
Experiences with Hybrid Clusters
Damir Jamsek

jamsek@us.ibm.com
Eric Van Hensbergen

bergevan@us.ibm.com

Abstract—The complexity of modern microprocessor design
involving billions of transistors at increasingly denser scales cre-
ates many challenges particularly in the area of design reliability
and predictable yields. Researchers at IBM’s Austin Research
Lab have increasingly depended on software based simulation
of various aspects of the design and manufacturing process to
help address these challenges. The computational complexity and
sheer scale of these simulations have lead to the exploration of
the application of high-performance hybrid computing clusters
to accelerate the design process.

Currently, the hybrid clusters in use are composed primarily
of commodity workstations and servers incorporating commodity
NVIDIA-based GPU graphics cards and TESLA GPU compu-
tational accelerators. We have also been experimenting with
blade clusters composed of both general purpose servers and
PowerXcell accelerators leveraging the computational throughput
of the Cell processor.

In this paper we will detail our experiences with accelerating
our workloads on these hybrid cluster platforms. We will discuss
our initial approach of combining hybrid runtimes such as CUDA
with MPI to address cluster computation. We will also describe
a custom cluster hybrid infrastructure we are developing to deal
with some of the perceived shortcomings of MPI and other
traditional cluster tools when dealing with hybrid computing
environments.

I. MOTIVATION

The VLSI department in the IBM Austin Research Lab is
developing techniques to enable custom microprocessors to
be designed reliably and fabricated with predictable yields.
This is becoming increasingly more difficult in future 22nm
and beyond technologies. More then ever, reliance on software
simulation of various aspects of design and manufacturing is
becoming necessary.

The algorithms involved have various computational needs.
Our recent work has focused on codes for: electrical simulation
of small circuits, power grid analysis for whole chips, lithog-
raphy simulation for physical design, and logic simulation at
the RTL level.

• electrical simulation - Monte Carlo simulation of small
circuits (10’s - 100’s of devices)

• power grid analysis - shape manipulation and sparse
linear algebra

• lithography simulation - primarily image processing (fft,
convolution, bit map manipulation)

• logic simulation - Monte Carlo boolean gate evaluation

There are differing parallelization strategies for these tasks.
The Monte Carlo simulations are conceptually simple from
a parallelization view. The difficulty is in redesigning the
simulation so that it both “fits” on a compute node and that
resources it needs are either shared or distributed efficiently.

For tasks with core algorithms that are liner algebra, fft,
convolution or shape and image-based manipulations, the
core computations must be efficiently mapped to a multicore
architecture. In addition, the same issues of resource allocation
and data sharing or distribution exists.

The simulations in question have considerable computa-
tional requirements that on typical engineering workstations or
clusters of workstations take days if not weeks to complete.
In an environment where design changes are ongoing these
turnaround times are unacceptable. Our goal is to reduce these
turn around times by two or three orders of magnitude to
hours or minutes. This will require hundreds or thousands of
compute elements effectively cooperating on the tasks.

The computational complexity of these simulations has
caused us to explore using large multicore and hybrid systems.
In particular, clusters of workstations with multicore accel-
erators as well as large scale computing using systems like
IBM’s Blue Gene. In both cases, issues of resource allocation
and management become as important as the task of algorithm
redesign and implementation.

In this paper we will discuss our experiences applying
heterogenous hybrid clusters to these applications and describe
the various runtime infrastructures we used to address the
problems within a cluster environment. The next section gives
a brief overview of hybrid systems and discusses several
hybrid cluster configurations we have experience with. In
Section 3 we’ll detail one of the applications in question and
describe our various experiments with deploying it on a cluster
environment. Based on these experiences we began to develop
our own cluster runtime tuned to the needs of heterogenous
hybrid computing which we shall describe in Section 4. We’ll
conclude in Section 5 by discussing our status and touching
on some some topics for future work.

II. HETEROGENEOUS HYBRID CLUSTERS

Hybrid systems incorporate heterogeneous cores, either with
different processing characteristics or difference instruction set
architectures. The Cell Processor [1], with its combination of
a general purpose PowerPC cores (PPU) and eight synergistic
processing elements (SPE) for vector operations is a classic
example. In such systems, the various cores have coherent
access to each other’s memory, but memory transfers between
PPU and SPE are handled explicitly. Such a configuration can
be seen in the top node in Figure 1.

The Road Runner [2] tri-blades used a set of Cell processors
connected over peripheral buses to a general purpose Opteron
blade (bottom node in Figure 1). Road Runner poses many

 978-1-4244-5012-1/09/$25.00 ©2009 IEEE

Fig. 1. Hybrid Topologies

interesting challenges as a hybrid as it has multiple instruction
sets, multiple endian, and multiple peripheral buses.

Another tightly coupled hybrid can be seen in systems using
GPUs to accelerate computation. In such systems, the GPU
accelerators are often located on the other side of a peripheral
bus with their own memory and execution units (middle
node in Figure 1). A common complication is that in many
cases GPU clusters have been built with a variety of off-the-
shelf accelerators each with different memory configurations,
different GPU models, and different numbers of GPU cores on
every system. This creates a heterogenous environment which
is difficult for traditional runtimes to cope with in a reasonable
manner.

These sorts of hybrid nodes can themselves be composed
together with other more general purpose systems into hetero-
geneous hybrid clusters. There has been a significant amount
of work addressing the programming model and runtime of
single node hybrid systems, but relatively little focus has been
given to larger scale distributed contexts. IBM has a great
deal of experience integrating heterogenous clusters and we are
leveraging that history in our approach to hybrid computing.

III. APPLICATION CASE STUDY

One area in which future chip fabrication will require
significantly greater computation resources than in the past
is lithography simulation. In its most basic form, lithography
simulation is 2D image convolution done via FFTs as well as
a few other image processing computations. GPUs are good
FFT engines and imaging engines achieving between 50x and
100x speedup depending on the task on a 240 core processor
NVIDIA G200 chip. The distribution of work to a cluster
of GPUs is relatively straightforward as most processing is
localized to a rectangular subblock of the the overall design
with possible data shared between adjacent subblocks.

We initially developed a CUDA based lithography simu-
lation on a single node with a G200 GPU. The simulation
runtime was on the order of 1/10 sec for a 1 micron by 1
micron sublock compared to a runtime of 2-3 seconds on a
conventional workstation. A modest size 100 mm2 chip has
108 of these sublocks. Taking advantage of symmetry in the
design we would hope to reduce this by a couple orders of

magnitude leaving 106 subblocks to be imaged. At 10 per
second that leaves 105 seconds, or just over 27 hours (as
opposed to 22 to 33 days on a conventional system). Imaging
a more complicated chip in the range of 600 mm2 would take
more than a week of computation (compared to 5-7 months on
a conventional system). A cluster of hybrid machines would
bring this back to a sub-day simulation time necessary for
quick iteration of the design process.

Our initial cluster implementation for lithography simula-
tion used a simple MPI configuration with statically defined
workload distribution based on one MPI task per available
node. The cluster nodes in question were commodity Opteron
and Woodcrest based desktop workstations with 4-16GB of
memory and one or two NVIDIA based high-end graphics
cards (some of which had 2 GPUs on the card). The back-end
nodes ran a common version of a 64-bit RedHat Enterprise
Linux Client version 5.2 and CUDA 2.2. To complicate things
slightly we ran our master node on a Intel-based MacBook Pro
using its internal GPU to visualize the simulation.

The master simulation thread defines the task, preconditions
the design data and distributes it to nodes on the cluster using
MPI Send. Each GPU task has an entire copy of the design
data or possibly some subset and waits for MPI distributed
instructions to perform some subset of the computation. De-
pending on the task requested the GPU tasks may hold the data
or return some subset using MPI. In general, for large designs,
the data computed may be larger than the ability of any one
MPI node to hold and must remain distributed or returned to
some shared storage area. Cluster based runs scaled linearly
due to the nature of the workload and simulation runtime
reduction matched our initial expectations.

While the MPI based runtime achieved the desired results,
it presented several barriers to production deployment for our
circuit designers. Our initial implementation used a dedicated
set of resources, but for production we needed a cloud-
like configuration where multiple designers could attach to
accelerator resources without conflicting with each other in
a dynamic fashion. Since our intended configuration involved
nodes with several GPUs we didn’t want to dedicate resources
at a node level, but rather at a GPU level. Even though we
had a relatively small cluster and a naive MPI configuration,
there was a tremendous degree of difficulty in setting up and
maintaining the MPI hosts. Additionally, we found ourselves
using relatively little of the features of MPI, relying on it for
work distribution and rudimentary data communication that
could just as easily been done directly with files or even over
standard I/O. The worst aspect of the MPI runtime was that
it had no direct knowledge of the underlying configuration of
the hybrid accelerators requiring us to distribute work based
on the lowest common denominator of GPU capabilities. This
lead to many GPUs (particularly on nodes with 2 or more
GPUs available) to be underutilized. The complexity of MPI
combined with its lack of any knowledge of GPUs lead us to
look for other distributed execution models.

IV. HYBRID WORKLOAD MANAGEMENT

After a brief search of cluster management software yielded
no solution which incorporated explicit support for hybrid
accelerators such as GPUs we developed a new hybrid cluster
infrastructure based on our unified execution model [3] named
KIRIN after a mythological hybrid creature of the far east.

A. Unified Execution Model

The Unified Execution Model (UEM) provides an extensible
and flexible workload management middleware which end
users and applications interact with directly through a synthetic
file system much like the proc file system pioneered by UNIX
and later extended by Plan 9 and adopted by Linux. Within
these systems, every process on the system is represented by
a file (in the case of historical UNIX), or a directory (in
the case of Plan 9 and Linux). In the latter case, there are
a number of synthetic files within each process’ directory
providing information, events, and control interfaces.

The UEM takes the control of processes via a synthetic file
system one step further, enabling process creation, control,
and inter-application pipelining (in the spirit of Unix pipes),
across multiple nodes. Importantly, this interface is distributed,
eliding the need for a central control or coordination point,
and facilitating scalability. End-user workstations can also
participate directly in the unified execution model, allowing
local scripts and management applications to interact directly
with the cloud distributed infrastructure when desired. The
UEM utilizes Zeroconf based registries and integrates its own
authentication mechanisms minimizing the need for per-node
configuration.

B. KIRIN Extensions

For hybrid systems we extended the basic model via its
plug-in interface to allow resources to publish the existence
of accelerators (such as GPUs) and their attributes (such as
the number of cores, the available GPU memory, bandwidth,
and so forth). We then extended the provisioning interface to
allow new job requests to specify preferred and mandatory
attributes for the nodes the job would be executed on.

The UEM approach is to use a task-based organization – the
initiating thread establishes a cross-node session incorporating
all the node-specific thread components which make up the
execution of a particular task. The mechanism behind creation
of the session as well as initiating execution of the particular
node threads is based heavily on XCPU’s example [4] of using
a special file, conventionally named clone, to allocate new
resources. Clone files have been commonly used in Plan 9
synthetic file servers to atomically (from a file system perspec-
tive anyways) allocate and access an underlying resource. This
clone file creates a new task session and creates a synthetic
subdirectory labeled with a unique id. Subsequent reads and
writes to the file descriptor which was opened as the clone file
will be directed to the control file of that session subdirectory
following the typical clone semantic of Plan 9.

The first commands sent to this control file specify the
desired resources for task execution. The UEM already allows

us to specify characteristics of the host system (ISA, memory,
disk, network bandwidth), and KIRIN allows us to specify
additional attributes (GPU Type, Number of Cores, GPU
Memory, Bandwidth, etc.). Parameters on the attributes allow
specification of desired attributes versus required attributes.
The application may specify whether it wishes to block waiting
for the requested number of resources, or may get feedback
from the infrastructure on the currently available resources.

From an implementation perspective, we really have two
different organizational elements: physical resource allocation
and task based execution. Since hybrid models such as CUDA
operate as black boxes, we must be able to support dedicating
hardware to a particular task as well as standard time sharing
models. Once the specific node based resources are allocated,
they materialize as uniquely identified subdirectories within
the session directory. They may then be interacted with as
a group through the control files of the session directory, or
individually through control files in each of the subdirectories.
The application can query the infrastructure for the particular
attributes of the resources it was able to reserve. It may then
modify its partitioning of the workload (or even the algorithm)
to match the available resources.

In a fashion similar to Plan 9’s cpu command, KIRIN will
also coordinate access to the control node’s local resources
(such as the file system which the executable resides in) and
make those available on the target node in the name space the
command will be executed in. Since KIRIN operates within a
private name space on the back-end nodes and imports its file
system from the front-end, each task operates within its own
container. With this methodology you can execute multiple
isolated tasks on the same node with completely different
Linux distributions or versions. Following the convention of
Inferno’s devcmd [5] and XCPU we initiate execution by
writing a command to the open control file handle detailing the
(local) path to the executable and command line arguments.
Other configurations, such as alternate name space config-
uration, environment variables, etc. can be specified either
through direct interaction with the control file or through other
file system interfaces. The remote node will then setup the
name space and environment and initiate execution of the
application, redirecting standard I/O to the control node.

C. Example

Our approach is perhaps best illustrated by walking through
an example. What follows is how one might use KIRIN
to implement the lithography application described in the
previous section.

The master thread parses the image file to a sufficient
degree in order to determine an upper bound on the number
of logical instances which would be required to process the
image completely in parallel. The user, either by parameter,
configuration file, or environment may limit the maximum
number of requested logical GPU instances.

For the purposes of this example, lets say the image has 100
tiles to process. The master thread issues a command to reserve
100 GPUs, and gets an error response that only 8 GPUs are

available. The master thread recomputes an appropriate split of
the work and re-issues the request asking for 8 GPUs, which
succeeds. This creates 8 new subdirectories in the task session
directory, each representing a thread on the local and/or remote
system which has been allocated as a GPU resource. Since it
is executing the same subject thread on the resources it can use
the existing file descriptor to issue the execute command to all
subject threads. It then iterates over the thread subdirectories,
querying the particular capabilities (number of cores, memory,
etc.) of each GPU and adjusts the workload partitioning of
each thread to fit the capabilities of the hardware.

 ericvh

ctl
info

worker00/

/proc/hybrid/

stderr
stdin
stdout

workerxx/

 clone
litho

 node01
 node02

 clone

clone

SHELL SCRIPT

% echo litho > /proc/hybrid/ericvh/clone
% echo 2 x86_64 Linux GPU 8GB >
 /proc/hybrid/ericvh/litho/clone
% echo exec /cuda/bin/litho_slave >
 /proc/hybrid/ericvh/litho/node01/clone
% echo exec /cuda/bin/litho_slave >
 /proc/hybrid/ericvh/litho/node02 clone
% echo 000,000:100:050 >
 /proc/hybrid/ericvh/litho/node01/worker00/stdin
% echo 000,050:100:100 /data/design >
 /proc/hybrid/ericvh/litho/node02/worker00/

C API

UEM_infrastructure huem;
UEM_work litho;

huem = uem_initialize("/proc/hybrid");
litho = huem.allocate("litho", 2, "arch=x86_64", "os=Linux", "GPU",
 "dram=8GB");
litho.exec(ALL_NODES, "/cuda/bin/litho_slave");
litho.write(01, STDOUT, "000,000:100:050");
litho.write(02, STDOUT, "000,050:100:100");
litho.read(01, STDIN, &results[0], sizeof(results[0]));
litho.read(02, STDIN, &results[1], sizeof(results[1]));
litho.close();
huem.close();

Fig. 2. KIRIN Task FSAPI

The master thread, who has references to the standard
input, output, and error of each subject thread instance issues
work assignments by sending a relative path to the data file
along with coordinates specifying the tile that the thread in
question is instructed to process. As threads complete their
assigned work, they can either write an image file of their
own to the shared file system or send the results over standard
output directly to the master thread. Upon receiving results,
the master thread can issue more work, or instruct the subject
thread to terminate and release the resource.

When finished, the master thread can cleanup the allocated
resources by closing the handle to the control file. Individual
threads can be shutdown or retasked by opening their individ-
ual control files present in the subject thread subdirectories.
Additionally, new resources can be requested and new threads
can be started at any point during execution to explore different
design areas in more detail.

V. DISCUSSION

We are currently actively developing this hybrid-enabled
unified execution model and testing it on our prototype cluster.
It is our intention to develop this infrastructure into a com-
mon framework that can be used by applications to leverage
resources from many different cluster configurations in order
to maximize efficiency and performance. The end result should

be a framework which allows us to setup workload pipelines
between conventional systems, hybrid systems, mainframes
and extreme scale systems such as Blue Gene. Resources from
each of the clusters will be acquired and released dynamically
and interconnected in a language and system independent
fashion.

Existing runtime frameworks for GPUs, such as CUDA [6],
provide precious little introspection and control to the external
system – making monitoring and control difficult. Hopefully
NVIDIA and other GPU vendors will open more of their
interfaces allowing finer granularity of control and proper time
sharing and virtualization of GPU resources. We intend to
explore more granular facilities using the Cell hybrid processor
which has support for both time sharing and virtualization.

Our existing prototypes all interact directly with the syn-
thetic file system, but we are working on providing a sim-
ple library API with multiple language bindings. Specialized
versions of this library can be constructed for certain classes
of application and provide more advanced facilities such as
Cilk-like work stealing, data pipelining between computational
elements (ala PUSH [7]), or transactional semantics enabling
either checkpoint/restart or triple modular redundancy of com-
putation.

While we currently support adding and removing resources
while running a task, we’d like to extend this functionality
to deal both with failure and grid-like environment where
idle compute resources may be donated by end users. In
such an environment, we’d like to establish callback paths to
the application so that it can leverage feedback optimization
to adjust its partitioning and algorithms as resources change
dynamically underneath it. Eventually, it would be nice to
incorporate these facilities into runtimes which manage issues
involving different instruction set architectures or facilitate
just-in-time compilation from a universal byte code such as
LLVM [8] to the target platform.

This work has been supported by the Department of Energy
Of Office of Science Operating and Runtime Systems for
Extreme Scale Scientific Computation project under contract
#DE-FG02-08ER25851.

REFERENCES

[1] IBM, “Cell broadband engine architecture, version 1.0,” 2005.
[2] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang, S. Pakin, and

J. C. Sancho, “Entering the petaflop era: the architecture and performance
of roadrunner,” SC ‘08: Proceedings of the 2008 ACM/IEEE conference
on Supercomputing, pp. 1–11, 2008.

[3] N. Evans, E. Van Hensbergen, and P. Stanley-Marbell, “Unified execution
model,” Proceedings of the SIGOPS International Workshop on Large
Scale Distributed Systems and Middleware, 2009.

[4] L. Ionkov and E. V. Hensbergen, “XCPU2: Distributed seamless desktop
extension,” International Conference on Cluster Computing, 2009.

[5] “Inferno Man Pages,” Inferno 3rd Edition Programmers Manual, vol. 2.
[6] J. Nickolls and B. I, “NVIDIA CUDA software and GPU parallel

computing architecture,” Microprocessor Forum, 2007.
[7] N. Evans and E. Van Hensbergen, “Push: a DISC shell,” Proceedings of

the Principles of Distributed Computing Conference, 2009.
[8] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong

program analysis & transformation,” CGO ’04: Proceedings of the
international symposium on Code generation and optimization, p. 75,
2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

