
Performance and Power Analysis of

Parallelized Implementations on an

MPCore Multiprocessor Platform

H. Blume, J. v. Livonius, L. Rotenberg, T. G. Noll
Chair for Electrical Engineering and Computer Systems

RWTH Aachen University
SchinkelstraB3e 2, 52062 Aachen, Germany

{blume,livonius,rotenberg,tgn} @eecs.rwth-aachen.de

Abstract- In this contribution, the potential of parallelized soft-
ware that implements algorithms of digital signal processing on a
multicore processor platform is analyzed. For this purpose vari-
ous digital signal processing tasks have been implemented on a
prototyping platform i.e. an ARM MPCore featuring four
ARM11 processor cores. In order to analyze the effect of paral-
lelization on the resulting performance-power ratio, influencing
parameters like e.g. the number of issued program threads have
been studied. For parallelization issues the OpenMP program-
ming model has been used which can be efficiently applied on C-
level. In order to elaborate power efficient code also a functional
and instruction level power model of the MPCore has been
derived which features a high estimation accuracy. Using this
power model and exploiting the capabilities of OpenMP a variety
of exemplary tasks could be efficiently parallelized. The general
efficiency potential of parallelization for multiprocessor architec-
tures can be assembled.

Keywords - Multicore Processors, Parallelization, Power
Estimation and Optimization

I. INTRODUCTION

In the last decades there have been various approaches in
order to increase the computational power of processor
architectures. Besides purely increasing the achievable clock
frequency by improving the underlying CMOS technologies
there have been also various architectural approaches like e.g.
the design of application specific instruction set processors [1].

But especially in the field of mobile applications there is
not only an increasing need for computational power and
flexibility through high level programmability but also the need
for high power efficiency. In the last years the increase in
computational power has drastically outperformed the increase
in battery capacities. Therefore, power efficient processor
architectures for mobile applications are the focus of many
research projects. For example, it has to be inspected if
multiprocessor architectures are a viable option for this [2].
Principally, many tasks in the field of digital signal processing
feature a high degree of inherent parallelism. But it has to be
discussed what effort is related to the problem of parallelizing
processor code. This extra effort concerns the programming
work in the design phase of such code as well as the power

H. Bothe, J. Brakensiek
Nokia Research Center
Meesmannstr. 103,

44807 Bochum, Germany
{harald.bothe,jorg.brakensiek} @nokia.com

efficient handling of such parallelized applications on a
multicore architecture.

Therefore, a variety of typical digital signal processing
tasks have been implemented on a prototyping platform
featuring a high performance ARM MPCore with four ARM 1I
processor cores. The inspected typical signal processing tasks
range from basic FIR filtering tasks or block matching for
motion estimation purposes to complete JPEG2000
en/decoders or encryption algorithms. All of these algorithms
have been implemented on the processor architecture in
serialized as well as parallelized versions. Several
parallelization parameters like the number of issued threads or
the granularity of parallelization have been varied and
analyzed. The parallelization has been implemented on a high
abstraction level using the OpenMP programming model.
OpenMP is an open specification which allows to efficiently
parallelize C/C++ -programs for parallel processors featuring a
shared memory (Fig. 1) by adding specific OpenMP directives
into the C-program code. These directives support the
distribution of autonomous subtasks (threads) over the
available processor cores. This programming model allows for
example to incrementally parallelize program code.

Figure 1. Shared memory model multiprocessor architecture

In order to (power) optimize the parallel implementation of
tasks on this processor architecture an estimation of the related
power consumption of a given implementation is advantageous.
This releases the programmer from performing the task-under-
test on a prototyping platform and from measuring the related
power consumption of each new software optimization level.

1-4244-1058-4/07/$25.00 C 2007 IEEE 74

The availability of an accurate power model allows to
efficiently navigate in the design space of digital signal
processing on multicore architectures. Therefore, such a power
model for the ARM MPCore architecture has been derived. The
power model is based on the concept of so-called hybrid
functional level/instruction level power analysis (FLPA/ILPA)
[3] which has been successfully applied to various processor
architectures before. The main steps of deriving this model for
the MPCore and the achievable estimation accuracy will be
discussed.

On the basis of OpenMP and the power estimation model
the exemplary parallelization and optimization of the signal
processing tasks is performed. Comparing the results for
various implementations helps to explore the available poten-
tial of parallelization and to understand which influence
specific parallelization parameters have.

The paper is organized as follows: Chapter II shortly dis-
cusses the basic architecture of the MPCore architecture and
the MPCore prototyping platform used in the course of this
work. The following chapter describes the fundamentals of
parallelization of software on a multiprocessor platform using
OpenMP. Chapter IV discusses the parallelization of an exem-
plary block matching algorithm on this architecture. Chapter V
works out the hybrid functional level/instruction level power
model of the MPCore. A performance and power bench-
marking of parallelized implementations is performed in
chapter VI. Finally, a conclusion is given in chapter VII.

II. MPCORE ARCHITECTURE

The ARM MPCore [4] is a synthesizable multiprocessor
implementing the ARM 1I micro architecture. Here, only those
basics of the MPCore architecture are briefly sketched which
are required for its power modeling and for understanding
efficient parallelization strategies on that processor. According
to the MPCore concept, this multiprocessor can be configured
by customers during the design phase. Generally, the MPCore
provides the following (configurable) features:

* ito 4 ARM 1I processors,
* high performance memory system,

- L1 data and instruction cache per processor from
16 KByte to 64 KByte,

- a snoop control unit (SCU) that connects the
ARM 11 CPUs to the memory system featuring
inter CPU communication (Direct Data
Intervention (DDI)),

* single or dual 64-bit AMBA 3 AXI bus,
* optional Vector Floating Point unit (VFP),
* up to 255 hardware interrupts.
The ARM 1I cores of the MPCore are based on the

ARMv6K architecture. Support for the ARM Thumb
instruction set (16 bit instructions) is provided and the Jazelle
extension (for Java bytecode execution) as well as DSP and
SIMD ISA extensions are included. Furthermore, a high energy
efficiency is targeted by implementing so-called Intelligent
Energy Management features (IEM) which include a shutdown
of unused resources (for each processor independently) and a
dynamic voltage and frequency scaling support.

The MPCore possesses a high performance memory system
with a multi-level cache hierarchy and features separate data
and instruction caches per CPU and the possibility to easily
shift data between the single caches.

For the course of this work a prototyping MPCore chip
manufactured in a 130 nm CMOS technology resulting in an
adaptable CPU clock frequency of up to 300 MHz has been
applied. This prototyping chip features four modified ARM 1I
CPUs incl. a Vector Floating Point Unit. It provides a LI
memory subsystem (per CPU) with 32 KByte instruction cache
and 32 KByte data cache. The L2 memory subsystem provides
1 MByte L2 unified cache. Hence, the MPCore follows the
shared memory paradigm (see Fig. 1) which is required for the
parallelization of tasks on a multicore processor with OpenMP.
Fig. 2 depicts a block diagram of the MPCore architecture used
here.

Figure 2. MPCore testchip, block diagram

Each ARM 11 CPU can be configured to one of the
following modes:

* Run mode: everything is clocked and powered-up,
* WFI (Wait For Interrupt) mode: CPU clock is stopped,

only logic needed for wake-up is still active,
* Dormant mode: Everything is powered off except
RAM arrays that are in content retention mode,

* Powered-off.
The processor core provides eight pipeline stages (two fetch-, a
decode-, an issue- and four integer-execution stages). Static as
well as dynamic branch prediction is applied.

The Vector Floating Point Unit (ARM VFPv2 denoted here
as VFP1 1) provides a low power consumption and is optimized
for a high data rate as well as a fast and parallel execution of
division/square root and further arithmetic operations. This
parallel execution is achieved by implementing three separate
instruction pipelines. The VFP 1I features a

* Multiply and Accumulate (FMAC) pipeline,
* Division/Square root (DS) pipeline,
* Load and Store (LS) pipeline.

Each pipeline is working separately from each other. The
FMAC and LS pipeline provide a single cycle execution.

75

Fig. 3 depicts the prototyping platform (Versatile Emulation
Baseboard with ARM 1I MPCore Core Tile [5]) applied here
which features besides the MPCore an FPGA realizing the
configuration interface as well as the peripheral controller,
128MByte DDR SDRAM, 2MByte SRAM, 64MByte NOR
flash and various external interfaces.

on the one hand and data environment constructs for inter-
thread communication and synchronization on the other. Fig. 4
gives an overview of the most important OpenMP directives.
The control structures for parallelization (i.e. parallel) are
embedded into a so called fork/join execution model. Thus,
they fork (i.e. start) new threads and execute an enclosed code
block concurrently, and afterwards they join in parallel running
threads to a serial master thread. By means of work-sharing
directives the work within a code block can be divided among
such an existing team of threads. An instance for this is the for
directive, which divides loop iterations among concurrently
executing threads, and therefore exploits the loop-level paral-
lelism. The required thread synchronization can be done im-
plicitly by OpenMP e.g. at the end of a parallel region (join) or
explicitly by the programmer through directives like barrier
(wait until barrier is reached by all threads) or critical
(exclusive access of code regions).

Figure 3. ARM MPCore prototyping platform

III. PARALLELIZATION OF PROGRAMS USING OPENMP

In contrast to the programming of sequential tasks on a
single core architecture, on a multicore architecture the pro-
grammer has to decide how the work should be distributed
across multiple processors. Actually, the POSIX thread library
is often used to develop parallelized code. Alternatively, this
additional development step can be realized using the parallel
programming model of OpenMP for shared memory multi-
processors [6]. It provides the advantage to simplify managing
and synchronization of program threads. OpenMP works in
conjunction with the prevalent programming languages Fortran
and C/C++. Therefore, a set of compiler directives that control
the distribution of tasks over the processor cores and the neces-
sary synchronization of these tasks, are available. Additionally,
a supporting library of subroutines is provided. The OpenMP
API is independent of the used platform and operating system.
Appropriate compilers exist for a variety of all major operating
systems. Hence, porting OpenMP programs is in many cases
only a matter of recompiling.

The directives are instructional notes to any compiler sup-
porting OpenMP (e.g. GCC 4.2). To enhance application
portability they take in case of C/C++ programs the form of
#pragmas, so they will be ignored by any compiler not
supporting OpenMP. This directive-based parallelization
approach has the benefit that it allows the same source code to
be used for single- and multiprocessor development, since the
code will be executed serially on single core and in parallel on
multicore processors. Furthermore, it allows an incremental
parallelization approach starting from an existing serial version
by adding parallel code regions step by step.

The OpenMP language extensions can be separated into
control structures for expressing parallelism and work-sharing

Figure 4. Overview of main OpenMP directives

In Fig. 5 the parallelization of a for-loop is given as an
example. Additionally, the fork/join principle and the work
distribution on a team of four in parallel running threads are
visualized.

Z* 96kAl ddMaster Thread

#pra p parallel for F-ork

for (i=O; i<100; ii+) TeamofThreads
X [i+]e d6Wb (Yk i3 X l l7

} / 3Syn1dh iiZtiI */Z Join

...I 6ienl1 cdde */ Master Thread

Figure 5. Fork-join principle using a basic OpenMP example

IV. EXEMPLARY PARALLELIZATION OF A MOTION
ESTIMATION ALGORITHM

The parallelization with OpenMP on the MPCore
multiprocessor platform was applied to several signal
processing algorithms of varying complexity. Here, the
exemplary parallelization of a block matching motion
estimation algorithm will be presented. Motion estimation is a
basic building block of video processing systems like motion
compensated filtering, image coding or motion vector based
interpolation for video format conversion [7].

The most important method for motion estimation is block
matching. Here, every image of a sequence is divided into
blocks of equal size. For each block the position with the
highest correlation of the image content is searched in an

76

adjacent image of the sequence. The displacement vectors
between those block positions represent the resulting motion
vectors. The block matching algorithm with the most regular
structure is the full-search algorithm, which uses a brute-force
strategy (i.e. testing for every block all possible positions
within a search window) to find the best fitting block in an
adjacent frame. Hence, the calculation of this block based
correlation function represents the core piece of the algorithm
and is embedded within several nested loops (Fig. 6).

Figure 6. Exemplary parallelization of the full-search block matching loops

Due to the high regularity and weak data dependencies the
parallelization of this algorithm with OpenMP is straight
forward and can be reduced to a single additional code line.
Nevertheless, the programmer has to decide which for-loop
should be parallelized. Here, it is best to select the outermost
loop, which controls the vertical iteration over the search
blocks, since there are no data dependencies between the
correlation calculations of the single blocks. Due to this, the
workload being distributed over simultaneously running
threads can be maximized and the synchronization overhead
can be minimized.

In Fig. 7 the impact of the parallelization with OpenMP on
speedup, power consumption and the resulting relative
efficiency (see definition of efficiency in equ. (4)) is depicted.

4.0

0
0 3.

a) 2.,E
a)

mL 2.

1.0

Number of threads

-+- Speedup _ Power Consumption Efficiency

Figure 7. Exemplary parallelization of a block matching algorithm

For this analysis, the corresponding power consumption of
each code version has been directly measured at the MPCore.
All results were normalized with regard to the values measured
for a single thread. As can be seen, the achieved speedup scales
nearly perfectly linearly. The power consumption increases
with a significantly lower slope than the speedup, and therefore
the relative efficiency increases constantly over the number of
threads.

V. HYBRID FLPA/ILPA MODELING OF THE MPCORE

In order to perform energy-aware optimization of the
program code, a power model of the MPCore processor has
been elaborated which allows prediction of the according
power consumption of code that is executed on the processor.
Hence, the so-called hybrid functional level/instruction level
power analysis (FLPA/ILPA) technique has been applied in
order to derive such a power model.

According to this methodology, in a first step the processor
architecture is divided into functional blocks like the
processing unit, the internal memory and others like the
clocking system. While executing specific test scenarios on the
processor and by performing simulations or measurements it is
possible to find an arithmetic model for each block that
determines its power consumption dependent on certain
parameters. These parameters are, for example, the degree of
parallelism, the access rate of the internal memory or the clock
frequency. Most of these parameters can be automatically
determined by a parser which analyzes the assembler code.
Further parameters can be derived from a single execution of
the program (e.g. the number of required clock cycles). These
parameters are the input values for the previously determined
arithmetic models. Thus, an estimation of the power
consumption of a given task can be computed.

If the processor features a strong dependency of the power
consumption on the currently executed instruction the pure
functional model has to be extended by instruction dependent
elements. According to this approach, the ISA of the processor
is classified into several instruction classes with according
arithmetic power functions leading to a hybrid FLPA/ILPA
model. Such models have been successfully elaborated for a
variety of processors (see e.g. examples in [3], [8]).

The inspection of the instruction specific power
consumption of one ARM 1I core of the MPCore resulted in a
power model where three separate instruction classes, i.e.

. arithmetic operations (ADD, CMP,...) incl. as well
single and multiple store operations (STR, STM,...),
single and multiple load operations (LDR, LDM,...),

. exclusive memory accesses (LDREX, STREX,
SWP,...),

respectively three according power functions have been
derived.

Due to the higher power dynamics between the single
VFP 11 instructions, for the VFP1 1 a more differentiated model
featuring five instruction classes respectively power functions
has been elaborated, i.e.

* basic data processing of the FMAC pipeline and data
transport between ARMI1 and VFP11 registers
(FADDD, FABSD, FMRS,...),

. complex data processing of the FMAC pipeline
(FMACD, FMULD,...),
instructions of the DS pipeline (FDIVD, FSQRTD,...),
instructions for the single write memory accesses of the
LS pipeline (FSTD, FSTS,...),

. instructions for single read and multiple memory
accesses of the LS pipeline (FLDD, FLDMD,
FSTMD,...).

77

I

Fig. 8 and Fig. 9 depict the derived power functions
Pinstr spec for the ARM 1 core and for the VFP 1.

600 l

500

-

400

0 300
ua

- 200

100

the dependency on the ratio 1/T the bus-specific offset is also a
function of the frequency. It can be modeled as

(1)

where negative values for Pbus spec(f1/T) are not possible and
therefore clipped to zero.

Finally, it is possible to calculate the actual power
consumption of an instruction specific test scenario by

(2)Pat (f,I/T) Pinstr s)Pbs spec (f,1/T)

0 50 100 150
Frequency [MHz]

. ADD * LDR/LDM L

Figure 8. The instruction-specific power consump
MPCore CPU instruction cla.

600

500

F 400

Q 300

- 200

100

0
0 50 100 150 200 250

Frequency [MHz]
|*FADDD : FMACD * FDIVD + FSTD - FLDD

200 250 300 To estimate the complete power consumption of the
MPCore processor while executing a complex task, a profiler

DREX/STREX from the RVDS framework [9] determines the share hlabel of the
Aion for the three ARM I1 execution time of the different parts of the assembler code
sses which are produced by the compiler and which are denoted

here as labels. The instruction distribution is determined for
every label by a special parser which has been implemented as
a C program, whereby the complete shares hi of every
instruction class i (ARM1 1 CPU) resp. hj (VFP1 1) in the label
are extracted. As described before, the parser categorizes the
instruction set into three different instruction classes for the
CPU instructions and five instruction classes for the VFP1 1
instructions. Since memory accesses are covered by specific
arithmetic power functions (see for example the
aforementioned list of instruction classes for the ARM 11 CPU)
no additional modeling of the inter-CPU communication is
required. Therefore, the resulting hybrid FLPA/ILPA power

0 model of the MPCore can be assembled as a sum over all cores

inside the MPCore processor

Figure 9. The instruction-specific power consumption for the five VFP11
coprocessor instruction classes

Besides the consideration of instruction dependent power
consumption also the influence of the memory system i.e.
cache misses has to be regarded. Therefore, the number of
instructions in the applied test scenarios (here more than 8192
instructions, due to the cache size of 32KByte and the
instruction and data word length) has been successively
increased to enforce different numbers of cache misses. The
corresponding power consumption was no longer a linear func-
tion of the core clock frequency while the processor was
executing those test scenarios.

The difference at a given frequency between the
instruction-specific power consumption Pinstr spec and the actual
power consumption executing such test scenarios with cache
misses is called the bus-specific offset Pbus spec. Hence, the
number of cache misses would be an appropriate parameter
influencing the model for Phus spec. Using the ARM instruction
set simulator and cycle counter it is possible to derive various
cycle counts (core clocks, memory bus clocks, etc.). These
values are much more accurate than the number of cache
misses which are also provided by the simulation environment
[4], [9]. Therefore, the bus-specific offset can be modeled as a
linear function of the ratio 1/T. Here, T denotes the total
number of memory bus cycles and can be determined either
with the RVDS-simulator or with the ARMulator [10]. Besides

PMP-Core (f 1/TII) =r(jfset (jf) +

'khlabel i instr (specI() Pb,s_ spec(i, f 1/T)) +
Cores label instr classes i

\,CPU

(3)

+ Zh -nstr spec(if) Pbus_ spec(j :f 1iTI))
inlstr classes j
VFP1 1

Here, Pojfset(J) includes the power consumption of the clock
network as well as the instruction independent power
consumption of all cores when all cores are in the wait for
interrupt mode.

The estimated power consumption was compared to the
measured values for a variety of tasks out of the field of digital
signal processing in order to benchmark the hybrid FLPA/ILPA
model. Fig. 10 shows the results of the benchmarking. The
comparison of estimated and measured values yields a
maximum error of about 6% and an average error of about 3%
for the power consumption. As can be seen in Fig. 10, the
variety of tasks which has been inspected on this platform
features a dynamics concerning the according power
consumption of about 22% (e.g. Cache Test: 327 mW, Serial
Search: 418 mW). Thus, the estimation error is much smaller
than the power consumption dynamics and the model can be
used successfully for the estimation.

78

Pbus _,,,(f,IIT) = a-f +b.IIT+c.f IIT+d

U measured O estimated
450

I

-
5.

S

400

350

300

250

200

150

100

50

Figure 10. FLPA/ILPA estimation results and measurements for the MPCore
architecture

VI. EVALUATION OF THE MPCORE ARCHITECTURE
EXECUTING PARALLELIZED TASKS

The hybrid FLPA/ILPA power model has been applied in
order to elaborate power efficient serial reference code for a
variety of basic tasks of digital signal processing.
Additionally, the OpenMP directives have been used in order
to exploit the inherent parallelism of the implemented tasks by
applying these directives to the initial serial program code.
Hence, only marginal programming effort was required for the
parallelization. Tab. I describes the main features of the
implemented tasks.

In order to quantitatively analyze the influence of different
parallelization schemes, a quantitative measure is required. In
the following, the efficiency metrics q defined as

relative speedup (4)
relative power

will be used. Here, relative speedup denotes the ratio of the
throughput of a parallelized code version compared to the
throughput of a purely linear code version. Consequently,
relative power denotes the ratio of the power consumption of a
parallelized code version compared to the power consumption
of a purely linear code version.

For the following results the number of threads has been
fixed to four. In Fig. 11 a) the relative speedup which could be
achieved for the parallelized code versions, the relative power
consumption (Fig. 11 b) and resulting from this, the relative
efficiency gain (Fig. 11 c) are depicted.

It can be seen that by using four threads on the MPCore
architecture an average efficiency gain of 1.8 (average speedup
3.4, average power increase 1.9) could be achieved. The
highest speedups and efficiency gains can be achieved for
highly regular algorithms like block matching (see chapter IV),
filtering or image transformations (speedups 3.7-3.9,
efficiency 1.8-2.2) which feature regular inner loops which
can be advantageously parallelized.

TABLE I. INSPECTED PARALLELIZED TASKS ON THE MPCORE PLATFORM

Task Description
Block Matching full search block matching for

motion estimation in video
sequences

Image Morphing transformation (warping) of
images

Radixsort Algorithms bit-level sorting algorithms
based on the radix exchange
(divide-and-conquer) or the
straight radix principle

JPEG2000 wavelet-based image
compression technique, here:
JasPer OpenSource Code for
JPEG2000 [11]

lD/2D FIR Filter one- and two-dimensional
FIR filtering of image data
(ID:800 taps, 2D:0xI0 taps)

Serial Search searching of strings in text
data bases

ID DFT one-dimensional discrete
Fourier transform
(256 point DFT)

2D FFT two-dimensional fast Fourier
transform
(256x256 point FFT)

Median Filter 5x5 median filter based on the
odd-even transposition
algorithm

Traveling Salesman solving the traveling salesman
problem (visiting n points
within a tour heading for
minimization of tour length)
by a branch-and-bound-
technique

AES Encryption encryption technique based on
the Rijndael algorithm

Huffman Codec encoding and decoding of bit
streams using a Huffman
Code-book

Computation of computation of a set of
Fractals fractals (self-similar shapes);

here: Mandelbrot, Koch,
Sierpinski

Some specific results shall be discussed here. For example,
there is a significant difference in the achievable efficiency
concerning the Radix Exchange and the Straight Radix sorting
algorithm. Both algorithms are bit-level-based sorting
algorithms, but the reason for the different performance is that
within the Radix Exchange algorithm a divide-and-conquer
strategy is applied. From sorting step to sorting step the field of
elements which shall be sorted is subdivided and sorted
separately. This enables to use separate processor cores for
sorting the sub-fields and therefore a good speedup (2.9) is
achieved. Radix Exchange is well suited for using 2' parallel
threads. On the other hand, the Straight Radix algorithm
provides some parallelization disadvantages. Here, the
elements to be sorted are processed bit-level by bit-level which

79

can't be parallelized. The only processing step that can be
parallelized is the counting of ones and zeros inside the
processing of each bit-level. Therefore, the achievable speedup
(1.4) is significantly lower.

a)

Q.

0._
a)c

45

O~~~~~~ ~~ ~ ~ ~ 0 0~'111- e- 0'Id- O Il l~ I~~~ ~~~~~~~~?
~~~~~~~~~~~~~' '

~I4Q~

Generally, the parallelization results which could be derived
outperform the results of similar inspections on alternative
multiprocessor architectures. For example, in [12] OpenMP has
been used to parallelize basic operations on a Renesas M32R
(dual core) [13] processor. Due to the restricted number of two
cores the influence of higher parallelization degrees could not
be studied there. Furthermore, the influence on the resulting
power consumption has not been inspected.

The programming effort for adding the required OpenMP
directives is very small. As a first measure for the required
programming overhead the number of additional OpenMP code
lines which have to be added to the initial code can be used. In
Tab. II these numbers of additional OpenMP code lines for all
the inspected tasks are listed. Besides these code modifications
only some marginal modifications like e.g. replacing while-
loops by for-loops (while loops cannot be parallelized by
OpenMP in C/C++) were required.

b)

2.0

1.5

10

Z I.

0.5

0.0

2.5

005

Figure 11. Parallelization results on the MPCore architecture (number of
threads is fixed to four) a) relative speedup b) relative power c) efficiency

A further example whose results shall be briefly analyzed is
the JPEG2000 encoder. Here, mainly the computation of the
discrete wavelet transform (DWT) could be parallelized
featuring high speedups. Further elements of this algorithm
(e.g. subband processing) can't be effectively parallelized at
least on the basis of the JasPer reference implementation [11].
A variety of recursive function calls is included here, which
can't be parallelized directly with OpenMP. A better efficiency
gain is to be expected if a new JPEG2000 software implemen-
tation would be applied which no longer features recursive
function calls.

TABLE II. NUMBER OF ADDITIONAL OPENMP-CODE LINES FOR THE
PARALLELIZATION OF THE PROGRAM CODE

# additional
Task OpenMP

code lines
Block Matching 1
Image Morphing 1
Radixsort Algorithms
* Radix Exchange 10
* Straight Radix 2
JPEG2000 3
lD/2D FIR Filter 1
Serial Search 1
1D DFT 4
2D FFT 2
Median Filter 2
Traveling Salesman 8
AES Encryption 7
Huffman Codec 6
Computation of Fractals
* Mandelbrot 1
* Sierpinski 4
* Koch 5

Up to now only parallelized implementations have been
discussed which were achieved by adding a small number of
OpenMP directives. Furthermore, it can be discussed which
influence parameters like the issued number of program threads
or even the use of hand-optimized assembler code will have.
Therefore, in Fig. 12 the specific gain (measured in throughput
per energy) is depicted over the number of threads for the
Huffman Codec (separately for encoder and decoder). Besides
the parallelized C version of the encoder and decoder, hand
optimized assembler versions were examined too. These
assembler versions nearly double the throughput per energy in
comparison to the C version in case of four threads. This
indicates that the available compiler is not capable of using the
full potential of the MPCore.

80



Encoder C-Version Encoder ASM-Version Decoder C-Version Decoder ASM-Version

Number of threads: 1 20 4

Figure 12. Througput per energy of Huffman encoder and decoder;
influence of the number of threads and comparison of C-code and hand-

optimized assembler versions

A further example where the influence of the issued number
of threads can be studied is the Traveling Salesman Problem.
Using four threads (see Fig. I1) only a speedup of 2.1 and an
efficiency gain of 1.2 could be achieved. It has been also
studied what factors can be achieved if the issued number of
threads is greater than the number of available processor cores.
Using for example eight threads further increases the speedup
to a factor of 2.6 and issuing 16 threads results in a speedup of
2.9. Within the single threads it may occur that their processing
time differs significantly. In such a case, a single thread which
requires a long computation time can block the further
processing of the complete task. Therefore, it is often beneficial
to increase the number of parallel threads. If one thread is still
allocating a core, the next threads can be distributed over the
available cores (i.e. using a dynamic scheduling scheme for the
issued threads). OpenMP here also provides the possibilities to
easily modify this parameter number of threads (e.g. as an
attribute of the OpenMP directive parallel). This example also
shows how the software designer can effectively play around in
the implementation design space of parallel processor
architectures.

Generally, the discussed examples show that for a variety of
tasks which provide an inherent degree of parallelism
significant efficiency gains can be achieved by only very
moderate programming effort for parallelizing these tasks i.e.
using OpenMP directives. Using hand-optimization of the
program code i.e. using assembler coded programs will
typically further increase the throughput and the efficiency of
the implementations.

The experience from the variety of our test implementations
suggests that parallelization with OpenMP results in a very
attractive performance-effort relation which significantly
outperforms serialized implementations and which often does
not need to be improved by assembler-based hand-
optimization.

VII. CONCLUSION
Various typical tasks out of the field of digital signal

processing have been implemented in serialized as well as
parallelized code versions on a modem ARMI 1 MPCore
multiprocessor platform. For parallelization purposes the
OpenMP programming model has been efficiently applied.
Typical speedup, power and efficiency numbers could be
derived on that platform. Applying a power model for that
multiprocessor that has been also elaborated in the course of
this work, all code versions could be efficiently power-
optimized even in the development phase.

It can be shown that by investing only a very moderate
programming effort an average speedup of a factor of 3.4 and
an average efficiency gain of a factor of 1.8 can be achieved.
Furthermore, the influence of some specific factors like the
number of issued program threads or the use of assembler-
coding has been inspected.

Our results suggest that very attractive performance-effort
ratios can be achieved by OpenMP-based high-level language
parallelization on modem symmetric multiprocessor platforms
like the ARM MPCore. Hence, the inherent parallelism of
signal processing algorithms and the parallel computation
capabilities of such kind of symmetric multiprocessor
architectures can be efficiently exploited in the future.

REFERENCES

[1] M. Gries, K. Keutzer, H. Meyr, G. Martin, Building ASIPs, Springer
2005

[2] W. Wolf, "The Future of Multiprocessor Systems-on-Chips, " Design
Automation Conference, 41st Conference on (DAC'04), 2004, pp. 681-
685

[3] H. Blume, D. Becker, L. Rotenberg, M. Botteck, J. Brakensiek, T. G.
Noll, "Hybrid Functional- and Instruction-Level Power Modeling for
Embedded and Heterogeneous Processor Architectures," invited paper
for the Journal of System Architectures, 2007

[4] "ARM 1I MPCore Processor Technical Reference Manual", ARM
Limited, Lit.-Nr.: ARM DDI 0360D, 2006

[5] "Core Tile for ARM 1I MPCore User Guide", Ref: DUI 0318C, 2006
[6] R. Chandra, Parallel Programming in OpenMP, Morgan Kaufmann,

2001
[7] G. de Haan, Video Processing for Multimedia Systems, University Press,

Eindhoven, 2000
[8] H. Blume, M. Schneider, T. G. Noll, "Power Estimation on a Functional

Level for Programmable Processors," Proc. of the TI Developers
Conference 2004, Houston, Texas, February 2004

[9] "RealView Debugger Version 1.8 Extensions User Guide", ARM
Limited, Lit.-Nr.: ARM DUI 0174G, 2005

[10] "RealView ARMulator ISS Version 1.4 User Guide", ARM Limited,
Lit.-Nr.: ARM DUI 0207C, 2004

[11] JPEG2000, JasPer Project Homepage, http://www.ece.uvic.ca/
-mdadams/jasper

[12] Y. Hotta, M. Sato, Y. Nakajima, Y. Ojima, "OpenMP Implementation
and Performance on Embedded Renesas M32R Chip Multiprocessor,"
Proceedings of the 6th European Workshop on OpenMP (EWOMP
2004), Stockholm, Oct. 2004

[13] S. Kaneko, "A 600 MHz Single-Chip Multiprocessor with 4.8 GB/s
Internal Shared Pipeline Bus and 512kB Internal Memory," Proceedings
of the ISSCC 2003, Vol. 1, pp. 254-255

81


