
Exploring the Use of Hyper-Threading Technology for Multimedia Applications
with Intel� OpenMP Compiler

Xinmin Tian1, Yen-Kuang Chen2,3, Milind Girkar1, Steven Ge3, Rainer Lienhart2, Sanjiv Shah4
1Intel Compiler Labs, Software Solution Group, Intel Corporation

2Microprocessor Research, Intel Labs, Intel Corporation
1,23600 Juliette Lane, Santa Clara, CA 95052, USA

 3Intel China Research Center, Intel Corporation
4KAI Software Lab, Intel Corporation, 1906 Fox Drive, Champaign, IL 61820, USA

{Xinmin.Tian, Yen-kuang.Chen, Milind.Girkar, Steven.Ge, Rainer.Lienhart, Sanjiv.Shah}@intel.com

Abstract
Processors with Hyper-Threading technology can improve the
performance of applications by permitting a single processor to
process data as if it were two processors by executing instructions
from different threads in parallel rather than serially. However,
the potential performance improvement can be only obtained if an
application is multithreaded by parallelization techniques. This
paper presents the threaded code generation and optimization
techniques in the Intel C++/Fortran compiler. We conduct the
performance study of two multimedia applications parallelized
with OpenMP pragmas and compiled with the Intel compiler on
the Hyper-Threading technology (HT) enabled Intel single-
processor and multi-processor systems. Our performance results
show that the multithreaded code generated by the Intel compiler
achieved up to 1.28x speedups on a HT-enabled single-CPU
system and up to 2.23x speedup on a HT-enabled dual-CPU
system. By measuring IPC (Instructions Per Cycle), UPC (Uops
Per Cycle) and cache misses of both serial and multithreaded
execution of each multimedia application, we conclude three key
observations: (a) the multithreaded code generated by the Intel
compiler yields a good performance gain with the parallelization
guided by OpenMP pragmas or directives; (b) exploiting thread-
level parallelism (TLP) causes inter-thread interference in caches,
and places greater demands on memory system. However, with
the Hyper-Threading technology hides the additional latency, so
that there is a small impact on the whole program performance;
(c) Hyper-Threading technology is effective on exploiting both
task- and data-parallelism inherent in multimedia applications.

1. Introduction
Modern processors become faster and faster, processor resources,
however, are often underutilized by many applications and the
growing gap between processor frequency and memory speed
causes memory latency to become an increasing challenge of the
performance. Simultaneous Multi-Threading (SMT) [7, 15] was
proposed to allow multiple threads to compete for and share all
processor’s resources such as caches, execution units, control
logic, buses and memory systems. The Hyper-Threading
technology (HT) [4] brings the SMT idea to the Intel architectures
and makes a single physical processor appear as two logical
processors with duplicated architecture state, but with shared
physical execution resources. This allows two threads from a

single application or two separate applications to execute in
parallel, increasing processor utilization and reducing the impact
of memory latency by overlapping the latency of one thread with
the execution of another

Hyper-Threading technology-enabled processors offer significant
performance improvements for applications with a high degree of
thread-level parallelism without sacrificing compatibility with the
existing software or single-threaded performance. These potential
performance gains are only obtained, however, if an application is
efficiently multithreaded. The Intel C++/Fortran compilers support
OpenMP∗ directive- and pragma-guided parallelization, which
significantly increase the domain of various applications amenable
to effective parallelism. A typical example is that users can use
OpenMP parallel sections to develop an application where
section-A calls an integer-intensive routine and where section-B
calls a floating-point intensive routine, so the performance
improvement is obtained by scheduling section-A and section-B
onto two different logical processors that share the same physical
processor to fully utilize processor resources with the Hyper-
Threading technology. The OpenMP directives or pragmas have
emerged as the de facto standard of expressing thread-level
parallelism in applications as they substantially simplify the
notoriously complex task of writing multithreaded applications.
The OpenMP 2.0 standard API [6, 9] supports a multi-platform,
shared-memory, parallel programming paradigm in C++/C and
Fortran95 on all popular operating systems such as Windows NT,
Linux, and Unix. This paper describes threaded code generation
techniques for exploiting parallelism explicitly expressed by
OpenMP pragmas/directives. To validate the effectiveness of our
threaded code generation and optimization techniques, we also
characterize and study two workloads of multimedia applications
parallelized with OpenMP pragmas and compiled with the Intel
OpenMP C++ compiler on Intel Hyper-Threading architecture.
Two multimedia workloads, including Support Vector Machine
(SVM) and Audio-Visual Speech Recognition (AVSR), are
optimized for the Intel Pentium 4 processor. One of our goals
is to better explain the performance gains that are possible in the
media applications through exploring the use of Hyper-Threading
technology with the Intel compiler.

The remainder of this paper is organized as follows. We first give
a high-level overview of Hyper-Threading technology. We then


Intel is a registered trademark of Intel Corporation or its subsidiaries in
the United States and other countries.

∗
Other brands and names may be claimed as the property of others.

Copyright 2003 IEEE. Published in the Proceedings of the International
Parallel and Distributed Processing Symposium IPDPS’2003, Nice
Acropolis Convention Center, Nice, France. April 22-26, 2003

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

present threaded code generation and optimization techniques
developed in the Intel C++ and Fortran product compilers for the
OpenMP pragma/directive guided parallelization, which includes
the Multi-Entry Threading (MET) technique, lifting read-only-
memory-references optimization for minimizing the data-sharing
overhead among threads, exploitation of nested parallelism, and
workqueuing model extension for exploiting irregular-parallelism.
Starting from Section 4, we characterize and study two workloads
of multimedia applications parallelized with OpenMP pragmas
and compiled with the Intel OpenMP C++ compiler on Hyper-
Threading technology enabled Intel architectures. Finally, we
show the performance results of two multimedia applications.

2. Hyper-Threading Technology
Hyper-Threading technology brings the concept of Simultaneous
Multi-Threading (SMT) to Intel Architecture. Hyper-Threading
technology makes a single physical processor appear as two
logical processors; the physical execution resources are shared
and the architecture state is duplicated for the two logical
processors [4]. From a software or architecture perspective, this
means operating systems and user programs can schedule threads
to logical CPUs as they would on multiple physical CPUs. From a
microarchitecture perspective, this means that instructions from
both logical processors will persist and execute simultaneously on
shared execution resources [4].

 A rch S ta te

P rocessor E x ecu tion
R esou rce

A rch S ta te

A rch S ta te A rch S ta te A rch S ta te A rch S ta te

P rocessor E x ecu tion
R esou rce

P ro cessor E x ecu tion
R eso u rce

P rocessor E x ecu tion
R esou rce

(a) T rad itio na l D u a l-C P U sys tem

Figure 1: Traditional DP system vs. HT-capable DP system

The optimal performance is provided by the Intel NetBurst™
microarchitecture while executing a single instruction stream. A
typical thread of code with a typical mix of instructions, however,
utilizes only about 50 percent of execution resources. By adding
the necessary logic and resources to the processor die in order to
schedule and control two threads of code, Hyper-Threading
technology makes these underutilized resources available to a
second thread, offering increased system and application
performance. Systems built with multiple Hyper-Threading
enabled processors further improve the multiprocessor system
performance, processing two threads for each processor.

Figure 1(a) shows a system with two physical processors that are
not Hyper-Threading technology-capable. Figure 1(b) shows a
system with two physical processors that are Hyper-Threading
technology-capable. In Figure 1(b), with a duplicated copy of the
architectural state on each physical processor, the system appears
to have four logical processors. Each logical processor contains a
complete set of the architecture state. The architecture state
consists of registers including the general-purpose register group,
the control registers, advanced programmable interrupt controller
(APIC) registers, and some machine state registers. From a
software perspective, once the architecture state is duplicated, the

processor appears to be two processors. The number of transistors
required to store the architecture state is a very small fraction of
the total. Logical processors share nearly all other resources on
the physical processor, such as caches, execution units, branch
predictors, control logic, and buses. Each logical processor has its
own interrupt controller or APIC. Interrupts sent to a specific
logical processor are handled only by that logical processor.

With the Hyper-Threading technology, the majority of execution
resources are shared by two architecture states (or two logical
processors). Rapid execution engine process instructions from
both threads simultaneously. The Fetch and Deliver engine and
Reorder and Retire block partition some of the resources to
alternate between the two intra-threads. In short, the Hyper-
Threading technology improves performance of multi-threaded
programs by increasing the processor utilization of the on-chip
resources available in the Intel NetBurst™ microarchitecture.

3. Parallelizing Compiler
The Intel compiler incorporates many well-known and advanced
optimization techniques [14] that are designed and extended to
fully leverage Intel processor features for higher performance. The
Intel compiler has a common intermediate representation (named
IL0) for C++/C and Fortran95 language, so that the OpenMP
directive- and pragma-guided parallelization and a majority of
optimization techniques are applicable through a single high-level
intermediate code generation and transformation, irrespective of
the source language. In this Section, we present several threaded
code generation and optimization techniques in the Intel compiler.

3.1 Threaded Code Generation Technique
We proposed and implemented a new compiler technology named
Multi-Entry Threading (MET) [3]. The rationale behind MET is
that the compiler does not create a separate compilation unit (or
routine) for a parallel region/loop. Instead, the compiler generates
a threaded entry (T-entry) and a threaded return (T-return) for a
given parallel region and loop. We introduced three new graph
nodes in the region-based graph, built on top of the control-flow
graph. A description of these graph nodes is given as follows:

• T-entry denotes the entry point of a threaded code region and
has a list of firstprivate, lastprivate, shared and reduction
variables for sharing data among the threads.

• T-ret denotes the exit point of a threaded code region and
guides the lower-level target machine code generator to
adjust stack offset properly and give the control to the caller
inside the multithreaded runtime library.

• T-region represents a threaded code region that is embedded
in the original user routine.

The main motivation of the MET compilation model is to keep all
newly generated multithreaded codes, which are captured by T-
entry, T-region and T-ret nodes, embedded inside the user-routine
without splitting them into independent subroutines. This method
is different from outlining [10, 13] technique, and it provides later
more optimization opportunities for higher performance. From the
compiler-engineering point of view, the MET technique greatly
reduces the complexity of generating separate routines in the Intel
compiler. In addition, the MET technique minimizes the impact of
OpenMP parallelizer on all well-known optimizations in the Intel
compiler such as constant propagation, vectorization [8], PRE
[12], scalar replacement, loop transformation, profile-feedback
guided optimization and interprocedural optimization.

(b) Hyper-Threading technology-capable Dual-CPU System

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

The code transformations and optimizations in the Intel compiler
can be classified into (i) code restructuring and interprocedural
optimizations (IPO); (ii) OpenMP directive-guided and automatic
parallelization and vectorization; (iii) high-level optimizations
(HLO) and scalar optimizations including memory optimizations
such as loop control and data transformations, partial redundancy
elimination (PRE), and partial dead store elimination (PDSE); and
(iv) low-level machine code generation and optimizations such as
register allocation and instruction scheduling. In Figure 2, we
show a sample program using the parallel sections pragma.

Figure 2. An Example with Parallel Sections

Figure 3. Pesudo-Code After Parallelization

Essentially, the multithreaded code generator inserts the thread
invocation call __kmpc_fork_call(…) with T-entry node and data
environment (source line information loc, thread number tid, etc.)
for each parallel loop, parallel sections or parallel region, and
transforms a serial loop, sections, or region to a multithreaded
loop, sections, or region, respectively. In this example, the pre-
pass first converts parallel sections to a parallel loop. Then, the
multithreaded code generator localizes loop lower-bound and
upper-bound, privatizes the section id variable for the T-region
marked with [T_entry, T-ret] nodes. For the parallel sections in
the routine “parfoo”, the multithreaded code generation involves
(a) generating a runtime dispatch and initialization routine
(__kmpc_dispatch_init) call to pass necessary information to the
runtime system; (b) generating an enclosing loop to dispatch loop-
chunk at runtime through the __kmpc_dispatch_next routine in
the library; (c) localizing the loop lower-bound, upper-bound, and
privatizing the loop control variable ‘id’ as shown in Figure 3.
Given that the granularity of the sections could be dramatically
different, the static or static-even scheduling type may not achieve
a good load balance. We decided to use the runtime scheduling

type for a parallel loop generated by the pre-pass of multithreaded
code generation. Therefore, the decision regarding scheduling
type is deferred until run-time, and an optimal balanced workload
can be achieved based on the setting of the environment variable
OMP_SCHEDULE supported in the OpenMP library at run-time.

In order to generate efficient threaded-code that gains a speed-up
over optimized uniprocessor code, an effective optimization phase
ordering had been designed in the Intel compiler to make sure that
optimizations, such as, IPO inlining, code restructuring, Igoto
optimizations, and constant propagation, which can be effectively
enabled before parallelization, preserve legal OpenMP program
semantics and necessary information for parallelization. It also
ensures that all optimizations after the OpenMP parallelization,
such as auto-vectorization, loop transformation, PRE, and PDSE,
can effectively kick in to achieve a good cache locality and to
minimize the number of redundant computations and references to
memory. For example, given a double-nested OpenMP parallel
loop, the parallelizer is able to generate multithreaded code for the
outer loop, while maintaining the symbol table information, loop
structure, and memory reference behavior for the innermost loop.
This enables the subsequent auto-vectorization for the innermost
loop to fully leverage the SIMD Streaming Extension (SSE and
SSE2) features of Intel processors [3, 8]. There are many efficient
threaded-code generation techniques that have been developed for
OpenMP parallelization in the Intel compiler. The following sub-
sections describe some such techniques.

3.2 Lifting Read-Only Memory References
In this Section, we present an optimization LRMR that lifts read-
only memory de-references from inside of a loop to outside the
loop. The basic idea is that we pre-load a memory de-reference to
a register temporary right after T-entry, if the memory reference is
read-only. See the OpenMP Fortran code example in Figure 4.

Figure 4. Example of Lifting Read-Only Memory References

The benefit of this optimization is that it reduces the overhead of a
memory de-referencing, since the value is preserved in a register
temporary for the read operation. In addition, another benefit is
that it enables more advanced optimizations such if the memory
de-references in array subscript expressions are lifted outside the
loop. In Figure 4, for example, the address computation of array
involves the memory de-references of the member lower and
extent of the dope-vector, the compiler lifts the memory de-
references of lower and stride outside the m-loop by analyzing
and identifying the read-only memory references inside a parallel

R-entry void parfoo()
{ … …
 __kmpc_fork_call(loc, 4, T-entry(__parfoo_psection_0), &w, z, x, &y)
 goto L1:
 T-entry void __parfoo_psection_0(loc, tid, *w, z[], *y, x[]) {
 lower = 0; upper = 1; stride = 1;
 __kmpc_dispatch_init(…, tid, lower, upper, stride, ...);
 L33:
 t3 = __kmpc_dispatch_next(..,, tid, &lower, &upper, &stride)
 if ((t3 & upper>=lower) != 0(SI32)) {
 pid = lower;
 L17: if (pid == 0) {
 *w = floatpoint_foo(z, 3000);
 } else if (pid == 1) {
 *y = myinteger_goo(x, 5000);
 }
 pid = pid +1;
 __kmpc_dispatch_fini(…);
 if (upper >= pid) goto L17
 goto L33
 }
 T-return;
 }
L1: R-return;
}

void parfoo()
{ int m, y, x[5000]; float w, z[3000];
#pragma omp parallel sections shared(w, z, y, x)
 { w = floatpoint_foo(z, 3000);
 #pragma omp section
 y = myinteger_goo(x, 5000) ;
 }
}

real allocatable:: x(:,:)
… …
!$omp parallel do shared(x), private(m,n)
do m=1, 100 !! Front-End creates a dope-vector for allocatable
 do n=1, 100 !! array x
 x(m, n) = … Î dv_baseaddr[m][n] = …
 end do
end do
… …
T-entry(dv_ptr …) !! Threaded region after multithreaded code generation
 … …
 t1 = (P32 *)dv_ptr->lower !! dv_ptr is a pointer that points
 t2 = (P32 *)dv_ptr->extent !! dope-vector of array x
 do prv_m=lower, upper
 do prv_n =1, 100 !! EXPR_lower(x(m,n)) = t1
 (P32 *)dv_ptr[prv_m][prv_ n] = … !! EXPR_stride(x(m,n)) = t2
 end do
 end do
T-return

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

region, sections or do loop. This optimization enables a number
of optimizations such as software pipelining, loop unroll-and-jam,
loop tiling, and vectorization, which results a good performance
improvement in real large applications.

3.3 Static and Dynamic Nested Parallelism
Both static and dynamic nested parallelisms are supported by the
OpenMP standard. However, most existing OpenMP compilers do
not fully support nested parallelism, since the OpenMP-compliant
implementation is allowed to serialize the nested inner regions,
even when the nested parallelism is enabled by the environment
variable OMP_NESTED or routine omp_set_nested(). For example,
SGI compiler supports nested parallelism only if the loops are
perfectly nested. PGI compiler does serialize the inner parallel
regions. Given that broad classes of applications, such as imaging
processing and audio/video encoding and decoding algorithms,
have shown performance gains by exploiting nested parallelisms.
We provided the compiler and runtime library support to exploit
static and dynamic nested parallelism. Figure 5(a) shows a sample
code with nested parallel regions, and Figure 5(b) does show the
pseudo-threaded-code generated by the Intel compiler.

Figure 5. An Example of Nested Parallel Regions

As shown in Figure 5(b), there are two threaded regions, or T-
regions, created within the original function nestedpar(). T-entry
__nestedpar_par_region0() corresponds to the semantics of the
outer parallel region, and the T-entry __nestedpar_par_region1()
corresponds to the semantics of the inner parallel region. For the
inner parallel region in the routine nestedpar, the variable id is a
shared stack variable for the inner parallel region. Therefore, it is
accessed and shared by all threads through the T-entry argument
id_p. Note that the variable id is a private variable for the outer
parallel region, since it is a local defined stack variable.

As we see in Figure 5(b), there are no extra arguments on the T-
entry for sharing local static array ‘a’, and there is no pointer de-
referencing inside the T-region for sharing the local static array
’a’ among all threads in the teams of both the outer and inner
parallel regions. This uses the optimization technique presented

in [3] for sharing local static data among threads; it is an efficient
way to avoid the overhead of argument passing across T-entries.

3.4 Exploiting Irregular Parallelism
Irregular parallelism inherent in many applications is hard to be
exploited efficiently. The workqueuing model [1] provides a
simple approach for allowing users to exploit irregular parallelism
effectively. This model allows a programmer to parallelize control
structures that are beyond the scope of those supported by the
OpenMP model, while still fitting into the framework defined by
the OpenMP specification. In particular, the workqueuing model
is a flexible programming model for specifying units of work that
are not pre-computed at the start of the worksharing construct. See
a simple example in Figure 6.

Figure 6. A While-Loop with Workqueuing Pragmas

The parallel taskq pragma specifies an environment for the ‘while
loop’ in which to enqueue the units of work specified by the
enclosed task pragma. Thus, the loop’s control structure and the
enqueuing are executed by single thread, while the other threads
in the team participate in dequeuing the work from the taskq
queue and executing it. The captureprivate clause ensures that a
private copy of the link pointer p is captured at the time each task
is being enqueued, hence preserving the sequential semantics. The
workqueuing execution model is shown in Figure 7.

Essentially, given a program with workqueuing constructs, a team
of threads is created, when a parallel region is encountered. With
the workqueuing execution model, from among all threads that
encounter a taskq pragma, one thread (TK) is chosen to execute it
initially. All the other threads (Tm, where m=1, …, N and m≠K)
wait for work to be enqueued on the work queue. Conceptually,
the taskq pragma causes an empty queue to be created by the
chosen thread TK, enqueues each task it encounters, and then the
code inside the taskq block is executed single-threaded by the TK.
The task pragma specifies a unit of work, potentially executed by
a different thread. When a task pragma is encountered lexically
within a taskq block, the code inside the task block is enqueued
on the queue associated with the taskq. The conceptual queue is
disbanded when all work enqueued on it finishes, and when the
end of the taskq block is reached.

The Intel C++ OpenMP compiler has been extended throughout
its various components to support the workqueuing model for
generating multithreaded codes corresponding to the workqueuing
constructs as the Intel OpenMP extension. More code generation
details for the workqueuing constructs are presented in the paper
[1]. In the next Section, we describe the multimedia application
SVM and AVSR modified with OpenMP pragmas for evaluating
our multithreaded code generation and optimizations developed in
the Intel compiler together with the Intel OpenMP runtime library.

(a) A Nested Parallel Region Example
void nestedpar()
{ static double a[1000]; int id;
#pragma omp parallel private(id)
 { id = omp_get_thread_num();
#pragma omp parallel
 do_work(a, id, id*100);
 }
}
(b) Pseudo Multithreaded Code Generated by Parallelizer
entry extern void _nestedpar()
{
 ___kmpc_fork_call(___nestedpar_par_region0)(P32));
 goto L30
 T-entry void __nestedpar_par_region0()
 { t0 = _omp_get_thread_num();
 prv_id = t0;
 ___kmpc_fork_call(__nestedpar_par_region1)(P32), &prv_id)
 goto L20;
 T-entry void __nestedpar_par_region1(id_p)
 { t1 = _do_work(&a, *id_p, *id_p * 100)
 T-return
 }
 L20: T-return
 }
 L30:
 return
}

void wq_foot(LIST *p)
{
#pragma intel omp parallel taskq shared(p)
 { while (p!= NUL:L) {
 #pragma intel omp task captureprivate(p)
 { wq_work1(p, 10); }
 #pragma intel omp task captureprivate(p)
 { wq_work2(p, 20); }
 p= p->next;
 }
 }
}

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

T1 T2 … TK … TN

Enqueue task

Schedule task (work unit)

Enqueue taskq

Done

TK

Tm (m=1…N, and m ≠ K) Work queue

Dequeue task (work unit)
Work queue empty

Thread pool

Figure 7. Workqueuing Execution Model

4. Multimedia Workloads
Due to the inherently sequential constitution of the algorithms of
multimedia applications, most of the modules in these optimized
applications cannot fully utilize all the execution units available in
the off-the-shelf microprocessors. Some modules are memory-
bounded, while some are computation-bounded. In this Section,
we describe the selected multimedia workloads and discuss our
approach of parallelizing the workloads with OpenMP.

4.1 Workload Description
4.1.1 Support Vector Machines
The first workload in our study is support vector machine (SVM)
classification algorithm that is a well-known machine-learning
algorithm [11]. Machine learning plays a key role in automatic
content analysis of multimedia data. A common task is to predict
the output y for an unseen input sample x given a training set

},...,1{)},{(Niii yx ∈ consisting of input xi∈RK and its desired

output iy ∈{-1, +1}. The process of evaluating trained SVMs is

like the following:












+










Φ= ∑

=

byF
N

i
iii

1

),(sign)(xxx α

where),(ixxΦ often is either linear j
T
iji

L xxxx =Φ),(or

radial basis function)/exp(),(22
σjiji

RBF xxxx −−=Φ .

4.1.2 Audio-visual Speech Recognition
The second workload that we investigate is audio-visual speech
recognition (AVSR). There are many applications using
automatic speech recognition systems, from human computer
interfaces to robotics. While computers are getting faster, speech
recognition systems are not robust without special constraints.
Often, robust speech recognition requires special conditions, such
as, smaller vocabulary, or very clean signal of the voice.

In recent years, several speech recognition systems that use visual
together with audio information showed significant increase in
performance over the standard speech recognition systems. Figure
8 shows a flowchart of the AVSR process. The use of visual
feature in AVSR is motivated by the bimodality of the speech
formation and the ability of humans to better distinguish spoken
sounds when both audio and video are available. Additionally, the
visual information provides the system with complementary

features that cannot be corrupted by the acoustic noise of the
environment. In our performance study, the system developed by
Liang et al. [2] is used.

Audio, Video
input

Audio, Video Audio, Video
inputinput

Audio
Processing

Audio Audio
ProcessingProcessing

Video
Processing

Video Video
ProcessingProcessing

AVSR
Processing

AVSRAVSR
ProcessingProcessing

Recognition
Results

RecognitionRecognition
ResultsResults

Audio, Video
input

Audio, Video Audio, Video
inputinput

Audio
Processing

Audio Audio
ProcessingProcessing

Video
Processing

Video Video
ProcessingProcessing

AVSR
Processing

AVSRAVSR
ProcessingProcessing

Recognition
Results

RecognitionRecognition
ResultsResults

Figure 8. Process of Audio-Visual Speech Recognition

4.2 Data-Domain Decomposition
A way of exploiting parallelism of multimedia workloads is to
decompose the work into threads in data-domain. As described in
Section 4.1.1, the evaluation of trained SVMs is well-structured
and can, thus, be multithreaded at multiple levels. On the lowest
level, the dimensionality K of the input data can be very large.
Typical values of K range between a few hundreds to several
thousands. Thus, the vector multiplication in the linear,
polynomial, and sigmoid kernels as well as the L

2
 distance in the

radial basis function kernel can be multithreaded. On the next
level, the evaluation of each expression in the sum is independent
of each other. Finally, in an application several samples are tested
and each evaluation can be done in parallel. In Figure 9, we show
the parallelized SVM by simply adding a parallel for pragma. The
programmer intervention for parallelizing the SVM is minor. The
compiler generates the multithreaded code automatically.

const int NUM_SUPP_VEC = 1000; // Number of support vectors
const int NUM_VEC_DIM = 24*24; // Feature vector size; 24x24 pixel window
// 1D signal scanned by sliding window for faces of size 24x24 pixels
const int SIGNAL_SIZE = 320*240;
const int NUM_SAMPLES = SIGNAL_SIZE-NUM_VEC_DIM+1;
Ipp32f supportVector[NUM_SUPP_VEC][NUM_VEC_DIM];
Ipp32f coeffs [NUM_SUPP_VEC];
Ipp32f samples[SIGNAL_SIZE]; // input signal array
Ipp32f result [NUM_SAMPLES]; // stores classification result
float linear_kernel(const Ipp32f* pSrc1, int len, int index) / / Linear Kernel
{ Ipp32f tmp_result;
 ippsDotProd_32f(pSrc1, supportVector[index], len, &tmp_result);
 return tmp_result * coeffs[index];
}

void main()
{ int blockSize = ...;
 for (int jj=0 ; jj<NUM_SAMPLES; jj+=blockSize) {
 for (int i=0 ; i<NUM_SUPP_VEC; i+=1) {
 int loopEnd_j = std::_MIN(NUM_SAMPLES, jj+blockSize);
 #pragma omp parallel for default(shared)
 for (int j=jj ; j<loopEnd_j ; j++) {
 result[j] += linear_kernel(&samples[j], NUM_VEC_DIM, i);
 }
 }
 }
}

Figure 9. Exploiting Data-Parallelism of the SVM

4.3 Functional Decomposition
The functional decomposition is another way to multithread an
application for exploiting task-parallelism. The AVSR application
has clearly four different functional components. These are audio
processing, video processing, audio-video processing, and others.
Therefore, a natural scheme of parallelizing the AVSR is to map a
functional component to an OpenMP worksharing section [6], as
shown in Figure 10.

Streams of audio and video data can be broken into pieces and be
processed in pipeline. In our multithreaded application, while the

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

audio processing and the video processing are working on the
current piece of the data, the AVSR processing is working on the
previous piece of the data as well. We did parallelize not only the
parallel tasks, but also the pipeline tasks.

Same as exploiting data-parallelism in the SVM application, the
programmer intervention for parallelizing the AVSR is also pretty
small. A few OpenMP pragmas are simply added to the original
source code. The compiler performs the threaded code generation
presented in Section 3 together with the OpenMP library support
to execute the AVSR application in parallel.

#pragma omp parallel sections default(shared)
{ #pragma omp section
 { DispatchThreadProc(&AVSRThData); } // data input and dispatch
 #pragma omp section
 { AudioThreadProc(&AudioThData); } // process audio data
 #pragma omp section
 { VideoThreadProc(&VideoThData); } // process video data
 #pragma omp section
 { AVSRThreadProc(&AVSRThData); } // do avsr
}

Figure 10. Exploiting Task-Parallelism of the AVSR

4.4 Exploiting Dynamic Nested Parallelism
In addition to functional-decomposition of the AVSR application,
we exploit the nested data-parallelism in the dynamic extent of the
video processing section (or thread). The major motivation of
further partitioning this thread into multiple threads is to achieve
better load balance. The execution time breakdown of the AVSR
workload is shown in Figure 11 in which the video processing
takes around half of the time. To exploit task-level parallelism of
the application on a single processor with Hyper-Threading
technology or a dual-processor system without Hyper-Threading
technology, the workload can be balanced well by having the
video processing thread on one processor and having the rest on
the other processor. However, on a dual-processor system with
Hyper-Threading technology, pure functional decomposition
cannot have balanced loads. This is because video processing
takes ~50% of the total execution time. We further make dot-
product of matrices/vectors and Fourier transform into multiple
threads, as shown in Figure 12. Thus, as shown in Figure 13, we
have totally three threading schemes in our experiment to evaluate
the exploitation of static nested parallelism supported by the Intel
compiler and OpenMP runtime library.

Video
processing

52.1%
AV

processing
36.6%

Audio
processing

2.5%

Ohters
8.8%

Figure 11. Execution time breakdown of the AVSR workload
Figure 13 shows the application AVSR parallelized with OpenMP
pragmas to exploit task and data parallelisms, where, A stands for
audio processing, V stands for video processing, AV stands for
audio-video processing, and O stands for other miscellaneous

processing. Figure 13(a) shows the multi-threading model when
we only have four threads via functional decomposition. Figure
13(b) and (c) show the nested parallelism when video processing
is further threaded into 2 or 4 threads. The bottom nodes denote
the additional threads created for executing the parallel for loop
within the dynamic extent of the parallel sections.

// In the parent function, the dot-product kernel is called in a parallel sections
omp_set_nested(1);
:
call dot-product of matrix and vector kernel
:
// In the dot-product of matrix and vector
float **matrix; // input matrix
float *vector, // input vector
 *result; // result vector
int rows, columns;
// In this example the number of rows is 480, so we set chunk size to 120
// and use static scheduling for each thread
#pragma omp parallel for num_threads(4) schedule(static, 120)
for (int i=0; i<rows; i++)
{
 ippmDotProduct_vv_32f(matrix[i], vector, &(result[i]), columns);
}

Figure 12. Exploiting Nested Parallelism of the AVSR

A V AV OA V AV O

(a) (b) (c)

Figure 13: Task- and Data-Parallelism of the AVSR Workload

5. Performance
We conducted our performance evaluation with two multimedia
applications to examine the performance of multithreaded codes
generated by the Intel compiler. The generated codes are highly
optimized with architecture-specific, advanced scalar and array
optimizations assisted with aggressive memory disambiguation.
Our results show that Hyper-Threading technology and the Intel
compiler offer a cost-effective performance gain (10%~28%) for
our applications on a single processor (SP+HT), and offer up to
2.23x speedup on a dual-processor system with Hyper-Threading
technology-enabled (DP+HT). The performance measurement of
two multimedia applications SVM and AVSR is carried out on a
dual–processor HT-enabled Intel Xeon™ system running at
2.0GHz, with 1024MB memory, an 8K L1-Cache, a 512K L2-
Cache, and no L3-Cache. When we measure single-processor
performance on a Dual-Processor (DP) system, we disable one
physical processor from the BIOS. We disable the support of
Hyper-Threading technology from the BIOS in order to measure
the performance of our applications on the processor without
using Hyper-Threading technology. To use the serial execution
time as a base on the system experimentally in our lab setting, we
disable one physical processor and Hyper-Threading technology,
and run the highly optimized serial codes of applications.

Essentially, the performance scaling is derived from the serial
execution (SP) with Hyper-Threading technology disabled and
one physical processor disabled on our system. The multithreaded
execution is done with three system configurations: (1) SP+HT
(Single-Processor with HT-enabled), (2) DP (Dual Processor with
HT-disabled), (3) DP+HT (Dual-Processor with HT-enabled). In
Figure 14, we show the normalized speedup of our multithreaded
execution of the SVMs (2 kernels). The workloads achieved very

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

good performance gain using the Intel OpenMP C++ compiler for
data-domain decomposition. For instance, from a single processor
with HT-disabled to the single processor with HT-enabled, we
achieve speedups ranging from 1.10x to 1.13x with 2-thread run.
The speedup ranges from 1.92x to 1.97x for 2-thread run with DP
configuration. The speedup ranges from 2.13 to 2.23x for 4-thread
run with DP+HT configuration. This indicates that we utilize the
microprocessor more efficiently.

Figure 15 shows the speedup of the OpenMP version of the
AVSR with different amount of nested parallelism under different
system configuration. Again, by changing from a single processor
Hyper-Threading technology disabled to the single processor with
Hyper-Threading technology-enabled, a speedup ranging from
1.18 to 1.28x is achieved with 2 threads under the SP+HT
configuration. The speedup is 1.61x for 4 outer threads, 2.03x for
4 outer, 2 inner threads, and 1.95x for 4 outer, 4 inner threads
with the DP configuration. The speedup is 1.57x for 4 outer
threads, 1.99x for 4 outer, 2 inner threads, and 1.85x for 4 outer, 4
inner threads with DP+HT configuration. Clearly, we achieved
~2x speedup from a single-CPU system to a dual-CPU system.

One observation we have from Figure 15 is that the best speedup
of AVSR workload with DP+HT configuration is 1.97% lower
than the best speedup of the AVSR with the DP configuration. It
attributes to one cause, that is, only three logical processors are
effectively used when the A (2.5%) and O (8.8%) are completed
for 4-outer-2-inner-thread execution. This means that the benefit
from one physical processor with HT-enabled, which is evidenced
with the performance gain under SP+HT configuration, is not
enough to counteract the penalty of one idle logical processor
caused by the unbalanced load. Our observation applies to the 4-
outer-4-inter-thread execution scheme as well. The challenge here
is how to exploit parallelism in AV (36.6%), which is one of our
future research topics beyond the scope of this paper.

Another observation we have from Figure 15 is that the speedup
from the 4 outer and 2 inner threads is better than the speedup
from the 4 outer and 4 inner threads under both DP and DP+HT
configurations. This is simply due to the less threading overheads
are introduced with a smaller number of threads. Later, we discuss
more about controlling parallelism and controlling spin-waiting
for getting a good trade-off between benefits and costs. In any
case, we have achieved ~2x speedup under both DP and DP+HT
configurations.

Functional decomposition may not deliver the best performance
due to unbalanced load of all tasks among all processors in the
system. Given the inherent variation of granularity for each task
(or module), it is hardly to achieve the best potential performance
without exploiting another level of parallelism. Essentially, for
media workloads, we can exploit data-parallelism to overcome the
issue of exploiting task-parallelism. As we show in Figure 15, by
exploiting the inner parallelism with data-domain decomposition,
we achieve much better speedups -- the performance gain is
around 40% with the 4 outer and 2 inner threads comparing to 4
outer threads (exploiting task-parallelism only). Thus, exploiting
nested-parallelism is necessary to achieve better load balance and
speedup. (Note: the inner-parallelism does not have to be data-
parallelism always; it can be task-parallelism as well.) On the
other hand, Figure 15 also shows that excessive threads introduce
more extra threading overhead, the performance improvement
with 4 inner threads is not better than that with 2 inner threads.
Therefore, effectively controlling parallelism is still an important
aspect to achieve the desired performance on a HT-enabled Intel
Xeon processor system, even though the potential parallelism
could improve the processor utilization. With Intel compiler and
runtime, users are allowed to control how much time each thread
should spend spinning at run-time. An environment variable
KMP_BLOCKTIME is supported in the library. Also, the spinning
time can be adjusted by using the kmp_set_blocktime() API call at

1.
10

1.
92 2.

13

1.
13

1.
97

2.
23

0.00

0.50

1.00

1.50

2.00

2.50

SP+HT DP DP+HT

S
p

ee
d

-u
p

SVM (linear) SVM (radial basis function)

Figure 14. Speedup of Multithreaded SVMs

1.
1

8

1.
61

1.
57

1.
28

2.
03

1.
99

1
.2

2

1
.9

5

1.
85

-

0.50

1.00

1.50

2.00

2.50

SP+HT DP DP+HT

S
p

ee
d

-u
p

Functional Decomposition Only With nested parallelism (2)

With nested parallelism (4)

Figure 15. Speedup of the Multithreaded AVSR

Table 1: The workload characteristics of two multimedia applications on a SP or DP system with Hyper-Threading technology
disabled , and a SP and DP system with Hyper-Threading technology enabled (SP+HT, DP+HT).

SVM AVSR
Linear Radial Basis Function

SP SP+HT DP DP+HT SP SP+HT DP DP+HT

SP SP+HT
(with 2-inner

threads)
Clockticks (millions) 4,093 3,824 2,239 2,139 6,995 6,274 3,684 3,374 36,633 27,998
Instructions retired (millions) 3,152 3,174 3,202 3,594 4,337 4,392 4,384 4,487 19,415 19,599
IPC (Instructions Per Cycle) 0.77 0.83 1.43 1.68 0.62 0.7 1.19 1.33 0.53 0.70
UPC (Uops Per Cycle) 1.31 1.42 2.44 2.64 1.08 1.22 2.07 2.33 0.84 1.13
FP/MMX/SSE/SSE-2 (millions) 1,775 1,776 1,776 1,776 2,883 2,883 2,883 2,884 7,273 7,063
First-level cache load miss rate 2.7% 2.9% 3.0% 3.7% 3.0% 3.9% 3.2% 4.3% 11.0% 14.0%
2nd-level cache load miss rate 2.3% 4.1% 4.5% 5.3% 2.0% 3.1% 3.4% 3.8% 50.0% 26.6%

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

runtime. On a HT-enabled processor more than one thread can be
executing on the same physical processor at the same time. This
indicates that both threads have to share that processor’s
resources. It makes spin-waiting extremely expensive since the
thread that is just waiting is now taking valuable processor
resources away from the other thread that is doing useful work.
Thus, when exploring the use of Hyper-Threading technology, the
block-time should be very short so that the waiting thread sleeps
as soon as possible allowing still useful threads to more fully
utilize all processor resources. In our previous work, we use
Win32 Threading Library calls to parallelize our multimedia
workloads [5]. While we can achieve good performance, multi-
threading them takes a huge amount of effort. With the Intel
OpenMP compiler and OpenMP runtime library support, we
demonstrated same or better performance with much less effort. In
other words, the programmer intervention for parallelizing our
multimedia applications is pretty minor.

Furthermore, we characterize the multimedia workloads by using
Intel VTune Performance Analyzer under SP, SP+HT, DP, and
DP+HT configurations to examine the HT benefits and costs
instead of presenting speedup only. As shown in Table 1,
although the numbers of instructions retired and cache miss rates
(e.g., 2.7% vs 2.9% first-level cache miss rates for the linear
SVM) are increased for both applications after threading due to
execution resource sharing, cache and memory sharing, and
contention, the overall application performance still increases.
More specifically, the IPC is improved from 0.77 to 0.83 (8%) for
SVM (linear) on SP, 17% for SVM (linear) on DP, 13% for SVM
(RBF) on SP, 12% for SVM (RBF) on DP, and 30% for AVSR
on SP. These results indicate the processor resource utilization is
greatly improved for our multimedia applications with the Hyper-
Threading technology.

6. Conclusions
In this paper, we presented a set of implemented compilation
techniques that are unique to the Intel high-performance compiler
for OpenMP pragma-guided and directive-guided parallelization.
Two multimedia applications are studied to demonstrate and
evident that the multithreaded codes generated and optimized by
the Intel compiler are very efficient, together with the support of
the well-tuned Intel OpenMP runtime library. The performance
improvements achieved on three SP+HT, DP and DP+HT system
configurations are very impressive for the multimedia applications
(SVM and AVSR) studied in this paper. The performance results
and workload characteristics of SVM and AVSR demonstrated
and evidenced our three main observations: (a) the multithreaded
code generated by the Intel compiler yields a good performance
gain with the parallelization guided by the OpenMP pragmas; (b)
the exploited thread-level parallelism (TLP) causes inter-thread
interference in caches, and places greater demands on the memory
system. However, the Hyper-Threading technology hides the
additional latency, so that there is only a very small impact on the
whole program performance, and the overall performance gain
makes this little impact not visible on Hyper-Threading enabled
Intel platforms; (c) Hyper-Threading technology is effective on
exploiting both task- and data-parallelism through functional and
data decomposition in multimedia applications.

Acknowledgments
The authors thank all members of the Intel compiler team for their
great work in developing the Intel high-performance compiler. In
particular, we thank A. Bik, P. Grey, E. Su, H. Saito, D. Schouten
for their contribution in PAROPT projects, M. Domeika and D.
King for the C++ FE support, B. Shankar and M. L. Ross for the
Fortran FE support, K. J. Kirkegaard for IPO support, and Z.
Ansari for PCG support. Special thanks go to P. Petersen, G.
Habb and the library team at KSL for developing the OpenMP
library. We would like to thank L. Liang, X. Liu, X. Pi, A. Nefan,
and P. Liou for the development of speech recognition workloads.

References
[1] E. Su, X. Tian, M. Girkar, G. Haab, S. Shah, and P. Petersen,

“Compiler Support for Workqueuing Execution Model for Intel
SMP Architectures”, in Proc. of European Workshop on OpenMP
(EWOMP), Sep. 2002.

[2] L. Liang, X. Liu, M. Zhao, X. Pi, and A. V. Nefian, “Speaker
Independent Audio-Visual Continuous Speech Recognition,” in
Proc. of Int’l Conf. on Multimedia and Expo, vol. 2, pp. 25-28, Aug.
2002.

[3] X. Tian, A. Bik, M. Girkar, P. Grey, H. Saito, and E. Su, “Intel
OpenMP C++/Fortran Compiler for Hyper-Threading Technology:
Implementation and Performance”, Intel Technology Journal, Q1,
2002. (http://www.intel.com/technology/itj)

[4] D. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A. Miller,
and M. Upton, “Hyper-Threading Technology Microarchitecture
and Architecture,” Intel Technology Journal, Vol. 6, Q1, 2002.

[5] Y.-K. Chen, M. Holliman, E. Debes, S. Zheltov, A. Knyazev, S.
Bratanov, R. Belenov, and I. Santos, “Media Applications on Hyper-
Threading technology,” Intel Technology Journal, Q1 2002.

[6] OpenMP Architecture Review Board, “OpenMP C++ Application
Program Interface,” V2.0, Mar. 2002. (http://www.openmp.org)

[7] D. M. Tullsen and J. A. Brown, "Handling Long-Latency Loads in a
Simultaneous Multithreading Processor," in Proc. of Micro-34, Dec.
2001.

[8] A. Bik, M. Girkar, P. Grey, and X. Tian, “Automatic Intra-Register
Vectorization for the Intel® Architecture,” Inter’l Journal of
Parallel Programming, vol. 30, no. 2, Apr. 2002.

[9] OpenMP Architecture Review Board, “OpenMP Fortran Application
Program Interface,” V2.0, Nov. 2000. (http://www.openmp.org)

[10] C. Brunschen and M. Brorsson, “OdinMP/CCp–A Portable
Implementation of OpenMP for C,” in Proc. of European Workshop
on OpenMP (EWOMP), Sep. 1999.

[11] C. Burges, “A Tutorial on Support Vector Machines for Pattern
Recognition”, Data Mining and Knowledge Discovery, vol. 2, no. 2,
pp. 121-167, Jun. 1998.

[12] F. Chow, S. Chan, R. Kennedy, S. Liu, R. Lo, and P. Tu, "A new
algorithm for partial redundancy elimination based on SSA form," in
Proc. of ACM Conf. on Programming Language Design and
Implementation (SIGPLAN), pp. 273-286, Jun. 1997.

[13] J.-H. Chow, L. E. Lyon, and V. Sarkar, “Automatic Parallelization
for Symmetric Shared-Memory Multiprocessors, in Proc. of
CASCON, pp. 76-89, Nov. 1996.

[14] M. J. Wolfe, High Performance Compilers for Parallel Computers,
Addison-Wesley Publishing Company, Redwood City, CA, 1996.

[15] D. M. Tullsen, S. J. Eggers, and H. M. Levy, "Simultaneous
Multithreading: Maximizing On-Chip Parallelism", In Proc. of Int’l
Symp. on Computer Architecture, pp. 392-403, Jun. 1995.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

