
Benchmark of Parallelization Methods for Unstructured Shock Capturing Code

Tsutomu Saito, Atsushi Abe and Kazuyoshi Takayama
Shock Wave Research Center, Institute of Fluid Science,

Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 Japan
saito@bellanca.ifs.tohoku.ac.jp

Abstract

This paper presents benchmark results of three differ-
ent parallel-programming paradigms on an unstructured
shock capturing numerical code for transient problems.
The three parallel programming methods include: (1) a
shared-memory programming of OpenMP using cache co-
herent non-uniform memory access (CC-NUMA) of SGI
Origin2000, (2) an MPI (Message Passing Interface) im-
plementation and (3) a SHMEM implementation using the
parallel library called ”Shared Memory Access Library”.
The methods (2) and (3) are both based on distributed mem-
ory architecture. SGI Origin2000 is used throughout the
current study. It is found that the scalability of the pro-
gramming (1) is so poor that its usage for the unstructured
CFD code is impractical. The scalabilities of programming
(2) and (3) are much better than programming (1) and the
computational speed of giga-flops range can be achieved
with 16 CPUs. The parallel programming with SHMEM li-
braries is approximately twice as fast as the one with MPI.

1. Introduction

Numerical simulations using unstructured numerical
grids became more common in the computational fluid dy-
namics (CFD) [5] [13]. This numerical method has advan-
tages when it is combined with local solution-adaptive tech-
nique over the conventional methods developed on struc-
tured numerical grids. Although the unstructured code
needs complex algorithm for automatic mesh refinement
and coarsening, it provides much higher resolutions com-
pared with structured codes for the same number of grid
points. In other words, it requires orders of magnitude less
grid points for the same space resolution compared with
structured codes. A two-dimensional (2D) numerical code
for both the viscous and inviscid flows using quadrilateral
unstructured grids is developed. Comparisons of the nu-
merical results with experimental data of flow visualizations

provide information not only on the code accuracy but also
on detailed wave interactions which take place during the
process. In performing CFD, the code performance on a
specific computer on which the code runs is also important
as well as the best choice of the numerical scheme. Three-
dimensional (3D) calculations or two-dimensional calcu-
lations with high degree of mesh refinement need large
amount of computer resources. RISC-based parallel com-
puters are now widely used but each processor of them is
relatively slow. It is, therefore, essential to have a reason-
able scalability in the parallel executions of a code. It is
known, however, that the scalability depends very much on
the structure of a numerical code.

There are several methods of performing parallel com-
putations. In this paper we investigate the performance
of three different parallel programming methods which are
available to us on SGI Origin2000 at the Institute of Fluid
Science, Tohoku University. The benchmark is carried
out on the two-dimensional unstructured code with adap-
tive mesh refinement. Benchmark results on parallel com-
putations of unstructured numerical code is reported by
Oliker and Biswas [6]. They compared several critical
factors in parallel computations such as runtime, scalabil-
ity, programmability, memory overhead etc. They also
compared different hardwares including SGI Origin2000,
Cray T3E and Cray MTA. Since we have an access only
to Origin2000, our investigation is focused on the scal-
ability of parallelized codes with three different parallel
programmings. The three parallel programming methods
are: (1) a shared-memory programming of OpenMP using
cache coherent non-uniform memory access (CC-NUMA)
of the Origin2000, (2) a distributed-memory programming
of MPI (Message Passing Interface) and (3) a SHMEM
(”Shared Memory Access Library”) implementation that is
also based on distributed memory.

In what follows, some details of the numerical code and
numerical results for a sample problem are described first
(Section 2). The benchmark procedure and the code perfor-
mance on SGI Origin2000 is compared and discussed (Sec-
tion 3). Conclusions, then, follows at the end.

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

2. Numerical code

The numerical simulation code using unstructured
meshes with automatic mesh adaptation is one of the most
powerful tools for CFD. It is reported, however, that this
type of code has poor performance on cache based large-
scale multiprocessor architectures such as Origin2000, T3E
etc. Oleiker and Biswas investigated the performance of the
grid-handling part of the parallel codes for the unstructured
adaptive scheme applied to transient problems [6]. They
compared three different parallel paradigms on three differ-
ent leading hardwares. For unsteady problems, grid refine-
ment and coarsening are necessary much more frequently
compared with steady cases. For instance, in our case, the
mesh adaptation is done at every time step and about 40% of
the total CPU time is spent in the process of grid-handling.
Therefore the degree of significance of the grid-handling
is high and its performance is important. It is, however,
still more important to have efficient flow solver on paral-
lel computers since it takes the major part of computational
time. This paper, in contrast to Oleiker’s work [6], com-
pares the performance of the flow-solver of our unstructured
code with different parallel programming methods. In this
section the solver is described in some details.

2.1. Governing equations

Although the numerical code used in the current study
is capable of simulating the 2D Navier-Stokes Equations,
the effects of viscosity and heat-conduction are intention-
ally left out for clarifying the performance of the essential
part of the flow solver. Namely the 2D governing equations
are reduced to Euler equations as:

U
t
+ F

x
+G

y
= 0; (1)

where t, x and y are the time and space coordinates [2]. The
equations represent the conservation laws of mass, momen-
tum and energy, and the conserved quantities expressed in
the vector form, U , is of the following form:

U =

0
B@

�
�u
�v
E

1
CA ; (2)

and the convection terms, F and G, are expressed as:

F =

0
B@

�u
�u2 + p
�uv

(E + p)u

1
CA ; G =

0
B@

�v
�uv

�v2 + p
(E + p)v

1
CA ; (3)

where �, p, u, v are the density, pressure, flow velocity ele-
ments in x and y directions, respectively. The total energy

per unit volume, E, is expressed as E = ��+ �(u2+ v2)=2
and an ideal-gas equation of state, � = p=(+ 1)�, is used
to close the whole system of equations. Here is the ratio
of specific heats of the gas. Here equations are written in
Cartesian coordinates for simplicity but the actual code is
developed in general curvilinear coordinates.

2.2. Numerical scheme

The numerical code for solving the basic conservation
equations employs the finite volume method. Although
triangular grid cells are more common, the code employs
quadrilateral cells due to reasons: (1) it is better for repre-
senting boundary layers near solid walls in case of viscous
flow analysis; (2) it is easier to vectorize and/or parallelize
if cells are quadrilateral or the edge-number of the cell is
even [7]. The property (2) is an advantage when it is run on
vector and/or parallel computers.

The gasdynamic and thermodynamic flow quantities are
updated for new time levels by summing up numerical
fluxes corresponding to physical fluxes at cell interfaces.
The numerical flux at cell interface is obtained by the
Weighted Average Flux method (WAF) of Toro with TVD
stability conditions [10] [11] [12]. The scheme is one of the
most commonly used shock capturing schemes today. It is
an extension of Godunov method to higher-order accuracy
and has the second-order accuracy in both space and time
when applied to smooth flows on Cartesian grids.

It used to be a difficult task to generate unstructured nu-
merical grids but now many useful commercial mesh gen-
erators are available. The commercial softwares GAMBIT
(FLUENT Inc.) or ICEM-CFD is used in the current study.
The numerical meshes are generated interactively with a
convenient graphical user interface.

2.3. Flow visualization and numerical simulation

The benchmark problem that is used in the current study
is the transient flow in a 2D nozzle. The starting process of
nozzles is quite challenging for numerical simulations since
it involves highly nonstationary wave interactions among
shock waves, rarefaction waves, contact surface, vortices
and boundary layers etc. as shown in Fig.1 [1] [3] [8] [9].
The figure shows the flow inside a 2D nozzle taken at 155�s
after the moment when the incident shock wave has passed
through the nozzle throat. The incident shock wave Mach
number is 2.5 and the test gas is air. The transmitted shocke
wave, upstream-running secondary generated shock wave,
separation bubbles and a pair of vortices are clearly seen
in the figure. One of the unstructured numerical grids pro-
duced by GAMBIT is shown in Fig.2. For investigations
of nozzle starting process, the numerical grids are automat-
ically refined or coarsened based on the implemented adap-

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

Figure 1. Experimental flow visualization of 2D nozzle flow

Figure 2. Numerical grid generated by Gambit

Figure 3. Numerical result and automatically
refined numerical grid

tation algolism in order to obtain high spatial resolutions.
The numerical result for the incident shock Mach number
of 2:5 in the air together with the automatically refined nu-
merical grids are shown in Fig.3. It shows all important flow
features that compare with experimental data. Detailed de-
scriptions about flow features are found in references [8]
and [9].

3. Code performance on parallel computer

As already mentioned before, this paper is focused on
the performance of the flow-solver of our unsteady unstruc-
tured CFD code. Therefore, the automatic mesh adaptation
is turned off during the benchmark. We investigate three
different parallel programmings as mentioned before, and
each method is described in this section.

3.1. Performance on a single CPU

Origin2000 has theoretical maximum CPU speed of 600
Mflops per processor. However it is known that, for most
CFD applications, the typical sustained CPU speed is 10 to
15 % of the maximum speed. The values of measured code
speed on a single CPU are listed in Table 1.

In the table, the original code is the one which is devel-
oped on a vector-parallel computer (Cray C90). The CPU
speed of the original code was about 65 Mflops. After op-
timizing the code by promoting the efficiency of the cache
usage, the speed is increased to about 105 Mflops. The main
modification was to change the structure of the variable ar-
rays so that as much data as possible are used from data
caches without rewriting them.

Virtual memory computers such as Origin2000, need the
conversion between the real memory address and the virtual
memory address. The conversion is done by referencing
the conversion table called the translation look-aside buffer
(TLB) on a fast but small register of the CPU board. Since
TLB can keep only a part of whole address conversion table,
if the part which is necessary for the code execution is not
on it, the appropriate part of the table must be fetched from
the memory. The time wasted by this fetch process is also

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

Table 1. Code performance on single CPU

Original code Modified code
Total CPU: 38.1sec Total CPU: 154.sec

CPU Speed (Mflops) 64:5 105:

TLB Miss (sec) 15:7 0:408

L1 Cache Hit Rate (%) 85:7 93:5

L2 Cache Hit Rate (%) 98:6 96:6

listed in the table as TLB miss. It is noted that as much
as 16 seconds is wasted out of 38 second total CPU time
in the original code. While with the modified code, TLB
miss is only 0:4 seconds for the total execution time of 154
seconds.

These values are measured by the software tool Perfex
provided by SGI. Although Perfex gathers timing data by
sampling and gives only an approximate results, we did not
take any specific precautions or averaging to improve the
accuracy of the results. The values in the table are copied
directly from the output of the tool. Considering the com-
plex code structure with conditional jumps and the usage of
list vectors, further improvement of the code performance
was difficult.

3.2. Shared memory parallel programming

The performance of the code is first measured for the
shared-memory parallel programming of OpenMP. In this
method, the parallel execution is mostly at the loop level
and the conversion from the original code to the multi-cpu
program is mainly done by inserting appropriate directives
at the beginning of the Do loops. The conversion is straight-
forward and similar to the vectorization process.

As already mentioned before, since the speed of each
processor, especially the sustained speed is relatively slow,
it is essential to have high scalability with respect to the
number of processors used. The speedups for different
numbers of CPUs are listed in Table 2. It is found that
the speedup of the original code is less than unity, meaning
that the code runs slower if multiple CPUs are used. The
speedup of the optimized code is increased to more than
unity as listed in Table 2 but it is still much lower than the
corresponding number of CPUs. Due to decrease in each
processor’s speed with the increase in the number of pro-
cessors, the total speed of the code has a maximum value at
a relatively low Mflops rate (� 300 Mflops).

This extreme degradation in speedups in parallel com-
putation is known as a result of the false sharing of cache
lines on multiple CPUs. This phenomena happens when
the same cache lines reside on several different CPUs and

some values on them are updated. Under the condition, un-
necessary cache updates take place wasting a large amount
of CPU time resulting in very poor parallel performance.
The current code is found to have this unfortunate charac-
teristics. In principle, it may be avoided but for practical
application codes, it is not easy to remove the cache false-
sharing without extensive code rewritings. One of the ways
to do so, perhaps, is to use the domain decomposition with
the message passings as it is widely used in steady state cal-
culations.

3.3. Distributed memory parallel programing

In the previous section, it was shown that the numeri-
cal code has poor parallel performance with shared memory
programming on the cache based computer, Origin2000.
This is mainly due to the cache false-sharing that is inherent
to the cache based memory architecture and is quite difficult
to eliminate.

In order to achieve a reasonable scalability, the message
passing is a natural choice since cache false sharing does
not occur in these programming methods. In this study, we
tried MPI and SHMEM libraries as message passing pro-
grammings.

3.4. Domain decomposition

In order to investigate the parallel performance of the
flow solver, separated from the rest of the code, we prepared
grid files for each CPU in advance. The original numeri-
cal grids generated with GAMBIT, such as Fig.2, is divided
into a specific number of subdomains corresponding to the
number of CPUs. The graph partitioning library, METIS,
is used to divide the global numerical grids into subgrids.
METIS is developed by Karypis et.al. [4] and is widely
used for domain decomposition. The subdomains gener-
ated by METIS are shown in Fig.4. In the figure, the orig-
inal grids are divided into 32 subdomains since 32 CPUs
are planned to be used in this case. The data correspond-
ing to different subdomains, such as the grid coordinates
and all necessary information regarding the data exchange

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

Table 2. Parallel performance with OpenMP for different CPU numbers

Number of CPU Wall clock time (sec) Speedup Mflops/CPU Total Mflops�

1 146: 1:00 112: 112:

2 97:2 1:50 84:3 169:

4 63:5 2:29 64:3 257:

8 57:5 2:53 36:2 290:

16 52:6 2:77 19:6 314:

32 61:9 2:35 8:26 264:

�: Mflops/CPU� Number of CPU used

between subdomains next to each other are written into sep-
arated data files. These files serve as the input files of the
parallel execution.

3.5. Parallel program with MPI

In the present numerical code, there are two places where
data exchange is required. One is in the subroutine where
the time step is determined. After determining the time
steps from the CFL stability condition in all subdomains,
the minimum of them is selected and broadcasted by a sin-
gle call to MPI reduction subroutine, MPI Allreduce().

Another place for data exchange is the inner boundary,
the boundary between adjacent subdomains in the flow re-
gion. Data to be exchanged are the four flow parameters,
i.e. the pressure, density and two components of flow ve-
locity, and their jumps at the cell interfaces that are one cell
layer inside the subdomains. The latter four are necessary
to keep numerical stability in WAF scheme. Therefore, at a
single cell boundary of subdomains, say domain A and do-
main B, eight data are transferred from domain A to domain
B and also from domain B to domain A. Two MPI calls are
required for transferring a group of data, one for sending
and one for receiving. As a result, four MPI calls are nec-
essary at each inner cell boundary. In the present numeri-
cal code, however, flow parameters and the values of their
jumps across the cell boundary are transferred separately.
Therefore, the number of MPI call is doubled at each inner
boundary cell interface. It is possible to modify the code in
such a way that the flow parameters and their jumps occupy
contiguous memory area, so that we can send or receive all
eight data as one group. This modification, however, is not
tried in this study. As far as the coding is concerned, the
number of additional statements for the data communica-
tion is about sixty.

It may give an impression that the additional statements,
sixty lines, for data exchange is insignificant. However
a great deal of detailed considerations, such as rearrange-
ments of arrays due to introductions of local addressing,

took much time. In a sense, it is almost a complete rewrite
of the code.

3.6. Parallel program with SHMEM libraries

Parallel programming with SHMEM libraries is similar
to MPI. The main difference between the two lies in the pro-
cess how the data is transferred to the target memory. The
libraries directly write data into the target memory of other
CPUs without going through the communication buffer as
in MPI. Therefore, in order to transfer data, only one sub-
routine call to the library is needed. This makes the coding
simpler compared with MPI programming. The libraries,
however, write data in the target memory directly when it is
called and the programmer is responsible for the synchro-
nization. Code synchronization is explicitly done calling
barrier library routines whenever it is needed. For deter-
mining the time increments, we used two library calls, one
for the barrier routine, shmem barrier(), and one for the re-
duction routine, shmem min to all().

The number of additional statements for the data com-
munication is only 17 with the libraries including calls to
barrier routines. This is less than a half of what is needed
for MPI programming. In this study, the code conversion
was carried out from MPI code that is described in the pre-
vious section by replacing the MPI call to a corresponding
SHMEM library call. So it was much easier than before, i.e.
from the original code to MPI code.

3.7. Benchmark results and discussions

Benchmark results of MPI parallel calculations are listed
in Table 3. The total number of cell is 85959 and the num-
ber of time step is 1000. It is noted that the value for the
speedup is still increasing at 64 CPUs in contrast to the
case of OpenMP, Table 2, where the speedup is saturated
at a relatively low level of 2.8, limiting the total speed of
only about 300 Mflops. It should be mentioned here that
the program is simply rewritten using MPI and no specific

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

Figure 4. Numerical grid subdomains generated by METIS

optimizations for either single CPU performance or paral-
lel performance have been done. Once program size and
the number of CPUs are fixed, specific code optimizations
based on the program size on each CPU can be done. It
is expected, from our experience, that the performance can
be doubled or at least 50% up with a reasonable amount of
effort.

Benchmark results for MPI parallel calculations with a
much less cell number are listed in Table 4. The total num-
ber of cell is 21450 and the number of time step is 3000.
The performance either of a single CPU or of the linearity
for the parallel executions depends on the amount of work
since the ratio of scalable to non-scalable part of a job in-
cluding data communications will change. Again it is noted
that the value of the speedup still keeps increasing at 64-
CPU case and the total performance exceeds one gigaflops
with 16 CPUs. Comparing Tables 3 and 4, we notice: (1)
the linearity is better for larger calculations; (2) the perfor-
mance (speed) per processor is better for smaller calcula-
tions. The first characteristic is explained by the fact that
the time spent for data communication has relatively larger
influence for smaller calculations. The relative time spent
for data communication compared with the other parallel
execution of flow calculation is larger for smaller cell num-
bers. The second characteristic can be explained by the effi-
ciency of cache usage. For unstructured code, it is expected
that the cache hit rate be higher for smaller arrays.

Benchmark results with SHMEM libraries are compared
with those of OpenMP and MPI in Table 5. It is seen that the
parallel programming with SHMEM libraries shows even
better scalability than MPI code. It shows speedups more
than the number of CPUs used (super-linear scalability) up
to 16-CPU case in this specific case. As a result, the speed
degradation par CPU is also smaller and the total speed of
more than four gigaflops is acheved with 64 CPUs. It is ex-
pected that the difference between MPI and SHMEM codes
becomes smaller for cases with larger cell numbers since the
data communications become less significant for larger nu-
merical cell numbers. The cell numbers used in the present
investigations are typical to our 2D simulations. Therefore,
unless it is necessary to consider the portability, it is found
that the parallel programming with SHMEM libraries is the

best choice for the current unstructured CFD code on Ori-
gin2000.

4. Conclusions

A locally adaptive numerical code for solving unsteady
compressible flows is developed and applied to a 2D noz-
zle starting problem. The code performance of the paral-
lel programmings with three different methods are inves-
tigated. The code has reasonable performance on a sin-
gle processor. However, the parallel programming with
OpenMP based on the shared memory architecture has very
poor scalability due to cache-line false sharing. As a result,
the performance of the code is limited to a maximum of
relatively low value (� 300 Mflops). The parallel program-
mings based on distributed-memory concept using MPI or
SHMEM libraries have much better parallel performances.
It is expected that the performance will be further improved
provided that the problem size and the number of CPU are
fixed. The code with SHMEM libraries has good scalability
and the total computational speed.

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

Table 3. Parallel performance with MPI (85959 cells)

Number of CPU Wall clock time (sec) Speedup Mflops/CPU Total Mflops�

1 1393: 1:00 44:3 44:3

2 664: 2:10 46:9 93:8

4 448: 3:11 34:6 138:

8 203: 6:86 39:2 314:

16 109: 12:8 37:1 594:

32 68:0 20:5 33:0 1060:

64 54:0 25:8 22:7 1450:

�: Mflops/CPU� Number of CPU used

Table 4. Parallel performance with MPI (21450 cells)

Number of CPU Wall clock time (sec) Speedup Mflops/CPU Total Mflops�

1 1097: 1:00 89:8 89:8

2 719: 1:53 68:9 138:

4 300: 3:66 82:7 331:

8 164: 6:69 77:0 616:

16 93:0 11:8 69:2 1110:

32 63:0 17:4 52:7 1690:

64 59:0 18:6 32:2 2060:

�: Mflops/CPU� Number of CPU used

Table 5. Comparison of different parallel programming methods

CPU Number OpenMP MPI SHMEM

time speedup time speedup time speedup Total Mflops

1 1210: 1:00 1097: 1:00 1200: 1:00 77:4

2 810: 1:51 719: 1:53 598: 2:00 165:

4 516: 2:35 300: 3:66 257: 4:67 400:

8 435: 2:79 164: 6:69 140: 8:58 711:

16 361: 3:36 93:0 11:8 74:0 16:2 1340:

32 364: 3:33 63:0 17:4 40:0 30:0 2560:

64 � � 59:0 18:6 29:0 41:4 4120:

References

[1] Amann HO (1968) Experimental study of the start-
ing process in a reflection nozzle. The Physics of
Fluids Supplement I:I-155–I-153.

[2] Anderson DA, Tannehill JC, Pletcher RH (1984)
Computational fluid mechanics and heat transfer.

Hemisphere publishing corporation, New York, NY
USA.

[3] Igra O, Wang L, Falcovitz J, Amann O (1998) Sim-
ulation of the starting flow in a wedge-like nozzle.
Shock Waves 8:253-242

[4] Karypis G, Kumar V (1998) MeTiS 4.0: Unstruc-

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

tured graph partitioning and sparse matrix ordering
system. Technical report, Department of Computer
Science, University of Minnesota.

[5] Löhner R (1987) An adaptive finite element scheme
for transient problems in CFD, Comput. Meths.
Appl. Meh. Engrg. V61, pp.323-338.

[6] Oliker L, Biswas R (1999) Parallelization of a Dy-
namic Unstructured Application using Three Lead-
ing Paradigms. Supercomputing’99, Seattle, Wash-
ington; also: IEEE Transactions on Parallel and dis-
tributed System, to appear.

[7] Sun M (1998) Numerical and experimental studies
of shock wave interaction with bodies, Ph.D. The-
sis, Tohoku University, Japan.

[8] Saito T, Takayama, K (1999) Numerical simu-
lations of nozzle starting process, Shock Waves,
9:73–79.

[9] Saito T, Timofeev EV, Sun M, Takayama K (1999)
Numerical and Experimental study of 2-D nozzle
starting process, Proceedings of the 22nd Interna-
tional Symposium on Shock Waves, Vol.2, 1071–
1076.

[10] Toro EF (1999) Riemann solvers and numerical
methods for fluid dynamics, 2nd edition, Springer.

[11] Toro EF (1992) Riemann Problems and the WAF
Method for Solving Two-Dimenshional Shallow
Water Equations. Phil. Trans. Roy. Soc. London,
A338:43–68.

[12] Toro EF (1992) The Weighted Average Flux
Method Applied to the Time-Dependent Eu-
ler Equations. Phil. Trans. Roy. Soc. London,
A341:499–530.

[13] Voinovich P, Timofeev E, Takayama K, Saito T,
Galyukov A (1998) 3-D unstructured adaptive su-
percomputing for transient problems of volcanic
blast waves.
AIAA paper 98-0540.

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

