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Abstract − In this paper we evaluate  the usability and 
performance of Open Computing Language (OpenCL) 
targeted for implementation of the Finite-Difference Time-
Domain (FDTD) method. The simulation speed was compared 
to implementations based on alternative techniques of parallel 
processor programming. Moreover, the portability of OpenCL 
FDTD code between modern computing architectures was 
assessed. The average speed of OpenCL FDTD simulations on 
a GPU was about 1.1 times lower than a comparable CUDA 
based solver for domains with sizes varying from 503 to 4003 
cells. Although OpenCL code dedicated to GPUs can be 
executed on multi-core CPUs, a direct porting does not 
provide satisfactory performance due to an application of 
architecture specific features in GPU code. Therefore, the 
OpenCL kernels of the developed FDTD code were optimized 
for multi-core CPUs. However, this improved OpenCL FDTD 
code was still about 1.5 to 2.5 times slower than the FDTD 
solver developed in the OpenMP parallel programming 
standard. The study concludes that, despite current 
performance drawbacks, the future potential of OpenCL is 
significant due to its flexibility and portability to various 
architectures. 

1 INTRODUCTION 

A broad range of computational electromagnetics 
problems can be solved using the Finite-Difference 
Time-Domain (FDTD) method [1]. Time evolution of 
the electromagnetic field is calculated in this method 
using central-difference approximations of the partial 
derivatives in the Maxwell's curl equations. Due to 
the possibility of a wideband frequency response 
calculation with a single simulation run, 
straightforward implementation of arbitrarily shaped 
structures consisting of dispersive and non-linear 
materials and easy parallelization, the method has 
been successfully applied in microwave and antenna 
engineering, bio-electromagnetics, electromagnetic 
compatibility and photonics [1]. 

Recently, Graphics Processor Units (GPUs) became 
a source of a cheap computational power for the 
acceleration of FDTD codes [2], [3]. Moreover, the 
introduction of the Compute Unified Device 
Architecture (CUDA) parallel programming model 
and GPUs with enhanced computational power by 
Nvidia [4] delivered resources enabling high 
performance computing on desktop workstations. 
However, existing GPU accelerated FDTD codes do 
not fully deploy the computational power of the 

multi-core central processing unit (CPU), which is 
always present in any computer. Also, GPU codes 
have not normally been portable between hardware 
devices manufactured by different vendors. In 
general, due to scaling of the processor parallelism 
according to Moore’s law, it is a real challenge to 
develop scientific codes that are not only portable 
between the very specific hardware architectures (e.g. 
CPUs and GPUs) available on the market, but will 
also transparently scale their parallelism in the future. 
Open Computing Language (OpenCL) [5] seems to 
be a remedy for overcoming these challenges as it 
maintains portability between hardware architectures 
and efficiency of the low-level programming 
interface. OpenCL is a framework for parallel 
programming of heterogeneous platforms consisting 
of multi-core CPUs, GPUs, and other modern 
processors, e.g., the Cell Broadband Engine. This 
standard opens the way to build heterogeneous 
computing systems which may simultaneously 
deploy the computational horsepower of multi-core 
CPUs and GPUs. Such mixed solutions may allow 
different types of processing units to be used for the 
tasks best suited to them. OpenCL unifies the process 
of code development for heterogeneous computing 
systems using one programming environment 
(compiler) to target substantially different processing 
elements.  

This paper presents results of the OpenCL FDTD 
code evaluation. In this contribution we only focused 
on portability and efficiency tests performed on 
multi-core CPU machine supported by a single GPU. 
In Section 2, implementation of the FDTD method in 
OpenCL is introduced. Evaluation of the FDTD code 
performance is presented in Section 3, with 
characteristics of the simulation throughput as a 
function of the domain size in Section 3.1 and 
application examples benchmarking code 
implementation in Section 3.2.  

2 FDTD IMPLEMENTATION IN OPENCL 

The flowchart of the FDTD method is shown in 
Fig. 1.  
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Figure 1: Flowchart of the FDTD method. 

Each step of the electromagnetic field update 
consists of (i) H-field components update, (ii) 
application of boundary conditions to the H-field, 
(iii) E-field components update, and (iv) application 
of boundary conditions to the E-field. The FDTD 
update equations [1] are omitted here for the sake of 
brevity. 

In the case of OpenCL implementation on a GPU, 
electromagnetic field and material data are stored in 
the global memory of the GPU as arrays. The m-th 
element in the data array is associated with (i,j,k) cell 
in the discretized (x,y,z) Cartesian space by the 
formula:  

( )[ ] ( ) kzsizejysizeim +⋅+⋅=  

The x-direction is called the fastest direction and 
the z-direction is called the slowest direction. 
Transfer of data between GPU and CPU memory 
spaces is solely related to an acquisition of 
simulation results during time-marching. To 
minimize overhead of communication between the 
global memory and the processing unit on the 
graphics card, reuse of data resulting from the spatial 
locality of the FDTD method was employed 
(previous value and local derivatives of the E (H) 
field are required to update single H (E) field 
component values). Therefore, updates are performed 
in the loop along the slowest direction  Rectangular 
zy-tiles of the field values, being of the same size as 
blocks of threads, are transferred to the low-latency 
local (shared) memory using coalesced memory 
access [4]. A single thread in a rectangular block of 
threads updates a single cell per one loop step, using 
two zy-tiles of data recently downloaded into the 
local memory.  

In the case of OpenCL implementation on a CPU, 
the strategy described above cannot be used because 
the CPU does not have shared memory. Even though 
it was possible to execute the OpenCL GPU code 
described above on a CPU, the obtained simulation 
throughput was very low. Therefore, update kernels 
were optimized to avoid usage of the local memory. 
In this improved implementation every thread in the 
cuboidal group of threads updates a single cell 
directly using data stored in the global memory. 

3 NUMERICAL RESULTS 

OpenCL FDTD code was developed based on in-
house written CUDA FDTD code whose performance 
is similar to existing commercial GPU solvers, e.g. 
[6]. However, OpenCL implementation does not use 
texture memory on a GPU like our CUDA 
implementation (using cudaBindTexture and 
tex1Dfetch functions) since OpenCL handles it using 
2D and 3D image objects and texture memory space 
implementation would require address conversions. 
Data that were stored in texture memory in the 
CUDA implementation are stored in constant 
memory in our OpenCL implementation. 

The code developed allows the mesh to be 
terminated with electric wall, magnetic wall, Mur 1st 
order absorbing boundary condition (Mur ABC), and 
periodic boundary conditions. The test simulations 
presented below were run on a personal computer 
with an Intel Core i7 920 multi-core CPU and a 
Nvidia C1060 GPU. Reference CPU solutions, 
presented for the sake of comparison, were developed 
in the OpenMP parallel programming standard and 
compiled with Visual Studio 2008. 

3.1 Efficiency as a function of the domain size 
Simulation results were obtained for the vacuum 
bounded by Mur ABCs and excited by a dipole 
antenna located in its centre. The size of the cubic 
domain was varied in the range 503-4003 mesh cells. 
Peak simulation speeds as a function of the domain 
size are shown in Fig. 2 for the OpenCL FDTD code 
executed on a CPU and a GPU, and for OpenMP 
(CPU) and CUDA (GPU) implementations. The 
relative speedup factors, calculated as ratios of the 
simulation speeds, are shown as  a function of the 
domain size in Fig. 3.  

Averaged peak speed of the optimized OpenCL 
CPU FDTD solver in this test was equal to 49 
Mcells/sec whereas the OpenMP FDTD solver gave 
95 Mcells/sec. This represents a 1.9 times average 
speedup of the OpenMP vs. OpenCL CPU solver.  
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Figure 2: Speed of the FDTD OpenCL solver on a 
CPU and a GPU as a function of the side-length of the 
cubic domain; results of the CUDA (GPU) and 
OpenMP (CPU) implementation are presented for 
comparison. 

 

Figure 3: Speedup as a function of the side-length of 
the cubic domain: (a) OpenMP referenced to OpenCL 
- both executed on a CPU, (b) CUDA referenced to 
OpenCL - both executed on a GPU, (c) OpenCL 
(GPU) referenced to OpenCL (CPU), (d) CUDA 
(GPU) referenced to OpenMP (CPU). 

However, OpenCL CPU code performance results 
from runtime compiler efficiency and optimization 
level (OpenCL kernel executables are compiled and 
built online). As is seen in Fig. 3(a), the relative 
performance of the CPU codes differs significantly, 
i.e. 1.5 - 2.5 times, as a function of the domain size.  

The average peak performance of the OpenCL 
FDTD code executed on a GPU was equal to 388 
Mcells/sec whereas CUDA FDTD code performance 

was equal to 427 Mcells/sec (the average peak speed 
of the recent version of the commercial GPU solver 
[6] was  equal to 422 Mcells/sec in this test). This 
shows relative speedup of the CUDA FDTD vs. 
OpenCL GPU solver equal to about 1.1 times, see 
Fig. 3(b). It is noticeable that the GPU simulations 
ran significantly faster as the domain size increased. 
For relatively small domains, the advantages of GPU 
acceleration are not so visible. 

As seen in Figs 3(c-d), relative speedups of 
OpenCL (GPU) vs. OpenCL (CPU) and CUDA vs. 
OpenMP are in the order of 7-10 and 4-6 times, 
respectively, for larger domains. This stems from the 
fact that OpenMP code is compiled by a commercial 
compiler whose performance is higher than the CPU 
compiler available in the OpenCL package. However, 
OpenCL code development requires only one 
programming environment for CPU and GPU 
targeting. 

3.2  Application benchmark 

The graphics user interface of the SEMCAD X 
commercial simulator [7] was employed for further 
tests. 

3.2.1 IEEE SCC 34  
This benchmark relies on simulation of a dipole 
antenna radiating a 835 MHz signal positioned next 
to a bowl filled with head imitating liquid (see Fig. 4 
for the H-field cross-sectional plot). The 
computational domain was terminated by Mur ABCs 
and its size was equal to 72x82x96 cells. Simulations 
executed 7532 iterations. A comparison of the total 
simulation runtimes is presented in Table 1.   
 

 

Figure 4: H-field cross-section obtained in the IEEE 
SCC 34 benchmark of the OpenCL (GPU) code, a 
dipole antenna is positioned next to a bowl filled with 
head simulating liquid. 
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CUDA FDTD implementation on a GPU was 
significantly faster than the other tested codes. 
Higher runtimes of the OpenCL FDTD solvers can 
partially be attributed to the online compilation of the 
OpenCL kernel sources during code execution. 

 
OCL 

(CPU) 
OMP 
(CPU) 

OCL 
(GPU) 

CUDA 
(GPU) 

[6] 

1:59 1:10 0:26 0:20 0:34 

Table 1: Comparison of the total simulation runtimes 
in the IEEE SCC 34 benchmark for tested codes 
(min:sec). 

3.2.2 PCB board level EMI 
This benchmark relies on simulation of a cross-talk 
effect on unshielded PCB board (see Fig. 5). The 
computational domain was terminated by Mur ABCs 
and its size was equal to 536x1192x65 cells. 
Simulations on a GPU executed 223773 iterations. A 
comparison of the total simulation runtimes is 
presented in Table 2.  It can be seen that OpenCL and 
CUDA runtimes on a GPU are similar in this 
benchmark. 
 

 

Figure 5: PCB used for EMI benchmark. 

 
OCL 

(GPU) 
CUDA 
(GPU) 

[6] 

7:06:22 7:00:16 8:39:16 

Table 2: Comparison of the total simulation runtimes 
in the PCB board level EMI benchmark for tested 
GPU codes (hour:min:sec). 

4 CONCLUSIONS 

A usability and performance evaluation of OpenCL 
for implementation into the FDTD method has been 
presented. The developed GPU dedicated OpenCL 
FDTD code can be executed on multi-core CPUs, but 
satisfactory performance is only obtained after 
specific code optimization. Although the OpenCL 
FDTD simulations still perform at a lower speed than 
native CUDA or OpenMP implementations, it can be 
anticipated that the OpenCL framework will increase 
in popularity in coming years, and might become the 
standard with respect to parallel programming. 
Matured versions of this technology may result in a 
partial separation of the actual code development 
from the hardware specifications. Subsequently, the 
effort of tailoring code development to new hardware 
will be transferred to the developers of OpenCL 
compilers and hardware manufacturers, who have the 
required specific expertise thorough knowledge of 
the hardware architecture.  
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