Parallelization of the Three-Dimensional Transport Equation for Boron Neutron
Capture Therapy

Eric E. Aubanel
Faculty of Computer Science
University of New Brunswick
Fredericton, New Brunswick

E3B 5A3 Canada
aubanel @unb.ca

Abstract

We propose an asynchronous parallel algorithm for the
linear Boltzmann transport equation in three dimensions,
for Boron Neutron Capture Therapy (BNCT) radiation ther-
apy planning, which can be implemented efficiently on
shared memory parallel computers. The three-dimensional
multigroup discrete ordinates transport equation is cast into
a set of coupled two-dimensional equations, and discretiza-
tion is accomplished on a grid of arbitrarily-shaped pris-
matic cells. This allows the 3D multigroup discrete or-
dinates transport equation to be solved using spatial par-
allel techniques originally developed in a recent work for
the 2D discrete ordinates transport equation by using do-
main decomposition techniques on an unstructured trian-
gular mesh. We use the Single Program Multiple Data ap-
proach to formulate a shared memory parallel numerical
implementation with OpenMP. Our results demonstrate that
the parallel version of the 3D deterministic algorithm yields
good parallel efficiency.

Key words: neutron transport equation, Boron Neutron
Capture Therapy, parallel algorithms, OpenMP

1. Introduction

The Boltzmann transport equation is the most compre-
hensive mathematical model, and also the most complicated
and computationally intensive, for performing calculations
in the radiation engineering field and in many areas of sci-
ence and engineering [2]. For instance, the planning of the
radiation treatment of a tumor begins with the creation of
a three-dimensional image of the tumor and surrounding
healthy tissue, using techniques such as computed tomogra-
phy or MRI. The treatment planning occurs after the imag-
ing is completed and involves substantial computations us-

Faysal El Khettabi

Laboratory for Threat Material Detection

University of New Brunswick
Fredericton, New Brunswick
E3B 5A3 Canada
faysalek@unb.ca

ing the Boltzmann transport equation to study the radiation
penetration in a portion of a patient’s body and to derive
the dose calculations as a result of excitation and ionization
events in tumor and surrounding healthy tissue [1].

The current practice in radiation therapy planning is to
use the Monte Carlo method for these calculations [4]. De-
terministic methods offer the promise that high order ap-
proximation of the solution over the volume of an element
could provide high accuracy without the statistical error of
Monte Carlo methods, but they are difficult to apply in com-
plex geometries [5, 6, 7, 8]. These methods must be imple-
mented on parallel computers, since clinical use requires
turnaround times in minutes.

Discretization of the Boltzmann equation is typically
done using the discrete ordinates method for the angular
variable, characteristic or discontinous finite element meth-
ods for the space variable, and the multigroup method for
the energy variable [4]. Several studies on parallelization
have been performed for deterministic transport calcula-
tions by applying angular and spatial domain decomposi-
tion [11]-[15]. Since the transport sweeps over discrete or-
dinate directions are independent of each other, paralleliza-
tion over these discrete ordinate directions is trivial. This
approach may not be ideal, since the number of the dis-
crete ordinate directions is much less than the number of
finite elements, and may be less than the number of pro-
cessors available. An asynchronous iteration scheme based
on parallelization of energy groups was proposed ten years
ago [16], but to our knowledge this approach has not been
adopted, primarily for reasons of efficiency [14]. An addi-
tional rationale for spatial parallelization is that the quality
of the mesh is the most critical factor determining the ac-
curacy of the results, which can lead to domains with mil-
lions of elements. Partitioning of the discrete ordinate di-
rections or energies requires duplication of the entire mesh
on each processor, which may not be possible and is cer-

TEEE .2

COMPUTER
0-7695-1926-1/03/$17.00 (C) 2003 IEEE SOCIETY

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03

tainly not efficient. Spatial partitioning can lead to a bet-
ter memory access pattern and even superlinear speedups
[9]. Until recently, parallelization based on spatial domain
decomposition has been restricted to rectangular meshes.
In the past few years there have been several applications
to unstructured meshes: Nowak and Nemanick [14] used
a Hybrid MPI/OpenMP implementation of a method using
Jacobi iteration, Plimpton ef al. [15] developed an asyn-
chronous message passing algorithm, and the present au-
thors extended the ideas of Yavuz and Larson [11] to un-
structured triangular meshes together with a shared memory
SPMD implementation using OpenMP [9]. In the present
work, we extend the latter work to three dimensions with
multiple energy groups.

The organization of this paper is as follows. In Section 2,
we review the multigroup neutron discrete ordinates trans-
port equation for Boron Neutron Capture Therapy (BNCT)
and formulate our spatial numerical solution for the three-
dimensional transport equation. In Section 3, we discuss
our asynchronous parallel algorithm and present results of
an implementation with OpenMP in Section 4. Finally, we
close with a summary and some conclusions in section 5.

2. Neutron transport equation

The neutron transport equation is a special case of the
Boltzmann equation, whereby the highly unlikely collisions
among neutrons are ignored, thus rendering the resulting
integro-differential equation linear [2]. The multigroup dis-
crete ordinates approximation for G groups and M discrete
ordinate directions can be written as [4]:

Q- V94, (r) + 09 (r Zaw)67 (x)
9'=g

+Qesm() m=17"'7M7 g=17"'7G7 (1)
where r = (2,9, 2), Un = (lm, Vm, Em) 18 the unit vector
along the discrete ordinate direction m having the corre-

sponding weight w.,,, Q.5 is an external source of neutrons,
!

1 is the angular neutron flux, ¢9 and ¢®9 79 are group

constants(cross-sections) and ¢9 is the scalar flux at energy

group g:

M
= wmtd, ().)
m=1

To model neutron transport for BNCT we place the source
of neutrons only in the highest energy group. The dose de-
posited to the material can be computed from the scalar flux
9.

In this work we use the same multigroup method as
in [3], where the energy partition into G' groups was defined

by:

E, E
0 0 =2 3)

2
Qmaz amaw maav

{EOa

where 45 18 a positive constant less than one which is re-
lated to the atomic mass number of the material and Eg is a
given energy. Equation 1 can be solved by using back sub-
stitution, beginning with the highest energy of the energy
partition Eg/a$..

For the purpose of spatial discretization we assume that
the domain D has the form

D =D, , x (a,b),

where D, ,, is a two dimensional polygonal domain. Let
a=12 <2z <2 < ..<zy = b be a subdivision of
(a,b) and Az; = zj4+1 — z;. After an integration on the
interval (z;, z;+1) and specification of boundary conditions,
equation 1 can then be written for positive &, (indices and
constants can be adjusted for negative £,,) as:

a¢z+ m a’l’b?+lm
() v g 2)
€m
+ (073 (@ 9) + X g (30)

—azf?g(w D1 (@) + Qs (29)

chm VI (2,y, %), 4)

¢f+%’m($7y) ¢fn l+ m(7y)7
)u’mnl‘(way) + any(way) < OJZ = 0717 '--7Nz - 17

the notation f;, 1 refers to

firg(@y) = 3

1 Zit1
| fevaa©
Zi
and we have supplement the system by assuming for the
flux 94, the following relation,

¢f+%,m(m7 y) ~ Clpfn (.Z’, Y, Z’H-l) + (1 - C)lbfn(% Y, Zz');

(6
where the quadrature formula coefficient ¢ is areal in (0, 1),
the function %), is a given function on the boundary of D,
and n(z,y) is the outer unit normal on 0D,y at (z,y).
Equation 4 can be solved by the source iteration scheme,
in which one iterates on the scattering source ¢9 [9]. Note
that the term () in equation 4, for non fission multigroup
computation can be split into two terms, an external source
Qes and the source due to scattering from higher energies

TEEE .2

COMPUTER
0-7695-1926-1/03/$17.00 (C) 2003 IEEE SOCIETY

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03

0.9

0.8

0.7

0.6

0.5

Relative flux

0.4

0.3

0.2

\\
0 2 4 6 8 10 12
Z-Axes

Figure 1. Relative epithermal (solid line) and
relative thermal (dashed line) total neutron
scalar flux along > axis with a source along
z axis

to lower energies:

ng+ m() QZsz+ m(’y)
G 1 !
+ Z O-S’g ég(x,y)qﬁf_i_%(m,y), (7)
9’ =g+1

where ¢§ 1 (z,y) is the scalar flux at energy g .
2

2.1. BNCT Model Problem

As epithermal neutron beams can come only from an ex-
terior source such as nuclear reactors or charged particle ac-
celerators, the given epithermal neutron source function is
on the surface of the domain. The spatial domain is a cylin-
drical phantom-like head that models the brain only. We
triangulate D, , by means of a uniform set of x triangles
and z'/? subdivisions of (a,b). An Sg angular quadrature
approximation, which spans 40 angles in the plane, is used
for the angular variable. We use the step discontinuous fi-
nite element method for the spatial flux evaluations with 0.5
as value for quadrature formula coefficient c.

As we assume that the most abundant elements in the
head are Hydrogen, Oxygen, Carbon and Nitrogen, the
value of a4, is that of Oxygen (0.78). This gives 36 en-
ergy groups (see equation 3) to simulate the distribution of
neutrons between the epithermal (10 kev) and thermal (1
ev) energies. Epithermal neutrons easily penetrate tissue
and in so doing slow down and become thermal neutrons,
as shown in figure 1 for results from the numerical solution
of equation 4.

Execution time was more than 13 hours on a 400 MHz
MIPS R12000 processor using a mesh of 15,580 triangles

for the D, domain. Reducing this to under a few minutes
to make it feasible for use in BNCT treatment planning can
only be done with implementation on a parallel computer.
We present in the following section a parallel algorithm and
implementation.

3. Parallel Source Iteration

We introduce an asynchronous parallel algorithm and an
implementation on a shared memory parallel computer.

The source iteration method to resolve the three-
dimensional multigroup discrete ordinates transport equa-
tion requires transport sweeps across the z-axis and in
the domain D, , for each discrete angular direction
(s Vm, &m = £+/1 — p2, — v2)) (see equation 4).

The sweep along the z-axis depends on the sign of &,,.
When &, is negative, the sweep is from the top to the bot-
tom otherwise the sweep is from the bottom to the top. If
& 1s positive (and if not, the system indices and constants
are adjusted accordingly), the inflow flux ¥, (x, y, z;+1) for
slice 2z;41 is computed by using

(1-¢
c

1
lef-i—%,m(m’y) - ¢gn(x7yazi)7

®)

m between the slice z; and slice z;41

¢gn(-737 y:z’i-‘rl) =

where the flux 7, ,
2

is calculated by solving equation 4. This requires transport
sweeps over the domain D, , in the M discrete ordinate
directions.

A triangulation 7}, is established over the domain Dy, ,,
i.e, the set D, , is subdivided into a finite number of tri-
angles T' of dimension h. For each direction (g, V), we

partition the mesh into layers Si°, ST, ..., S;% ;:

St ={T € Th, : 00T C Oy Dy}, ©)]
S =
{T €Th:00T COf Dy — S},
Jj<i
1=20,1,...,end, (10)

where 9] D,, ,, is the inflow boundary of D, ,, and 02T is
the inflow boundary of the triangle 7.

With this partition of 7, the approximate solution may
be obtained in an explicit manner, first in S§*, then in S{*,
etc. The updated exiting fluxes in S{™ are transferred to the
neighboring layer S7'} | for use as updated incident fluxes.

Within each spatial cell, the approximate solution can
only be computed from the incident flux on the inflow
boundary and the source of the cell. The updated exiting
fluxes are transferred to neighboring spatial cells for use
as updated incident fluxes. Thus, the calculation for any

TEEE .2

COMPUTER
0-7695-1926-1/03/$17.00 (C) 2003 IEEE SOCIETY

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03

given spatial cell depends on the calculations in all “up-
wind” cells. This approach represents an inherently sequen-
tial procedure which can only be parallelized at the cost
of slower convergence of the solution. In order to over-
come this obstacle, we extend our previous work on the
two-dimensional neutron transport problem [9]. The do-
main D , is decomposed into P subdomains D% using
the multilevel implementation of Recursive Spectral Bisec-
tion (RSB) [10]. Mathematically D can be written as:

D= Ungy x (a,b). (1)
p

This results in a decomposition of D into columns oriented
in the z direction, each of which is assigned to a processor.

During each transport sweep across D, , x (a, b), each
processor may require incident fluxes from other proces-
sors, which may or may not have been calculated yet. Let &
show the need for incident boundary fluxes and let ® show
the availability of new outgoing fluxes from a neighboring
subdomain. Thus, if ® = @, then we use the new available
information; otherwise, we use the older estimates. Thus,
introducing an iteration superscript, the parallel source iter-
ation expression of equation 4 can be written, when &, is
positive, as :

9,(1+1) 9,(1+1)
L 6¢1+2amvp (:L' y) + Uim 6¢1+2 s, P (.'L' y)
Ox ’ Oy ’
&m

+ (021 (@) + W) ()

z+2,mp
, 1
= o3 0 (@,y)e0) (@,y) +

Em
9 g
i+%,m,p($’y) + CA ,(p ,p(w y;zz) (12)

Loy =

i+3,m,p
?n,i+%,m(m7y) if (Z‘,y) € Fp;
anw(.’ll',y) + V‘mny(x y) <0
¢g,(z+1> (z,y) if(z,y) €T, , @ =0, (13)
%,mm
wlg';'zym,l) (@,y) if(z,y) €L, € # O,

where n(z,y) is the outer unit normal on the part of the

boundary of DY = 0D}, that coincides with the
outer boundary of Dz,y, and I‘ .y is the interface between
subdomains D% . and D |

At the beginning of a transport sweep, each processor
p, 1 < p < P, has estimates for both the incident inter-
face fluxes and the scattering source within the subdomain
DZ , x (a,b). Processor p executes its task sequentially
over the discrete ordinate directions 1 < m < M. For each

direction it processes each slice z;, 1 < ¢ < N,, sequen-
tially by updating the inflow flux 49, ,(z,y, zi11) at slice
1 + 1 using equation 8.

At the end of a transport sweep, new estimates have been
computed for exiting fluxes from D? ~x (a,b). The up-
dated exiting fluxes are available to neighboring processors
p’ for use as updated incident fluxes. The processors termi-
nate the task of iteration [by updating the scalar flux for use
in iteration [4 1 by:

9:(1) 9()
i+%p ’y Zw wz—i—%,m',p

We first solve equation 12 beginning with the highest en-
ergy group G of the energy partition (see equation 3). Then
the same equation is solved for the other energies in de-
scending order, taking into account scattering from higher
energies to low energies (source term @Y - see equa-

tion 7).

(z,y). (14

z+1m

3.1. Implementation

Implementation of the numerical solution of equation 12
requires an asynchronous communication pattern. Fluxes
must be communicated between processors owning adja-
cent subdomains during each sweep. Alternatively, only
fluxes from a previous iteration could be used (leaving out
the ® = @ boundary condition in equation 13); we call this
the synchronous algorithm, since fluxes would only have
to be communicated between processors once at the end
of each iteration. Problems with asynchronous communi-
cation are best implemented on shared memory computers
[17], because each processor can access a global address
space without the participation of other processors. There-
fore we have implemented our algorithm using OpenMP,
an industry-wide standard for threads-based shared mem-
ory parallelization.

The computational kernel of the code, which contains
the source iteration, was placed in one OpenMP parallel
region and parallelized using the Single Program Multiple
Data (SPMD) approach. That is, we did not use the typi-
cal approach taken with OpenMP of parallelizing individ-
ual loops. Variables in the parallel region were chosen to be
private by default, with the notable exception of the flux ¢
and various constants, which were set to be shared.

As discussed above, each processor performs transport
sweeps over its subdomain sequentially for each discrete or-
dinate angle. It is desirable to order the transport sweeps in
each subdomain so as to maximize the availability of up-
dated incident fluxes from adjacent subdomains. We have
shown that this can result in an improvement in the rate of
convergence of the asynchronous algorithm [9]. For each
subdomain D’;,y and for each direction m, we find the first

TEEE .2

COMPUTER
0-7695-1926-1/03/$17.00 (C) 2003 IEEE SOCIETY

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03

layer that intersects Dg,y(see equations 9,10):

N = miin{i, StnDL # 0} (15)

We then order the directions for transport sweeps in the
subdomain D%~ as my,ma, ..., i, Miy1,...,Mp, such
that ny,; < Mn,,,. This means that while we sweep in
a specified direction in processor p, we sweep in a direc-
tion in a neighboring processor p' so that both processors
are able to use the new outgoing interface boundary fluxes
from their neighbors as soon as possible.

This means, for instance, that sweeping in subdomains
on the outer boundary of the domain will be done first for
directions that come from outside. When incident fluxes
are required from another subdomain they are obtained (up-
dated or not) transparently from global memory.

3.2. Convergence

Since the parallel algorithm breaks the dependency of
the transport sweeps, convergence will be slower than the
serial algorithm. We showed previously for neutron trans-
port in two dimensions that this problem can be mitigated
somewhat by the use of our asynchronous algorithm (see
equations 12-13), resulting in convergence in a little more
than half the number of iterations as the synchronous al-
gorithm. There still remains the fact that in many cases,
old boundary subdomain fluxes will still be used (® # @).
This occurs for approximately 40% of triangles that lie on
(z,y) € L, for the two dimensional problem studied
in [9]. As a result, convergence of the asynchronous par-
allel algorithm is still slower than for the sequential algo-
rithm. Importantly, the number of iterations did not in-
crease rapidly with the number of processors used, reaching
a plateau of twice the number of iterations compared to the
serial algorithm.

The convergence of the parallel algorithm is sensitive
to the error introduced by using old boundary subdomain
fluxes, particularly during the first iteration, when there are
no old fluxes available. These old fluxes would normally
be set to an initial guess solution, for example to zero, be-
fore the first iteration. This situation would be expected
to be aggravated in our approach to the three-dimensional
problem, since the error resulting from the domain decom-
position would propagate in the z direction through the

9..p(T> Y, 2;) term in equation 12.

However, it is possible to increase the convergence of
our multigroup parallel algorithm. Since the problem is
solved by using back substitution computation from higher
to lower energies, one can use the calculated flux ¢g +H m at

energy g + 1 as an initial guess solution 1/)? _,_(;)m to compute
2

the flux at energy g:

SO (z,y) =T (z,y) if g<G (16)

i+5.m i+5.m
For 1 continuous over the energy interval
(Eo,Eo/a8,,), the error introduced by the domain

decomposition can be reduced by this procedure.

4. Results

Our algorithm was implemented in Fortran 90, and re-
sults were obtained on an SGI Origin 3800 with 64 MIPS
R12000 400 MHz processors and 32 GB memory. The Ori-
gin 3800 is a distributed shared memory machine, with a
“first-touch” data-placement policy. This means that pages
are allocated to memory close to the processor that runs
the code. Therefore, the shared array containing the flux
(U 1 mm(a:, y) was initialized in parallel to maximize local

memory references. All the processors initiate their work
simultaneously after one processor initializes the input data
for all. At the end of every iteration a global L, relative
error norm is calculated for the scalar fluxes:

g8 =gl

l
16, Il

A7)

This is the only serial part of our algorithm, in addition to
the initialization described above and any writing of fluxes
to disk. If the convergence criterion € < 10~7, then the pro-
gram proceeds to the next lower energy, after having calcu-
lated new source terms.

All tests are carry out on the BNCT model. We consid-
ered two different neutron sources impinging on a cylinder
of 10 cm radius and 20 cm height: (i) incident at a nor-
mal to the center of the top of the cylinder with a circular
cross-sectional radius of 2 cm; (ii) incident on the center of
the side of the cylinder, with a square cross section of 4 cm
wide and 2 cm high.

We also considered two Ways of initializing the flux for
energies lower than Eq/a$, ., as discussed in the previous
section: using zero as initial guess solution or reusing fluxes
from the previous highest energy computation.

4.1. Convergence Rate

The sequential source iteration program required 5 iter-
ations per energy group to converge, for a total of 180 iter-
ations over all energies. The number of iterations increased
with the number of processors for the parallel source itera-
tion program, but reached a plateau after 8 or 16 processors.
The sum of the iterations required to converge over all en-
ergy groups is shown in figure 2 as a function of the number

TEEE .2

COMPUTER
0-7695-1926-1/03/$17.00 (C) 2003 IEEE SOCIETY

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03

700 T

650

600

550

500

450 -
x

400

350 7 ’

300 ‘;‘: . /
250 j 3
200 |- 7/

150 L L L L L L L L L L L L L L L
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Number of Processors

Total iterations

Figure 2. Total number of iterations (over all
energies) for source on the side with flux
reuse (+) and without (x) flux reuse between
energy groups, and for source on top with
flux reuse (x) and without (O) flux reuse.

of processors, for both types of neutron sources, and for
both types of flux reuse.

Consider first the effect of reusing fluxes from a higher
energy for the initial guess. When fluxes are not reused,
the initial guess is set to zero for every energy, and the num-
ber of iterations required to converge increases more rapidly
and reaches a higher plateau than when they are reused.
Consider in detail the case when the source is on the top
of the cylinder, and 32 processors are used. If fluxes are not
reused, convergence is achieved in 16 iterations for each
energy. If they are reused, the convergence occurs in 16
iterations for the highest energy, then in 19 iterations for
the second highest, followed by 14 iterations for the third
highest and in 13 iterations for the rest. This pattern is typ-
ical, and can be explained as follows. Since the external
source occurs only at the highest energy (group G), the re-
sulting fluxes are quite different than for the other energies
(see figure 1), therefore the flux for group G is not a good
initial guess for the flux of group G' — 1, and is worse than
simply initializing the flux to zero. The fluxes for all ener-
gies other than group G are more similar, since there is no
external source, therefore reusing them results in a better
initial guess when inter-subdomain fluxes are required and
consequently leads to a decrease in the number of iterations
required to converge. All further discussion will refer to
calculations where the fluxes are reused, unless otherwise
specified.

Consider next the effect of changing the geometric loca-
tion of the neutron source. The number of iterations rises
much more rapidly for the source on the top than for the

(a)

(b)

Figure 3. Domain decomposition for (a) four
and (b) sixteen processors, showing the two
locations of the neutron source)

source on the side. The reason for this can be seen by look-
ing at how the source intersects with the domain decompo-
sition. Figure 3 shows the domain decomposition for 4 and
16 processors, together with the location of the source. For
the source on the side, neutrons travel initially in only one
subdomain, but for the 16-processor decomposition, they
reach other subdomains sooner. Since the flux goes to zero
rapidly with distance (see figure 1), it stays mostly in one
subdomain for the 4-processor decomposition, whereas it
is spread over several subdomains for the 16-processor de-
composition. Therefore convergence occurs in only 6 itera-
tions in the former case, but in 13 iterations (for most ener-
gies) in the latter case. Since the source on the top immedi-
ately couples multiple subdomains for all decompositions,
the number of iterations rises rapidly starting at 4 proces-
sors, with typically 13 iterations required to converge per
energy group.

4.2. Parallel Speedup

The speedups obtained by our asynchronous parallel al-
gorithm are shown in figure 4. Timings were averaged over
all iterations and energies. The speedup per iteration was
calculated as S, = t5/tp,, where t; and ¢, are the execution
times per iteration of the sequential and parallel (using p
processors) programs. Note that this speedup is superlinear,
that is its slope is greater than one, for fewer than 16 pro-
cessors, and slightly superlinear for 16 processors or more.

TEEE .2

COMPUTER

0-7695-1926-1/03/$17.00 (C) 2003 IEEE SOCIETY

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03

70 T T T T T T T

60

50

40

Speedup

30

20 e

10

28

32

36 40 44 48 52 56 60 64

Number of Processors

Figure 4. Parallel speedups per iteration (+) and total speedups for source on side (x) and on top (x)

One possible explanation is that the shared array containing
the flux requires 1.5 GB storage, which is too large to fit in
a single 2-processor node of the Origin 3800 (1 GB). There-
fore the serial program must perform a number of memory
accesses to a remote node; if the data is layed out in such
a way that the memory accesses are localized as much as
possible, then the parallel program may have fewer remote
memory accesses. However, upon investigation with SGI’s
Perfex performance monitor, it became clear that the cause
lay in the better cache reuse of the parallel programs. This
is evident from the L2 cache hit rate (fraction of data ac-
cesses satisfied from the L2 cache), which was 0.934 for
the serial program, 0.965 for four processors, and 0.976 for
greater than four processors. This is an effect common to
many memory-bound SPMD parallel programs, where ex-
plicit allocation of data with processors leads to better cache
reuse.

The overall speedup, given by (Niter,s /Niter,p)(ts/tp),
where Niter,s and Nyger p are the number of iterations re-
quired to converge for the serial and parallel calculations
respectively, is also shown in figure 4, for both neutron
sources. The decrease in the convergence rate of the par-
allel program offsets to some extent the speedups obtained
per iteration. However, the overall speedup still increases
with the number of processors, and the execution time is
reduced to 40 minutes with 48 processors.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

5. Conclusions

The formulation of the three-dimensional transport equa-
tion as coupled two-dimensional equations allowed us to
extend previous work on the parallelization of the trans-
port equation [9]. The proposed asynchronous parallel algo-
rithm is shown to be viable, and we observe no significant
degradation in the convergence rates as has been reported
[11,12,13].

Implementation of our asynchronous parallel algorithm
was done using OpenMP. Our results demonstrate that
SPMD parallelization together with OpenMP can yield ex-
cellent speedup. This was achieved on the SGI Origin 3800,
a cc-NUMA machine, by taking advantage of SGI’s “first
touch” data placement policy and parallel intialization of
shared arrays. Our parallel implementation does require
more code modification than the loop-level approach, which
is usual for OpenMP programs, but it is still far easier than
a message-passing implementation.

We achieved superlinear speedups per iteration due to
cache effects. Convergence of the parallel program took
more iterations than the serial program, but this increase
reached a plateau of 2.5 times the number of serial itera-
tions. This is comparable to the relative slowdown in the
parallel convergence rate found in our previous results for
the two-dimensional mono-energetic Boltzmann equation.
The rate of convergence was found to be sensitive to the
location of the source of neutrons. Convergence was im-

TEEE .2

COMPUTER
SOCIETY

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03

proved by reusing fluxes between calculations for each en-
ergy group, which reduced the error on the first iteration of
the parallel programs.

Acknowledgments

Our work made use of the infrastructure and resources
of MACI (Multimedia Advanced Computational Infrastruc-
ture) funded in part by the CFI (Canada Foundation for In-
novation) and the University of Alberta.

References

[1] TAEA, “Curent Status of Neutron Capture Therapy”.
TAEA-TECDOC-1223 (May 2001)

[2] C. Cercignani, “The Boltzmann equation and its ap-
plications”, Springer-Verlag, New York (1988).

[31 M. S. Clowdsley, J. H. Heinbockel, H. Kaneko et.al,
“A Comparison of the Multigroup and collocation
Methods for Solving the Low Energy Neutron Boltz-
mann Equation”, Canadian Journal of Physics, 78 pp.
45-56 (2000).

[4] E. E. Lewis and W. E. Miller, “Computational Meth-
ods of Neutron Transport”, John Wiley and Sons, New
York (1984), reprinted by the American Nuclear Soci-
ety, La Grange Park (1993).

[5] P. Lesaint, P.A. Raviart, “On a Finite Element Method
for Solving the Neutron Transport Equation”, in Math-
ematical Aspects of Finite Elements in Partial Dif-
ferential Equations, 89, Academic Press, New York
(1974).

[6] G.R.Richter, “An Optimal-Order Estimate for the Dis-
continuous Galerkin Method”, Math. Comput., 50, 75
(1988).

[7] EE. Khettabi, C. Lécot, “Characteristic Methods for
Discretizing the two-Dimensional Transport Equa-
tion on an Unstructured Grid of Triangular Cells”,
Proc. Joint International Conference on Mathemati-
cal Methods and Supercomputing for Nuclear Appli-
cations, 2, pp. 975-984., American Nuclear Society,
La Grange Park (1997).

[8] F. E. Khettabi, “ Exponential characteristic Meth-
ods for Discretizing the Two-Dimensional Trans-
port Equation on an Unstructured Grid of Triangular
Cells”, International Conference on the physics of nu-
clear science and technology, (1998)

[9] E. E. Aubanel and F. E. Khettabi, “Parallelization of
Radiation Transport on Unstructured Triangular Grids
with Spatial Decomposition and OpenMP”’, Workshop
on Parallel and Distributed Scientific and Engineer-
ing Computing with Applications, in proc. of the 16th
Intl. Parallel and Distributed Processing Symposium,
IEEE (2002).

[10] Stephen T. Barnard and Horst D. Simon, “A Fast Mul-
tilevel Implementation of Recursive Spectral Bisec-
tion for Partitioning Unstructured Problems”, Con-
currency: Practice and Experience, 6, pp. 101-107
(1994).

[11] M. Yavuz and E. Larson,“Iterative Methods for Solv-
ing X — Y Geometry S,, Problems on Parallel Archi-
tecture Computers”, Nucl. Sci. Eng., 111, 46, (1992).

[12] S.P. Burns and M.A. Christon, “Spatial Domain-
Based Parallelism in Large-Scale, Participating Me-
dia, Radiative Transport Applications”, Numerical
Heat Transfer, Part B, 31, 401 (1997).

[13] J. Goncalves and P.J. Coelho, “Parallelization of the
Discrete Ordinates Method”, Numerical Heat Trans-
fer, Part B, 32, 151 (1997).

[14] P. Nowak and M.K. Nemanic, ‘“Radiation Transport
Calculations on Unstructured Grids using a Spatially
Decomposed and Threaded Algorithm”, Proc. ANS
Conf. on Math. and Computation, Reactor Physics
and Environmental Analysis in Nuclear Applications,
379 (1999).

[15] S. Plimpton, B. Hendrickson, S. Burns, W. McLen-
don III, “Parallel Algorithms for Radiation Transport
on Unstructured Grids”, Proc. SuperComputing 2000,
IEEE (2000).

[16] R. Hiromoto, B.R. Wienke, R.G. Brickner, “The Per-
formance of asynchronous iteration schemes applied
to the linearized Boltzmann transport equation”, Par-
allel Computing, 18, pp. 241-268 (1992).

[17] S.M. Pancake, “Is Parallelism for You?”, Computa-
tional Science and Engineering Vol. 3, No. 2, 18
(Summer, 1996).

TEEE .2

COMPUTER
0-7695-1926-1/03/$17.00 (C) 2003 IEEE SOCIETY

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

