
Exploiting Object-Based Parallelism on Multi-Core Multi-Processor Clusters

Xuli Liu
University of Nebraska at Kearney

Kearney, NE 68849, USA
liux1@unk.edu

Abstract

Programming using message passing or distributed
shared memory are the two major parallel programming
paradigms on clusters. However, these two models have
high programming complexity, produce less maintainable
parallel code, and are not suitable for multi-core multi-
processor clusters. While object-oriented programming is
dominant in serial programming, it has not been well ex-
ploited in parallel programming. In this paper, we propose
an innovative automatic parallelization framework that em-
ploys past experience to parallelize serial programs and
outputs the parallel code in the form of objects. Supported
by a data-driven runtime environment, each parallel task
is managed as a thread, exploiting the multiple processing
cores on a cluster node. Based on this proposed framework,
we have implemented a proof-of-concept parallelizer called
PJava to parallelize Java code. The performance benefit of
this framework is evaluated through case studies by com-
paring the execution time of the automatically generated
PJava code to that of handcrafted JOPI (a Java dialect of
MPI) code.

1. Introduction

Message-passing-based programming and Distributed-
Shared-Memory-based (DSM) programming are the two
major parallel programming paradigms on clusters. In a
message-passing environment, parallel programmers uses a
communication and synchronization library, e.g., Message
Passing Interface (MPI) [19], to coordinate parallel pro-
cesses on multiple cluster nodes. While message-passing
offers parallel programmers a stable programming envi-
ronment, it requires them to have certain level of concur-
rent programming knowledge and manage complicated and
error-prone message passing. Furthermore, this message-
passing-based programming model has long been criticized
for mixing problem-solving algorithms with low-level inter-
node communication code, making the parallel code hard to

maintain.

DSM exposes a virtually shared memory to parallel pro-
grammers on a cluster, thus the programmers can focus on
the problem-solving algorithm without explicitly handling
message passing between parallel processes. However, to
guarantee the semantic correctness of a parallel program,
DSM still requires a programmer to carefully synchronize
these parallel processes using semaphores or monitors, thus
leaving open the opportunity for deadlocks. Furthermore,
DSM has a high overhead due to its rigorous requirement
for consistency control over replicated data on each cluster
node [16]. In addition, a DSM may be infeasible or dif-
ficult to implement on a more loosely-coupled distributed
environment (e.g., a computational Grid), where nodes may
scatter across the boundaries between different administra-
tive domains over a wide area network.

Furthermore, both message-passing and DSM are chal-
lenged by the advent of multi-core processor architecture,
which favors multi-threaded applications [13]. A node in
a typical modern cluster has multiple multi-core proces-
sors, thus making multi-threaded parallel code a neces-
sity in order to fully exploit the multiple processing cores
equipped on each cluster node. Unfortunately, the specifi-
cation of MPI does not include explicit definition for multi-
threading, and it is a common practice to execute multiple
MPI processes on each cluster node or use hybrid program-
ming, e.g., incorporating MPI and OpenMP [20] together
[2]. However, these two solutions are either inefficient or
too expensive to develop. DSM-based parallel program-
ming is also complicated since processes or threads on the
same cluster node prefer communication through physically
shared memory, whereas DSM is still needed to support the
communication among different cluster nodes.

The combination of the aforementioned limitations of
the message-passing-based and DSM-based programming
models challenges researchers to build a new program-
ming paradigm. This new programming model should
strive for (1) a more friendly programming interface for
non-professional parallel programmers, (2) less error-prone
and more maintainable parallel code, (3) thread-level paral-

Eighth International Conference on Parallel and Distributed Computing, Applications and Technologies

0-7695-3049-4/07 $25.00 © 2007 IEEE
DOI 10.1109/.25

259

Eighth International Conference on Parallel and Distributed Computing, Applications and Technologies

0-7695-3049-4/07 $25.00 © 2007 IEEE
DOI 10.1109/.25

259

lelism, and (4) light-weight runtime environment.
Bearing these goals in mind, we have designed an object-

based parallel programming model. Different from tradi-
tional procedural programming, to which current message-
passing-based programming and DSM-based programming
belong, this proposed object-based parallel programming
model represents each parallel task as an autonomous
object, encapsulating both data and its processing code.
The synchronization among parallel tasks is coordinated
through a directed acyclic graph called dependency graph
that describes the inter-dependency among the tasks, elim-
inating the necessity of explicit synchronization code. In
addition, the object-based parallel tasks are handled in a
data-driven way – a task is triggered when all its prereq-
uisites are met. Parallel tasks distributed to a cluster node
are managed as threads in a multi-threaded application, thus
being able to exploit thread-level parallelism. Furthermore,
object-form parallel tasks are easier to be scheduled. For
example, when more cluster nodes become available dur-
ing the execution of a parallel application, some tasks can
be simply ported to these newly available nodes since the
cluster architecture is not reflected in the code. To further
relieve programmers of parallel programming, we have also
developed a framework to automatically parallelize a serial
code into a parallel one.

The rest of this paper is organized as follows. In Section
2, we introduce the related work. After describing the par-
allelization framework in Section 3, we present the runtime
environment in Section 4. In Section 5, we compare the
performance of this proposed model to that of JOPI through
two case studies. Finally, we conclude and discuss the fu-
ture work.

2 Related Work

Practitioners in cluster computing by and large program
with popular serial languages (e.g., C and Java) and handle
inter-node communication with message-passing libraries,
such as MPI [19], JOPI [6], and Linda [8]. The Message
Passing Interface (MPI) is a de facto standard for commu-
nication among parallel processes on a cluster, and its im-
plementations include FORTRAN, C, C++, and Ada. The
Java Object Passing Interface (JOPI) is an implementation
of MPI for Java, where an object is the very basic data ex-
changing unit. Linda provides a logical associative memory
called a tuplespace and employs a few primitive instructions
to add or retrieve data from this tuplespace. Implementa-
tions of Linda can be found in such languages as Prolog,
C, and Java. Instead of requiring programmers to explic-
itly handle the communication and synchronization among
parallel tasks as done in MPI, our proposed object-based
programing model uses a dependency graph to synchronize
parallel tasks, thus reducing the workload of parallel pro-

grammers and eliminating the possibility of deadlock.
Compared to message-passing, DSM provides parallel

programmers a more user-friendly environment. Because
processes on different cluster nodes virtually share a global
memory, a programmer only needs to carefully synchronize
the parallel processes without explicitly handling message
passing. DSM has been one of the research hotspots in dis-
tributed systems, and many systems have been proposed and
implemented, among which Treadmarks [15] is one of the
most successful ones.

Due to the portability of Java as well as its parallel fea-
tures such as Remote Method Invocation (RMI), monitor,
and multi-threading, most of the current DSM studies on
clusters concentrate on distributed Java Virtual Machine
(JVM), and these studies can be categorized as three ap-
proaches. The first approach is to lay a distributed JVM
on top of some existing DSM system, such as Java/DSM
[26]. The second approach is based on a cluster-enabled
implementation of JVM, of which cJVM [7] is a good ex-
ample. The third approach, also the most widely used one
by current research projects, is to put another layer on top of
JVM, providing the necessary parallel and distributed fea-
tures. Examples of the third approach include JavaParty
[22], Hyperion [18], Jackal [24], etc. Instead of providing
a virtually shared memory, our model still uses message-
passing as the way of communication among cluster nodes.
However, this communication is transparent to upper levels
in that it is performed automatically according to a depen-
dency graph, thus avoiding the heavy consistency control
overhead of DSM.

The data-driven feature of our proposed model is simi-
lar to the dataflow idea of dataflow programming languages
(e.g., SAC (Single Assignment C) [3], Prograph [4], and
LabVIEW (Laboratory Virtual Instrumentation Engineering
Workbench) [5]). The instructions coded with a dataflow
language are grouped as ”black boxes”, with inputs and
outputs, that are triggered to execute when all of their in-
puts become valid. This feature makes dataflow languages
inherently suitable for task parallelism. Unfortunately, the
feature of single assignment of variables (i.e., disallowing
the reassignment of variables once their values have been
assigned) in dataflow languages makes them hard to handle
loops (i.e., data parallelism) [14]. In our proposed model,
a parallel/distributed application is composed of medium-
grained autonomous objects, and the synchronization of
these objects is coordinated through a dependency graph
instead of a new programming language. Thus, a parallel
programmer can use his/her favorite language to perform
parallel programming.

ProActive [1][10] is another ongoing project that stud-
ies object-based parallel programming. ProActive is an
Open Source Java library with a reduced set of simple prim-
itives, supporting parallel/distributed multi-threaded com-

260260

puting on clusters, local area network, or even Internet
Grids. Similar to our model, an application coded with
ProActive consists of a number of medium-grained entities
called active objects. Each of the active objects has its own
thread of control, and their synchronization is handled by
a mechanism called wait-by-necessity. Instead of expos-
ing a parallel programming library to programmers as in
ProActive, our model hides the parallelization details from
programmers. Furthermore, the synchronization of objects
in our model is controlled by a dependency graph, and the
execution order of these objects is further optimized as de-
scribed in Section 4.2.

3. Generating Object-based Parallel Code
from Serial Code

In this section, we discuss the process of parallelizing a
serial code into an object-based parallel code from a higher
level. The procedure presented in Figure 1 is characterized
by pattern-based parallelization and object-based parallel
code.

Serial Code

Data Space and I terat ion
Space Analysis

Pattern Base Pattern Matching

Parallelization
Scheme

Code Generation for Data
Space Partitioning

Code Generation for Data
Partitions

Parallel Code

O
pt

io
na

l M
an

ua
l

Pr
og

ra
m

m
in

g
In

te
rfa

ce

Code Generation for
Dependency Graph

Construction

Pattern-Based
Parallelization
Scheme
Generation

Object-based
Parallel
Programming

Description of
Data Dependency

Distribution to Slave Nodes

Object-based and Data-Driven Runt ime Environment

Compile and Execute on the Head Node

Parallel Tasks Dependency Graph

Figure 1. The procedure of generating object-
based parallel code from a serial program

3.1 Pattern-based Parallelization

Although the framework presented in Figure 1 works for
both data parallelism and task parallelism, our research fo-

cuses on data parallelism at its current phase. Having ob-
served that loops sharing certain features can be parallelized
with a similar, if not the same, scheme, we use past paral-
lelization experience to help parallelize future programs. As
shown in Figure 1, past successful parallelization schemes
are abstracted as situation-solution pairs, which are stored
in a pattern base. When a loop is to be parallelized, its fea-
tures are extracted and then collectively labeled as the cur-
rent situation. Then, the best-matching case in the pattern
base is searched for [21] and used to guide the correspond-
ing parallelization.

By using this pattern-based parallelization strategy, not
only is the work of a parallel programmer eased, but also
the stability and efficiency of the parallel code can hope-
fully be improved. In Figure 1, we can also see that a de-
scription of the data dependency relationship carried by the
loop is produced in addition to the parallelization scheme.
This description will help generate the code of constructing
the dependency graph in the phase of parallel code genera-
tion.

3.2 Object-based Parallel Code

The features of object-oriented programming, such as
encapsulation and inheritance, provide us a good opportu-
nity to design an alternative parallel programming model.
Following the parallelization scheme obtained from the pat-
tern base, the parallel code is generated. As shown in Fig-
ure 1, the parallel code includes the code of partitioning the
data space, the processing code of data partitions, and the
code to construct the dependency graph that describes the
inter-dependency among data partitions. This parallel code
generation does not start from scratch, instead the funda-
mental functions, such as communication, are pre-defined
into a set of base classes, from which the parallel code can
inherit or extend.

In fact, the produced parallel code is still regular serial
code, and it is compiled and executed on the head node
of a cluster. By running the parallel code, the data space
is partitioned with an optimal granularity [17], and each
data partition is encapsulated with its processing code into
autonomous objects. Also, the dependency graph is con-
structed. And then, these objects (i.e., parallel tasks) and the
dependency graph are distributed to the slave nodes of the
cluster for execution. The parallel tasks scheduled to a clus-
ter node are executed as a multi-threaded application (refers
to Section 4), which is able to effectively exploit the multi-
ple processing cores of multi-core multi-processor clusters,
as opposed to a single-threaded application. Furthermore,
because all objects are self-contained, it is easy to migrate
a task in the form of an object from one cluster node to an-
other even during the execution of the parallel application.

261261

4 The Runtime Environment

In this section, we study the runtime environment that
supports the execution of the object-based parallel code dis-
cussed in Section 3.

4.1 The Architecture of the Runtime En-
vironment

On each cluster node, a lightweight middleware, as
shown in Figure 2, is provided to support the execution of
parallel tasks. Figure 2 shows that each cluster node runs a
service agent that accepts tasks (i.e., objects) from the head
node and requests from other slave nodes. Each received
parallel task will be executed as a thread, and parallel tasks
scheduled to the same cluster node form a multi-threaded
application.

Service Agent

Message to or from another node

Data Dictionary

Waiting Threads Pool

Ready Threads Queue

Running Threads

Dependency Graph

Scheduler

Monitor Agent

Figure 2. The workflow of a multi-threaded
application running on a cluster node

In Figure 2, a dependency graph that defines the inter-
dependency among all parallel tasks across cluster nodes
sits at the heart of the runtime environment. All received
parallel tasks are initially stored in the waiting threads pool,
and a task is moved from the waiting threads pool to the
ready threads queue when all of its prerequisites defined by
the dependency graph are met. The tasks sitting in the ready
threads queue will be properly scheduled to execute when a
processing core becomes available.

The data dictionary shown in Figure 2 contains not only
the data being processed by the local application but also

replicas of the data owned by other applications that the lo-
cal application refers to. This data dictionary is shared by
all parallel tasks located on the same cluster node, and their
communication goes through the physically shared mem-
ory.

Although the monitor agent in Figure 2 is not directly
involved in the processing of a task, it plays an important
role in this runtime environment. This monitor agent keeps
track of the variance of the utilization of system resources
(e.g., CPU usage), and this information can be used to per-
form load-balancing by migrating tasks from one node to
another. In addition, this monitor agent tracks the access
patterns (e.g., when and where the accesses are from) on an
object, and this information can be used to better distribute
the parallel tasks (e.g., distributing closely-related tasks to
the same cluster node so as to reduce inter-node communi-
cation) in the future.

4.2 The Operational Mechanism of the
Runtime Environment

In this subsection, we first introduce the data-driven ex-
ecution model of parallel tasks, and then we discuss some
technical issues related to the state transitions (i.e., among
waiting, ready, and running) of a parallel task.

4.2.1 The Data-Driven Execution Model

The execution of parallel tasks is scheduled by a data-driven
model, which can be explained with the sample dependency
graph shown in Figure 3. In Figure 3, each vertex repre-
sents a task and an edge between two vertices symbolizes
the existence of data dependency between those two corre-
sponding tasks. For instance, there are two incoming edges
to vertex E: C → E and B → E. Thus, task E will not
be started until tasks B and C are all finished. On the other
hand, after a task is finished, it will trigger the execution
of its dependent tasks. For example, the completion of task
A will trigger the executions of tasks C and D. Without
explicit synchronization as done in traditional parallel pro-
gramming, a parallel task can be started immediately after
all its required data is available, thus eliminating unneces-
sary synchronization time.

4.2.2 Switching a Parallel Task from Waiting State to
Ready State

Notice that inappropriate scheduling may actually leave
some processing cores of a cluster node idle. Consider a
cluster node with only 2 processing cores that has a task
dependency graph as shown in Figure 3. At some point,
task B is taking over one processing core, and task A is just
completed. Obviously, both tasks C and D can get sched-
uled. If task D is scheduled, even though tasks B and D

262262

A B

D

C

E

Layer 0

Layer 1

Layer 2

Figure 3. A sample task dependency graph

will be completed at the same time later on, only task C can
be started then, leaving one processing core in an idle state.
On the contrary, if task C gets scheduled, then both tasks D
and E can be executed simultaneously assuming that tasks
B and C can be completed around the same time. Clearly,
a big difference can be made if the ready tasks can be prop-
erly ordered (refers to Figure 5 for the performance differ-
ence). We have designed and implemented an algorithm
called PRIORITY TOPOLOGICAL SORT(G) to properly
order ready tasks, as shown in Figure 4.

The correctness of the algorithm shown in Figure 4 can
be proven as follows.

Proof:

Steps 1 to 3 carry out topological sort. Due to the charac-
teristics of DFS (Depth-First Search), for any edge (u, v) ex-
plored by DFS(G), we always have f [v] < f [u], where f [v]
and f [u] represent vertices v’s and u’s finish times in DFS,
respectively. Thereby, a task is always triggered later than
its predecessors (prerequisites), and the inter-dependency of
the tasks held in the doubly linked list is met (Refers to [12]
for more details).

Step 4 moves the vertices with higher weights (i.e., with
more children) to the front of the list L as much as possible,
so that more tasks can be made ready to start in order to
fully exploit the processing cores on a cluster node. For
each task in list L, we compare its weight with that of each
task in the front of the list until reaching its parent in graph
G or some other task that has a higher weight (See steps 4.5
to 4.7). Steps 4.8 to 4.13 move the task being processed to
its correct position in the list.

Clearly, after the process described above, tasks with
higher priority are put as close to the head of the list as
possible, but never ahead of its parents. Thus the algorithm
correctness is proved.

�

————————————————————————–
PRIORITY TOPOLOGICAL SORT(G)

G = (V, E) is a DAG that represents the inter-dependency
relationship among tasks. V is the collection of vertices of G,
and E is the set of the edges.

1. Call DFS(G) to compute finishing times f[v] and the
weight (i.e., the number of children) w[v] for each ver-
tex v.

2. Create an empty doubly linked list L.

3. As each vertex is finished, insert it to the front of L.

4. Reorder the vertices in the list L.

In the following pseudo code, we use prev[v] and
next[v] to represent the previous node and next node
of vertex v in the list L respectively, and use parent[v]
to denote the parent of vertex v in the graph G.

4.1. curr = next[head]

4.2. while(curr != NIL){
4.3. p = prev[curr]

4.4. q = next[curr]

4.5. while(parent[curr] �= p and
w[curr] > w[p]){

4.6. p = prev[p];

4.7. }
4.8. next[prev[curr]] = q

4.9. prev[q] = prev[curr]

4.10. next[curr] = next[p]

4.11. prev[next[p]] = curr

4.12. next[p]] = curr

4.13. prev[curr] = p

4.14. curr = q;

4.15. }

————————————————————————–

Figure 4. PRIORITY TOPOLOGICAL SORT:
An algorithm to create a task priority list

4.2.3 Switching a Parallel Task from Ready State to
Running State

Since the round-robin (RR) scheduling algorithm, or its
variant, is used to schedule threads on modern time-sharing

263263

systems [23], putting a large number of threads in mem-
ory will result in frequent context-switching. Therefore, we
need to carefully determine the number of running threads
based on the characteristics of the particular parallel ap-
plication and the number of available processing cores on
a cluster node. For example, if all threads are compute-
intensive with no I/O operations, the number of running
threads may be set equal to the number of processing cores;
if some threads need I/O accesses, then the number of run-
ning threads should be set to be slightly greater than the
number of processing cores, so that there are sufficient num-
ber of threads to take over the CPU when one or more
threads wait for I/O. Currently we set the number of running
threads based on the characteristics of the particular parallel
application and the cluster node’s resource utilization.

5 Performance Evaluation of the Generated
Object-based Parallel Code

Based on the framework presented in Section 3, we have
implemented a proof-of-concept parallelizer called PJava
on top of Jikes [11] to parallelize serial Java programs. We
choose Java for our experiments to hide heterogeneity of
runtime support while the performance penalty is accept-
able compared to native code implementations [9]. In this
section, we demonstrate PJava’s performance benefits by
comparing its execution time to that of the JOPI code [6]
in two case studies – LU factorization and matrix multipli-
cation.

5.1 The Experimental Setup

The experiments in this section were carried out on a
Linux cluster with 10 nodes. Each node has 2 AMD dual
core opteron 270 processors (2GHZ) and 4GB RAM, and
all these cluster nodes are connected with a Gigabit Eth-
ernet. We have chosen the Sun Java 2 Platform Standard
Edition (J2SE 5.0) as the software platform.

5.2 Case Study 1: LU Factorization

LU factorization lies at the heart of Gaussian elimina-
tion, factoring a matrix into the product of a lower triangle
and an upper triangle. LU carries complex data dependency,
and it is an ideal application to evaluate the feasibility of this
proposed framework to dependency-intensive applications.

In this case study, the size of the matrix to be factored
was set to be 3600 × 3600 (double-precision floating num-
bers). The JOPI code and the PJava code used the same par-
allel algorithm provided by the Stanford SPLASH-2 bench-
mark suite [25]. In the automatically generated PJava code,
the loop bounds of each parallel task are determined on
the fly. Since all parallel tasks can be divided into three

types and the loop bounds for each type are fixed, we man-
ually optimized the generated PJava code. Both the non-
optimized and optimized versions were tested in runtime
environments with and without the scheduler discussed in
Section 4.2.2. In the experiments on JOPI implementation,
we have scheduled 4 processes onto each cluster node. To
evaluate the scalability, the above experiments were done
on 1 node, 2 nodes, 4 nodes, 6 nodes, and 8 nodes, respec-
tively. We have also run the standard serial LU algorithm
on one single node to see how parallel programming can
help improve execution performance. For each scenario,
we conducted the experiments for 5 times, and the average
execution times were collected and are compared in Table
1 and Figure 5. In Table 1, PJava1 and PJava2 represent
the automatically generated PJava code with and without
the scheduler respectively, and Optimized1 and Optimized2
stand for the optimized PJava code with and without the
scheduler respectively.

of Nodes 1 2 4 6 8
Serial 909.4 N/A N/A N/A N/A
JOPI 78.92 46.14 26.76 20.5 18.95

PJava1 78.11 51.36 33.94 25.01 18.23
PJava2 69.08 39.69 27.93 18.73 18.11

Optimized1 67.5 43.82 24.84 22.6 16.65
Optimized2 58.26 34.36 20.23 16.32 14.05

Table 1. Execution times of serial, JOPI, and
PJava code for LU

1 2 3 4 5 6 7 8
10

20

30

40

50

60

70

80

90

Number of Nodes

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

JOPI
PJava w/o Scheduler
Optimized PJava w/o Scheduler
PJava w/ Scheduler
Optimized PJava w/ Scheduler

Figure 5. Performance comparison of JOPI
and PJava code for LU

From Table 1, we can see that the parallel code (either
JOPI or PJava) greatly outperformed the serial code even
on 1 node since the parallel code can take advantage of

264264

the multiple processing cores and has higher cache hit rate
due to its partitioned data space. Figure 5 clearly shows
that that the performance of the automatically generated
PJava code was worse than that of the JOPI code if parallel
tasks were not properly scheduled. With scheduling pro-
vided, the generated PJava code outperformed JOPI code.
This performance advantage comes from the fact that PJava
is thread-based and the communication between threads is
through shared memory on a cluster node; on the contrary,
the JOPI code used more expensive inter-process commu-
nication. Figure 5 also shows that the performance of the
PJava code was greatly improved after being optimized
thanks to the source-to-source parallelization employed by
this framework.

Although the data-driven feature of PJava could bring
potential performance benefit due to its minimized syn-
chronization time, unfortunately this advantage was not
demonstrated in this case study. By monitoring JOPI
processes in our experiments, we did not see much syn-
chronization time existed due to the characteristics of the
parallel algorithm used by the JOPI code. In general,
however, we expect PJava’s data-driven model to bear
more pronounced performance advantage when compared
to explicitly-synchronized message-passing codes.

5.3 Case Study 2: Matrix Multiplication

Matrix multiplication (C = A × B) is embarrassingly
parallelizable. In this case study, the sizes of matrices of A
and B are both set at 2500×2500 (double-precision floating
numbers). In both the JOPI implementation and the PJava
implementation, we simply assign a part of matrix C to each
process, and the required data from matrix A and B is dis-
tributed accordingly. Because the parallelization of matrix
multiplication was quite straightforward, there was no need
to optimize the automatically produced PJava code. Fur-
thermore, the scheduler equipped in the runtime environ-
ment had no impact on performance as no dependency is
carried among parallel tasks. Thus, the automatically gen-
erated PJava code was simply executed in this case study.
Similar to the case study of LU, the JOPI code and PJava
code were both executed on 1 node, 2 nodes, 4 nodes, 6
nodes, and 8 nodes to evaluate their scalability. We have
also run the standard serial matrix multiplication algorithm
on one single node to see how parallel programming can
help improve execution performance. For each scenario,
we conducted the experiments for 5 times, and the average
execution times were collected and are compared in Table 2
and Figure 6. Similar to the case study of LU, 4 processes
were scheduled onto each cluster node in the experiments
on the JOPI code.

Table 2 indicates that the parallel code (either JOPI or
PJava) greatly outperformed the serial code even on 1 node,

of Nodes 1 2 4 6 8
Serial 819.95 N/A N/A N/A N/A
JOPI 149.54 80.59 51.49 49.69 45.89
PJava 91.67 68.28 49.53 34.12 29.07

Table 2. Execution times of serial, JOPI, and
PJava code for matrix multiplication

1 2 3 4 5 6 7 8
20

40

60

80

100

120

140

160

Number of Nodes

E
xe

cu
tio

n
T

im
e

JOPI Code
PJava Code

Figure 6. Performance comparison of JOPI
and PJava code for matrix multiplication

and this performance gain comes from the use of multiple
processing cores and the improved cache hit rate. For em-
barrassingly parallelizable applications, we cannot benefit
from the data-driven execution and thread-level parallelism
of PJava, because no dependency and communication ex-
ist at all among parallel tasks. However, it is interesting to
see that the performance of the PJava code was constantly
better than that of the JOPI code in Figure 6. In the JOPI
implementation of matrix multiplication, the computation
of a process will not start until all required data is received.
In this matrix multiplication application, since more data is
involved in the computation (think of C = A×B), the cost
of dispatching offset the benefit gained from parallel com-
putation as the number of cluster nodes increased, leading
to the weak scalability of JOPI. On the contrary, each par-
allel task in PJava is autonomous, so a task can be started
whenever it is received by a node.

Conclusion and Future Work

This paper has proposed a novel pattern- and object-
based framework for code parallelization on clusters. This
framework utilizes an pattern-based approach to help find
the parallelization solution based on past expertise and out-

265265

puts the parallel code in the form of autonomous objects.
The execution of these objects is guided by a dependency
graph in a data-driven manner. The advantages of this pro-
posed framework were evaluated through two case studies.

At the current phase, the number of parallelization cases
in the pattern base is still limited and to be expanded. Using
this framework to tackle task parallelism is another research
goal in our next phase. Finally, we also plan to build par-
allelizers to parallelize FORTRAN code and C code since
they are more widely used in scientific applications.

Acknowledgment

The author wants to thank Dr. Hong Jiang and Dr. Leen-
Kiat Soh for their advise in both the design and the imple-
mentation of this framework. This work was supported in
part by an NSF-SBIR Grant (DMI-0441249), an NSF-MRI
Grant (0320889), and a Cyberinfrastructure Research De-
velopment Grant (UNL).

References

[1] GRID COMPUTING: Software Environments and Tools,
chapter Programming, Composing, Deploying for the Grid.
Springer,, 2006.

[2] http://www-unix.mcs.anl.gov/mpi/mpich/faq.htm, April
2007.

[3] http://www.sac-home.org/, April 2007.
[4] http://www.mactech.com/articles/mactech/Vol.10/10.11/

PrographCPXTutorial/, April 2007.
[5] http://www.ni.com/labview/, April 2007.
[6] J. Al-Jaroodi, N. Mohamed, H. Jiang, and D. Swanson.

JOPI: A Java object-passing interface. Concurrency and
Computation: Practice and Experience, 17(7-8):775–795,
2005.

[7] Y. Aridor, M. Factor, and A. Teperman. cJVM: a single sys-
tem image of a JVM on a cluster. In Proceedings of 1999
International Conference on Parallel Processing, pages 4–
11, Fukushima, Japan, September 1999.

[8] R. Bjornson and A. Sherman. Grid computing & the Linda
programming model – an alternative to web-service inter-
faces. Dr. Dobb’s Journal, September 2004.

[9] J. M. Bull, L. A. Smith, L. Pottage, and R. Freeman. Bench-
marking java against c and fortran for scientific applications.
In Proceedings of the 2001 joint ACM-ISCOPE conference
on Java Grande, pages 97–105, California, CA, USA, June
2001.

[10] D. Caromel, W. Klauser, and J. Vayssière. Towards seamless
computing and metacomputing in Java. Concurrency: Prac-
tice and Experience, 10(11-13):1043–1061, 1998.

[11] P. Charles. A Practical method for Constructing Efficient
LALR(k) Parsers with Automatic Error Recovery. PhD the-
sis, New York University, May 1991.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms (Second Edition). MIT Press,
2001.

[13] J. Frueheis. Planning considerations for multicore pro-
cessor technology. www.dell.com/downloads/global/power/
ps2q05-20050103-Fruehe.pdf, January 2005.

[14] W. M. Johnston, J. R. P. Hanna, and R. J. Millar. Advances
in dataflow programming languages. ACM Computing Sur-
veys, 36(1):1–34, March 2004.

[15] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel.
Treadmarks: Distributed shared memory on standard work-
stations and operating systems. In Proceedings of 1994 Win-
ter Usenix Conference, pages 115–131, San Francisco, Cal-
ifornia, USA, January 1994.

[16] X. Liu, H. Jiang, and L.-K. Soh. A distributed shared object
model based on a hierarchical consistency protocol for het-
erogeneous clusters. In Proceedings of the 4th IEEE/ACM
International Symposium on Cluster Computing and the
Grid, pages 515–522, Chicago, IL, USA, April 2004.

[17] X. Liu, H. Jiang, and L.-K. Soh. Exploiting the advantages
of object-based dsm in a heterogeneous cluster environment.
In Proceedings of the 5th IEEE/ACM International Sympo-
sium on Cluster Computing and the Grid, Cardiff, UK, May
2005.

[18] M. W. MacBeth, K. A. McGuigan, and P. J. Hatcher. Exe-
cuting Java threads in parallel in a distributed-memory envi-
ronment. In Proceedings of 8th Annual IBM Centers for Ad-
vanced Studies Conference, pages 40–54, Missisauga, On-
tario, Canada, December 1998.

[19] Message Passing Interface Forum (MPIF). MPI-2: Exten-
sions to the Message-Passing Interface, July 1997.

[20] OpenMP Architecture Review Board. OpenMP Application
Program Interface, 2.5 edition, May 2005.

[21] S. Pal and S. Shiu. Foundations of Soft Case-Based Reason-
ing. Wiley-Interscience, 2004.

[22] M. Philippsen and M. Zenger. JavaParty – transparent re-
mote objects in Java. Concurrency: Practice and Experi-
ence, 9(11):1225–1242, November 1997.

[23] A. Silberschatz, G. Gagne, and P. B. Galvin. Operating Sys-
tem Concepts. John Wiley & Sons, Inc., Hoboken, NJ, USA,
2005.

[24] R. Veldema, R. A. F. Bhoedjang, and H. E. Bal. Distributed
shared memory management for Java. In Proceedings of 4th
Annual Conference of the Advanced School for Computing
and Imaging, pages 256–264, Lommel, Belgium, June 2000.

[25] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The splash-2 programs: Characterization and methodologi-
cal considerations. In Proceedings of the 22nd IEEE Annual
International Symposium on Computer Architecture, pages
24–36, Portofino, Italy, June 1995.

[26] W. Yu and A. L. Cox. Java/DSM: A platform for heteroge-
neous computing. Concurrency – Practice and Experience,
9(11):1213–1224, 1997.

266266

