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Abstract

Several optimization alternatives are presented for lega-
cy Fortran 77 scientific programs, each one with a quanti-
tative characterization in terms of performance gain. Ini-
tially, sequential optimization is focused on the analisys of
Level 3 BLAS (Basic Linear Algebra Subroutines) utiliza-
tion, since BLAS have several performance optimized im-
plementations. Also, the Fortran 90/95 array notation is
used as a code upgrade from Fortran 77 to Fortran 90/95
and, also, to provide the compiler a better source code for
performance optimization. Since the shared memory par-
allel computing model is widely available (multiple cores
and/or processors), the analysis of possible parallel pro-
cessing via OpenMP is presented, along with the perfor-
mance gain in a specific case. Sequential optimization
as well parallelization work is done on a real (produc-
tion code) program: a weather climate model implemented
about two decades ago and used for climate research.

1. Introduction

Optimization of scientific legacy code still represents a
major challenge for several reasons. Most of this code dates
from about two decades ago, when computing resources
were scarce and, thus, programs not only represent a nu-
merical implementation of a mathematical/physical model.
Instead, legacy scientific programs implement also some
optimizations which are intermixed with the real modeliza-
tion/scientific problem. One of the best examples of such
optimizations is the usage of overlapped variables in For-
tran 77 common blocks. Even when Fortran is currently
just one of many programming languages, it was perhaps
the only one programming language used by the scientific
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community at the time when legacy programs were created
[5]. Some other challenges presented by legacy scientific
code can be enumerated:

� Most of the current software engineering practices
were defined and widely accepted after these programs
entered in production environments.

� Complex mathematical/physical models are usually
implemented [3], where there is a strong work on nu-
merical accuracy and solution feasibility [4]. Each
change on these programs imply careful analysis of a
priori unknown side effects.

� As with many implemented applications that proved to
be useful and stable, optimizations are considered dan-
gerous or, at least, not having very good cost/benefit
relationship.

Performance optimization has a number of motivations
which encourage the work on scientific legacy code. Run-
ning time has been the traditional focus on performance op-
timization, but almost every change in legacy code implies
some kind of usage of current software engineering prac-
tices. From another point of view, almost every current
computer is in fact a multiprocessor (with multiple cores
and/or processors accessing a main shared memory) and,
thus, program parallelization can be considered an opti-
mization for resource usage [1]. Otherwise, legacy code
would not use every available core or processor. In the con-
text of high performance computing, parallelization is the
usual work for applications even without real time limita-
tions, since running time is usually reduced just as a way
to allow research and/or solve problems with high comput-
ing requirements [6]. One of the best approaches to paral-
lelize scientific on shared memory computers code has been
OpenMP [2], which is also widely accepted in C and For-
tran compilers.
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Optimization work presented in this paper is made by
means of example: a climate model implemented in For-
tran 77 about two decades ago. This application is being
used since many years ago for climate research. Even when
the presented work is specific, the main objective is to in-
troduce general ideas to be useful for similar scientific pro-
grams, i. e., programs with similar processing patterns. The
whole optimization work has been restricted to maintain
the general program structure and implementation model,
no general reengineering is accepted or taking into account.
The main advantage of this approach is the short-term op-
timization: the optimization can be started without much
knowledge of the application domain (climate modeling, in
this specific example), just analyzing the numerical com-
puting patterns. Of course there are disadvantages, one of
the main being the limited degree of changes considered for
optimization. Just as an example: if computing is made at
the time domain, it is not possible to compute at the fre-
quency domain with a major reengineering process: trans-
form - computing - transform, which imply many lines of
code but, also, could provide a better code for sequential
and/or parallel optimization.

2. Initial Optimization Steps on Legacy Code

In this section, the minimum (necessary for context) in-
formation about the scientific program to be optimized is
presented, along with the standard initial steps on any opti-
mization process. Most of the information provides the con-
text of the production environment and the standard way for
gathering data of a program performance. A bare minimum
static program analysis and execution environment provides
this information:
1) The program is distributed on about 300 .f (Fortran 77)
files. Most of the files implement only one Fortran subrou-
tine. Less than 10% of the files are used for common blocks
and constants.
2) The number of lines in .f files add up to about 58000, and
approximately 25% of them are comment lines.
Intel Fortran compiler 10.1 is used (ifort) [9], with the high-
est optimization level: -O3.
3) Performance experiments are carried out on dual AMD
246 Opteron computers (two single cores at 2.0 GHz) with
64 bits Linux kernel smp0 2.6.23 (Fedora Core 8 distribu-
tion), 2 GB RAM.

Running the program with profiling collects the ini-
tial most important dynamic data about performance, from
which almost every optimization process begins:
1) About 230 routines are called/used at run time. Most of
the runtime is spent in routines located at deep levels 5 to 7
in the dynamic call graph from the main routine.
2) The routine with most of the runtime (the ”top routine”
from now on) requires more than than 9% of the total pro-

gram runtime and is called about 315000 times.
3) The top 10 routines (the 10 routines at the top of the flat
profile) require about 50% of total runtime. Two of them
are related to intrinsic Fortran functions.

Most of this information can be extracted out automati-
cally, without previous knowledge of the application and/or
specific program. Static data is extracted from simple
scripts on the source code, and dynamic data is extracted
by using gprof and parsing the resulting text. The first con-
clusion at this stage is that focusing on the top ten routines
for optimization would provide a very good potential per-
formance gain: relative to 50% of the total program run-
time. The next sections will show the optimization work on
the top routine, with comments on applying the same kind
of optimization work in general or, at least in the top 10
routines.

3. Sequential Processing Optimizations

The initial objective on sequential optimization focused
on identifying and using Basic Linear Algebra Subrou-
tines (BLAS). The main motivating factor in order to use
the BLAS is the availability of highly optimized and/or
tuned BLAS implementations, such as ACML (AMD Core
Math Library [7]), MKL (Intel Math Kernel Library [10]),
and ATLAS (Automatically Tuned Linear Algebra Software
[8]). The best performance is found at the Level 3 BLAS
routines, with matrix-matrix operations, which have access
to ����� data and requires ����� floating point operations.
The first task is, thus, to identify BLAS 3 routines in order
to make the specific calls to an optimized library.

Looking for optimization through the Level 3 BLAS the
first problem was found: the top routine has very low level
processing. Most of the numerical computing is made on
plain vectors or matrices accessed as vectors, such as sown
in Fig. 1, where four matrices (m1, � � �, m4), four vectors
(v1, � � �, v4), and three constants (c1, � � �, c3) are used.
This code is representative not only for the top routine but

do 10 i=1,rs*cs
m3(i,1)=c1*(v1(1)*m1(i,1)+v2(1)*m2(i,1))
m4(i,1)=c1*(v3(1)*m1(i,1)+v4(1)*m2(i,1))
m3(i,1)=(c2+m3(i,1))*m3(i,1)+c3
m4(i,1)=(c2+m4(i,1))*m4(i,1)+c3
m3(i,1)=m5(i,1)*(m3(i,1)**16)
m4(i,1)=m6(i,1)*(m4(i,1)**16)

10 continue

Figure 1. Example of Code in the top routine.

for most of the computing routines in the program. Fur-
thermore, it is not possible to relate the code in Fig. 1 with
Level 3 BLAS, but with Level 1 BLAS (vector-vector op-
erations). More specifically, most of the expresions in Fig.

472472



1 are a sequence of saxpy() routine calls. Even when it
cannot be expected that Level 1 BLAS are as optimized as
Level 2 or Level 3 BLAS, it is expected some performance
gain by calling optimized linear algebra libraries such as
ACML, MKL, or ATLAS. Due to the relatively complex
vector operations expressed in terms of saxpy(), the top
routine became about 100% longer than the original one.
However, most of the changes can be made automatically
by a lexical parser of Fortran expresions. Preliminary ex-
periments show that the optimized BLAS 1 routines do not
provide any performance gains and, thus, this kind of code
transformation can be discarded.

Summaryzing, the code does not allow to be optimized
by means of Level 2 or Level 3 BLAS and Level 1 BLAS
does not provide any performance gain. At this point, the
main option seems to be a major numerical processing re-
arrangement/recoding such that computing is made through
Level 3 BLAS. Since it was a priori defined to avoid a major
software reengineering process, it was chosen to provide a
better source code for the Fortran compiler. Basically, the
idea is to transform the code to Fortran 90/95 array nota-
tion in order to “help” the compiler to avoid complex anal-
ysis for code optimization (always at the maximum opti-
mization level -O3). One more simple observation: Level 1
BLAS processing-like is almost trivial to be transformed to
array notation and, also, the relatively complex expressions
remain almost the same but on arrays instead of scalars (in-
dividual matrix or vector elements). A simple script was
developed in order to make the automatic translation of For-
tran iterations such as that of Fig. 1 to Fortran 90/95 array
notation. The main conversion rules are very simple:

� Only Fortran Do loops are analyzed.

� The control variable of a Do loop has to appear as a
matrix index at left and right of an assignment.

� The control is used only as a matrix index, i. e. the
control variable should not be involved in any arith-
metical expression.

� The initial and ending values of the control variable are
used on the array notation to indicate the array slice.

These simple transformation rules are highly effective at
least in the program used in this work: successfully trans-
formed 10 of 14 On the other top 10 routines, the simple
script successfully transformed from 25% to 60% of the
Fortran Do Loops. Furthermore, the script is useful to iden-
tify the routines needing special work (those routines with
less than 50% of transformed loops, for example). Fig. 2
shows the code in Fig. 1 in terms of Fortran 90/95 array
notation.

Rather surprisingly, the effectiveness of the compiler in
optimizing processing expressed in terms of Fortran array

m3(1:rs*cs,1)=c1*(v1(1)*m1(1:rs*cs,1)+
v2(1)*m2(1:rs*cs,1))

m4(1:rs*cs,1)=c1*(v3(1)*m1(1:rs*cs,1)+
v4(1)*m2(1:rs*cs,1))

m3(1:rs*cs,1)=(c2+m3(1:rs*cs,1))*
m3(1:rs*cs,1)+c3

m4(1:rs*cs,1)=(c2+m4(1:rs*cs,1))*
m4(1:rs*cs,1)+c3

m3(1:rs*cs,1)=m5(1:rs*cs,1)*
(m3(1:rs*cs,1)**16)

m4(1:rs*cs,1)=m6(1:rs*cs,1)*
(m4(1:rs*cs,1)**16)

Figure 2. Example of Code in array notation.

notation provided more than 17% performance gain for the
top routine. This gain is always proportional to the number
of transformed Do loops into array notation. As a side ef-
fect, the routine code is shorter: the initial and ending line of
Do loops are not necessary, since the array notation defines
the complete range of matrix or vector elements.

Most of compiler performance gain is due to vectoriza-
tion in terms of Intel compiler terminology: taking advan-
tage of SSE (Intel Streaming SIMD Extensions), imple-
mented also by most of current AMD processors, e.g. AMD
Opteron implements SSE2 instructions. At least intuitively,
this prevents from explicitly using other classical optimiza-
tion techniques, such as loop unroll and block processing.
Loop unroll is focused on having many scalar operations in
order to take advantage of superscalar processors, and hav-
ing many scalar floating point operations (scientific code)
is not compatible with having multiple vector operations
which enable vectorization. The example code shown in
Fig. 1 processed via vectors imply a simple way of block
processing. More specifically, the access to individual ma-
trices (such as m3 in Fig. 1) is made by contiguous elements
with “SSE vectors length” stride and, also, the short term
references to the same matrices imply data reuse, which
proportionally improve cache hits. The effect of this simple
block processing does not provide a very high optimizatin
improvement as in the case of Level 3 BLAS operations,
but it is in fact a good (17%) improvement in cache opti-
mization for Level 1 BLAS operations. Is it the best im-
provement? As always, the answer depends on the legacy
scientific code. In this special case, another level of cache
usage optimization is possible by looking for references to
the same matrix, e.g. m3 in the example above, and mov-
ing them as close as possible in order to avoid losing the
data in cache. This task has not being carried out, it has
been left as one of the task for further improving sequential
performance in the future.

Summarizing, one the most important sequential opti-
mization tasks was not possible: identify and use Level
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3 BLAS routines. Also, Level 1 BLAS routines provided
by optimized libraries were tested and did not provide any
performance improvement. Instead, using array notation in
processing allowed the compiler (with the same compiling
options) to generate a binary code with a 17% performance
improvement on an AMD Opteron processor. Even more
interesting is that a very good fraction of the task to trans-
form source code can be made automatically in a few min-
utes with a simple tool applied on the legacy source code.
Also, other optimization techniques were left to be applied
in the future, including the analysis of (simple) automatic
tools to source code transformation.

4. Parallel Processing on Multiprocessors

The first option to optimize resource usage on multipro-
cessors (more than one processor sharing memory or more
than one core per processor) is OpenMP [2]. OpenMP has
proven to be useful and adopted directly by most of the C
and Fortran compilers, including ifort, the compiler used in
the current work. It is worth noting that Fortran is a strong
requirement due to the large number of legacy applications
programmed in this language. Maintaining the Fortran lan-
guage avoids recoding routines or parts of routines, just like
the top routine being analyzed and optimized in the previ-
ous section. Furthermore, the top routine has been analyzed
in order to use OpenMP after being transformed to array
notation. Two main factors are important in order to apply
both code optimizations:

� Sequential optimization in general and array notation
in particular should not prevent from using OpenMP,
both optimizations are necessary. Sequential optimiza-
tion optimizes resource usage in a single processor or
core, and OpenMP optimizes resource usage in a mul-
tiprocessor/multicore.

� Optimization gain is characterized in terms of global
running time reduction, i.e. with every optimization
applied to the legacy code.

In fact, OpenMP can be used easily on Fortran array nota-
tion: just use WORKSHARE OpenMP directive. However,
there are at least two important factors to be taken into ac-
count:

� Level 3 BLAS routines should be the main focus
for optimization/parallelization if are used in scien-
tific code. However, most implementations, such as
ACML, MKL, and ATLAS are already optimized with
parallelization via OpenMP (ACML and MKL) or
pthreads (ATLAS).

� The Intel Fortran compiler does not always works
properly with the WORKSHARE OpenMP directive,

thus, the parallelization task has to be made in some
other way.

Given that array notation should be maintained in order to
preserve the optimization gains provided by the compiler,
the idea is just to distribute the arrays into as many array
slices as OpenMP threads. Without the explicit distribu-
tion of array expressions to OpenMP threads, the code in
Fig. 2 is easily parallelized with OpenMP as shown in ref-
code3. However, given that processing has to be distributed
explicitly, computing is defined in terms of the array slice

!$OMP PARALLEL WORKSHARE
m3(1:rs*cs,1)=c1*(v1(1)*m1(1:rs*cs,1)+

v2(1)*m2(1:rs*cs,1))
m4(1:rs*cs,1)=c1*(v3(1)*m1(1:rs*cs,1)+

v4(1)*m2(1:rs*cs,1))
m3(1:rs*cs,1)=(c2+m3(1:rs*cs,1))*

m3(1:rs*cs,1)+c3
m4(1:rs*cs,1)=(c2+m4(1:rs*cs,1))*

m4(1:rs*cs,1)+c3
m3(1:rs*cs,1)=m5(1:rs*cs,1)*

(m3(1:rs*cs,1)**16)
m4(1:rs*cs,1)=m6(1:rs*cs,1)*

(m4(1:rs*cs,1)**16)
!$OMP END PARALLEL WORKSHARE

Figure 3. Usage of OpenMP WORKSHARE.

processed by each OpenMP thread, which is easily com-
puted as shown in Fig. 4. In the same OpenMP parallel
region is included the code of Fig. 2, replacing 1:rs*cs
by ini_i:end_i. From a more general point of view,

!$OMP PARALLEL PRIVATE(t_n, ini_i, end_i)
!$OMP SINGLE

num_threads = OMP_GET_NUM_THREADS()
chunk = (rs*cs) / num_threads

!$OMP END SINGLE
t_n = OMP_GET_THREAD_NUM()
ini_i = t_n * chunk + 1
end_i = ini_i + chunk - 1
IF (end_i .GT. (rs*cs)) THEN

end_i = rs*cs
END IF

...

Figure 4. Array slices in every thread.

this paralelization is made with a simple code transforma-
tion: every array expression is transformed by changing ar-
ray notation. Only expressions with array notation are taken
into account. Furthermore, the transformation task is such
that the whole array (or array slice) is divided into as many
slices (or sub slices) as OpenMP threads, as shown in Fig. 4.
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The top routine was parallelized following the guideline
defined above, and the performance gain was about 19% (on
a dual single core processor), which implies a total gain of
more than 33%. Thus, the top routine runs in about 1/3 of
the original time (i.e. without any sequential optimization)
by using array notation and OpenMP directives on a com-
puter with two processors. Performance optimization can
be considered far from optimal, since 19% is just a fraction
of a theoretical 100% gain by using two processors instead
of one, but

� Not every loop can be translated to array notation and
not every array notation expression can be parallelized
because of data dependencies.

� Optimization/parallelization is made almost authomat-
ically, and 19% is thus obtained almost authomatically
at least on this legacy code.

� Multicore/multiprocessor is available on any current
computer, and every optimization to use more than one
processing element in parallel provides improved per-
formance.

� The top routine is called about 315000 times at run-
time, and this makes OpenMP thread overhead time
(for creation, synchronization, etc.) comparable to
thread processing time.

As another consequence of optimization, the top routine be-
came the third routine in the ranking of running time given
by the profiler. At this optimization level, a further analy-
sis involves the call tree/graph in order to identify routine/s
which call the top routine or the top ten ones. Basically, the
main idea is to avoid the overhead by crating, synchroni-
zong, etc. OpenMP threads less frequently than in the top
routine. This optimization/parallelization process has been
left for further improving sequential performance in the fu-
ture.

5. Conclusions and further work

Table 1 shows a summary of sequential as well as paral-
lel performance improvement on the top routine (R. and T.
stand for Relative and Total respectively). It is worth not-

Table 1. Results
Top Routine % R. Gain % T. Gain

Sequential (array notation) 17% 17%
Parallel (OpenMP) 19% 33%

ing that most of the performance optimization is made au-
tomatically, by identifying simple processing patterns (DO

loops, basically). Sequential optimization is made via the
compiler, by vectorizing (using SSE2 in terms of Intel For-
tran compiler) array expressions. Code parallelization is
made by distributing array expressions among OpenMP
threads, wich execute in each available processor (or pro-
cessor core).

Further sequential as well as parallel improvement is
possible and -at least a priori- seems to be by means of sim-
ple source code transformations. However, no authomatic
code transformations have been devised for those perfor-
mance improvements (as the ones defined in this paper).
None of the legacy code optimizations imply a major re-
design/reengineering process, such as that proposed in [1].

Performance improvements reached on the top routine
are expected to be applied at least to the top ten routines.
If every code transformation is successfully applied to the
legacy code, the running time can be reduced by 1/3 of
the current running time. This improvement is reached
almost automathically by means of simple and local (to
each routine) code transformations. OpenMP has been suc-
cessfully used in this work for legacy code parallelization
on shared memory parallel computers (multiple processors
and/or multicore processors). Parallel processing on a dis-
tributed memory architecture imply a major analysis of
source code and is an open research line.
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