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Abstract—The recent advent of multicore processors, and es-
pecially the introduction of many-core GPUs, opens new horizons
to large-scale, high-resolution, simulations for a broad range of
scientific fields. Among them, the scientific area of CFD appears
to be one of the candidates that could significantly benefit from
the utilization of many-core GPUs. In order to investigate such a
potential, we evaluate the performance of a high-order accurate
method for the simulation of compressible flows. Current imple-
mentation is taking place on a GPU cluster. Nevertheless, a novel
approach is followed concerning the utilization of GPU clusters
that does not involve explicit message passing. Instead, the
presented implementation resides on Software Distributed Shared
Memory (SDSM) to propagate changes across the simulation
phases. The first results prove to be emboldening and lay grounds
for further research along the use of shared memory abstraction
in order to utilize future GPU clusters.

I. INTRODUCTION

During the last decade, we have experienced a major shift
on microprocessor design technology[1]. For the purpose of
producing next generation microprocessors, that could exhibit
respectable performance gains, preserving at the same time
an acceptable rate of power consumption, in comparison to
high-frequency processors of that time, the decision was to
unfold the potential of parallelism utilization inside the chip.
Along that process, that is often described as the multicore
revolution[2], modern GPUs have - up to now - the lead
concerning the number of cores that they deploy.

Due to their simplistic design that excludes several features
and most notably memory coherence, out of order execution,
and branch prediction, modern GPUs are able to encompass
hundreds of cores in a single chip, while at the same time,
the number of cores in general purpose CPUs reaches a few
dozens at experimental level[3]. For instance, the NVIDIA
Tesla GPU[4] consists of 30 multiprocessors, where each
multiprocessor contains 8 cores, resulting on an aggregate
number of 240 cores inside a single GPU.

Nevertheless, since the introduction of multi-core and many-
core architectures, the burden of the utilization of the afforded
resources has been transferred mostly to the software stack.
In the case of parallel processing with GPUs, synergetic
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execution schemes have to be implemented between CPU and
GPU threads, in order to benefit from the afforded computing
power of many-core GPUs. That process has been facilitated
by the introduction of simple programming environments, such
as CUDA[S5] and OpenCL[6], that rely on C/C++ programming
languages and their respective multithreaded libraries. How-
ever, until now, there is no availability of well-established, so-
phisticated programming environments and optimization tools.
Under these circumstances, the exploration of the perfor-
mance capabilities of the newly introduced multiprocessors,
has been relied mostly on the implementation, porting and
hand-optimization of a wide range of applications that could
benefit from the proliferation of computational resources. It is
expected that such a thorough study at the application level
will drive the development of high performance compilers,
runtime systems and respective middleware.

In the current paper, following the same practice, we present
the implementation of a computationally intensive high order
accurate method for the simulation of compressible flows in
order to study the potential acceleration of that application
category. In parallel we attempt to gain important insight
concerning attainable programming models that target GPU
based supercomputers.

Concerning the application part, it is well known that nu-
merical simulation of turbulence in high-speed flows is daunt-
ing. This is due to the difficulty of ensuring high-resolution
and fidelity in capturing small disturbances in an environment
containing sharp gradients associated with shocks and rela-
tively thin boundary layers. Even with the use of higher-order
approaches many shock capturing methods introduce spurious
(numerical) noise, which contaminates the solution beyond
acceptable limits. Such distortions can lead to significant
damping of turbulence fluctuations and may mask the effects
of the subgrid-scale (SGS) models. Specification of boundary
conditions ensuring that the numerical discretizations remain
stable is also a critical issue. Robust, high-fidelity and accuracy
methodologies that are capable of treating complex flows
and are applicable for high-resolution numerical solutions in
complex domains are therefore solemnly required.

As far as the presented implementation platform is con-
cerned, clusters are expected to remain the main structure in
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the organization of supercomputers in the near future. The
advent of many-cores is not expected to replace clusters. On
the contrary, it has already began to enhance their architecture,
and the result of such a transition is evident by the deployment
of the first heterogeneous accelerator clusters. Following that
anticipation, in the current paper we present an alternative
approach in order to program high performance GPU clusters.
Instead to the common practice, that employes MPI or a re-
lated message passing programming model, we are presenting
an implementation and first results of the deployment of a
well-established SDSM in order to accelerate the execution of
the numerical simulation under study.

The rest of the paper is organized as follows. In section II we
refer to the research efforts that relate to the presented imple-
mentation. Section III describes the numerical implementation
and provides the basis for the described simulation process.
Section IV describes in detail the implementation effort in
the context of the GPU cluster using CUDA and Intel Cluster
OpenMP. In Section V we provide the performance evaluation
of the proposed schemem and finally in Section VI we draw
our conclusions and refer to our future work.

II. RELATED WORK

Since the introduction of modern GPUs and their respective
development tools, CUDA and OpenCL, several scientific
applications and simulation software have been ported on
these many-core architectures[7]. While most of the efforts
concentrate on the context of a single GPU and study its
interaction with the host CPU, there is an important part
of research that has focused on the utilization of multiple
GPUs for parallel simulations. In cases where two or more
GPUs reside on the same board, usually a shared mem-
ory programming model is employed, such as OpenMP or
Pthreads[8][9]. When a GPU cluster is available[10], then, to
our knowledge, most efforts up to now have been using some
kind of message passing protocol, mostly MPI, in order to
distribute cooperating processes across the cluster[11][12][13].

The most active area of high performance middleware that
pose an alternative to explicit message passing, is the area of
Partitioned Global Address Space (PGAS) languages. How-
ever, the research efforts that aim at providing a programming
environment that could utilize GPU clusters through a PGAS
language, are still at a preliminary stage. Concerning DSM
implementation at a library level, the work of Gelado et
al.[14] is influenced by the principles of shared memory
abstraction, however ADSM implements a distributed shared
memory layer between host and device memories, which, at
the moment, is not meant to utilize distinct GPU resources on
a cluster. Strengert et al.[15] have also presented CUDASA,
which provides a language extension to CUDA. CUDASA
is supported by a source-to-source compiler, and in order to
realize inter-node communication on a cluster it uses MPI
calls.

In the context of CFD, there is an ongoing research effort
concerning high performance simulations that operate in both
structured[16][17][18][19] and unstructured meshes[20][21].
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Cohen et al.[18] have performed 3D simulations on structured
meshes using double precision computations. The method that
they apply in order to enforce 3D domain decomposition of
the structured mesh is similar to the approach that we follow
in the current paper. Klockner et al.[21] achieve an acceler-
ation on nodal discontinuous Galerkin methods operating on
unstructured meshes using a single GPU and report a speedup
of a factor of 10 in comparison to CPU execution. However,
all the CFD simulations that utilize GPU clusters are using,
until now, exclusively MPI.

III. NUMERICAL IMPLEMENTATION
In this section the governing equations and the numerical
scheme used in parallel version of the code are summarized.
A. Governing equations

The Navier-Stokes equations are solved numerically. The
Cartesian coordinate form of the continuity momentum and
energy equations is:
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where £ = p/(y — 1) + 0.5pu,u; is the energy, T is the
temperature, Pr is the Prandtl number, and the viscous stress
tensor 7; ; is given by
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with S, ; = (Qu;/0x; + Ou;/0x;)/2. The molecular viscosity
is obtained from the computed temperature using Sutherland’s
law
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B. Numerical scheme

The Favre-averaged Navier-Stokes equations were written in
generalized coordinates £ = &(z,y, z) etc. The discretization
of the inviscid fluxes is based on standard finite difference
WENO scheme[22][23][24]. The numerical code includes
options for 5th, 7th and 9th order accurate discretizations of
the inviscid fluxes. The viscous fluxes were evaluated with
a 4th order accurate explicit, central difference scheme by
evaluating the second derivatives with repeated evaluation of
the first derivative, first at half points and then at the nodes of
the finite difference mesh. High order accurate discretization
of the viscous fluxes requires large computational time. It was
found that for a fourth order accurate explicit discretization,
significant portion of computational time per time step is
spend for the evaluation of the viscous fluxes and that higher
order explicit or compact discretizations are prohibitively



expensive computationally. The classical tree stage third order
accurate TVD Runge-Kutta method of Osher and Shu[25] is
used for time marching. For Large Eddy Simulation (LES)
computations the Smagorinsky subgrid scale model is used.
The essential details of the finite difference WENO dis-
cretization for an equally spaced mesh are given next. The
reconstruction by WENO uses a convex combination of %
candidate ENO stencils, Sq(j) = {zj—q, -, Tj—qth-1}, ¢ =
0,...,k — 1. Each ENO stencil S,(j) produces a k-th order
accurate ENO reconstruction fﬁ& 2 = an_zlo Cqjfi—gitms
where for the finite difference formulation is the nodal value
fj_q+m. The convex sum of the WENO reconstruction

fj+1/2 +O(Al’2k71), (6)
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produces a (2k — 1)** order approximation at the cell bound-
aries of an equally space mesh, which is the transformed
domain mesh. The nonlinear weights w, in Eq. (6) are given
by:
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where d, are positive constants (optimal weights) for the
smooth stencils,[26][27][28] 3, are the smoothness indicators
of the stencil S,(j), and ¢ > 0 is a small constant to
avoid division by zero. The value of this constant was taken
£ = 107° for all computations. The smoothness indicators 3,
were computed as sum of the squares of L, norms of the
derivatives of the interpolation polynomial[22].

Smoothness measures for k = 3, 4, 5 or (2k — 1) — th, 5th,
7th, and 9th order accurate WENO reconstructions are given
in [24]. The reconstruction of the right state about j+1/2 is
symmetric.

High order finite difference WENO discretization of the
inviscid fluxes clearly requires wide stencils. For example,
the S5th order accurate WENO scheme requires a seven point
wide stencil, while the 9th order accurate one involves an
eleven point wide stencil. These wide stencils may present
problems for the specification of boundary conditions and
make less efficient the parallelization with domain decom-
position techniques. In this work, boundary conditions were
specified using the ghost cell approach for all boundaries.
Furthermore, the simplest Lax-Friedrichs splitting £ (u)
0.5[f(u) £ au], a=max,|f'(u)|is used for the evaluation
of the numerical flux.

For the numerical solution of the three dimensional Euler or
Navier-Stokes system with the finite difference WENO scheme
it is necessary to define an average state of the left, f;, and
the right fr states at an interface. A Roe-type approximate
Riemann solver is used. The Lax-Friedrichs numerical flux
is used and the average state U is defined for the primitive
variables U = [p, u, v, w, p|T using Roe’s average.
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Once the average state has been defined the conservative
flux vectors are first projected on the characteristic space
where the reconstruction is carried out and then the numerical
flux is re-projected back to the conservative variables space
and the derivatives are computed as

af _ fi+1/2 —fi71/2 or af _ fj+1/2 —]271/2
N Az o A¢

Oox
for Cartesian or generalized coordinates, respectively. In Eq.
(8), fj+1 /2 denotes the numerical flux which is reconstructed
using high order accuracy. Therefore the evaluation of a proper
set of right and left eigenvectors for the conservative flux
vectors is a crucial step of the WENO solver.

A curvilinear coordinates transformation (z,y,z) —
(&,m,¢) was applied and finite difference discretizations were
applied in the equally space transformed domain. The metric
quintiles were computed with the standard compact fourth
order finite difference formulas. It was found that due to the
simplicity of the mesh evaluation of metrics with sixth order
accurate formulas does not make any difference.

®)

IV. PARALLEL SIMULATION

The presented application belongs to the broad category
of scientific GPU codes that have been based on a former
multithreaded or distributed version of the algorithm in order
to achieve their acceleration on GPUs using software develop-
ment environments such as CUDA and OpenCL. Particularly,
the presented multi-GPU implementation is based on a multi-
threaded OpenMP version that is used to perform data parallel
simulations on multicore CPUs[9]. Next, we describe the
most important implementation challenges of the acceleration
process.

A. Domain decomposition

The presented method operates on structured meshes, which
are particularly suited for domain decomposition. Neverthe-
less, the dimensions on which decomposition is applied differ
between OpenMP-only version and multi-GPU cluster version.
In the case of multithreaded execution, where solely OpenMP
is used, the computational domain is fragmented in a band
based fashion along the axial streamwise direction as depicted
schematically in Fig. 1. The streamwise direction contains
usually the largest number of points in most CFD simula-
tions. However, without loss of generality, the directions can
always be interchanged so that the largest number of points
in the simulation is along the axial (¢ or &) direction. The
generalized coordinates form of the governing equations is
solved and the global computation of dimension Imax x Jmax
x Kmax is subdivided along the i, or ¢ direction, which is
often the streamwise direction, in N subdomains of dimension
({Imax/N+2m} x Jmax x Kmax) where m is the number of the
ghost points required for data transfer. The number of ghost
points varies with the order of the base scheme and for the
5th order WENO is m=3, while for the 9th order WENO is
m=35.
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Fig. 1. Domain composition on the host side (CPU/Cluster level)

B. Implementation on GPU Clusters

In order to pose a cooperative execution of the parallel
simulation on a GPU cluster, a cluster enabled OpenMP
implementation that is based on SDSM[29] is used as the
middleware platform. In that way, the presented implemen-
tation follows a different approach than most practices that
have been implemented up to now and involve the spawning
of MPI communicating processes on every node of the cluster.

At a cluster wide level, on every OpenMP thread that is
created we assign the control of a particular GPU device.
Currently only a “1 to 1" assignment between OpenMP threads
and GPU devices is supported. Rather than expressing explic-
itly the data communication between threads on distinct cluster
nodes with messages, the changes are propagated transparently
through the memory consistency mechanisms of the SDSM
layer. These mechanisms are triggered on specific moments
that involve the use of synchronization constructs. In our
case, the execution pattern enforces solely the use of barrier
synchronization.

In order to efficiently utilize multiple GPUs on a cluster,
the band based domain decomposition that was described is
not adequate. The domain has to be fragmented in a way that
the resultant number of computational portions will be large
enough to allow overlapping of thread blocks and efficient
utilization of stream multiprocessors of every GPU. Therefore,
a two-level hierarchical approach is followed to achieve fine-
grain domain decomposition. At the top level a band based
decomposition is also applied, with every band of the domain
being assigned on each OpenMP thread. Subsequently, that
band is imposed on a 3D decomposition that results on the
formation of the computational thread-blocks that will be
scheduled on each GPU. The implementation of that 3D
scheme follows the practice that is described by Cohen et
al. in [18]. Every data point of the mesh is represented by
an aligned structure of floating-point, single precision, values
and its manipulation is assigned on a single GPU thread. In
order to achieve proper mapping of the 3D thread blocks on a
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Fig. 2. Domain decomposition on the GPU device side and mapping of 3D
blocks on a 2D grid

2D grid that is supplied on every kernel launch, the respective
subdomain is decomposed on a two dimensional grid with di-
mensions ([I_Size/BlockSize_z), [J_Size/BlockSize_yx
Z_Size/BlockSize_z]). A schematic representation of the
applied scheme is shown in Fig. 2.

The above decomposition scheme leads to a quite coales-
cent data access pattern of the mutable data structures that
correspond to the structured mesh. These data structures are
placed in the global memory of the GPU and their respective
parts that need to be communicated between multiple GPUs
are placed at the sharable data region of the SDSM. On
every simulation step these boundary points are transferred
between host memory and device global memory with direct
memory copies and among cluster nodes with propagations
that correspond to barrier synchronization points. As far as
immutable data in the GPU is concerned, plain variables are
placed in constant memory and 3D read-only data structures
that have been produced during initialization are placed in
texture memory. In that way we are able to benefit from the
caching mechanisms of texture memory which are optimized
for spatial locality and less coalescent accesses.

Concerning the execution flow of the simulation (Fig. 3),
all the computations that are required by the Runge-Kutta
time stepping are taking place in the GPU. On every iteration,
there are 5 distinct kernels that are launched and realize the
simulation step, as it is depicted in Fig. 4. The kernels that
discretize the right hand side part of the equations operate
on the entire extent of the subdomain, while kernels BC and
UPDATE perform updates that do not exhibit a high degree
of parallelism. Still, their execution on the GPU side is more
efficient than a potential execution on the CPU if we take into
account the necessary memory copies that should take place.

Lastly, the necessary synchronization that is imposed by the
computation scheme, it is restricted on barrier synchronization
between the threads of the same common block inside each
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void RungeKutta() {
for(int m = 0; m < ORDER; m++) {
if (omp_get_num_threads () > 1){
copyData (FROM_DEVICE, DIRECTION);
#pragma omp barrier
copyData (TO_DEVICE, DIRECTION );

//

}
launchKernel (BC);

// Boundary Conditions Upd
launchKernel (XI); // Right hand side along 1
launchKernel (ETA); // Right hand side along J
launchKernel (ZETA); // Right hand side along K
launchKernel (UPDATE, m); // Update muttable data

}
copyData (FROM_DEVICE, DIRECTION );

Fig. 4. Execution flow of the Runge-Kutta time advancement in the GPU

CUDA kernel. At these points, barrier synchronization assures
that the required updates of auxiliary local variables, such
as Roe’s averaging or right and left eigenvectors that are
evaluated at this average state, have been accomplished. The
need for mutual exclusion is minimized on the use of an atomic
max operation that is used in order to compute the maximum
eigenvalue required for the construction of the Lax-Friedrischs
numerical flux.

V. BENCHMARK EVALUATION

In this section we describe the simulation settings and the
experimental platform that were used for the validation of the
parallel simulation on high performance GPU clusters. Next
the performance is evaluated for the execution models that
have been considered.

A. Simulation test cases

The evaluation of the presented high order accurate method
on GPU clusters refers to the simulation of Rayleigh-Taylor
(R-T) instability[30][31]. The code is three dimensional and
the computational domain for the simulations of the R-T
instability is the box (1 x 0.25 x 0.25) in three dimensions.
The “heavy” fluid is on the left side and has density p;, = 2
while the “light” fluid on the right has density pr = 1. The
interface between the two fluids is at x = 1/2 and the variation
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Fig. 5. Effect of the order of accuracy (WENO-5 versus WENO-9) and grid
spacing on the development of Rayleigh-Taylor instability

of the initial pressure is linear throughout the domain. The
initial pressure in the domain of the heavy fluid on the left is
pr(z) = 1+ 2z, while the variation of the pressure on the
right is pr(z) = 1.5+ a.

The initial perturbation of axial velocity w(y)
—0.025 cos(8my) is specified throughout the computational
domain and the source term, S (0, p, 0, 0, pu) T
[30][31], is added for both viscous and inviscid simulations.
The significant reductions of the computational time achieved
through the use of GPUs, which are discussed in detail in the
next section, made possible simulations of the R-T instability
with different mesh densities and schemes of different order
of accuracy. A comparison of different simulations obtained
on a series of meshes is shown in Fig. 5. All simulations
of Fig. 5 are carried out with the 3D code by enforcing
periodic boundary conditions along the third dimension for the
same final time. Clearly an increase on the order of accuracy
yields the same effect as the doubling of the mesh density
in both directions. Furthermore, the use of GPU cluster made
possible three dimensional simulations. A three dimensional
simulation obtained on a relatively coarse 240 x 60 x 60 point
mesh showed similar structures with the corresponding 2D
simulation of Fig. 5.

The R-T instability for inviscid flow develops a large
number of small scales with the increase of resolution, either
by the order of the scheme, or by the reduction of the mesh
size. A 3D inviscid simulation with the WENO-9 scheme and a
480x120x120 mesh also closely resembled the corresponding
2D results of Fig. 5. A 3D viscous flow computation of the R-
T instability for R, = 10 is shown in Fig. 6. Two dimensional
numerical experiments of viscous R-T instability (not shown
here) have demonstrated that a mesh size of h = 1/480 yielded
sufficient resolution since the computed results with meshes
hi1 = 1/480 and hy = 1/960 are identical. The detail of the
computed 3D flow field of the 3D R-T instability is also shown
in Fig. 6.



Fig. 6. Development of 3D Rayleigh-Taylor instability using WENO-9
scheme with a 480x120x120 mesh for viscous flow

B. Experimental Platform

The experimental evaluation of the current implementation
took place on a 4-node GPU cluster. The 4 nodes of the cluster
were externally connected with 2 NVIDIA Tesla 1U S1070
computing blades, establishing one connection per node, that
supplied each node with 2 Tesla C1060 graphics processors.
Thus, each node was able to utilize 60 stream multiprocessors
and a total number of 480 cores at the GPU side. In aggregate
this specific configuration resulted on a GPU cluster with 240
stream multiprocessors and 1920 cores.

In terms of software middleware platforms, the Intel Cluster
OpenMP[29] implementation was used for the realization of
a SDSM that provided transparent shared memory abstraction
over the cluster nodes. The specific implementation is supplied
with the Intel C/C++ Compiler (icc) and has been based on
the extension of the highly efficient Treadmarks DSM[32].
Accordingly, the NVIDIA CUDA software development envi-
ronment was used to utilize the many-core GPUs per node.

Nevertheless, the use of the CUDA runtime environment
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TABLE I
EXPERIMENTAL ENVIRONMENT AND SETTINGS

CPU GPU

#Cluster nodes 4
#units per node 1 2
#cores per node 4 480 (60 SM)
Type Intel®Xeon® Tesla C1060 @ 1.30 GHz

E5504 @ 2.00GHz S1070 1U system
Memory 4096KB (Cache) 4GB (Device Global)

4 GB (Host Memory)

Interconnect .Giga.bit I.Etherr?et PCI-E x16

via Gigabit Switch
SDSM Intel Cluster OpenMP (ICC 11.1)
CUDA SDK CUDA Driver APT 2.2

was not possible, because the Intel C/C++ compiler is not
fully supported at the moment by the NVCC CUDA compiler
driver. Therefore, our implementation has been exclusively
taken place at the low-level CUDA Driver APL This specific
co-operation is feasible in the case where the source code that
is destined to run on the host is compiled with icc and the
source code of the CUDA kernels that will operate on the
GPU device side is compiled with nvce. Currently the only
restriction, under that co-operation scheme, is that no direct
memory copy (memcpy) operation can take part between GPU
and a memory area that is sharable cluster-wide.

C. Performance evaluation on GPU clusters

In order to evaluate the performance of our implementation
we have conducted experiments using various mesh sizes that
present equivalent results in terms of performance scaling.
In the following graphs we present the results that concern
executions on a 480x120x120 mesh. The execution times refer
to the average execution time of 4 simulations, with each
simulation performing 8000 iterations.

Four basic configurations are compared in terms of execu-
tion time (Table II and Fig. 7) and their respective speedup
(Fig. 8). OpenMP refers to the multithreaded execution of the
simulation that takes place completely on the CPU without
involving GPU processing. CUDA-LOCAL refers to the local
multi-GPU evaluation on a single node of the cluster. CUDA-
SDSM refers to a cluster wide evaluation over SDSM, where
on each node a separate process is spawned to drive the execu-
tion on a specific GPU. In that sense a single Cluster OpenMP
thread corresponds to a single process yielding a “1 to 17
relation between OpenMP threads and local processes. Lastly
the CUDA-SDSM-MT corresponds to an SDSM evaluation
on top of the cluster, where a single process is started per
node, and in the case of utilization of 2 GPUs per node, each
process uses internal local multithreading. In that case, on the
available cluster, the hardware resources signify the creation
of maximum 2 threads per process.

Speedups are presented in comparison to the sequential
execution of the OpenMP version. According to the results,
sufficient speedup scaling is observed as long as there are



TABLE 11
OVERALL EXECUTION TIME RESULTS IN MINUTES:SECONDS

GPU o CUDA CUDA CUDA
penMP
Contexts LOCAL | SDSM | SDSM-MT
1 4243:10 137:05 136:59 137:02
2 2142:11 76:29 89:54 76:29
4 1128:27 134:24 61:07 60:39
6 1125:16 140:31 74:25 52:50
8 1126:30 156:09 68:50 47:32
- —+—CUDA-LOCAL
£ 200 o
£ CUDA-SDSM
E
E CUDA-SDSM-MT
g 150 —
X
E 100 O /
£ t
H
g
= 50 —
$
o
0
1 2 4 6 8
Number of GPU contexts
Fig. 7. Execution time results of the several multi-GPU schemes

enough dedicated GPU devices and local multithreading is em-
ployed. In the current evaluation, this observation is valid for
the CUDA-SDSM-MT execution mode. Under CUDA-SDSM-
MT we observe adequate GPU utilization, which results to the
highest speedup of an approximate factor of 90 compared with
the sequential execution and a factor of 24x compared with
the OpenMP local multithreaded execution on the CPU. An
efficient execution is also achieved when multiple GPUs are
used locally under CUDA-LOCAL and one context is created
per GPU. The results that refer to CUDA-LOCAL under 4, 6
and 8 threads have been obtained by executing concurrently
2, 3 and 4 contexts respectively on each of the 2 GPUs that
were locally available. As it was expected, this configuration
does not exhibit a positive scaling, and it is presented here for
the sake of completeness.

In contrast, we do not observe a positive scaling when
multiple SDSM processes are spawned on each node to utilize
the GPU devices. This fact is probably caused by the fact that
interprocess communication - as it is realized on Intel Cluster
OpenMP - is not able to perform efficiently at the local level.
Therefore, the best strategy is to deploy a single SDSM process
on each node of the cluster.

A detailed presentation of the time that is spent on the
various phases of the simulation is shown in Fig. 9. These
results show that a respectable decrease on the execution time
of the kernels is observed as long as more GPUs are utilized.
The kernel speedup is accompanied by a communication and
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synchronization cost that is increasing as the simulation incor-
porates more cluster nodes. Still, the cost at the SDSM layer
is not increasing at the same pace that the kernel execution
is decreasing. In that way the simulation is able to present
a positive speedup when CUDA is combined with SDSM
multithreading (CUDA-SDSM-MT). Finally, the cost that is
depicted under the SDSM/Sync field in the case of CUDA-
LOCAL, refers exclusively to the barrier synchronization. As
no SDSM mechanisms is used, that cost is excessive due to
the scheduling of more than 2 GPU contexts on just 2 GPU
devices that are available on that node.

Overall, the divergence of CUDA-SDSM-MT from optimal
speedup is mainly owed to the consecutive memory copies
towards the memory hierarchy starting from the GPU to Host
interface until the extension to the cluster level. Nevertheless,
the execution follows a structured memory reference pattern
and its impact does not forbid its acceleration.

VI

In the current paper we have presented the implementation
of a high-order accurate, computationally intensive, method for
compressible flows in the context of GPU cluster computing.
The implementation followed a novel approach in terms of

CONCLUSIONS AND FUTURE WORK



GPU cluster utilization that poses an interesting alternative to
mainstream message passing. The multi-GPU computation on
the cluster was carried out with the integration of our scheme
in a modern Cluster OpenMP implementation over Software
Distributed Shared Memory.

First results from the experimental evaluation show that, for
specific applications, the presented approach is valid and can
result in considerable acceleration of such simulations. The
proposed implementation extends in a more consistent and
transparent way the memory hierarchy of a GPU cluster, than
message passing implementations do. Therefore, these prelim-
inary results can encourage the implementation of appropriate
middleware that will be based on the concept of SDSM and
will be able also to offer an efficient programming model for
heterogeneous GPU clusters.

Our future research will concentrate on providing such
infrastructure at the middleware level. In parallel, we will
aim to efficiently implement other also high-order accurate
methods, that manipulate unstructured meshes and involve
relatively more unbalanced parallel execution patterns.
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