
1

AUTO-GC: Automatic Translation of Data Mining
Applications to GPU Clusters

Wenjing Ma Gagan Agrawal
Department of Computer Science and Engineering

The Ohio State University
Columbus, OH 43210

{mawe,agrawal}@cse.ohio-state.edu

Abstract—Because of the very favorable price to performance
ratio of the GPUs, a popular parallel programming configuration
today is a cluster of GPUs. However, extracting performance on
such a configuration would typically require programming in
both MPI and CUDA, thus requiring a high degree of expertise
and effort. It is clearly desirable to be able to support higher-
level programming of this emerging high-performance computing
platform.

This paper reports on a code generation system that can
translate data mining applications on a GPU cluster. Our work
is driven by the observation that a common processing structure,
that of generalized reductions, fits a large number of popular data
mining algorithms. In our solution, the programmers simply need
to specify the sequential reduction loop(s) with some additional
information about the parameters. We use program analysis and
code generation to automatically map the applications to the API
of FREERIDE, which is a middleware for parallel data mining.
We also automatically generate CUDA code for using the GPU
on each node of the cluster.

We have evaluated our system using two popular data min-
ing applications, k-means clustering and Principal Component
Analysis (PCA). We observed good scalability over the number
of computing nodes, and the automatically generated version did
not have any noticeable overheads compared to hand written
codes. The speedup obtained by using GPU over using only the
CPU on each node of a cluster is between 3 and 21.

Keywords-GPGPU, CUDA, Data Mining, cluster

I. INTRODUCTION

As uniprocessor speeds have not been increasing, a pop-
ular parallel processing configuration today is a cluster of
machines, with an accelerator like GPU on each node. Modern
GPUs offer a very favorable price to performance ratio. Thus,
even a small cluster of nodes with GPUs can have a very high
peak performance. GPU clusters have received a significant
attention lately in the parallel computing community [15], [8],
[28].

However, extracting performance from such clusters in-
volves a very difficult programmability challenge. Clusters
have traditionally been programmed using MPI, whereas
GPUs are programmed using CUDA or OpenCL. While both
MPI and CUDA have been popular, they both require low-
level and explicitly parallel programming. Thus, developing
a highly tuned application for a cluster with GPUs requires
a lot of programming effort, besides requiring expertise in
both. It will clearly be desirable to have compilation and/or

runtime systems that can enable higher-level programming of
such clusters.

This paper presents such a solution, targeting a particular
class of applications. The class of applications we consider
are the data-intensive applications, including the popular data
mining applications. It is very common for a cluster used
for data-intensive computing to have visualization capabilities,
which means that each node has a powerful graphics card.
Thus, we see a good match between data-intensive applications
and clusters with GPUs.

In this paper, we offer a runtime and compilation system
(AUTO-GC) that is driven by the observation that a common
processing structure fits a large number of popular data-
intensive applications. The common processing structure is
of generalized reductions. For applications that follow this
structure, parallelization on a cluster can be done by dividing
the data instances (or records or transactions) among the
nodes. The computation on each node involves reading the data
instances in an arbitrary order, processing each data instance,
and performing a local reduction. The reduction involves
only commutative and associative operations, which means the
result is independent of the order in which the data instances
are processed. After the local reduction on each node, a global
reduction is performed. A similar method can be used for
parallelizing these applications on a GPU.

In our approach, the programmers simply need to specify
the sequential reduction loop(s) with some additional informa-
tion about the parameters. We use program analysis and code
generation to map the applications to a distributed memory
cluster, and further accelerate the processing by using the
GPU. For the former, our code generation system generates
API code for a middleware system, FREERIDE, which we
had developed in our previous work [18], [17].

We have evaluated our system using two popular data min-
ing applications, k-means clustering and Principal Component
Analysis (PCA). The main observations from our experiments
are as follows. The automatically generated middleware ver-
sion did not have any noticeable overheads compared to hand
written codes, and has good scalability over the number of
computing nodes. The usage of GPU gives a speedup of
between 3 and 21, over the parallel code executing just on
CPUs.

The rest of the paper is organized as follows. In Section II,
we give background on parallel data mining, our middleware

978-1-4244-6534-7/10/$26.00 ©2010 IEEE

2

FREERIDE, and GPU computing. Details of the code genera-
tion in our system are presented in Section III. The results from
our experiments are presented in Section IV. We compare our
work with related research efforts in Section V and conclude
in Section VI.

II. BACKGROUND

This section gives an overview of the issues in parallelizing
datamining applications on clusters and GPUs. We also de-
scribe a middleware system, FRamework for Rapid Implemen-
tation of Datamining Engines (FREERIDE), developed in our
earlier work [18], [17]. For enabling parallelization on clusters,
our system automatically generates the code for FREERIDE
API.

A. Parallel Datamining and FREERIDE

FREERIDE is based on the observation that parallel ver-
sions of several well-known data mining, OLAP, and scientific
data processing algorithms share a similar structure, which
is that of generalized reductions. This observation has some
similarities with the map-reduce paradigm that Google has
developed [7]. There are also some differences in the gen-
eralized reductions that FREERIDE supports and the map-
reduce style of computations. Particularly, the FREERIDE API
alleviates the need for expensive sorting of reduction elements,
and thus can help achieve better performance on data mining
applications.

/ * Outer Sequential Loop * /
While () {

/ * Reduction Loop * /
Foreach (element e) {

(i,val) = process(e);
Reduc(i) = Reduc(i) op val;

}
/ * operation on the combined Reduc * /
Finalize();
}

Fig. 1. Generalized Reduction Processing Structure of Common Datamining
Algorithms

The common structure that FREERIDE exploits is sum-
marized in Figure 1. The function op is an associative and
commutative function. Thus, the iterations of the foreach loop
can be performed in any order. The data-structure Reduc is
referred to as the reduction object. The reduction performed
is irregular, in the sense that which elements of the reduction
objects are updated depends upon the results of the processing
of an element. For example, in k-means clustering, each
iteration involves processing every point in the dataset. For
each point, we determine the closest center to this point, and
compute how this center should be updated.

For algorithms following such generalized reduction struc-
ture, parallelization can be done by dividing the data instances
(or records or transactions) among the processing threads.
The computation performed by each thread will be iterative
and will involve reading the data instances in an arbitrary
order, processing each data instance, and performing a local
reduction.

The following functions need to be written by the applica-
tion developer using FREERIDE.
Reduction: A reduction function specifies how, after process-
ing one data instance, a reduction object (initially declared by
the programmer), is updated.
Finalize: After final results from multiple nodes are combined
into a single reduction object, the application programmer can
read and perform a final manipulation on the reduction object
to summarize the results specific to an application.

B. GPU Computing for Datamining Applications

GPUs support SIMD shared memory programming. For
such a system, one simple approach for avoiding race con-
ditions is that each thread keeps its own replica of the
reduction object on the device memory, and the work is done
separately by each thread. At the end of each iteration, a global
combination is done either by a single thread, or using a tree
structure and involving a large number of threads. Then, the
finalized reduction objects are copied to host memory.

Three steps are involved in the local reduction phase: read
a data block, compute a reduction object update based on the
data instance, and write the reduction object update. A more
detailed approach of what has to be performed on the GPU is
as follows:

• Data read: The data to be processed is copied from host
to device memory, followed by allocation of reduction
objects and other data structures to be used during the
course of computation.

• Computing update: Multi-threaded reduction operation
executed on the device. The data block is divided into
small blocks such that each thread only processes 1 data
transaction.

• Writing update: Copy the reduction objects back to host
memory, and do a global combination.

III. SYSTEM DESIGN AND IMPLEMENTATION

This section describes our code generation system, AUTO-
GC. Initially, we give an overview. This is followed by
the system API, and details of program analysis and code
generation for cluster and GPUs.

A. System components

The overall configuration we consider is as follows. The
data files to process are distributed among the computing
nodes. On each node, when processing the data blocks, the
main computing task, which is implemented as the reduction
function, can be executed by the GPU. To enable this, our tool,
AUTO-GC, generates both the FREERIDE API code and the
CUDA code.

The system design is shown in Figure 2. There are three
components in the user input: variable information, reduc-
tion function(s), and additional optional functions. AUTO-GC
comprises to two components, a program analyzer and a code
generator. The program analyzer includes the variable analyzer
and the code analyzer. The code analyzer obtains variable
access patterns and extracts the reduction objects, with a

3

User input

Variable Analyzer

Combination Oper

Reduction Objects

Access Pattern

Code Analyzer

Code−Generator

Parallel Loop

Variable Info

CUDA CodeFREERIDE Code

Cluster of
CPUs

GPU on Each
Node

Variable
Information

Reduction
Functions

Optional
Functions

Fig. 2. Overall System Design (User Input is Shown as Shaded Boxes)

combination operation. The variable analyzer extracts variable
information which is an input to the code-generator, based on
the user input and the code analysis. We used LLVM as the
framework for code analysis [21]. We particularly benefited
from the clear structure of its Intermediate Representation (IR).
After getting the variable information and reduction objects,
the code-generator generates the code for the FREERIDE API,
and CUDA code for the computation on GPUs. The CUDA
functions are invoked by the FREERIDE code for executing
the reduction function.

B. System API

Before discussing the program analysis and code generation,
we describe the API of the system, i.e., the input that needs
to be provided by an application developer.

Using the generalized reduction structure of our target class
of applications, we provide a convenient API for the user. The
format of input for a reduction function is shown in Figure 3.
If there are multiple reduction functions, a user can specify
them by including labels for each. For each function, the
following information is needed.
Variables for Computing: As shown in Figure 3, the decla-
ration of each variable follows the following format:
name, type, size[value]
name is the name of the variable, type can be either a

numeric type like int or pointer type like int*. If it is a
pointer, size is the size of the array it points to, which can be
the multiplication of a list of numbers and/or integer variables;
otherwise, this field denotes a default value. We require all
pointers to be one-dimensional, which means the user should
marshal the multi-dimensional arrays and structures into 1-D
arrays.

label
Variable information:

variable declare1
......
variable declaren

functions (reduction and some optional
functions)

variable declare:
name; type; length[value]

Fig. 3. Format of the User Input

kmeans
step int 0
endcondition int 0
MSE float 999999e+20
k int 10
n int 4096
data float* n 3
update float* 5 k
cluster float* 3 k

Fig. 4. Variable List in the User Input for K-means

Sequential Reduction Function: The user can write the
sequential code for the main loop of the reduction operation in
C. Any variable declared inside the reduction function should
also appear in the variable list as shown in Figure 3, and
memory allocation for these variables is not needed.
User defined Finalize Function: After the reduction objects
are combined at the end of each iteration, there might be some
extra work to do with the reduction objects. This work can be
done by providing a finalize function.
Optional Initialization and Combination Functions from
the User: Normally, the initialization and combination for
the reduction objects and other variables is done by the code
generator component of the system. However, if the user is
familiar with CUDA programming, they can provide their own
combination and initialization functions, potentially improving
the performance.

C. Program Analysis

There are two main components in the program analyzer,
the code analyzer and the variable analyzer. The code analyzer
accomplishes two tasks: obtaining the access pattern and ex-
tracting the reduction objects with their combination operation.

These two tasks are performed in the following way:
Obtaining Variable Access Features: We classify each vari-
able as one of input, output and temporary. An input
variable is input to the reduction function, which is read-
only. An output variable is updated and to be returned in
the reduction function. A temporary variable is declared
inside the reduction function for temporary storage. Thus,
output and temporary variables are read-write. Variables

4

with different access patterns are treated differently in decla-
ration, memory allocation strategies, and result combination,
as described in the rest of this section. We obtain such
information by analyzing the Intermediate Representation (IR)
for the sequential reduction function using LLVM and using
Anderson’s point-to analysis [2]. More details can be found in
our previous paper [26].

void kmeans count(float* data, float* cluster, float* update,
int k, int n)
{

for(int i=0;i<5*k;i++)update[i]=0; /* initialize the output */
for(int i=0;i<n;i++)
{

float min=65536*65, dis;
float* mydata=data+i*DIM;
int min index=0;
for (int i=0;i<k;i++) {

float x1,x2,x3;
x1 = cluster[i*DIM];
x2 = cluster[i*DIM+1];
x3 = cluster[i*DIM+2];
dis = sqrt((mydata[0]-x1)* (mydata[0]-x1)+
(mydata[1]-x2)* (mydata[1]-x2)+
(mydata[2]-x3)* (mydata[2]-x3));
if (dis<min) { min=dis; min index=i; }
/* find the cluster with minimum distance */

}
/* update the output variable */
update[5*min index] += mydata[0];
update[5*min index+1] += mydata[1];
update[5*min index+2] += mydata[2];
update[5*min index+3] += 1;
update[5*min index+4] += min;

}
}

Fig. 5. User-defined Reduction Function for K-means

data input
update output
k input
n input
cluster input

Fig. 6. Classification of Variables for K-means Reduction Function

As an example, let us consider the user input for k-means.
The two parts used for determining variable access features,
variable list and reduction function, are shown in Figure 4
and Figure 5. Figure 6 shows the main part of output obtained
by analyzing the IR generated by LLVM for the reduction
function.
Extracting Reduction Objects and Combination Opera-
tions: The output variables are identified as the reduction
objects. At the end of each iteration, the reduction objects
on each node are combined into a single one, by using the
MPI calls automatically invoked by FREERIDE. Because we
are focusing on reduction functions where output variables
are updated with associative and commutative functions only
(see Figure 1), the output variables updated by each computing

node (and different threads in GPU) can be correctly combined
in the end. The operators used are identified by analyzing the
IR from LLVM in the similar way as we used in our previous
work [26].

After the above information has been extracted, the variable
analyzer will proceed to summarize the variable information
and extract the parallel loops.
Analysis for Parallelization: We map the structure of the
loop being analyzed to the canonical reduction loop we had
shown earlier in Figure 1. We focus on the main outer loop
and extract the loop variable. We also identify (symbolically)
the number of iterations in the loop, and denote it as num iter.
If there are nested loops, for simplicity, we only parallelize the
outer loop.

The variable analyzer focuses on the variables accessed in
the loop. If a variable is only accessed with an affine subscript
of the loop variable, it is denoted as a loop variable. Note that
this variable could be an input, output, or temporary variable.
The significance of denoting it is that when run on GPU, a
loop variable can be distributed among the threads, while all
the other variables need to be replicated, if they are written in
the loop.

D. Code Generation for FREERIDE

The issues in generating code for FREERIDE API are as
follows. The base class for any application is a template
FREERIDE TECH. For a particular application, we derive its
corresponding class from FREERIDE TECH, with the vari-
ables in each reduction function declared as class members.
There are three main functions in the class. We discuss the
code generation for each of them as below.
Initialization: After variable analysis, we already know which
variables form the reduction object. In the Initialization()
function, these variables are declared and initialized with the
default values given by the user. The reduction objects that are
to be computed with CUDA needs one copy for each thread.
Reduction: The Reduction() function is the main processing
function for the data blocks. The computation in the sequential
reduction function given by the user is included in this
function. At the end of the function, the reduction objects
are updated with the output of the local reduction. For each
reduction function, the user can denote whether to use GPU
or not in the input file. If GPU is chosen, a CUDA version for
the reduction function is generated, as described in the next
subsection.
Finalize: As described previously, after one iteration, every
data block has been processed, and the reduction objects
have been combined with MPI message passing at the back
end, which is done within the ADR framework. Thus, in the
Finalize() function, the user can copy the reduction objects to
local variables and provide further operations.

To show how the code generation is done, let us take k-
means as an example. The user input are shown in Figures 4
and 5. Figure 4 is the variable description, where step,
endcondition and MSE are used in testing for termination
of the execution, k is the number of clusters, n is the number
of points in the data block, data is the input data array, and

5

void reduc class::kmeans(void *block)
{

float* data=(float*)block;
kmeans func(step,endcondition,k,n,
MSE,data,update,cluster);
for (int RO i=0;RO i¡1;RO i++)
{

for (int RO j=0;RO j¡1*5*k;RO j++)
reductionobject-¿reduction(RO i,RO j,
update[RO j]);

}
}

Fig. 7. System Generated Reduction Function of K-means

update stores the updates to each cluster, including count,
distance, and accumulated point coordinates.

After code analysis, we find that update is an output
variable, so it is determined as the reduction object. In the
system generated code, reductionobject is updated with the
value of update, as shown in Figure 7.

E. Code Generation for CUDA

Using the user input and the information extracted by
the variable and code analyzer, the system next generates
corresponding CUDA code and the host functions invoking
CUDA-based parallel reductions.
Grid Configuration and Kernel Invocation: The host reduc-
tion function host_reduc() which invokes the kernel on
device has 3 parts:
Declare and Copy: We generate GPU memory alloca-

tion and copy functions according to the variable information.
Currently, we allocate memory for all variables except the
temporary variables that are going to use shared memory.
As we described earlier, loop variables are distributed across
threads, depending upon how they are accessed across iter-
ations. The read-write variables not denoted as loop might
be updated simultaneously by multiple threads, so we create
a copy for each thread. Again, because of the nature of the
loops we are focusing on, we can assume that a combination
function can produce the correct final value of these variables.
Compute: We configure the thread grid on the device, and

invoke the kernel function. Different thread grid configurations
can be used for different reduction functions in one applica-
tion. Currently, we configure the thread grid manually. In our
future work, we hope to develop cost models that allow us to
configure thread grids automatically.
Copy updates: We copy the variables needed by the

host function. We perform the global combination for output
variables which are not loop variables.
Generating Kernel Code: This task includes generating
global function reduc() and device function device reduc(), as
well as device functions init() and combine(), if necessary.
reduc() is the global function to be invoked by the host
reduction function, in which the device main loop function
device reduc() is called. After device reduc(), one thread will
execute combine() which performs the global combination.

Between invocation of each function and at the end of reduc(),
a syncthreads() is inserted.
Generating Local Reduction Function: device reduc() is
the main loop to be executed on the GPU. This function is
generated by rewriting the original sequential code in the user
input, according to the information extracted by the code and
variable analyzer. The modifications include: 1) Dividing the
loop to be parallelized by the number of blocks and number
of threads in each block. 2) Rewriting the index of the array
which are distributed. 3) Optimizing the use of shared memory.
We sort the variables according to their sizes, and allocate
shared memory for variables in the increasing order, until no
variable can fit in. The details of the shared memory layout
strategy can be found in our previous work [26].
Other optimizations: Besides the usage of shared memory,
we also provide some directives for the user to specify, which
can further reduce memory copy between devices. Also, as
mentioned in Section III-B, the user can provide their own
initialization and combination functions. For example, in PCA,
users can provide their own combination function, which
reduces unnecessary work [26].

IV. EXPERIMENTAL RESULTS

This section presents an evaluation study with our code
generation system, using two popular data mining algorithms.
Specifically, we had the following three goals in our experi-
ments:

• Evaluating the overall performance and scalability of the
system generated programs, including evaluating gains
from using GPUs on each node of a cluster, over the
performance on just a cluster of CPUs.

• Comparison of our automatically generated code with a
hand-written or manual version, to quantify the overheads
of our approach.

• Comparison of the impact of using different computing
devices (CPUs and GPUs) for different dataset sizes.

Our experiments were conducted on a 8 node cluster with
AMD Opteron 8350 machines, each of which is equipped with
a GeForce 9800 GX2 graphic card. The amount of memory
on each node is 16 GB, and the interconnect network in the
cluster is Infiniband.

A. K-means Clustering

k-means [16] clustering is one of the most popular data
mining algorithms. In this problem, we consider transactions
or data instances as representing points in a high-dimensional
space. Proximity within this space is used as the criterion for
classifying the points into clusters. Four steps in the sequential
version of k-means clustering algorithm are as follows: 1) start
with k given centers for clusters; 2) scan the data instances,
for each data instance (point), find the center closest to it and
assign this point to the corresponding cluster, 3) determine
the k centroids from the points assigned to the corresponding
center, and 4) repeat this process until the assignment of points
to cluster does not change. The code generation for k-means
was explained with several code examples in Section III-D.

6

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

1 2 4 8
nodes

T
im
e(
se
co
n
d
s)

CPU GPU-manual

GPU-automatic

Fig. 8. Execution Time of Different Versions: k-means, 1.5GB dataset

0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200

1 2 4 8
nodes

T
im
e(
se
co
n
d
s)

CPU GPU-manual

GPU-automatic

Fig. 9. Execution time of Different Versions: k-means, 3GB dataset

We conducted our tests with three versions: a manually
written FREERIDE program that could only use the CPU
on each node of the cluster, a manually written FREERIDE
application with manually written CUDA code, and finally, a
system generated version, where both the FREERIDE API and
CUDA codes are automatically generated. These three versions
are denoted as CPU, GPU-manual and GPU-automatic.

We experimented with two different datasets, which were
1.5 GB and 3 GB, respectively. The number of dimensions is
3 and the parameter k, the number of clusters to be obtained,
is set at 10. In the figures, we only show the performance with
the best configuration for all the CUDA version, which is 16
thread blocks and 256 threads per block.

The first set of results are from a dataset with 1.5 GB, and
are shown in Figure 8. We can see that each of the three
versions has a good scalability, as the number of nodes in
the cluster is increased. The automatically generated CUDA
code has almost the same performance with the manual CUDA
code, which shows that we can generate very efficient code
for programs that fall in the structure we specified in Figure 1.
The GPU versions have a speedup of more than 5, over the
CPU version, when we are using 4 nodes or less. The relative
speedup, over the CPU version using the same number of
nodes, reduces to 3 when 8 nodes are used. This is because
the amount of data to be processed on each node becomes
smaller as the same dataset is processed on more nodes. Thus,
the execution time gets more dominated by the overheads
of initiating the processing on the GPUs, and the global
combination time. In Figure 9, the results are shown for the
3 GB dataset. The relative performance of different versions
follows a similar trend.

B. Principal Component Analysis

Principal Components Analysis is a popular dimensionality
reduction method. This method was developed by Pearson in
1901. Our experiments are conducted on a modified version

of F. Murtagh’s code 1. There are four passes on the data set.
First, the mean value of the column vectors are determined.
Next, the standard deviation of column vectors are
calculated. In the third pass, the correlation matrix is com-
puted, and then, triangular decomposition is done, and the
eigenvalues are computed. Finally, the projection of the row
points and column on the first m components are written to
the output files.

We did not provide a manual CUDA version for PCA, since
the functions to be converted to CUDA are relatively simple,
and the automatic generated CUDA will be very similar to
hand written versions. Thus, the two versions we compare
with PCA are as follows. One is the FREERIDE-based CPU
version, without using GPUs, denoted as CPU, which is written
manually. The other is the system generated CUDA ver-
sion, denoted as GPU-automatic. In GPU-automatic,
we generated FREERIDE APIs, and CUDA code for the
computing of mean, standard deviation and the entire
correlation matrix. For all the GPU executions, we used the
best configuration, which is 128 threads per block, and 16
blocks in total for one GPU.

Figure 10 shows the performance of the two versions on
a data set with 64 M rows and 3 principal components.
The CPU-based FREERIDE code has good scalability as the
number of nodes is increased. The CUDA version also scaled
well, but the performance is worse than the version without
GPU. This is because of the domination of I/O with these
parameters. Without much computation, the use of GPU does
not help improve performance.

In Figure 11, we use a dataset with 2M rows and 64
principal components, and projection is done on the first
6 components. With these parameters, PCA is extremely
compute-intensive. Thus, the benefits of using GPU are very
significant. The performance of GPU-automatic on 1 node
has a relative speedup of about 21 over the CPU versions on

1http://www.mirrorservice.org/sites/lib.stat.cmu.edu/multi/pca.c

7

1, 2, 4, and 8 nodes. Because of the compute-intensive nature
of this application with these parameters, the benefits of using
the GPU are much higher.

From the experiments, we can see that the benefits of using
the GPU can vary widely depending upon the nature of the
application and the parameters. In the future, we will like to
develop cost models that can predict whether or not moving
an application to a GPU will be beneficial.

V. RELATED WORK

We now compare our work with related efforts on applica-
tion development on GPU Clusters, automatic generation or
optimization of CUDA, and compiler support for reductions.

There has been a significant interest in exploiting the
computing power of GPU-based clusters. At Stony Brook,
parallel LBM computation was implemented on GPU clusters,
obtaining a relative speedup of nearly 7 by using GPU on 1
node, and about 5 where there were more than 4 nodes [8].
Göddeke et. al implemented a multigrid solver on a GPU
cluster [9]. To the best of our knowledge, our work is the
first to automatically generate code for a cluster of GPUs.

Within the last 2 years, there has been considerable amount
of work on automatic generation and/or optimization of
CUDA. At UIUC, CUDA-lite [3] is being developed with the
goal being to alleviate the need for explicit GPU memory hier-
archy management by the programmers. The user input to our
system is at a higher-level, in the sense that the programmers
do not need to write parallel code. In addition, we are able to
target cluster of GPUs. However, our system is limited to a
specific class of applications. The same research group is also
developing optimizations on CUDA programs [30]. Baskaran
et al. [5] use the polyhedral model for converting C code into
CUDA automatically. Their system is limited to affine loops,
and cannot handle irregular reductions we focus on. A version
of Python with support of CUDA, Pycuda, has also been
developed, by wrapping the CUDA functions and operations
into classes that are easy to use [19]. Some recent work has
also made progress in translating OpenMP into CUDA [22].
The reported results are from simple stencil computations,
and there is no support for handling complex reductions.
Another group has made an effort in scheduling and separating
operators according to the input data set size [31]. In compare
to these efforts, our focus is on cluster of GPUs, but our work
is restricted to a limited class of applications. Work based
on HMPP+TAU provides compiling support for heterogeneous
systems, including code generation for CUDA and HMPP
application [27]. This system deals with annotated parallel
loops, which is simpler than the applications we focused on,
but their event driven model and kernel pipelining will be
considered in our future work.

Analysis and code generation for reduction operations has
been studied by a number of distributed memory compilation
projects [1], [4], [10], [14], [20], [33] as well as shared
memory parallelization projects [6], [11], [12], [24], [25], [29],
[32]. More recently, reductions on emerging multi-cores have
also been studied [23]. Our work has many similarities, but
has leveraged the features of GPUs. Map-Reduce is a popular

framework developed by Google [7], which can be used for
data mining applications we target. A GPU version of Map-
Reduce, called Mars [13], is also available now. Our approach
is based on automatic code generation, and the programmer
input is at a higher-level. In addition, we also support a cluster
of GPUs.

The work presented here is an extension of our previous
work on generating code for a single GPU [26], and the earlier
work on the FREERIDE system [18], [17].

VI. CONCLUSIONS

This paper has introduced a system to generate code for a
cluster of GPUs for a restricted class of applications. We have
evaluated our system using two popular data mining applica-
tions, k-means clustering and Principal Component Analysis
(PCA). We obtained a good scalability with the increasing
number of computing nodes. The relative speedup from using
GPUs in a cluster was between 3 and 21, as compared to
just using CPUs on the same cluster. The code automatically
generated by our system did not have any noticeable overheads
compared to hand written codes.

REFERENCES

[1] Vikram Adve and John Mellor-Crummy. Using Integer Sets for Data-
parallel Program Analysis and Optimization. In Proceedings of the
SIGPLAN ’98 Conference on Programming Language Design and
Implementation, June 1998.

[2] Lars Ole Andersen. Program analysis and specialization for the c
programming language. Technical report, 1994.

[3] Sara Baghsorkhi, Melvin Lathara, and Wen mei Hwu. CUDA-lite:
Reducing GPU Programming Complexity. In LCPC 2008, 2008.

[4] Prithviraj Banerjee, John A. Chandy, Manish Gupta, Eugene W. Hodges
IV, John G. Holm, Antonio Lain, Daniel J. Palermo, Shankar Ra-
maswamy, and Ernesto Su. The Paradigm Compiler for Distributed-
Memory Multicomputers. IEEE Computer, 28(10):37–47, October 1995.

[5] Muthu Manikandan Baskaran, Uday Bondhugula, Sriram Krishnamoor-
thy, J. Ramanujam, Atanas Rountev, and P. Sadayappan. A Compiler
Framework for Optimization of Affine Loop Nests for GPGPUs. In
International Conference on Supercomputing, pages 225–234, 2008.

[6] W. Blume, R. Doallo, R. Eigenman, J. Grout, J. Hoelflinger,
T. Lawrence, J. Lee, D. Padua, Y. Paek, B. Pottenger, L. Rauchwerger,
and P. Tu. Parallel programming with Polaris. IEEE Computer,
29(12):78–82, December 1996.

[7] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data
processing on large clusters. In OSDI, pages 137–150, 2004.

[8] Zhe Fan, Feng Qiu, Arie Kaufman, and Suzanne Yoakum-Stover. GPU
Cluster for High Prformance Computing. In SC ’04: Proceedings of the
2004 ACM/IEEE conference on Supercomputing, page 47, Washington,
DC, USA, 2004. IEEE Computer Society.

[9] Dominik Göddeke, Robert Strzodka, Jamaludin Mohd-Yusof, Patrick
McCormick, Hilmar Wobker, Christian Becker, and Stefan Turek. Using
gpus to improve multigrid solver performance on a cluster. Int. J.
Comput. Sci. Eng., 4(1):36–55, 2008.

[10] Manish Gupta and Edith Schonberg. Static Analysis to Reduce Syn-
chronization Costs in Data-Parallel Programs. In Conference Record
of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 322–332. ACM Press, January 1996.

[11] M. Hall, S. Amarsinghe, B. Murphy, S. Liao, and M. Lam. Maximizing
Multiprocessor Performance with the SUIF Compiler. IEEE Computer,
(12), December 1996.

[12] H. Han and Chau-Wen Tseng. Improving Compiler and Runtime Support
for Irregular Reductions. In Proceedings of the 11th Workshop on
Languages and Compilers for Parallel Computing, August 1998.

[13] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K. Govindaraju, and
Tuyong Wang. Mars: A MapReduce Framework on Graphics Processors.
In PACT08: IEEE International Conference on Parallel Architecture and
Compilation Techniques 2008, 2008.

8

0

10

20

30

1 2 4 8
nodes

T
im
e(
se
co
n
d
)

CPU GPU-automatic

Fig. 10. Execution Time of Different Versions, PCA, 64M rows, 3
principal components

0
100

200
300
400

500
600
700

800
900
1000
1100

1200
1300
1400

1500
1600
1700

1800
1900

1 2 4 8nodes

T
im
e(
se
co
n
d
)

CPU GPU-automatic

Fig. 11. Execution Time of Different Versions, PCA (log(time)), 2M
rows, 64 principal components

[14] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiling
Fortran D for MIMD distributed-memory machines. Communications
of the ACM, 35(8):66–80, August 1992.

[15] Mike Houston. Gpu computation on clusters. 2006.
[16] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice

Hall, 1988.
[17] R. Jin and G. Agrawal. Shared memory parallelization of data min-

ing algorithms: Techniques. citeseer.ist.psu.edu/article/jin02shared.html,
2002.

[18] Ruoming Jin and Gagan Agrawal. A Middleware for Developing
Parallel Data Mining Implementations. In Proceedings of the first SIAM
conference on Data Mining, April 2001.

[19] Andreas Klockner. PyCuda, 2008.
[20] C. Koelbel and P. Mehrotra. Compiling Global Name-Space Parallel

Loops for Distributed Execution. IEEE Transactions on Parallel and
Distributed Systems, 2(4):440–451, October 1991.

[21] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the
2004 International Symposium on Code Generation and Optimization
(CGO’04), Palo Alto, California, Mar 2004.

[22] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. OpenMP to
GPGPU: A Compiler Framework for Automatic Translation and Op-
timization. In PPoPP’09, 2009.

[23] Shih-Wei Liao. Parallelizing user-defined and implicit reductions glob-
ally on multiprocessors. In Chris R. Jesshope and Colin Egan, editors,
Asia-Pacific Computer Systems Architecture Conference, volume 4186
of Lecture Notes in Computer Science, pages 189–202. Springer, 2006.

[24] Yuan Lin and David Padua. On the automatic parallelization of sparse
and irregular Fortran programs. In Proceedings of the Workshop on
Languages, Compilers, and Runtime Systems for Scalable Computers
(LCR - 98), May 1998.

[25] Bo Lu and John Mellor-Crummey. Compiler Optimization of Implicit
Reductions for Distributed Memory Multiprocessors. In Proceedings
of the 12th International Parallel Processing Symposium (IPPS), April
1998.

[26] Wenjing Ma and Gagan Agrawal. A translation system for enabling
data mining applications on gpus. In ICS ’09: Proceedings of the 23rd
international conference on Conference on Supercomputing, pages 400–
409, New York, NY, USA, 2009. ACM.

[27] Allen D. MALONY, Shangkar MAYANGLAMBAM, Laurent MORIN,
Matthew J. SOTTILE, Stephane BIHAN, Sameer S. SHENDE, and
Francois BODIN. Performance tool integration in a gpu programming
environment: Experiences with tau and hmpp. September 2009.

[28] Fritz McCall and Brad Erdman. A prototype cpu-gpu cluster for
research in high performance computing and visualization of large scale
applications.

[29] William M. Pottenger. The Role of Associativity and Commutativity
in the Detection and Transformation of Loop-Level Parallelism. In

Conference Proceedings of the 1998 International Conference on Su-
percomputing (ICS), pages 188–195. ACM Press, July 1998.

[30] Shane Ryoo, Christopher Rodrigues, Sam Stone, Sara Baghsorkhi, Sain-
Zee Ueng, John Stratton, and Wen mei Hwu. Program optimization
space pruning for a multithreaded gpu. In Proceedings of the 2008
International Symposium on Code Generation and Optimization, April
2008, pages 195–204. ACM, April 2008.

[31] Narayanan Sundaram, Anand Raghunathan, and Srimat Chakradhar.
A framework for efficient and scalable execution of domain-specific
templates on gpus. In IPDPS, 2009.

[32] Hao Yu and Lawrence Rauchwerger. Adaptive Reduction Parallelization
Techniques. In Proceedings of the 2000 International Conference on
Supercomputing, pages 66–75. ACM Press, May 2000.

[33] Hans P. Zima and Barbara Mary Chapman. Compiling for Distributed-
Memory Systems. Proceedings of the IEEE, 81(2):264–287, February
1993. In Special Section on Languages and Compilers for Parallel
Machines.

