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Parallel Iterative Solvers of GeoFEM with Selective 
Blocking Preconditioning for Nonlinear Contact       

Problems on the Earth Simulator 

Kengo Nakajima*

Abstract
An efficient parallel iterative method with selective blocking preconditioning has been devel-
oped for symmetric multiprocessor (SMP) cluster architectures with vector processors such 
as the Earth Simulator. This method is based on a three-level hybrid parallel programming 
model, which includes message passing for inter-SMP node communication, loop directives 
by OpenMP for intra-SMP node parallelization and vectorization for each processing element 
(PE). This method provides robust and smooth convergence and excellent vector and paral-
lel performance in 3D geophysical simulations with contact conditions performed on the 
Earth Simulator. The selective blocking preconditioning is much more efficient than ILU(1) 
and ILU(2). Performance for the complicated Southwest Japan model with more than 23 M 
DOF on 10 SMP nodes (80 PEs) of the Earth Simulator was 161.7 GFLOPS, corresponding to 
25.3% of the peak performance for hybrid programming model, and 190.4 GFLOPS (29.8% of 
the peak performance) for flat MPI, respectively. 

1.  Introduction 

1.1   Background 
In 1997, the Science and Technology Agency of Japan (now, the Ministry of Education, Culture, Sports, Science 
and Technology, Japan) began a 5-year project to develop a new supercomputer, the Earth Simulator [1]. The goal 
has been the development of both hardware and software for earth science simulations. The present study was con-
ducted as part of the research towards developing a parallel finite-element platform for solid earth simulation, 
named GeoFEM [2]. One of the most important applications of GeoFEM is the simulation of ground motion. 
Stress accumulation on plate boundaries (faults) is very important in estimating the earthquake generation cycle 
(Fig.1). We need very fine resolution (order of 10 meters) around zones with higher stress accumulation, therefore 
more than hundred millions of meshes are required for detailed simulations. 

In ground motion simulations, material, geometric and boundary nonlinearity should be considered. Boundary 
nonlinearity due to fault-zone contact is the most critical. In GeoFEM, the augmented Lagrange method (ALM) 
and penalty method are implemented, and a large penalty number λ is introduced for constraint conditions around 
faults [3]. The nonlinear process is solved iteratively by the Newton-Raphson (NR) method. A large λ can provide 
an accurate solution and fast nonlinear convergence for the Newton-Raphson method, but the condition number of 
the coefficient matrices is large. Therefore, many iterations are required for convergence of iterative solvers 
(Fig.2). 
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In previous work [4], the author developed a robust preconditioning method, called selective blocking, for the 
simulation of fault-zone contact with penalty constraints using parallel computers. For symmetric positive definite 
matrices, block incomplete Cholesky factorization without inter-block fill-in, using selective blocking (SB-BIC(0)) 
shows excellent performance, memory efficiency and robustness for a wide range of penalty parameter values, 
even if the meshes are distorted. The conjugate gradient (CG) method with SB-BIC(0) preconditioning was im-
plemented to GeoFEM, and the parallel performance for both simple and complicated geometries was evaluated 
using 16 to 128 processing elements (PEs) of a Hitachi SR2201 at the University of Tokyo. 

Fig. 1   Plate boundaries (faults) around Japanese Islands and an example of the finite element model 

Fig. 2   Typical λ (penalty number)-iterations relationship in fault-zone contact computation without friction by 
ALM [4]. A large λ can provide an accurate solution and fast nonlinear convergence for the Newton-Raphson 
method, but the condition number of the coefficient matrices is large. 

1.2   Overview of This Study 
In the present work, GeoFEM and parallel iterative solvers with selective blocking preconditioning are ported to 
symmetric multiprocessor (SMP) cluster architectures with vector processors such as the Earth Simulator. The 
Earth Simulator has an SMP cluster architecture and consists of 640 SMP nodes. Each SMP node consists of eight 
vector processors. Peak performance of each PE is 8 GFLOPS, and the performance of the entire system is 40 
TFLOPS. Each SMP node of the Earth Simulator has 16 GB of memory, which corresponds to a total of approxi-
mately 10 TB [1]. A hybrid parallel programming model is adopted with reordering methods for vector and paral-
lel performance, and compared with flat MPI parallel programming model [5]. The parallel and vector perform-
ance of this method is demonstrated on the Earth Simulator. 

In the following part of this paper, we give a brief overview of parallel iterative solvers in GeoFEM, selective 
blocking preconditioning, special reordering techniques for parallel and vector computation on the Earth Simulator 
and present the results of 3D applications in solid mechanics on the Earth Simulator. 
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2   Parallel Iterative Solvers in GeoFEM 

2.1   Distributed Data Structures 
GeoFEM adopts domain decomposition [2,6,7] for parallel computing where the entire model is divided into do-
mains, and each domain is assigned to a PE. A proper definition of the layout of the distributed data structures is 
an important factor determining the efficiency of parallel computations with unstructured meshes. The local data 
structures in GeoFEM are node-based with overlapping elements, and as such are appropriate for the 
preconditioned iterative solvers used in GeoFEM [6]. 

Although MPI provides subroutines for communication among processors during computation for structured 
grids, it is necessary for users to design both the local data structure and communications for unstructured grids. In 
GeoFEM, the entire region is partitioned in a node-based manner and each domain contains the following local 
data: 

• Nodes originally assigned to the domain 
• Elements that include the assigned nodes 
• All nodes that form elements but are from external domains 
• A communication table for sending and receiving data 
• Boundary conditions and material properties 

Nodes are classified into the following three categories from the viewpoint of message passing: 

• Internal nodes (originally assigned to the domain) 
• External nodes (forming the element in the domain but are from external domains) 
• Boundary nodes (external nodes of other domains) 

Communication tables between neighboring domains are also included in the local data. Values on boundary
nodes in the domains are sent to the neighboring domains and are received as external nodes at the destination
domain. This data structure, described in Fig.3, and the communication procedure described in Fig.4 provide ex-
cellent parallel efficiency [2,5,6]. This type of communication occurs in the procedure for computing the matrix-
vector product of Krylov iterative solvers described in the next subsection. The partitioning program in GeoFEM 
works on a single PE, and divides the initial entire mesh into distributed local data. 

In GeoFEM, coefficient matrices for linear solvers are assembled in each domain according to FEM proce-
dures. This process can be performed without communication among processors using the information of overlap-
ping elements.

2.2 Localized Preconditioning 
The incomplete lower-upper (ILU) and incomplete Cholesky (IC) factorization methods are the most popular pre-
conditioning techniques for accelerating the convergence of Krylov iterative methods.  

Of the range of ILU preconditioning methods, ILU(0), which does not allow fill-in beyond the original non-
zero pattern, is the most commonly used. Backward/forward substitution (BFS) is repeated at each iteration. BFS 
requires global data dependency, and this type of operation is not suitable for parallel processing in which locality 
is of utmost importance. Most preconditioned iterative processes are a combination of (1)matrix-vector products, 
(2)inner dot products, (3)DAXPY (linear combination of vectors) operations [8] and vector scaling and 
(4)preconditioning operations 

The first three operations can be parallelized relatively easily [8]. In general, preconditioning operations such 
as BFS represent almost 50 % of the total computation if ILU(0) is implemented as the preconditioning method. 
Therefore, a high degree of parallelization is essential for the BFS operation. 

The localized ILU(0) used in GeoFEM is a pseudo ILU(0) preconditioning method that is suitable for parallel 
processors. This method is not a global method, rather, it is a local method on each processor or domain. The 
ILU(0) operation is performed locally for a coefficient matrix assembled on each processor by zeroing out compo-
nents located outside the processor domain. This is equivalent to solving the problem within each processor with 
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zero Dirichlet boundary conditions during the preconditioning. This localized ILU(0) provides data locality on 
each processor and good parallelization because no inter-processor communications occur during ILU(0) operation. 
This idea is originally from the incomplete block Jacobi preconditioning method [7,8]. 

However, localized ILU(0) is not as powerful as the global preconditioning method. Generally, the conver-
gence rate degrades as the number of processors and domains increases [2,5]. At the critical end, if the number of 
processors is equal to the number of degrees of freedom (DOF), this method performs identically to diagonal scal-
ing. 

Table 1 shows the results of a homogeneous solid mechanics example with 3 × 443 DOF solved by the conju-
gate gradient (CG) method with localized IC(0) preconditioning. Computations were performed on the Hitachi 
SR2201 at the University of Tokyo. Although the number of iterations for convergence increases according to the 
domain number, this increase is just 30% from one to 32 PEs. 

Figure 5 shows the work ratio (real computation time/elapsed execution time including communication) for 
various problem sizes [5] of simple 3D elastic problems with homogeneous boundary conditions. In these compu-
tations, the problem size for 1 PE was fixed. The largest case was 196,608,000 DOF on 1024 PEs. Figure 5 shows 
that the work ratio is higher than 95% if the problem size for 1 PE is sufficiently large. In this case, code was vec-
torized and a performance of 68.7 GFLOPS was achieved using 1024 PEs. Peak performance of the system was 
300 GFLOPS with 1024 PEs; 68.7 GFLOPS corresponds to 22.9% of the peak performance [5]. This good parallel 
performance is attributed largely to the reduced overhead provided by the use of communication tables as part of 
the GeoFEM's local data structure. 

Fig.3   Node-based partitioning into four PEs [2,6]. 

(a) SEND                                                                                     (b) RECEIVE 

Fig.4   Communication among processors 
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Table 1    Homogeneous solid mechanics example with 3×443 DOF on Hitachi SR2201 solved by CG method with 
localized IC(0) preconditioning (Convergence Criteria ε=10-8).

PE # Iter. # sec. Speed Up 

1 204 233.7  - 
2 253 143.6  1.63  
4 259 74.3  3.15  
8 264 36.8  6.36  
16 262 17.4  13.52  
32 268 9.6  24.24  
64 274 6.6  35.68  

Fig.5   Parallel performance for various problem sizes for simple 3D elastic solid mechanics on Hitachi SR2201. 
Problem size/PE is fixed. Largest case is 196,608,000 DOF on 1024 PEs. (Circles: 3×163 (= 12,288) DOF/PE, 
Squares: 3×323 (= 98,304), Triangles: 3×403 (= 192,000)). 

3.   Selective Blocking 

3.1   Robust Preconditioning Method for Ill-Conditioned Problems 
The incomplete Cholesky (IC) and incomplete lower-upper (ILU) factorization methods are the most popular pre-
conditioning techniques for accelerating the convergence of Krylov iterative methods. The typical remedies using 
an IC/ILU type of preconditioning method for ill-conditioned matrices, which appear in nonlinear simulations us-
ing penalty constraints, are as follows: 

• Blocking 
• Deep Fill-in 
• Reordering. 

In addition to these methods, a special method called selective blocking was also developed for contact problems 
in [4]. In the selective blocking method, strongly coupled finite-element nodes in the same contact group [3] cou-
pled through penalty constraints are placed into the same large block (selective block or super node) and all of the 
nodes involved are reordered according to this blocking information. Full LU factorization is applied to each selec-
tive block. The size of each block is (3×NB) × (3×NB) in 3D problems, where NB is the number of finite-element 
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nodes in the selective block, which is shown in Fig.6. Thus, local equations for coupled finite-element nodes in 
contact groups are solved by means of a direct method during preconditioning.

Table 2 shows the convergence of CG solver with various types of preconditioning methods. The linear equa-
tions are derived from actual nonlinear contact problems in [3] and [4]. By introducing the 3×3 block, the CG 
solver preconditioned by block IC with no fill-in (i.e., BIC(0)), converges even when λ is as large as 106. Deep fill-
in options provide faster convergence, but the SB-BIC(0) (i.e., BIC(0) preconditioning with selective blocking re-
ordering) shows the best performance. SB-BIC(0) usually requires a greater number of iterations for convergence 
compared to BIC(1) and BIC(2), but the overall performance is better because the computation time for each itera-
tion and set-up is much shorter. As is also shown in Table 2, because no inter-block fill-in is considered for SB-
BIC(0), the memory requirement for this method is usually as small as that in BIC(0) with no fill-in. Only the in-
ter-node fill-in in each selective block is considered in SB-BIC(0). 

The CG solver with SB-BIC(0) preconditioning can be considered to be a hybrid of iterative and direct meth-
ods. Local equations for coupled finite-element nodes in contact groups are solved by means of a direct method 
during preconditioning. This method combines the efficiency and scalability of iterative methods with the robust-
ness of direct methods. 

This idea of selective blocking is also related to the clustered element-by-element method (CEBE) described in 
[9]. In CEBE, elements are partitioned into clusters of elements, with the desired number of elements in each clus-
ter, and the iterations are performed in a cluster-by-cluster fashion. This method is highly suitable for both vectori-
zation and parallelization, if it is used with proper clustering and element grouping schemes. Any number of ele-
ments can be brought together to form a cluster, and the number should be viewed as an optimization parameter to 
minimize computational cost. The CEBE method becomes equivalent to the direct method when the cluster size is 
equal to the total number of elements. Generally, larger clusters provide better convergence rates because a larger 
number of fill-in elements are taken into account during factorization, but the cost per iteration cycle increases ac-
cording to the size of the cluster, as shown in Fig.7. The trade-off between convergence and computational cost is 
not clear, but the results of examples in [9] show that larger clusters provide better performance. 

In selective blocking, clusters are formed according to information about the  contact groups. Usually, the size 
of each cluster is much smaller than that in a general CEBE method. If a finite element node does not belong to 
any contact groups, it forms a cluster whose size is equal to one in the selective blocking.

In Appendix A., the robustness of the preconditioning method was estimated according to the eigenvalue dis-
tribution of the [M]-1[A] matrix by the method in [4], where [A] is the original coefficient matrix and  [M]-1 is the 
inverse of the preconditioning matrix. According to the results, all of the eigenvalues are approximately constant 
and close to 1.00 for a wide range of λ values except for BIC(0). BIC(1) and BIC(2) provide a slightly better spec-
tral feature than SB-BIC(0). 

Table 2   Iterations/computation time for convergence (ε=10-8) on a single PE of Intel Xeon 2.8 GHz by precondi-
tioned CG for the 3D elastic fault-zone contact problem in [3] and [4] (83,664 DOF).: BIC(n): Block IC with n-
level fill-in, SB-BIC(0): BIC(0) with the selective blocking reordering. 

Precondition-
ing 

λ Iterations Set-up 
(sec.)

Solve 
(sec.)

Set-up+Solve
(sec.)

Single Itera-
tion (sec.) 

Memory 
Size (MB)

Diagonal 102 1531 <0.01 75.1 75.1 0.049 119 
Scaling 106 No Conv. - - - -  
IC(0) 102 401 0.02 39.2 39.2 0.098 119 

(Scalar Type) 106 No Conv. - - - -  
BIC(0) 102 388 0.02 37.4 37.4 0.097 59 

 106 2590 0.01 252.3 252.3 0.097  
BIC(1) 102 77 8.5 11.7 20.2 0.152 176 

 106 78 8.5 11.8 20.3 0.152  
BIC(2) 102 59 16.9 13.9 30.8 0.236 319 

 106 59 16.9 13.9 30.8 0.236  
SB-BIC(0) 100 114 0.10 12.9 13.0 0.113 67 

 106 114 0.10 12.9 13.0 0.113  
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                                                         (a)                                                                    (b)               

Fig.6   Procedure of the selective blocking : Strongly coupled elements are put into the same selective block. (a) 
searching for strongly coupled components and (b) reordering and selective blocking.  

Fig.7   Trade-off between convergence and computational cost per on iteration cycle according to block size in 
CEBE type method. Based on [9].  

3.2   Strategy for Parallel Computations  
Localized ILU/IC [2,5,6] is an efficient parallel preconditioning method, but it is not robust for ill-conditioned 
problems. Table 3 (left side) shows the results by parallel CG solvers with localized preconditioning on a 8 PEs of 
Intel Xeon 2.8 GHz cluster using distributed matrices, for the problem described in Fig.1. According to the results, 
the number of iterations for convergence increases by a factor of 10 in λ=106 cases. This is because the edge-cuts
occur at inter-domain boundary edges that are included in contact groups [2,5,6]. 

In order to eliminate these edge-cuts, a partitioning technique has been developed so that all nodes which be-
long to the same contact group are in the same domain. Moreover, nodes are re-distributed so that load-balancing 
among domains should be attained for efficient parallel computing (Fig.8). 

In GeoFEM, there are several types of special elements for contact problems (types 411, 412, 421, 422, 511, 
512, 521 and 522) [2]. Nodes included in the same elements of these types are connected through penalty con-
straints and form a contact group. In the new partitioning method, the partitioning process is executed so that these 
nodes in the same contact elements are on the same domain, or PE. These functions are added to the original do-
main partitioner in GeoFEM described in 2. 
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Table 3 (right side) shows the results obtained by this partitioning method. The number of iterations for con-
vergence has been dramatically reduced for each preconditioning method although it is larger than that of the sin-
gle PE cases shown in Table.2 due to localization.  

Fig.8   Partitioning strategy for the nodes in contact groups 

Table 3   Iterations/computation time for convergence (ε=10-8) on 8 PEs of Intel Xeon 2.8 GHz cluster by precon-
ditioned CG for the 3D elastic fault-zone contact problem in [3] and [4] (83,664 DOF).: BIC(n): Block IC with n-
level fill-in, SB-BIC(0): BIC(0) with the selective blocking reordering. Effect of repartitioning method in Fig.8 is 
evaluated. 

 ORIGINAL Partitioning IMPROVED Partitioning 
Precondition-

ing 
λ Iterations Set-up+Solve

(sec.)
Iterations Set-up+Solve 

(sec.)
BIC(0) 102 703       7.5       489       5.3        
 106 4825       50.6       3477       37.5        
BIC(1) 102 613       11.3       123       2.7        
 106 2701       47.7       123       2.7        
BIC(2) 102 610       19.5       112       4.7        
 106 2448       73.9       112       4.7        
SB-BIC(0) 100 655       10.9       165       2.9        
 106 3498       58.2       166       2.9        

ORIGINAL
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but inter-domain load is 
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3.3   Large-Scale Computation 
A large-scale computation was performed on the simple block model with 784,000 elements and 823,813 nodes 
(Total DOF= 2,471,439), which is shown later in Fig.23. 

Linear elastic problem on the geometry was solved by parallel iterative solvers using various types of precon-
ditioning methods with the MPC (multiple point constraint) conditions. Domains are partitioned according to the 
contact group information described in the previous chapter. Computations were performed using 16 to 256 PEs on 
a Hitachi SR2201 at the University of Tokyo. 

Table 4 shows the results for various preconditioners. BIC(1), BIC(2) and SB-BIC(0) provide robust conver-
gence but convergence of BIC(0) is very slow. SB-BIC(0) provides the most efficient performance, although the 
iteration number for convergence is larger than BIC(1) and BIC(2). Figure 9 and Table 4 show the parallel per-
formance for the same problem solved using 16 to 256 PEs of Hitachi SR2201. BIC(1) and BIC(2) did not work if 
the PE number was small due to memory limitation. As shown in Table 4 and Fig.9, the iteration number for con-
vergence increases according to PE number due to the locality of the preconditioning method, but this increase is 
very slight (only 14% increase from 16 PEs to 256 PEs for SB-BIC(0)). The speed-up ratio based on elapsed exe-
cution time including communication for 256 PEs, is 235 for SB-BIC(0), as extrapolated from the results obtained 
using 16 PEs.  

The required memory size for each preconditioning method is compared in Table 4 for this problem. The 
memory size of each PE on the Hitachi SR2201 is 256 MB but only 224 MB of the memory is available for users. 
For example, BIC(2) does not function on 64 PEs because the required memory size is 14.4 GB but only 14.3 GB 
(224×64/1000=14.34) are available on 64 PEs. The required memory size for SB-BIC(0) is competitive with that 
of BIC(0), is less than 50% of that of BIC(1), and approximately 25% of BIC(2). The required memory size for 
SB-BIC(0) could change, according to the number of contact groups and the size of the matrix blocks by selective 
blocking, but the required memory size is much less than that of BIC(1) or BIC(2) because block-to-block fill-in is 
not considered in SB-BIC(0).

                                 (a) Speed-up ratio                                                  (b) Iteration number for convergence 

Fig.9   Parallel performance based on elapsed execution time including communication and iterations for conver-
gence (ε=10-8) on a Hitachi SR2201 with 16 to 256 PEs using preconditioned CG for the 3D elastinc contact prob-
lem with MPC condition (λ=106) in Fig.23 (2,471,439 DOF). (BLACK Circles: BIC(1), WHITE Circles: BIC(2), 
BLACK Triangles: SB-BIC(0), WHITE Triangles: BIC(0)).
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Table 4   Iterations/elapsed execution time (including factorization, communication overhead) for convergence 
(ε=10-8) on a Hitachi SR2201 with 256 PEs using preconditioned CG for the 3D elastic contact problem for simple 
block model with MPC condition in Fig.23 (2,471,439 DOF). Domains are partitioned according to the contact 
group information.: BIC(n): Block IC with n-level fill-in, SB-BIC(0): BIC(0) with the selective blocking reorder-
ing. 

4. Reordering Methods for Parallel/Vector Performance on SMP Nodes 

4.1   SMP Cluster Architecture and Hybrid Parallel Programming Model 
Recent technological advances have allowed increasing number of processors to have access to a single memory 
space in a cost-effective manner. As a result, symmetric multiprocessor (SMP) cluster architectures have become 
very popular as teraflop-scale parallel computers, such as the Accelerated Strategic Computing Initiative (ASCI, 
currently "Advanced Simulation and Computing (ASC)") [10] machines and the Earth Simulator [1]. 

In order to achieve minimal parallelization overhead, a multi-level hybrid programming model [5,11,12,13,14] 
is often employed for SMP cluster architectures. The aim of this method is to combine coarse-grain and fine-grain 
parallelism. Coarse-grain parallelism is achieved through domain decomposition by message passing among SMP 
nodes using a scheme such as Message Passing Interface (MPI) [15], and fine-grain parallelism is obtained by 
loop-level parallelism inside each SMP node by compiler-based thread parallelization such as OpenMP [16]. 

Another often used programming model is the single-level flat MPI model [5,11,12,13,14], in which separate 
single-threaded MPI processes are executed on each processing element (PE). The advantage of a hybrid pro-
gramming model over flat MPI is that there is no message-passing overhead in each SMP node. This is achieved 
by allowing each thread to access data provided by other threads directly by accessing the shared memory instead 
of using message passing. However, a hybrid approach usually requires more complex programming. 

Although a significant amount of research on this issue has been conducted in recent years [5,11,12,13,14], it 
remains unclear whether the performance gains of this hybrid approach compensate for the increased programming 
complexity. Many examples show that flat MPI is rather better [5,11,12,13,14], although the efficiency depends on 
hardware performance (CPU speed, communication bandwidth, memory bandwidth), features of applications, and 
problem size [17]. 

In this study, selective blocking preconditioning is ported to iterative solvers using a three-level hybrid parallel 
programming model on the Earth Simulator. Individual PE of the Earth Simulator is a vector processor, therefore 

Precon-
ditioning 

 16
PEs

32
PEs

48
PEs

64
PEs

96
PEs

144
PEs

192
PEs

256
PEs

Memory 
Size
(GB) 

BIC(0) Iterations
sec.

14459
13500

14583
7170

15018
4810

15321
3630

15523
2410

15820
1630

16084
1270

16267
1230 3.10

 Speed-up 16 30 45 60 90 133 170 211  
BIC(1) Iterations

sec. N/A N/A 
379
236

390
175

402
119

424
81

428
62

452
48 8.39

 Speed-up   48 65 95 140 183 236  
BIC(2) Iterations

sec. N/A N/A N/A N/A
364
212

387
140

398
112

419
86 14.4

 Speed-up     96 145 182 217  
SB-

BIC(0) 
Iterations

sec.
511
555

524
295

527
193

538
144

543
96

567
64

569
48

584
38 3.52

 Speed-up 16 30 46 62 92 139 185 235  

Proceedings of the ACM/IEEE SC2003 Conference (SC’03) 
1-58113-695-1/03 $ 17.00 © 2003 ACM 



11

third-level of parallelism for vector processing should be considered in addition to the two levels, OpenMP and 
MPI. Following three levels of parallelism are considered: 

• Inter-SMP node MPI for communication 
• Intra-SMP node OpenMP for parallelization 
• Individual PE compiler directives for vectorization  

In flat MPI approach, communication 
among PEs through MPI and vectorization 
for individual PE have been considered for 
the Earth Simulator. In the hybrid parallel 
programming model, the entire domain is 
partitioned into distributed local data sets 
[2,5,6], and each partition is assigned to 
one SMP node (Fig.10). On the contrast, 
each partition corresponds to each PE in 
the flat MPI.  

In order to achieve efficient paral-
lel/vector computation for applications 
with unstructured grids, the following three 
issues are critical: 

• Local operations and no global 
dependency 

• Continuous memory access 
• Sufficiently long loops 

For unstructured grids, in which data and memory access patterns are very irregular, the reordering technique is 
very effective in achieving highly parallel and vector performance. In this study, a special reordering technique 
proposed by Washio et. al. [18,19] has been integrated with selective blocking preconditioning and parallel itera-
tive solvers with localized preconditioning developed in the GeoFEM project [2,6] in order to attain local opera-
tion, no global dependency, continuous memory access and sufficiently innermost long loops. 

4.2  Multicolor Reordering 
The popular reordering methods are reverse Cuthil-McKee reordering and multicolor reordering [20]. The reverse 
Cuthil-McKee (RCM) method (Fig.11(a)) is a typical level-set ordering method. In Cuthill-McKee reordering, the 
elements of a level set are traversed from the nodes of the lowest degree to those of the highest degree according to 
dependency relationships, where the degree refers to the number of nodes connected to each node. In RCM, per-
mutation arrays obtained in Cuthill-McKee reordering are reversed. RCM results in much less fill-in for Gaussian 
elimination and is suitable for iterative methods with IC or ILU preconditioning. Multicolor reordering (MC) is 
much simpler than RCM. MC (Fig.11(b)) is based on an idea where no two adjacent nodes have the same color. 

In both methods, elements located on the same color (or level-set) are independent. Therefore, parallel opera-
tion is possible for the elements in the same color (or level-set) and the number of elements in each color (or level-
set) should be as large as possible in order to obtain high granularity for parallel computation or sufficiently large 
loop length for vectorization. 

According to [21], CM-RCM reordering (Fig.11(c)), which is a method combining cyclic multicolor and RCM 
(Reverse Cuthil-Mckee) reordering, provides fast and robust convergence for simple geometries, however, for 
complicated geometries in real-world applications, the number of level-sets may be extremely large, and construct-
ing independent sets having a sufficiently large loop length is usually very difficult. Under these circumstances, 
classical multicolor reordering (MC) offers another option. Although MC usually provides slower convergence 
than CM-RCM and RCM, a sufficiently large loop length is guaranteed when a certain number of colors is speci-
fied. In the present work, the MC reordering method was adapted in order to achieve higher vector performance.  
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                            (a) RCM                                    (b) MC: 4 colors                        (c) CM-RCM: 4 colors 

Fig.11   Example of hyperplane/RCM, multicoloring and CM-RCM reordering for 2D geometry [5] 

4.3  DJDS Reordering 
The compressed row storage (CRS) [8] format originally used in GeoFEM is highly memory-efficient, however 
the innermost loop is relatively short due to matrix-vector operations, as shown in below: 

do i= 1, N 
do j= 1, NU(i) 

    k1= indexID(i,j);k2= itemID(k1) 
    F(i)= F(i) + A(k1)*X(k2)

enddo 
enddo

The following loop exchange is then effective for obtaining a sufficiently long innermost loop for vector opera-
tions: 

do j= 1, NUmax 
do i= 1, N 

    k1= indexID(i,j);k2= itemID(k1) 
    F(i)= F(i) + A(k1)*X(k2)

enddo 
enddo

Descending-order jagged diagonal storage (DJDS) [5,18,19] is suitable for this type of operation and involves per-
muting rows into an order of decreasing number of non-zeros, as in Fig.12(a). As elements on the same color (or 
level-set) are independent, performing this permutation inside the color (or level-set) does not affect results. Thus, 
a 1D array of matrix coefficients with continuous memory access can be obtained, as shown in Fig.12(b). 

4.4  Distribution over SMP Nodes : Parallel DJDS Reordering 
The 1D array of matrix coefficients with continuous memory access and sufficiently long innermost loops is suit-
able for both parallel and vector computing. The loops for this type of array are easily distributed to each PE in an 
SMP node via loop directives. In order to balance the computational load across PEs in the SMP node, the DJDS 
array should be reordered again in a cyclic manner. The procedure for this reordering is called parallel DJDS 
(PDJDS) [5]. 
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           (a) Permutation of rows into order of                                (b) 1D array of matrix coefficient 
                decreasing number of non-zeros   

Fig.12  DJDS reordering for efficient vector/parallel processing 

4.5  Summary of Reordering Methods 
The reordering procedures for increasing parallel/vector performance of the SMP cluster architecture described in 
this section are summarized as follows: 

(1) MC reordering on the original local matrix for independent sets. 
(2) DJDS reordering for efficient vector processing, producing 1D arrays of coefficients with  
 continuous memory access. 
(3) Cyclic reordering for load-balancing among PEs on an SMP node. 
(4) PDJDS/MC reordering is complete. 

Figure 13 shows the procedure for forward/backward substitution procedure using OpenMP and vectorization di-
rectives during ILU(0)/IC(0) preconditioning by PDJDS/MC reordering. 

Fig.13   Forward/backward substitution procedure using OpenMP and vectorization directives during ILU(0)/IC(0) 
preconditioning by PDJDS/MC reordering. 

SMP
parallel

do iv= 1, NCOLORS
!$omp parallel do private (iv0,j,iS,iE,i,k,kk etc.)
do ip= 1, PEsmpTOT
iv0= STACKmc(PEsmpTOT*(iv-1)+ip- 1)
do j= 1, NLhyp(iv)
iS= INL(npLX1*(iv-1)+PEsmpTOT*(j-1)+ip-1)
iE= INL(npLX1*(iv-1)+PEsmpTOT*(j-1)+ip  )

!CDIR NODEP
do i= iv0+1, iv0+iE-iS

k= i+iS - iv0
kk= IAL(k)
(Important Computations)

enddo
enddo

enddo
enddo

Vectorized
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4.6   Parallel/Vector Performance for Simple Geometries 

(1)  Preliminary Results
The proposed reordering method is applied to simple applications in 3D solid mechanics, as described in Fig.14, 
which represent linear elastic problems with homogeneous isotropic material properties and boundary conditions. 
In the following part of this section, parallel and vector performance evaluation of the proposed reordering meth-
ods in [5] is described. Both of flat MPI and hybrid parallel programming models are tested. 

Governing equation in terms of displacement vector x (with three degrees of freedom at each node) is given as 
follows: 

( ) ( ) ( )( )ν−ν+
ν=λ

ν+
=µ=⋅∇∇µ+λ+∇µ

211

E
,

12

E
,02 xx  (1) 

where   E: Young's modulus, ν: Poisson's ratio 

For this problem, 3×3 Block ICCG(0) with PDJDS/CM-
RCM reordering is applied with full LU factorization for 
each 3×3 diagonal block. In this section, PDJDS/CM-RCM 
(not PDJDS/MC) has been applied, because only simple 
geometries are considered. In each case, the number of col-
ors for CM reordering was set to 99, corresponding to an 
average innermost loop length of (total number of FEM 
nodes)/(number of PEs or SMP nodes × 99 × NPE), where 
NPE is the number of PEs on each SMP node (=8 on the 
Earth Simulator).  

As for the preliminary test, the increase in speed for a 
fixed problem size (3×1283=6,291,456 DOF) using between 
1 and 8 SMP nodes was evaluated. The speed-up rate for 8 
SMP nodes was 6.36(Flat MPI) and 5.78 (Hybrid), which 
correspond to 79.5 % and 72.2% of the linear (ideal) speed-
up, respectively. The performance for 1 node (8 PEs) was 23.4 GFLOPS (Flat MPI, 36.6% of the peak perform-
ance=64 GFLOPS) and 21.9 GFLOPS (Hybrid, 34.2%). 

(2)  Effect of Reordering 
Figure 15 shows the results demonstrating the performance on a single SMP node of the Earth Simulator by hybrid 
parallel programming model. In this case, the following three cases were compared (Fig.15): 

• PDJDS/CM-RCM reordering 
• Parallel descending-order compressed row storage (PDCRS)/CM-RCM reordering 
• CRS without reordering 

PDCRS/CM-RCM reordering is identical to PDJDS/CM-RCM except that the matrices are stored in a CRS man-
ner [8] after permutation of rows into the order of decreasing number of non-zeros. The length of the innermost 
loop is shorter than that for PDJDS. The elapsed execution time was measured for various problem sizes from 
3×163 (12,288) DOF to 3×1283 (6,291,456) DOF on a single SMP node of the Earth Simulator (8 PEs, 64 
GFLOPS peak performance, 16 GB memory). The difference between PDCRS and PDJDS for smaller problems is 
not significant, but PDJDS outperforms PDCRS for larger problems due to larger length of inner-most loops. On 
the Earth Simulator, the PDCRS performs at a steady 1.5 GLOPS (2.3% of peak performance), while the perform-
ance of PDJDS increases from 3.81 GFLOPS to 22.7 GFLOPS (from 6.0% to 35.5% of the peak performance) 
with problem size. The loop length provided by PDCRS is order of number of off-diagonal components for each 
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Fig.14   Problem definition and boundary conditions 
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node, which is less than 30 in this case. On the contrast, average loop length provided by PDJDS is more than 
2,500 for the case with 3×1283 (6,291,456) DOF. 

The cases without reordering exhibit very poor performance of only 0.30 GFLOPS (0.47% of peak perform-
ance). Without reordering, either of parallel and vector computations on a SMP node are impossible for the IC(0) 
factorization process even in the simple geometry examined in this study. This factorization process represents 
about 50% of the total computation time in CG solvers with IC(0) preconditioning, as was mentioned before. If 
this process is not parallelized, the performance decreases significantly. 

Fig.15    Effect of coefficient matrix storage method and reordering for the 3D linear elastic problem in Fig.14 
with various problem sizes on the Earth Simulator with a single SMP node. (BLACK Circles: PDJDS/CM-RCM, 
WHITE Circles: PDCRS/CM-RCM, BLACK Triangles: CRS no reordering). 

(3) Performance Evaluation for Large-Scale Problems 
Figures 16-19 show the results for large-scale problems having simple geometries and boundary conditions as in 
Fig.14 implemented up to 176 SMP nodes of the Earth Simulator (1,408 PEs, 11.26 TFLOPS peak performance, 
2.8 TB memory). Performance of the hybrid and flat MPI models were evaluated. The problem size for one SMP 
node was fixed and the number of nodes was varied between 1 and 176. The largest problem size was 
176×3×128×128×256 (2,214,592,512) DOF, for which the performance was about 3.80 TFLOPS, corresponding to 
33.7 % of the total peak performance of the 176 SMP nodes. The parallel work ratio among SMP nodes for MPI is 
more than 90% if the problem is sufficiently large. 

The performance of the hybrid model is competitive with that of the flat MPI model, and both provide robust 
convergence and good parallel performance for a wide range of problem sizes and SMP node numbers. Iterations 
for convergence in the hybrid and flat MPI are almost equal, although the hybrid converges slightly faster as 
shown in Fig.19(a). In general, flat MPI performs better the hybrid model for smaller numbers of SMP nodes as 
shown in Fig.16, while the hybrid outperforms flat MPI when a large number of SMP nodes are involved (Fig.17-
19), especially if the problem size per node is small as shown in Fig.17 and Fig.19. This is mainly because of the 
latency overhead for MPI communication. According to the performance estimation for finite-volume application 
code for CFD with local refinement in [8], a greater percentage of time is required by the latency component on 
larger processor counts, simply due to the available bandwidth being much larger (Fig.20). Flat MPI requires eight 
times as many MPI processes as hybrid model. If the node number is large and problem size is small, this effect is 
significant. 
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Fig.16   Problem size and parallel performance on the Earth Simulator for the 3D linear elastic problem in Fig.14 
using between 1 and 10 SMP nodes. (BLACK Circles: Flat MPI, WHITE Circles: Hybrid). PDJDS/CM-RCM re-
ordering. 

                             (a) GFLOPS Rate                                                     (b) Parallel Work Ratio

Fig.17   Problem size and parallel performance on the Earth Simulator for the 3D linear elastic problem in Fig.14 
using between 8 and 160 SMP nodes. (a)GFLOPS rate and (b)Parallel work ratio. Problem size/PE is fixed as 
786,432 DOF (3×643). Largest case is 125,829,120 DOF on 160 SMP nodes (1280 PEs). Maximum performance is 
1.55 (Flat MPI) and 2.23 (Hybrid) TFLOPS (Peak performance= 10.24 TFLOPS). (BLACK Circles: Flat MPI, 
WHITE Circles: Hybrid). PDJDS/CM-RCM reordering. 
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                          (a) GFLOPS Rate                                                        (b) Parallel Work Ratio

Fig.18    Problem size and parallel performance on the Earth Simulator for the 3D linear elastic problem in Fig.14 
using between 8 and 176 SMP nodes. (a)GFLOPS rate and (b)Parallel work ratio. Problem size/SMP node is fixed 
as 12,582,912 DOF (3×256×128×128). Largest case is 2,214,592,512 DOF on 176 SMP nodes (1408 PEs). Maxi-
mum performance is 3.78 (Flat MPI) and 3.80 (Hybrid) TFLOPS (Peak performance= 11.26 TFLOPS). (BLACK 
Circles: Flat MPI, WHITE Circles: Hybrid). PDJDS/CM-RCM reordering. 

                      (a) Iterations for Convergence                                               (b) Peak Performance Ratio

Fig.19    Problem size and parallel performance on the Earth Simulator for the 3D linear elastic problem in Fig.14 
using between 8 and 176 SMP nodes. (a) Iterations for convergence and (b) Ratio to the peak performance. Prob-
lem size/SMP node is fixed (THICK lines: Flat MPI, DASHED lines: Hybrid). PDJDS/CM-RCM reordering. 
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Fig.20    Performance estimation of a finite-volume application code for CFD with local refinement on the Earth 
Simulator. Based on the results described in [8]. A greater percentage of time is taken by the latency component on 
larger processor counts, simply due to its much larger available bandwidth. 

4.7  Special Treatments for Selective Blocking 
In selective blocking preconditioning, individual selective blocks (or super nodes) are computed independently; 
therefore, dependency among selective blocks should be considered at reordering for vector optimization. In this 
case, a load imbalance may occur because the size of each selective block differs according to the number of nodes 
in each contact group. Ordinary nodes which do not belong to any contact group are considered as a selective 
block of size 1. Currently, no special treatment for load-balancing is implemented. 

Another problem is that, in DJDS reordering, the number of off-diagonal components may not reduce 
smoothly according to the size of the contact groups and the number of connected nodes, as shown in Fig.21. In 
this case, dummy elements are placed in order to maintain a smooth decrease in the number of off-diagonal com-
ponents in descending order. If several dummy elements exist, efficiency and load balancing may be affected. Fi-
nally, block diagonal components for selective blocks are reordered according to the block size on each PE and for 
each color, as shown in Fig.22. Thus, if statements according to block size are eliminated from the full LU 
factorization procedure for each selective block during back/forward substitution. 

Fig.21    Dummy elements to maintain a smooth decrease in the number of off-diagonal components in descending 
order
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Fig.22   Reordering of selective blocks (super nodes) according to block size for full LU factorization.

5. Examples on the Earth Simulator  

5.1 Overview 
The efficiency and robustness of the selective blocking preconditioning and partitioning methods for simulations of 
fault-zone contact were evaluated in two types of 3D applications on the Earth Simulator. 

Figure 23 shows the simple geometry and boundary conditions of an example model for 3D linear elastic solid 
mechanics. In this example, linear multiple point constraint (MPC) conditions were applied to the nodes of the 
contact groups in the following manner: 

• The locations of nodes in each contact group are identical. 
• All nodes in the contact groups are coupled tightly in any direction on the surfaces. 
• Infinitesimal linear elastic deformation theory in solid mechanics was applied. Therefore nodes do not 

move, and the contact relationships have been kept during the simulation. 
• A penalty constraint is applied to the nodes in the contact groups. 111-type element (Rod/Beam) in 

GeoFEM [2] is put in each contact group and very large stiffness corresponding to penalty is applied. 
Figure 24 shows the matrix operation of nodes in a contact group. Three components in x, y, and z direc-
tions are constrained through penalty. 

A large penalty parameter provides a stronger constraint but the condition numbers of the coefficient matrices are 
larger. Therefore, the convergence of iterative solvers is usually slow if the penalty is large. The problem itself is 
linear elastic, but solving linear equations by iterative methods is as difficult as solving equations in nonlinear con-
tact problems, such as those shown in previous sections. The definitions of the model and boundary conditions are 
as follows: 

• Three zones of uniform material property for which the non-dimensional E (Young's modulus)=1.0, ν
(Poisson's ratio)=0.30. Tri-linear (1st order) cubic hexahedral elements are used for spatial discretization. 

• Uniform MPC conditions were imposed on the nodes along the boundary surfaces of the blocks. There-
fore, the number of nodes in each contact group can be different, as shown in Fig.23(b). 

• Symmetry boundary conditions were applied at the x=0 and y=0 surfaces. 
• Free boundary conditions were applied at the x=Xmax and y=Ymax surfaces. 
• Dirichlet (fixed) boundary conditions were applied at the z=0 surface. 
• A uniformly distributed load in the z-direction was applied at the z=Zmax surface. 
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• If friction is not considered at fault surfaces, the coefficient matrix is symmetric positive definite; there-
fore, the CG method was adopted. 

All of the meshes in this example are uniform cubes. Following three types of models are considered in this exam-
ple: 

Single SMP node test
• NX1=70, NX2=70, NY =40, NZ1= 70, NZ2= 70 (Fig.23 (a)) 
• Total Elements = 784,000, Total Nodes= 823,813, Total DOF= 2,471,439 

Speed-up test
• NX1=70, NX2=70, NY =168, NZ1= 70, NZ2= 70 (Fig.23(a)) 
• Total Elements = 3,292,800, Total Nodes= 3,395,717, Total DOF= 10,187,151 

Large-scale test
• NX1=300, NX2=300, NY =40, NZ1= 200, NZ2= 200 (Fig.23 (a)) 
• Total Elements = 9,600,000, Total Nodes= 9,909,823, Total DOF= 29,729,469 

The second example, shown in Fig.25, is a more complicated model for earthquake simulation in the south-
western part of Japan [3]. This model consists of crust (dark gray) and subduction plates (light gray). There are 
997,422 nodes (2,992,266 DOF) and 960,509 tri-linear (1st-order) hexahedral elements. Average size of mesh is 
order of 15 km. The same boundary conditions as those used in the model of Fig.23 were applied here. In this 
Southwest Japan model, a body force of -1.0 was applied in the z-direction rather than a surface force at the z=Zmax

surface, as in Fig.23, and no symmetry boundary conditions were applied in the x or y directions. In this example, 
the meshes are irregular, and some of the meshes are very distorted. The material property is linear and homoge-
neous (E=1.0, ν =0.30). The globally refined model with 7,767,002 nodes (23,301,006 DOF) and 7,620,057 ele-
ments was also tested using larger number of SMP nodes. 

                     (a) Model and boundary conditions                                    (b) Node, elements and contact groups

Fig.23   Description of the simple block model 
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• MPC at inter-zone boundaries
• Symmetric condition at the x=0 and y=0 surfaces

• Dirichlet fixed condition at the z=0 surface

• Uniform distributed load at the z= Zmax surface
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Fig.24   Matrix operation of nodes in a contact group [4] 

Fig.25   Description of the Southwest Japan model This model consists of crust (dark gray) and subduction plate 
(light gray). 997,422 nodes (2,992,266 DOF) and 960,509 tri-linear (1st order) hexahedral elements are included. 

5.2   Results I (Single SMP Node)
Example tests using a single SMP node of the Earth Simulator have been done for the simple block model 
(NX1=70, NX2=70, NY =40, NZ1= 70, NZ2= 70 (Fig.23), 784,000 elements, 823,813 nodes, 2,471,439 DOF) and 
original Southwest Japan model (960,509 elements, 997,422 nodes, 2,992,266 DOF) for both of flat MPI and hy-
brid parallel programming model 

Figure 26 and 27 show the results. In the cases with many colors, fewer iterations are required for convergence, 
but the performance is worse due to the smaller loop length and greater overhead. In the Southwest Japan model, 
iterations for convergence are not affected by number of colors. This is because there are many distorted elements 
in this model and the coefficient matrices are ill-conditioned. In the hybrid parallel programming model, perform-
ance of 17.6 GFLOPS (27.5% of peak performance, which is 64 GFLOPS) for the simple block model and 18.6 
GFLOPS (29.1% of peak performance) for the Southwest Japan has been obtained. This performance is as good as 
the results in Fig.16 by ICCG solvers for simple geometries with homogeneous boundary conditions, which is 20.5 
GFLOPS for 3M DOF (32.1% of the peak performance). As for the flat MPI, the performance was 20.0 GFLOPS 
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(31.2%) for the simple block model and 20.1 GFLOPS (31.5%) for the Southwest Japan, respectively. Number of 
iterations for convergence is smaller in hybrid than in flat MPI due to the effect of local preconditioning, but per-
formance based on GFLOPS rate is better in flat MPI. Another feature is that hybrid parallel programming model 
is much more sensitive to color number and innermost vector length than flat MPI. If the number of colors in-
creases, effect of synchronization overhead in OpenMP increases, as is shown in Fig.13. 

Figure 28 compares the performance with results obtained by the method without reordering the selective 
blocks according to block size, as shown in Fig.22. Performance is about 60% if this reordering is not applied. 
Figure 29 shows the load-imbalance among PEs on the SMP node and the ratio of dummy off-diagonal compo-
nents. Load-imbalance is computed by the following method: 

 Load Imbalance (%) = 100 × (max. node # - min. node #) / average node # 

The effect of load-imbalance and dummy elements is very small in both models and the effect is negligible in this 
computation. 

        (a) Iterations for convergence                                     (b) Elapsed time for the linear solver

                          (c) GFLOPS rate (based on colors)                   (d) GFLOPS rate (based on average vector length) 

Fig.26   Performance on a single SMP node of the Earth Simulator (peak performance = 64GFLOPS) using SB-
BIC(0) CG with PDJDS/MC reordering for the 3D elastic contact problem with MPC condition (λ=106) in Fig.23 
(Simple Block Model, 2,471,439 DOF). (a) Iterations for convergence, (b) Elapsed time for the linear solver, (c) 
GFLOPS rate (based on colors) and (d) GFLOPS rate (based on average vector length) (BLACK Circles: Flat MPI, 
WHITE Circles: Hybrid).
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                            (a) Iterations for convergence                                        (b) Elapsed time for the linear solver 

                       (c) GFLOPS rate (based on colors)                       (d) GFLOPS rate (based on average vector length)

Fig.27   Performance on a single SMP node of the Earth Simulator (peak performance = 64GFLOPS) using SB-
BIC(0) CG with PDJDS/MC reordering for the 3D elastic contact problem with MPC condition (λ=106) in Fig.25 
(Southwest Japan model, 2,992,266 DOF). (a) Iterations for convergence, (b) Elapsed time for the linear solver, (c) 
GFLOPS rate (based on colors) and (d) GFLOPS rate (based on average vector length) (BLACK Circles: Flat MPI, 
WHITE Circles: Hybrid).
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                                         (a) Simple Block                                                          (b) Southwest Japan  

Fig.28   Effect of reordering of selective block on a single SMP node of the Earth Simulator (peak performance = 
64GFLOPS) using SB-BIC(0) CG for the 3D elastic contact problem with MPC condition (λ=106). Hybrid parallel 
programming model. (a) Simple Block (b) Southwest Japan. (BLACK Circles: WITH reordering, WHITE Circles: 
WITHOUT reordering).  

                                         (a) Simple Block                                                           (b) Southwest Japan  

Fig.29   Load imbalance on a single SMP node for selective blocking preconditioning. Hybrid parallel program-
ming model. (a) Simple Block (b) Southwest Japan. (BLACK Circles: Load-imbalance among PEs on the SMP 
node, WHITE Triangles: Ratio of dummy off-diagonal components).

5.3   Results II (10 SMP Nodes)
Example tests using 10 SMP nodes of the Earth Simulator have been done for the simple block model (NX1=300, 
NX2=300, NY =40, NZ1= 200, NZ2= 200 (Fig.23), 9,600,000 elements, 9,909,823 nodes, 29,729,469 DOF) and 
globally refined Southwest Japan model (7,684,072 elements, 7,767,002 nodes, 23,301,006 DOF) for both of flat 
MPI and hybrid parallel programming model 

Figure 30 and 31 show the results. In the cases with many colors, fewer iterations are required for convergence, 
but the performance is worse due to the smaller loop length and greater overhead. In the hybrid parallel program-
ming model, performance of 178.4 GFLOPS (27.9 % of peak performance, 640 GFLOPS) for the simple block 
model and 163.4 GFLOPS (25.5% of peak performance) for the Southwest Japan has been obtained. As for the flat 
MPI, the performance was 195.0 GFLOPS (30.5%) for the simple block model and 190.4 GFLOPS (29.8%) for 
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the Southwest Japan, respectively. These results are as excellent as those in Fig.19 by ICCG solvers for simple 
geometries with homogeneous boundary conditions, which are 196.1 GFLOPS for 30M DOF (30.6% of the peak 
performance) with hybrid programming model, and 218.9 GFLOPS (34.2%) with flat MPI. Number of iterations 
for convergence is smaller in hybrid than in flat MPI due to the effect of local preconditioning, but performance 
based on GFLOPS rate is better in flat MPI. Hybrid parallel programming model is much more sensitive to color 
number and innermost vector length than flat MPI due to the synchronization overhead. 

Figure 32 shows the increase in speed-up for fixed problem size for the simple block model (NX1=70, 
NX2=70, NY =168, NZ1= 70, NZ2= 70 (Fig.23), 3,292,800 elements, 2,395,717 nodes, 10,187,151 DOF) using 
between 1 and 10 SMP nodes (8 and 80 PEs). Two cases with different number of colors (13 colors and 30 colors) 
have been evaluated. The speed-up ratio for 80 PEs from 16 PEs for hybrid parallel programming model (the case 
with 1 SMP node did not work for hybrid programming model due to memory shortage) was 64.9 (13 colors, 
81.1% of the linear ideal speed-up) and 59.5 (30 colors, 74.4%). The speed-up ratio for 80 PEs from 8 PEs for flat 
MPI was 68.8 (13 colors, 86.0%) and 67.1 (30 colors, 83.9%). Parallel speed-up performance is better in the cases 
with a smaller number of colors.  

                            (a) Iterations for convergence                                       (b) Elapsed time for the linear solver 

                       (c) GFLOPS rate (based on colors)                       (d) GFLOPS rate (based on average vector length)

Fig.30   Performance on 10 SMP node of the Earth Simulator (peak performance = 640 GFLOPS) using SB-
BIC(0) CG with PDJDS/MC reordering for the 3D elastic contact problem with MPC condition (λ=106) in Fig.23 
(Simple Block Model, 29,729,469 DOF). (a) Iterations for convergence, (b) Elapsed time for the linear solver, (c) 
GFLOPS rate (based on colors) and (d) GFLOPS rate (based on average vector length) (BLACK Circles: Flat MPI, 
WHITE Circles: Hybrid).  
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                            (a) Iterations for convergence                                        (b) Elapsed time for the linear solver 

                             (c) GFLOPS rate (based on colors)                (d) GFLOPS rate (based on average vector length) 

Fig.31   Performance on 10 SMP node of the Earth Simulator (peak performance = 640 GFLOPS) using SB-
BIC(0) CG for the 3D elastic contact problem with MPC condition (λ=106) in Fig.25 (Southwest Japan model, 
23,301,006 DOF). (a) Iterations for convergence, (b) Elapsed time for the linear solver, (c) GFLOPS rate (based on 
colors) and (d) GFLOPS rate (based on average vector length) (BLACK Circles: Flat MPI, WHITE Circles: Hy-
brid).  
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(a-1) GFLOPS rate (13 colors)                                         (a-2) GFLOPS rate (30 colors) 

(b-1) Speed-up ratio (13 colors)                                         (b-2) Speed-up ratio (30 colors) 

(c-1) Elapsed time for the linear solver (13 colors)          (c-2) Elapsed time for the linear solver (30 colors) 

Fig.32   Parallel speed-up from 1 to 10 SMP node (8-80 PEs) of the Earth Simulator using SB-BIC(0) CG with 
PDJDS/MC reordering for the 3D elastic contact problem with MPC condition (λ=106) in Fig.23 (Simple Block 
Model, 10,187,151 DOF). (a-1) GFLOPS rate (13 colors),  (a-2) GFLOPS rate (30 colors), (b-1)Speed-up ratio (13 
colors), (b-2)Speed-up ratio (30 colors), (c-1) Elapsed time for the linear solver (13 colors), and  (c-2) Elapsed 
time for the linear solver (30 colors) (BLACK Circles: Flat MPI, WHITE Circles: Hybrid).  
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6. Concluding Remarks and Future Study 

An efficient parallel iterative method with selective blocking preconditioning has been developed for the Earth 
Simulator using hybrid parallel programming model. The method is based on a three-level hybrid parallel pro-
gramming model, which includes message passing for inter-SMP node communication, loop directives by 
OpenMP for intra-SMP node parallelization and vectorization for each processing element. Developed method 
provides robust and smooth convergence and excellent parallel performance in 3D geophysical simulations in 
GeoFEM for both simple and complicated geometries with contact conditions on the Earth Simulator. The selec-
tive blocking preconditioning is much more efficient than ILU(1) and ILU(2). 

The reordering method for SMP cluster architectures with vector processors shown in [5] has been imple-
mented with the selective blocking preconditioning using the MC reordering method. Special treatments for selec-
tive blocking are implemented, which include the introduction of dummy elements and reordering of selective 
blocks according to block size.  

In the cases with many colors, fewer iterations are required for convergence, but the performance is worse due 
to the smaller loop length and greater overhead. Performance of the Earth Simulator is much affected by loop 
length. Usually, performance (GFLOPS rate and elapsed time) is better for a smaller number of colors even though 
more iterations are required for convergence. Number of iterations for convergence is smaller in hybrid than in flat 
MPI due to the effect of local preconditioning, but performance based on GFLOPS rate is better in flat MPI. An-
other feature is that hybrid parallel programming model is much more sensitive to color number and innermost 
vector length than flat MPI. If the number of colors increases, effect of synchronization overhead in OpenMP in-
creases.

Performance of 17.6 GFLOPS (27.5% of peak performance, which is 64 GFLOPS) for the simple block model 
and 18.6 GFLOPS (29.1% of peak performance) for the Southwest Japan has been obtained on a single SMP node 
of the Earth Simulator using hybrid parallel programming model. As for the flat MPI, the performance was 20.0 
GFLOPS (31.2%) for the simple block model and 20.1 GFLOPS (31.5%) for the Southwest Japan, respectively. 
Performance is about 60% in hybrid parallel programming model, if the reordering of selective blocks is not ap-
plied. Results show that the load-imbalance among PEs on the SMP node and the ratio of dummy off-diagonal 
component are not significant. Furthermore, the globally refined Southwest Japan model with more than 23 M 
DOF was tested on 10 SMP nodes (80 PEs) of the Earth Simulator. The best performance is 163.4 GFLOPS, cor-
responding to 25.5% of peak performance using hybrid programming model, and 190.4 GFLOPS (29.8%) by flat 
MPI. Parallel speed-up for fixed problem size between 1 and 10 SMP nodes was more than 80% of the linear ideal 
speed-up.  

In future, large-scale simulations for ground motion will be conducted using more detailed realistic physical 
models with finer meshes, where mesh size is less than 1 km and a greater number of SMP nodes of the Earth 
Simulator. According to the current results, parallel and vector performance is as excellent as that in section 4.6 of 
this paper (Fig.16-19) by ICCG solvers of GeoFEM for simple geometries with homogeneous boundary conditions. 
Therefore, the selective blocking method is expected to show excellent parallel and vector performance in large-
scale problems with hundreds of SMP nodes on the Earth Simulator, as ICCG solvers of GeoFEM attained 3.80 
TFLOPS using 176 SMP nodes of the Earth Simulator (1408 PEs, 33.7% of the peak performance) for simple ge-
ometries with 2.2G DOF. 

One of the most critical issues for large-scale computing is mesh generation. Mesh generation is easy for such 
simple geometry as shown in Fig.14, even if number of domain is more than 1,000, and total mesh number is more 
than 100M. But it is very difficult for complicated geometries, such as Southwest Japan model. Parallel scalable 
mesh generation method, as is described in [23] should be investigated and developed so that computational re-
sources of the Earth Simulator would be efficiently utilized. 

Selective blocking method provides robust and smooth convergence, and excellent parallel and vector per-
formance in 3D geophysical simulations with ill-conditioned coefficient matrices. This method requires that all 
nodes in same contact groups are on same partition in parallel computation. This requirement might be very diffi-
cult for large-scale problems with complicated geometries and boundary conditions. Alternative method, such as 
multilevel method in [24], should be also considered in future study. 
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Appendix:   Estimation of Robustness by Eigenvalue Analysis  

A.1   Overview 
The robustness of the preconditioning method was estimated according to the eigenvalue distribution of the
[M]-1[A] matrix by the method in [8], where [A] is the original coefficient matrix and  [M]-1 is the inverse of the 
preconditioning matrix. 

In a symmetric positive definite matrix, the spectral condition number κ is given by κ=Emax/Emin where Emax

and Emin are the largest and smallest eigenvalues, respectively, of [M]-1[A] [8]. 

A.2   Simple Block Model 
Benchmarks for the simple block model, as shown in Fig.23, have been conducted for a wide range of penalty pa-
rameter values using various types of preconditioners on a single processor (COMPAQ Alpha 21164-600MHz). In 
the benchmarks, the following model is considered:  

• NX1=20, NX2=20, NY =15, NZ1= 20, NZ2= 20 (Fig.4.8(a)) 
• Total Elements = 24,000, Total Nodes = 27,888, Total DOF = 83,664. 

Table A.1 shows the results for convergence. BIC(0) does not converge within 1,000 iterations if λ is larger than 
104. BIC(1), BIC(2) and SB-BIC(0) provide robust convergence for a wide range of λ values. SB-BIC(0) provides 
the most efficient performance although the iteration number for convergence is larger than that for BIC(1) and 
BIC(2). 

Table A.2 shows Emin, Emax and κ derived from each preconditioning method for a range of penalty parameter 
values. According to Table A.2, all of the eigenvalues are approximately constant and close to 1.00 for a wide 
range of λ values except for BIC(0). BIC(1) and BIC(2) provide a slightly smaller κ than SB-BIC(0). 

Proceedings of the ACM/IEEE SC2003 Conference (SC’03) 
1-58113-695-1/03 $ 17.00 © 2003 ACM 



31

Table A.1   Iterations/CPU time (including factorization) for convergence (ε=10-8) on a single PE of COMPAQ 
Alpha 21164/600MHz by preconditioned CG for the 3D elastic contact problem for simple block model with MPC 
condition in Fig.23 (83,664DOF).: BIC(n): Block IC with n-level fill-in, SB-BIC(0): BIC(0) with the selective 
blocking reordering. 

Table A.2  Largest and smallest eigenvalues (Emin, Emax) and κ= Emax/Emin of [M]-1[A] for a wide range of penalty 
parameter values: 3D elastic contact problem for simple block model with MPC condition in Fig.23 (83,664DOF). 

A.3   Southwest Japan Model
Benchmarks of the Southwest Japan model with complicated geometry (23,831 elements, 27,195 nodes, 81,585 
DOF), as shown in Fig.25, have been conducted for a wide range of penalty parameter values using various types 
of preconditioners on a single processor (COMPAQ Alpha 21164-600 MHz). 

Table A.3 shows the results for convergence. BIC(0) does not converge within 1,000 iterations if λ is larger 
than 104. BIC(1), BIC(2) and SB-BIC(0) provide robust convergence for a wide range of λ values but the iteration 
number for convergence increases in BIC(1) and BIC(2) as λ changes from 102 to 104.(BIC(1) from 201 to 259, 
BIC(2) from 176 to 232). SB-BIC(0) provides the most efficient performance although the iteration number for 
convergence is larger than both BIC(1) and BIC(2).  

Table A.4 shows Emin, Emax and κ derived from the eigenvalue analysis of [M]-1[A] for each preconditioning 
method. In SB-BIC(0), Emin, Emax and κ remain constant for a wide range of λ values but κ increases in BIC(1) and 
BIC(2) when λ changes from 102 to 104. This corresponds to the increase in the iteration number for convergence 
in BIC(1) and BIC(2) between λ=102 and λ=104. In this example, the geometry is much more complicated than in 
the previous simple block model. Moreover, meshes are not uniform and some of the meshes are distorted. The 

Preconditioning λ Iter # sec. 
BIC(0) 102 388 202. 

 104 > 1000 N/A 
BIC(1) 102 77 89. 

 106 77 89. 
BIC(2) 102 59 135. 

 106 59 135. 
SB-BIC(0) 102 114 61. 

 106 114 61. 

Preconditioning λ=102 λ=106 λ=1010

BIC(0)         Emin 4.845568E-03 4.865363E-07 4.865374E-11 
                    Emax

                      κ
1.975620E+00 
4.077170E+02 

1.999998E+00 
4.110686E+06 

2.000000E+00 
4.110681E+10 

BIC(1)        Emin 8.901426E-01 8.890643E-01 8.890641E-01 
                   Emax

                      κ
1.013930E+00 
1.139065E+00 

1.013863E+00 
1.140371E+00 

1.013863E+00 
1.140371E+00 

BIC(2)        Emin 9.003662E-01 8.992896E-01 8.992895E-01 
                   Emax

                      κ
1.020256E+00 
1.133157E+00 

1.020144E+00 
1.134388E+00 

1.020144E+00 
1.134389E+00 

SB-BIC(0)  Emin 6.814392E-01 6.816873E-01 6.816873E-01 
                   Emax

                      κ
1.005071E+00 
1.474924E+00 

1.005071E+00 
1.474387E+00 

1.005071E+00 
1.474387E+00 
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distortion of an individual mesh directly affects the components of the coefficient matrix [A] for linear equations 
and the eigenvalue distribution of [M]-1[A]. SB-BIC(0) is robust under such conditions. 

Table A.3   Iterations/CPU time (including factorization) for convergence (ε=10-8) on a single PE of COMPAQ 
Alpha 21164/600MHz by preconditioned CG for the 3D elastic contact problem for Southwest Japan model with 
MPC condition in Fig.25 (81,585DOF).: BIC(n): Block IC with n-level fill-in, SB-BIC(0): BIC(0) with the selec-
tive blocking reordering. 

Table A.4  Largest and smallest eigenvalues (Emin, Emax) and κ= Emax/Emin of [M]-1[A] for a wide range of penalty 
parameter values: 3D elastic contact problem for Southwest Japan model with MPC condition in Fig.25 
(81,585DOF). 

A.4   Remarks 
In both models (simple block and Southwest Japan), the spectral condition number of [M]-1[A] is a helpful 
parameter for the evaluation of the convergence of the preconditioning methods. In the simple block model, the 
spectral condition number of [M]-1[A] by BIC(1) and BIC(2) is usually smaller than that of SB-BIC(0) and the 
iteration number for convergence is smaller (Tables A.1 and A.2). In contrast, the Southwest Japan model provides 
a larger spectral condition number for BIC(1) and BIC(2) than in SB-BIC(0) when λ is larger than 104, but the 
iteration number for the convergence of BIC(1) and BIC(2) is smaller than that for SB-BIC(0) (Tables A.3 and 
A.4).

Preconditioning λ Iter # sec. 
BIC(0) 102 344 172. 

 104 > 1000 N/A 
BIC(1) 102 201 192. 

 104 256 237. 
 106 256 237. 

BIC(2) 102 176 288. 
 104 229 360. 
 106 230 361. 

SB-BIC(0) 102 297 149. 
 104 295 148. 
 106 295 148. 

Preconditioning λ=102 λ=104 λ=106 λ=1010

BIC(0)         Emin 1.970395E-02 1.999700E-04 1.999997E-06 2.000000E-10 
                    Emax

                      κ
1.005194E+00 
5.101486E+01 

1.005194E+00 
5.026725E+03 

1.005194E+00 
5.025979E+05 

1.005194E+00 
5.025971E+09 

BIC(1)        Emin 3.351178E-01 2.294832E-01 2.286390E-01 2.286306E-01 
                   Emax

                      κ
1.142246E+00 
3.408491E+00 

1.142041E+00 
4.976580E+00 

1.142039E+00 
4.994944E+00 

1.142039E+00 
4.995128E+00 

BIC(2)        Emin 3.558432E-01 2.364909E-01 2.346180E-01 2.345990E-01 
                   Emax

                      κ
1.058883E+00 
2.975702E+00 

1.088397E+00 
4.602277E+00 

1.089189E+00 
4.642391E+00 

1.089196E+00 
4.642800E+00 

SB-BIC(0)  Emin 2.380572E-01 2.506369E-01 2.507947E-01 2.507963E-01 
                   Emax

                      κ
1.005194E+00 
4.222491E+00 

1.005455E+00 
4.011600E+00 

1.005465E+00 
4.009117E+00 

1.005466E+00 
4.009092E+00 
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