
Parallel Implementation of the Finite-Difference Time-
Domain Method in Open Computing Language

T. P. Stefański12 S. Benkler3 N. Chavannes3 N. Kuster2

1 Integrated Systems Laboratory, Swiss Federal Institute of Technology, Gloriastrasse 35, 8092 Zurich, Switzerland.
2 Foundation for Research on Information Technologies in Society, Zeughausstrasse 43, 8004 Zurich, Switzerland.
3 SPEAG Software R&D, Zeughausstrasse 43, 8004 Zurich, Switzerland.
E-mails: stefanski@itis.ethz.ch, benkler@speag.com, chavanne@speag.com, kuster@itis.ethz.ch.

Abstract − In this paper we evaluate the usability and
performance of Open Computing Language (OpenCL)
targeted for implementation of the Finite-Difference Time-
Domain (FDTD) method. The simulation speed was compared
to implementations based on alternative techniques of parallel
processor programming. Moreover, the portability of OpenCL
FDTD code between modern computing architectures was
assessed. The average speed of OpenCL FDTD simulations on
a GPU was about 1.1 times lower than a comparable CUDA
based solver for domains with sizes varying from 503 to 4003
cells. Although OpenCL code dedicated to GPUs can be
executed on multi-core CPUs, a direct porting does not
provide satisfactory performance due to an application of
architecture specific features in GPU code. Therefore, the
OpenCL kernels of the developed FDTD code were optimized
for multi-core CPUs. However, this improved OpenCL FDTD
code was still about 1.5 to 2.5 times slower than the FDTD
solver developed in the OpenMP parallel programming
standard. The study concludes that, despite current
performance drawbacks, the future potential of OpenCL is
significant due to its flexibility and portability to various
architectures.

1 INTRODUCTION

A broad range of computational electromagnetics
problems can be solved using the Finite-Difference
Time-Domain (FDTD) method [1]. Time evolution of
the electromagnetic field is calculated in this method
using central-difference approximations of the partial
derivatives in the Maxwell's curl equations. Due to
the possibility of a wideband frequency response
calculation with a single simulation run,
straightforward implementation of arbitrarily shaped
structures consisting of dispersive and non-linear
materials and easy parallelization, the method has
been successfully applied in microwave and antenna
engineering, bio-electromagnetics, electromagnetic
compatibility and photonics [1].

Recently, Graphics Processor Units (GPUs) became
a source of a cheap computational power for the
acceleration of FDTD codes [2], [3]. Moreover, the
introduction of the Compute Unified Device
Architecture (CUDA) parallel programming model
and GPUs with enhanced computational power by
Nvidia [4] delivered resources enabling high
performance computing on desktop workstations.
However, existing GPU accelerated FDTD codes do
not fully deploy the computational power of the

multi-core central processing unit (CPU), which is
always present in any computer. Also, GPU codes
have not normally been portable between hardware
devices manufactured by different vendors. In
general, due to scaling of the processor parallelism
according to Moore’s law, it is a real challenge to
develop scientific codes that are not only portable
between the very specific hardware architectures (e.g.
CPUs and GPUs) available on the market, but will
also transparently scale their parallelism in the future.
Open Computing Language (OpenCL) [5] seems to
be a remedy for overcoming these challenges as it
maintains portability between hardware architectures
and efficiency of the low-level programming
interface. OpenCL is a framework for parallel
programming of heterogeneous platforms consisting
of multi-core CPUs, GPUs, and other modern
processors, e.g., the Cell Broadband Engine. This
standard opens the way to build heterogeneous
computing systems which may simultaneously
deploy the computational horsepower of multi-core
CPUs and GPUs. Such mixed solutions may allow
different types of processing units to be used for the
tasks best suited to them. OpenCL unifies the process
of code development for heterogeneous computing
systems using one programming environment
(compiler) to target substantially different processing
elements.

This paper presents results of the OpenCL FDTD
code evaluation. In this contribution we only focused
on portability and efficiency tests performed on
multi-core CPU machine supported by a single GPU.
In Section 2, implementation of the FDTD method in
OpenCL is introduced. Evaluation of the FDTD code
performance is presented in Section 3, with
characteristics of the simulation throughput as a
function of the domain size in Section 3.1 and
application examples benchmarking code
implementation in Section 3.2.

2 FDTD IMPLEMENTATION IN OPENCL

The flowchart of the FDTD method is shown in
Fig. 1.

978-1-4244-7368-7/10/$26.00 ©2010 IEEE

557

Figure 1: Flowchart of the FDTD method.

Each step of the electromagnetic field update
consists of (i) H-field components update, (ii)
application of boundary conditions to the H-field,
(iii) E-field components update, and (iv) application
of boundary conditions to the E-field. The FDTD
update equations [1] are omitted here for the sake of
brevity.

In the case of OpenCL implementation on a GPU,
electromagnetic field and material data are stored in
the global memory of the GPU as arrays. The m-th
element in the data array is associated with (i,j,k) cell
in the discretized (x,y,z) Cartesian space by the
formula:

()[] () kzsizejysizeim +⋅+⋅=

The x-direction is called the fastest direction and
the z-direction is called the slowest direction.
Transfer of data between GPU and CPU memory
spaces is solely related to an acquisition of
simulation results during time-marching. To
minimize overhead of communication between the
global memory and the processing unit on the
graphics card, reuse of data resulting from the spatial
locality of the FDTD method was employed
(previous value and local derivatives of the E (H)
field are required to update single H (E) field
component values). Therefore, updates are performed
in the loop along the slowest direction Rectangular
zy-tiles of the field values, being of the same size as
blocks of threads, are transferred to the low-latency
local (shared) memory using coalesced memory
access [4]. A single thread in a rectangular block of
threads updates a single cell per one loop step, using
two zy-tiles of data recently downloaded into the
local memory.

In the case of OpenCL implementation on a CPU,
the strategy described above cannot be used because
the CPU does not have shared memory. Even though
it was possible to execute the OpenCL GPU code
described above on a CPU, the obtained simulation
throughput was very low. Therefore, update kernels
were optimized to avoid usage of the local memory.
In this improved implementation every thread in the
cuboidal group of threads updates a single cell
directly using data stored in the global memory.

3 NUMERICAL RESULTS

OpenCL FDTD code was developed based on in-
house written CUDA FDTD code whose performance
is similar to existing commercial GPU solvers, e.g.
[6]. However, OpenCL implementation does not use
texture memory on a GPU like our CUDA
implementation (using cudaBindTexture and
tex1Dfetch functions) since OpenCL handles it using
2D and 3D image objects and texture memory space
implementation would require address conversions.
Data that were stored in texture memory in the
CUDA implementation are stored in constant
memory in our OpenCL implementation.

The code developed allows the mesh to be
terminated with electric wall, magnetic wall, Mur 1st
order absorbing boundary condition (Mur ABC), and
periodic boundary conditions. The test simulations
presented below were run on a personal computer
with an Intel Core i7 920 multi-core CPU and a
Nvidia C1060 GPU. Reference CPU solutions,
presented for the sake of comparison, were developed
in the OpenMP parallel programming standard and
compiled with Visual Studio 2008.

3.1 Efficiency as a function of the domain size
Simulation results were obtained for the vacuum
bounded by Mur ABCs and excited by a dipole
antenna located in its centre. The size of the cubic
domain was varied in the range 503-4003 mesh cells.
Peak simulation speeds as a function of the domain
size are shown in Fig. 2 for the OpenCL FDTD code
executed on a CPU and a GPU, and for OpenMP
(CPU) and CUDA (GPU) implementations. The
relative speedup factors, calculated as ratios of the
simulation speeds, are shown as a function of the
domain size in Fig. 3.

Averaged peak speed of the optimized OpenCL
CPU FDTD solver in this test was equal to 49
Mcells/sec whereas the OpenMP FDTD solver gave
95 Mcells/sec. This represents a 1.9 times average
speedup of the OpenMP vs. OpenCL CPU solver.

558

Figure 2: Speed of the FDTD OpenCL solver on a
CPU and a GPU as a function of the side-length of the
cubic domain; results of the CUDA (GPU) and
OpenMP (CPU) implementation are presented for
comparison.

Figure 3: Speedup as a function of the side-length of
the cubic domain: (a) OpenMP referenced to OpenCL
- both executed on a CPU, (b) CUDA referenced to
OpenCL - both executed on a GPU, (c) OpenCL
(GPU) referenced to OpenCL (CPU), (d) CUDA
(GPU) referenced to OpenMP (CPU).

However, OpenCL CPU code performance results
from runtime compiler efficiency and optimization
level (OpenCL kernel executables are compiled and
built online). As is seen in Fig. 3(a), the relative
performance of the CPU codes differs significantly,
i.e. 1.5 - 2.5 times, as a function of the domain size.

The average peak performance of the OpenCL
FDTD code executed on a GPU was equal to 388
Mcells/sec whereas CUDA FDTD code performance

was equal to 427 Mcells/sec (the average peak speed
of the recent version of the commercial GPU solver
[6] was equal to 422 Mcells/sec in this test). This
shows relative speedup of the CUDA FDTD vs.
OpenCL GPU solver equal to about 1.1 times, see
Fig. 3(b). It is noticeable that the GPU simulations
ran significantly faster as the domain size increased.
For relatively small domains, the advantages of GPU
acceleration are not so visible.

As seen in Figs 3(c-d), relative speedups of
OpenCL (GPU) vs. OpenCL (CPU) and CUDA vs.
OpenMP are in the order of 7-10 and 4-6 times,
respectively, for larger domains. This stems from the
fact that OpenMP code is compiled by a commercial
compiler whose performance is higher than the CPU
compiler available in the OpenCL package. However,
OpenCL code development requires only one
programming environment for CPU and GPU
targeting.

3.2 Application benchmark

The graphics user interface of the SEMCAD X
commercial simulator [7] was employed for further
tests.

3.2.1 IEEE SCC 34
This benchmark relies on simulation of a dipole
antenna radiating a 835 MHz signal positioned next
to a bowl filled with head imitating liquid (see Fig. 4
for the H-field cross-sectional plot). The
computational domain was terminated by Mur ABCs
and its size was equal to 72x82x96 cells. Simulations
executed 7532 iterations. A comparison of the total
simulation runtimes is presented in Table 1.

Figure 4: H-field cross-section obtained in the IEEE
SCC 34 benchmark of the OpenCL (GPU) code, a
dipole antenna is positioned next to a bowl filled with
head simulating liquid.

559

CUDA FDTD implementation on a GPU was
significantly faster than the other tested codes.
Higher runtimes of the OpenCL FDTD solvers can
partially be attributed to the online compilation of the
OpenCL kernel sources during code execution.

OCL

(CPU)
OMP
(CPU)

OCL
(GPU)

CUDA
(GPU)

[6]

1:59 1:10 0:26 0:20 0:34

Table 1: Comparison of the total simulation runtimes
in the IEEE SCC 34 benchmark for tested codes
(min:sec).

3.2.2 PCB board level EMI
This benchmark relies on simulation of a cross-talk
effect on unshielded PCB board (see Fig. 5). The
computational domain was terminated by Mur ABCs
and its size was equal to 536x1192x65 cells.
Simulations on a GPU executed 223773 iterations. A
comparison of the total simulation runtimes is
presented in Table 2. It can be seen that OpenCL and
CUDA runtimes on a GPU are similar in this
benchmark.

Figure 5: PCB used for EMI benchmark.

OCL

(GPU)
CUDA
(GPU)

[6]

7:06:22 7:00:16 8:39:16

Table 2: Comparison of the total simulation runtimes
in the PCB board level EMI benchmark for tested
GPU codes (hour:min:sec).

4 CONCLUSIONS

A usability and performance evaluation of OpenCL
for implementation into the FDTD method has been
presented. The developed GPU dedicated OpenCL
FDTD code can be executed on multi-core CPUs, but
satisfactory performance is only obtained after
specific code optimization. Although the OpenCL
FDTD simulations still perform at a lower speed than
native CUDA or OpenMP implementations, it can be
anticipated that the OpenCL framework will increase
in popularity in coming years, and might become the
standard with respect to parallel programming.
Matured versions of this technology may result in a
partial separation of the actual code development
from the hardware specifications. Subsequently, the
effort of tailoring code development to new hardware
will be transferred to the developers of OpenCL
compilers and hardware manufacturers, who have the
required specific expertise thorough knowledge of
the hardware architecture.

References

 [1] A. Taflove and S. C. Hangess, Computational
Electrodynamics: The Finite-Difference Time-
Domain Method, 3rd ed. Boston, MA: Artech
House, 2005.

[2] S. E. Krakiwsky, L. E. Turner, M. M.
Okoniewski, “Acceleration of finite-difference
time-domain (FDTD) using graphics processor
units (GPU),” 2004 IEEE MTT-S Int. Microwave
Symp. Dig., pp. 1033-1036.

[3] M. J. Inman, A. Z. Elsherbeni, “Programming
video cards for computational electromagnetics
applications,” IEEE Antennas & Propag.
Magazine, vol. 47, no. 6, pp. 71-78, December
2005.

[4] NVIDIA CUDA Programming Guide, ver. 2.3.1,
electronic file available at:

 http://www.nvidia.com/object/cuda_develop.html,
2009.

[5] The OpenCL Specification, ver. 1.0, Khronos
OpenCL Working Group, electronic file available
at:
http://www.khronos.org/registry/cl/specs/opencl-
1.0.48.pdf, 2009.

[6] Acceleware [Online], available at:
http://www.acceleware.com, 2010

[7] Schmid & Partner Engineering AG [Online],
available at: http://www.speag.com/speag/, 2010

560

