
Adaptive Multi-versioning for OpenMP Parallelization via Machine Learning

Xuan Chen
Department of Computer Science, JiNan University

Guangzhou 510632, P.R.China
e-mail: tcx@jnu.edu.cn

Shun Long
Department of Computer Science, JiNan University

Guangzhou 510632, P.R.China
e-mail: tlongshun@jnu.edu.cn

Abstract— The introduction of multi-core architectures
generates a higher demand for parallelism in order to fully
exploit the potential of modern computers. It is of vital
importance that a compiler can allocate parallel workload in a
cost-aware manner in order to achieve optimal performance on
a multi-core architecture. This paper presents an adaptive
OpenMP-based mechanism capable of generating a reasonable
number of representative multi-threaded versions for a given
loop, and selecting at runtime a suitable version to execute on a
multi-core architecture. Preliminary experimental results show
that, on average, it achieves 87% of the highest performance
improvement across a whole spectrum of input sizes on two
multi-core platforms.

Keywords: parallelization; multi-versioning; machine
learning; OpenMP

I. INTRODUCTION
The past decade has seen major chip manufacturers

turning their focus from making one processor run faster to
the development of multi-core architectures, in which
multiple processors are placed on the same chip,
communicating via hardware channels and shared memory.
This architecture has generated a new demand for techniques
that can fully exploit the architectural potential.

Parallelism[9] is one of the main sources of performance
improvement in modern computing environments. However,
it does not guarantee the most efficient use of shared
memory, nor even performance improvement. Prior
experience with multi-threaded Java[11] shows that when the
workload is improperly shared among too many number of
threads, the extra cost to create and synchronize them will
offset the performance improvement achieved via
parallelization. In many new application domains, this cost
becomes non-negligible when compared to workload, or
even results in performance degradation instead of
improvement. Therefore, it is of vital importance that, when
given a program, a compiler can adaptively allocate
workload among multiple threads in order to achieve optimal
performance in a multi-core environment.

OpenMP[19] is an industrial standard API that supports
explicitly multi-threaded, shared memory parallelism among
a variety of shared memory architectures and platforms. It
offers programmers full control over parallelization via
compiler directives, runtime libraries as well as environment.

This paper presents an adaptive mechanism which can
generate for a given loop a reasonable number of
representative OpenMP versions, and select at runtime which

one to execute based on the runtime context. Preliminary
experimental results show that it can efficiently allocate the
workload among a suitable set of parallel threads and
achieve optimal performance.

The outline of this paper is as follows. Section II presents
the motivation of our work. The mechanism is explained in
section III, before details are explained in section IV and V
respectively. Preliminary experimental results are then
presented in section VI, followed by a review of related
works in section VII. A discussion about future work is
given in section VIII, before some concluding remarks in
section IX.

II. MOTIVATION
OpenMP[19] uses a fork-join model of parallel execution.

It provides an directive omp_set_num_threads(numthreads)
for programmers to explicitly specify/alter the number of
team threads to be used in parallel regions. If not explicitly
specified, the compiler will detect the hardware
configuration, keep one core for the master thread, and
generate one thread for each of the remaining cores within
the processor.

Figure.1 The performance of 100x100 matrix multiplication
under various numbers of threads.

However, OpenMP does not necessarily guarantee the

most efficient use of shared memory, i.e. the introduction of
multiple team threads does not necessarily result in better
performance. For instance, we ran a 100x100 matrix
multiplication on a platform containing a 1GHz AMD
Athlon(tm) 64 X2 Dual Core Processor 3600+ and 1G RAM,
with gcc x86_64-linux-gnu 4.3, running under Ubuntu Linux
4.3.2-1ubuntu12 (kernel 2.6.27-14-generic). Different

2009 15th International Conference on Parallel and Distributed Systems

1521-9097/09 $26.00 © 2009 IEEE

DOI 10.1109/ICPADS.2009.77

907

versions with various numbers of threads (1, 2, 4, 5, 8, 10, 16,
20, 25, 32, 40, 50, 64, 80 and 100 respectively) were tested
and the resulting speedups were then plotted against the
number of threads, as shown in Figure.1. It shows that,
generally saying, the speedup is on a rise as the number of
threads increases, i.e. higher speedups are obtained when
there are more team threads sharing the workload. It reaches
its peak (speedup = 2.67) when 32 threads are used.
Nevertheless, no better performance can be achieved when
even more team threads are used. Instead, the speedups drops,
as the 40- and 50-thread cases demonstrate. This is because
the extra cost to create and synchronize the additional team
threads has offset the performance gain obtained via
parallelization. More interestingly, although we presume a
further performance drop when even more threads are used,
this is actually not the case, since the performances of 64, 80
and 100 threads are not much lower than that of 50 threads.

The above example shows that different numbers of
threads result in varied performances. We have observed
similar performance variances on other programs and on
different platforms, which shows that this phenomenon is
program-, data- and platform-relevant. This suggests that a
compiler shall not make this number-of-thread decision in a
static manner. Instead, this decision should be made at
runtime based on the runtime context.

III. AN ADAPTIVE MULTI-VERSIONING PARALLELIZATION
MECHANISM

First, confirm that you have the correct template for your
paper size. This template has been tailored for output on the
US-letter paper size. If you are using A4-sized paper, please
close this template and download the file for A4 paper
format called “CPS_A4_format”.

Given a specific program, it is difficult to precisely
predict the best number of team threads for parallelization at
compile time. Adaptive optimization [14] is therefore needed
in order to make this decision based on runtime context.

Adaptive optimization is achieved via techniques such as
dynamic compilation, and multi-versioning, etc. However,
dynamic compilation needs extra time for runtime re-
compilation of some code regions, which makes it not
suitable in our cases. Multi-versioning is a reasonable
approach because it is unlikely that any single static version
can adapt and yield high performance across different
runtime contexts. This motivates us to find an adaptive
mechanism (as demonstrated in Figure.2) to generate
representative versions and, at runtime, make version
selection decision based on the runtime context.
Given a program, it shall generate only a reasonable number
of representative versions in order to avoid code explosion,
as explained later. In addition, a runtime decision making
structure should be constructed (as the switch structure in
Figure.2(B)) in order to decide at run-time which version to
execute in order to achieve higher performance. It is worth
noting that this framework as well as most of the codes can
be implemented as a static code template.

Previous related works indicated that making this version
selection decision at runtime is not straightforward. However,
they found that programs with similar workload are likely to

// the sequential version
for (i=0; i<N; i++)

 … … // loop body
(A) a given loop in its original sequential form

// the OpenMP parallel version

 switch (certain conditions) {
 case …: // the tn0 thread version
 #ifndef NOOMP
 omp_set_num_threads(tn0);

#pragma omp parallel default(none)
{ #pragma omp for

 #endif
 for (i=0;i<N;i++)
 … … // loop body
 } break;
 … …

// more OpenMP version with various numbers
// of threads

 case …: // the tnv-1 thread version
 #ifndef NOOMP
 omp_set_num_threads(tnv-1);

#pragma omp parallel default(none)
{ #pragma omp for

 #endif
 for (i=0;i<N;i++)
 … … // loop body
 } break;
 … …
 default: // the tnv thread version

 #ifndef NOOMP
 omp_set_num_threads(tnv);

#pragma omp parallel default(none)
{ #pragma omp for

 #endif
 for (i=0;i<N;i++)
 … … // loop body
 } break;

 }
(B) its adaptive multi-versioned OpenMP version

Figure.2 Illustration of our proposed framework, which turns a sequential

loop (A) into a multi-versioning OpenMP-parallelized equivalent (B)

benefit from the same or similar parallelization scheme[11].
A compiler can exploit this observation and make the
parallelization decision based on its previous experience with
similar programs.

Machine learning[13] is a natural approach to exploit
such similarities. We choose instance-based learning and use
features of a program/loop to make an implicit estimate of its
workload. They are not only easy to capture but also
sufficient for training purpose, whilst an explicit estimate is
more difficult to obtain.

Our proposed adaptive multi-versioning mechanism
works in the following manner. When a program/loop is
encountered, the compiler first generates a reasonable
number of versions (each with a different number of threads)

908

in an iterative manner. These versions are then evaluated
with inputs of various sizes. Then, based on the performance
feedback, the compiler selects a small number of candidate
parallel versions for the final executable, before the code for
runtime version selection is also generated and embedded
into the executable, which maps the features (of both
program and runtime input) to versions.

IV. GENERATION OF CANDIDATE VERSIONS
By using the omp_set_num_threads(…) directive to

specify various numbers of threads, a compiler can generate
for a given loop as many versions as necessary. Previous
experiments show that these different versions usually result
in various performances. In order to maximize the mean
performance across all possible inputs, the compiler shall
consider only those of good performance as the candidates.
Furthermore, because the inclusion of too many versions will
lead to code explosion, it shall pick only a reasonable
number of them from all possible options. In addition, these
candidates are expected to be representative, in that they
could achieve high performance across the whole spectrum
of possible inputs. Decisions must be made in order to
balance these three concerns discussed above.

A heuristic approach (as in Figure.3) is developed to
select representative versions for a given program/loop. First,
a set of parallel versions are generated for testing purpose,
each with a different numbers of threads. They are then
evaluated with various inputs of selected input sizes szs.
Each test case is specified by the static code features such as
loop nest depth, number of arrays used and the others, as
well as the dynamic feature in data set size. The
corresponding performances (speedup) (Pf,tns) are recorded
together with both the program feature vectors fs and the
corresponding thread numbers tns, in the form of a triple (f, tn,
Pf,tn). Let BPf be the highest speedup achieved for each f. It is
considered as the best among all possible parallel versions.
The efficiency of each version Ef,tn = Pf,tn/BPf is therefore be
obtained.

Next, we calculate each tn’s profitability across different
program versions in search of tns that can bring high
performance across various input sizes. It is worth noting
that, as we cannot completely eliminate the impact of noise
or other unknown factors on performance (as shown in
Figure.1), the compiler considers the tns that yield similar
performance equivalent and tends to pick the smallest tn
from them. A simple credit system is developed to award
each tn certain credits if its efficiency reaches a certain level
on a certain test case. For instance, if the efficiency of a tn is
95% or higher in one test case, it is awarded five points, and
it is awarded another four points if its efficiency for another
case is between 90% and 95%, etc. A sorted list L of tns is
then obtained by sorting them in descending order of their
credits/profitability.

Finally, we select from top of list L a certain number of
thread numbers. The selection algorithm in Figure.3 shows
that, for a given loop, the compiler can create v candidate
versions, each corresponds to a parallel version with each of
these selected thread number tns.

// P: the program to be parallelized
// v: a predefined no. of candidate versions
// s: the set of thread numbers selected
generate versions of P by parallelizing it with

various numbers of threads tns;
test-run each these versions Pis with inputs of

various sizes, and record their performances;
for each input size {

find the best performance BP;
}
for each test-run {

 calculate each version’s efficiency;
 if (its efficiency reaches a certain level)

award the corresponding tn a certain points;
}
sort all tns in a temporary list L according to their

points awarded
s = {}; count =0;
repeat {

 pick the first thread number tn from L;
 if (tn is not too close to any element in s) {
 s = s+{tn}; count++;

}
} until (count ==v);
generate parallel versions of P according to

the thread numbers selected in s;

Figure.3 Pseudo code of the candidate selection algorithm

It is worth noting that we do not necessarily pick from L
the tn that gives the very best performance, if its neighboring
tns have already been selected, as demonstrated by the if-
statement with the condition (tn not too close to any element
in s) in Figure.3. The motivation/rationality behind this
heuristic is that we hope to prevent the candidate versions
aggregate within a small spectrum, this helps improve the
representativeness of these candidate versions and, in turn,
coverage and applicability of the executable.

Both thresholds Ethreshold and v are currently specified as
compile-time parameters in the –Ox form in our prototype
system. Fine-tuning of these parameters and the credit
system is left to future work.

V. VERSION SELECTION FRAMEWORK
Prior research in learning based optimizing compiler

[1][4][5][11][12] use various static or dynamic features to
reveal important details of a given program and to make an
implicit estimate of its workload. Considering the loop
parallelization problem described above, we consider only
static loop-related features and associate them with various
parallel scheme (numbers of threads used) and the
corresponding performance (speedups achieved), as
explained in the previous section.

In-depth analysis[11][12] shows that loop size is the
dominating factor among them and is sufficient for our
version selection purpose. It also suggests that the number of
features might not be as important as the distribution of the

909

values of them[12]. Therefore, we use size of the outmost
loop as the only feature to estimate similarities among loops.

The generation of the version selection code is relatively
straight forward. K-nearest neighbor algorithm is used in our
adaptive mechanism, which associates each of the thread
numbers tnis selected in the previous section with a specific
loop size lsi. When a loop is encountered at runtime, its size
is captured and compared with all the tnis. If it is identical or
closest to a particular tnk, then the corresponding version vk is
selected for execution. The resulting switch-like code
structure is generated via a predefined code template, as
shown in Figure.2(B), before being embedded in the
executable.

VI. PRELIMINARY EXPERIMENTAL RESULTS

A. Experiment Setup
We evaluated the proposed mechanism in two different

environments. One is the AMD-Athlon environment as
specified in section 2, the other is a Dell PowerEdge 2950
server which contains an Intel QuadCore(tm) processor with
four 2GHz Xeon E5405 cores and 2G RAM, and the
compiler is gcc x86_64-suse-linux version 4.3.2, running
under openSUSE Linux 2.6.27.7-9-default.

Two programs (one numeric and the other non-numeric)
are used in our preliminary experiments. One is the matrix
multiplication widely used in traditional high performance
computing, with various data sizes (matrix sizes) from 100 to
2000, denoted respectively as MM100, .. MM2000 etc. The
other is TF-IDF used in information retrieval[10], which
calculates the term frequencies and inverse document
frequencies before calculating the vectors of a list of
documents. It uses a vocabulary of size 2000 and data sizes
(numbers of documents) vary from 100 to 2000, denoted as
TFIDF100, … TFIDF2000 respectively.

The experiments are carried out in the following manner.
Take MM as an example. First, we select three data sizes
(one small (MM200), one medium (MM800) and one
large(MM1500)) and test-run them with various numbers of
threads. The results are used to train the compiler as
discussed before. Once trained, the compiler generates a
multi-versioned MM executable. To keep the code size
modest, the compiler generates only a three-versioned one,
and evaluates it with data sets of various sizes. Its
performance is then compared against that of a random
algorithm. The results of experiments carried out on the
above two platforms are summarized in Table I to IV
respectively.

B. Results on Matrix Multiplication
Table I and II show that, on both platforms, the adaptive

mechanism outperforms its random counterpart in all but one
test cases with data sizes vary from 100 to2000. For instance,
on the AMD-Athlon platform, for all the eleven cases, the
efficiencies are all above 90%. Particularly, they are even
higher at 95% or above in seven of them, indicating that the
adaptive mechanism is capable of identifying the sub-
optimal parallel schemes for data sets of various sizes. We

TABLE I. PERFORMANCE COMPARISON BETWEEN THE PROPOSED
ADAPTIVE MECHANISM AND A RANDOM MECHANISM FOR MATRIX
MULTIPLICATION ON AMD-ATHLON. THE PROPOSED ADAPTIVE

MECHANISM OUTPERFORMS THE LATTER BY 11%.

Random Learning Program
speedup % speedup %

MM100 2.13 80% 2.47 93%
MM300 2.36 85% 2.61 93%
MM400 1.74 84% 1.90 91%
MM500 1.63 85% 1.78 92%
MM600 1.69 86% 1.92 97%
MM700 1.75 86% 2.04 99%
MM900 1.68 86% 1.92 99%
MM1000 1.59 78% 1.83 99%
MM1200 1.59 86% 1.82 99%
MM1800 1.56 87% 1.75 98%
MM2000 1.54 87% 1.73 98%
Average 85% 96%

TABLE II. PERFORMANCE COMPARISON BETWEEN THE PROPOSED
ADAPTIVE MECHANISM AND A RANDOM MECHANISM FOR MATRIX

MULTIPLICATION ON INTEL-QUADCORE. THE PROPOSED ADAPTIVE
MECHANISM OUTPERFORMS THE LATTER BY 8%.

Random Learning Program
speedup % speedup %

MM100 1.66 76% 1.46 67%
MM300 2.74 84% 3.12 96%
MM400 3.07 82% 3.63 98%
MM500 2.95 87% 3.23 95%
MM600 3.07 88% 3.41 99%
MM700 3.10 89% 3.44 99%
MM900 3.15 91% 3.48 100%
MM1000 3.12 89% 3.49 100%
MM1200 3.31 92% 3.53 99%
MM1800 3.43 89% 3.74 97%
MM2000 3.44 91% 3.73 99%
Average 87% 95%

believe this is due to the fact that, once properly trained, the
compiler can make a more precise estimation of the
workload based on runtime profile collected from test-runs,
instead of based on a predictive model.

Similar performance can also be found on the Intel-
QuadCore platform, where our learning based mechanism
reaches an average efficiency of 95%, compared to that of
87% from the random selection mechanism. It is worth
noting that the random mechanism outperforms our
mechanism in MM100 which has a small data set. In-depth
look at the raw profile (Figure.1) suggests that the
performance of MM is very sensitive to the number of team
threads used when the data set is of small, as also suggested
in many related research. On average, our adaptive multi-
versioning mechanism achieves 96% and 95% of the highest
performance improvement across all eleven programs on
these two platforms. Similar performances have also been
achieved if we pick training cases in a similar manner.

On average, our adaptive multi-versioning mechanism
achieves 96% and 95% of the highest performance
improvement across all eleven programs on these two
platforms. Similar performances have also been achieved if
we pick training cases in a similar manner.

910

TABLE III. PERFORMANCE COMPARISON BETWEEN THE PROPOSED
ADAPTIVE MECHANISM AND A RANDOM MECHANISM FOR TF-IDF ON AMD-

ATHLON. THE PROPOSED ADAPTIVE MECHANISM OUTPERFORMS THE
LATTER BY 10%.

Random Learning Program
speedup % speedup %

TFIDF100 - - - -
TFIDF300 - - - -
TFIDF400 1.09 68% 1.29 80%
TFIDF500 1.15 71% 1.35 84%
TFIDF600 1.18 79% 1.42 95%
TFIDF700 1.29 73% 1.34 76%
TFIDF900 1.41 81% 1.73 100%
TFIDF1000 1.38 79% 1.58 90%
TFIDF1200 2.13 84% 2.32 92%
TFIDF1800 2.13 82% 2.60 100%
TFIDF2000 1.57 77% 1.63 80%
Average 62% 72%

TABLE IV. PERFORMANCE COMPARISON BETWEEN THE PROPOSED
ADAPTIVE MECHANISM AND A RANDOM MECHANISM FOR TF-IDF ON INTEL-

QUADCORE. THE PROPOSED ADAPTIVE MECHANISM OUTPERFORMS THE
LATTER BY 9%.

Random Learning Program
speedup % speedup %

TFIDF100 - - - -
TFIDF300 1.51 75% 1.66 83%
TFIDF400 1.57 78% 1.68 83%
TFIDF500 1.50 75% 1.90 95%
TFIDF600 1.59 86% 1.75 95%
TFIDF700 1.53 81% 1.81 97%
TFIDF900 1.60 86% 1.83 98%
TFIDF1000 1.60 86% 1.74 93%
TFIDF1200 1.64 88% 1.74 93%
TFIDF1800 1.64 89% 1.79 96%
TFIDF2000 1.65 89% 1.79 96%
Average 75% 84%

C. Results on TFIDF
Table III and IV show that similar results have been

found for TFIDF on both platforms. Our adaptive
mechanism outperforms the random algorithm by 10% and
9% respectively. However, the OpenMP schemes chosen for
TFIDF100 and 300 (on AMD-Athlon) and TFIDF100 (on
Intel-QuadCore) provide no performance improvement. The
raw profile shows that no scheme except the 4-thread one
can improve the performance of TF-IDF100. But our
mechanism chose a 2-thread scheme instead, based on the
profile collected from TFIDF200. This could also explain the
failure of our mechanism for TFIDF300 on AMD-Athlon,
and that for TFIDF100 on both platforms. On average, our
adaptive multi-versioning mechanism achieves only 72%
and 84% of the highest performance improvement across all
11 programs on these two platforms.

On average, our adaptive multi-versioning mechanism
achieves only 72% and 84% of the highest performance
improvement across all 11 programs on these two platforms.
Both are lower than those of the matrix multiplication cases,
mainly because of the three no-improvement cases explained
above. This suggests that further improvement should be
made to deal with data of smaller sizes.

Furthermore, we have also applied the above learning
results to a new TFIDF with an even larger vocabulary of
3000 and 5000 respectively. The results show that, on
average, it achieved 93% of the highest speedups across
input sizes between 6000 and 10000. This demonstrates the
applicability of our mechanism across an even larger data
spectrum. It is also worth noting that, for MM and TFIDF,
the results learned from the AMD-Athlon platform are very
similar to that from the Intel-QuadCore one, which hints
portability to a certain extent.

VII. RELATED WORK
There is a rich literature about parallelism[9], covering

topics from parallel compiler[1] to architectural supports[6].
Blume et.al.[3] gives a comprehensive review of the state of
the art in this area, as well as a good description of the
challenges.

Wang.et.al.[16] presents two predictors based on
artificial neural network and support vector machine. They
can use a model learned offline to select the best mapping
(including the number of threads and the scheduling policy)
for parallel programs on multi-core processors. This is very
similar to our mechanism. The main differences are: 1) they
choose the dynamic compilation approach whilst our work
uses multi-versioning; 2) they use machine learning not only
to model a machine’s behavior but also to predict the best
number of threads and the scheduling policy for a given
program; 3) they use 6 features (3 about code and 3 about
data and runtime performance) whilst we use only one in
size of the outmost loop (as explained above). 4) they use
artificial neural network to solve the scalability problem and
a support vector machine model to solve the scheduling
policy classification problem, both approaches known to be
time-consuming in training. On the contrary, we use a much
simpler instance-based learning approach and achieve
similar performance. 5) our mechanism generates a multi-
versioning executable valid across all input sizes, whilst
they to use the pre-built model to decide at runtime the best
number of threads; and finally, we have not tackled the
problem of mapping a given parallel program to a platform
as they have done.

Tournavitis et.al.[15] further improves Wang’s work in
developing a profile-driven approach which is capable of
not only identifying potential parallelisms but also mapping
them on a given platform. Machine learning techniques are
used to make better mapping decision and provide more
scope for adaptation to different target architectures.

There are some other related works which develop
heuristics, analytical and feedback direct models in order to
achieve adaptive task scheduling. Corbalan etl.al.[8]
proposed an adaptive loop scheduler which selects both
thread numbers and scheduling policy for a parallel region
in SMPs based on feedback-directed runtime decisions[14].
Blagojevic et.al.[2] presents an approach to allocate
processor for loops at runtime. An analytical model is
proposed in [18] which use program and architectural

911

information to model a parallel program. These models are
inevitably architecture-specific and therefore not portable.
Xekelakis et.al.[17] combines three multi-threaded
execution models (thread level speculation, helper threads
and run-ahead execution) into a single one and single
hardware infrastructure. It results in an adaptive system
which can find the most appropriate execution model for a
given program at runtime.

Machine learning[13] has recently been introduced to
compiler optimization at system level. Various approaches
are used in iterative optimization[1][7] to explore a large
optimization space. [4] builds a performance model based on
only a small number of evaluations, which significantly
reduces the cost of evaluating the impact of compiler
optimizations. Logistic regression is used in [5] to derive a
predictive model that selects suitable optimizations to apply
to each method based on code features. [11] use instance-
based learning to select the most promising workload
allocation scheme for a Java program and it does not
generate multiple versions for runtime selection.
Wang.et.al.[16] presents two predictors based on artificial
neural network and support vector machine. They can use a
model learned offline to select the best mapping (including
the number of threads and the scheduling policy) for parallel
programs on multi-core processors.

VIII. CONCLUSIONS
This paper presents an adaptive mechanism which, when

given a loop, can generate a reasonable number of
representative OpenMP versions, and select at runtime which
one to execute based on the runtime context. Preliminary
experimental results show that, on average, it achieves 87%
of the highest performance improvement on two different
platforms, compared to 77% of a random selection algorithm.

Further improvement could be made for the purposed
mechanism. For instance, the adoption of low-cost profiling
techniques could lower the cost of iterative evaluation of
various code versions. Machine learning techniques could be
used to select representative code sizes for testing.
Furthermore, additional code features could provide useful
hint to the workload of each iteration so that the learning
results could benefit not only the current program-to-compile,
but also all the programs encountered in the future. Machine
learning techniques such as PCA could be used to identify
good features from all the potential candidates, in order to
keep a proper balance between the efficiency of learning and
the number of features used. We are also working on the
selection of proper threshold values (such as the number of
versions to be generated), in order to further lower the cost of
compilation without loss in efficiency.

REFERENCES
[1] F.Agakov, E.Bonilla, J.Cavazos, B.Franke, G.Fursin,

M.F.P.O’Boyle J.Thomson, M.Toussaint and C.Williams, “Using
machine learning to focus iterative optimization,” Proc. of the 2006
International Symposium on Code Generation and Optimization
(CGO’06), 2006

[2] F.Blagojevic, X.Feng, K.Cameron and D.S.Nikolopoulos, “Modeling
multi-grain parallelism on heterogeneous multicore processors: a case
study of the Cell BE,” Proc. of the International Conference on High
Performance Embedded Architectures & Compilers (HiPEAC’08).
2008.

[3] W.Blume, R.Eigenmann, J.Hoeflinger, D.Padua, L.Rauchwerger and
T.Peng, “Automatic detection of parallelism, a grand challenge for
high performance computing,” IEEE Parallel and Distributed
Technology, 2(3), 1994.

[4] J.Cavazos, C.Dubach, F.Agakov, E.Bonilla, M.O’Boyle, G.Fursin
and O.Temam, “Automatic performance model construction for the
fast software exploration of new hardware design,” Proc. of
International Conference on Compilers, Architecture and Synthesis
for Embedded Systems (CASES'06), 2006.

[5] J.Cavazos and M.F.P.O’Boyle, “Method-specific dynamic
compilation using logistic regression,” Proc. of ACM SIGPLAN
Conferences on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA'06), 2006.

[6] M.Cintra, J.Martinez, and J.Torrellas, “Architectural support for
scalable speculative parallelization in shared-memory
multiprocessors,” Proc. of the Intl. Symp. on Computer Architecture
(ISCA), 2000.

[7] K.Cooper, D.Subranmanian and L.Torzon, “Adaptive optimizing
compilers for the 21st century,” Journal of Supercomputing, 23(1),
2001.

[8] J.Corbalan, X.Martorell and J.Labarta, “Performance driven
processor allocation,” IEEE Transactions Parallel Distribution System,
16(7). 2005.

[9] J.Dongarra, I.Foster, G.Fox, K.Kennedy, W.Gropp, L.Torczon and
A.White, Sourcebook of parallel computing, Morgan Kaufmann, US,
2003.

[10] D.A.Grossman and O.Frieder, Information Retrieval, Algorithms and
Heuristics (2nd ed), Springer, 2004.

[11] S.Long, G.Fursin and B.Franke, “A cost-aware parallel workload
allocation approach based on machine learning techniques,” Proc. of
the IFIP International Conference on Network and Parallel
Computing (NPC) , 2007.

[12] L.Luo, Y.Chen, C.Wu, S.Long and G.Fursin, “Finding representative
sets of optimizations for adaptive multiversioning applications,” Proc.
of the 3rd Workshop on Statistical and Machine learning approaches
to Architecture and compilaTion (SMART'09), 2009

[13] T.Mitchell, Machine learning, McGraw-Hill, US, 1997.
[14] M.Smith, “Overcoming the challenges to feedback-directed

optimization,” Proc. of the ACM SIGPLAN Workshop on Dynamic
and Adaptive Compilation and Optimization (Dynamo’00), 2000.

[15] G.Tournavitis, Z.Wang, B.Franke and M.O'Boyle. “Towards a
holistic approach to auto-parallelization: integrating profile-driven
parallelism detection and machine-learning based mapping,” Proc. of
the ACM SIGPLAN 2009 Conference on Programming Language
Design and Implementation (PLDI '09), 2009.

[16] Z.Wang and M.F.P.O'Boyle, “Mapping Parallelism to Multi-cores: A
Machine Learning Based Approach,” Proc. of the 14th ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), 2009.

[17] P.Xekelakis, N.Ioannou and M.Cintra, “Combining thread level
speculation, helper threads and runahead execution,” Proc. of the
2009 International Conference on Supercomputing (ICS09), 2009.

[18] Z.Yun and V.Michael, “Runtime empirical selection of loop
shcedulers on hyperthreaded SMPs,” Proc. of 2005 IEEE
International Parallel & Distributed Processing Symposium
(IPDPS’05). 2005

[19] OpenMP homepage, www.openmp.org.

912

