
Data Structure Design for GPU Based Heterogeneous Systems

Jens Breitbart

Research Group Programming Languages / Methodologies – Universität Kassel

jbreitbart@uni-kassel.de

ABSTRACT

This paper reports on our experience with data structure

design for systems having both multiple CPU cores and a

programmable graphics card. We integrate our data

structures into the game-like application OpenSteerDemo

and compare our data structures on two pc-systems. One

System has a relative fast single core CPU and slower

GPU, whereas the other one uses a high-end GPU with a

slower multi core CPU. We design two grid based data

structures for effectively solving the k-nearest neighbor

problem. The static grid uses grid cells of uniform size,

whereas the dynamic grid does not rely on given grid

cells, but creates them at runtime. The static grid is

designed for fast data structure creation, whereas the

dynamic grid is designed to provide high GPU simulation

performance. The high performance is achieved by taking

advantage of the GPU memory system at the cost of a

more complex construction algorithm. Our experiments

show that with a slower CPU the algorithm for creating

the dynamic grid becomes the bottleneck and no overall

performance increase is possible compared to the static

grid. This also holds true when the simulation is run with

a faster CPU and a slower GPU, even though the break-

even point is different. We experimented with data

structure creation on the GPU, but the performance of the

static grid is not feasible. The dynamic grid cannot be

created on the GPU due to the lack of recursive function

support. We provide a dynamic grid creation algorithm,

which uses multiple CPU cores. This algorithm is slower

than its sequential counterpart due to the parallelization

overhead.

KEYWORDS: GPGPU, k-nearest neighbor, games,

OpenMP, CUDA

1. INTRODUCTION

Computer games are one of the most compute intense

applications for end user and their demand in processing

power increases with every generation. Their current

performance needs can hardly be satisfied with the slow

increase in single core performance. There are two

hardware development trends, which provide end-user

systems with an additional increase in computing

resources. Additional CPU core are added to a single chip,

so the overall performance of the CPU is increasing at a

high rate, even though when single core performance

cannot be increased. Furthermore the programmability of

the last generation of graphics processing units (GPUs)

has reached a level at which they can be programmed

without requiring any knowledge of graphics APIs like e.g.

OpenGL and can thereby easily be used as an additional

computing resource. The additional processing power for

both multiple CPU cores and programmable GPUs cannot

be achieve by recompiling the application, but require a

change in both software architecture and algorithm design.

This paper reports on our experience with the

modification of a game-like application called

OpenSteerDemo to use both multiple CPU cores and a

programmable GPU. We outline problems and solutions

that occur during development. OpenSteerDemo is written

in C++ and is the demo application of the OpenSteer

steering library. Steering refers to life-like navigation of

autonomous characters, so-called agents used for instance

in computer games [1]. Each agent follows a so called

steering behavior, which is solely based on the local

environment of the agent. OpenSteerDemo is used to

simulate different kinds of steering behaviors; each of

them is implemented in a separate plugin. The software

design of OpenSteerDemo and its plugins is similar to that

of games. It runs a main loop calculating the steering

behaviors and drawing the agents to the screen. We

worked with a plugin called Boids, which simulates

flocking. Agents in this scenario compute their seven

nearest neighbors’ and decide based on the neighbors’

positions where to move next.

The original plugin relies on OpenMP [2] to support

multiple CPU cores [3]. OpenMP is a thread based

programming system using pragmas to allow easy work

44978-1-4244-4907-1/09/$25.00 ©2009 IEEE

distribution among threads. We continue to use OpenMP

for our work as the pragmas can be easily integrated into

existing applications and only require small changes of the

existing code.

We first develop a plugin utilizing the GPU for the

simulation and then design two spatial data structures used

at the GPU to increase performance. Both data structures

partition the world into cuboidal parts (cells) and store

which agents are within a cell. This information is used to

speed up the neighbor search, which is the most time-

consuming part of the simulation. The first data structure

– called static grid – relies on given grid cell with a fixed

size, whereas the so called dynamic grid creates cells at

runtime based on the current position of the agents. The

static grid requires less CPU processing power than the

dynamic grid, but provides slower simulation performance

on the GPU. Choosing the best performing data structure

depends on both the available CPU/GPU processing

power and the number of simulated agents. Data structure

creation becomes the performance bottleneck for all our

test systems when reaching a certain number of agents.

We also experimented with data structure creation with

multiple CPU core or the GPU, but the results were not

practical usable.

We program the GPU with NVIDIAs CUDA [4] even

though it only supports NVIDIA GPUs. The underlying

concept of CUDA strongly resembles that of OpenCL [5],

which is expected to support GPUs from different vendors,

so our solution could easily be implemented with OpenCL

as well. We cannot use OpenCL, as compilers are not

available to public at the time of writing.

The paper is organized as follows. First, Section 2 gives a

brief overview of the used programming systems and

describes the differences between GPUs and CPUs. The

next Section (Section 3) gives an introduction to the

architecture of OpenSteerDemo and the Boids plugin.

Section 4 describes the parallelization approach of the

existing multi core plugin and shows that a similar

approach can be used with CUDA as well. The main part

(Section 5) explains the design of spatial data structures.

Section 6 gives a final performance overview of all

developed plugins. Section 7 discusses related work,

while Section 8 summarizes the paper and gives a brief

outline of possible future work.

2. PROGRAMMING SYSTEM

We used OpenMP throughout our work to support

multiple CPU cores. OpenMP is a programming system

designed for shared memory architectures and uses

threads. The OpenMP thread creation relies on a fixed

fork-join-structure. Work that should be executed in

parallel must be embedded within a parallel region. At the

start of a parallel region a number of threads, which

execute whatever code is embedded within the region, is

created. At the end of the parallel region all created

threads must be joined. Using a parallel region thereby

imposes some overhead. Access to variables shared by

multiple threads must be synchronized. OpenMP 3.0,

which was released in May 2008, added support for non-

regular task parallelism with the so called task construct.

When a thread reaches a task construct it may decide to

directly execute the embedded code or may skip this code

and put the task into a work queue, which is being worked

at by all threads [2]. A detailed overview of OpenMP can

be found in Chapman et al. [6].

GPUs are not designed to be used for sequential

computations and consist of hundreds of processors for

which one cannot provide reasonable performance. This

concept is difference to that of CPUs and necessitates new

programming systems. During our work we used

NVIDIAs CUDA, which provides the power of the GPU

in the C programming language. The CUDA information

presented in the rest of this section is based on [7] if not

explicitly stated otherwise.

NVIDIAs CUDA is a general-purpose programming

system only available for NVIDIA GPUs and was first

publicly released in the end of 2007. By using CUDA, the

GPU (called device) is exposed to the CPU (called host)

as a co-processor with its own memory. The device

executes a function (called kernel) in the SPMD model,

which means that a user-configured number of threads run

the same program on different data. Threads executing a

kernel must be organized within so called thread blocks,

which may consist of up to 512 threads; multiple thread

blocks are organized in a grid, which may consist of up to

2
32

 thread blocks. One thread block is always scheduled

onto one so called multiprocessor of the device. One

multiprocessor consists of 8 processors. The number of

multiprocessors of a device depends on hardware used.

The current maximum of multiprocessors on a single

device is 30. Furthermore thread blocks are important for

algorithm design, as only threads within a thread block

may be synchronized and synchronization of threads

within different thread blocks is not possible. NVIDIA

suggests having at least 64 threads in one thread block and

up to multiple thousands of thread blocks – and thereby

more threads than the device has processors – to achieve

high performance at the device.

In contrast to main memory used by the CPU, its GPU

counterpart – called global memory – is not cached and

accessing it costs an order of magnitude more than most

45

calculations. For example, 32 threads require 400 - 600

clock cycles for a read from global memory to complete,

whereas an addition executed by the same amount of

threads takes only 4 clock cycles. Due to the high cost for

reading data from global memory, the device offers

multiple ways to circumvent this overhead. The device

uses an efficient thread scheduler that uses the massive

parallelism approach of the device to hide the latency by

removing threads that issued a global memory read from

its processor and scheduling a thread that is not waiting

for data. This is one of the reasons why the device

requires more threads than there are processors available

to achieve good performance. Another way of reducing

global memory accesses is by using a special kind of

memory called shared memory. Shared memory is fast

memory located on the multiprocessors of the device itself

and is shared by all threads of a thread block. Accessing

shared memory cost about 4 clock cycles for 32 threads

and may be used as a developer managed cache. Global

memory usage cannot be circumvented, since this is the

only kind of memory, which can be accessed by both host

and device. Data that is stored in main memory must be

copied from main memory to global memory by a CUDA

memcopy like function call, if it should be accessed by the

device. Results of a kernel must be stored in global

memory and the CPU must issue a memcopy from global

memory to main memory to use them. All transfers done

by CUDA memcopy functions are DMA transfers and

have a rather high cost of initialization and a rather low

cost for transferring the data itself. See figure 1 for an

overview of the CUDA memory model. We use only

registers, shared memory and global memory in our

implementations.

Figure 1. CUDA Memory Model [7]

We use CuPP [8] to ease the integration of CUDA into

OpenSteerDemo. CuPP is a framework we explicitly

designed to ease the integration of CUDA into C++

applications. It provides techniques freeing the developer

from manually transferring data from main memory to

global memory and vice versa. We use a STL vector like

data structure provided by CuPP that makes the data

stored automatically available at both host and device.

The CuPP vector monitors if e.g. the device changes the

data and then automatically updates the host data as soon

as it is accessed. For example, if a CuPP vector is filled

with data by the host and then only used by the device,

only one memory transfer transferring the initial data to

global memory will be issued. We use the CuPP vector for

all data accessed by both host and device, if not explicitly

stated otherwise.

CuPP furthermore provides a technique called type

transformations, which allows the developer to use two

data representations for the same data on host and device.

CuPP transforms the data from one representation into the

other, when transferring from one memory domain into

the other. The transformation is done by the CPU. We call

the type used at the CPU hosttype, whereas the type used

at the GPU devicetype. The type transformations are used

in section 5.1 to provide the CPU with a data

representation that can be created effectively, whereas the

devicetype allows fast transfer to global memory. A

detailed description of CuPP can be found in [9].

3. OpenSteerDemo ARCHITECTURE

OpenSteer [10] is a C++ open-source library written by

Reynolds in 2002. It provides simple steering behaviors

and a basic agent implementation. OpenSteerDemo is the

demo application of OpenSteer. The Boids plugin is a

plugin for OpenSteerDemo, which simulates flocking [1]

in a three dimensional world. All agents in the Boids

plugin can move freely across a finite spherical world. If

one agent leaves the world at one side, it is put back into

the world at the diametric opposite of its original position.

The calculation to determine where the agent wants to

move next is only based on its current state – e.g. its speed

– and its seven nearest neighbors.

The following architecture of the Boids plugin was

developed by Knafla and Leopold [3]. The simulation

done by the Boids plugin can be divided in two stages.

First the new state of all agents is calculated (called

update stage) and then drawn to the screen (called draw

stage). The update stage itself is again divided into two

substages. The first substage is called simulation substage

and includes the steering calculations and the search to

identify the 7 nearest neighbor agents. The algorithm used

46

to find the 7 nearest neighbors of one agent is a fairly

simple O(n) algorithm, which searches through all agents

and returns the 7 nearest ones. The results of the

simulation substage are vectors representing the direction

and speed every agent wants to move. These vectors are

used in the next substage called modification substage to

update the position of every agent. The draw stage is

executed after the modification substage and draws the

new agent positions to screen. The design of

OpenSteerDemo itself is similar to the ones of games. It

runs a main loop executing first the update stage and then

the draw stage. The main loop is part of the OpenGL

Utility Toolkit (known as GLUT) and the stages are

functions, which are called by GLUT.

4. PARALLEL BOIDS PLUGIN

Exposing the parallelism of the calculation of the Boids

plugin to use multi core CPUs was already done by Knafla

and Leopold [3]. The implementation uses OpenMP and

splits all agents equally among the threads. A thread

calculates both the simulation and modification substage

for the agents associated with. In the simulation substage

the agent’s position are read, whereas in the modification

substage the positions are changed, so both substages

must not be carried out in parallel. Barrier synchronization

is used to prevent this. Knafla and Leopold demonstrate

that their parallelization approach works well on multi

core systems and provides an almost linear speedup

regarding the update stage. The speedup of the overall

application is not linear as the draw stage is still executed

sequentially.

The first version we developed to incorporate the GPU is

based on the multi core plugin developed by Knafla and

Leopold. We replaced the original used STL C++ vectors

with CuPP vectors to free us from the need to manually

transfer data from main memory to global memory or vice

versa. Analysis of the memory transfers done by CuPP

shows that data is only transferred when it is must be

transferred – meaning when the data stored on the device

or the host is out of date. A detailed description of how

CuPP achieves this functionality can be found in [9]. The

code running at the GPU is mostly just a copy and paste

work of the original OpenSteer code, except for the

modifications outlined next.

Our parallelization approach at the device is similar to

what Knafla and Leopold proposed for multi core CPUs

and only differs in detail. Instead of having one thread

calculate multiple agents, we use a separate thread for

each agent and thereby can provide the device with a high

number of threads. We use the GPU to calculate the

complete update stage and use the CPU only for the draw

stage. By using this approach, we only need to transfer the

initial data to global memory at the beginning of the

simulation and do not need to update the data at the GPU.

The only data that must be transferred in every simulation

step is a matrix representing the position and orientation

of the agents, as this is used by the draw stage.

Synchronization of all threads within a kernel is not

possible, so we must use two kernels, one for each

substage. There are no data dependencies between the

agents in one substage, so we do not need to guarantee

any order of how the threads are put into the thread blocks.

During the neighbor search all threads must access the

position of all agents. We use shared memory to cache

position data. We load chunks of position data from

global memory into shared memory, have all threads

searches for neighbors in them and then continue with the

next chunk. A detail description of this technique and

technical details regarding the implementation can be

found in [11]. We refer to this plugin as the basic plugin.

The basic plugin can simulate about four times the number

of simulation step per second compared to the OpenMP

based one; it is possible to simulate about 10240 agents at

24 frames per second (fps).

5. NEIGHBOR SEARCH WITH SPATIAL

DATASTRUCTURES

The basic plugin does not use an efficient algorithm for

the neighbor search as every agents needs to look at all

other agents to find its neighbors. We now describe a

spatial data structure called grid that we use to speed up

neighbor search.

A grid subdivides the world into small areas, which we

call cells. Agents are assigned to cells based on their

current position, so one cell contains all the agents that are

within its range. A grid can be used to improve the

neighbor search performance, as one agent does not need

to look at all other agents to find its neighbors, but only at

the agents stored in the cells within its search radius. The

search inside a cell is done with the brute force approach

described before.

5.1. Static Grid

We refer to our grid implementations shown in this

section as static grid. The term static was chosen to

distinct this solution to the dynamic grid demonstrated in

the next section and indicates the way cells are created.

The static grid subdivides the world in cubic cells all of

them the same size. The number of cells cannot be

changed after a grid has been created and is identical for

each dimension, so the overall shape of the static grid is a

47

cube as well. The dynamic grid on the other hand creates

cells with different sizes dynamically.

We provide for two different implementation of the static

grid – one creates the grid at the CPU and transfers it to

global memory, whereas the other one directly uses the

GPU to create the grid and thereby does not need to

transfer any data to global memory.

We use the CuPP type transformations to work with two

different data representations for the CPU created static

grid. The creation of the grid is done before the simulation

substage is executed and redone for every simulation step

– meaning we never update the grid, but clear and refill it

with new data in the next simulation step. We choose this

way for simplicity, however we do not expect updating an

existing grid to be more efficient than creating a new one.

The hosttype of the static grid is an aggregation of

multiple C++ STL vectors, each vector represents a cell.

Cells store the agent indexes of the agents within the range

of a cell. All cell vectors are stored in another vector, so

the grid itself is a vector of vectors storing agent

references. The benefit of this approach is that adding

elements to the grid is a O(1) operation. To add an

element we must calculate the index of the cell vector and

append the element. Appending an element to a C++ STL

vector is guaranteed to be a O(1) operation, when no

memory reallocation is done. To prevent unneeded

memory reallocations, we clear the used C++ STL vectors

instead of creating new ones. C++ vectors never free

memory already allocated so after the agents are

distributed equally throughout the world, the cell vectors

hardly need to grow beyond their current size.

Based on our previous experience described in [9] and

that memory transfers to global memory are DMA

transfers, we expect transferring one large memory block

to be preferred over transferring multiple smaller memory

blocks. We designed the devicetype to consist of only two

independent memory blocks. One memory block contains

the data of the cell vectors ordered by their index (called

data memory block) and the other one (called index

memory block) contains the indexes to find the cell

vectors within the first memory block.

Transferring the hosttype to global memory would require

one memory transfer per cell, whereas the devicetype

requires two memory transfers to transfer all data.

Transforming the hosttype into the devicetype is a O(n)

operation, as we have to copy all n agent-references stored

in the hosttype into a new continuous memory block.

Creating the index memory block is a O(k) operation, with

k being the number of grid cells. Creating the devicetype

is therefore a O(n+k) operation.

Our GPU constructed static grid only uses the devicetype.

The creation itself is split into three distinct steps. Each

step is implemented in a separate kernel to guarantee

synchronization between the steps. The first two kernels

are used to build up the index structure, whereas the last

kernel fills the data memory block. We describe the three

steps of our algorithm next.

Count The count kernel counts, the number of agents,

which must be stored within each grid cell, and

saves the results within the index memory block.

The count kernel uses one thread per grid cell. The

threads are distributed among multiple thread

blocks. Each thread looks at all agents and counts

the number of agents within its grid cell boundaries.

We use shared memory as a cache for agent data.

The results are written to the index memory block.

Scan The scan kernel calculates the start position of each

cell within the data memory block by issuing an

exclusive scan on the index memory block. Scan is

also known as parallel all-prefix-sums done on an

array. Scan uses a binary associate operator ∆ with

the identity I and an array of n elements as input

[a0, a1, ..., an-1]

and returns the array

[I, a0, (a0 ∆ a1), ..., (a0 ∆ a1 ∆ ... ∆ an-2)]

as a result. Our implementation is based on one

provided by NVIDIA, which is discussed in [12].

Our kernel executes the all-prefix-sums on the

index data using addition as the binary operator, so

the index data at position 0 contains a 0, position 1

contains the number of agents to be stored in the

0th cell, and position 2 contains the number of

agents to be stored in both the 1st and the 0th cell

and so on.

Fill The fill kernel fills the data memory block with the

references to the agents. We use one thread per

grid cell to store agent references in the data

memory block. All threads scan through all agent

positions and write the agents’ index to the data

memory block, if the agent is within grid cell of the

current thread. The position, to which the agent

references should be written in the data memory

block, is based on the values stored in the index

data structure and the number of agents already

belonging to the cell. We use shared memory as a

cache.

48

Executing these 3 steps after one another creates the

device type of the static grid on the device. The benefit of

this solution is that there is no need to transfer any data to

global memory for the simulation – except for the first

simulation step, at which we transfer the initial data of the

agents to the device. We only transfer the data required to

issue the draw calls back to main memory.

We can use shared memory as a cache in the first GPU

based plugin, because all agents simulated by one thread

block look at the same agents to find their neighbors. The

plugins using the static grid cannot use shared memory as

a cache for agent position data, as agents of a thread block

are not guaranteed to have any common data requirements.

Agents are put in thread blocks without any order, so the

agents located in one grid cell are distributed throughout

the CUDA grid. Reading from global memory is one of

the most expensive operations on the device so we expect

this to reduce performance of the static grid based

implementation, however the profiling tools currently

available do not allow us to explicitly measure the time

required in chosen code regions.

Introducing the static grid into our application increases

the performance of the simulation by a factor up to 35

compared to the plugin using no spatial data structure.

Creating the grid on the device is slower than creating it

on the CPU and transferring it to global memory, so using

the GPU to create the static grid does not increase

performance. Achieving good performance with the static

grid requires finding an appropriate number of cells to be

used by the simulated scenario. If a wrong number of cells

is used, the performance may be reduced by up to 90%. A

detailed overview of the performance can be found at

section 6.

5.2. Dynamic Grid

The plugin using the static grid cannot use shared memory

to cache global memory accesses, because the agents

within one thread block have no common data

requirements. We now propose a new mapping scheme to

solve this issue and thereby increase performance in some

scenarios. We continue to use one thread per agent, but

map a group of agents close together to one thread block.

A group of agents close together must look at roughly the

same agents to find their neighbors, so we can use shared

memory to store chunks of agent position data in shared

memory. We use this mapping scheme for the simulation

kernel, but continue to use the old scheme in the

modification substage as there would be no benefit from

using the new scheme.

Combining the new mapping scheme with the static grid is

complex. We could try to map one grid cell to one thread

block, but the number of agents in one grid cell varies

between 0 and n – with n being the number of agents

currently simulated. This variant causes two problems.

• The number of threads per thread block is fixed

and limited to a maximum of 512. If we want to

simulate more than 512 agents with one thread

block, we must simulate multiple agents per

thread, which is possible but requires a complete

redesign of the kernel.

• One grid cell could contain all agents. If this

would be the case, the whole simulation is

executed by one multiprocessor, which leads to a

poor work balance at the device.

We solve these problems by introducing a new data

structure called dynamic grid.

In contrast to the static grid discussed in the last section,

the dynamic grid relies not on given grid cells, but creates

them on the fly. A grid cell of the dynamic grid occupies a

cuboidal part of the world. All grid cells can differ in size,

but have a common maximum number of agents within its

borders. We call the maximum number of agents in one

grid cell max throughout the rest of this section. In our

case, max is identical to the number of threads per thread

block used to execute the simulation kernel. This

restriction is required, as we map one grid cell to one

thread block. All thread blocks simulating less than max

agents, have idle threads.

Despite allowing the usage of shared memory on the

device, the dynamic grid also automatically adopts to the

simulated scenario, so there is no more need to manually

choose the number of grid cells.

The internal data structure of the dynamic grid consists of

two vectors. One vector – called data vector – stores

tuples of agent positions and agent reference for all agents.

The second vector – called cell vector – stores the

dimension of the grid cell, its position and which agents

are within the cell. The algorithm to create the dynamic

grid guarantees that the agents of one cell are stored

continuously within the data vector, so we only need to

store the first and the last agent within the cell to identify

all agents of the cell. The algorithm to create the dynamic

grid is split into 2 steps.

• Fill the data vector.

• Recursively partition the data vector in a way

that agents stored next to each other are close

together in the simulated world. A partition with

≤ max agents is a cell.

49

In the first step the data vector is filled in an unordered

fashion with pairs consisting of both the agent position

and a reference to the agent itself.

The second step in our algorithm is similar to Quicksort. It

recursively subdivides and partitions the data vector. The

partitioning of the agents is done by one of three

dimensions of the simulation. The algorithm to choose the

dimension is based on practical experiments. The

dimension is chosen at runtime by first calculating the

distance from the center point of all agents in the current

partition to the border of the space covered by the

partition. Afterwards we partition alongside the dimension

with the minimal distance to the border. The algorithm

stops to subdivide a partition as soon as the number of

agents is ≤ max.

Creating the dynamic grid is done on the host, because the

device does not support recursive functions. However, we

can use multiple CPU cores to construct a dynamic grid in

parallel. The parallel algorithm uses OpenMP tasks. Each

recursive subdivision of a partition is a task, until the size

of the partition reaches a certain threshold. We stop at a

certain threshold to prevent the overhead generated by the

OpenMP task construct for small tasks. Synchronization is

only required to ensure that all tasks are completed and

when a partition contains ≤ max agents. At this point we

must take care that not multiple threads add a cell into the

cell vector at the same time.

The performance of the dynamic grid strongly depends on

the used system. The dynamic grid requires more CPU

processing power and less at the GPU. On a system with a

rather slow CPU and a fast GPU the performance is

decreased compared to the performance of the static grid,

whereas on a system with a faster CPU and a slower GPU

the performance is increased. The next section gives more

details of the performance on both kinds of systems.

Table 1. System Specification

 System I System II

CPU AMD Athlon 64 3700+

(2,4 GHz)

2 x AMD Opteron 270

(2 x 2 x 2 GHz)

GPU GeForce 8800 GTS

(640 MB)

GeForce GTX 280

(1 GB)

6. PERFORMANCE

The specifications of the systems used to benchmark our

plugins can be found in Table 1. System I uses a faster

single core CPU and a slower GPU compared to System II,

which uses two dual core CPUs and one of the fastest

GPUs currently available.

When simulating 2
17

agents on System I the static grid

provides about 14 simulation steps per second, whereas

the basic plugin can only simulate 0.4 fps per second.

Experimenting with the static grid at System II shows that

for up to 2
15

 agents the performance of System II is

superior to that of System I; however with more agents the

creation of the grid becomes more time consuming.

System I provides about 1.4 times the performance of

System II when simulating 2
16

 agents.

Creating the static grid at the GPU is no feasible option

for System I as both the count and fill kernel require more

time than creating the grid at the CPU and transferring it

to GPU memory. System II provides better performance,

but both kernels are not faster than creating the data

structure at the CPU and copy it to GPU memory. The

GeForce GTX 280 of System II provides additional

functionality like atomic operations, which may be used to

design a faster algorithm at the cost of lost compatibility.

The dynamic grid was designed to reduce the runtime of

the kernel at the GPU at the cost of a high CPU utilization.

The overall performance of the dynamic grid plugin is

better than that of the static grid plugin for up to about 2
15

on System I. Experiments with the parallel creation of the

grid show that this is not practical for the amount of

agents that can be simulated in real time. On System II it

takes about 0.08 seconds to create a dynamic grid for

40960 agents in one simulation step with one thread.

Running the code with 4 threads doubles the time required

to construct the grid. The performance lost is resulted

from the overhead of both the OpenMP task construct and

creating and joining the threads for every simulation step.

We cannot prevent the reoccurring creating and joining of

the threads, as the simulation is implemented in functions

that are repeatedly called by GLUT.

7. RELATED WORK

PSCrowd by Reynolds [13] simulates 15.000 agents in a

similar scenario to the Boids plugin at the Playstation 3

(PS3). He uses the PowerPC processor of the PS3 to

construct the spatial data structure and the Synergistic

Processor Units (SPUs) to execute the calculation for all

agents. PSCrowd uses a technique called SkipThink,

which only simulates a fraction of the agents in one

simulation step, but still provides a reasonable overall

result. In contrast to Reynolds we work on a different

platform and concentrate on data structure design instead

of the overall implementation of a crowd simulation.

Lauterbach et al. [14] have developed two algorithms to

50

construct bounding box based algorithms on modern

GPUs or other many core architectures. The performance

of their implementation with CUDA is similar to that of

CPU based implementation. Lauterbach et al. say that the

performance of their algorithm should increase, as soon as

GPUs offer higher flexibility e.g. recursive function calls

or better synchronization primitives. The work of

Lauterbach et al. is focused on ray tracing and relies on

heuristics that may not work well in our scenario.

8. CONCLUSION / FUTURE WORK

In this paper we show our experience of how to take the

full benefit of current end user systems with a focus on

how to include programmable GPUs. Our work with

different data structures shows that data structure design

should not necessarily be designed for maximum

performance when it is used, but also that data structure

creation itself may easily become the performance

bottleneck. This experience by itself is not novel, but if

the GPU is used for calculations the break even point may

come sooner than expected, especially with current high-

end GPU providing almost one teraflop of processing

power. Using the GPU for data structure creation is not a

good option when the first generation of CUDA capable

GPUs should be supported. We expect our results to be

valid for OpenCL as well, as it strongly reassembles the

programming model of CUDA. However, as OpenCL is

supposed to support a wide range of different hardware,

the performance and break even point of all implemented

may vary. Furthermore upcoming hardware, like Intel’s

Larrabee [15], which is expected to provide reasonable

sequential performance, may be used to construct the data

structure.

Future work on OpenSteerDemo could try to expose the

functionality of the latest generation of GPUs to create the

data structures and thereby free the CPU for other

calculations. Furthermore experiments with a more

flexible multi core programming system could possible be

used to effectively create the data structure in parallel. It

may also be useful to exploit the parallelism of being able

to use the GPU and the CPU at the same time.

ACKNOWLEDGEMENTS

The author is grateful to Claudia Fohry for some several

hints on presentation. The author also thanks NVIDIA for

providing the graphics card used in System II.

REFERENCES

[1] C. W. Reynolds, “Steering behaviors for autonomous

characters,” Game Developer Conference, 1999, pp. 763-

782.

[2] OpenMP Application Program Interface, 2008, version 3.0.

[3] B. Knafla and C. Leopold, “Parallelizing a real-time

steering simulation for computer games with OpenMP,”

PARCO, IOS Press, 2007, pp. 219-226.

[4] CUDA website, 2009.

Available: http://www.nvidia.com/cuda

[5] OpenCL Specification, 2009, version 1.0.

[6] B. Chapman, G. Jost, and R. v. d. Pas, USING OpenMP:

PORTABLE SHARED MEMORY PARALLEL

PROGRAMMING (SCIENTIFIC AND ENGINEERING

COMPUTATION), The MIT Press, 2007.

[7] NVIDIA CUDA compute unified device architecture

programming guide version 2.1, NVIDIA Corporation,

2008.

[8] CuPP website, 2009.

Available: http://www.plm.eecs.uni-

kassel.de/plm/index.php?id=cupp

[9] J. Breitbart, “CuPP – A framework for easy CUDA

integration in C++ applications,” presented at the 2009

IEEE Int. Parallel & Distributed Processing Symposium,

Rom.

[10] OpenSteer website, 2009.

Available: http://opensteer.sourceforge.net

[11] J. Breitbart, “A framework for easy CUDA integration in

C++ applications,” Diplome thesis, Universität Kassel,

Kassel, Germany, 2008.

[12] M. Harris, S. Sengupta, and J.D. Owens, “Parallel prefix

sum (scan) with CUDA,” in GPU GEMS 3, H. Nguyen, Ed.

Addison Wesley, 2007, ch. 39, pp. 851-876.

[13] C. W. Reynolds, “Big Fast Crowds on PS3,” SIGGRAPH

Symp. On Videogames, 2006.

[14] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D.

Manocha, “Fast BVH construction on GPUs,”

Europgraphics, 2009.

[15] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash,

P. Dubey, S. Junkins, A. Lake, J. Sugerman, R. Cavin, R.

Espasa, E. Grochowski, T. Juan, and P. Hanrahan,

“Larrabee: A Many-Core x86 Architecture for Visual

Computing”, SIGGRAPH, 2008

51

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.000 x 11.000 inches / 203.2 x 279.4 mm
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20090514094719
 792.0000
 Dumbass
 Blank
 576.0000

 Tall
 1
 0
 No
 1286
 143
 Fixed
 Up
 3.6000
 0.0000

 Both
 2
 AllDoc
 4

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.000 x 11.000 inches / 203.2 x 279.4 mm
 Shift: move up by 28.80 points
 Normalise (advanced option): 'original'

 32

 D:20090514094719
 792.0000
 Dumbass
 Blank
 576.0000

 Tall
 1
 0
 No
 1286
 143
 Fixed
 Up
 28.8000
 0.0000

 Both
 2
 AllDoc
 4

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 2
 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: fix size 8.000 x 11.000 inches / 203.2 x 279.4 mm
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20090514094719
 792.0000
 Dumbass
 Blank
 576.0000

 Tall
 1
 0
 No
 1286
 143
 Fixed
 Up
 3.6000
 0.0000

 Both
 2
 CurrentPage
 4

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 3
 8
 3
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: fix size 8.000 x 11.000 inches / 203.2 x 279.4 mm
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20090514094719
 792.0000
 Dumbass
 Blank
 576.0000

 Tall
 1
 0
 No
 1286
 143
 Fixed
 Up
 3.6000
 0.0000

 Both
 2
 CurrentPage
 4

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 6
 8
 6
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: fix size 8.000 x 11.000 inches / 203.2 x 279.4 mm
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20090514094719
 792.0000
 Dumbass
 Blank
 576.0000

 Tall
 1
 0
 No
 1286
 143
 Fixed
 Up
 18.0000
 0.0000

 Both
 2
 CurrentPage
 4

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 7
 8
 7
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: fix size 8.000 x 11.000 inches / 203.2 x 279.4 mm
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20090514094719
 792.0000
 Dumbass
 Blank
 576.0000

 Tall
 1
 0
 No
 1286
 143

 Fixed
 Up
 18.0000
 0.0000

 Both
 2
 CurrentPage
 4

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 8
 0
 1

 1

 HistoryList_V1
 qi2base

