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ABSTRACT
With the availability of large datasets in a variety of scientific and
commercial domains, data mining has emerged as an important
area within the last decade. Data mining techniques focus on find-
ing novel and useful patterns or models from large datasets. Be-
cause of the volume of the data to be analyzed, the amount of com-
putation involved, and the need for rapid or even interactive analy-
sis, data mining applications require the use of parallel machines.

We believe that parallel compilation technology can be used for
providing high-level language support for carrying out data min-
ing implementations. Our study of a variety of popular data min-
ing techniques has shown that they can be parallelized in a similar
fashion. In our previous work, we have developed a middleware
system that exploits this similarity to support distributed memory
parallelization and execution on disk-resident datasets.

This paper focuses on developing a data parallel language in-
terface for using our middleware’s functionality. We use a data
parallel dialect of Java and show that it is well suited for data min-
ing algorithms. Compiler techniques for translating this dialect to
a middleware specification are presented. The most significant of
these is a new technique for extracting a global reduction function
from a data parallel loop.

We present a detailed experimental evaluation of our compiler
using apriori association mining, k-means clustering, and k-nearest
neighbor classifiers. Our experimental results show that: 1) com-
piler generated parallel data mining codes achieve high speedups
in a cluster environment, 2) the performance of compiler generated
codes is quite close to the performance of manually written codes,
and 3) simple additional optimizations like inlining can further re-
duce the gap between compiled and manual codes.

1. INTRODUCTION
Analysis of large datasets for extracting novel and useful models

or patterns, also referred to as data mining, has emerged as an im-
portant area within the last decade [16]. Because of the volume of
data analyzed, the amount of computation involved, and the need
for rapid or even interactive response, data mining tasks require the
use of parallel machines and careful management of the memory
hierarchy.

This paper focuses on the use of compiler technology for offer-
ing high-level support for implementing data mining algorithms.

�
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In our previous work, we have developed a middleware for rapidly
developing data mining implementations [20, 19, 21]. The mid-
dleware exploits the similarity between the algorithms to offer a
runtime support and a programming interface. In this paper, we
present compiler techniques to translate a high-level code to a mid-
dleware specification. The particular language that we will use is a
data parallel dialect of Java. The main new analysis required is for
extracting a global reduction function from a data parallel loop. In
addition, a number of other interesting issues arise in handling data
mining codes and generating middleware code, and are addressed
in our research.

We have implemented our techniques using the Titanium infras-
tructure from Berkeley [29]. We present experimental results from
apriori association mining, k-means clustering, and k-nearest neigh-
bor classifier. We have experimented with disk-resident datasets for
each of these codes. Our experimental results show that 1) com-
piler generated parallel data mining codes achieve high speedups
in a cluster environment, 2) the performance of compiler generated
codes is quite close to the performance of manually written codes,
and 3) simple additional optimizations like inlining can further re-
duce the gap in performance of compiled and manual codes.

The rest of the paper is organized as follows. The language di-
alect we use is presented in Section 2. The interface and function-
ality of our middleware is described in Section 3. Our compiler
techniques are presented in Section 4. Experimental evaluation of
our prototype compiler is the topic of Section 5. We compare our
work with related research efforts in Section 6 and conclude in Sec-
tion 7.

2. DATA PARALLEL LANGUAGE SUPPORT
The structure of the various data mining algorithms we have

studied, including those for association mining, clustering, near-
est neighbor searches, bayesian networks and decision tree con-
struction, can be viewed as comprising generalized reduction op-
erations [17]. Processing for generalized reductions consists of
three main steps: (1) retrieving data items of interest, (2) apply-
ing application-specific transformation operations on the retrieved
input items, and, (3) mapping the input items to output items and
aggregating all the input items that map to the same output data
item. Most importantly, aggregation operations involve commuta-
tive and associative operations, i.e., the correctness of the output
data values does not depend on the order input data items are ag-
gregated. Such a common structure makes data mining algorithms
a suitable target for a compilation framework.

We now describe a data parallel dialect of Java that can be used
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Interface Reducinterface
�

�
* Any object of any class implementing * ��
* this interface is a reduction variable * �

�
public class KmPoint implements Disk-resident

�
double x1, x2, x3;
KmPoint (String buffer)

�
�
* constructor for copying to/from a buffer * �

�
�
public class Kcenter implements Reducface

�
static double [] x1,x2,x3;
static double[] meanx1, meanx2, meanx3;
static long[] count;
Kcenter (String buffer)

�
�
* constructor for copying to/from a buffer * �

�
void Finalize()

�
for(i=0; i � k; i++)

�
x1[i]=meanx1[i]/count[i];
x2[i]=meanx2[i]/count[i];
x3[i]=meanx3[i]/count[i];
�
�
void Assign(KmPoint point,int i,double dis)

�
meanx1[i]+=point.x1;
meanx2[i]+=point.x2;
meanx3[i]+=point.x3;
count[i]+=1;
�
�

public class Kmeans
�

public static void main(String[] args)
�

Point ����� lowend = .. ;
Point ����� hiend = .. ;
RectDomain ����� InputDomain=[lowend:hiend];
KmPoint[1d] Input=new KmPoint[InputDomain];

while(not converged)
�

foreach (p in InputDomain)
�

min=9.999E+20;
for (i=0; i � k; i++)

�
int dis = Kcenter.distance(Input[p],i);
if( dis � min)

�
min=temp;
minindex=i;
�
�
Kcenter.Assign(Input[p],minindex,min);
�

Kcenter.Finalize();
�
�
�

Figure 1: k-means clustering Expressed in Data Parallel Java

for expressing parallel algorithms for common data mining tasks.
Though we propose to use a dialect of Java as the source lan-
guage for the compiler, the techniques we will be developing will
be largely independent of Java and will also be applicable to suit-
able extensions of other languages, such as C or C++.

We use three main directives in our data parallel dialect. These
are for specifying a multi-dimensional collections of objects, a par-
allel for loop, and a reduction interface. The first two have been
commonly used in other object-oriented parallel systems like Tita-
nium [29], HPC++ [6], and Concurrent Aggregates [11]. The con-
cept of reduction interface is, to the best of our knowledge, novel
to our approach. The choice of these directives is motivated by the
structure of data mining algorithms we described earlier.
Rectdomain: A rectdomain is a collection of objects of the same
type such that each object in the collection has a coordinate associ-
ated with it, and this coordinate belongs to a pre-specified rectilin-
ear section.
Foreach loop: A foreach loop iterates over objects in a rectdomain,
and has the property that the order of iterations does not influence
the result of the associated computations.
Reduction Interface: Any object of any class implementing the
reduction interface acts as a reduction variable [17]. The seman-
tics of a reduction variable are analogous to those used in version
2.0 of High Performance Fortran (HPF-2) [17]. A reduction vari-
able has the property that it can only be updated inside a foreach
loop by a series of operations that are associative and commutative.
Furthermore, the intermediate value of the reduction variable may
not be used within the loop, except for self-updates.

Another interface we use is Disk-resident. Any class whose ob-
jects are either read or written from disks must implement this in-
terface. For any class which implements the reduction interface,

or represents objects that are disk-resident, we expect a constructor
function that can read the object from a string. In the case of a class
that implements the reduction interface, such constructor function
is used for facilitating interprocessor communication. Specifically,
the code for the constructor function is used for generating code
for copying an object to a message buffer and copying a message
buffer to an object. Similarly, for any dataset which is either read or
written to disks, the constructor function is used to generate code
that reads or writes the object.

The data parallel Java code for k-means clustering is shown in
Figure 1. � is the number of clusters that need to be computed. An
object of the class KmPoint represents a three-dimensional point.
The variable Input represents a one-dimensional array of points,
which is the input to the algorithm. In each iteration of the fore-
ach loop, one point is processed and the cluster whose center is
closest to the point is determined. The function Assign accumu-
lates coordinates of all points that are found to be closest to the
center of a given cluster. It also increments the count of the num-
ber of points that have been found to be closest to the center of a
given cluster. The function Finalize is called after the fore-
ach loop. It determines the new coordinates of the center of a
cluster, based upon the points that have been assigned to the clus-
ter. The details of the test for termination condition are not shown
here.

3. MIDDLEWARE INTERFACE AND PAR-
ALLELIZATION SUPPORT

Our compiler heavily uses our middleware system for distributed
memory parallelization and I/O optimizations in processing disk-
resident datasets. The middleware’s functionality and interface are
described in this section.
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The middleware interface exploits the similarity among parallel
versions of data mining algorithms. A programmer using the mid-
dleware directly needs to write the following functions. Most of
these functions can be easily extracted from a sequential version
that processes main memory resident datasets.

Subset of Data to be Processed: In many case, only a subset of the
available data needs to be analyzed for a given task. For example,
while creating associations rules from customer purchase record at
a grocery store, we may be interested in processing records ob-
tained in certain months, or for customers in a certain age group,
etc.

Local Reductions: The data instances owned by a processor and
belonging to the subset specified are read. A local reduction func-
tion specifies how, after processing one data instance, a reduction
object (declared by the programmer), is updated. The result of
this processing must be independent of the order in which data in-
stances are processed on each processor. The order in which data
instances are read from the disks is determined by the runtime sys-
tem. The reduction object is maintained in the main memory.

Global Reductions: The reduction objects on all processors are
combined using a global reduction function. MPI calls for han-
dling the communication are made by the runtime system. How-
ever, functions for copying the reduction object to a buffer and from
a buffer to the reduction object are expected as part of the middle-
ware interface.

Iterator: Parallel implementations of the applications we target
comprise one or more distinct sets of local and global reduction
functions, which are be invoked in an iterative fashion. An iterator
function contains the loop that invokes local and global reduction
functions.

The middleware support for distributed memory parallelization
is relatively simple because of the structure of the applications it
targets. After data has been distributed between different nodes,
each node can execute local reduction functions on data items it
owns. After each invocation of local reduction function, local copies
of reduction objects on each node are broadcasted to all other nodes,
and local copies of reduction objects from all other nodes are re-
ceived on each node. This communication is facilitated by the mid-
dleware. After the communication phase, global reduction func-
tion is invoked on each node. The result of global reduction is then
broadcasted to all processors.

Our middleware’s support for I/O optimizations for processing
disk-resident datasets is based upon an earlier system called Active
Data Repository (ADR), which was developed for scientific data
intensive applications [9, 8].

4. COMPILER TECHNIQUES
We now present compilation techniques for translating a data

mining code written in the data parallel dialect to a middleware
specification.

In generating the code for the middleware interface, the com-
piler needs to: 1) Generate an Iterator function that invokes local
and global reduction functions. 2) For each data parallel loop that
updates a reduction object, generate a) the specification of the sub-
set of the data processed in that loop, b) the local reduction func-
tion, c) the global reduction function, and d) functions for copying
reduction object to and from message buffers.

Conceptually, the most difficult problem is extracting the global
reduction function from the body of the data parallel loop. Here,
we describe our solution towards this problem.

4.1 Global Reduction Analysis

Consider the reduction objects � and ��� computed by two pro-
cessors after their local reduction phase. We need a function � to
update � with the values computed in ��� , i.e., to perform the com-
putation �������	��
����
� .

The algorithm we have developed is presented in Figure 2. Our
algorithm can handle significantly more complicated reduction func-
tions than the previous work in this area [5, 14, 15, 24]. To explain
the different cases that the algorithm handles, we use three exam-
ples, from k-means clustering, apriori association mining, and k-
nearest neighbor search, which are shown in Figures 1, 3, and 4,
respectively.

The algorithm is divided into three phases. The first phase is
data dependence analysis, the second phase is control dependence
analysis, and the final phase is code generation. Any expression
or predicate whose value remains unchanged across iterations of
the data parallel loop is considered a loop constant expression or
predicate. Note that the value of such an expression can be different
over different invocations of the loop.

Consider the body of the loop that processes an element � and
updates a reduction object � . Consider any statement in this code
that updates a data member of � . If this statement includes any
temporary variables that are defined in the loop body itself, we per-
form forward substitution and replace these temporary variables.
After such forward substitution, the update to the data member can
be classified as being one of the following: a) assignment to the
value of another data member of the reduction object, or an expres-
sion involving one or more other data members, and loop constants,
b) assignment to ���	��� , where the � does not involve any members
of the reduction object � , c) update using a commutative and as-
sociative operator. ��� , such that the data member ��� � is updated
as ��� ������� ���������	��� , where the function � does not involve any
members of the reduction object � , or d) any other expression.

Updates of type (a) can arise in a function like average, where
sum, count, and average are the three data members of the reduc-
tion object. After computing sum and count, average is computed
by dividing sum by count, which is an expression involving other
data members. An example of a local reduction function with an
update of type (b) is k-nearest neighbors (Figure 4). The reduction
object in this code comprises the coordinates of k-nearest neighbors
to the given point. As a new point is processed, it may be inserted
as one of the nearest neighbors. Updates of type (c) arise frequently
in loop bodies of codes that perform reduction computations. Ex-
amples include updates to sum and count fields in a function like
average, and updates in k-means clustering and apriori association
mining (Figure 1 and 3, respectively).

After data dependence analysis, the set of statements which up-
date a data member of the reduction object is denoted by � . The
next phase of the algorithm classifies control dependence to any
statement in the set � . We consider two types of control depen-
dence, loop constant and non-loop constant.

The final and the major part of the algorithm is actual code gen-
eration. Statements in the set � are treated differently based upon
both the type of assignment and control dependence.

Consider any statement with an assignment of type (c). We re-
place the statement ��� ������� ���������	��� by a statement of form
��� � �!��� �"���"���#� � , i.e. the values aggregated are part of the
two reduction objects are combined using the same associative and
commutative operator. As an example, look at the assignments
to meanx1[i], meanx2[i], meanx3[i], and count[i] as
part of the function Assign in Figure 1. In this case, simple sym-
bolic analysis can determine that $ can represent values between
0 and �&%'� . In other words, ��� � can represent one of many
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�
* Data Dependence Analysis * �

Let � be the reduction object and let � be input element processed
For each statement that updates a data member of � :

Let the statement update ��� �
Classify the value assigned to ��� � as:

(a) A function of loop constants and data members of �
(b) A function �����
	 , ����	 does not depend upon �
(c) An express of the form ��� ��
��������
	 ,


�� is an associative and commutative operator, and ����	 does not depend upon �
(d) Any other expression

Let � be the set of statement that update any data member of �
If any statement in � is of type (d), exit()

�
* Control Dependence Analysis * �

Identify all predicates that any statement in � is control dependent on
For each such predicate

Classify into:
(I) a loop constant predicate
(II) predicate that is not a loop constant

�
* Code Generation * �

For every statement � of type (c)
Replace the statement by ��� ������� ��
���� ��� �
Remove any control flow of type (II)
Insert a loop around � that ranges over all fields that � can represent

For every statement � of type (b)
Replace the statement by ��� ����� ��� ��� where ��� ranges over all fields where ������	 can be assigned

For every statement � of type (a) and (b)
If � is control dependent upon a field � of the input

If an expression ������	 is assigned to ��� �
replace � in control predicate by �� "!���� ��� � � 	 , where � � ranges over all fields that � can represent

Else
Remove the conditional

Let �#��$%	 denote the set of statements in � that are data
or control dependent upon a � ��� � � , where � � has a range $

If a statement belongs to two distinct sets �&��$�	 and �&��'(	 , exit()
If a statement belonging to �#��$%	 is dependent upon a statement in �&��'(	 , $*)�+' , exit()
For each such set �&��$%	

Insert a loop in which � ��� ��� iterates over $ around all statements in �&��$%	
Remove all statements that no statement in � is data or control dependent on

Figure 2: Algorithm for Synthesizing Global Reduction Function from the Body of Data Parallel Loop

data members of the reduction object. When processing an ele-
ment � , the actual data member that are incremented depends upon
the element. However, in combining two local reduction objects,
we simply need to add corresponding meanx1[i], meanx2[i],
meanx3[i], and count[i]. Therefore, we insert a loop that
iterates over the range of $ . We also remove any control predicates
that are not loop constant. If there is any loop constant control
predicate, it needs to be maintained in the global reduction code.
An example of such a predicate will be a conditional for determin-
ing whether to compute maximum or minimums during a particular
invocation of the loop.

A similar situation arises in apriori association mining (Figure 3).
The element or transaction analyzed by the loop body is a list of
items. A prefix tree maintains sets of items that can occur with a
high frequency. The list of transactions is matched against these
sets of items and the count associated with a set is incremented
when a match is found. The loop body involves complicated con-
trol flow. However, the only update to a reduction element occurs
in the statement vect[offset+i] += 1. The global reduc-
tion code, therefore, simply iterates over the different elements of
the array vect and adds the corresponding elements.

Next, we consider a statement of type (b). As a concrete ex-
ample, consider the assignment of kpoint.x1 to x1[i+1] in
the loop body shown in Figure 4. Again, simple symbolic analysis

can determine that the expression $&, � can range between 0 and
� % � . We replace this assignment by the assignment x1[i + 1]
= buf.x1[j], where - ranges between 0 and � % � . Assignments
to x2, x3, and distance are processed similarly.

Note that if the loop body includes a statement of type (a), we
leave it unchanged.

For statement of both type (a) and (b), we further consider con-
trol dependence on non-loop constants. Suppose any statement
of type (a) or (b) is control dependent upon a predicate that in-
volves a field . of the input element. We further check if a func-
tion /��0. � involving this field is assigned to a data member of the
reduction object. An example of such control dependence arises
in the k-nearest neighbor code. The variable dis is computed
from the input element and is assigned to the data member dis-
tance. In such cases, we replace the occurrence of . in the con-
trol predicate by /  "! �	����� � � � , where � � ranges over all fields to
which /��0. � can be assigned. In our example, we replace dis by
buf.distance[j], with - ranging from 0 to � % � .

If a statement of type (a) or (b) is control dependent upon a field .
that is not assigned to the reduction object, we remove such condi-
tional. An example will be if a field of the input element determines
whether the data is valid and needs to be processed further. Such a
conditional is not required in combining results from local reduc-
tions.
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int cnt = t.cnt;
while ( ��� cnt � � 0)

�
i = t.iids[j] - p.offs;
if (i � 0) continue;
if (i � � p.size) return ;
if ((offset= t.cnt - p.countvector) � � p.upper used)

�
vect[offset+i] += 1;
�
if ( p.chcnt � � 0) continue;
i += p.offs - p.ID(tree.children[0]);
if ((i � 0)

���
(i � � p.chcnt)) continue;

if (p.children[i] != null)
LocalReduc( t , p.children[i]);

�

GlobalReduc()
�

for(i = 0; i � ncands ; i++)
vect[i] += buf.vect[i];

�

Figure 3: Loop Body (left) and Global Reduction Function (right) for Apriori

dis = Input pt.distance(test x1,test x2,test x3);
kbuffer.Insert(Input pt, dis);

Insert(kPoint kpoint, double dis)
�

i = k - 1 ;
while( (dis � distance[i]) &&(i � � 0) )

�
if(i � 0)

�
x1[i] = x1[i-1];
x2[i] = x2[i-1];
x3[i] = x3[i-1];
distance[i] = distance[i-1];
�
i = i - 1;
�
if (i � k - 1)

�
x1[i+1] = kpoint.x1;
x2[i+1] = kpoint.x2;
x3[i+1] = kpoint.x3;
distance[i+1] = dis;
�
�

GlobalReduc()
�

for(j = 0; j � k; j++)
�

i = k - 1;
while ((buf.distance[j] � distance[i] )

&& (i � � 0))
�

if(i � 0)
�

x1[i] = x1[i - 1];
x2[i] = x2[i - 1];
x3[i] = x3[i - 1];
distance[i] = distance[i - 1];
�
i = i - 1;
�
if(i � k-1)

�
x1[i + 1] = buf.x1[j];
x2[i + 1] = buf.x2[j];
x3[i + 1] = buf.x3[j];
distance[i + 1] = buf.distance[j];
�
�
�

Figure 4: Loop Body (left) and Global Reduction Function (right) for k-nearest neighbors

In the k-nearest neighbor example, we get several expressions
that involve a variable - that ranges from 0 to � % � . Moreover, the
statements involving buf.x1[j1],buf.x2[j], and buf.x3[j]
are control dependent upon the predicate involving buf.distance[j]
. For a range � , we compute the set � ���#� that includes the state-
ments that are data or control dependent upon a ���#� � � , where � �
has the range � . In generating the code, we insert a single loop that
iterates over the range � around these statements.

Two potential complications can arise that our algorithm cannot
currently handle. First, a statement belonging to a set � ���#� may
be dependent upon a statement belonging to the set � ��� � , �	��
� .
Second, a single statement may belong to two distinct sets. Our
algorithm cannot handle either of these cases. Such cases, however,
did not arise in any codes we examined.

5. EXPERIMENTAL RESULTS
We have implemented a prototype compiler incorporating the

techniques we have described in this paper. We used the Titanium
front-end developed at Berkeley [29]. In this section, we evalu-
ate the compiler using three important data mining algorithms, k-

means clustering, apriori association mining, and k-nearest neigh-
bor classifier.

The manually programmed versions we used for our experiments
were previously used to evaluate the middleware [20, 19]. The ex-
periments have been conducted on a cluster of workstations. We
used 8 Sun Microsystem Ultra Enterprise 450’s, with 250MHz Ultra-
II processors. Each node has 1 GB of main memory which is 4-way
interleaved. Each node has a 4 GB system disk and a 18 GB data
disk. The data disks are Seagate-ST318275LC with 7200 rotations
per minute and 6.9 milli-second seek time. The nodes are con-
nected by a Myrinet switch with model number M2M-OCT-SW8.

5.1 Results from k-means Clustering
The first data mining algorithm we focus on is k-means cluster-

ing. The algorithm is parameterized with the value of � (i.e., the
number of clusters computed) and the size of the dataset. We used
3 and 100 as the values of � and two datasets, with the size of 1 GB
and 2 GB, respectively.

Experimental results from 1 GB dataset and � ��� are presented
in Figure 5. The first two versions shown in the figure are compiler
generated (comp) and manually programmed (manual). The rela-
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Figure 5: Performance of k-means clustering: k = 3, 1 GB
Dataset
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Figure 6: Performance of k-means clustering: k = 100, 1 GB
Dataset

tive speedups obtained by the compiler generated version are 1.95,
3.81, and 7.0 on 2, 4, and 8 nodes, respectively. The difference be-
tween the compiler and manual versions is less than 10% on 1, 2,
and 4 nodes, and 13% on 8 nodes.

We carefully analyzed the reasons for performance differences
between the compiler and manual versions. Almost all of the differ-
ence comes because the distance function invoked inside the inner
loop is inlined in the manual version and not in the compiler ver-
sion. Though such inlining is commonly performed by machine-
level compilers, it is was not performed by the g++ compiler that
was used. We created another version, comp+inline, in which
call to this function is manually inlined. The difference between
manual and comp+inline versions is within 2%.

Figure 6 shows experimental results from the same dataset, but
with �&� ����� . The distance function is invoked more frequently
with the larger value of � . Therefore, there is a greater difference
in the performance of comp and manual versions. After applying
inlining manually, the difference reduces to within 3%. Because
there is more computation between two phases of communication,
the speedups are higher. All three versions have perfect linear rela-
tive speedups on 2, 4, and 8 nodes.

Figure 7 shows experimental results from the 2 GB dataset with
� � ����� . The speedups and relative performance of the three ver-
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Figure 7: Performance of k-means clustering: k = 100, 2 GB
Dataset

sions are almost identical to the ones seen with 1 GB dataset. A
comparison of the results from 1 GB and 2 GB datasets shows that
as the dataset size is increased, the execution times increase in a
linear fashion. As the dataset does not fit in the main memory, the
execution times do not increase in a super-linear fashion.

5.2 Results from Apriori Association Mining
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Figure 8: Performance of Apriori Association Mining: 3 GB
Dataset, 7 iterations

The second data mining algorithm we used for evaluating the
compiler is apriori association mining.

Figure 8 presents experimental results from a 3 GB dataset. Sup-
port level of .25% and confidence level of 90% were used in our ex-
periments. For this dataset and these parameters, 7 iterations were
required to obtain final results. Figure 8 shows execution times for
7 iterations. On 8 nodes, comp and manual versions have relative
speedups of 7.98 and 7.97, respectively. The difference in perfor-
mance is between 10% and 13% in all cases.

Again, we analyzed the reasons for difference in the performance.
The compiler generated version performed extra copying of the in-
put data, whereas the manual version analyzed data directly from
the read buffer. To further analyze these differences, we experi-
mented with a smaller dataset. Figures 9 and 10 show execution
times of compiler and manual versions for the first and the first two
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Figure 9: Performance of Apriori Association Mining: 1 GB
Dataset, 1 iteration
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Figure 10: Performance of Apriori Association Mining: 1 GB
Dataset, 2 iterations

iterations, respectively.
In apriori, the first iteration is involves very little computation

and is I/O bound. Thus, we expect that the extra cost of copying
will make a more significant difference in the execution time of
first iteration. Figure 9 validates this conjecture. comp version is
slower by almost 25% for the first iteration. The second iteration
involves a higher level of computation. The execution times for the
first two iterations combined, reported in Figure 10, show only a
5% difference in the overall performance of the two versions.

5.3 Results from k-nearest Neighbor Classi-
fier

The last data mining algorithm we use is k-nearest neighbor clas-
sifier. Figure 11 presents experimental results from a 1 GB dataset
with � � ����� .

Since k-nearest neighbor is a relatively simple code, there is very
little difference between the compiler generated and manual ver-
sions. comp version is consistently slower than the manual ver-
sion, but by at most 5%.

6. RELATED WORK
To the best of our knowledge, our goal of developing compiler
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Figure 11: Performance of k-nearest neighbor classifier: 1 GB
Dataset, k = 100

support for data mining algorithms is a unique one. We are not
aware of any existing work or project with such a direction.

Our work can be considered as developing an out-of-core Java
compiler. Compiler optimizations for out-of-core data-structures
have been considered by several projects [7, 22, 23, 26, 27]. These
projects have concentrated on stencil computations written in For-
tran. Our work is different in considering a different applications
class with very different communication and data access patterns, a
different language, and targeting an application-class specific mid-
dleware as the compiler output.

In earlier work of Agrawal with Ferreira and Saltz, compiler
techniques for supporting scientific data intensive applications writ-
ten in the same dialect of Java were presented [13, 14]. In this ear-
lier effort, a different runtime system and a different class of appli-
cations were targeted. Particularly, data mining codes involve more
complicated reductions. Therefore, the global reduction analysis
we have presented in this paper is much more sophisticated than the
algorithm reported earlier for the same problem [14]. Some prelim-
inary ideas towards developing compiler support for data mining
were described in an earlier workshop paper [2].

Our proposed compiler work is also different from the various
distributed memory compilation [1, 3, 10, 18, 28, 30] projects.
We are performing parallelization of generalized reductions over
disk-resident datasets, which has not been targeted by any of these
projects. Several recent projects have explored the use of Java for
numerical and high-performance computing [4, 12, 25, 29]. Our
work is distinct in focusing on a different class of applications and
performing distributed memory parallelization.

7. CONCLUSIONS
In this paper, we have described and evaluated a compiler for

distributed memory parallelization of data mining codes that exe-
cute on disk-resident datasets. We have used a data parallel dialect
of Java to express this class of applications. Our compiler heavily
uses a middleware that we had developed in our earlier work for
the same class of applications.

We have evaluated our compiler using three popular data min-
ing algorithms, apriori association mining, k-means clustering, and
k-nearest neighbors classifiers. We used disk-resident datasets for
each of these three codes. Our experimental results show that 1)
the compiler generated parallel data mining codes achieve high
speedups in a cluster environment, 2) the performance of compiler
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generated codes is quite close to the performance of manually writ-
ten codes, and 3) simple additional optimizations like inlining can
further reduce the gap between compiled and manual codes.
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