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Abstract—We present the parallelization of a sparse grid
finite element discretization of the Black-Scholes equation,
which is commonly used for option pricing. Sparse grids
allow to handle higher dimensional options than classical
approaches on full grids, and can be extended to a fully
adaptive discretization method. We introduce the algorithmical
structure of efficient algorithms operating on sparse grids,
and demonstrate how they can be used to derive an efficient
parallelization with OpenMP of the Black-Scholes solver. We
show results on different commodity hardware systems based
on multi-core architectures with up to 8 cores, and discuss the
parallel performance using Intel and AMD CPUs.
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I. INTRODUCTION

Pricing options has been of ongoing interest in the last
few decades. Financial products still become more and more
complex, varying in the type or number of underlyings,
or in the exercise modalities—just consider the European,
American or Asian option, and variants like the Bermudan
option. Since its introduction in 1973, the Black-Scholes
equation has been of central interest pricing European as
well as American call and put options.

As in general no closed form solutions are available,
options have to be priced either stochastically or numerically.
In the former case, Monte-Carlo methods are frequently em-
ployed, as they are easy to use and implement—independent
of the number of dimensions. On the other hand, they exhibit
slow convergence rates, scaling only O(1/

√
N), with N

being the number of random samples, and Greeks are costly
to compute.

In the latter case, the partial differential equation (PDE)
can be discretized via finite differences (FD) or finite el-
ements (FE), and the resulting linear system of equations
is then solved. This way, Greeks can be derived easily,
and higher convergence rates are achieved—at least in
low-dimensional settings. For higher-dimensional options,
discretization methods based on regular grids suffer the so-
called curse of dimensionality, as the number of grid points
that are needed for error reduction depends exponentially on
the dimensionality.

In our approach, we discretize the Black-Scholes equa-
tion with finite elements on sparse grids, which enable

us to reduce the number of grid points that are needed
significantly, breaking the curse of dimensionality to some
extent. Furthermore, sparse grids can be extended to allow
for adaptivity, spending only grid points where it is really
necessary. As this is traded for sophisticated algorithmic
structures, the direct sparse grid method has not been applied
to the Black-Scholes equation yet.

Compared to methods on classical full grids, more com-
putations per degree of freedom are needed. This requires
algorithms to exploit the potential of modern commodity
hardware which is heading towards multi- and many-core
systems. We therefore parallelized a Black-Scholes solver,
exploiting the recursive structure of algorithms working on
sparse grids. To this end, we make use of OpenMP 3.0’s
task concept, and evaluate the parallel performance on both
Intel and AMD multi-core architectures.

In this paper, we present an efficient parallelization for
solving the Black-Scholes equation with finite elements
on sparse grids. To this end, we state the Black-Scholes
equation in the next section, introduce the sparse grid
FE discretization, and describe the algorithmical structures
necessary to solve it. In Sect. III, we show how to efficiently
parallelize algorithms working on sparse grids on shared
memory systems. Section IV briefly presents some numer-
ical results before focusing on the parallel performance on
several hardware architectures with different characteristics.
Section V finally summarizes and concludes our work.

II. THE BLACK-SCHOLES EQUATION ON SPARSE GRIDS

In this paper, we focus on option pricing based on the
Black-Scholes equation. The Black-Scholes model is one
of the most important concepts in mathematical finance
and assumes that the underlying assets follow a geometric
Brownian motion. It forms the basis for the numerical
pricing of many options, e.g. when combining it with Theta
calculus [1], [2] which is a mathematical representation
for the description of sequential processes and financial
contracts. In the following, we formulate the Black-Scholes
equation, discretize it with finite elements, introduce sparse
grids in this context and describe the algorithmical structures
on which the parallelization is based on.
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A. Black-Scholes with Finite Elements

The multi-dimensional Black-Scholes equation with
which the price of a European basket option on d assets
at a time T can be evaluated is given by

∂V

∂t
+

1
2

d∑
i,j=1

σiσjρijSiSj
∂2V

∂Si∂Sj

+
d∑

i=1

µiSi
∂V

∂Si
− rV = 0 . (1)

Here, V (t,S) denotes the value of the option, t ∈ [0, T ]
the forward time, S = (S1, . . . , Sd) the stock values, σi the
volatilities, ρij the asset correlations, µi the drifts and r the
risk-free interest rate. The end condition is defined by the
payoff function that depends on the strike K, for example
by

V (T,S) :=

{
max{K − 1

d

∑d
i=1 Si, 0}, put option

max{ 1
d

∑d
i=1 Si −K, 0}, call option.

(2)
Since the PDE has to be solved backwards due to its end
condition (2), we additionally define the backward time τ :=
T − t and consider V (τ) instead of V (t) in the following.

There are different numerical methods for solving Eq. (1).
The finite difference method is simple to implement but,
usually, it has stronger regularity assumptions than the finite
element method. It is also less flexible concerning the
discretization. By contrast, the finite element method can
be easily applied to adaptive meshes and used with different
basis functions. Thus, when choosing a hierarchical basis,
the finite element method fits well in the concept of sparse
grids which is described in Sect. II-B.

Applying the finite element method to (1), transformed in
backward time τ , we obtain the weak form

∂

∂τ
〈V,w〉L2(Ω) +

1
2

d∑
i,j=1

σiσjρij〈SiSj
∂V

∂Si
,
∂w

∂Sj
〉L2(Ω)

−
d∑

i=1

µi −
1
2

d∑
j=1

σiσjρij(1 + δij)

 〈Si
∂V

∂Si
, w〉L2(Ω)

− r〈V,w〉L2(Ω) = 0 , (3)

with Kronecker’s delta δij , the standard L2 scalar prod-
uct 〈·, ·〉L2(Ω) on a domain Ω, and w(S) denoting a test
function. Here, the boundary terms have already been ne-
glected since we assume Dirichlet boundaries which are
given by the discounted payoff function, so that the test
functions w ∈ H1

0 (Ω) vanish at the boundary ∂Ω.
For the discretization in space, we use the well-known

Galerkin projection combined with a space of piecewise
linear hierarchical basis functions which is introduced in the
next section. The subsequent discretization in time can be

done for example with the implicit Euler method or with the
scheme of Crank and Nicholson.

B. Discretization with Sparse Grids

To obtain a spatial finite element discretization, we fol-
low the Ritz-Galerkin approach, choose a suitable basis
{ϕi(S)}Ni=1 of N basis functions associated to grid points,
and restrict the problem to a finite dimensional space VN

spanned by the basis functions. We are thus interested in
solutions

u(S, τ) =
N∑

q=1

αq(τ)ϕq(S) (4)

for a certain time τ . In the following, we consider the space
of piecewise d-linear functions with a mesh width of hn :=
2−n in every dimension for some discretization level n ∈
N0.

Unfortunately, the so-called curse of dimensionality
severely restricts the number of dimensions that can be
tackled: Using a regular grid with h−1

n = 2n grid points
in one dimension leads to h−d

n = (2n)d grid points in d
dimensions. The exponential dependency on the dimension-
ality d makes it infeasible to treat more than four dimensions
for reasonable values of n.

Here sparse grids come into play. Sparse grids, as intro-
duced in 1990 for the solution of PDEs [3], break the curse
of dimensionality to some extent. For sufficiently smooth
functions, they enable to reduce the number of grid points
significantly to O(h−1

n log(h−1
n )d−1), while keeping almost

the same convergence rates as in the full grid case. Sparse
grids have meanwhile been employed in various settings, see
[4] and the references cited therein. More recent work on
sparse grids includes stochastic and non-stochastic partial
differential equations in various settings [5], [6], [7], as
well as applications in economics [8], [9], regression [10],
[11], classification [12], [13], [14], fuzzy modeling [15], and
more.

Sparse grids are based on a tensor product construction
of hierarchical basis functions. We restrict ourselves in the
following to the space of piecewise d-linear functions, and
formally define it on the d-dimensional unit-hypercube, i.e.,
Ω = [0, 1]d. For other rectangular domains, we have to scale
them accordingly. The one-dimensional basis functions are
based on the standard hat function ϕ(x),

ϕ(x) := max(1− |x|, 0) , (5)

from which we then derive one-dimensional hat basis func-
tions by dilatation and translation,

ϕl,i(x) := ϕ(2lx− i) , (6)

which depend on a level l ∈ N and an index i ∈ N, 0 ≤ i ≤
2l. The basis functions have local support and are centered
at grid points xl,i = 2−li, basis functions centered on ∂Ω



have to be restricted to Ω. They are then extended to the
d-dimensional case via a tensor product approach,

ϕl,i(x) :=
d∏

j=1

ϕlj ,ij
(xj) , (7)

where l and i denote multi-indices indicating level and index
for each dimension, 0 := (0, . . . , 0), |l|1 =

∑d
j=1 lj , and

relations like 0 < l are to be treated component-wise. We
can then define the hierarchical increments Wl, spanned by
the basis

ΦWl
:=
{
ϕl,i(x) : ij = 1, . . . , 2lj − 1, ij odd, 1 ≤ j ≤ d

}
(8)

of which the basis functions spanning a Wl have supports
of the same size and shape with pairwise disjoint interiors.

Considering sufficiently smooth functions, we can now
select those subspaces Wl a priori which contribute most to
the overall solution. A continuous optimization problem with
respect to both the L2- and the L∞-norm (see [4] for details
and derivations) finally results in the sparse grid space

V (1)
n :=

⊕
|l|1≤n+d−1

Wl , (9)

a direct sum of subspaces Wl, and in functions

u(S, τ) =
∑
l,i

αl,i(τ)ϕl,i(S) ∈ V (1)
n (10)

with hierarchical coefficients αl,i, |l|1 ≤ n + d − 1, which
are denoted as surpluses; see Fig. 1 in Sect. II-C for a sparse
grid of level 4 in two dimensions. To be able to spend grid
points on the boundary we extend the one-dimensional basis
on level 1 by two basis functions on level 0 which are located
on the boundary, ϕ0,0 and ϕ0,1.

Substituting V by u in (3) and choosing V
(1)
n as both

ansatz and test space of the finite element method, we get
the weak formulation (3) discretized with the hierarchical
basis functions ϕl,i. It can be written in matrix notation as

B
∂

∂τ
α(τ) = −1

2

d∑
i,j=1

σiσjρijCα

+
d∑

i=1

µi −
1
2

d∑
j=1

σiσjρij(1 + δij)

Dα

+ rBα (11)

with Bp,q = 〈ϕp, ϕq〉L2(Ω), Cp,q = 〈Sj
∂ϕp

∂Sj
, Si

∂ϕq

∂Si
〉L2(Ω),

and Dp,q = 〈ϕp, Si
∂ϕq

∂Si
〉L2(Ω).

Equation (11) can now be solved applying a suitable
discretization in τ , using the payoff function (2) to obtain
initial values at time step τ = 0.

Up to now, only the so-called combination technique
has been used to solve the Black-Scholes equation using
sparse grids [8], rather than the direct FE scheme introduced

above. The sparse grid combination technique (which is
sometimes called sparse grid collocation method) is based
on the fact that, when interpolating a function, the sparse
grid solution can be obtained via a linear combination of
solutions on coarser full grids. In non-interpolation tasks,
e.g. when solving PDEs, the combination technique and the
direct finite-element technique may exhibit different charac-
teristics. Examples have been found where the combination
technique does not converge, and the so-called optimized
combination technique has been developed to circumvent
this [16].

Nevertheless, the combination technique has usually been
used, as it is much simpler to implement and to understand
since full grids are common in many applications. Addition-
ally, the O(d (log h−1

n )d−1) partial solutions of size O(h−1
n )

can be obtained completely in parallel, and efficient out-of-
the-box tools like multigrid methods can be used to solve
them. On the other hand, extending to higher-dimensional
settings requires to use adaptive methods. The combination
technique only allows dimensionally adaptive approaches,
whereas the direct sparse grid technique (solving a single
problem of size O(h−1

n (log h−1
n )d−1)) has the advantage

that it can be used in a straightforward way to explore and
exploit the domain fully adaptively. The adaptive sparse grid
technique therefore enables to spend more grid points close
to the singularity of the payoff function, e.g. The drawback
is that more sophisticated algorithms are necessary to keep
efficiency, see Sec. II-C.

Especially the matrices in (11) should not be assembled
directly. Using full grids and the common nodal basis, the FE
discretization leads to sparsely populated matrices, as only
few basis functions overlap. In a hierarchical basis, basis
functions overlap with all their ancestors and descendants
in the hierarchical structure, leading to a significant fill-in
of the corresponding, hence densely populated matrices. But,
due to the tensor product structure, algorithms that apply one
of the matrices to a vector can be formulated which scale
only linearly in the number of grid points. This allows the
usage of iterative methods, such as BiCGSTAB.

In the following section, we roughly sketch the algo-
rithmic structures of such matrix applications, as they are
necessary for the parallelization schemes we will address
later.

C. Algorithmic Structures

Applying the matrices in (11) to a vector can be done
efficiently by multiple traversals of the hierarchical tree
structure of the sparse grid. For the sake of simplicity, we
focus on the Matrix B, which is simpler than the other ones,
but complex enough so that all important algorithmic ideas
can be shown for it. The main idea is that, due to the tensor
product structure of the underlying basis, the application
of a matrix derived in d dimensions can be decomposed



into multiple applications of corresponding one-dimensional
matrices.

The scheme of applying a one-dimensional operator to
all one-dimensional sub-grids of a d-dimensional grid in
a certain dimension is called the unidirectional principle,
and has first been described in [17]. It is usually repeated
for all dimensions, one after the other, working on updated
values in each step. The probably simplest algorithms in this
respect are the hierarchization and dehierarchization, i.e., the
transformation of a vector containing function values at all
grid points to the vector of hierarchical surpluses and vice
versa. For operators that are more complicated, as it is the
case for our matrices, the one-dimensional applications have
to be split into so-called Up- and Down-parts, resulting into
the algorithmically slightly more complex UpDown scheme.

We will first consider the one-dimensional case, neglect-
ing the basis functions on level 0, which have to be handled
separately as a special case. Let the basis functions ϕj be
ordered in any way so that j < k if basis function ϕj has
a smaller level (is hierarchically higher) than ϕk; a breadth-
first traversal of the binary tree of basis functions suffices, for
example. The matrix-vector product can then be computed
in one sweep, recursive in the level l: On the way from the
root (l = 1) down the tree (Down), the contributions of all
hierarchically higher basis functions can be gathered for each
node, on the way back up (Up) the contribution of all lower
ones. If we treat both parts separately, we split the matrix
B into its lower (BDown) and upper (BUp) triangular sub-
matrices and its diagonal matrix (BDiag) which is usually
treated together with one of the former ones (i.e. either
during the Up or the Down traversal, usually during Down),

Bα = BDownα+BDiagα+BUpα . (12)

In other words, arriving at the basis function ϕj dur-
ing Down, we compute 〈ϕj ,

∑
k≤j ϕk〉L2(Ω), during Up

〈ϕj ,
∑

k>j ϕk〉L2(Ω), and together (Bα)j .
There are several reasons to regard the Up and Down

parts separately. First, Down can be derived easily as the
important information about all hierarchically higher basis
functions for a given basis function to compute the Down-
part of the scalar product can be gathered descending from
the root. Up is generally less intuitive, but can be derived
out of Down in a systematic way, even for non-symmetric
matrices as the matrix D, but which goes beyond the scope
of this paper.

More important in this context is, as it determines the
algorithmic structure, that in a d-dimensional setting the
Up and Down parts have to be split and treated indepen-
dently: Iterating the one-dimensional applications over all
dimensions requires to work on suitably updated values to
be able to compute the tensor product interrelation between
the different dimensions. Due to the sparse structure of the
sparse grid, all Ups have to be performed before any Down
operation when alternating the dimension: the transfer of

intermediate contributions between two grid points can only
occur via common ancestors in the hierarchical structure.
Figure 1 depicts the application of both Up and Down in
one dimension for a two-dimensional sparse grid as well
as the algorithmic structure of the UpDown algorithm. The
latter starts with dimension d, recursing until dimension 1
is reached. In the last dimension, only Up and Down are
computed, stopping the recursion.

The parallelization, which is discussed in the next section,
is based on the recursive structure of the UpDown algorithm.
Note that even though the matrices C and D represent
operators that are more complicated, they share the same
algorithmic structure and can be handled in the same way,
applying one-dimensional versions of Up and Down for each
dimension.

III. PARALLELIZATION

Dual- and Quad-Core processors have already become
the standard CPUs in nearly all kinds of modern computers
ranging from notebooks to high performance machines. In
the near future, multi-core and many-core (i.e. with more
that 16 cores) processors will be the dominating architecture.
Furthermore, Intel will release its first high performance
graphics accelerator in the beginning of 2010, codenamed
“Larrabee”, which is built out of standard x86 cores and
can be regarded as the first many-core CPU, as a few dozen
cores can be expected. Thus, algorithms and implementa-
tions that scale well on such shared memory platforms are
urgently needed. In this section we demonstrate how the
UpDown scheme introduced above can be parallelized on
such architectures with a platform-independent approach.

To reach this end, we decided to use OpenMP as the tool
for parallelization: Practically all available compilers, free
and commercial ones, provide OpenMP support on various
platforms. As demonstrated in [18], the OpenMP 3.0’s task
concept, introduced in 2008, allows a straightforward paral-
lelization of nested recursions which are the basic building
blocks of algorithms working on sparse grids.

The new compiler directives introduced in the OpenMP
3.0 standard permit a simple and flexible parallelization
of recursive algorithms: Only the parts of the application
that should be executed in parallel have to be specified.
Additionally, the number of threads, which the application
should use, can be specified. Otherwise, the OpenMP run-
time system automatically detects the number of available
cores and starts threads in the same quantity.

This provides a great enhancement in parallel program-
ming: all synchronization and load balancing tasks are
done automatically by the OpenMP runtime environment.
As already shown in [18], this does not result in a huge
overhead if the parallel jobs provide “enough” computational
complexity. The results in Sect. IV show further that very
high parallel efficiencies can be reached solving the Black-
Scholes equation on sparse grids.



Up(d)

Down(d)
+

UpDown(1):

Up(d) UpDown(d-1)

Down(d)UpDown(d-1)
+

UpDown(d):

Figure 1. Up (left) and Down (middle) in the first dimension for a two-dimensional sparse grid, showing the one-dimensional tree traversals; the algorithmic
structure of the UpDown scheme (right), recursing in the dimension d

The following code example demonstrates how the im-
plementation of the UpDown algorithm can be parallelized
using the OpenMP 3.0 task concept. This scheme works
for the application of all matrices in (11). For the matrix
B, computing plain L2 scalar products, it is sufficient to
provide suitable implementations for the one-dimensional
up- and down-procedures. For the other matrices in the
multi-dimensional Black-Scholes equation, a slightly more
general UpDown scheme has to be used, allowing to execute
different ups and downs, depending on the current dimen-
sion. In the routine’s first part, the recursive calls for Up and

Vector updown(Vector α, int d) {
// create result vector b and auxiliary vector c
Vector b(N), c(N)
// recursion in remaining dimensions d, . . . , 1 :
if (d > 1) {

# pragma omp task shared (α, b) {
b = updown( up(α, d), d− 1 )

}
# pragma omp task shared (α, c) {

c = down( updown(α, d− 1), d )
}
# pragma omp taskwait
b = b + c

}
// d = 1, end of recursion:
else {

# pragma omp task shared (α, b) {
b = up(α, d)

}
# pragma omp task shared (α, c) {

c = down(α, d)
}
# pragma omp taskwait
b = b + c

}
return b

}

Listing 1. OpenMP-Parallelization of b=updown(α, d).

Down are determined, see also the UpDown scheme in Fig.
1. Both can be executed in parallel, due to the fact that the
total result of the operation is given by the sum of all one-
dimensional Up and Down calculations. The second branch
of the if statement considers the last dimension, ending
the recursion. As no implicit barriers are given at the end of
one task block, an explicit barrier has to be declared by the
#pragma omp taskwait directive, which synchronizes
all tasks that have been started since the last barrier.

Looking at the parallelization scheme, it can be clearly
seen that 2d parallel tasks are created, so there are plenty
of jobs available when pricing multi-dimensional options,
for example in five dimensions. The parallel performance
provided by contemporary multi-processor or multi-core
(and many-core in the near future) systems can thus be easily
exploited.

IV. NUMERICAL AND PERFORMANCE RESULTS

In this section, we sum up numerical and performance re-
sults of our parallel multi-dimensional Black-Scholes solver.
We study a test case in different parallel environments, and
provide both numerical and performance results. As the test
case, we consider a European basket call option with two
to five underlying assets. The payoff function we use is
given by (2) with strike K = 1. For the parameters of
the underlying stochastic process, we choose σi = 0.4,
ρi,j = δi,j , and µi = r ∈ {0, 0.05}. Since we are interested
in the option value for S = (1, . . . , 1), we choose the domain
[0, 2]d. It turned out that, in this case, the boundaries do not
have much effect on the option value any more. To discretize
the system of ordinary PDEs in time, we use the method
of Crank and Nicholson. All options are priced at physical
time T = 1 (time to maturity is 1 year) within 10 time steps.
In every time step, the stopping condition for the iterative
solution of the corresponding linear system is based on the
BiCGSTAB’s convergence, reducing the relative residual to
less than 10−5 considering the Euclidean norm.



A. Testing Environments

We tested the parallel Black-Scholes solver on various
platforms, showing significantly differing hardware archi-
tectures and performance characteristics:
• A mobile Intel Penryn Core2Duo processor (SP9300)

running at 2.26 GHz with 4 GB DDR3 main memory.
• A two socket Intel Nehalem system with Intel Xeon

X5570 running at 2.93 GHz with 12 GB DDR3 main
memory. The CPUs communicate via Intel’s Quick Path
Interconnect.

• A two socket AMD Shanghai system with AMD
Opteron 2378 running at 2.4 GHz with 32 GB DDR2
main memory. The CPUs communicate via the Hyper-
transport protocol.

In all multi-socket cases, we restricted ourselves to NUMA
systems as both leading companies, Intel and AMD, will
only develop and improve these kinds of machines in the
future. In a NUMA system every socket is equipped with
its own private memory which can be accessed very fast.
Fetching memory located in banks attached to other CPUs
is a bit slower.

B. Numerical Results

In the following, we present numerical results solving
the Black-Scholes equation. Tab. I shows the results for
regular sparse grids of several levels in up to 5 dimensions.
Additionally, we provide as a comparison the option price
obtained by a classic Monte-Carlo (MC) simulation with
106 paths for each test case, allowing to verify the option
prices obtained with sparse grids.

In up to 4 dimensions, we can observe that the option
price converges nicely with increasing grid level. The rather
bad convergence in the 5-dimensional case can be ascribed
to the low resolution of the grid in the inner part of Ω. On
level 6, still only 5,503 grid points are spent in the interesting
inner part, whereas 97,282 ones are spent on ∂Ω. Employing
adaptivity, which we have to leave for future work, promises
to provide much better results. The grid next to the boundary,
where the option price is almost linear, can be adaptively
coarsened, and the more important inner part of the grid,
where the price is at-the-money, can be refined instead.

C. Performance Results

In this section, we finally sum up the performance results
we measured on the different hardware architectures. To this
end, we compare the parallel execution time on several CPUs
with the sequential time measured on a single CPU. We
therefore determine the parallel efficiency En of the Black-
Scholes solver using n threads by

En :=
t1

tn · n
, (13)

with t1 denoting the execution time on a single CPU and
tn the execution time using n CPUs with n threads. In the

2 underlyings 3 underlyings

level r = 0.00 r = 0.05 r = 0.00 r = 0.05

2 0.12877 0.15130 0.11507 0.12815
3 0.12063 0.14080 0.10857 0.12836
4 0.12126 0.14035 0.09898 0.11659
5 0.11580 0.13498 0.08941 0.10809
6 0.11483 0.13398 0.09305 0.11128
7 0.11303 0.13223 0.09335 0.11160
8 0.11217 0.13137 0.09276 0.11104
9 0.11105 0.13026

10 0.11065 0.12987

MC 0.11413 0.13698 0.09382 0.11822

4 underlyings 5 underlyings

level r = 0.00 r = 0.05 r = 0.00

2 0.10355 0.09428 0.09000
3 0.14326 0.16028 0.26968
4 0.10003 0.11462 0.20286
5 0.07122 0.08849 0.07565
6 0.07313 0.09145 0.05962
7 0.08111 0.09751

MC 0.08189 0.10654 0.07348

Table I
COMPARISON OF OPTION PRICES FOR SPARSE GRIDS OF SEVERAL

LEVELS AND FOR MC SIMULATIONS WITH 106 PATHS, r ∈ {0, 0.5} FOR
DIFFERENT NUMBERS OF UNDERLYINGS.

following, we only focus on the maximal level shown in
Sect. IV-B for which we obtained the best numerical results.

First, we analyze the performance of the mobile CPU, the
Intel SP9300. Tab. II shows the serial and parallel execution
times and parallel efficiencies. Having only two cores, only
two threads have been used. For all options but the 4-
dimensional option with r = 0, not the whole parallel
performance which is theoretically possible can be exploited.
Considering the example code above, it can be seen that
the summation of the two result vectors is not computed
in parallel; as both cores reach the synchronization barrier
at the same time, one of them is idle until the summation
has been completed. For the 4-dimensional option with

option type 1 thread 2 threads

dim. d r t1 t2 E2

2 0.00 730 s 390 s 0.94
0.05 747 s 430 s 0.87

3 0.00 3870 s 2010 s 0.96
0.05 3870 s 2150 s 0.90

4 0.00 32000 s 15440 s 1.04
0.05 32200 s 17270 s 0.93

Table II
PERFORMANCE RESULTS ON THE INTEL CORE2DUO SP9300 (PENRYN)

FOR DIFFERENT NUMBERS OF UNDERLYINGS AND THREADS; WALL
CLOCK TIMES tn AND PARALLEL EFFICIENCIES En ; SUPER-LINEAR

EFFICIENCIES MARKED IN BOLD.



r = 0, we can observe an exceptionally excellent, super-
linear speedup. It is most likely caused by the processor’s
level 2 cache which is shared by both cores. One core might
have fetched memory that the other core needs as well.
This saves cache misses and therefore expensive memory
access with higher latency, resulting in faster execution
times. Parallelizing the summation as well did not improve
the execution times, as this operation is extremely memory
bounded.

The performances of the two socket server systems are
examined in Tab. III and IV. (Due to limited computing time
on the test platforms, we just considered 2 and 8 threads and
r = 0 for the 5d option.) Again, a similar picture can be

option type 1 thread 2 threads

dim. d r t1 t2 E2

2 0.00 580 s 300 s 0.97
0.05 610 s 310 s 0.98

3 0.00 3060 s 1540 s 0.99
0.05 3060 s 1540 s 0.99

4 0.00 26860 s 12100 s 1.11
0.05 26900 s 12150 s 1.11

5 0.00 176700 s

option type 4 threads 8 threads

dim. d r t4 E4 t8 E8

2 0.00 220 s 0.66 220 s 0.33
0.05 230 s 0.66 230 s 0.33

3 0.00 950 s 0.81 810 s 0.47
0.05 970 s 0.79 810 s 0.47

4 0.00 6960 s 0.97 4760 s 0.71
0.05 7000 s 0.96 4790 s 0.70

5 0.00 23600 s 0.94

Table III
PERFORMANCE RESULTS ON THE INTEL XEON X5570 (NEHALEM) FOR
DIFFERENT NUMBERS OF UNDERLYINGS AND THREADS; WALL CLOCK

TIMES tn AND PARALLEL EFFICIENCIES En ; SUPER-LINEAR
EFFICIENCIES MARKED IN BOLD.

seen. We therefore focus only on a few observations that
have to be remarked. It can be clearly seen that there are
only four tasks for two-dimensional options, and we thus
obtain the same execution times using 4 or 8 cores. For
the four-dimensional option we obtain super-linear efficiency
again, this time for both r = 0 and r = 0.05. However,
the Shanghai’s overall performance in terms of execution
time, is extremely strange, taking more than twice as long as
the Nehalem (with just about 20% slower clock frequency).
Both Intel and AMD use prefetching, branch prediction and
out-of-order mechanisms to improve the performance of the
processor. Of course, both differ in their hardware imple-
mentation and the underlying algorithms, but this cannot
be the only reason for such big differences. One possible
explanation is the processors’ cache-associativity. Intel uses
a 32 KB 8-way level one cache [19], AMD a 64 KB 2-
way level one cache [20]. This implies that Intel’s cache is

option type 1 thread 2 threads

dim. d r t1 t2 E2

2 0.00 1230 s 630 s 0.98
0.05 1270 s 660 s 0.96

3 0.00 6010 s 3020 s 0.99
0.05 6010 s 3010 s 0.99

4 0.00 46250 s 23150 s 0.99
0.05 51030 s 25500 s 1.00

5 0.00 272500 s

option type 4 threads 8 threads

dim. d r t4 E4 t8 E8

2 0.00 470 s 0.65 470 s 0.33
0.05 490 s 0.65 490 s 0.32

3 0.00 2070 s 0.73 1580 s 0.48
0.05 2060 s 0.73 1580 s 0.48

4 0.00 14480 s 0.79 11200 s 0.52
0.05 16080 s 0.80 11000 s 0.58

5 0.00 52400 s 0.65

Table IV
PERFORMANCE RESULTS ON THE AMD OPTERON 2378 (SHANGHAI)

FOR DIFFERENT NUMBERS OF UNDERLYINGS AND THREADS; WALL
CLOCK TIMES tn AND PARALLEL EFFICIENCIES En .

four times as efficient in case of equally distributed memory
accesses, and that less cache lines replacements are needed.
In our sparse grid implementation we use hash maps to
store and address coefficients for grid points, so we can
assume that exactly this is the case. Another difference
worth noting concerns the parallel efficiency. The Shanghai
scales significantly worse than the Nehalem, especially in
higher dimensional settings where 4 or more threads can be
used. This is quite likely due to the fact that Intel’s QPI
(Quick Path Interconnect) allows all eight cores to access
the memory faster than AMD’s Hypertransport.

V. CONCLUSION AND OUTLOOK

In this work, we introduced the direct finite element
discretization of the Black-Scholes equation using sparse
grids. We described the main algorithmic building block,
the UpDown scheme, which allows the efficient application
of the matrices resulting from the FE discretization. Taking
advantage of the task concept of the OpenMP 3.0 standard,
we showed an efficient parallelization of the sparse grid
Black-Scholes solver, which is well suited for modern multi-
core commodity systems. We presented numerical results
for basket options with up to five underlyings. Studying the
parallel performance on three multi-core architectures, we
obtained good parallel efficiencies on Intel architectures with
even super-linear performance in four-dimensional settings.

Even though the parallelization methods presented in
this paper have been developed to solve the Black-Scholes
equation, they are not limited to this setting but can also be
applied to different parabolic or elliptic partial differential
equations (to the log-transformed Black-Scholes PDE, which



has constant coefficients and models the log-price of the
option, e.g.)—and even in applications such as regularization
or regression in Data Mining.

Regarding the numerical results, employing adaptivity
promises to improve the accuracy significantly, especially
for more than four underlyings. For regular sparse grids
examined so far, too many grid points are spent on the
domain’s boundary and not in the interesting interior where
the price is at-the-money. It can be expected that insight
obtained using adaptive sparse grids in other applications can
be also transferred to the Black-Scholes FE discretization.
Note that adaptivity might have effects on the parallelization,
as it results in non-symmetric grids.

Considering the parallelization, further work has to be
done. For example, the super-linear parallel efficiency has
to be studied further. This way, it might be understood
why the super-linear behaviour could not be encountered
on AMD systems. We postulated that that AMD’s level-one
cache, which is only 2-way associative, is responsible for the
bad overall performance with respect to computation time,
compared to the one achieved on Intel’s systems. A closer
examination of the CPU’s performance counters will be able
to clarify this: A much higher number of cache misses in
comparison would confirm the postulation.

Furthermore, the sparse grid Black-Scholes solver has to
be ported to new systems such as Larrabee, Nehalem EX or
four socket six core Opteron systems.
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