
Accelerating SIFT on Parallel Architectures

Seth Warn #1, Wesley Emeneker #2, Jackson Cothren ∗3, Amy Apon #4

Computer Science and Computer Engineering, University of Arkansas
504 JBHT, University of Arkansas, Fayetteville AR, 72701, USA

1 swarn@uark.edu
2 ewe@uark.edu

4 aapon@uark.edu
∗ Center for Advanced Spatial Technologies, University of Arkansas

304 JBHT, University of Arkansas, Fayetteville AR, 72701, USA
3 jcothren@cast.uark.edu

Abstract—SIFT is a widely-used algorithm that extracts fea-
tures from images; using it to extract information from hundreds
of terabytes of aerial and satellite photographs requires paral-
lelization in order to be feasible. We explore accelerating an
existing serial SIFT implementation with OpenMP parallelization
and GPU execution.

I. INTRODUCTION

Computer vision attempts to extract features and discern

information about images. Its use is well-known in near-real-

time applications like robot maneuvering or object tracking,

but extracting information from images is also useful in other

types of problems. For example, photogrammetry uses com-

puter vision algorithms to extract geometric and geographic

information from images. We want to apply some of those

techniques to a large archive of aerial and satellite imagery,

determining if and where those images overlap, and the

correct rotation, translation, and scale to “stitch” those images

together. Because our archive has more than one hundred

terabytes of raw images, we are investigating a number of

avenues to parallelize and accelerate the process.

Matching and stitching images is performed by an appli-

cation with two major, computationally-intensive phases. The

first phase extracts features using David Lowe’s Scale Invariant

Feature Transform (SIFT) algorithm [1]. The second phase

of computation takes combinations of images and uses the

results from the first phase to find any overlapping regions.

Our work focuses on accelerating the SIFT algorithm’s feature

extraction. There are a number of operations in the SIFT

algorithm:

• Scale space construction: The image is repeatedly con-

volved with a Gaussian convolution kernel. This produces

a series of increasingly-blurred versions of the original

image.

• Difference of Gaussian calculation: The difference be-

tween adjacent images in Gaussian scale space is calcu-

lated. This approximates the scale-normalized Laplacian

of Gaussian.

This research was supported in part by the National Science Foundation
under grant MRI #072265 and by a faculty instrument award from Dell
Corporation.

• Keypoint identification: Local extrema in the Lapla-

cian are found by comparing difference-of-Guassian val-

ues with their eight neighbors at the same scale, and

nine neighbors at scales above and below. Extrema are

recorded as possible keypoints.

• Keypoint filtering: Potentially unstable keypoints, such

as those in areas of low contrast or along edges, are

removed.

• Keypoint orientation: The dominant gradient of the neigh-

borhood around the point is determined. The description

of the point is relative to this gradient, making it rotation-

invariant.

• Keypoint descriptor creation: Histograms are calculated

that describe the neighborhood of the point. These his-

tograms form a vector that serves as the descriptor of the

keypoint.

The purpose of this project is to determine the efficacy of

two acceleration techniques, applied to the same code base.

We use an existing implementation of the SIFT algorithm,

SIFT++ [2], as the starting point for our work. To identify

the portions of the application that will benefit most from

parallelization, we use a code profiler to identify compute-

intensive functions within SIFT++. Then, we create two sep-

arate, accelerated versions of original application.
First, we implement a traditional and simple parallelization

with OpenMP. This allows the application to take advantage

of all the CPUs in an SMP architecture, and is a relatively

straightforward method of parallelizing code. Second, we

create a version that executes portions of the SIFT algorithm

on a NVIDIA Graphics Processing Unit (GPU) with CUDA [3]

capabilities. General-purpose processing on GPUs (GPGPU)

is a relatively new technique than can accelerate some appli-

cations by several orders of magnitude, but is typically more

complex to implement.
We benchmark each version and compare the results. Be-

cause GPGPU requires a GPU and extra programming effort,

we are interested in whether OpenMP is “good enough,” i.e., if

SIFT++ accelerated with OpenMP scales well enough for the

purposes of the larger project. Additionally, we are interested

in the return on investment of a GPGPU solution; is a GPU-

enhanced SIFT++ accelerated enough to justify the extra effort

 978-1-4244-5012-1/09/$25.00 ©2009 IEEE

and expense required to implement it?

II. METHODOLOGY

A. SIFT++

As mentioned above, we use an existing application,

SIFT++, as a starting point for our work. It is an imple-

mentation of SIFT in C++ with a single binary sift. Our

tests use it with the default command line options, reading

a single image and generating a list of keypoint descriptors.

Given the existing code, our desire is to reduce the runtime

while generating identical results.

Though SIFT++ is considered superseded by the VLFeat

suite of computer vision algorithms [4], a brief test found that

SIFT++ is both faster and uses less memory than the VLFeat

implementation of SIFT for the large images typically used in

our workloads.

B. Profiling

We used code profiling to to identify the most computation-

ally intense portions of SIFT++. Accelerating these portions of

the code will presumably show the greatest effect on runtime.

We used the GNU gprof utility to perform the profiling;

abbreviated profile output from is shown in Table I on the

following page. The results in this table were generated from

an image paris.pgm with dimensions 4136x1424; SIFT++

generates 42605 keypoints for paris.pgm.

The results of the profiling show that three functions con-

sume more than ninety percent of the computation time, and

are the best candidates for parallelization:

1) prepareGrad performs the keypoint orientation.

2) econvolve is used for scale space construction.

3) computeKeypointDescriptor generates keypoint

descriptors for detected features.

We chose the function econvolve to parallelize first. It

consumes 40% of the application runtime. It implements a

simple, one-dimensional convolution pass; it is used twice with

Guassian kernel values to accomplish the Gaussian smooth-

ing required for scale space construction. The convolution

is straightforward to parallelize, consisting primarily of a

multiply-accumulate operation inside a nested loop.

C. OpenMP

OpenMP is an established way of modifying serial code to

take advantage of parallelism on an SMP system. Essentially,

OpenMP works by transforming sections of serial code into

regions that can execute in parallel. The programmer specifies

which regions of code are to be parallelized, and tells OpenMP

which variables are private, public, shared between threads,

etc. With this knowledge, the compiler can take loops (for

example), and split iterations among threads. With proper

separation, the end result of an OpenMP loop is the same as

the serialized loop. In OpenMP, any variable that is dependent

upon the results of previous iterations must be removed or

computed independently. Additionally, any parallelized loops

must have stopping conditions not dependent on functions.

(OpenMP 3.0 can support iterators and function calls for loop

conditions, but at the time of implementation and writing, the

gcc compiler did not support the new functionality.)

Adding OpenMP parallelism to each of the three func-

tions econvolve, computeKeypointDescriptor, and

prepareGrad requires less than 20 new or changed lines of

code in total. That amounts to a less than one percent differ-

ence between the original and the OpenMP parallelized code.

Additionally, the changes implemented required approximately

12 hours to implement and test for correctness.

D. GPU

Accelerating an application with CUDA is a more com-

plex process. NVIDIA describes to their device architecture

as “Single-Instruction, Multiple Thread,” or SIMT, referring

to how it is programmed with multiple, instruction-locked

threads. Additionally, the device has a complex memory

hierarchy, with multiple disjoint memories and special require-

ments to maximize memory bandwidth. Unlike with OpenMP,

serial code can not be extended to make efficient use of

GPGPU capabilities; it must be rewritten to take advantage

of the GPU architecture.

There are two types of code in a CUDA application. First,

there is the “host” code, which is essentially unmodified

C/C++ that runs on the CPU. Second is the “device” code,

written in a subset of C with a number of CUDA-specific

extensions. Typically, the host code will copy input data into

the devices memory, then make a call to a function specified

in the device code. The CUDA runtime translates this call,

downloading the device code to the GPU as a compiled kernel

and executing it, then returning execution to the host code

when the kernel has completed. Then, the host will copy the

output data from the device into system memory.

Of the two most time-consuming functions, econvolve is

best-suited to acceleration on the GPU. It uses memory buffers

for the input image and resulting output images, making it easy

to match with the typical operation described above. Also,

it is called relatively few times, incurring the overhead of

the host/device transition less often.The descriptor computa-

tion (computeKeypointDescriptor) requires access to

more, less cleanly-separated input data, and is called many

more times, making it less suited to GPU acceleration.

Our accelerated convolution kernel is based on code avail-

able in the CUDA SDK. The kernel addresses the two major

issues that arise from the architectural features described

above: using the GPU at maximum efficiency, and coalesced

memory access.

Using the GPU efficiently – by keeping all of its resources

productively working – is more difficult on the GPU than a

multi-CPU system, because of its SIMT architecture. CUDA

uses “threads” to program the many scalar processors on the

GPU (240 on the FX 5800). These threads do not execute

independently, like POSIX threads. Instead, they execute the

instructions of a thread in lockstep. Threads can take different

branches; in practice, this divides the pool of processors into

several sets, one set per branch. The processors from only

one set at a time will be executing instructions, while the

% time cum. seconds self seconds calls name
41.90 12.56 12.56 42605 computeKeypointDescriptor(double*, ...
40.13 24.59 12.03 82 void econvolve<float>(float*, ...
10.48 27.73 3.14 76770 prepareGrad(int)

3.50 28.78 1.05 1 detectKeypoints(double, double)
2.27 29.46 0.68 34165 computeKeypointOrientations(double*, ...
1.50 29.91 0.45 1 process(float const*, int, int)
0.20 29.97 0.06 1 extractPgm(std::istream&, VL::PgmBuffer&)
0.03 29.98 0.01 42605 insertDescriptor(std::ostream\&, ...

TABLE I
SIFTPP PROFILING DATA

others idle. To maximize efficiency, the convolution code must

minimize divergent thread behavior.

Compared to a CPU, the GPU has relatively little on-chip

memory (i.e., cache), while it has much greater bandwidth

to off-chip DRAM. This bandwidth is only available when

“coalescing” memory reads. Threads are executed in groups of

32, called “warps”. If the threads access consecutive address,

and the first address is aligned to 64 bytes, then 16 memory

accesses (a “half-warp” of threads) will be coalesced into a

single operation. This can change the execution time of device

code by over an order of magnitude, so the convolution code

is carefully written to ensure the correct alignment of memory

operations.

E. Testing Setup

The OpenMP code was tested on a machine with dual quad-

core Intel Xeon “Gainestown” processors running at 2.66 GHz.

These processors have a 8 MB L3 cache shared by all four

cores, and private 256 KB L2 caches for each core.

The GPU device used for the CUDA benchmarking is an

Nvidia FX 5800, which has 4GB of GDDR memory. The

execution time of the CUDA code is compared to execution

on an Intel E6550 “Conroe” processor running at 2.33 GHz.

III. RESULTS

A. OpenMP

Figure 1 shows the runtime of our OpenMP-enhanced

SIFT++, as measured by time command, running with be-

tween one and eight threads. The lines represent the original

image, and three additional images obtained by scaling the

original down to half, quarter, and eighth size. This is done to

illustrate the homogeneity of the work done by the code, and

show how speedup changes relative to problem size.

Figure 2 shows the speedup gained with the OpenMP, based

on the execution times in Figure 1. An ideal linear speedup is

also shown. Our results fall well below this, with a speedup

just over 2x when running threads on all eight processors.

B. CUDA

Convolution on the CPU and GPU demonstrated the behav-

ior shown in Table II on the next page. The “Compute Time”

column describes how long it takes to complete a convolution

with a kernel width of 15 on an 8272 x 2848 image. The

“GPU” row describes execution time on a FX 5800 graphics

card, and the “CPU” is an Intel E6550 running at 2.33 GHz.

Fig. 1. SIFT++ runtime as measured by “time”

Fig. 2. Speedup of sift++ with OpenMP parallelization

Compute Time Comm. Time Total Time

GPU 10.4 ms 158 ms 168 ms
CPU 2180 ms - 2180 ms

TABLE II
CONVOLUTION ON GPU AND CPU

This result demonstrates more than just the floating-point

power of the FX 5800 GPU. The theoretical (single-precision)

peak performance of the FX 5800 is 933 GFlops, while a

single core of the E6550 can do four floating point operations

per clock cycle, for a theoretical peak performance of 9.32

GFlops. With 100x the theoretical FPU power of the CPU,

the GPU achieves 200x the performance; this is due to the

novel architecture and high on-device memory bandwidth of

the FX 5800.

The second column describes the overhead incurred in the

CUDA implementation. It includes the communication time

required to transfer the input image to the card and copy

the output image from the card, as well as other overhead,

such as the time required to allocate memory on the GPU

device before memory transfers. This overhead far exceeds

the computation time, so the total execution time of the

convolution is 168 ms, only 13x faster than the CPU execution

time.

The entire execution time of SIFT++, including file I/O, is

33.9 seconds for the original siftpp binary, and 17.8 seconds

for the accelerated version. This is a 1.9x speedup is on a 4136

by 1424 image that generates over forty thousand keypoints.

The convolution time and runtime overhead of CUDA are

dependent only on the size of the input image; the results

shown in Table II will not vary with image content.

IV. RELATED WORK

A number of authors have previous explored accelerating

SIFT. This previous work has been in a different domain than

work presented in this paper: these authors have focused on

real-time computer vision applications, typically processing

640x480 images as quickly as possible. At four bytes per pixel,

these images occupy roughly 1.2 MB of memory and may fit

entirely in the cache of a modern CPU. Processing the larger

images we are using will be more affected by system memory

performance.

Previous work on accelerating SIFT with a GPU typically

measures performance in Hz, the number of 640x480 frames

per second that SIFT feature extraction can process. Sinha,

et. al. [5] built “GPU-SIFT” and benchmarked it running

at 10 Hz on an GeForce 7800 GTX, roughly 10x faster

than a CPU implementation. Heymann, et. al. [6] presented

a GPU-accelerated SIFT implementation that achieved an

approximately 5x speedup over an SSE-optimized CPU im-

plementation using a QuadroFX 3400. These video cards,

released in 2005 and 2004 respectively, were less-suited to

GPGPU and were programmed without the benefit of CUDA.

Feng, Zhang, et. al. published several papers [7], [8] on

implementing and measuring SIFT on SMP systems. They

explore three different optimizations: OpenMP paralleliza-

tion, cache optimizations, and SIMD operations (via Intel

SSE instructions). In [8], they show a 6.2x speedup from

parallelization on an 8-core machine; in [7] they show a

10x to 11x speedup on a 16 core machine. Their analysis

shows that memory bandwidth is a determining factor of SIFT

performance.

V. CONCLUSIONS

Using OpenMP, it is straightforward to accelerate existing

serial code on SMP hardware. Our implementation required

minimal changes to the original code in order see a speedup

from parallel hardware. However, the performance of SIFT is

very dependent on the target machine’s memory performance,

and a more careful (and time-consuming) approach is neces-

sary to make optimal use of SMP hardware.
GPGPU can offer immense performance gains, but at the

cost of programmer effort. Attempting a direct port of existing

code is a suboptimal approach. The device code must be

written with the architectural features mentioned above, SIMT

and memory coalescence, firmly in mind. Also, because of the

comparatively slow communication between the device and the

host, a GPU-based applications as a whole must be written

from the beginning to minimize host-device communication.

If there is a relatively discrete portion of the existing code

that is computationally intensive and requires little input or

output from the rest of the application, then it may successfully

moved to the GPU.
In SIFT++, only the convolution function matched that

description, and the data transfer time to and from the device

was still an order of magnitude higher than the computation

time for each call to the function. Part of our planned future

work is a from-scratch implementation of SIFT targeted at the

GPU. By copying only the original image (or tiles thereof)

into the device memory, performing most work there, and

copying only the resulting keypoint descriptors back into

system memory, performance gains up to 100x faster than the

a single-CPU implementation are possible.

REFERENCES

[1] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, pp. 91–110, 2004.

[2] A. Vedaldi. (2009) Sift++ source code and documentation. [Online].
Available: http://www.vlfeat.org/∼vedaldi/code/siftpp.html

[3] NVIDIA, “CUDA technology,” http://http://www.nvidia.com/CUDA,
2009.

[4] A. Vedaldi and B. Fulkerson, “VLFeat: An open and portable library of
computer vision algorithms,” http://www.vlfeat.org/, 2008.

[5] S. Sinha, J.-M. Frahm, M. Pollefeys, and Y. Genc, “Feature tracking
and matching in video using programmable graphics hardware,” Machine
Vision and Applications, March 2007.

[6] S. Heymann, K. Muller, A. Smolic, B. Froehlich, and T. Wiegand, “SIFT
implementation and optimization for general-purpose GPU,” in WSCG’07,
2007.

[7] H. Feng, E. Li, Y. Chen, and Y. Zhang, “Parallelization and
characterization of sift on multi-core systems.” in IISWC, D. Christie,
A. Lee, O. Mutlu, and B. G. Zorn, Eds. IEEE, 2008, pp. 14–
23. [Online]. Available: http://dblp.uni-trier.de/db/conf/iiswc/iiswc2008.
html#FengLCZ08

[8] Q. Zhang, Y. Chen, Y. Zhang, and Y. Xu, “Sift implementation and opti-
mization for multi-core systems,” in Parallel and Distributed Processing,
2008. IPDPS 2008. IEEE International Symposium on, 2008, pp. 1–8.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

