
Evaluation of the Task Programming Model in the Parallelization of Wavefront
Problems

Antonio J. Dios, Rafael Asenjo, Angeles Navarro, Francisco Corbera and Emilio L. Zapata
Dept. of Computer Architecture, University of Malaga, Malaga, Spain

{antjgm, asenjo, angeles, corbera, ezapata}@ac.uma.es

Abstract—This paper analyzes the applicability of the task
programming model in the parallelization of generic wavefront
problems. Computations on this type of problems are charac-
terized by a data dependency pattern across a data space,
which can produce a variable number of independent tasks
through the traversal of such space. Precisely, we think that it
is better to formulate the parallelization of this wavefront-based
programs in terms of logical tasks, instead of threads for several
reasons: more efficient matching of computations to available
resources, faster start-up and creation task times, improved
load balancing and higher level thinking. To implement the
parallel wavefront we have used two state-of-the art task
libraries: TBB and OpenMP 3.0. In this work, we highlight the
differences between both implementations, from a programmer
standpoint and from the performance point of view. For it,
we conduct several experiments to identify the factors that
can limit the performance on each case. Besides, we present
in the paper a wavefront template based on tasks, template
that makes easier the coding of parallel wavefront codes.
We have validated this template with three real dynamic
programming algorithms, finding that the TBB-coded template
always outperforms the OpenMP based-one.

Keywords-task programming; wavefront pattern; perfor-
mance analysis;

I. INTRODUCTION

Wavefront is a programming paradigm that appears in
important scientific applications such as those based in
dynamic programming [9] or sequence alignment [1] (Floyd
algorithm [11], biological sequence, etc). In this paradigm,
data elements are laid out as multidimensional grids repre-
senting a logical plane or space [10]. Typically, on each
iteration over the grid, data elements have dependencies
among them. It is well known that wavefront computation
admit efficient, parallel implementation via pipelining [9].

Fig. 1(a) represents an example of a 2D wavefront, where
the updating of a matrix element requires the updating
of previous neighbor elements resulting in a computation
that resembles a diagonal sweep across the elements in
the logical plane. The computations start at a corner of
the matrix and a sweep would move along the diagonal
to the next corner. That diagonal represents the number
of computations or elements that could be executed in
parallel without dependencies among them. This number of
independent elements will grow gradually to the maximum
amplitude of the diagonal. Then it will decrease to end in

the opposite corner of the grid. This diagonal sweep is the
reason for the name wavefront.

i

0

1

2

3

\j 0 1 2 3

(a) Sweep Diagonal

i

0

1

2

3

\j 0 1 2 3

0 1 1 1
1 2 2 2
1 2 2 2
1 2 2 2

(b) The counter matrix

Figure 1. Typical wavefront traversal, dependencies and a matrix of
counters

The aim for this paper is twofold: first we want to validate
the feasibility of the task programming model in order
to implement parallel wavefront problems; and second, to
provide a wavefront template to assist the programmer in the
implementation of such codes without dealing directly with
task spawns and low level parallel programming details. We
think tasks based programming fits better than thread based
programming on the implementation of parallel wavefront
problems due to some different reasons:

1) Tasks are much lighter weight than logical threads, in
fact the creation/termination of a task can be some
orders of magnitude inferior that creating or terminat-
ing a thread at the OS level. We have noticed that
in our wavefront applications, the computation over
one element (our task) may suppose around 100-1,000
floating point operations, so we consider they represent
a fine grain workload, best suited for a task model [13].

2) In task-based programming, the tasks scheduler does
have some higher level information, and so can sacri-
fice fairness for efficiency: a thread scheduler typically
distributes time slices in a round-robin fashion. How-
ever, when creating the threads, the programmer has to
set the appropriate number of logical threads to avoid
“under-subscription” (to have less logical threads than
physical hardware threads) or “over-subscription” (to
have more logical threads than physical hardware
threads) leading both situations to some overheads.
The sources of over-subscription overheads are cache
cooling, context switching and lock preemption. A

2010 12th IEEE International Conference on High Performance Computing and Communications

978-0-7695-4214-0/10 $26.00 © 2010 IEEE

DOI 10.1109/HPCC.2010.78

231

2010 12th IEEE International Conference on High Performance Computing and Communications

978-0-7695-4214-0/10 $26.00 © 2010 IEEE

DOI 10.1109/HPCC.2010.78

257

task scheduler avoids under/over subscription by se-
lecting the same number of logical threads as the
number of physical hardware threads and then by
allowing to map tasks in resulting logical threads.
Specially, in presence of load unbalance, which is a
scenario that we expect in wavefront codes, a task
scheduler can outperform the default thread scheduler
provided by the OS [13].

There are two main libraries that represent the state-
of-the-art when programming using tasks: Intel Threading
Building Blocks (TBB) [13] and OpenMP 3.0 [4]. TBB
offers a rich and complete approach to express parallelism in
a C++ program. TBB has some advantages: i) targets thread-
ing for performance; ii) is compatible with other threading
packages; and iii) relies on generic programming. One of the
big qualities of TBB is that provide some interesting high
level predefined templates to help programmers to express
the program in parallel using very high level constructors so
that an user who is not an expert in a parallel language is
able to parallelize a program in a simple way. For example,
we can write a program based on the pipeline model adding
stages (filters) with just a few lines of code. However, a high
level wavefront template, which is one of the goals of this
work, is lacking.

On the other hand, in the last decade, OpenMP has
emerged as “the facto” standard for shared-memory parallel
applications written in C/C++ or Fortran. OpenMP is based
on an explicit programming model in which parallelism is
specified through the use of compiler directives which are
embedded in the source code. In OpenMP, when a thread
encounters a task construct in a directive, then a task is
generated for the code of the associated structured block.
The data environment of the task is created according to
the data-sharing attribute clauses on the task construct and
any defaults that apply [4]. The encountering thread may
immediately execute the task, or defer its execution. In the
latter case, the task can be assigned to any thread in the
team.

The goal of this paper is to explore the programmability
and performance of a parallel task-based 2D wavefront
problem. Firstly, in section II we describe a simple wavefront
code and discuss its parallel task-based implementation us-
ing TBB and OpenMP, highlighting the differences between
both implementations from a programmer point of view.
In order to increase the abstraction level and simplify the
parallel implementation of wavefront codes, in section III we
present a wavefront template which, internally, can be built
on top of TBB or OpenMP. Next, in section IV we conduct
several experiments to identify the factors that can limit
the performance on TBB and OpenMP implementations. In
addition, we parallelize three real wavefront codes using the
template, to validate its feasibility. In section V we present
some related works. Finally, in section VI we summarize the
conclusions.

II. THE PROBLEM

In order to compare the TBB and OpenMP implementa-
tions of a wavefront problem, we have first selected a simple
2D wavefront problem. It is a classic problem consisting in
calculating a function for each cell of a n× n 2D grid [1].
However, this operation have a data dependence with two
elements of the adjacent cells as we show in Fig. 1(b), in
which the (1, 1) cell depends on the north, (0, 1), and west,
(1, 0), ones. Fig. 2 shows the code snippet for that problem:
A[i,j] depends on A[i-1,j] and A[i,j-1]) (line 4).

1 for (i=1; i<n; i++)
2 for (j=1; j<n; j++)
3 for (k=0; k<index; k++)
4 A[i,j] = f(A[i,j], A[i-1,j], A[i,j-1]);

Figure 2. Code snippet for a 2D wavefront problem

The basic unit of work is a task which will take care of the
computation performed at one (i,j) cell of the matrix. Thus,
the intention is to parallelize the i and j loops. Without loss
of generality, we assume that there will be auxiliary work
on each cell, and the computational load of this work will
be controlled by the k-loop. In fact, as we see in figure
2, the upper bound of this k-loop depends on the index
variable, that we can set in our experiments to control the
computational load for each cell. With this, we can define the
granularity of the tasks and study the influence of this factor
on performance. Similarly, we can set this upper bound to
simulate a constant or a variable task load and therefore to
analyze the impact of an homogeneous work distribution or,
on the contrary, a highly load unbalance scenario.

A. Implementation

In Fig. 1(b) we can see the data dependence flow (the
arrows) for this wavefront problem. For example, after the
execution of the upper left task (0, 0), which does not depend
on any other task, two new tasks can be dispatched (the one
below (1, 0) and the one to the right (0, 1)). This dependence
information can be captured by a 2D matrix with counters,
like the one we have in the same figure. The value of the
counters points out to how many tasks you have to wait for.
That way, only task with the corresponding counter nullified
can be dispatched.

Summarizing, each ready task can proceed to execute
the task body and then, it will decrement the counters of
the tasks depending on it. If this decrement operation ends
up with a counter equal to 0, the task is also responsible
of spawning the new independent task. The pseudo code
of this procedure is shown in Fig. 3. The Task_Body()
function (line 1) corresponds to the work that each task has
to perform. It is important to note that the counters will
be modified by different tasks that are running in parallel.
Thus, the access to the counters must be protected by mutual
exclusion, for instance inside a critical section (lines 4–8

232258

and 11-15). Inside each critical section, we decrement the
counter and spawn the dependent task (lines 7 and 14) if the
counter reaches a 0 value.

1 Task_Body(); //Task’s work
2

3 Critical Section
4 {
5 counter[i+1][j]--; //Dec. south neighbor counter
6 if (counter[i+1][j]==0)
7 Spawn();
8 }
9

10 Critical Section
11 {
12 counter[i][j+1]--; //Dec. east neighbor counter
13 if (counter[i][j+1]==0)
14 Spawn();
15 }

Figure 3. Pseudo code for each task

In the next subsections we will focus in the particular cod-
ing details regarding the TBB and OpenMP implementation
of this problem.

B. TBB particularities

One interesting construct provided by TBB is the atomic
template class. So we can declare the array of coun-
ters using atomic<int>**counter. There are sev-
eral methods that will be carried out atomically for an
atomic declared variable, for example, variable incre-
ment and decrement operations. For instance, the opera-
tion --counter[i][j], atomically decrement and re-
turns the new value of counter[i][j]. The expression
“if(--x==0) action()” is safe and just one task will
execute the “action()” [1]. Compared with locks, atomic
operations are faster and do not suffer from deadlock and
convoying. The code snippet for a task implementation using
TBB is shown in Fig. 4 where the atomic operations are in
lines 14 and 17.

In more detail, in lines 1–7 of Fig. 4, we declare the
Operation class that inherits from the TBB task class.
Then, following the TBB task based programming rules, it
is necessary to define the method execute to override
the virtual method task::execute (lines 9–20). This
methods does the actual task computation. This method
precisely follows the scheme of the pseudo-code provided
in Fig. 3.

C. OpenMP particularities

From the programmer point of view, the first difference
between TBB and OpenMP relies in that OpenMP does not
provided an atomic type comparable to the one available in
TBB. Although there is an atomic directive in OpenMP,
it has a lot of constraints, and constructs like:

#pragma omp atomic
if(--x==0) action();

1 Class Operation: public TBB::task
2 {
3 int i, j;
4 public:
5 Operation(int i_ , int j_) : i(i_), j(j_) {}
6 task * execute();
7 };
8

9 TBB::task * Operation::execute()
10 {
11 for (int k=0; k<index; k++) //Task’s work
12 A[i][j] = f(A[i][j] , A[i-1][j] , A[i][j-1]);
13 if (i<n-1) //There is south neighbor
14 if (--counter[i+1][j]==0)
15 spawn(* new(parent()->

allocate_additional_child_of(* parent()))
Operation(i+1,j));

16 if (j<n-1) //There is east neighbor
17 if (--counter[i][j+1]==0)
18 spawn(* new(parent()->

allocate_additional_child_of(* parent()))
Operation(i,j+1));

19 return NULL;
20 }

Figure 4. C++ implementation details using TBB

or

#pragma omp atomic
priv=--x;
if(priv==0) action();

are NOT valid (actually they result in compilation errors).
That way, we have relayed in critical sections to deal with the
mutual exclusion. Thus, the OpenMP directive “#pragma
omp critical” has been used.

The second difference is that, contrary to what we did in
TBB to define the task function, in OpenMP we just need
to use the “#pragma omp task” directive in a recursive
way, as we see in Fig. 5. So now, instead of the Operation
class, we have the Operation recursive function. First, it
takes care of the work (lines 5–6) and then spawn a neighbor
task (lines 15-16 and 26-27) if the corresponding counter
reaches a 0 value (lines 9-13 and 20-24). Please note that
the two previously mentioned “unnamed” critical sections
are considered to have the same unspecified name so they
are mutually exclusive: “a thread waits at the beginning
of a critical region until no thread is executing a critical
region with the same name” [4]. Obviously, this lead to
a coarse grain locking approach, that would be avoided
by declaring a matrix of omp_lock_t data types, and
by using the OpenMP runtime functions omp_set_lock
and omp_unset_lock to get a finer grain locking imple-
mentation. However, this approach just emulates a Pthread
programming model and diverges from our goal of providing
a high productive programming environment and of rising
the language abstraction level.

III. WAVEFRONT TEMPLATE

For non expert parallel programmers, it may be difficult to
implement a parallel wavefront algorithm, taking care of task
creation and synchronization. To alleviate this difficulties,

233259

1 void Operation(int i, int j)
2 {
3 int k;
4 bool ready;
5 for (int k=0;k<index;k++)
6 A[i][j] = f(A[i][j], A[i-1][j], A[i][j-1]);
7

8 if (j<n-1) {
9 #pragma omp critical

10 {
11 --counter[i][j+1];
12 ready = counter[i][j+1]==0;
13 }
14 if (ready){
15 #pragma omp task
16 Operation(i,j+1);
17 }
18 }
19 if (i<n-1){
20 #pragma omp critical
21 {
22 --counter[i+1][j];
23 ready = counter[i+1][j]==0;
24 }
25 if (ready){
26 #pragma omp task
27 Operation(i+1,j);
28 }
29 }
30 }

Figure 5. C++ implementation details using OpenMP

we propose a high level template in which the programmer
only has to provide the dependence pattern and the actual
task computation.

In order to do that we provide a new Wave class,
that contains a list data structure to hold the dependence
information, and a WaveTask class that has the virtual
method ExecuteTask. This method has to be defined by
the programmer in order to code the actual computation of
each task. Without loss of generality, the programmer needs
to identify each task with a unique id identifier, which can
be used to parametrize the computation that each task has
to perform. In our example, task are identified with an id
in the range [0..(n×n−1)] traversing the 2D grid in a row
order. The described classes, Wave and WaveTask, have
been build on top of TBB and OpenMP. Experimental results
with both implementations of the template are provided in
the next section.

An example of the main function using our template is
shown in Fig. 6. In line 2, we create the Wave object,
control, which will store the dependence relations for
all the tasks. Then, we create the first task, initial, in
line 5, which does not depend on any other task and will
trigger the wavefront execution. Now, we have to define
the dependence information for this task. This is done with
the method AddDep, which relates the current id with the
dependent task id’s (the east one in line 7, and the south
one in line 8). The lines 10–20 in Fig. 6 are just the same
lines that a programmer would write to define a dependence
matrix like the one in Fig. 1(b), but instead of initializing
a dependence counter, line 12 creates a new id, whereas

lines 15–16 should be used to establish the corresponding
dependencies. Finally, the method run(), line 21, should
be instantiated in order to start the wavefront execution.
The internal machinery will take care of dispatching the
necessary tasks when appropriate.

1 int main() {
2 Wave<Operation> * control = new Wave<Operation>;
3

4 int id=0; //Id of the first task
5 Operation * initial = new Operation(control, id);
6

7 control->AddDep(id, id+1); // add j+1
8 control->AddDep(id, id+n); // add i+1
9

10 for (int i = 0; i<n; i++){
11 for (int j=0; j<n; j++){
12 id++; //New id
13 if (i!=0 || j!=0){
14 // create the list of task with dependence

information
15 control->AddDep(id, id+1); // add j+1
16 control->AddDep(id, id+n) // add i+1
17
18 }
19 }
20 }
21 control->run(); // execute the wavefront code
22 }

Figure 6. Wavefront dependence structure initialization and execution

IV. EXPERIMENTAL RESULTS

We conduct two set of experiments to evaluate the suit-
ability of the task programming model in the parallelization
of wavefront problems. In all the experiments we have used
a multicore machine with 8 cores, where each core is an
Intel(R) Xeon(R) CPU X5355 at 2.66GHz, being SUSE
LINUX 10.1 the OS in the target platform. The codes were
compiled with icc 11.1 -O3. The TBB version is 2.1. We
executed each code among 3 to 10 times and computed the
average execution time of the runs to get the times that
we present in the next sections. Typically we performed
the experiments using different numbers of cores (1, 2, 4,
6 and 8), in order to see how codes scale as we increase
the number of cores. When computing speedups, they are
calculated respect to the sequential code.

A. Simple problem case study: comparison of TBB vs.
OpenMP implementations

1) Load balanced workload: We conduct a first set of
experiments using the simple wavefront problem shown in
Fig. 2 as case of study. We aim to compare the performance
of the TBB vs. OpenMP task based implementations of this
problem (described in Fig. 4 and Fig. 5, respectively). In
these experiments, we vary the problem input size (i.e. the
size of the 2D matrix) and the granularity of a task (i.e.
the amount of computational load in a task). To control
the computational workload of a task we just vary the
number of iterations of the inner k-loop by setting the
index (the upper bound) value. We evaluate three task

234260

Speedup Speedup Speedup

Case a: index=200 Case b: index=1,000 Case c: index=10,000

Figure 7. Constant task workloads: results for the TBB and OpenMP codes, with input matrix size M=1,000 x 1,000 and different task grain (index)

granularities: index=200 (which approximately corresponds
to 400 floating point operations and that we define as fine
granularity task size), index=1,000 (which is around 2,000
floating point operations or medium granularity task size),
and index=10,000 (which corresponds to 20,000 floating
point operations or coarse granularity task size). In any case,
as index remains constant for all the tasks, the computa-
tional load of each task is the same. For this reason, except
for the initial and last computations, eventually the workload
will be evenly balanced among the threads. The speedups
for the experiments with an input matrix size of 1,000 x
1,000 elements are presented in Fig. 7. Similar speedups
were obtained for other input matrix sizes.

The first conclusion that we can extract from these results
is that the granularity of a task (and not the problem
input size) is a very important factor that will determine
the scalability of the code. Other result is that the TBB
implementation consistently outperforms the OpenMP one,
for different input sizes of the problem and for different grain
size of the task workload. We notice that the performance
in OpenMP tends to degrade faster when the number of
cores increases, specially when the task grain size is fine or
medium (Cases a, b). However, when the task granularity is
coarse both implementations exhibit similar behavior (Case
c).

2) Load unbalanced workload: Next, we conduct another
set of experiment to study the effect of an unbalanced
workload. For it, we allow that different cells in our matrix
(in other words different tasks) have different grain size
load. Our goal is to probe if the task stealing distinguish
feature of the TBB scheduler can give some advantage
over the task tied scheduler of OpenMP [7]. Again, in
these experiments we vary the input problem size and
the granularity of a task. Now, we select two task gran-
ularities ranges: index=[100..100 + i ∗ j/(m ∗ 10)] and
index=[1, 000..1, 000 + i ∗ j ∗ 10/m], where m is the size
of a matrix row, and i and j are the indices of the external
loops (see the code sample in Fig. 2). In these experiments,
the computational load of each task will be variable, and
the workload could be quite unbalanced among the threads.

The speedups for the experiments with an input matrix size
of 3,000 x 3,000 are presented in Fig. 8. Similar speedups
were obtained for other input matrix sizes.

Speedup Speedup

Case A: index=[100.. 400] Case B: index=[1,000 .. 31,000]

Figure 8. Variable task workloads: results for the TBB and OpenMP codes,
with input matrix size M=3,000 x 3,000 and different task grain (index)

From the results in this set of experiments with unbal-
anced workload, we conclude that the performance of TBB
is always above OpenMP for every matrix input size and
every task grain load, although the difference is small for
coarse task grain (Case B). OpenMP fits badly in problems
with fine or medium task grain (Case A). One interesting
result that we notice is that in TBB there is a reduction of
the profit from 6 cores onwards when the grain size of the
task is fine (Case A). The same happens for the Case a in
Fig. 7.

3) Sources of overhead: In order to understand the
sources of overhead, we planned to conduct a new set of
experiments. We employed Vtune (the performance analyzer
of Intel [12]) to analyze the extreme situations: Cases a and
c for the balanced workload and Cases A and B for the
unbalanced experiments.

We decided to employ the call-graph activity of Vtune.
This technique works by analyzing the points of entry and
exit of all program and library functions. It can detect
program modules when they are loaded at runtime. The
call-graph activity provides important information about all
the functions analyzed: self time, waiting time, and calling
features such as number of calls, callers and callee functions,
etc. We used this activity to collect information about the
library functions that consumed more time in our cases of
study, both in the TBB and the OpenMP codes. That way, we

235261

Case a: TBB code Case c: TBB code Case A: TBB code Case B: TBB code

Case a: OpenMP code Case c: OpenMP code Case A: OpenMP code Case B: OpenMP code

Figure 9. Call graph results for the most time consuming library functions, for Cases a and c (balanced workload), and Cases A and B (unbalanced
workload), for TBB and OpenMP codes in 1,2,4,6 and 8 cores. The y-axes present the ratio between the self time of each library function and the total
execution time

can study the overhead produced by TBB library functions
an the OpenMP directive calls. The results for the most time
consuming library functions are shown in Fig. 9. The y-axes
represents the ratio between the self time of each function
and the total time.

From Fig. 9, we see that for the TBB codes, the library
functions that consume more time are: spawn (this method
is invoked each time a new task is spawned), allocate
(it selects the best memory allocation mechanism available)
and get_task (this method is called after completing the
execution of a previous task). When the task grain is fine
(Cases a and A), the overheads due to spawn, allocate
and get_task will be higher than when the task grain is
coarse (Cases c and B). In particular, spawn is the main
source of overhead for any number of cores, specially in
Cases a and A (fine task granularity), where it can reach a
12% of execution time, while this function barely reachs the
3% of overhead in Cases c and B. This result corroborates
the TBB yield loss that we noticed in Figs. 7 and 8 for Cases
a and A. Interestingly, the overheads tend to increase with
the number of cores, so a promising research line could be
to limit or control the overheads of TBB (mainly the spawn
method) for a high core count configuration.

Similarly, in Fig. 9 we see the library functions that
consume more time for the OpenMP codes: task (it ac-
counts for the omp_task and omp_task_alloc internal
functions which are associated to the directive spawn a new
task), and critical (it accounts for the omp_critical
and omp_end_critical internal functions, that are as-
sociated to the critical directive -used to access in mutual
exclusion to the critical sections). From these results, we
see that the overhead due to task creation in OpenMP
codes is significant in Cases a and A (fine granularity),
where it can reach around 20% of execution time, although
differently to TBB implementations, it does not tend to
increase with the number of cores. However, the overhead

due to the critical section management is the main source of
inefficiency. We have shadowed in the top side of the critical
bar, the contribution due to a waiting time produced by an
internal omp_lock_acquire function that is called by
omp_critical. Precisely, that locking is a contributing
factor that significantly increases the waiting time with the
number of cores in all the cases, more specially in the
fine grain ones where it can account for near the 60% of
execution time. This explains (added to the task creation
overhead) the poor scalability results we saw in the fine grain
task OpenMP codes in Fig. 7-Case a and Fig. 8-Case A. The
main problem is that the waiting time due to the locking can
become in a serialization bottleneck even in the coarse grain
OpenMP codes when the number of cores increases (see the
trend in Fig.9 for Cases c and B).

Steal task - fine grain Steal task- coarse grain

Figure 10. Number of calls for the steal_task and sched_yield
TBB functions

Other interesting issue we wanted to analyze was the
number of stealings in TBB and the overhead associated,
in order to understand if the task stealing distinguish feature
of TBB is relevant in the wavefront problems. For it,
we focused on the steal_task function, which is the
responsible of such feature, and the sched_yield which
is called by the TBB scheduler when, after a certain number
of attempts, the stealing fails (what usually happens when
there is not enough work at the initial and last computations).
We collected the time consumed by these functions and the
number of calls to them, using the Vtune call-graph activity.

236262

Regarding the times consumed by the two functions, we
found that, in all the cases, they were very small (they
spend less than 0.1% of execution time, respectively). In
Fig. 10 we show the number of calls to the steal_task
function and, shadowed on the top side of each bar, the
number of calls to the sched_yield function, both for
the fine granularity task cases (a and A) and for the coarse
granularity ones (c and B). Obviously, the non shadowed
part represents the successful steals. From the figure we
see that, in general, the number of stealing attempts is
higher in the coarse task granularity cases, and it tends
to increase with the number of cores. This is reasonable,
because with a coarse grain task workload it is necessary
more time to process the initial and last elements, and with
more cores there will be more idle cores trying to steal
work. In addition we note that there is always much more
attempts, as well as successful steals in the load unbalance
scenarios for each task granularity situation. On the other
hand, the difference between the number of successful steals
on an unbalanced case and the number of successful steals
on the corresponding balanced case, seems a little more
significant for the fine grain task scenario (left figure) than
for the coarse one (right figure), what hint us that the
workload in Case A is quite unbalanced. Therefore the work
stealing feature has been another contributing factor that
explains the non degradation in performance for this fine
task granularity case (compared with the balanced Case a), is
spite of the high load unbalance situation. However we think
that the current work stealing approach is perhaps too much
aggressive, specially in the coarse task granularity cases,
where there are a very high number of steal attempts but a
small ratio of success. Although the times consumed by this
function are small, it consumes energy, which can be saved
if the core is halted. An interesting open research could be
to dynamically adjust and reduce the steal attempts when
the scheduler notes a low ratio of successful steals and let
the core halts in these cases.

B. Real problems case study: comparison of TBB vs.
OpenMP templates

Now, we conduct a new set of experiments to evaluate the
performance of our TBB and OpenMP wavefront templates,
that we presented in section III. We use three wavefront
benchmark codes, that represent real problems: Checker-
board [6], Financial [2] and Floyd [11] algorithms.

We present the speedups for our TBB and OpenMP
wavefront templates in Fig. 11. We repeat the experiments
for different problem matrix sizes, obtaining similar results.
From the figures, we clearly see that our TBB wavefront
implementation always outperforms the OpenMP one, for
any number of cores. We should mention that in all these
real problems we have found fine to medium grain size
tasks, with high load unbalance among them, as in Case
A. Therefore we get a behavior and performance behavior

similar to what we described for that case in the previous
subsection.

V. RELATED WORKS

There is an interesting project [1] based on a pattern-based
parallel programming framework (implemented in Java) that
generates parallel programs from predefined design patterns,
being one of those the wavefront pattern. However, it just
allows the specification of some predefined dependencies
patterns, so is not as general as our template.

Other research lines have focused on allowing the pro-
grammer or the compiler to specify high-level data and con-
trol flow information in the form of a graph, as the stream-
graph [15] in the StreamIt project [14], or the prescriptions
graph in the Concurrent Collections for C/C++ (CnC)
project [5]. The StreamIt language is aimed at streaming
applications for stream processors or graphic processors [3],
although there have been some works that have studied the
mapping to general purpose multicores [8]. However, in
this context wavefront problems have not been explicitly
addressed. Other difference from our work, is that in the
StreamIt language, although the user can initially use a set
of simple annotations to mark the stages of computations
and use a dynamic analysis tool to build the stream graph
representation of the application, finally the programmer is
responsible for improving parallelism and load balancing. In
our approach, the programmer just specify the tasks and the
dependencies, leaving the runtime of the system to deal with
the parallelism and load balancing issues. On the other hand,
in the CnC language, programs are written in terms of high-
level application specific operations, being this language
targeted to general purpose multiprocessors. The user just
must specify the semantic constraints and indicate how data
and control flow among the steps of the algorithm. Although
CnC allows to specify several programming paradigms, it
is not trivial to specify the wavefront paradigm. Anyway,
as the CnC runtime is based in the TBB library it is more
related to our work. In fact we plan as a future work to study
the design of wavefront templates in CnC and evaluate its
performance.

VI. CONCLUSIONS

In our implementation of the wavefront paradigm we have
found that tasks are a promising programming model. In
such implementation, we have required a mutual exclusion to
control the concurrent access to shared counters, which are
necessary to check the dependencies and to spawn the new
tasks. We have implemented this mutual exclusion through
the use of the atomic capture feature in TBB, and the critical
pragma in OpenMP. Through our experimental evaluation
we have found that atomic capture allows a more efficient
implementation, because an important source of overhead
and serialization bottleneck in the OpenMP codes is due
precisely to the critical section. Other important source of

237263

Speedup Speedup Speedup

(a) (b) (c)

Figure 11. Template results for different real applications: (a) Checkerboard algorithm with matrix size 1,500 x 1,500; (b) Financial problem with matrix
size 300 x 300; (c) Floyd code with matrix size 5,000 x 5,000

overhead in the OpenMP implementation, specially in the
context of fine grain size tasks, is due to task creation. On
the contrary, TBB implementation offers low overhead for
task creation and management, even for very fine grain task
granularities problems what explains its more competitive
performance, both in load balanced and unbalanced scenar-
ios. To democratize the use of tasks for the development of
wavefront codes we have implemented a high level template
that frees the programmer from the burden of dealing with
low level task programming details. We have validated
this template by using it to parallelize three real dynamic
programming algorithms, finding that TBB-based template
always outperforms OpenMP-based one.

ACKNOWLEDGMENTS

This work was supported in part by the following Span-
ish projects: TIN2006-01078 from Ministerio de Ciencia e
Innovación, and P08-TIC-3500 from Junta de Andalucı́a.

REFERENCES

[1] John Anvik, Steve MacDonald, Duane Szafron, Jonathan
Schaeffer, Steven Bromling, and Kai Tan. Generating parallel
programs from the wavefront design pattern. Parallel and Dis-
tributed Processing Symposium, International, 2:0104, 2002.

[2] Gilles Brassard and Paul Bratley. Fundamentals of algorith-
mics. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[3] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon
Fatahalian, Mike Houston, and Pat Hanrahan. Brook for gpus:
stream computing on graphics hardware. In SIGGRAPH ’04:
ACM SIGGRAPH 2004 Papers, pages 777–786, New York,
NY, USA, 2004. ACM.

[4] Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Us-
ing OpenMP: Portable Shared Memory Parallel Programming
(Scientific and Engineering Computation). The MIT Press,
2007.

[5] Intel concurrent collections for c/c++.
http://software.intel.com/en-us/articles/intel-concurrent-
collections-for-cc.

[6] Vazirani Umesh Dasgupta Sanjoy, Papadimitriou Christos.
Algorithms. McGraw-Hill Higher Education, 2007.

[7] Alejandro Duran, Julita Corbalán, and Eduard Ayguadé. Eval-
uation of OpenMP Task Scheduling Strategies. In Lecture
Notes in Computer Science: Proceedings of the 4th Interna-
tional Workshop on OpenMP, volume 5004, pages 100–110.
Springer, May 2008.

[8] Jayanth Gummaraju, Joel Coburn, Yoshio Turner, and Mendel
Rosenblum. Streamware: programming general-purpose mul-
ticore processors using streams. In ASPLOS XIII: Proceedings
of the 13th international conference on Architectural support
for programming languages and operating systems, pages
297–307, New York, NY, USA, 2008. ACM.

[9] E Christopher Lewis and Lawrence Snyder. Pipelining
wavefront computations: Experiences and performance. In
In Fifth IEEE International Workshop on High-Level Parallel
Programming Models and Supportive Environments (HIPS,
1999.

[10] University of Illinois at Urbana-Champaign.College
of Engineering Department of Computer Science.
http://www.cs.uiuc.edu/homes/snir/PPP/patterns/wavefront.pdf.

[11] Bruno Richard Preiss. Data Structures and Algorithms
with Object-Oriented Design Patterns in Java. wiley, 2000.
635 pp. ISBN 0-471-34613-6.

[12] Software Engineering Support Programme. Intel(R)
VTune(TM) Performance Analyzer 8.0.2 for Linux. Technical
report, Mathematical Software Group Rutherford Appleton
Laboratory Chilton, 2006. http://www.sesp.cse.clrc.ac.uk/.

[13] James Reinders. Intel Threading Building Blocks (Sci-
entific and Engineering Computation). O‘Reilly, 2007.
http://www.threadingbuildingblocks.org/.

[14] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A
language for streaming applications. In CC ’02: Proceedings
of the Compiler Construction, France, 2002.

[15] William Thies, Vikram Chandrasekhar, and Saman Amaras-
inghe. A practical approach to exploiting coarse-grained
pipeline parallelism in C programs. In MICRO ’07: Proceed-
ings of the 40th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 356–369, Washington, DC, USA,
2007. IEEE Computer Society.

238264

