
Contributed Paper
Manuscript received April 15, 2010
Current version published 06 29 2010;
Electronic version published 07 06 2010. 0098 3063/10/$20.00 © 2010 IEEE

Stage-based Frame-Partitioned Parallelization
of H.264/AVC Decoding

Won-Jin Kim, Keol Cho and Ki-Seok Chung, Member, IEEE

Abstract — Strong demands for high resolution video

services lead to active studies on high speed video processing.
Especially, widespread deployment of multi-core systems
accelerates researches on high resolution video processing
based on parallelization of multimedia software. In this paper,
we propose a novel parallel H.264/AVC decoding scheme on a
homogeneous multi-core platform. Parallelization of
H.264/AVC decoding is challenging not only because
parallelization may incur significant synchronization overhead
but also because software may have complicated dependencies.
To overcome such issues, we propose a novel approach called
Stage-based Frame-Partitioned Parallelization (SFPP). In
SFPP, we divide a frame into multiple partitions, and execute
them in a pipelined fashion. To reduce synchronization
overhead, a separate thread is allocated to each stage in the
pipeline. In addition, an efficient memory reuse technique is
used to reduce the memory requirement. To verify the
effectiveness of the proposed approach, we parallelized
FFmpeg H.264/AVC decoder with the proposed technique using
OpenMP, and carried out experiments on an Intel Quad-Core
platform. The proposed design performs better than FFmpeg
H.264/AVC decoder before parallelization by 53%. We also
reduced the amount of memory usage by 65% and 81% for a
high-definition (HD) and a full high-definition (FHD) video,
respectively compared with that of a popular existing method1.

Index Terms — H.264/AVC, decoding, parallel processing.

I. INTRODUCTION
Demands for high resolution video processing techniques

are rapidly increasing as high-definition digital broadcasting
services are widely provided. Therefore, standards and
techniques for video compression and decoding are being
actively developed. One of the most popular video codec
standards is H.264/AVC. One main advantage of H.264/AVC
is that it is capable of providing good video quality at
substantially lower bit rates than previous standards.
However, it is very challenging to achieve high performance
by a software implementation because its complexity is pretty

1 Won-Jin Kim is with the Department of Electronics, Computer &

Communication Engineering, Hanyang University, Seoul, Korea, e-mail:
kwonjin97@gmail.com).

Keol Cho is with the Department of Electronics, Computer &
Communication Engineering, Hanyang University, Seoul, Korea, e-mail:
keolman2@gmail.com).

Ki-Seok Chung is the corresponding author, and with the Department of
Electronics, Computer & Communication Engineering, Hanyang University,
Seoul, Korea, e-mail: kchung@hanyang.ac.kr).

high. Therefore hardware implementations have been used
commonly. Recently, enhancing performance through
intelligent parallel processing with multiple cores integrated in
a single chip is widely adopted. Since a multi-core system
typically has better power efficiency than a single core system
with a comparable processing power, it is expected that many
high performance embedded systems will adopt multi-
processor system-on-chip platforms soon. Even though multi-
core systems will provide potentially ample computation
power, it is not straightforward to achieve such high
performance because efficient parallel programming for a
multi-core system is difficult. Thus, it is crucial to re-write an
existing software implementation into a new implementation
which is more suitable for parallel processing. Also, it is very
important to understand the target multi-core platform to
achieve high performance. Understanding a target platform
includes understanding of not only the processor itself but also
the memory system and the on-chip interconnection system.

In this paper, we propose a novel parallel software
implementation of H.264/AVC decoding. Parallel software
implementation may be roughly classified into two categories:
task parallelism or data parallelism. Task parallelism is to
divide a task into multiple sub-tasks and to distribute each
sub-task to multiple cores simultaneously. Data parallelism is
to divide a block of data into multiple sub-blocks, and let them
be processed by multiple cores in parallel. To parallelize
H.264/AVC decoding, both approaches have been proposed.
In case of task-level parallelism, it is not easy to divide a task
into sub-tasks evenly. Therefore, the execution time of some
sub-task is longer than that of others, which implies that task
parallelism is not an efficient way to achieve high
performance. On the other hand, data parallelism also has
some limitation since complicated data dependencies exist in
H.264/AVC decoding algorithm. Therefore it is not easy to
partition a block of data into a set of independent sub-blocks.
To overcome such issues, we propose a novel approach called
Stage-based Frame-Partitioned Parallelization (SFPP). In this
approach, first we divide a frame data into equally sized
partitions. Partitioned data are processed in a pipelined
fashion. A thread is created and assigned for each pipeline
stage to reduce the overhead due to thread synchronization. In
addition, an efficient memory reuse technique is used to
reduce the memory requirement.

The rest of this paper is organized as follows. In Section II,
we briefly present an overview of H.264/AVC decoding.
Next, we introduce existing approaches for parallelization of
H.264/AVC decoding. In Section III, we explain the proposed

1088 IEEE Transactions on Consumer Electronics, Vol. 56, No. 2, May 2010

Fig. 1. Block diagram of H.264/AVC decoding.

SFPP method. In Section IV, experimental environments and
experimental results will be addressed. Conclusion and future
works will follow.

II. RELATED WORK

A. H. 264/AVC decoder
H.264 or MPEG-4 AVC is a video compression

standard proposed by ISO/IEC and ITU. It is popular
since its compression ratio is much better than other
existing standards and it is adequate for video streaming
through networks. Detailed specification of H.264/AVC
standard and key algorithms are found in ITU H.264
standard [1] and ISO MPEG-4/AVC standard [2]. Also,
[3] and [4] explain the overview of the H.264 standard.
H.264/AVC decoding consists of entropy decoding,
inverse discrete cosine transformation, inverse
quantization, intra prediction, motion compensation, and
deblocking filter. A brief explanation of these steps is
given as follows.

1) Entropy Decoding (ED)

A bit stream in H.264/AVC is received as a unit of
Network Adaptation Layer (NAL) and a set of
coefficients is generated by an entropy decoder. In
H.264/AVC, either Context-Adaptive Variable Length
Coding (CAVLC) or Context-Adaptive Binary Arithmetic
Coding (CABAC) is employed as an entropy decoding
technique. In a baseline profile, CAVLC is often
employed, while CABAC is more commonly used in the
main and the high profile.

2) Inverse Transformation (IT)/Inverse Quantization (IQ)

Inverse transformation (IT) and inverse quantization
(IQ) steps process the set of coefficients generated by the
entropy decoding to generate a set of residual data.

3) Intra Prediction (IP) and Motion Compensation (MC)

According to the type of a macroblock, either intra-
prediction (IP) or motion compensation (MC) is applied.
IP explores spatial redundancy between blocks within a
frame while MC explores temporal redundancy between
successive frames. After IP and MC steps, the generated
block is combined with the residual data from IT and IQ.

 4) Deblocking Filter (DF)
The resulting decoded video may suffer from blocking

effects which reveals the boundary between blocks. To
eliminate the boundary, deblocking filtering is necessary.
Deblocking filter (DF) adaptively controls weights to avoid
blocking effects

B. Parallelization of H.264/AVC decoding
Parallelization of H.264/AVC decoding has been studied

actively. A typical structure for encoded data structure is
shown in Fig. 2. A sequence of encoded video data consists of
Group of Pictures (GOP). A GOP consists of multiple frames
(or pictures), and each frame is composed of one or multiple
slices where each slice is a group of macro blocks. Various
parallelization techniques of H.264/AVC encoding have been
proposed [5]-[9]. For parallelizing H.264/AVC decoding,
either task-level parallelism or data-level parallelism has been
proposed [10]-[17]. For data-level parallelism, depending on
the size of data, slice-level parallelism [12] and macro-block
parallelism [13]-[17] have been studied. In [14], data
scheduling techniques for parallel processing were proposed.
In [15] and [16], entropy decoding and deblocking filtering of
previously entropy-decoded block are processed in parallel. In
the following, we briefly explain the pros and cons of the
task-level parallelism and the data-level parallelism.

Fig. 2. H.264/AVC video frames.

1) Task-level parallelization techniques

Task parallelism is carried out by dividing a task into
multiple sub-tasks and distributing each sub-task to a core

Intra modes

Motion
Compensation

Inter/
Intra MB

Motion vectors

Intra
Prediction

+
Video

out
Video Bit

Stream
Deblocking

Filter
Inverse

Transform
Inverse

Quantization
Entropy
Decoding

W.-J. Kim et al.: Stage-based Frame-Partitioned Parallelization of H.264/AVC Decoding 1089

simultaneously [10][13]. It is similar to a typical pipelined
execution. A major problem in using task-level parallelism for
H.264/AVC decoding is that it is not easy to partition the task
in such a way that the execution time of each sub-task should
be evenly balanced. Fig. 3 shows an example when a task-
level parallelization technique is applied.

 1 2 3 4 5

Thread1 Entropy
decoding

Thread2 MC+IQ/IT
IP+ IQ/IT

Thread3 Deblocking
Filter

Fig. 3. Pipelined parallel processing.

You can see that execution times for entropy decoding,
MC+IQ/IT, IP+IQ/IT, and deblocking filter are all quite
different. Also, each thread processing time will differ
depending on the type of macro-blocks. There are three types
of macroblocks in H.264/AVC: intra-coded, inter-coded, and
skipped macroblocks. Intra-coded macroblocks are encoded
by utilizing spatial redundancies while inter-coded blocks are
encoded by utilizing temporal redundancies. A skipped block
is basically the reference block since the skipped macroblock
and the reference block are almost identical. Therefore, the
reference block is used instead of processing the skipped
block.

Fig. 4. Processing time of macroblocks.

Fig. 4 shows that processing skipped blocks takes much

shorter time than processing inter-coded or intra-coded blocks.
Thus, each step may take a variable amount of time depending
on the block type. Since the pipeline step time should be
greater than equal to the slowest step processing time, this
variable step processing time may cause significant wastes in
processing time.

2) Data-level parallelization techniques

Data parallelism is to divide a block of data into multiple
sub-blocks, and let them be processed by multiple cores in
parallel. The unit of the divided data block may be a frame, a
slice or a macroblock. There are three types of frames in

H.264/AVC: I-frames, P-frames and B-frames. I-frames
contain only intra-coded macroblocks while P-frames contain
either intra-coded macroblocks or inter-coded macroblocks.
B-frames contain bidirectional inter-coded macroblocks in
addition to intra-coded and inter-coded macroblocks. Frame-
level parallelization may have inter-frame dependencies for P-
frames and B-frames. Slice-level parallelization does not have
inter-slice dependencies but encoding should have been done
for each slice after dividing each frame into slices. Therefore,
macroblock-based parallelization approaches have actively
been attempted [13]-[17]. Macroblock-level parallelization is
typically carried out by allocating a thread to process a
macroblock as shown in Fig. 6. However, data dependencies
exist in H.264/AVC as shown in Fig. 5. For example, before
we conduct an intra-prediction step for Current MB, intra-
predictions for macroblocks 1, 2, 3 and 4 must be done first.

Fig. 5. Spatial data dependencies for a macroblock.

Fig. 6 shows an example of data-level parallel processing

observing data dependencies. Macroblocks MB(4,0), MB(2,1)
and MB(0,2) can be processed in parallel at the 5th time
step(T5).

MB(0,0)

T1

MB(1,0)

T2

MB(2,0)

T3

MB(3,0)

T4

MB(4,0)

T5

MB(0,1)

T3

MB(1,1)

T4

MB(2,1)

T5

MB(3,1)

T6

MB(4,1)

T7

MB(0,2)

T5

MB(1,2)

T6

MB(2,2)

T7

MB(3,2)

T8

MB(4,2)

T9

MB(0,3)

T7

MB(1,3)

T8

MB(2,3)

T9

MB(3,3)

T10

MB(4,3)

T11

MB(0,4)

T9

MB(1,4)

T10

MB(2,4)

T11

MB(3,4)

T12

MB(4,4)

T13

Fig. 6. Example of data-level parallelization.

1
MC
IP
DF

2
MC
IP
DF

3
MC
IP
DF

4
MC
IP
DF

Current
MB

MBs processed

MBs processing

MBs Entropy Decoded

1 2 3 4 5

1

1 2 3

2 3 4

1090 IEEE Transactions on Consumer Electronics, Vol. 56, No. 2, May 2010

Yet, since the processing time of each macroblock will be
different, synchronization should be taken care of. One of the
popular data-level parallelization methods is 2D-Wave[10]. In
2D-Wave, threads are allocated to macroblocks and processed
in the order that arrows indicate in Fig. 6. 3D-Wave [17] is an
extension to 2D-Wave.

Fig. 7 shows how threads are allocated in data-level parallel
processing. Entropy decoding should be done before data-
level parallel processing starts since entropy decoding cannot
process partitioned data in parallel. Macroblocks generated as
a result from entropy decoding should be saved in memory. In
case of FHD, 1920x1080, 8160 macroblocks are created,
which will require a significant amount of memory space.
This memory requirement imposes a heavy burden on the
system when we increase the level of data parallelism.

Fig. 7. Thread allocation in data-level parallelization.

Even though various approaches have been proposed for

both task-level and data-level parallelization, most techniques
may not fully overcome major problems such as
synchronization overhead, complex data dependency, and
heavy memory requirement. Therefore, we propose a novel
method to improve the decoding performance by resolving
these issues. The proposed method is called Stage-based
Frame-Partitioned Parallelization (SFPP). In SFPP, each
frame is partitioned horizontally, and each partition is
processed in a pipelined parallel fashion. By allocating
independent threads to each stage of the pipelining,
synchronization overheads are considerably reduced. Also, by
utilizing a memory reuse method, the memory requirement has
been significantly reduced. Our experimental results show that
by applying SFPP, the decoding performance is improved by
up to 53% over the implementation before we apply SFPP.
The memory requirement is reduced by 65% for HD and by
81% for FHD when compared with 2D-Wave.

3) Parallelization using OpenMP

OpenMP[20][21] is an application program interface
standard for a shared-memory multi-processor. Many
commercial compilers support OpenMP standards.
Application programmers can parallelize a C or Fortran
program by inserting OpenMP pragmas properly. Since
OpenMP is a pragma-based parallelization mechanism, you
don’t have to change the application code itself. Therefore,
it’s quite a simple way to parallelize a code which was
originally written for a sequential processing. Inserted
OpenMP pragmas are pre-processed by an OpenMP-

compliant compiler, and as a result, multiple threads for
parallel processing are generated. We insert OpenMP pragmas
to parallelize the decoding process.

III. STAGE-BASED FRAME-PARTITIONED
PARALLELIZATION

In this section, we will explain our proposed SFPP in detail.
The main goal of this method is to achieve an excellent speed-
up for high resolution video processing by parallelization of
the H.264/AVC decoding process. The H.264/AVC decoding
consists of Entropy Decoding (ED), Inverse Quantization (IQ),
Inverse Transformation (IT), Intra-Prediction (IP), Motion
Compensation (MC), and Deblocking Filter (DF) steps.
Depending on the type of a macroblock, either MC or IP step
is carried out. Typically IQ and IT step are processed
combined with MC or IP in a single step since the processing
time of IQ and IT is too small to be processed as a separate
step. Both JM which is a popular reference software for
H.264/AVC decoding and FFmpeg which is being developed
as an open source H.264/AVC decoder project execute IQ/IT
combined with MC or IP in a single step. Therefore, in SPFF,
we also divide a decoding process into three pipeline stages:
ED, either MC+IQ/IT or IP+IQ/IT, and DF. Decoding is
processed in a pipelined fashion after allocating threads to
these three stages. SFPP is applied in three steps: frame
partitioning, thread creation, and memory utilization.

A. Frame Partitioning
Conventional pipelined processing decodes one macroblock

at a time, and checks synchronization of each thread at the end
of every step. Thread synchronization often becomes a serious
performance bottleneck. As the video resolution becomes higher,
the number of macroblocks in a fame increases proportionally,
and so does the synchronization overhead. To avoid such
overhead, SFPP partitions frames and processes each partition
in a pipelined fashion. Fig. 8 shows an example of frame
partitioning. This method is similar to what a superscalar [18] or
a VLIW [19] architecture does. By processing a partitioned
frame which is a group of macroblocks, we can reduce
synchronization overhead considerably compared with a
macroblock-level pipelined processing.

Fig. 8. Pipelined execution of partitioned frames.

W.-J. Kim et al.: Stage-based Frame-Partitioned Parallelization of H.264/AVC Decoding 1091

Fig. 9 shows an example of pipelining with a partitioned
frame with a straightforward thread allocation. Thread1 is
allocated to ED, and Thread2 is allocated to either MC+IQ/IT
or IP+IQ/IT. Thread3 is allocated to DF. When we allocate
threads in this way, thread synchronization is carried out at the
end of every stage. For example, in Fig. 9 before we start the
fourth time step in the pipelining, thread processing for the
third step should be complete. For this reason, synchronization
overhead may still be significant.

Fig. 9. Thread assignment for pipelined execution .

B. Thread Creation for Stage
To reduce thread synchronization overhead, we allocate

threads to each pipeline step independently. Each thread
created in each pipelined stage is terminated after processing
one group of macroblocks. Fig. 10 shows how threads are
allocated in SFPP. For example, for the third time step,
Thread3-1, Thread3-2 and Thread3-3 are created and they are
terminated after processing a partition of a frame. Similarly,
for the fourth stage, Thread4-1, Thread4-2, and Thread4-3 are
created. And these are terminated upon the completion of the
stage processing. Since threads are independently created and
terminated, the thread synchronization overhead is
significantly reduced.

Fig. 10. Thread assignment in SFPP.

However, SFPP may suffer from overhead due to frequent

thread creation. There is a trade-off between overhead due to
thread creation and the size of each partition. If we have a
smaller partition, we have more groups of macroblocks and

more frequent thread creations. On the contrary, bigger
partitions may suffer from other overhead in handling bigger
partitions such as memory requirement. Therefore, we need to
determine the best partition size for each resolution based on
experiments on performance evaluations. Performance
evaluation results of SFPP with respect to various partition
sizes for two different resolutions are summarized in Table I.
NMB/G denotes the number of macroblocks per group and Nps
denotes the number of total pipeline steps. For FHD,
1920x1080 videos, we have tried 240 macroblocks per group
with 34 total pipeline steps (240x34), 480 with 17 (480x17)
and 960 with 8 (960x8). Performance evaluation results show
that (480x17) is the best among three. For HD, 1280x720
videos, we have evaluated with respect to three different
partitions: (240x15), (400x9) and (600x6). As it turns out that
(400x9) is the best in case of HD videos. More detailed
explanation on experimental environment and results will be
presented in Section IV.

TABLE I

PERFORMANCE EVALUATION FOR VARIOUS PARTITION SIZES
FHD,1920X1088, 8160 MB (frame/μs)

NMB/G x Nps
rush_hour blue_sky pedestrian

_area sunflower

240 x 34 10524 10025 11947 9129
480 x 17 9236 8477 10875 8822
960 x 8 11443 11965 12891 9979

HD,1280X720, 3600 MB (frame/μs)
NMB/G x Nps

rush_hour blue_sky pedestrian
_area sunflower

240 x 15 7665 6016 5134 5409
400 x 9 6994 5458 4802 4950
600 x 6 7915 6272 5148 5645

C. Memory Utilization Strategy
As the video resolution becomes higher, the number of

macroblocks per frame increases rapidly. In parallelization of
H.264/AVC decoding, macroblocks are generated after
entropy decoding and the generated macroblocks are stored in
memory. For a high resolution video decoding, a large amount
of memory is required to store the generated macroblocks. A
large amount of required memory will cause not only design
cost to go up, but also system performance to go down. To
reduce the memory requirement, we employ a memory reuse
method. We define memory bank as the memory block
required to store one partition of macroblocks. In SFPP, an
individual thread is accessing a separate memory bank. Fig. 11
shows how a thread accesses a memory bank. In Time1,
Thread1-1 stores macroblocks generated by an ED process
into Memory Bank1. Then in Time2, Thread2-1 obtains data
from Memory Bank1 for either MC+IQ/IT or IP+IQ/IT. Then
in Time3, Thread3-1 uses Memory Bank1 for DF. Since
Thread3-3 is the last process before we get a fully decoded
video, in Time4, Thread4-1 can use Memory Bank1. By

1092 IEEE Transactions on Consumer Electronics, Vol. 56, No. 2, May 2010

reusing memory banks in this way, we can reduce the memory
requirement. These steps are repeated until processing the
entire frame is completed.

Fig. 11. Utilization of memory in SFPP.

Table II summarizes comparison results of memory

requirement for a serial macroblock processing, 2D-Wave
pipelining and SFPP. The amount of memory requirement is
measured by the memory used by H264Context data structure
in FFmpeg H.264/AVC decoder. H264Context contains

Sequence Parameter Set (SPS) which holds various video-
related information and Picture Parameter Set (PPS) which
holds various frame-related information. And output of the
entropy decoding is stored in the H264Context. Without
parallelization, decoding will be performed for each
macroblock, and the total amount of required data memory is
1,888 bytes which is the size of one marcoblock. The size of
memory for H264Context data structure is 174,176 bytes. In
case of 2D-Wave, the size of memory required for
macroblocks will be equal to the total size of macroblocks in
one frame, and the corresponding size will be 6,970,976 bytes
and 15,580,256 bytes for HD and FHD, respectively. In SFPP,
memory banks are reused. Hence, the memory requirement is
much less than that of 2D-Wave. In the current
implementation of SFPP, we use three different memory
banks. When we partition a frame into a group of macroblocks
with a size of 400 in HD, the memory requirement is
2,439,776 bytes, which is 65% less than that for 2D-Wave.
We could reduce the memory requirement by 81% for FHD
compared with 2D-Wave.

TABLE II

COMPARISON ON MEMORY REQUIREMENTS

 HD,1280X720, 3600 MB (byte)

 Basic 2D wave SFPP

Used MB(num) 1 3,600 400x3

1,888x1 1,888x3,600 1,888x400x3 Memory of
MB(byte) = 1,888 = 6,796,800 = 2,265,600
Memory

of H264Context
(byte)

174,176 6,970,976 2,439,776

 FHD,1920X1088, 8160 MB (byte)
 Basic 2D wave SFPP

Used MB(num) 1 8,160 480x3
1,888x1 1,888x8,160 1888x480x3 Memory of

MB(byte) =1,888 =15,406,080 =2,718,720
Memory

of H264Context
(byte)

174,176 15,580,256 2,892,896

IV. EXPERIMENTAL ENVIRONMENTS AND RESULTS

A. Experimental environments
To verify the effectiveness of SFPP, we parallelize FFmpeg

H.264/AVC decoder to compare the performance. Currently
FFmpeg H.264/AVC decoder is commonly used, and a
popular video player, FFplay can play video decoded by
FFmpeg. Video samples used in this experiment are encoded
by JM-v16, and the encoding environment is based on the
baseline profile provided by JM-v16. Linux Ubuntu 9.10 with
kernel 2.6.31 on an Intel Quad-Core i5 processor was used as
the execution platform. GCC v4.4.1 was used with OpenMP
for parallelization.

W.-J. Kim et al.: Stage-based Frame-Partitioned Parallelization of H.264/AVC Decoding 1093

TABLE III

H.264/AVC DECODING TIME BEFORE PARALLELIZATION

Sequence
Entropy
decoding
(μs/frame)

MC+IQ/IT
IP+IQ/IT
(μs/frame)

Deblocking
 filter

(μs/frame)

AVG
(μs/frame)

MIN
(μs/frame)

rush_hour FHD, 1920X1088 3929 6567 5699 16195 14746
blue_sky FHD, 1920X1088 4184 5863 5514 15561 13694
pedestrain_area FHD, 1920X1088 4295 6800 6440 17535 13498
sunflower FHD, 1920X1088 3905 6301 3130 13336 11034
park_run HD, 1280X720 5150 3926 3714 12790 10687
mobcal HD, 1280X720 2310 3458 2564 8332 3882
stockholm HD, 1280X720 2029 2993 2190 7212 6640
shields HD, 1280X720 2211 2997 2210 7418 5707

TABLE IV

RESULTS OF MINIMUM EXECUTION TIMES PER FRAME OF PARALLELIZATION OF H.264/AVC DECODING

Pipeline 2Dwave(2) 2Dwave(3) SFPP Sequence
(μs/frame) (%) (μs/frame) (%) (μs/frame) (%) (μs/frame) (%)

rush_hour FHD, 1920X1088 11873 19% 12105 18% 9998 32% 6993 53%
blue_sky FHD, 1920X1088 11018 20% 11470 16% 9558 30% 6735 51%
pedestrain_area FHD, 1920X1088 12126 10% 10666 21% 9604 29% 8431 38%
sunflower FHD, 1920X1088 9481 14% 9616 13% 8507 23% 6718 39%
park_run HD, 1280X720 7813 27% 8482 21% 7441 30% 5580 48%
mobcal HD, 1280X720 2655 32% 3154 19% 2678 31% 2172 44%
stockholm HD, 1280X720 4996 25% 5395 19% 4563 31% 3702 44%
shields HD, 1280X720 5046 12% 4689 18% 4160 27% 3528 38%

TABLE V

RESULTS OF AVERAGE EXECUTION TIMES PER FRAME OF PARALLELIZATION OF H.264/AVC DECODING

Pipeline 2Dwave(2) 2Dwave(3) SFPP Sequence
(μs/frame) (%) (μs/frame) (%) (μs/frame) (%) (μs/frame) (%)

rush_hour FHD, 1920X1088 14309 12% 13390 17% 12130 25% 9236 43%
blue_sky FHD, 1920X1088 13914 11% 13159 15% 11780 24% 8477 46%
pedestrain_area FHD, 1920X1088 15784 10% 14264 19% 13498 23% 10875 38%
sunflower FHD, 1920X1088 12023 10% 11572 13% 10580 21% 8822 34%
park_run HD, 1280X720 11025 14% 10709 16% 10045 21% 6994 45%
mobcal HD, 1280X720 7403 11% 6938 17% 6387 23% 5458 34%
stockholm HD, 1280X720 5865 19% 6126 15% 5713 21% 4802 33%
shields HD, 1280X720 6978 6% 6209 16% 5637 24% 4950 33%

Fig. 12. Minimum execution times per frame of parallelization of H.264/AVC decoding in graphic form.

1094 IEEE Transactions on Consumer Electronics, Vol. 56, No. 2, May 2010

Fig. 13. Average execution times per frame of parallelization of H.264/AVC decoding in graphic form.

B. Experimental Results
We compared performance of H.264/AVC decoding before

and after we parallelize the decoder. We measured the
minimum and the average decoding time per frame. The
results after running without any parallelization technique
were summarized in Table III. From the results, we observe
that the processing time varies depending on videos, and the
execution time for an individual subtask is different. Table IV
shows performance comparison results of the minimum
decoding time per frame for various parallelization
techniques. Table V shows performance comparison results of
the average decoding time per frame for various
parallelization techniques. Pipeline is a task-level pipelined
parallelization technique. 2D-Wave(2) is a parallelization
technique with two threads, and 2D-Wave(3) is a
parallelization technique with three threads. And SFPP is the
proposed technique of this paper.

Compared with the implementation without parallelization,
in terms of the minimum execution time per frame, Pipeline
showed 12~32% improvement, 2D-Wave(3) showed 23~32%
improvement, but the proposed SFPP showed 38~53%
performance improvement. In terms of the average execution
times per frame, Pipeline showed 6~19% improvement, 2D-
Wave(3) showed 21~25% improvement, but the proposed
SFPP showed 33~46% performance improvement. Fig. 12
shows a chart for the comparison results in Table IV, and Fig.
13 shows a chart for the comparison results in Table V. From
the experimental results, we conclude that our proposed
technique is consistently and significantly better than other
parallelization techniques.

V. CONCLUSION
In this paper, we propose a novel technique called SFPP for

parallel H.264/AVC decoding for high video resolutions.
Compared with conventional parallelization techniques, SFPP
is better in the sense that it has less synchronization overhead
since we process a partitioned frame instead of macroblocks
individually. Also we allocate an independent thread to each
pipeline stage. Also SFPP uses memory much less than

popular methods such as 2D-Wave. We carried out
experiments on an Intel Quad-Core system with frequently
used H.264/AVC decoder. As a future work, we want to
extend this idea to heterogeneous multi-core systems.

ACKNOWLEDGMENT
This research was supported by the MKE(The Ministry of

Knowledge Economy), Korea, under the ITRC(Information
Technology Research Center) support program supervised by
the NIPA(National IT Industry Promotion Agency) (NIPA-
2010-C1090-1031-0009).

REFERENCES
[1] ITU-T Recommendation H.264, SERIES H: AUDIOVISUAL AND

MULTIMEDIA SYSTEMS Infrastructure of audiovisual services-
Coding of moving video, May 2003.

[2] ISO, Information Technology-Coding of Audio-Visual Objects,
Part10—Advanced Video Coding, ISO/IEC 14496-10.

[3] Thomas Wiegand, Gary J. Sullivan, Gisle Bjøntegaard, and Ajay Luthra,
Senior Member, “Overview of the H.264/AVC Video Coding
Standard,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 13, no. 7, pp. 560-576, July 2003

[4] Michael Horowitz, Anthony Joch, Faouzi Kossentini, and Antti
Hallapuro, "H.264/AVC Baseline Profile Decoder Complexity
Analysis," IEEE Transactions on Circuits and Systems for Video
Technology, vol. 13, no. 7, pp. 704-716 July 2003.

[5] Y.-K. Chen, X. Tian, S. Ge, and M. Girkar, “Towards Efficient Multi-
level Threading of H.264 Encoder on Intel Hyperthreading
Architectures,” in Proceedings International Parallel and Distributed
Processing Symposium, Apr 2004.

[6] Zhuo Zhao and Ping Liang, "A Highly Efficient Parallel Algorithm for
H.264 Video Encoder," Proc. Of the 2006 IEEE International
Conference on Acoustics, Speech and Signal Processing, vol. 5, 14-19
May 2006 pp. 489-492

[7] Y. Chen, E. Li, X. Zhou, and S. Ge, “Implementation of H.264 Encoder
and Decoder on Personal Computers,” Journal of Visual
Communications and Image Representation, vol. 17,2006.

[8] T. Jacobs, V. Chouliaras, and D. Mulvaney, “Thread-parallel mpeg-2,
mpeg-4 and h.264 video encoders for soc multiprocessor architectures,”
IEEE Trans. on Consumer Electronics, vol. 52, no. 1, pp. 269–275, Feb.
2006.

[9] Shu-Sian Yang, Sung-Wen Wang, Hong-Ming Chen, and Ja-Ling Wu,
"A Parallelism Encoding Framework for The Temporal Scalability of
H.264/AVC Scalable Extension," Proceedings of IEEE Workshop on
Scalable Video Coding & Transport, December 2007

W.-J. Kim et al.: Stage-based Frame-Partitioned Parallelization of H.264/AVC Decoding 1095

[10] E. van der Tol, E. Jaspers, and R.Gelderblom, “Mapping of H.264

decoding on a multiprocessor architecture,” Image and Video
Communications and Processing, pp.707-718, May, 2003.

[11] Seung-Won Jung, Yeo-Jin Yoon, Haechul Choi, Aldo W. Morales,Sung-
Jea Ko, "A novel post-processing algorithm for parallel-decoded U-
HDTV video sequences," IEEE Trans. on Consumer Electronics, vol. 55,
no. 1, pp.185-190,Feb.2008.

[12] M. Roitzsch, “Slice-Balancing H.264 Video Encoding for Improved
Scalability of Multicore Decoding," in Work-in-Progress Proceedings of
the 27th IEEE, 2006

[13] Klaus Schömann, Markus Fauster, Oliver Lampl, Laszlo Böszörmenyi,
“An Evaluation of Parallelization Concepts for Baseline-Prole
Compliant H.264/AVC Decoders," in Lecture Notes in Computer
Science. Euro-Par 2007 Parallel Processing, August 2007.

[14] J. Chong, N. R. Satish, B. Catanzaro, K. Ravindran, and
K.Keutzer,"Effcient parallelization of h.264 decoding with macro block
level scheduling," in 2007 IEEE International Conference on Multimedia
and Expo, July 2007.

[15] Kosuke Nishihara, Atsushi Hatabu, Tatsuji Moriyoshi, “Parallelization
of H.264 video decoder for embedded multicore processor,” In
Proceedings of ICME'2008. pp.329~332

[16] Kue-Hwan Sihn, Hyunki Baik, Jong-Tae Kim, Sehyun Bae, Hyo Jung
Song, "Novel approaches to parallel H.264 decoder on symmetric
multicore systems," IEEE International Conference on Acoustics,
Speech and Signal Processing, 2009

[17] A. Azevedo, C. Meenderinck, B. Juurlink, A. Terechko, J.
Hoogerbrugge, M. Alvarez, and A. Rammirez, “Parallel H.264 Decoding
on an Embedded Multicore Processor,” in Proceedings of the 4th
International Conference on High Performance and Embedded
Architectures and Compilers -HIPEAC, Jan 2009.

[18] Subbarao Palacharla, Norman P. Jouppi and James E.Smith.
"Complexity-Eective Superscalar Processors," In 24th International
Symposium on Computer Architecture, pp. 206-218, June 1997.

[19] Tsung-Han Tsai, Chun-Nan Liu, Jui-Hong Hung, “VLIW-Aware
Software Optimization of AAC Decoder on Parallel Architecture Core
DSP (PACDSP) Processor,” IEEE Trans. on Consumer Electronics, vol.
54, no. 2, pp.933-939, May 2008.

[20] Chunhua Liao, Zhenying Liu, Lei Huang, and Barbara Chapman.
"Evaluating OpenMP on Chip MultiThreading Platforms," In First
international workshop on OpenMP, Eugene, Oregon USA, June 2005.

[21] Matthew Curtis-Maury, Xiaoning Ding, Christos Antonopoulos,
Dimitrios Nikolopoulos, D. “An evaluation of OpenMP on current and
emerging multithreaded/multicore processors,” In Proceedings of the
First International Workshop on OpenMP (IWOMP), Eugene, Oregon
USA, June 2005.

BIOGRAPHIES

Won-Jin Kim received the BS in mechanical
engineering with a minor in Electronic engineering
from Hanyang University, Ansan, Korea in 2002,
and an MS in Electronic Engineering from
Hanyang University, Seoul, Korea in 2008.

He was an Engineer at SENA Corp. in Seoul
from 2002 to 2004, and was an Engineer at
MGAME Corp. in Seoul from 2004 to 2006. Since
2009, he has been taking up a PhD course at
Hanyang University, Seoul, Korea. His research

interests include low power embedded system design, image processing,
parallelization, and multi-core architecture.

Keol Cho received his BS in Media
Communication Engineering from Hanyang
University, Seoul, Korea in 2009. Since 2009, he
has been taking up an MS course at Hanyang
University, Seoul, Korea.

His research interests include low power
embedded system design, parallelization, image
processing, and embedded multi-core architecture.

 Ki-Seok Chung received his BE in Computer
Engineering from Seoul National University, Seoul,
Korea in 1989, and PhD in Computer Science from
University of Illinois at Urbana-Champaign in 1998.

He was a Senior R&D Engineer at Synopsys, Inc.
in Mountain View, CA from 1998 to 2000, and was
a Staff Engineer at Intel Corp. in Santa Clara, CA
from 2000 to 2001. He also worked as an Assistant
Professor at Hongik University, Seoul, Korea from
2001 to 2004. Since 2004, he has been an Associate
Professor at Hanyang University, Seoul, Korea. His

research interests include low power embedded system design, multi-core
architecture, image processing, reconfigurable processor and DSP design,
SoC-platform based verification and system software for MPSoC.

1096 IEEE Transactions on Consumer Electronics, Vol. 56, No. 2, May 2010

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

