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Abstract 
Exploiting thread-level parallelism is a promising way to 
improve the performance of multimedia applications 
running on multithreading general-purpose processors. 
This paper describes our work in developing the first 
multithreading implementation of the H.264 encoder. We 
parallelize the encoder using the OpenMP programming 
model, which allows us to leverage the advanced 
compiler technology in the Intel8 C++ compiler for Intel 
Hyper-Threading architectures. We present our design 
considerations in the parallelization process. We describe 
an efficient multi-level data partitioning scheme that 
increases performance of a multithreaded H.264 encoder. 
Our experiments show parallel speedups ranging from 
4 . 3 1 ~  to 4 . 6 9 ~  on a 4-CPU Intel Xeonm system with 
Hyper-Threading Technology. 

1. Introduction 
H.264 [2] is an emerging video coding standard proposed 
by the Joint Video Team (JVT). It is aimed at high- 
quality coding of video contents at very low bit-rates. 
H.264 uses the same hybrid block-based motion 
compensation and transform coding model as existing 
standards such as H.263. However, a number of new 
features and capabilities have been added in H.264 to 
improve its coding performance. As a result, the H.264 
encoding process is more computationally intensive than 
existing standards. Hence, we are motivated to improve 
the speed of the encoder. 
In [7], it is demonstrated that using MMX/SSE/SSE2 
technology can speed up the H.264 decoder performance 
by 24x .  We apply the same technique to the H.264 
reference encoder as well. Table 1 shows the speedups 
for each key module residing in H.264 encoder. Although 
the encoder is 2-3x faster with SIMD optimization, it is 
still not fast enough for real-time video processing. One 
way to accelerate the encoder further is to parallelize it to 
exploit multiprocessor and Hyper-Threading Technology 
supported by the Intel architecture. 
Recently, both hardware and software support for 
multithreading has increased. While using multithreading 
hardware to improve throughput of multiple workloads is 
straightforward, using it to improve the performance of a 
single workload requires parallelization. Converting 

sequential programs into multithreaded programs is often 
difficult. However, the OpenMP shared-memory 
programming model [4, 51 provides a rich set of features, 
which allow the compiler to exploit thread-level 
parallelism and optimize the performance of applications 
with a few pragmas. The compiler support enables 
developers to take full advantage of the state-of-the-art 
architecture features such as Hyper-Threading 
Technology [3]. 
Previously, [6] presented an implementation of a 
multithreaded H.264 decoder, and there is also some 
work on exploiting parallelism in MPEG encoders [I]. To 
the best of our knowledge, we are the first to develop a 
multithreaded implementation of H.264 encoder. In 
addition, we study on tradeoffs between video quality and 
many parallelization schemes. [l] used the most 
straightforward approach, which parallelizes the encoding 
process at the slice-level. Our scheme is exploiting both 
slice-level and Frame-level parallelism. 

This paper describes how to efficiently parallelize an 
H.264 encoder using the Intel OpenMP compiler and 
demonstrates a speedup of 4 . 3 1 ~  to 4 . 6 9 ~  on quad- 
processor systems with Hyper-Threading Technology. 
The remainder of this paper is organized as follows. 
Section 2 presents a brief overview of the Intel compiler 
and Hyper-Threading architecture. Section 3 presents our 
implementation for a threaded H.264 encoder. Section 4 
shows performance results and discusses the results. 
Finally, Section 5 concludes the paper. 

2. Compiler and Architecture 
Intel Compiler: The Intel OpenMP implementation in 
the compiler strives to: (a) generate multithreaded code 
which gains a hue speedup over well-optimized 
sequential code, (b) integrate parallelization tightly with 
advanced interprocedure, scalar and loop optimizations 
such as intra-register vectorization and memory hierarchy 
oriented optimizations to achieve better cache locality 
and efficiently exploit multi-level parallelism, and (c) 
minimize the overhead of data-sharing among threads. 
The Intel compiler has a single common intermediate 
representation named ILO for the C++K and Fortran95 
languages. Hence, OpenMP parallelization, as well as a 
majority of other optimizations, is applicable through a 
single high-level transformation irrespective of the high- 
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encoder using SIMD-optimization only 

level source language [5]. Throughout the rest of this 
paper, we refer to the Intel C* and ForIran compilers for 
Intel architectures collectively as “the Mtel compiler”. In 
order to establish the context in which the OpenMP 
parallelization is enabled. 
Architecture: Hyper-Threading (HT) technology brings 
the concept of Simultaneous Multithreading (SMT) to 
Intel Architecture. HT makes a single physical processor 
appear as two logical processors; the physical execution 
remurces are shared and the architecture state is 
duplicated for the two logical processors [3]. From a 
software or architecture perspective, this means operating 
systems and user programs can schedule threads to 
logical CPUs as they would on multiple physical CPUs. 
From a microarchitecture perspective, this means that 
instructions from both logical processors will persist and 
execute simultaneously on shared execution resources [3]. 
Figure l(a) shows a system with two physical processors 
that are not Hyper-Threading Technology-capable. Figure 
l(b) shows a system with two physical processors that are 
Hyper-Threading Technology-capable. In Figure I@), 
with a duplicated copy of the architectural state on each 
physical processor, the system appears to have four 
logical processors. Each logical processor contains a 
complete set of the architecture state. 
With HT technology, the majority of execution resources 
are shared by two architecture states (or two logical 
processors). Rapid execution engine process instructions 
from both threads simultaneously. The Fetch and Deliver 
engine and Reorder and Retire block partition some of the 
resources to alternate between the two intra-threads. In 
short, HT technology improves performance of threaded 
programs by increasing the processor utilization of the 
on-chip resources available in the Intel NetBurstm micro- 
architecture. 
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Figure 2: Hierarchy of data domain decomposition in H.264 

3. Multithreaded Implementation 
There are many oppoltunities in the H.264 encoder for 
exploiting parallelism at different levels. In order to 
achieve the hest speedup over its well-tuned serial code 
on processors with Hyper-Threading Technology, our 
design is to divide the H.264 encode process into multiple 
threads via data domain decomposition. A sequence of 
video is consisted of many groups of pictures (GOP). As 
shown Figure 2, each GOP includes a number of frames. 
Each frame is divided into slices, which is the self-content 
encoding unit and is independent of other slices in the 
same frame. The slice can he further decomposed into 
macroblock, which is the unit of motion estimation and 
entropy coding. Finally, the macroblock can he separated 
into block and sub-block. These are all possible places to 
parallelize an H.264 encoder. Section 3.1 describes our 
judgments of thread granularity. Section 3.2 depicts our 
proposed implementation. 

3.1 Slice-Level vs Frame-Level Pa ra l l e l i sm 
First, we should decide the thread granularity. One 
possible scheme of decomposition is to divide a frame 
into small slices. The advantage of parallelizing among 
slices is that the slices in a frame are independent. Thus, 
we can simultaneously encode all slices in any order. On 
the other hand, the disadvantage is that it will increase the 
hit rate. Figure 3 shows the video encoder performance 
(rate-distortion) when a frame is divided into different 
numbers of slices.’ When a frame is divided into 9 slices, 
the hit-rate at the same quality is about 15-20% higher. 
This is because slices break the dependence between 
macroblocks. When a macroblock in one slice cannot 
exploit another macroblock in another slice for 
compression, the compression efficiency decreases. In 
order not to increase the hit-rate at the same video quality 
of the parallelized encoder, we should exploit other 
parallelism in the video encoder. 
Another possible scheme of exploiting parallelism is to 
identify independent frames. Normally, we encode a 

I In H.264, a slice can be as large as a frame. Breaking a frame 
into multiple slices is not required 
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Figure 3: Encoded picture quality vs the # of slices in a picture 

sequence of frames using an IBBPBBP ... 
There are two B frames between P frames. While P 
frames are reference frames (which other P or B frames 
depend on), B frames are not necessary. In our 
implementation of H.264 encoder, we treat B frames as 
non reference frames to explore more parallelism. In the 
rest of this paper, we will assume this simplification by 
default. The dependence among the frames is showed in 
Figure 4. In this PBB encoding shucture, the completion 
of encoding a P frame will make the subsequent one P 
frame and two B frames ready for encoding. The more 
frames encoded simultaneous, the more parallelism we 
can explore. Therefore, P frames are on the critical point 
in the encoder. Accelerating P-frame encoding will bring 
more frames ready for encoding, and avoid the idle of 
threads. In our implementatiob we will encode I or P 
frames first, then B frames. 
Unlike dividing a frame into slices, utilizing parallelism 
among frames will not increase the bit rate. However, the 
dependence among them will limit the threads scalability. 
The trade-off is to combine the above two approaches 
into one implementation. Wefirst explore the parallelism 
amongframes; we can gain perjbrmance from it without 
bit rate increase. Afer we reach the upper limit of the 
thread number can be reached by the fmme-level 
parallelism, we will explore the parallel among slices 
subsequently. As a result, we utilize processor resources 
as much as possible and keep the compression ratio as 
high as possible (the bit-rate as low as possible). (More 
details will be given in Section 4.1.) 

3.2 Implementation 
We divide the encoder into three parts: input pre- 
processing, encoding, and output post-processing. The 

( I )  I-frame in video cdecs stands for intra frames, which can 
be encoded or decoded independently. Normally, there is an 
I-frame per 15-60 frames. (2) P-frame stands for predicted 
frames, each of which is predicted from a previously encoded 
I-frame or P-frame. Because a P-frame is predicted from the 
previously encoded 1P-frame, the dependency makes it 
harder to encode two P-frame simultaneously. (3) B-frame 
stands for bidirectional predicted frames, which are predicted 
from a two previously encoded IR-frames. 

M-B pjlRC"I m B m  
Figure 4: Data dependence among frames. The numbers 

are the display order' of the video frames 

input processing will read uncompressed images, perform 
some preprocesses, and then issue the images to encoding 
threads. The preprocessed images are put in a buffer, 
called image buffer. The output processing will check the 
encoding status of each frame and commit the encoded 
result to the output bit-stream sequentially. After that, the 
entries in the image buffer are reused to prepare the 
image for encoding. Although the input and output 
processes of the encoder must be sequential due to the 
natural of the H.264 encoder, the computation complexity 
of input and output processes are insignificant compared 
to the encode process. Therefore, we use one thread to 
handle the input and output processes. This thread is the 
master thread in charge of checking all the data 
dependency. 
We use another buffer, called slice buffer, to explore the 
parallelism among slices. After each image is 
preprocessed, the slices of the image will put into the 
slice buffer. The slices in the slice buffer are independent 
and ready for encoding (the readiness of reference frames 
is checked during the input process). In this case, we can 
encode these slices out of order. To distinguish the 
priority differences between tbe slices of B frames and 
the slices of I or P frames, we use two separate slice 
queues to handle them. 
Figure 5 depicts the final multithreading implementation. 
Figure 6 shows the pseudo code. We use one thread to 
process input and output in order and use other threads tn 
encode slices out of order. 

4. Performance Results and Analysis 
We conduct the performance measurements of our 
multithreaded H.264 encoder on (1) Dell 530 MT 
workstation, built with dual Intel Xeon processors (4 
logical processors) mnning at 2.0GHz with Hyper- 
Threading enabled, 512K L2 Cache, IGB memory; (2) 
IBM 360 Server, built with quad Intel Xeon processors (8 
logical processors) running at 1.5GHz with Hyper- 
Threading enabled, 256K L2 Cache, S12K L3 Cache, 
2GB memory. Unless specified otherwise, the resolution 
of the input video is 352x288 in pixels or 22x18 in MBs. 
It is guaranteed that there are enough slices for eight 
threads, when we take slice as the basic encoding unit for 
a thread. 

' In video codec, there are two orders. One is the display order; 
the other one is the encoding order. While the display order 
in a COP is IBBPBBP, the encoding order is actually 
IPBBPBB. 
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Figure 5: Implementation with image and slice buffers 
,mp_setLnested( # of encoding thread + 1) 
Ypragma amp parallel sections 
I 
Ypragma omp section 

( 
while ( there is frame to encode ) 
f 

i f (  there is free enny in image buffer) 
issue new frame to image buffer 

else if ( there are frame encoded in image buffer) 
commit the encoded frame, release the entry 

else 
wait: 

I/ dependency are handled here 

Ypragma omp section 
( 
Upragma amp parallel nun-threads(# of enccding thread) 

while ( 1 ) 
( 

if ( there is slice in slice queue 0) 

else if(  there is slice in slice queue 1) 

else if ( all frames are encoded ) 

else 

encode one slice 

encode one slice 

exit; 

wait; 

11 higher pnority for W-frames 

11 lower prioity for B-frames 

/I wait for the main thread to put more slices 
I 

1 
1 

) 
Figure 6: Pseudo code of the multithreaded H.264 encoder 

fie profile of encoder is configured as following: (1) all 
intersearch types are enabled; (2) only the nearest 
previous frame is used for inter motion search; (3) 
maximum search range is 16; (4) 114-pel motion vector 
resolution is used; ( 5 )  hadamard transform is enabled; (6) 
quad parameter is set to 16 for all frames; and (7) rd- 
optimization without restrictions and losses is used. 

4.1 Tradeoff Between Speedup and 
Compression Efficiency 
A frame can be partitioned up to 18 slices. Taking a slice 
as the base encoding unit for a thread can reduce the 
synchronization overhead because there is no data 
dependency among slices in a single frame for performing 
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Figure 7: Speedup and bit rate vs the #of slices in a frame 

encoding. As we mentioned earlier, partitioning the frame 
into multiple slices can increase the degree of parallelism, 
but, it also increases the bit-rate. One of challenges is that 
we aim at achieving a higher speedup with a lower bit- 
rate without sacrificing any image quality. Therefore, we 
should choose the slicing threshold carefully. 
Figure 7 shows the speedup of encoding and the bit rate 
with variation of the number of slices for each frame. In 
Figure 7(a), the number of slices ranges from 1 to 18 with 
a constant quality of encoded frames. There is a good 
speedup when the number of slices for a frame is 1 to 2 
on the DELL 530 platform, and the speedup is almost flat 
while the number of slices changing from 2 to 18. 
Meanwhile, the bit-rate increasing is smaller if the 
number of slices is less than 3, but it starts going up from 
3 slices to 18 slices. One important observation is that 
partitioning a frame to 2 or 3 slices delivers the best 
tradeoff that achieves a higher speedup and a lower bit 
rate. Figure 7(b) shows that we need more than 3 slices to 
keep 8 logical processors busy on the IBM 360 platform. 
Essentially, we need 9 threads to achieve an optimal 
performance for 4 physical processors with Hyper- 
Threading enabled. Our heuristic is to keep the number of 
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video codec and the final implementation scheme have 
been illustrated in detail. We are the first one who 
considers compression efficiency degradation as well as 
parallel speedup. Thus, the proposed scheme not only 
provides good execution speedup, but also keeps the 
video degradation as minimal as possible. 

Our multithreaded implementation based on OpenMP 
programming model also demonstrates that it is very 
simple yet and efficient to exploit parallelism through 
adding a few pmgmas in the serial code. The 
programmers can rely on the parallelizing compiler to 
convelt the serial code to multithreaded code 
automatically. The performance results have shown that 
the code generated by the Intel OpenMP compiler 
delivers an optimal speedup truly over the well-optimized 
sequential code on the Intel Hyper-Threading architecture. 
Our work demonstrates that Hyper-Threading 
Technology can gain us -20% performance, which is a 
performance gain beyond the multiprocessor performance 
without limited additional cost. The performance 
speedups ranging from 4 . 3 1 ~  to 4 .69~ supports the merit 
of our implementation and the efficiency of multithreaded 
code generated by the Intel OpenMF’ compiler. The 
techniques demonstmted in this work can he applied not 
only to H.264, hut also to other r ideohage  
coding/decoding applications on personal computers. 
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