Bahn, Jungsook Yang, Nader Bagherzadeh. "Parallel FFT
Algorithms on Betwork-on-Chips". Proceedings of the fifth
international conference on information technology. 2008 IEEE.DOI
IO. l 109/ITNG.2008.55.

[10] Jun Tan, Xingshu Chen, Long Xiao. "An Optimized Parallel FFT
Algorithm on Multiprocessors with Cache Technology in Linux".
Proceedings of the 2008 International Symposium on Computer
Science and Computational Technology. 2008 IEEE. 001
10.l109IISCSCT.2008.252.

VI-26 Volume 1

