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Abstract

 Realistic simulations of flow past a flexible cylinder 

subject to vortex-induced vibrations require a large 
number of Fourier modes along the cylinder span and 

high resolutions in the streamwise and cross-flow 

directions. Parallel computations employing a single-
level parallelism for this type of problems have clear 

performance limitations that prevent effective scaling to 

the large processor count on modern supercomputers. In 
this paper we present two multilevel parallel paradigms 

based on MPI/MPI and MPI/OpenMP for high-order 
CFD methods within the spectral element framework and 

compare their performance. In the MPI/MPI model, we 

employ MPI process groups/communicators to 
decompose the flow domain and MPI processes into 

different levels. In the MPI/OpenMP model, we employ 

multiple OpenMP threads to split the workload within the 
sub-domain and take a coarse-grain approach that 

significantly reduces the OpenMP synchronizations. For 

identical configurations the MPI/MPI model is observed 
to be generally more efficient. However, for dynamic p-

refinement the MPI/OpenMP approach is more effective. 

Because a greatly reduced number of processes are 
involved in the communications at each level, these 

multilevel parallel paradigms reduce the network latency 

overhead and enable the applications to scale to a large 
number of processors more efficiently.  

1. Vortex Induced Vibration 

 Flow past a flexible cylinder subject to vortex-

induced vibrations (VIV) arises in many industrial and 

military situations, such as the flexible risers and tendons 

in petroleum production, power lines, heat exchangers, 

and marine tow cables(see [2, 10, 20]). Flows in these 

applications are often sheared, which can potentially 

excite a large number of modes. How many and what 

modes are excited in a particular flow situation can 

significantly affect the durability and lifespan of the 

structure[15].

 However, predication of vortex-induced vibrations 

has been based on semi-empirical methods until recently. 

Most of the models involve eigen-solutions of the 

structures, which depend on the values of drag and lift 

coefficients obtained empirically, either the sectional 

values of the span-averaged values. When these models 

predict several modes as possible candidates to respond, it 

is not certain whether the structures would respond in all 

of these modes—it may transition from one mode to 

another or from one set of modes to another set of modes. 

 Recently, direct numerical simulation (DNS) has 

been applied to study the flow past a flexible cable subject 

to VIV[6, 7, 17, 18], and offers accurate predictions of both 

flow and structural quantities. In DNS of a laminar flow 

past a three-dimensional freely vibrating cable, Newman 

and Karniadakis[18] employed a simple wave equation to 

model the motion of the structure, neglecting the effect of 

bending stiffness. Two possible states of the wake were 

observed in their simulations: one that corresponds to a 

traveling wave response, and another one that corresponds 

to a standing wave response. Direct numerical simulations 

of a turbulent flow past a flexible cylinder[6] showed that 

the structural oscillation demonstrates much higher 

amplitude in the turbulent regime. When the bending 

stiffness is taken into account, significant differences are 

observed in both the flow structures and dynamics of the 

cylinder.  

2. Inherent Hierarchical Structures in VIV 

Computations

 We consider the incompressible flow past a long 

flexible cylinder subject to vortex-induced vibrations. The 

equations that describe this problem are the coupled 

system of fluid equations and cylinder’s structure 

equations. The Navier-Stokes equations and the 

continuity equation are the governing equations for the 

fluid motion,  
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where u ′  is the velocity field, p´ is the pressure, Re = 

UD/v is the Reynolds number based on the free-stream 

velocity U , cylinder diameter D and kinematic viscosity v

, f is the fluid density, and ∇′  is the gradient operator in 

the inertial coordinate system. We only consider the 

cross-flow motion of the structure which is described by 

the following equation: 
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where we denote by Y(z,t) the non-dimensional cross-flow 

displacement that has been normalized by the cylinder 

diameter D. The damping fraction is  and Ur = U/fD is 

the reduced velocity. The mass ratio and the natural 

frequency of the structure are m and f, respectively. The 

free-stream velocity of the inflow U is taken as the 

reference velocity of the system. Also, 
2/ UTc Sρ=

and
22/ DUEI Sργ = (where s is the structural 

density) are the non-dimensional cable/beam phase 

velocities respectively, where T is the tension and EI is 

the bending stiffness. The total lift force FL(z,t) is 

obtained through the flow solver, and is computed by 

integrating the pressure and viscous terms along the span 

of the cylinder 

( )( ) , dsnuunpjF T

L ⋅′∇+′∇+′−⋅= ν  (4)

where the integration is performed around the 

circumference of the cylinder at each spanwise location, 

n  is the outward unit vector normal to the cable, and j

is the unit vector in the cross-flow direction.  

 Solving the fluid/structure interaction problems 

generally involves moving the computational domains 

and dynamic re-meshing. However, we can eliminate the 

difficulty of a moving mesh by using body-fitted 

coordinates with the coordinate axes attached to the 

flexible cable[3]. The transformation maps the time-

dependent and deforming domain to a stationary and non-

deforming one. This mapping is described by the 

following transformation: 

 ).,( tzYyy −′=  (5) 

 In the transformed system of coordinates the flexible 

cylinder appears as straight and stationary. The Navier-

Stokes equation and the continuity equation are 

transformed as follows: 
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where ),,( YpuA is the additional acceleration 

introduced by the non-inertial transformation (5). The 

coupled fluid/cylinder problem is solved in three steps. 

The fluid equations are first solved for the given cylinder 

motion Y(z,t). The lift force on the cable is then computed 

as a function of z . The cylinder motion is updated finally.  

 Such VIV computations demonstrate inherent 

hierarchical structures when the problem is discretized 

with spectral element high-order methods. For the 

flow/cylinder problem the flow velocity can be 

represented by  

ikz

k

k etyxutzyxu ),,(ˆ),,,( ∗=  (8) 

 This representation assumes that the flow and 

cylinder variables are periodic in the spanwise direction 

with a period equal to the cylinder length L . A combined 

spectral element-Fourier discretization[12] can be 

employed to accommodate the requirements of high-order 

as well as efficient handling of multiply connected 

computational domain in the non-homogeneous planes. 

Spectral expansions in the homogeneous direction employ 

Fourier modes that are decoupled except in the nonlinear 

terms. Each Fourier mode is 2D field of space and time, 

and can be solved with the spectral element approach. 

 Specifically, a straight-forward mapping of the 

Fourier modes onto the processors can be employed. This 

results in an efficient and balanced computation where the 

three-dimensional problem is decomposed into two-

dimensional problems using multiple one-dimensional 
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