
Nested OpenMP for Efficient Computation of 
3D Critical Points in Multi-Block CFD Datasets 

Andreas Gerndt1, Samuel Sarholz2, Marc Wolter1, Dieter an Mey2, Christian Bischof2, Torsten Kuhlen1 

 
1Virtual Reality Group, RWTH Aachen University, Germany 

2Center for Computing and Communication, RWTH Aachen University, Germany 
{gerndt, sarholz, wolter, anmey, bischof, kuhlen}@rz.rwth-aachen.de 

 
 
 

Abstract 
Extraction of complex data structures like vector field 
topologies in large-scale, unsteady flow field datasets for 
the interactive exploration in virtual environments cannot 
be carried out without parallelization strategies. We 
present an approach based on Nested OpenMP to find 
critical points, which are the essential parts of velocity 
field topologies. We evaluate our parallelization scheme on 
several multi-block datasets, and present the results for 
various thread counts and loop schedules on all 
parallelization levels. Our experience suggests that 
upcoming massively multi-threaded processor 
architectures can be very advantageously for large-scale 
feature extractions. 
 
Keywords: Flow Field Topology, Nested Parallelization, 
Multi-threading, CFD Post-Processing, Virtual Reality        
 
 

1. Introduction 
Helman and Hesselink were one of the first who described 
approaches to visualize the topology of flow fields 
computed by Computational Fluid Dynamics (CFD) [1]. 
The most important step is to find all locations where the 
velocities vanish. These positions are also called critical 
points. Once detected, they can be classified, and 
separation lines may be computed to illustrate the division 
                                                           
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
to republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. 

SC2006 November 2006, Tampa, Florida, USA 

0-7695-2700-0/06 $20.00 ©2006 IEEE 

of the flow field into homogeneous segments. In the 
meantime, several authors presented a variety of 
improvements. A brief overview of common algorithms for 
vector field topology extraction is given by [2]. 

Due to insufficient depth perception and restricted 
interaction schemes, the topology analysis of 3-
dimensional, turbulent flow fields on desktop graphics 
workstations is often time-consuming and error-prune. 
Virtual environments, however, may offer methods for a 
clearly improved explorative analysis [3]. 

One fundamental demand in virtual environments is real-
time interaction. Therefore, the post-processing of large-
scale and unsteady flow fields should be carried out by 
high-performance clusters in order to relieve the 
visualization front-end and to speed-up the feature 
extraction. 

Complex flow fields are frequently decomposed into 
several grids. In the case of first-order critical point 
computation, the used algorithm is a cell-based approach, 
i.e. no additional information of neighboring cells is 
needed. Moreover, the bisection scheme introduced by 
Globus et al. [4] works on sub-cells which can also be 
processed locally. Therefore, the hypothesis of the work 
presented in this paper is that we might achieve significant 
speed-up by the use of nested parallelization on all depicted 
levels: time level, block level, cell level, and sub-cell level. 
The goal is to find the best distribution of processes to 
these levels for an optimum balancing and scaling. 

The paper is structured as follows: In Section 2 the 
implemented iterative bisection algorithm for the 
identification of vector field topologies is described. 
Afterwards, datasets used to evaluate the critical point 
extraction are examined. Section 4 presents strategies for 
nested parallelization by means of OpenMP. Finally, 
experimental results are presented and evaluated in Section 
5. 

Proceedings of the 2006 ACM/IEEE SC|06 Conference (SC'06)
0-7695-2700-0/06 $20.00  © 2006



2. Critical Points in Vector Fields 
In this paper, only the bisection scheme published by 
Globus et al. is considered which merely handles first-order 
critical points. As this approach is based on structured 
grids, most of the following formulas are mainly valid 
when handling hexahedral cells. Higher-order approaches 
for 2D triangle meshes using the Clifford Algebra are 
presented for instance by Scheuermann et al. in [5]. As an 
extension, Mann and Rockwood describe a 3-dimensional 
method in [6]. Their algorithm is rather similar to the 
approach presented here except for the way to determine 
candidate cells. 

2.1. Critical Point Position 
Scalar and vector fields show topological structures defined 
by characteristic features. For scalar fields, these features 
are local minimum and maximum points. These extrema 
are also called critical points or singularity points of the 
scalar field (cf. [7]). Usually gradients are computed in 
order to determine the entire topological description, which 
again results in a vector field analysis. 

For flow fields, one is particularly interested in the 
investigation of the velocity field, which is defined usually 
by vectors stored at the nodes of the grid. A critical point in 
a vector field is a position where the velocity vector shows 
zero length. In a first step, the position of a critical point 
must be determined. 

Since the flow field is simulated on the basis of a discrete 
grid, only velocities at the vertices of a grid cell can be 
used to estimate whether a critical point lies within the cell 
or not. For structured datasets, the basic cell type is a 
hexahedron. In general, linearity is assumed between cell 
nodes so that tri-linear interpolation can be utilized in order 
to determine the velocity at an arbitrary position within a 
cell. 

Furthermore, we have to transform a curved hexahedron 
from physical space ( -space) into computational space 
( -space). Thereafter, the next steps only work with unit 
cubes defined in natural coordinates. Let xi,j,k be the cell 
node with the lowest index in -space and let f (xi,j,k) be the 
velocity at that vertex, then the tri-linear interpolation 
function parameterized by α, β, γ within a range of [0,1] is 
defined as follows: 

  

1

, ,
, , 0

0 1

( , , ) ( ) ( ) ( ) ( );

( ) 1 ; ( )

i I j J k K I J K
I J K

TL f xα β γ ψ α ψ β ψ γ

ψ α α ψ α α

+ + +
=

= ⋅

= − =

∑  

  (1) 

A 3D critical point is found where the following equation 
holds:  

 ( )( , , ) 0,0,0 TTL α β γ =  

 

However, finding roots analytically using Equation (1) is 
hardly practicable. Instead, the Newton-Raphson iteration 
is usually applied (cf. e.g. [8]). As vectors and matrices 
occur, the Newton-Raphson formula can be rearranged and 
than looks as follows: 

 ( ) 1
1 ( ) ( )i i i ix x f x f x−

+ ′= −  

 

This approach is a predictor-corrector method and is 
applied until the distance between the position xi and xi+1 is 
below a threshold. In order to find the roots of the tri-linear 
interpolation function, we also need its derivative: 

 

/
( , , ) /

/

TTL
TL TL

TL

α
α β γ β

γ

∂ ∂⎛ ⎞
⎜ ⎟′ = ∂ ∂⎜ ⎟
⎜ ⎟∂ ∂⎝ ⎠

 (2) 

 

The partial derivatives may easily be determined 
analytically by using the polynomial form of Equation (1). 
Also the computation of its inverse is rather straightforward 
as TL' is non-singular. Generally, the inverse of a non-
singular 3-dimensional square matrix A is: 

  

22 33 23 32 13 32 12 33 12 23 13 22
1

23 31 21 33 11 33 13 31 13 21 11 23

21 32 22 31 12 31 11 32 11 22 12 21

1
a a a a a a a a a a a a

A a a a a a a a a a a a a
A

a a a a a a a a a a a a

−

− − −⎛ ⎞
⎜ ⎟= − − −⎜ ⎟
⎜ ⎟− − −⎝ ⎠

 

 

There are, however, some restrictions when using the 
Newton-Raphson iteration. First, we need a "good" starting 
position x0. Otherwise, the iteration might never terminate. 
In our case, we always use the cell mid-point in -space as 
an initial position and iterate only until a certain maximum 
number of steps is reached. 

Second, the approach will always find only one root 
although multiple roots within a cell are possible. 
Therefore, before applying Newton-Raphson iteration, a 
sub-division scheme called bisection is carried out dividing 
a hexahedron into eight sub-cells. The velocities at the sub-
cell's vertices are again determined by tri-linear 
interpolation. Bisection allows not only the detection of 
multiple critical points but also improves the convergence 
of Newton-Raphson. 

Proceedings of the 2006 ACM/IEEE SC|06 Conference (SC'06)
0-7695-2700-0/06 $20.00  © 2006



But not each hexahedral cell contains critical points. A 
heuristic exists which estimates whether a cell might 
include roots of the tri-linear function or not. These cells 
are called candidate cells and are exclusively considered 
for the subsequent bisection scheme. Other cells are 
discarded. The heuristic used here simply compares the x-, 
y-, and z-components of all velocity vectors stored at the 
cell vertices. If the signs of all components change in any 
comparison of these vectors, a candidate cell is found. For 
2-D, the following figure depicts a candidate cell: 

(-,+)
(+,+)

(-,-) (+,-)

 
Figure 1. Sign test to determine 2-D candidate cells. 

After one bisection step, the candidate cell test is again 
carried out. Sub-cells determined as candidates are used for 
further bisection steps. This iterative sub-division can now 
be applied until a certain bisection depth is reached or the 
velocities at all vertices of a sub-cell are below a threshold. 
After the bisection terminates, the actual critical point 
position can now be determined by the Newton-Raphson 
iteration. 

2.2.  -Space Transformation 
The algorithm described works only if the hexahedron cell 
is aligned along the coordinate axes and if all its edges 
have length 1. This is the reason to convert each cell first of 
all from -space to -space. The transformation is defined 
by vertex positions of each cell and can be described by the 
Jacobian: 

 

/ / /
/ / /
/ / /

x x x

x y y y

z z z

x x x y x z
J x x x x y x z

x x x y x z

∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞
⎜ ⎟= ∇ = ∂ ∂ ∂ ∂ ∂ ∂⎜ ⎟
⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 

The function x transforms an arbitrary point from -space 
to -space. It is not a continuous function. Cell vertices are 
simply mapped onto the corresponding discrete i,j,k-
coordinates. Within cells, -space positions, still 
determined by tri-linear interpolation, are mapped onto i+α, 
j+β, k+γ. Therefore, the so-called continuous Jacobian (cf. 
[9]) is merely defined for one cell and consists of partial 
derivatives of Equation (1): 

  

/ / /
( , , ) / / /

/ / /

x x x

x y y y

z z z

TL TL TL
J TL TL TL

TL TL TL

∂ ∂α ∂ ∂β ∂ ∂γ⎛ ⎞
⎜ ⎟α β γ = ∂ ∂α ∂ ∂β ∂ ∂γ⎜ ⎟
⎜ ⎟∂ ∂α ∂ ∂β ∂ ∂γ⎝ ⎠

 

This formula is equivalent to the derivation of the tri-linear 
function defined in Equation (2) but now vertex positions 
instead of velocities are used as input values. The Jacobian 
can be applied for -space to -space transformation of 
velocities defined at cell vertices: 

 v x u= ∇ ⋅  

Velocity vectors are denoted by v in -space and by u in -
space, respectively. We are, however, interested in the 
reverse transformation which is just the inverse Jacobian 
(cf. [10]): 

 1u x v−= ∇ ⋅  

 

2.3. Critical Point Classification 
Critical points classify the flow field behavior in their 
immediate vicinity. For the assessment, the velocity 
gradient tensor is needed, which is defined as the Jacobian 
Jv of the velocity field. 

 

/ / /
/ / /
/ / /

x x x

v y y y

z z z

v x v y v z
J v v x v y v z

v x v y v z

∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞
⎜ ⎟= ∇ = ∂ ∂ ∂ ∂ ∂ ∂⎜ ⎟
⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (3) 

For trilinear hexahedral elements, eight shape functions Ni 
(one for each node) can be determined by means of 
Equation (1) [11]. Let vi be the velocities at the nodes, than 
they can be directly applied to compute the interpolated 
velocity field within a cell: 

 
7

0
( , , ) ( , , )i i

i
v N v N vα β γ α β γ

=

= ⋅ = ⋅∑  

This equation can now be used to compute the velocity 
gradient tensor given in Equation (3) for a certain position. 

The final step for the classification is to compute the 
eigensystem of the yielded Jacobian Jv. The result consists 
of three real eigenvalues and eigenvectors, or two complex 
conjugate and one real eigenvalues and eigenvectors, 
respectively. Exclusively real values identify nodes, 
otherwise spirals are detected [12]. 

Proceedings of the 2006 ACM/IEEE SC|06 Conference (SC'06)
0-7695-2700-0/06 $20.00  © 2006



For 2-D flow fields, streamlines along real eigenvectors 
describes the complete topology of the velocity field. For 
the 3D case, these so-called separatrices just give an 
impression of the topology (cf. Figure 2). Separating 
surfaces [13] or connectors [12] are more accurate. This 
paper, however, does not cover the computation of the 
entire topology structure. 

 
Figure 2. Engine, critical point symbols and 

separatrices. 

3. Datasets 
A variety of datasets was utilized in order to explore the 
behavior of the critical point computation algorithm. The 
specifications of the four presented datasets are depicted in 
Table 1. 

The smallest but most interesting dataset is a spark ignition 
engine where only the inflow and compression phase were 
simulated. It is a multi-block (MB) dataset where the 
chamber and the inlet valves are decomposed into 23 
structured grids (cf. Figure 3). The position and the number 
of vertices and cells may change between two successive 
time levels. From time level 35 onwards, the valves are 
closed and were not considered by the simulation anymore 

so that the dataset is reduced by the 6 concerned blocks to 
17 blocks. 

 
Figure 3. Differentially colored blocks of the Engine 

multi-block dataset. 

 
For all datasets, the total amount of occurring critical points 
was computed. In Figure 4 the found critical points of the 
engine dataset are presented per time level. 

0

100

200

300

400

500

600

700

800

900

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61
Time Level

N
um

be
r o

f C
rit

ic
al

 P
oi

nt
s

 
Figure 4. Engine, amount of critical points. 

 Courtesy by Time Levels 
(TL) 

Blocks / TL Cells / TL Total Blocks Total Size 

Engine AIA 62 23 / 17     37 170 - 
191 960 

1 318   365 MB 

Propfan DLR 50 144 2 373 600 7 200 5 137 MB 

Dual Vortex AIA 152 8 2 359 296 1 216 12.6 GB 

Shock AIA 919 1 1 901 592   919 73.4 GB 

Table 1: Specification of used datasets 

Proceedings of the 2006 ACM/IEEE SC|06 Conference (SC'06)
0-7695-2700-0/06 $20.00  © 2006



One can see that critical points are primarily detected 
during the inflow process (time level 1 to 34). To identify 
the cost of the bisection approach, the runtime for the basic 
load (cell traversal, -space transformation and initial 
candidate cell test) as well as the total runtime were 
measured. The results for the engine are depicted in Figure 
5. Whereas the initial load is independent of the selected 
bisection depth, the total runtime is not. The presented 
result was measured using a bisection depth of 6. 

0

10

20

30

40

50

60

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61
Time Level

R
un

tim
e 

[s
]

Basic Load Total Runtime

 
Figure 5. Engine, basic load and total computation load. 

 

A high peak can be detected around time level 18. This is 
the situation where the valves stop and change their 
directions. Thereafter, they move against the inflow. For 
that situation, velocities close to the valve boundary are 
almost zero. Here, the bisection approach detects a large 
amount of sub-cells with opposite directions, which results 
in high bisection expense. The Newton-Raphson iteration 
needs also a lot of time as it does not converge quickly or 
not at all (cf. Figure 6). 

0

10

20

30

40

50

60

t16 t18 t30
Selected Time Levels

R
un

tim
e 

[s
]

Classification
Newton Iteration
Bisection / Cand.Test
P-Space to C-Space
Cell Traversal

 
Figure 6. Engine, single processing steps for several 

time levels. 

Finally, not only one location but a complete line of critical 
points is extracted. After time level 18, the next time levels 
(up to level 35) also identify critical point lines but because 

of the increasing velocity of the moving valves the 
algorithm is able to detect candidate cells more accurately. 
As a result, the runtime needed for bisection and Newton-
Raphson iteration is considerably reduced. 

Only some blocks (cf. Figure 7) are involved in the runtime 
peak around time level 18. This can cause balancing 
problems during parallel data extraction. 

0

2

4

6

8

10

12

14

16

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61
Time Level

R
un

tim
e 

[s
]

B14 B15 B18 B19 B20 B21

 
Figure 7. Blocks with highest load are depicted. 

The second dataset is a counter-rotating propulsion turbine. 
Merely 12 blocks for one blade are used for the simulation 
(cf. Figure 8) as the flow field around each of the 12 blades 
is identical. For general post-processing, we completed the 
propfan dataset by replicating and rotating the original 
blocks, which yields the largest dataset per time level of the 
test suite with 2.4 million cells distributed among 144 
block files (cf. Table 1). 

 
Figure 8. Single Blocks of one twelfth of the propfan 

dataset (left: inner view, right: outer view). 

Again, the number of critical points (cf. Figure 9) as well 
as the basic load and the total runtime (cf. Figure 10) were 

Proceedings of the 2006 ACM/IEEE SC|06 Conference (SC'06)
0-7695-2700-0/06 $20.00  © 2006



measured. But now, a bisection depth of 6 and 10 were 
used. Whereas the number of critical points and the basic 
load are not affected by the increasing depth, one can see 
that new small peaks for the total runtime appears at time 
level 11 and 37. The reason is similar to the case of the 
engine. The bisection does not follow just one subdivision 
path but searches in breadth. Instead of 5 bisections on 
average, now up to 2155 bisections are carried out. 

0
12
24
36
48
60
72
84
96

108
120
132
144
156
168

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
Time Level

N
um

be
r o

f C
rit

ic
al

 P
oi

nt
s

 
Figure 9. Propfan, amount of critical points. 

45

46

47

48

49

50

51

52

53

54

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
Time Level

R
un

tim
e 

[s
]

Basic Load Bisection 6 Bisection 10

 
Figure 10. Propfan, basic load and computational load 

for bisection depth 6 and 10. 

The third dataset used in this paper consists of less but 
larger blocks per time level. The dual vortex dataset shows 
two moving vortex tubes, which burst approximately from 
time level 100 onwards. The number of critical points (cf. 
Figure 11) does not increase when the vortices burst, but 
since finding the exact location is now more complicated, 
runtime is higher (cf. Figure 12). 

Instead of the others, the shock dataset is not a multi-block 
dataset but a rectilinear one. It contains more time levels 

than the other datasets. Furthermore, the number of critical 
points increases over time (cf. Figure 13). Because of 

0

100

200

300

400

500

600

700

800

1 13 25 37 49 61 73 85 97 109 121 133 145
Time Level

N
um

be
r o

f C
rit

ic
al

 P
oi

nt
s

 
Figure 11. Dual Vortex, amount of critical points. 

44

45

46

47

48

49

50

51

52

53

1 13 25 37 49 61 73 85 97 109 121 133 145
Time Level

R
un

tim
e 

[s
]

Basic Load Total Runtime

 
Figure 12. Dual Vortex, basic and total load. 

0
20

40
60

80
100

120
140

160
180

200

1 101 201 301 401 501 601 701 801 901
Time Level

N
um

be
r o

f C
rit

ic
al

 P
oi

nt
s

 
Figure 13. Shock, amount of critical points. 

Proceedings of the 2006 ACM/IEEE SC|06 Conference (SC'06)
0-7695-2700-0/06 $20.00  © 2006



dominant flow direction and the rectangular shape of the 
cells, the bisection approach finds critical points accurately 
and fast (cf. Figure 14). 

36

37

38

39

40

41

42

1 101 201 301 401 501 601 701 801 901
Time Level

R
un

tim
e 

[s
]

Basic Load Total Runtime

 
Figure 14. Shock, basic and total load. 

Due to their various features, we thus consider these 
datasets good candidates for evaluating the parallel strategy 
presented in the following sections. 

4. Parallelization 
The following measurements were carried out on a Sun 
Fire E25K equipped with 72 UltraSparc IV dual-core 
processors, which is part of the supercomputer installed at 
the Center for Computing and Communication (CCC) of 
the RWTH Aachen University. The entire SMP cluster 
consists of 4 Sun Fire E25K nodes, 16 Sun Fire E6900 
nodes, and 8 Sun Fire E2900 nodes. 

A Linux cluster equipped with commodity graphics cards 
by NVidia operates a 5-side CAVE-like Virtual Reality 
display system [14]. For CFD post-processing purposes, a 
distributed software system has been developed. One part 
called ViSTA FlowLib [15] is responsible for the efficient, 
real-time rendering. The other part is the parallelization 
framework Viracocha [16], which runs at the HPC cluster 
and is applied for time-consuming CFD post-processing. 

Viracocha is organized in several software layers. The 
lowest layer controls the communication among involved 
distributed components and the protocols, e.g. MPI, used. 
The middle layer manages incoming computation requests 
and running post-processing jobs. The top-most layer 
contains algorithm specific objects like the critical point 
computation parallelized with Nested OpenMP discussed in 
this paper. 

Viracocha is available as a set of 32-bit libraries. As we are 
just interested in measuring the runtime of the parallel 

feature extraction, we always preloaded the entire dataset 
into the main memory. For handling large datasets, the 
available address space of a 32-bit framework, however, 
would be too restrictive which is why we took the 
algorithm module of Viracocha, compiled it as a 64-bit 
library version, and invoked the parallelized critical point 
computation from within a test suite. Consequently, the 
MPI layer of Viracocha was not available so that only 
OpenMP could be considered. 
 

OpenMP [17] was designed for a straightforward 
parallelization of sequential codes for shared-memory 
systems by means of pragma directives. Loops are the 
primary target for distributing the computational work to 
multiple threads. The OpenMP parallel loop directive 
currently offers three different schedule kinds, which 
permit careful control of the distribution of work to 
threads. This is particularly useful if the loop iterations 
differ considerably in their computational costs. Such 
strategies are not offered, for instance, by MPI and it would 
be tedious to implement them. However, as will be 
explained later, we encountered load imbalances on all 
levels of parallelization that have been exploited for the 
critical point computation. 

The simplest loop schedule is static, which causes an 
equal distribution of loop iterations to all threads. There is 
only a slight overhead involved but if the loop iterations 
heavily vary in their costs, such a schedule might lead to 
load imbalance. A chunk size parameter allows the 
bundling of iterations into chunks of the specified size as 
they are assigned to the threads. For static, chunks are 
distributed in a Round Robin manner. 

On the other hand, OpenMP offers the dynamic schedule, 
which assigns iterations to the threads after they are done 
with their previous work. This eliminates any load 
imbalances as far as possible, but it also involves a higher 
scheduling overhead that primarily depends on the number 
of chunks. 

The third schedule kind is the guided schedule, which is 
the second dynamic strategy to distribute work to threads. 
Whereas the static and the dynamic schedule always 
assign chunks of the given size – except for the last chunk 
of a loop, which may have fewer iterations – the guided 
schedule starts with larger chunks and then gradually 
reduces their size towards the end of the loop iteration 
space. The size of each chunk is proportional to the number 
of still unassigned iterations divided by the number of 
threads and is calculated with Equation (4). In this case, the 
chunk size parameter just specifies the minimum chunk 
size. 

 # __
#

unassigned iterationschunk size
c threads

=
⋅

 (4) 

Proceedings of the 2006 ACM/IEEE SC|06 Conference (SC'06)
0-7695-2700-0/06 $20.00  © 2006



Sun's OpenMP implementation allows adjusting the weight 
parameter c in Equation (4) and uses 2 as a default value. A 
large weight parameter leads to a schedule that is similar to 
dynamic. A smaller c reduces the overhead but might 
increase the load imbalance. 

In our algorithm, we heavily profit from nested 
parallelization which is well supported by the Sun OpenMP 
compiler. The mayor sources of parallelism are the three 
outermost loops processing time steps, blocks, and cells. 
Furthermore, we investigated the parallelization of the 
bisection algorithm on the sub-cell level. The latter aspect 
is only discussed in more detail for the engine dataset in 
Section 5.1. 

Above all, we varied the number of threads and the loop 
scheduling on the three outer levels. The dynamic 
schedule seemed to be an adequate choice for higher 
parallelization levels as scheduling overhead should play a 
less dominant role. Furthermore, best load balancing may 
be achieved with a selected chunk size of 1. For the cell 
level, however, we expected that the guided schedule 
leads to an optimum compromise between scheduling 
overhead and load balancing. Therefore, we applied the 
following scheduling and chunk size parameters for our 
experiments: 

 
 #pragma omp parallel for num_threads \ 
     (nTimeThreads) schedule(dynamic,1) 
 for (curT=1; curT<=maxT; ++curT) { 
 #pragma omp parallel for num_threads \ 
     (nBlockThreads) schedule(dynamic,1) 
   for (curB=1; curB<=maxB; ++curB) { 
 #pragma omp parallel for num_threads \ 
       (nCellThreads) schedule(guided) 
     for (curC=1; curC<=maxC; ++curC) { 
       FindCriticalPoints ( 
               curT, curB, curC); 
 } } } 
 

Listing 1: Used scheduling for Nested OpenMP. 

5. Results 
Let n be the number of threads involved. We used up to 
128 processors and measured all powers of two 
combinations of thread distributions to the parallelization 
levels. The amount of threads for the time level is denoted 
as ti and for block level as bj. The number of threads 
assigned to the cell level denoted as ck is n / (i · j). For all 
but the engine dataset, we selected a maximal bisection 
depth of 10. The engine is only divided up to a depth of 6. 
The speed-up results obtained by the nested parallel critical 
point computation utilizing the engine dataset are depicted 
in Figure 15. 

0

5

10

15

20

25

30

35

40

1 2 4 8 16 32 64 128
Number of Processes

S
pe

ed
up

t1 b1 t1 b2 t4 b2 t4 b4

t16 b4 t32 b2 t64 b1 Optimum

 
Figure 15. Engine, speed-up of selected probes. 

 
Employing more than 4 threads on each of the two outer 
levels is not profitable because of the severe load 
imbalance caused by the peak in time level 18, block 20 
and 21 (cf. Figure 7). On the other hand, scalability of the 
cell-based parallelization alone (cf. [t1,b1]) is limited as 
well. The speed-up drops when using more than 32 threads. 
Best results can be obtained by the combination of the three 
levels. 

Looking at the propfan results (cf. Figure 16), the trend is 
similar but the speed-up is much better than for the 
previous dataset in all cases. A maximum is now reached at 
[t4,b16] and [t8,b16], respectively, and is close to the 
optimum speed-up. Due to a better load balance between 
time levels and due to a higher number of blocks, it is 
profitable to use more threads on the higher parallelization 
levels. 

0

20

40

60

80

100

120

140

1 2 4 8 16 32 64 128
Number of Processes

S
pe

ed
up

t1 b1 t1 b4 t2 b4
t4 b16 t8 b16 t64 b2 Optimum

 
Figure 16. Propfan, speed-up of selected probes. 

Proceedings of the 2006 ACM/IEEE SC|06 Conference (SC'06)
0-7695-2700-0/06 $20.00  © 2006



The speed-up is even better for the dual vortex dataset (cf. 
Figure 17) and the shock dataset (cf. Figure 18). The 
[t8,b2] and the [t32,b1] measurement, respectively, show 
almost perfect scalability. As the shock dataset only 
contains a single block, only two levels of parallelism are 
available. 

0

20

40

60

80

100

120

140

1 2 4 8 16 32 64 128
Number Processes

S
pe

ed
up

t1 b1 t1 b2 t2 b2
t8 b2 t64 b2 t128 b1 Optimum

 
Figure 17. Dual Vortex, speed-up of selected probes. 

0

20

40

60

80

100

120

140

1 2 4 8 16 32 64 128
Number of Processes

S
pe

ed
up

t1 b1 t2 b1 t4 b1
t32 b1 t128 b1 Optimum

 
Figure 18. Shock, speed-up of selected probes. 

 

5.1. Variation of Loop Schedules 
In order to assess the measured runtimes, we also modified 
scheduling parameters and chunk sizes. If, for example, the 
simple static schedule is used on all three loop levels, 
the achieved speed-up drops to 30% (engine: 10.38) and 
92% (shock: 116.19), respectively. 

The engine dataset suffers from the heavy load imbalance 
introduced by block 20 and 21 of time level 18 (cf. Figure 

7). In the following, we only consider this sub-problem. 
We deactivated the both uppermost parallelization levels 
and just looked at the cell and the sub-cell levels. As 4 
threads could be profitably employed for the higher levels, 
as has been discussed before, only 8 threads are available 
on these lower levels. Running the sub-cell level with these 
8 threads only leads to a speed-up of 2.36 compared to a 
performance gain of 4.16 when parallelizing the cell level. 

Alternatively, we also modified the guided weight 
parameter (cf. Equation (4)). Figure 19 shows the result of 
parameter study when varying the number of threads and 
the weight factor of the guided schedule applied to the 
cell level loop. Using just 8 threads, a weight of 20 shows 
the best speed-up. This modification led to an improvement 
of the speed-up from 4.16 to 6.37. Furthermore, applying 
the weight factor 20 for the entire engine dataset, the 
overall speed-up using 128 processors ([t4,b4,c8]) could be 
improved from 33.67 (cf. Figure 15) to 55.18. 

guided guided,5 guided,10
guided,20 guided,50 Optimum

0

5

10

15

20

25

30

1 2 4 8 16 32 64 128
Number of Processes

S
pe

ed
up

 
Figure 19. Engine, varying weights for guided 

processing block 20 and 21 at time level 18. 

6. Conclusions and Future Work 
Multi-level parallelization of the critical point computation 
using OpenMP was very successful for all investigated 
datasets. Using 128 threads, the worst case led to a speed-
up of 55.18. For all the other datasets, measurements 
indicate that even larger shared-memory systems than the 
144 core Sun Fire E25K would have been beneficial. 

For instance, the elapsed time of the critical point 
computation for the dual vortex dataset could be reduced 
from 2.5 hours down to 73 seconds. The calculation related 
to the shock dataset, which took 12 hours and 18 minutes 
sequentially before, was reduced to about 6 minutes, a 
tremendous reduction in runtime. For data exploration in 
virtual environments, usually not all but a subset of time 

Proceedings of the 2006 ACM/IEEE SC|06 Conference (SC'06)
0-7695-2700-0/06 $20.00  © 2006



levels is applied. Therefore, a stride of 10 time levels for 
the shock dataset results in a highly satisfying processing 
time of only 35 seconds. This is fairly acceptable for large-
scale data exploration with real-time systems. 

Nested parallelization offers several degrees of freedom in 
choosing the number of threads and the loop schedule on 
each level. Based on numerous experiments, it is possible 
to develop first heuristics to determine a reasonable thread 
count for all three levels based on the number of time steps, 
blocks, and cells. These, however, do not allow complete 
elimination of all kinds of load imbalances as described for 
the engine dataset. Therefore, we are currently working on 
strategies for automatic adjustment of the available 
parallelization parameters. 

Another promising approach might be the usage of the task 
queuing work-sharing construct, which is particularly 
suitable for the parallelization of the bisection algorithm on 
the sub-cell level. Task queuing is currently implemented 
in the Intel compiler [18] and a similar mechanism is 
expected to be accepted for the upcoming OpenMP 3.0 
specification. 

In this paper, the underlying parallelization framework 
Viracocha was not the focus. However, we additionally 
benefit from multiple shared-memory nodes by exploiting 
its hybrid parallelization scheme. In this paper, we also 
ignored loading data. Nevertheless, the influence of file 
system performance has to be assessed as well. A 
prerequisite is a complete 64-bit port of Viracocha. 

7. Acknowledge 
We would like to thank the German Research Foundation 
(DFG), who funded some of the methodical work. We are 
also grateful to the Institute of Aerodynamics, RWTH 
Aachen University, and to the German Aerospace Center 
(DLR), Institute of Propulsion Technology, Cologne, who 
kindly made available datasets for evaluation purposes. 
 

8. References 
 

[1] J. Helman, L. Hesselink, “Visualizing Vector Field 
Topology in Fluid Flows”, IEEE Computer Graphics 
and Applications, Vol. 11, Num. 3, pp. 36 – 46, 1991. 

[2] T. Weinkauf, H. Theisel, H.-C. Hege, H.-P. Seidel, 
“Topological Construction and Visualization of 
Higher Order 3D Vector Fields”, Proceedings, 
Eurographics, Grenoble, France, 2004. 

[3] T. Kuhlen, A. Gerndt, I. Assenmacher, B. Hentschel, 
M. Schirski, M. Wolter, C. Bischof, “Analysis of 
Flow Phenomena in Virtual Environments – Benefits, 

 

Challenges, and Solutions”, Proceedings, 11th 
International Conference on Human Computer 
Interaction, HCII 2005, Las Vegas, NV, 2005. 

[4] A. Globus, C. Levit, T. Lasinki, “A Tool for 
Visualization the Topology of Three-Dimensional 
Vector Fields”, Proceedings, IEEE Visualization, San 
Jose, CA, pp. 33 – 40, 1991. 

[5] G. Scheuermann, H. Krüger, M. Menzel, A. P. 
Rockwood, “Visualizing Nonlinear Vector Field 
Topology”, IEEE Transactions on Visualization and 
Computer Graphics, Vol. 4, Num. 2, pp. 109 – 116, 
1998. 

[6] S. Mann, A. Rockwood, “Computing Singularities of 
3D Vector Fields with Geometric Algebra”, 
Proceedings, IEEE Visualization, Boston, MA, pp. 
283 – 289, 2002. 

[7] C. L. Bajaj, V. Pascucci, D. R. Schikore, 
“Visualization of Scalar Topology for Structural 
Enhancement”, Proceedings, IEEE Visualization, 
Research Triangle Park, NC, pp. 51 – 58, 1998. 

[8] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. 
Flannery, “Numerical Recipes in C++”, Cambridge 
University Press, 2002. 

[9] I. A. Sadarjoen, T. van Walsum, A. J. S. Hin, F. H. 
Post, “Particle Tracing Algorithms for 3D Curvilinear 
Grids”, in: G. M. Nielson, H. Hagen, H. Müller, 
“Scientific Visualization - Overview, Methodologies, 
Techniques”, IEEE Computer Society Press, pp. 311 
– 335, 1997. 

[10] D. A. Lane, “Scientific Visualization of Large-Scale 
Unsteady Fluid Flows”, in: G. M. Nielson, H. Hagen, 
H. Müller, “Scientific Visualization - Overview, 
Methodologies, Techniques”, IEEE Computer Society 
Press, pp. 125 – 145, 1997. 

[11] T. J. R. Hughes, “The Finite Element Method - Linear 
Static and Dynamic Finite Element Analysis”, 
Prentice-Hall International, Inc., 1987. 

[12] H. Theisel, T. Weinkauf, H.-C. Hege, H.-P. Seidel, 
“Saddle Connectors - An Approach to Visualizing the 
Topological Skeleton of Complex 3D Vector Fields”, 
Proceedings of IEEE Visualization, Seattle, WA, pp. 
225 – 232, 2003. 

[13] K. Mahrous, J. Bennett, G. Scheuermann, B. Hamann, 
K. I. Joy, “Topological Segmentation in Three-
Dimensional Vector Fields”, IEEE Transactions on 
Visualization and Computer Graphics, Vol. 10, Num. 
2, pp. 198 – 205, 2004. 

[14] C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, 
“Surround-Screen Projection-Based Virtual Reality: 
The Design and the Implementation of the CAVE”, 
Proceedings, ACM Siggraph, Anaheim, CA, ACM 
Press, pp. 135 – 142, 1993. 

Proceedings of the 2006 ACM/IEEE SC|06 Conference (SC'06)
0-7695-2700-0/06 $20.00  © 2006



 

[15] M. Schirski, A. Gerndt, T. van Reimersdahl, T. 
Kuhlen, P. Adomeit, O. Lang, S. Pischinger, C. 
Bischof, “ViSTA FlowLib – A Framework for 
Interactive Visualization and Exploration of Unsteady 
Flows in Virtual Environments”, Proceedings, 7th 
International Immersive Projection Technologies 
Workshop, and 9th Eurographics Workshop on 
Virtual Environments, Zurich, Switzerland, ACM 
Siggraph, pp. 77 – 85, 2003. 

[16] A. Gerndt, B. Hentschel, M. Wolter, T. Kuhlen, C. 
Bischof, “Viracocha: An Efficient Parallelization 
Framework for Large-Scale CFD Post-Processing in 

 

Virtual Environments”, Proceedings, The 
International Conference for High Performance 
Computing and Communications, SC2004, 
Pittsburgh, PA, 2004. 

[17] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. 
Maydan, J. McDonald, “Parallel Programming in 
OpenMP”, Morgan Kaufmann, 1998. 

[18] E. Su, X. Tian, M. Girkar, G. Haab, S. Shah, P. 
Petersen, “Compiler Support of the Workqueuing 
Execution Model for Intel SMP Architectures“, 
Proceedings, EWOMP, Rome, Italy, 2002. 

 

Proceedings of the 2006 ACM/IEEE SC|06 Conference (SC'06)
0-7695-2700-0/06 $20.00  © 2006



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


