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Abstract—Kriging is one of the important interpolation 
methods in geostatistics, which has been widely applied in 
engineering project. In this paper, we present an efficient 
method for the parallelization of universal Kriging 
interpolation on shared memory multiprocessors. By using 
OpenMP directives, we implement a portable parallel 
algorithm, which enables an incremental approach to add 
parallelism, without modifying the rest part of sequential code. 
To achieve optimal performance, the parallel grain size has 
been considered and analyzed. Numerical experiments have 
been carried out on two multicore windows workstations, the 
results of which demonstrate this method could enhance the 
overall performance significantly. 
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I.  INTRODUCTION  
Kriging interpolation method is a group of geostatistical 

techniques to interpolate the value of a random field at an 
unobserved location from observations of its value at nearby 
locations. Kriging interpolation method has been widely 
applied in mining [1], hydrogeology [2], environmental 
science [3], black box modeling in computer experiments [4] 
and remote sensing [5] etc., which is also a computational 
bottleneck of these applications, preventing them from 
obtaining desirable performance. For this reason, research on 
parallel computing for Kriging interpolation has received 
considerable attention in recent years to improve the overall 
performance [6-10]. We note that most of these works are 
implemented on high-performance computer or distributed 
memory clusters by using MPI. Due to the emerging trends 
of multicore CPU recently, the shared memory 
multiprocessors, which support an incremental 
parallelization from serial program, are readily available. 
Therefore, the main objective of this work is to present a 
parallel version of universal Kriging interpolation method 
based on OpenMP, which could meet the intense demands 
on performance. 

The outline of this paper is as follows. Section 2 gives a 
brief description of OpenMP programming paradigm. 
Section 3 gives an overview of the universal Kriging method 
and the OpenMP parallel implementation details on it. 
Experimental results as well as performance analysis are 
presented in Section 4 and Section 5 summarizes the work. 

II. OPENMP PROGRAMMING PARADIGM 
OpenMP is a shared-memory application programming 

interface (API), whose features are based on prior efforts to 
facilitate shared-memory parallel programming [11]. As 
shown in Fig. 1, OpenMP provides a fork-and-join execution 
model which supports an incremental approach to design 
parallel programs. Parallel work can be explicitly coded 
through the use of parallel regions, or implicitly obtained by 
work-sharing constructs, such as parallel loops. Compared to 
MPI, OpenMP applications are relatively easy to implement 
from the standard sequential code only by placing parallel 
directives around time consuming loops which do not 
contain data dependences, leaving the most part of the 
program unchanged. Another salient advantage of OpenMP 
lies in that it could achieve low latency and high bandwidth. 
Also, it adds fine granularity and enables increased and 
dynamic load balancing, which may lead to performance 
enhancement. More detail information about OpenMP can be 
found at the web site: http://www.openmp.org. 
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Figure 1.  The fork-join model of OpenMP. Program begins execution as a 
single thread until a parallelization directive for a parallel region is found. 
Then the master thread creates a group of threads and the intensive 
computational work can be distributed among threads, without explicitly 
distributing the data. 
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III. PARALLELIZING OF UNIVERSAL KRIGING 
INTERPOLATION 

A. Universal Kriging Interpolation 
The basic premise of Kriging interpolation is that every 

unknown point can be estimated by the weighted sum of the 
known points: 
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where *
0Z  represents the unknown point, iZ refers to each 

known point and iλ  is the weight given to it. The body of 
the Kriging algorithm is involved in the selection of the 
appropriate weights. For details about the theory of Kriging 
interpolation, readers may refer to [12] [13]. 

Universal Kriging assumes a general linear trend model. 
It includes the drift functions to calculate )(xm , which is the 
expectation of )(xZ . Considering 
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where u , v  are the coordinates of point x . Then we 
can get 
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In order to set up Eq. (3), the following equations can be 
gotten 
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where ),(),( jiji ZZCOVxxc =  and 

),(),( 00 ZZCOVxxc ii = , based on Lagrange multiplier rule, 
we have 
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which could be rewritten in the matrix form such as 
bAx =  to calculate the value of ),,2,1( nii =°λ . From Eq. 

(1), finally we could get the estimation of unknown points. 

B. Parallel Algorithm on Shared-memory System 
As stated in section 1, the computational steps of 

universal Kriging method which is based on covariance 
function could be schematically summarized as follow: 
Step 1 calculating the distance between each known point; 
Step 2 sorting the distances according to their values; 
Step 3 grouping the sorted distances; 
Step 4 constructing a variogram and the covariance function 

),( yxc ; 
Step 5 computing covariance between each known point and 
then the coefficient matrix A ; 
Step 6 computing the inverse matrix of A ; 
Step 7 calculating the weights [ ]Tnλλλ ,,, 21  and then the 
estimate for each unknown point. 

The first task in a parallel implementation is to identify the 
portions of the code where there is parallelism to exploit 
[14]. In scientific codes, the most common form of 
parallelism is data parallelism; and for shared-memory 
systems, it typically comes from the iterative loops. 

In our work, an incremental approach based on OpenMP 
to parallelize the universal Kriging interpolation algorithm 
was carried out. By placing directives around time 
consuming loops which do not contain data dependences, the 
parallelization can be applied separately to individual parts, 
leaving the rest of source code unchanged. By profiling the 
execution of the sequential code of universal Kriging, it is 
noted that step 7, which involved a three-level nested loop, 
took up the most part of computational time. The program 
structure of step 7 can be briefly outlined as follow: 

;
;

10:

;
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50:
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;

10:
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endfor
endfor

estimatesthegcalculatin
doNVtojfor

endfor
endfor
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The variables i, j, and k are the loop counter of each for-

loop. The variables NP and NV refer to the number of 
unknown and known points respectively. RHS denotes the 
right hand side of the linear equation. 

The program block is largely a three-level nested for-loop, 
which mainly consists of three different computational steps. 
An important consideration on parallelization the code is to 
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decide the parallel grain size. Theoretically speaking, by 
analyzing the data dependency, each of the three loops could 
be parallelized by OpenMP directives. Especially, enlarge 
the grain size of a parallel program appears to bring better 
performance as it avoids frequent fork-join operation at the 
beginning of each iteration. However, the sequential code 
uses the same storage space to store the RHS for each 
unknown point, which means there is a loop-carried 
dependence in the outer loop. Parallelizing the outer loop, 
each RHS has to be made private explicitly and additional 
storage spaces are required, which may prevent the program 
from getting optimal performance. Therefore, making the 
inner loop parallel, which results in small grain size 
parallelism, is the best option for our case. 

It is estimated that the second computational step of 
calculating the weights which is a two-level nested for-loop 
consumes the most part of execution time of the block. The 
OpenMP parallelization could be written as follow: 

;
;
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endfor
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The variables UKC _ , UKA_  and UKB _  are the 
estimate, the inverse matrix and right hand side respectively. 

IV. PERFORMANCE ANALYSIS 
The numerical experiments were carried out on two win 

server 2003 (x64) workstations. Workstation 1: Intel Xeon 
E5310 1.6GHz (2CPU, 4 cores per each) and 2.0 GB 
memory; Workstation 2: Intel Xeon 5110 (2CPU, 2 cores per 
each) and 2.0 GB memory. The size of measured points and 
unknown points are 947 and 15719 respectively. The 
exponential variogram models and quadratic drift function 
were applied to the universal Kriging algorithm. 

The first experiment was designed to find the hotspots in 
sequential program. The test was carried out only on 
Workstation 1. From Fig. 2, we observed that step 7 which is 
responsible for calculating the weights and estimates takes 
up the overwhelming majority of computational time. 
Another time consuming step is the computation of the 
inverse matrix. However, it is comparatively small when it is 
compared to step 7. Therefore, this experiment confirmed 
that the parallelization of step 7 is the primary concern of our 
work. 

 
Figure 2.  Time ratio for different computational steps 

In the second experiment, the speedup versus different 
number of threads on two workstations is tested. From Fig. 3, 
it can be found that the speedup scales well from 1 to 4 
threads for Workstation 1 and 1 to 2 threads for 
Workstation2, which demonstrates significant progress in 
reducing computational time and desirable parallel 
performance. However, we observed an obvious deviation 
from 4 to 8 threads for Workstation 1 and 2 to 4 threads for 
Workstation 2. From our analysis, this could be attributed to 
that the problem of cache coherence between two CPU in 
one workstation may degrade the parallel performance. 

 
Figure 3.  Speedup vs. number of threads 

V. CONCLUSIONS 
This paper describes an efficient fine-grain parallel 

scheme on shared-memory system, along with its 
implementation for universal Kriging interpolation method. 
As multiple-processors computers are currently much more 
affordable and available, and OpenMP is becoming the de 
facto standard for parallelizing applications, this ensures 
portability over a wide range of computers. In summary, we 
present a portable parallel implementation by using OpenMP 
directives, which enables an incremental approach to add 
parallelism, without modifying the rest part of sequential 
code. The experiment results demonstrate that the parallel 
scheme has achieved desirable performance. Further research 
will involve the parallel implementation of universal Kriging 
method on distributed shared memory architecture.  
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