
OpenMPC: Extended OpenMP Programming and
Tuning for GPUs

Seyong Lee and Rudolf Eigenmann
School of ECE, Purdue University

West Lafayette, IN 47907, USA

Email: {lee222,eigenman}@purdue.edu

Abstract—General-Purpose Graphics Processing Units (GPG-
PUs) are promising parallel platforms for high performance
computing. The CUDA (Compute Unified Device Architecture)
programming model provides improved programmability for
general computing on GPGPUs. However, its unique execution
model and memory model still pose significant challenges for
developers of efficient GPGPU code. This paper proposes a
new programming interface, called OpenMPC, which builds
on OpenMP to provide an abstraction of the complex CUDA
programming model and offers high-level controls of the involved
parameters and optimizations. We have developed a fully auto-
matic compilation and user-assisted tuning system supporting
OpenMPC. In addition to a range of compiler transformations
and optimizations, the system includes tuning capabilities for
generating, pruning, and navigating the search space of compi-
lation variants. Our results demonstrate that OpenMPC offers
both programmability and tunability. Our system achieves 88%
of the performance of the hand-coded CUDA programs.

I. INTRODUCTION

General-Purpose Graphics Processing Units (GPGPUs) have

emerged as promising building blocks for high-performance

computing. While a GPGPU provides an inexpensive par-

allel computing system with higher throughput and perfor-

mance than traditional CPUs, its programming complexity

poses a significant challenge for developers. To improve the

programmability of GPUs for general purpose computing,

the CUDA (Compute Unified Device Architecture) program-

ming model has been introduced, which abstracts a GPU

as a general-purpose multi-threaded SIMD (Single Instruc-

tion, Multiple Data) architecture. Even though the CUDA

programming model offers a more user-friendly interface,

programming GPGPUs is still complex and error-prone, as

CUDA exposes its unique memory model and execution model

to programmers.

The OpenMP [1] API (Application Programming Interface)

is a specification of compiler directives, library routines, and

environment variables that provides an easy parallel program-

ming model portable across shared memory architectures. To

extend the ease of creating parallel applications with OpenMP

to GPGPU architectures such as CUDA, we have previously

developed an automatic OpenMP-to-CUDA translation frame-

work [2]. It includes several optimizations that deal with the

architectural differences between traditional shared memory

systems, served by OpenMP, and stream architectures adopted

by most GPUs.

However, developing efficient CUDA programs still remains

difficult; complex interactions among hardware resources and

the multi-layered software execution stack used for CUDA

compilation and execution limit the compiler’s ability to

predict the performance effect of its optimizations [3], [4].

In the OpenMP-to-CUDA translation framework, the CUDA

programming model and memory model are transparent to

users. However, this transparency comes at the cost of reduced

control over fine-grained tuning. Achieving optimal perfor-

mance with the generated programs may require additional,

manual changes to the output CUDA code, which can be

tedious and error-prone [4], [5], [6].
There has been extensive work on optimizing the perfor-

mance of CUDA-based GPGPU programs. Studies on general

optimization strategies found that the performance difference

between well optimized GPU applications and poorly opti-

mized ones can be orders of magnitude [3], [7], [8]. The

studies also show that the level of effort and expertise required

to obtain optimal application performance on GPGPUs can be

very high. Even though there are several efforts to automati-

cally optimize and tune the performance of GPGPU programs,

most of them are either application-specific [10], [11], [12],

restricted to certain types of applications [8], or applied to

only a small subset of optimization parameters [4]. Therefore,

achieving maximum performance for general GPGPU appli-

cations is still a challenge and usually involves manual work.
To overcome this challenge, we propose OpenMPC –

OpenMP extended for CUDA. OpenMPC consists of a stan-

dard OpenMP API plus a new set of directives and environ-

ment variables to control important CUDA-related parameters

and optimizations.
This paper makes the following contributions:

• We propose an API for improved CUDA programming,

called OpenMPC, providing programmers with a high-

level abstraction of the CUDA programming model.

OpenMPC also provides a tuning environment that assists

users in generating CUDA programs in many optimiza-

tion variants without detailed knowledge of the program-

ming and memory model.

• We have developed a reference compilation system to

support OpenMPC by extending the framework proposed

in our previous work [2]. The new framework is fully

automated and parameterized; with OpenMPC directives

and environment variables, users can gain fine-grained

c©2010 IEEE Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.
SC10 November 2010, New Orleans, Louisiana, USA 978-1-4244-7558-2/10/$26.00

control over the OpenMP-to-CUDA translation and opti-

mization.

• We have also developed several tools that assist users in

performance tuning; the search space pruner analyzes a

given input OpenMP program, plus optional user settings,

and suggests applicable optimization parameters to prune

the optimization space that a tuning system should navi-

gate in search of the best performance. Because this static

analysis tool suggests applicable tuning parameters, pro-

grammers can tune a target program without deep knowl-

edge of the program. For the search space suggested by

the pruner, another tool called configuration generator
defines all corresponding compilation variants, such that

they can be created automatically by the OpenMP-to-

CUDA translator.

• We have evaluated the effectiveness of OpenMPC using

the proposed compilation system and tuning tools. We

have created GPU codes with various tuning configura-

tions for a set of applications (NAS OpenMP Benchmarks

EP and CG) and kernels (JACOBI and SPMUL). Our

results show that the performance significantly depends

on a program’s input data. For best, user-assisted tuning,

the OpenMPC codes improve the performance up to

102% (14% on average) over un-tuned versions, which is

88% of the performance of hand-written CUDA versions.

Moreover, the search space pruner eliminates on average

98% of the optimization space for the tested programs.

The rest of this paper is organized as follows: Section II

provides an overview of the GPGPU architecture and the

CUDA programming model. Section III describes the baseline

OpenMP-to-CUDA translation scheme and new optimizations

added in this work. Section IV introduces OpenMPC, and Sec-

tion V presents a reference compilation system and a prototype

tuning framework supporting OpenMPC. Experimental results

are shown in Section VI, and related work and conclusion are

presented in Section VII and Section VIII, respectively.

II. OVERVIEW OF GPGPU ARCHITECTURE AND CUDA

PROGRAMMING MODEL

GPGPUs supporting CUDA consist of a set of multiproces-

sors called streaming multiprocessors (SMs), each of which

contains a set of SIMD processing units called streaming
processors (SPs). Each SM has a fast on-chip shared memory,

which is shared by SPs in the same SM, a fixed number

of registers, which are logically partitioned among threads

running on the SM, and special read-only caches (constant
cache and texture cache), which are shared by SPs. A slow

off-chip global memory is used for communications among

different SMs.

The CUDA programming model is a general-purpose multi-

threaded SIMD model for GPGPU programming. In the

CUDA programming model, code regions with rich data

parallelism are implemented as a set of kernel functions, which

are executed on the GPU by a number of threads in an SIMD

fashion. Other code regions outside of kernel functions are

executed by a host CPU.

In the CUDA model, threads are grouped as a grid of thread

blocks, each of which is mapped to an SM on the GPU device.

The number of thread blocks and the number of threads per

thread block, which constitute a thread batching, are specified

through language extensions at each kernel invocation.

In the CUDA memory model, global memory, texture mem-
ory, and constant memory are accessible by all threads, shared
memory is shared only by threads in the same thread block,

and registers and local memory are private to each thread.

The shared memory and registers in an SM are dynamically

partitioned among the active thread blocks running on the SM.

Therefore, register and shared memory usages per thread block

can be a limiting factor preventing full utilization of execution

resources.

In the CUDA model, the host CPU and the GPU device have

separate address spaces. For communication between the CPU

and the GPU, the CUDA model provides an API for explicit

GPU memory management, including functions to transfer

data between the CPU and the GPU.

One limitation of the CUDA model is the lack of efficient

global synchronization mechanisms. Synchronization within a

thread block can be enforced by using the syncthreads()
runtime primitive. However, synchronization across thread

blocks can be accomplished only by returning from a kernel

call, after which global memory data modified by threads in

different thread blocks are guaranteed to be globally visible.

III. OPENMP-TO-CUDA TRANSLATION AND

OPTIMIZATION

This section gives an overview of the OpenMP-to-CUDA

translation system, which performs a source-to-source conver-

sion of a standard OpenMP program to a CUDA program and

applies various optimizations to achieve high performance.

This system has been built on top of the Cetus compiler

infrastructure [13].

A. Baseline Translation of OpenMP-to-CUDA

The baseline translation consists of two steps: (1) inter-

preting OpenMP semantics under the CUDA programming

model and identifying kernel regions (code sections to be

executed on a GPU) and (2) transforming eligible kernel

regions into CUDA kernel functions and inserting necessary

memory transfer code to move data between CPU and GPU.

1) Interpretation of OpenMP Semantics under the CUDA
Programming Model: OpenMP directives can be classified

into four categories:

(a) Parallel construct (omp parallel) – this is the construct

that specifies parallel regions. Parallel regions may be further

split into sub-regions. The translator identifies eligible kernel
regions among the (sub-)regions and transforms them into

GPU kernel functions.

(b) Work-sharing constructs (omp for, omp sections) – these

constructs contain the only true parallel codes in OpenMP.

Other sub-regions, within an omp parallel region but outside of

work-sharing constructs, are executed by one thread, serialized

among threads, or executed redundantly among participating

threads. The translator interprets these constructs to partition

work among threads on the GPU device.

(c) Synchronization constructs (omp barrier, omp flush,

omp critical, etc.) – these constructs contain explicit/implicit

synchronization points. A parallel region must be split into two

sub-regions at each of these constructs. The split is required to

enforce a global synchronization in the CUDA programming

model, as explained in Section II.

(d) Directives specifying data properties (omp shared, omp
private, omp threadprivate, etc.) – the translator interprets

these constructs to map data into GPU memory spaces.

OpenMP shared data are shared by all threads, and OpenMP

private data are accessed by a single thread. In the CUDA

memory model, shared data can be mapped to global memory,

and private data can be mapped to registers or local memory
assigned for each thread. OpenMP threadprivate data are

private to each thread, but they have global lifetimes. The

semantics of threadprivate data can be implemented using data

expansion, which allocates copies of the threadprivate data on

global memory for each thread.

2) Transformation of Kernel Regions into Kernel Functions:
The translator considers OpenMP parallel regions as potential

kernel regions. At each synchronization construct, these par-

allel regions must be split, as explained above. Among the

resulting sub-regions, the ones containing at least one work-

sharing construct become kernel regions.

Once eligible kernel regions are identified, the translator

outlines the regions into CUDA kernel functions and replaces

the original regions with calls to these functions. The kernel-

region transformation includes two important steps: work
partitioning and data mapping. For work partitioning, each

iteration of omp for loops and each section of omp sections
are assigned to a thread, and remaining code sections in a

kernel region are executed redundantly by all participating

threads. To decide the thread batching for a kernel function,

the translator calculates the maximum partition size among

parallel work contained in the kernel region. By default, the

maximum partition size becomes the total number of threads

executing the kernel function. Because the number of thread

blocks and the thread block size determine the mapping of

threads onto SMs (thread batching), these two parameters can

be set through command line options or user directives. In this

case, the translator performs necessary tiling transformations

to fit the work partition into the specified thread batching.

For data mapping, the translator uses the information spec-

ified by OpenMP data property constructs. For the data that

are referenced in a kernel region, but not in a construct, the

translator can determine their sharing attributes using OpenMP

data sharing rules. Default data mapping follows the rule

explained in Section III-A1 (d). Because the CUDA memory

model allows several specialized memory spaces, certain data

can take advantage of the specialized memory resources. Read-

only shared data can be assigned to either constant memory or

texture memory to exploit temporal locality through dedicated

caches, and frequently reused shared data can use fast memory

spaces, such as registers and shared memory, as a cache.

Even though no locality exists, putting read-only shared scalar

variables in shared memory can be beneficial, since it can

reduce global memory traffic; passing read-only shared scalar

variables as kernel arguments puts the data on shared memory

without involving global memory.

Because the CUDA memory model requires explicit mem-

ory transfers for threads executing a kernel function to access

data on the CPU, the translator must insert necessary memory

transfer calls for the shared and threadprivate data accessed by

each kernel function. A basic strategy is to move all the shared

data that are accessed by kernel functions from the CPU to

the GPU, and copy back the shared data that are modified by

kernel functions. The data movement strategy for threadprivate

data is decided by OpenMP semantics. However, the basic

strategy may be inefficient in that the CPU may not use all

shared data modified by GPU kernels, and the data in the GPU

global memory are persistent across kernel calls. To deal with

these issues, we have developed several compiler optimization

techniques. They will be described in the following section.

B. Compiler Optimizations

Our translation system includes several optimizations of

GPU memory accesses:

• Techniques to optimize data movement between CPU and

GPU

• Techniques to optimize GPU global memory accesses

• Techniques to exploit GPU on-chip memories

In simple kernel programs, the first category may not be an

issue; most previous work has focused on the last two cate-

gories. In our prior work [2], we have also identified several

key transformation techniques to enable efficient GPU global

memory access and exploit GPU on-chip memories. However,

in experiments with larger applications, which typically con-

tain several kernel functions called in different procedures,

we have found that data movements between the CPU and the

GPU can be costly. We have developed several compile-time

techniques to reduce this cost, described next.

Techniques to Optimize Data Movement between the CPU
and the GPU: The basic data movement strategy is to transfer

data accessed by a kernel function from the CPU to the GPU

before the kernel function is called, and transfer back modified

data from the GPU to the CPU after the kernel function

returns. However, if a compiler can know that GPU global

memory already has up-to-date data, they do not have to be

copied again from the CPU. For this, we have developed an

interprocedural data flow analysis that identifies resident GPU
variables, which are the variables that reside in the GPU

global memory and contain the same contents as the corre-

sponding OpenMP shared variables in the CPU. The overall

algorithm is shown in Figure 1. The algorithm recognizes if

an OpenMP shared variable is used as a reduction variable

in a kernel region and removes the variable from the resident

GPU variable set (gResidentGVars). The rationale is that the

translator implements reduction operations using a two-level

tree reduction algorithm [14], where the final reduction is

performed on the CPU; after the reduction operation finishes,

Resident GPU Variable Analysis
Input : OpenMP program where Kernel Splitting Algorithm is applied
Output: OpenMP program annotated with OpenMPC clauses (noc2gmemtr)
gResidentGVars in(program entry node) = {}
for (node m : predecessor nodes of a node n)

gResidentGVars in(n) ˆ= gResidentGVars out(m) // ˆ is an intersection operation
gResidentGVars out(n) = gResidentGVars in(n) + GEN(n) − KILL(n)

where,
GEN(n) = a set of shared variables whose GPU variables are globally allocated

// If n is an exit node from a kernel region
{} // Otherwise

KILL(n) = a set of reduction variables in a kernel region // If n is an exit node from the kernel region
a set of shared variables modified // If n represents a node in a CPU region
a set of R/O shared scalar variables in a kernel region

// If the variables do not exist in gResidentGVars in set ,
// and if optimization to cache shared scalar variable on shared memory is on,
// and if n is an exit node from the kernel region

{} // Otherwise

Fig. 1. Interprocedural Analysis to Identify Resident GPU Variables, which does not include a function-call-handling part and an OpenMPC-clause
(noc2gmemtr) generation part

Live CPU Variable Analysis
Input : OpenMP program where Kernel Splitting Algorithm is applied
Output: OpenMP program annotated with OpenMPC clauses (nog2cmemtr)
gLiveCPUVars out(program exit node) = {}
for (node m : successor nodes of a node n)

gLiveCPUVars out(n) = += gLiveCPUVars in(m) //+ is a union operation
gLiveCPUVars in(n) = gLiveCPUVars out(n) − KILL(n) + GEN(n)

KILL(n) = a set of modified shared variables
GEN(n) = a set of shared variables used in a node n // If n represents a node in a CPU region

Fig. 2. Interprocedural Analysis to Identify Live CPU Variables, which does not include a function-call-handling part and an OpenMPC-clause (nog2cmemtr)
generation part

only the CPU has the final reduction output. Moreover, if

a read-only shared scalar variable is cached on the GPU

shared memory for the current kernel execution, the variable is

directly copied to the shared memory through kernel-argument

passing, which does not use global memory. In this case, the

variable is not added to the resident GPU variable set, since

global memory may contain stale data.

We have developed another interprocedural data flow anal-

ysis to identify redundant memory transfers from the GPU to

the CPU. We define a live CPU variable as the variable that

resides in the CPU and may be potentially read before its next

write. Even though a shared variable is modified by a kernel

function, if it is not a live CPU variable at the exit of the

kernel function, it does not have to be copied from the GPU

to the CPU, since it will not be used by the CPU before it

is modified again. We can not blindly apply a traditional live

analysis, because the CUDA memory model has two separate

address spaces, while a traditional live analysis assumes only

one address space. The overall algorithm of the new, modified

live analysis is shown in Figure 2.

The information obtained from these analyses is passed

to the actual translator in the form of annotations, and the

translator will perform necessary transformations depending

on the passed information.

IV. OPENMPC: EXTENDED OPENMP FOR CUDA

OpenMPC extends the programming system described in

the previous section by adding directives and environment

variables that enable users and automatic tuning systems to

apply CUDA-specific optimizations. The OpenMPC optimiza-

tion system uses these directives to pass information generated

by various analysis passes to the actual OpenMP-to-CUDA

translator.

A. Directive Extension

The format of the OpenMPC directives is shown in Table I.

TABLE I
OPENMPC DIRECTIVE FORMAT

#pragma cuda gpurun [clause [,] clause]...]
#pragma cuda cpurun [clause [,] clause]...]
#pragma cuda nogpurun
#pragma cuda ainfo procname(pName) kernelid(kID)

The directives in the table are used to annotate OpenMP

parallel regions using the syntax common in OpenMP. The

gpurun directive specifies that the attached parallel region is

eligible for kernel-region transformation. Clauses that may be

used for this directive are shown in Table II and Table III.

TABLE II
BRIEF DESCRIPTION OF OPENMPC CLAUSES, WHICH CONTROL KERNEL-SPECIFIC THREAD BATCHINGS, DATA MAPPING STRATEGIES, AND

OPTIMIZATIONS

Clause Description Category
maxnumofblocks(N) Set Maximum number of CUDA thread blocks for a kernel CUDA Thread Batching
threadblocksize(N) Set CUDA thread block size for a kernel CUDA Thread Batching
registerRO(list) Cache R/O variables in the list onto GPU registers OpenMP-to-CUDA Data Mapping
registerRW(list) Cache R/W variables in the list onto GPU registers OpenMP-to-CUDA Data Mapping
sharedRO(list) Cache R/O variables in the list onto GPU shared memory OpenMP-to-CUDA Data Mapping
sharedRW(list) Cache R/W variables in the list onto GPU shared memory OpenMP-to-CUDA Data Mapping
texture(list) Cache variables in the list onto GPU texture memory OpenMP-to-CUDA Data Mapping
constant(list) Cache variables in the list onto GPU constant memory OpenMP-to-CUDA Data Mapping
noloopcollapse Do not apply Loop Collapse optimization OpenMP Stream Optimization
noploopswap Do not apply Parallel Loop-Swap optimization OpenMP Stream Optimization
noreductionunroll Do not apply loop unrolling for in-block reduction CUDA Optimization
nogpurun Do not run the kernel region on a GPU Execution Configuration

TABLE III
BRIEF DESCRIPTION OF ADDITIONAL OPENMPC CLAUSES, WHICH ARE USED EITHER INTERNALLY BY A COMPILER FRAMEWORK OR EXTERNALLY BY

A MANUAL TUNER.

Clause Description Category
c2gmemtr(list) Set the list of variables to be transferred from a CPU to a GPU Data Movement between CPU and GPU
noc2gmemtr(list) Set the list of variables not to be transferred from a CPU to a GPU Data Movement between CPU and GPU
g2cmemtr(list) Set the list of variables to be transferred from a GPU to a CPU Data Movement between CPU and GPU
nog2cmemtr(list) Set the list of variables not to be transferred from a GPU to a CPU Data Movement between CPU and GPU
noregister(list) Set the list of variables not to be cached on GPU registers OpenMP-to-CUDA Data Mapping
noshared(list) Set the list of variables not to be cached on GPU shared memory OpenMP-to-CUDA Data Mapping
notexture(list) Set the list of variables not to be cached on GPU texture memory OpenMP-to-CUDA Data Mapping
noconstant(list) Set the list of variables not to be cached on GPU constant memory OpenMP-to-CUDA Data Mapping
nocudamalloc(list) Set the list of variables not to be CUDA-mallocated OpenMP-to-CUDA Data Mapping
nocudafree(list) Set the list of variables not to be CUDA-freed OpenMP-to-CUDA Data Mapping

TABLE IV
BRIEF DESCRIPTION OF OPENMPC ENVIRONMENT VARIABLES, WHICH CONTROL PROGRAM-LEVEL BEHAVIORS OF VARIOUS OPTIMIZATIONS, THREAD

BATCHINGS, DATA MAPPING STRATEGIES, AND TUNING LEVEL.

Parameter Description Category
maxNumOfCudaThreadBlocks=N Set the maximum number of CUDA thread blocks CUDA Thread Batching
cudaThreadBlockSize=N Set the default CUDA thread block size CUDA Thread Batching
shrdSclrCachingOnReg Cache shared scalar variables onto GPU registers OpenMP-to-CUDA Data Mapping
shrdArryElmtCachingOnReg Cache shared array elements onto GPU registers OpenMP-to-CUDA Data Mapping
shrdSclrCachingOnSM Cache shared scalar variables onto GPU shared memory OpenMP-to-CUDA Data Mapping
prvtArryCachingOnSM Cache private array variables onto GPU shared memory OpenMP-to-CUDA Data Mapping
shrdArryCachingOnTM Cache 1-dimensional, R/O shared array variables onto GPU texture memory OpenMP-to-CUDA Data Mapping
shrdCachingOnConst Cache R/O shared variables onto GPU constant memory OpenMP-to-CUDA Data Mapping
useMatrixTranspose Apply Matrix Transpose optimization OpenMP Stream Optimization
useLoopCollapse Apply LoopCollapse optimization OpenMP Stream Optimization
useParallelLoopSwap Apply Parallel Loop-Swap optimization OpenMP Stream Optimization
useUnrollingOnReduction Apply loop unrolling for in-block reduction CUDA Optimization
useMallocPitch Use cudaMallocPitch() for 2-dimensional arrays CUDA Optimization
useGlobalGMalloc Allocate GPU variables as global variables CUDA Optimization
globalGMallocOpt Apply CUDA malloc optimization for globally allocated GPU variables CUDA Optimization
cudaMallocOptLevel=N Set CUDA malloc optimization level for locally allocated GPU variables CUDA Optimization
cudaMemTrOptLevel=N Set CUDA CPU-GPU memory transfer optimization level CUDA Optimization
assumeNonZeroTripLoops Assume that all loops have non-zero iterations Optimization Configuration
tuningLevel=N Set tuning level (0: Program-level tuning 1: Kernel-level tuning) Tuning Configuration

The gpurun directive can control the translation of each kernel

region. The cpurun directive says that the associated parallel

region will be executed by the CPU. For this directive, the

following four clauses from Table III can be used: c2gmemtr,

noc2gmemtr, g2cmemtr, and nog2cmemtr. The third directive

(nogpurun) prevents the translator from transforming the at-

tached kernel region. In our system, the gpurun directive is

usually added by the automatic translator; it can be overridden

by a nogpurun directive inserted by a user or tuning system.

The translator uses the ainfo directive to assign unique IDs

to each kernel region. This allows programmers and tuning

systems to provide additional directives via a separate user
directive file, rather than annotating the input OpenMP code.

Directives provided in a user directive file have a similar

syntax as in Table I, but are prefixed by the procedure name

and kernel ID they refer to.

Fig. 3. Overall Compilation Flow. When the compilation system is used for automatic tuning, additional passes are invoked between CUDA Optimizer and
O2G Translator, marked as (A) in the figure (See Figure 4)

B. Environment Variable Extension

The OpenMPC provides a rich set of environment vari-

ables, which control the program-level behavior of various

optimizations or execution configurations for an output CUDA

program. Table IV shows the supported environment variables.

Because directives have priority over environment variables,

users or tuning systems can alter the program-level optimiza-

tions and configurations for each kernel region.

V. COMPILATION AND TUNING SYSTEM FOR OPENMPC

This section presents a reference compilation and tuning

system supporting OpenMPC. To realize the compilation

system, we have modified the compiler developed in [2]

by (1) separating the OpenMP-to-CUDA translator from the

CUDA optimizer, (2) adding an OpenMPC directive handler,

(3) implementing all the optimizations that had been applied

manually, (4) adding new optimizations, including the ones

described in Section III-B, (5) implementing new transfor-

mation passes to perform the necessary code changes for

each OpenMPC directive or environment variable, and (6)

modifying existing optimization passes and the translator so

they communicate with each other using the new directives.

The compiler also includes capabilities for tuning systems

such as the one described in Section V-C. These capabilities

include a search space pruner and a tuning configuration
generator.

Using the compilation system, we also created a prototype

tuning system, which builds an optimization search space

with applicable optimizations by analyzing the program and

optional user settings. It then creates a path through the space

and generates output CUDA code for each point in the search

space. For our experiments, we have chosen a simple approach

that visits each point in the space; that is, it exhaustively

searches the space.

A. Overall Compilation Flow

Figure 3 shows the overall flow of the compilation. The

Cetus Parser reads the input OpenMPC program and generates

an internal representation (Cetus IR). The OpenMP Analyzer
recognizes standard OpenMP directives and analyzes the pro-

gram to find all OpenMP shared, threadprivate, private, and

reduction variables that are explicitly and implicitly used in

each parallel region. The analyzer also identifies implicit barri-

ers by OpenMP semantics and adds explicit barrier statements

at each implicit synchronization point. The Kernel Splitter di-

vides parallel regions at each synchronization point to enforce

synchronization semantics under the CUDA programming

model. The OpenMPC-directive Handler annotates each kernel
region with an ainfo directive to assign a unique ID and parses

a user directive file, if present. The handler also processes

possible OpenMPC directives present in the input program.

The OpenMP Stream Optimizer transforms traditional CPU-

oriented OpenMP programs into OpenMP programs optimized

for GPGPUs, and the CUDA Optimizer performs CUDA-

specific optimizations. Both optimization passes express their

results in the form of OpenMPC directives in the Cetus IR.

In the last pass, the O2G Translator performs the actual code

transformations according to the directives provided either by

a user or by the optimization passes.

B. Compiler Support for Tuning

The OpenMPC system supports a rich set of directives and

environment variables controlling the automatic translation

and optimization. This set can be used as the basis of a tuning

system. The search space pruning and tuning configuration
generation functions serve that purpose. The system allows

user input for certain aggressive optimizations.

1) Search Space Pruning: Each of the new directives and

environment variables that OpenMPC supports controls either

an optimization or a thread batching for a kernel execution.

A complete optimization search space consists of all possible

combinations of values of these directives and environment

variables. For automatic tuning, only the clauses in Table II

and the variables in Table IV are used. Clauses in Table III

have a predictable effect – they are used either by a user or

by the translator internally.

Because there are many directives and environment vari-

ables, the complete optimization space cannot be feasibly

searched. Non-trivial CUDA programs contain many kernel

functions, each of which can be controlled with the directive

set individually. The automatic search space pruning function

attempts to reduce this optimization space to a feasible size.

First, the search space pruner analyzes conditions necessary

for applying each optimization and checks whether a given

program has code sections satisfying the conditions. If no

eligible code section is found, the optimization is removed

from the optimization space. Second, the pruner suggests

applicable caching strategies for each variable that exhibits

locality. Table V shows caching strategies for each data type.

TABLE V
CACHING STRATEGIES. Reg DENOTES Registers, CM MEANS Constant

Memory, SM IS Shared Memory, AND TM REPRESENTS Texture Memory.

Variable Type Caching Strategy
R/O shared scalar w/o locality SM
R/O shared scalar w/ locality SM, CM, Reg
R/W shared scalar w/ locality Reg, SM
R/W shared array element w/ locality Reg
R/O 1-dimensional shared array TM
R/W private array w/ locality SM

The search space pruner may not be able to analyze the

applicability of all parameters (e.g., cudaMemTrOptLevel and

assumeNonZeroTripLoops in Table IV) because the analysis

may be too complex or sensitive to runtime inputs (i.e.,

unsafe). The pruner reports these parameters. In response, a

user may decide and express the validity of these parameters

in the optimization-space-setup, described next.

2) Tuning Configuration Generation: Once a search space

is defined by the search space pruner, the configuration
generator creates tuning configuration files for each point in

the search space. The configuration files are fed to the O2G

translator, one at a time, generating output CUDA code. By de-

fault, the configuration generator builds tuning configurations

for program-level tuning. Using an OpenMPC environment

variable (tuningLevel), a user can choose the more exhaustive

kernel-level tuning.

To further prune the search space, the user can provide

an optimization-space-setup file containing parameters that

should or should not be part of the optimization search

space. These settings can direct the tuning system to choose

aggressive optimizations, which otherwise might be unsafe.

Additionally, the setup file may contain the value ranges of

important parameters such as thread block size and the number

of thread blocks.

C. Prototype Tuning System

Using the described search space functions, we have created

a prototype tuning system, shown in Figure 4. The overall

tuning process is as follows:

• The search space pruner analyzes an input OpenMPC

program plus optional user settings, which exist as an-

notations in the input program, and suggests applicable

tuning parameters.

• The tuning configuration generator builds a search space,

further prunes the space using the optimization space
setup file if user-provided, and generates tuning configu-

ration files for the given search space.

• For each tuning configuration, the O2G translator gener-

ates an output CUDA program.

• The tuning engine produces executables from the gener-

ated CUDA programs and measures the performance of

the CUDA programs by running the executables.

• The tuning engine decides a direction to the next search

and requests the configuration generator to generate new

configurations.

• The last three steps are repeated, as needed.

Fig. 4. Overall Tuning Framework. In the figure, input OpenMPC code is an
output IR from CUDA Optimizer in the compilation system (See Figure 3)

In the example tuning framework, a programmer can replace

the tuning engine with any custom engine; all the other steps

from finding tunable parameters to complex code changes

for each tuning configuration are automatically handled by

the proposed compilation system. In our prototype, we have

developed a simple tuning engine, which performs exhaustive

search. Tuning with an exhaustive search algorithm is feasi-

ble for our benchmarks, because the automatic search-space

pruner can effectively reduce the optimization search. Our

search engine simply consists of a script that compiles CUDA

codes for each configuration, runs executables, and measures

their performance. Several algorithms for more efficient search

space navigation exist [3], [15]; they could replace exhaustive

search in our system.

VI. EVALUATION

To demonstrate the effectiveness of OpenMPC, we have

conducted two types of performance tuning experiments, using

the prototype tuning framework: profile-based tuning (Profiled
Tuning) and user-assisted tuning (U. Assisted Tuning). In

profile-based tuning (Profiled Tuning), a target program is

tuned with a training input data set – the smallest available

set, in our case; the tuning system finds the best variant for

the training input, and then the best variant is used to execute

and measure the program with the actual data sets of interest

(referred to as production data). The profile-based tuning is

fully automatic.

User-assisted tuning (U. Assisted Tuning) is used to obtain

an upper performance bound of our tuning system. The

programs have been tuned for each production data set. In

addition, the user assists the tuning system by confirming

the applicability of aggressive optimizations. The other tuning

processes are performed automatically.

In these experiments, two regular OpenMP programs (NAS

OpenMP Parallel Benchmark EP and JACOBI kernel) and two

irregular OpenMP programs (NAS OpenMP Parallel Bench-

mark CG and SPMUL kernel) were automatically translated

and tuned. Our system is able to handle a larger class of

programs, with some limitations. The translator produces

appropriate warnings for unsupported program patterns.

For comparison, three types of code variants of the tested

programs were also evaluated: Baseline, All Opts, and Manual
versions. Baseline means CUDA programs translated by the

proposed system without any optimization, All Opts refers to

the code variants where all safe optimizations are applied, and

Manual represents manually optimized versions. In creating

the manual versions of the tested programs, we have also

used OpenMPC; we have first annotated each OpenMP source

program using the OpenMPC directives and generated CUDA

programs with our translator. We have then applied additional

manual transformations to the generated CUDA programs, as

possible. Creating these hand-coded reference code versions

consumed substantial time.

The tested GPU device is an NVIDIA Quadro FX 5600

GPU, which has 16 multiprocessors (SMs) clocked at 1.35

GHz and 1.5 GB of DRAM. Each SM consists of 8 SIMD

processing units (SPs) and has 16 KB of shared memory. The

host CPU is a 3-GHz AMD dual-core processor with 12 GB

DRAM. The translated CUDA programs were compiled using

the NVIDIA CUDA Compiler (NVCC) and the serial versions

of the input OpenMP programs were compiled using the GCC

compiler version 4.2.2, with option -O3.

The following sections present our results in detail. Overall,

we found that: (1) user-assisted tuning using the described

system increases the performance up to 102% (14% on av-

erage) over the un-tuned versions (All Opts), and the average

performance gap between hand-written versions (Manual) and

versions generated by our tuning system (U. Assisted Tuning)

is less than 12%, (2) the proposed search-space pruner is

able to reduce the optimization search space effectively (98%

on average), and (3) in some programs, profile-based tuning

is highly sensitive to input data, motivating future work in

runtime tuning methods.

TABLE VI
NUMBER OF PARAMETERS SUGGESTED BY THE SEARCH-SPACE PRUNER

AND THE NUMBER OF KERNEL REGIONS. IN A/B/C FORMAT, A IS THE

NUMBER OF TUNABLE PROGRAM-LEVEL PARAMETERS, B IS THE NUMBER

OF PARAMETERS THAT THE PRUNER SUGGESTS TO BE ALWAYS

BENEFICIAL, AND C IS THE NUMBER OF PARAMETERS THAT A USER’S

APPROVAL IS REQUIRED.

Benchmark Program-level Kernel-level # of kernel regions
Parameter Parameter

JACOBI 3/4/1 1 2
SPMUL 4/3/2 4 2
EP 5/3/2 3 1
CG 8/3/2 5 19

A. Optimization Space Reduction

Table VI lists the number of applicable tuning parame-

ters suggested by the search-space pruner, and Table VII

shows the optimization search space reduction due to pruning.

Aggressive parameters are pruned, unless the user confirms

their validity. In all experiments, we have used program-level

TABLE VII
OPTIMIZATION SEARCH SPACE REDUCTION BY THE SEARCH-SPACE

PRUNER FOR PROGRAM-LEVEL TUNING

Benchmark Number of Tuning Configurations Search Space
W/O pruning W/ pruning Reduction (%)

JACOBI 25600 100 99.61
SPMUL 16384 128 99.22
EP 21504 336 98.44
CG 6144 384 93.75

tuning. Because of the small size of JACOBI, SPMUL, and

EP, kernel-level tuning would be feasible as well, despite

our simple, exhaustive search engine; we have verified that

the performance of both methods are nearly equal. Applying

kernel-level tuning in CG would increase the search space

significantly, motivating future work in advanced search space

navigations [3], [15].

B. Performance of Regular Programs

JACOBI is a stencil computation kernel used in many regu-

lar scientific applications, such as partial differential equation

solvers. Even though JACOBI has a simple, regular access pat-

tern, the base-translated GPU code performs poorly due to un-

coalesced global memory accesses (Baseline in Figure 5(a)).

Our translator changes the access patterns to coalesced ones

(All Opts in Figure 5(a)). The results of profile-based tuning

are shown as Profiled Tuning in Figure 5(a). User-assisted

tuning (U. Assisted Tuning in the figure) shows the best

performance that the proposed tuning system can achieve. The

manual versions (Manual) use tiling transformations to exploit

shared memory, which is not yet supported by the current

translator. We attribute the performance difference between

versions generated by hand and by our tuning system primarily

to this reason.

EP is a highly parallel application, which computes Gaus-

sian deviates using pseudo-random numbers. Despite its par-

allelism, the base-translated version of EP performs poorly

(Baseline in Figure 5(b)), which again is due to un-coalesced

global memory accesses (details in [2]). As in JACOBI, our

translator removes this limitation (All Opts in Figure 5(b)). In

the case of EP, profile-based tuning is not effective.

Our results indicate that the performance of some GPU

applications is highly sensitive to the input data. In such cases,

input-sensitive tuning systems, such as G-ADAPT [4], will

perform better than profile-based tuning systems.

Our tuned programs (U. Assisted Tuning in Figure 5(b)) do

not always include all cache optimizations. For example, the

private array caching optimization allocates a private array

in shared memory to reduce long latencies to the CUDA

local memory. However, this optimization is implemented by

expanding the private array in the shared memory, which puts

pressure on this memory due to its small size. The performance

gap between U. Assisted Tuning and Manual in Figure 5(b) is

due to the difference in handling a critical section; EP uses

an OpenMP critical construct to implement an array reduction

under the OpenMP programming model. Both hand-written

and system-tuned versions transform the critical section into

(a) JACOBI Kernel (b) NAS Parallel Benchmark EP

(c) SPMUL Kernel (d) NAS Parallel Benchmark CG

Fig. 5. Performance of Both Regular (JACOBI and EP) and Irregular (SPMUL and CG) Programs (Speedups are over serial on the CPU). Baseline is the
translation without optimizations, and All Opts applies all safe optimizations, which do not need a user’s approval. Profiled Tuning uses profile-based tuning,
U. Assisted Tuning is a user-assisted tuning, which tunes the programs with production data and applies aggressive optimizations under the user’s approval,
and Manual is the manually optimized version.

array reduction code, but the manual version optimizes further

by removing a redundant private array, which was used as

a local reduction variable. Improved array section analysis

would be able to detect this redundancy.

C. Performance of Irregular Programs

Sparse matrix computation is used in many scientific appli-

cations. SPMUL and CG are two important irregular programs

performing sparse matrix computation. To test the SPMUL
kernel, we used several real sparse matrices in the UF Sparse

Matrix Collection [9]. Sparse computations tend to exhibit

irregular computation and communication behavior; our results

in Figure 5(c) show that profile-based tuning is not very

successful. One interesting point about SPMUL is that none of

the tuned program variants for any input had Loop Collapsing
applied (details in [2]), even though this optimization was

selected by most of the tuned variants of CG. Loop Collapsing
enables coalesced accesses to global memory by combining

two nested sparse computation loops into one; additionally it

caches shared data in the shared memory to reduce global

memory accesses. However, the optimization increases the

usage of shared memory and avoids exploiting the texture

memory. Therefore, the overall benefit of the optimization

is not statically predictable, making it amenable to tuning.

Figure 5(c) shows that the version tuned by our system (U.
Assisted Tuning) achieves the same performance as the manual

version.

CG is a more challenging sparse computation program.

In CG, many kernel regions span across several procedures,

resulting in complex memory transfer patterns between the

CPU and the GPU. Interprocedural data flow analysis pre-

sented in Section III-B plays a key role in creating efficient

memory transfer patterns (All Opts in Figure 5(d)). In CG,

applying aggressive optimizations increases the overall perfor-

mance (U. Assisted Tuning), since the aggressive optimizations

augment the accuracy of CUDA memory-related optimiza-

tions. (In the other tested programs, no noticeable perfor-

mance improvement was achieved by applying the aggressive

optimizations.) The GPU version of CG also shows input-

sensitive performance behavior, and thus profile-based tuning

was not effective (Profiled Tuning in Figure 5(d)). In CG, the

manual version (Manual) applies more efficient GPU memory

allocation and data-transfer schemes than the system-tuned

version (U. Assisted Tuning), and the manual version also

removes some of the implicit barriers, resulting in less kernel

invocation overheads. This barrier removal is possible under

the CUDA memory model, if two adjacent kernel regions are

work-partitioned so that no two threads communicate with

each other. The performance improvement by this manual

overhead reduction is more pronounced for small input data

sizes, as shown in Figure 5(d).

VII. RELATED WORK

Several automatic translation techniques have been pro-

posed with the goal of increasing the productivity of CUDA

programming. In the hiCUDA directive-based language [5],

a set of directives express CUDA computation and data

attributes in a sequential program. This work is similar

to ours in that it uses directives to provide abstractions

of CUDA, and a compiler automatically generates CUDA

code by interpreting these directives. However, hiCUDA uses

the same programming paradigm as CUDA; even though

it hides the CUDA language syntax, the complexity of the

CUDA programming and memory model is directly exposed

to programmers. OpenMPC is based on OpenMP, which is

higher-level than hiCUDA, and thus our work provides better

programmability than hiCUDA. Moreover, hiCUDA does not

provide any optimization, whereas our framework supports

various automatic performance optimizations. hiCUDA can

complement our work, as its exposure of the CUDA model

offers the potential of finer-grain control over GPUs’ perfor-

mance. CUDA-lite [16] is another directive-based approach,

which generates code for optimal tiling of global memory data.

CUDA-lite is limited in that it supports automatic code trans-

lation only on existing CUDA programs. The approach can

also complement our work by providing advanced tiling trans-

formations for optimized global memory accesses; currently,

the OpenMPC compiler performs tiling optimization only for

work partitioning. Another approach [6] has developed an

automatic code transformation system that generates CUDA

code from sequential C source code, for affine programs. This

approach uses a polyhedral compiler model to find affine

transforms for optimizing data movement between CUDA

off-chip and on-chip memories. By contrast, our compiler

framework optimizes both regular and irregular programs and

supports optimizations to minimize data movement between

the CPU and the GPU, as well as the ones for efficient global

memory accesses.

There have been many studies on optimizing the perfor-

mance of CUDA-based GPGPU programs; Ryoo et al. [7]

presented an experimental study on general optimization

strategies for programs on a CUDA-supported GPGPU, but

code generations were performed manually. Ryoo and his

colleagues presented another study on optimization space

pruning techniques [3]. Their techniques use a model-based

approach and work well if global memory bandwidth is not

a performance bottleneck. By contrast, our pruning algorithm

reduces the search space by checking the applicability of each

optimization. Their techniques can augment our framework

by providing further pruning when the assumption holds, and

our framework can also complement their work by automating

their manual code conversions.
To automatically optimize the performance of CUDA pro-

grams, most previous work was application-specific; Datta et

al. [11] developed a number of optimization strategies and

an auto-tuning environment for stencil computations. Nukada

et al. [10] presented an auto-tuning algorithm for 3-D FFT,

and Volkov et al. [12] conducted an extensive study of

dense linear algebra, using auto-tuning techniques to achieve

the best performance. Unlike the previous contributions, G-

ADAPT [4] uses a compiler-based, adaptive framework, which

automatically searches the best optimizations for a general

GPU program on different input data sets. This work is the

closest to ours; G-ADAPT performs program transformations

and optimization space search automatically, and offers a

set of directives for programmers to specify search criteria.

However, the adaptive framework works on a small subset

of the optimization space, and thus the framework performs

automatic transformation in limited ways. Our work is com-

plementary to this work in that our compiler framework can

offer a richer set of transformations and optimizations, and also

support a larger number of directives that provide control over

translation and optimization parameters than G-ADAPT; by

using our translator, G-ADAPT could extend its optimization

space. G-ADAPT limitation of working only on existing GPU

programs could be relaxed by adopting our OpenMPC API as

a front-end programming model.

VIII. CONCLUSION

This paper describes a new programming interface, called

OpenMPC, which consists of standard OpenMP and a new set

of compiler directives and environment variables, extended for

CUDA. OpenMPC addresses two important issues on GPGPU

programming: programmability and tunability. OpenMPC as

a front-end programming model provides programmers with

abstractions of the complex CUDA programming model and

high-level controls over various optimizations and CUDA-

related parameters. We have developed a fully automatic

compilation and user-assisted tuning system, which is able to

suggest applicable tuning configurations for an input OpenMP

program, generate CUDA code variants for each tuning con-

figuration, and search the best optimizations for the generated

CUDA program automatically. Experiments on both regular

and irregular programs demonstrate that the proposed sys-

tem achieves performance improvements comparable to hand-

coded CUDA.

ACKNOWLEDGMENT

This work was supported, in part, by the National Science

Foundation under grants No. 0751153-CNS, 0707931-CNS,

0833115-CCF, and 0916817-CCF.

REFERENCES

[1] “OpenMP [Online]. Available: http://openmp.org/wp/.”
[2] S. Lee, S.-J. Min, and R. Eigenmann, “OpenMP to GPGPU: A compiler

framework for automatic translation and optimization,” in ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP). New York, NY, USA: ACM, Feb. 2009, pp. 101–110.

[3] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S. Ueng, J. A.
Stratton, and W. W. Hwu, “Program optimization space pruning for a
multithreaded GPU,” International Symposium on Code Generation and
Optimization (CGO), 2008.

[4] Y. Liu, E. Z. Zhang, and X. Shen, “A cross-input adaptive framework
for GPU program optimizations,” 2009 IEEE International Symposium
on Parallel and Distributed Processing, pp. 1–10, 2009.

[5] T. D. Han and T. S. Abdelrahman, “hiCUDA: a high-level directive-
based language for GPU programming,” in GPGPU-2: Proceedings of
2nd Workshop on General Purpose Processing on Graphics Processing
Units. New York, NY, USA: ACM, 2009, pp. 52–61.

[6] M. M. Baskaran, J. Ramanujam, and P. Sadayappan, “Automatic C-to-
CUDA code generation for affine programs,” International Conference
on Compiler Construction (CC), vol. Volume6011/2010, pp. 244–263,
March 2010.

[7] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk,
and W. W. Hwu, “Optimization principles and application performance
evaluation of a multithreaded GPU using CUDA,” ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP),
pp. 73–82, 2008.

[8] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan, “A compiler framework for optimization
of affine loop nests for GPGPUs,” ACM International Conference on
Supercomputing (ICS), 2008.

[9] T. Davis, “University of Florida Sparse Matrix Collection [Online].
Available: http://www.cise.ufl.edu/research/sparse/matrices/.”

[10] A. Nukada and S. Matsuoka, “Auto-tuning 3-D FFT library for CUDA
GPUs,” in SC ’09: Proceedings of the 2009 ACM/IEEE conference on
Supercomputing. New York, NY, USA: ACM, 2009, pp. 1–10.

[11] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker,
D. Patterson, J. Shalf, and K. Yelick, “Stencil computation optimization
and auto-tuning on state-of-the-art multicore architectures,” in SC ’08:
Proceedings of the 2008 ACM/IEEE conference on Supercomputing.
Piscataway, NJ, USA: IEEE Press, 2008, pp. 1–12.

[12] V. Volkov and J. W. Demmel, “Benchmarking GPUs to tune dense linear
algebra,” in SC ’08: Proceedings of the 2008 ACM/IEEE conference on
Supercomputing. Piscataway, NJ, USA: IEEE Press, 2008, pp. 1–11.

[13] C. Dave, H. Bae, S.-J. Min, S. Lee, R. Eigenmann, and S. Midkiff,
“Cetus: A source-to-source compiler infrastructure for multicores,” IEEE
Computer, vol. 42, no. 12, pp. 36–42, 2009.

[14] “NVIDIA CUDA SDK - Data-Parallel Algorithms: Parallel Reduction
[Online]. Available: http://developer.download.nvidia.com/compute/ cu-
da/1 1/Website/Data-Parallel Algorithms.html.”

[15] Z. Pan and R. Eigenmann, “PEAK—a fast and effective performance
tuning system via compiler optimization orchestration,” ACM Trans.
Program. Lang. Syst., vol. 30, no. 3, pp. 1–43, 2008.

[16] S. Ueng, M. Lathara, S. S. Baghsorkhi, and W. W. Hwu, “CUDA-lite:
Reducing GPU programming complexity,” International Workshop on
Languages and Compilers for Parallel Computing (LCPC), 2008.

