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Abstract

We describe a new suite of computational benchmarks
that models applications featuring multiple levels of par-
allelism. Such parallelism is often available in realis-
tic flow computations on systems of meshes, but had not
previously been captured in benchmarks. The new suite,
named NPB (NAS Parallel Benchmarks) Multi-Zone, is ex-
tended from the NPB suite, and involves solving the ap-
plication benchmarks LU, BT and SP on collections of
loosely coupled discretization meshes. The solutions on
the meshes are updated independently, but after each time
step they exchange boundary value information. This strat-
egy provides relatively easily exploitable coarse-grain par-
allelism between meshes. Three reference implementa-
tions are available: one serial, one hybrid using the Mes-
sage Passing Interface (MPI) and OpenMP, and another
hybrid using a shared memory multi-level programming
model (SMP+OpenMP). We examine the effectiveness of
hybrid parallelization paradigms in these implementations
on three different parallel computers. We also use an empir-
ical formula to investigate the performance characteristics
of the hybrid parallel codes.

1. Introduction

The NAS Parallel Benchmarks (NPB) [1] are well-
known problems for testing the capabilities of parallel com-
puters and parallelization tools. They exhibit mostly fine-
grain exploitable parallelism and are almost all iterative, re-
quiring multiple data exchanges between processes within
each iteration. Implementations of NPB in MPI [2] and
OpenMP [5] take advantage of this fine-grain parallelism.
However, many important scientific problems feature sev-
eral levels of parallelism, and this property is not reflected
in NPB. For example, in the NASA production flow solver
program OVERFLOW [4], geometrically complex domains
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are covered by sets of partially overlapping discretization
meshes, called zones. Solutions on each zone can be com-
puted independently, providing coarse-grain parallelism.
Additionally, fine-grain, loop-level parallelism can be ex-
ploited within each zone.

To mimic such applications, we created the NPB Multi-
Zone (NPB-MZ) versions [9], which contain three families
of multi-zone benchmarks, derived from the NPB. These
multi-zone benchmarks stress the need to exploit both lev-
els of parallelism for efficiency and to balance the computa-
tional load. In this paper, we describe three reference imple-
mentations of NPB-MZ – one serial and two hybrid paral-
lel. The first hybrid implementation uses the Message Pass-
ing Interface (MPI) to communicate data related to overlap
regions of zones, and OpenMP to parallelize loops within
each zone. It is fully portable and can run on shared and
distributed-shared memory systems, as well as on clusters
of symmetric multi-processors. The second hybrid imple-
mentation uses a shared-memory parallel library (SMPlib)
[6] to exchange data related to overlap regions of zones, and
OpenMP to parallelize loops within each zone. This version
takes advantage of shared memory buffers for efficient data
exchange between processes. It is an efficient approach for
exploiting multi-level parallelism on shared memory sys-
tems. We will use an empirical formula to investigate the
performance characteristics of the multi-zone benchmarks
and also to estimate the best process-thread combination for
running hybrid codes.

In the following, we briefly describe the multi-zone
benchmarks in Section 2. We then discuss the three refer-
ence implementations of NPB-MZ, including the program-
ming paradigms used, in Section 3. Section 4 presents
performance results and characteristics of the hybrid NPB-
MZ benchmarks running on several parallel computers. We
draw our conclusions in the last section.

2. The Multi-Zone Benchmarks

The application benchmarks of NPB as specified in [1]
compute discrete solutions of the unsteady, compressible
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Navier-Stokes equations in three spatial dimensions, using
Lower-Upper symmetric Gauss-Seidel (LU), Scalar Penta-
diagonal (SP), and Block Tri-diagonal (BT) algorithms.
Each solver operates on a structured discretization mesh
that is a logical cube. In realistic applications, however, a
single such mesh is often not sufficient to describe a com-
plex domain, and multiple meshes or zones are used to cover
it. In the production code OVERFLOW [4], the flow equa-
tions are solved independently in each zone, and after each
iteration the zones exchange boundary values with their im-
mediate neighbors with which they overlap.

We take the OVERFLOW approach [4] in creating the
NPB Multi-Zone versions of LU, BT, and SP, namely LU-
MZ, BT-MZ, and SP-MZ. Detailed specification of the
multi-zone benchmarks is given in [9]. We will give a sum-
mary below: aspects common to all three benchmarks in
Section 2.1, and differences between individual benchmarks
in the subsequent sections. We note that the selection of
different NPB solvers for the new benchmarks is fairly ar-
bitrary. The major difference between the three multi-zone
problems lies in the way the zones are created out of the
single overall mesh.

2.1. Common Benchmark Properties

For each benchmark problem a logically rectangular dis-
cretization mesh is divided into a two-dimensional horizon-
tal tiling of three-dimensional zones. To avoid pathologi-
cally shaped zones after partitioning the overall mesh in the
two horizontal directions (x and y), we change the aspect
ratios of the meshes of the original NPB. For each problem
class the total number of points in all zones is kept approx-
imately the same as in the original NPB. Table 1 lists the
aggregate problem sizes and the number of zones for differ-
ent problem classes in the multi-zone versions. Assuming
24 double-precision variables for each mesh point, mem-
ory usage for different problem size is estimated as ranging
from 1 MB (Class S) to 12.8 GB (Class D).

Within all zones, LU, BT, or SP problems are solved
to advance the time-dependent solution, using exactly the
same methods as described in [1, 8]. The mesh spacings
of all zones of a particular problem class are identical, and
the overlap between neighboring zones is exactly one such
spacing, so that discretization points in overlap regions co-
incide exactly.

Exchange of boundary values between zones takes place
after each time step, which provides the fairly loose
coupling of the otherwise independent solution processes
within the zones. Solution values at points one mesh spac-
ing away from each vertical zone face are copied to the coin-
cident boundary points of the neighboring zone. The prob-
lem is periodic in the two horizontal directions, so donor
point values at the extreme sides of the mesh system are

Table 1. Aggregate problem size and the num-
ber of zones for each problem class. Gx, Gy,
and Gz are aggregate spatial dimensions.

Class Aggregate Size Zones (x-zones × y-zones)
(Gx × Gy × Gz) LU-MZ SP-MZ BT-MZ

S 24 × 24 × 6 4 × 4 2 × 2 2 × 2
W 64 × 64 × 8 4 × 4 4 × 4 4 × 4
A 128 × 128 × 16 4 × 4 4 × 4 4 × 4
B 304 × 208 × 17 4 × 4 8 × 8 8 × 8
C 480 × 320 × 28 4 × 4 16 × 16 16 × 16
D 1632 × 1216× 34 4 × 4 32 × 32 32 × 32

copied to boundary points at the opposite ends of the sys-
tem.

2.2. LU-MZ

For all problem classes the number of zones in each of
the two horizontal dimensions equals four (i.e. 4 × 4). The
overall mesh is partitioned such that the zones are identi-
cal in size, which makes it relatively easy to balance the
load of the parallelized application. However, the amount
of coarse-grain parallelism is limited to 16, the total num-
ber of zones.

2.3. SP-MZ

As in the case of LU-MZ, the overall mesh is partitioned
such that the zones are identical in size. However, the num-
ber of zones in each of the two horizontal dimensions grows
with the problem size (see Table 1). It is relatively easy to
balance the load of the parallelized application.

2.4. BT-MZ

The number of zones in this benchmark grows with the
problem size in the same fashion as in SP-MZ (see Table 1).
However, the overall mesh is now partitioned such that the
sizes of the zones span a significant range. This is accom-
plished by increasing sizes of successive zones in a particu-
lar coordinate direction in a roughly geometric fashion. Ex-
cept for class S, the size ratio of the largest to smallest zone
is approximately 20. This makes it harder to balance the
load than for SP-MZ and LU-MZ if the implementation is
to take advantage of multi-level parallelism. The BT-MZ
benchmark is a more realistic case. Examples of uneven
mesh tilings for the BT-MZ benchmark are shown in Fig-
ure 1.
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Figure 1. Examples of uneven mesh tilings for three different classes of the BT-MZ benchmark,
showing a horizontal cut through mesh system. Overlap regions are not depicted.

3. Implementations

In this section, we describe three reference implemen-
tations of the multi-zone benchmarks – one serial and two
hybrid parallel.

3.1. Serial Implementation

The serial implementation of NPB-MZ is based on the
NPB3.0-SER release of NPB [5]. The flow chart of the se-
rial NPB-MZ version is shown in Figure 2. The original
single-zone problem of LU, SP, and BT in NPB3.0-SER is
first subdivided into multiple zones according to the bench-
mark specifications as prescribed in [9]. Solutions for each
zone are then initialized. The benchmarking loop starts with
a time step loop which contains a procedure (exch qbc)
to exchange boundary values of different zones. The dis-
crete partial differential equation solvers LU, SP, and BT
are used for obtaining solution updates within each zone in
the new LU-MZ, SP-MZ, and BT-MZ, respectively. The
solving stage includes procedures for performing forcing
term (right-hand-side) calculations and the Lower-Upper
(for LU-MZ) or Alternative Directional Implicit (for SP-
MZ and BT-MZ) algorithm. The solution is then verified
for all zones for a given problem class.

3.2. Hybrid Implementation

Parallelism in the multi-zone benchmarks can be ex-
ploited with a two-level approach: a coarse grained par-
allelization among zones and a fine grained parallelization
within each zone. The division (or data decomposition) of
zones is natural except for exchanging overlapped boundary
values since calculations within each zone can be performed
concurrently. The main task is to balance the computational
workload among processes.

In the following, we will first discuss the load balancing
scheme. Our exploitations of the two-level parallelization

apply LU/SP/BT solver

exchange boundary values

initialize solutions

verify results

set up zones

zones

zones

time
steps

Figure 2. Schematic flow graph of the multi-
zone benchmarks in sequential execution.
Loops (back arrows) are annotated with their
induction variable.

are both hybrid: we use either message passing (model one)
or a shared-memory parallelization library (model two) to
communicate data related to overlap regions of zones, and
OpenMP to parallelize loops within each zone. The second
hybrid model takes advantage of shared memory buffers
and is an efficient way to exploit multi-level parallelism on
shared memory systems.

3.2.1 Zone Grouping and Load Balancing

Proper load balancing is critically important for efficient
parallel computing. There are a number of load balanc-
ing strategies for multi-zone overlapping mesh applications
(see [3] for an overview). We use a simple zone group-
ing strategy based on a bin-packing algorithm [10]. In a
zone grouping strategy, the NZ zones are clustered into NG

groups, where NG is equal to the total number of processes,
NP . Each zone group is then assigned to a process for par-
allel execution. The goal is to distribute the computational

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04) 



workload evenly among the zone groups while minimizing
the inter-process communication.

In the bin-packing algorithm, we first estimate the com-
putational workload of each zone by counting the number of
mesh points in the zone. The NZ zones are then sorted by
size in descending order. In the beginning, the zone groups
are empty. Successive zones in the sorted list are assigned
to the smallest group that best satisfies the connectivity test
with other zones already in that group. The connectivity test
examines any overlap between a pair of zones and is only
performed when two zone groups are close in size. Even
though communication costs in these benchmarks are small,
as we will show in the next section, co-locating overlapping
zones reduces communication costs even further. The pro-
cedure finishes when all zones are assigned to groups.

If the load cannot be well balanced with zone groups,
we try to adjust the number of OpenMP threads assigned
to each process. A thread from the smallest group is re-
assigned to the largest group, provided the load balance is
improved after such a movement and the number of threads
in a group does not exceed a given system-dependent limit.
For a node in a distributed memory system, the number of
threads is often limited to the number of CPUs in the node.
The process stops when no more movement occurs.

As an extreme case, Figure 3 illustrates the use of thread
reassignment to improve the load balance for the BT-MZ,
Class C problem on NP = 256 with a total of 256 × 4
threads (see Section 4.2 for a discussion on the notation),
in which only one zone is assigned to each process. Even
though load balancing of SP-MZ and LU-MZ is trivial, we
still use the same algorithm to take into account the zone-
to-zone connectivity.

3.2.2 MPI+OpenMP

The Message Passing Interface (MPI) is a widely accepted
standard for writing message passing programs and is sup-
ported on all modern parallel computers. The standard pro-
vides the user with a programming model where processes
communicate by calling library routines to exchange mes-
sages between processes. The programming model was de-
signed for distributed memory systems, but also works on
shared memory systems. As clusters of symmetric multi-
processor machines have become popular, more and more
applications take advantage of the hardware architecture by
using the hybrid programming model which uses MPI for
communication between symmetric multi-processor nodes
and OpenMP for parallelization within one node.

The MPI+OpenMP implementation of the multi-zone
benchmarks is summarized in Figure 4. The number of MPI
processes is defined at compilation time in order to avoid
dynamic memory allocation. Each process is first assigned
with a group of zones and a given number of OpenMP
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Figure 3. Uneven zone size distribution of
the BT-MZ Class C before (light or blue line)
and after (heavy or red line) balancing with
threads. The bottom figure indicates number
of threads assigned to each process. There
are a total of 256 × 4 threads.

threads based on the load balancing scheme described in
Section 3.2.1. There is no dynamic load adjustment at run
time. As in the sequential version (see Figure 2), solutions
for the zones assigned to each process are then initialized,
followed by the time step loop. Inter-process communi-
cation occurs inside the procedure exch qbc, which ex-
changes boundary values of zones, including those assigned
to different processes. There is no communication during
the LU, SP, or BT solving stage. The last stage (verifica-
tion) performs a reduction of solutions and residues from
all zones for a given problem class.

The OpenMP parallelization within a zone is very similar
to the OpenMP single-zone version of NPB [5]. A single-
level parallelization is used for the outermost parallel loops
in SP-MZ and BT-MZ, mainly loops over the third (z) mesh
dimension. The OpenMP parallelization of LU-MZ is on
the loops over the second (y) mesh dimension, mainly due
to the pipelined implementation of the LU solver and the
fixed number of zones (thus, increased y size as the problem
size grows) for this benchmark. The increased y size allows
more efficient OpenMP parallelization in this dimension.

3.2.3 SMP+OpenMP

The second hybrid approach, SMP+OpenMP, is based on a
multi-level parallel (MLP) programming model, developed
by Taft [7] at NASA Ames Research Center for achieving
high levels of parallel efficiency on shared memory ma-
chines. It exploits two-level parallelism in applications:
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Figure 4. Coarse grained parallelization with
zone groups for the multi-zone benchmarks
using either MPI (left panel) or SMP (right
panel) parallel programming model.

coarse-gained with forked processes and fine-grained (loop
level) with OpenMP threads. (We refer to this coarse-
gained parallelization with forked processes as the SMP, or
Shared Memory Parallel, model.) Communication between
the forked processes is done by directly accessing data in
a shared memory buffer. Coupled with the second level
of parallelism, MLP has demonstrated good scalability on
more than 500 processors for realistic scientific problems
[7]. In the SMP model, a program starts with a single pro-
cess (the master process) to perform initialization, such as
reading input data from a file, and to set up the necessary
shared memory arena (or buffer) for communication via the
Unix mmap call. Additional processes are then created via
the Unix fork call. The forked processes have a private copy
of the virtual memory of the master process, except for the
shared memory arena. Thus, explicit broadcasting of input
data is not necessary in this model as it would have been
required in a message passing program. The master and
its forked processes then work on the designated code seg-
ments in parallel and synchronize as needed.

The original MLP library (MLPlib) [7] consists of
only three routines: MLP getmem to allocate a piece of
shared memory, MLP forkit to spawn processes, and
MLP barrier to synchronize processes. The MLPlib
application program interface (API) includes a special ar-
gument allowing thread-to-processor binding, or pinning,
which has been shown to improve performance of hybrid
codes on machines with non-uniform memory access. The
main limitation of MLPlib is its lack of point-to-point syn-
chronization primitives, which are useful for more general
classes of applications. The SMP library (SMPlib) [6] ex-
tends the MLPlib concept by including the SMP Signal
and SMP Wait primitives for point-to-point synchroniza-

tion between processes. A process may update a shared
buffer and use SMP Signal to inform another process
of the availability of the data; the other process can use
SMP Wait for the notification (by signal) that it is safe to
copy data from the shared buffer. The Signal/Wait approach
is very flexible and in general has less communication over-
head than a global barrier. The complete description of the
SMPlib API is given in [6].

The hybrid SMP+OpenMP and MPI+OpenMP imple-
mentations of the multi-zone benchmarks are very simi-
lar. In particular, their OpenMP parallelizations are iden-
tical. The main difference lies in the startup stage, as
shown in Figure 4. Before forking processes, the mas-
ter process sets up zone groups based on the load balanc-
ing scheme described in Section 3.2.1 and allocates proper
shared memory buffers for later process communication.
As in the MPI+OpenMP version, inter-process communica-
tion occurs inside the procedure exch qbc, which copies
boundary values of zones to/from the shared memory buffer
with proper barrier synchronizations. Overall, it is slightly
easier to develop the hybrid SMP+OpenMP codes than the
corresponding MPI+OpenMP versions, mainly because the
bookkeeping for inter-process communication in the SMP
version is simpler.

4. Results

In this section we report performance results and char-
acteristics of the hybrid NPB-MZ benchmarks obtained on
three different parallel machines. The sequential version
of NPB-MZ serves as a baseline implementation for other
parallel implementations and for parallel tools and compil-
ers. We will not examine the performance of the sequential
codes in this report.

4.1. Testing Platforms

For running the multi-zone benchmarks we used three
different parallel computers:

• SGI Origin 3000: a 128-node ccNUMA machine with
4 CPUs per node and a single-system image operating
system,

• HP/Compaq Alpha SC45: a cluster of 348 shared
memory nodes with 4 CPUs per node, and

• IBM pSeries: a cluster of 208 shared memory nodes
with 16 CPUs per node.

The main performance characteristics of a node in each
system and the various compilers and compilation flags
used in our tests are summarized in Table 2. We used the
mpt.1.5.3.0 runtime system for running MPI programs
on the SGI Origin 3000.
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Table 2. Architectural specifications of the
nodes in the three parallel systems and the
compilers and compilation flags used in the
tests.

Machine SGI Origin HP/Compaq IBM
3000 SC45 pSeries

CPU Type R12K EV-68 Power3
CPUs/Node 4 4 16
Clock (MHz) 400 1000 375
Peak (GFs/s) 0.8 2.0 1.5
L1 Cache 32 KB 64 KB 128 KB
L2 Cache 8 MB 8 MB 8 MB
Memory/Node 2 GB 2 GB 2 GB
O/S IRIX 6.5 TRU64 5.1A AIX 5.1
Compiler MIPSpro Compaq XL Fortran

7.4 Fortran 5.5 7.1
Compilation -O3 -mp -fast -omp -O3 -qsmp=

Flags omp

The SGI Origin 3000 (named Lomax), located at NASA
Ames Research Center, is a distributed shared-memory sys-
tem with the SGI NUMA 3 architecture (i.e., the third gen-
eration non-uniform memory access). The system contains
128 C-bricks (or nodes) that are connected by the NU-
MAlink3 interconnect network and are globally addressable
through a hardware cache-coherence protocol. The mem-
ory accessing time is about 175ns within a local node and
470ns to a remote node.

The HP/Compaq AlphaServer SC45 (named Halem) is
located at NASA Goddard Space Flight Center. The sys-
tem is a distributed-memory supercomputer that contains
348 AlphaServer ES45 nodes and uses high speed Intelli-
gent Interconnects between nodes. Each ES45 node incor-
porates four Alpha-EV68 processors running at 1.0 GHz or
1.25 GHz that share 2 GB of local memory. Our perfor-
mance results were obtained on nodes running at 1.0 GHz.

The Power3 experiments reported in this paper were con-
ducted on a single Nighthawk II node of the 208-node IBM
pSeries system (named Seaborg) running AIX 5.1 and lo-
cated at Lawrence Berkeley National Laboratory. The IBM
Power3 was first introduced in 1998 as part of the RS/6000
series. Each 375 MHz processor contains two floating-point
units (FPUs) that can issue a multiply-add (MADD) per cy-
cle for a peak performance of 1.5 GFlops/s. The CPU has a
32KB instruction cache and a 128KB 128-way set associa-
tive L1 data cache, as well as an 8MB four-way set associa-
tive L2 cache with its own private bus. Each node consists
of 16 processors connected to main memory via a cross-
bar. Multi-node configurations are networked via the IBM
Colony switch using an omega-type topology.

4.2. Timing and Scalability

Figure 5 shows the Gflops per second reported by the
two hybrid versions of LU-MZ, SP-MZ and BT-MZ for the
Class C problem size on the SGI Origin 3000. The number
of CPUs (or processors) is indicated by the Np × Nt com-
bination, where Np is the number of MPI or SMP processes
and Nt is the number of threads per process. For LU-MZ
and SP-MZ, Nt is the actual number of threads assigned
to each process; for BT-MZ, Nt is the average number of
threads per process. The Np × Nt values in the figure are
those combinations that produced the best performance for
each benchmark for a given total number of CPUs. The best
combination is further discussed in the next section. The
thread-to-processor pinning was applied for all the runs on
the SGI Origin 3000 reported in this section.

Overall, both MPI+OpenMP and SMP+OpenMP per-
formed similarly, showing close to linear speed-up with in-
creasing number of CPUs up to 256. Coarse grain paral-
lelism in LU-MZ is limited to 16 processes due to the struc-
ture of the benchmark, and OpenMP threads are required for
scaling beyond 16 CPUs. The SP-MZ benchmark poses no
restriction on the coarse grain parallelism; in fact, the best
performance is achieved with parallelism only at the coarse
level. For the Class C problem of BT-MZ, the load can be
balanced at the coarse grain level up to 64 processes and
threads are required for load balancing more than 64 CPUs.
Both SP-MZ and BT-MZ demonstrated over 60 Gflops/s
performance on 256 CPUs.

Detailed comparison of the computation and commu-
nication times in the benchmarks is summarized in Ta-
ble 3. The “Total” column indicates the total bench-
mark time, “RHS” is the time spent in the forcing term
(right-hand-side) calculation, “Solver” is the solver time,
and “exch qbc” indicates the communication time spent
on boundary value exchange between zones. RHS and
Solver are the two most important computing components;
they were discussed in Section 3.1. The RHS and Solver
times are closely matched between the MPI+OpenMP and
SMP+OpenMP versions. The ratio of communication
time over total time in both LU-MZ and BT-MZ increases
slightly as the number of CPUs increases, but is about 5% or
less. However, SP-MZ spent more time in communication,
especially the MPI version, which shows 17% communica-
tion time on 128 CPUs. The cause of the increase in com-
munication time is being investigated. In general, SMPlib
used in the SMP+OpenMP version showed less communi-
cation overhead than the MPI library.

To examine the influence of the process-thread combina-
tion on performance, we ran the hybrid versions of NPB-
MZ on a single node of the IBM Power3. The results from
runs with a fixed number of 16 CPUs are shown in Fig-
ure 6. Again, both the MPI+OpenMP and SMP+OpenMP
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Figure 5. Scaling of the Class C problem of LU-MZ, SP-MZ and BT-MZ on the Origin 3000. The lines
indicate linear speedup based on the 8 and 16 CPUs results.

Table 3. Timing profile in seconds of the three benchmarks obtained on the SGI Origin 3000 and with
1/10th of the benchmark iterations.

MPI+OpenMP SMP+OpenMP
CPUs Total RHS Solver exch qbc Total RHS Solver exch qbc

LU-MZ, Class C
8 150.34 41.98 107.13 1.21 (0.8%) 147.33 41.21 104.85 1.26 (0.9%)
16 73.02 20.72 51.61 0.69 (0.9%) 73.76 20.17 53.12 0.47 (0.6%)
32 30.61 10.19 19.44 0.54 (1.8%) 30.47 10.03 19.31 0.26 (0.9%)
64 15.65 5.46 9.46 0.28 (1.8%) 15.49 5.33 9.37 0.30 (1.9%)

128 8.61 3.04 4.71 0.29 (3.4%) 8.53 3.01 4.73 0.21 (2.5%)
256 4.93 1.67 2.39 0.25 (5.0%) 4.97 1.68 2.39 0.27 (5.3%)

SP-MZ, Class C
8 64.43 29.49 31.15 3.77 (5.9%) 63.72 29.31 30.80 3.61 (5.7%)
16 31.78 13.89 15.39 2.49 (7.8%) 32.56 14.93 15.75 1.88 (5.8%)
32 16.26 7.34 7.87 1.04 (6.4%) 16.14 7.58 7.84 0.72 (4.5%)
64 8.05 3.24 3.77 1.03 (12.9%) 7.75 3.47 3.75 0.52 (6.7%)

128 3.83 1.36 1.82 0.66 (17.0%) 3.41 1.35 1.80 0.25 (7.4%)
256 1.79 0.68 0.91 0.20 (10.8%) 1.69 0.66 0.90 0.13 (7.6%)

BT-MZ, Class C
8 99.53 15.14 83.02 2.07 (2.1%) 98.97 14.65 83.34 1.65 (1.7%)
16 49.15 7.32 41.01 1.15 (2.3%) 49.51 7.26 41.50 1.07 (2.2%)
32 25.15 3.62 21.30 0.39 (1.5%) 25.62 3.65 21.75 0.39 (1.5%)
64 13.50 1.79 11.39 0.41 (3.0%) 13.86 1.80 11.87 0.28 (2.0%)

128 7.16 0.99 5.86 0.36 (5.0%) 7.25 0.99 6.10 0.21 (2.8%)
256 4.11 0.62 3.17 0.36 (8.7%) 3.89 0.62 3.15 0.14 (3.7%)

performed very similarly. In all cases, performance per
thread drops as the number of threads per process increases.
Results from the Class A problem of NPB-MZ obtained on
the HP/Compaq SC45 are shown in Figure 7. Due to the
availability of only 4 CPUs in one shared memory node of
this machine, we only ran the MPI+OpenMP versions. As

one can see, the performance of BT-MZ does not improve
much beyond 16 CPUs, even though LU-MZ and SP-MZ
still speed up. This is because the upper limit of 4 threads
per node prevents better load balancing beyond 16 CPUs.
In contrast, there is no such a limitation on the SGI Ori-
gin 3000, due to the globally shared address space with a
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single-system image. We will elaborate this point further in
the next section.
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4.3. Performance Model

Speedup of a run with Np processes and Nt threads per
process can roughly be estimated by

SNp×Nt = T/(Tmg · fNt) (1)

where T is the total problem size, Tmg is the maximum size
of a zone group assigned to a process divided by the number
of threads used, and fNt is a weight factor incorporating
the number of threads. Assuming static scheduling in the
OpenMP parallelization, we have an empirical form

fNt = [1 + (Nt − 1)α] · fib (2)

where fib = �L/Nt� · Nt/L is an estimate of the load bal-
ancing factor from the OpenMP parallelization and L is the
typical loop size in which the OpenMP parallelization is
applied. For BT-MZ and SP-MZ, L = Gz; for LU-MZ,
L = Gy/y-zones. α is an experimentally derived system-
dependent constant. The thread weight factor in equation 2
takes into account the scaling degradation caused by the in-
creased number of threads and the load imbalance result-
ing from thread scheduling. Equation 1 does not take into
account the cost of process communication, which, as indi-
cated in the previous section, is relatively small.

The approximate linear dependency of fNt on Nt was
observed from runs with a fixed total number of CPUs on
both the SGI Origin 3000 and IBM Power3, as shown in
Figure 8. The points in the figure are obtained from the
measured speedups for LU-MZ Class B. Using a slope fit-
ting of equation 2 to the measured points, we have α =
0.030 for the SGI Origin 3000 and α = 0.021 for the IBM
Power3.
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1.8

f N
t

1 162 4 8

Number of Threads  (Nt)

α = 0.021

IBM Power3

1.0

1.4

1.8

α = 0.030

SGI Origin 3000

Figure 8. Measured (points) and slope-fitted
(curves) weigth factor fNt as a function of
the number of threads (Nt) for LU-MZ Class
B on two systems. The total number of CPUs
is fixed to 16.

The left panel of Figure 9 compares the calculated
speedup using equation 1 with the measured values on the
SGI Origin 3000 for the BT-MZ, Class A problem. As one
can see from the figure, the calculated values match very
well with those measured, not only the best Np × Nt com-
bination (as indicated by the dashed lines) but also the shape
as a function of the number of threads.

In the right panel of Figure 9 we plot the speedup for
the best Np × Nt combination for the SGI Origin 3000 and
the HP/Compaq SC45. The Origin 3000 places no limita-
tion on the number of threads for each process, while the
SC45 cluster allows only a maximum of 4 threads for each
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process due to the node limitation, which in fact limits the
scalability of BT-MZ, Class A beyond 16 processors. The
calculation uses a single value of α = 0.030 and shows the
correct trend for both machines, although the speedups for
SC45 are underestimated, primarily because cache effects
are not considered in equation 1. The performance model
can be used to find the best combination of Np and Nt for
a given total number of processors, as we observed that this
combination is not very sentive to the choice of α.

4.4. Other Performance Issues

The hybrid implementation of NPB-MZ has demon-
strated good scalability. We would like to point out a few
factors that could potentially limit the performance of NPB-
MZ. First, the coarse grain parallelization limits the max-
imum number of processes to the number of zones for a
given problem. For instance, LU-MZ allows a maximum
of 16 processes. Second, the number of OpenMP threads
on the fine grain level is limited by the underlying hard-
ware/system software, as well as by the loop size to which
OpenMP parallelization is applied. On the HP/Compaq
SC45, LU-MZ cannot scale beyond 16 × 4 = 64 proces-
sors. Third, the load balancing with OpenMP threads for
BT-MZ is also limited on the HP/Compaq SC45 due to the
fact that this machine has only 4 CPUs per node. The shared
memory architecture of the SGI Origin 3000 poses fewer
constraints on the use of threads.

We also observed the performance impact of using
thread-to-processor pinning on the hybrid codes on the SGI
Origin 3000. Application performance on NUMA archi-
tectures like the Origin depends on data and thread place-
ment onto CPUs. Improper initial data placement or un-
wanted migration of threads between CPUs can increase

memory access time, thus degrading performance. SGI pro-
vides system calls to bind threads to Origin CPUs. We
tested the effect of pinning versus no pinning on the hybrid
SMP+OpenMP NPB-MZ codes and the results are shown in
Figure 10. Notice that pinning improves performance sub-
stantially in the hybrid mode when more than one threads
are used for one process. The impact is even more profound
as the number of CPUs increases. Pure process mode (e.g.
16 × 1) and pure thread mode (e.g. 1 × 16) are not influ-
enced by pinning. The small impact of pinning on the BT-
MZ benchmark is likely due to the more dominant effect of
the load imbalance in the Class A problem on 16 CPUs, as
evident from the 16 × 1 run. A detailed analysis of these
results will be presented in a subsequent paper.

5. Conclusions

In summary, we have described the implementations of
three multi-zone benchmarks that are derived from the NAS
Parallel Benchmarks. These multi-zone benchmarks are
suitable for exploiting multi-level parallelism, which exists
in many important scientific problems. The sequential im-
plementation is a good candidate for parallelization tools
and compilers to exploit multi-level parallelization strate-
gies, such as hybrid or nested OpenMP. The two hybrid
implementations, MPI+OpenMP and SMP+OpenMP, of the
NPB-MZ benchmarks have been tested on three different
parallel machines and demonstrated good potential of the
hybrid programming model on these machines. Careful
load balancing of the BT-MZ benchmark, which contains
non-uniform-sized zones, is crucial for good performance.
A simple bin-packing algorithm, together with the use of
thread reassignment, has presented satisfactory results. For
additional performance improvement on a large processor
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counts, further examination of the communication cost in
the load balancing algorithm may be needed. We used an
empirical formula to study the performance characteristics
of the benchmarks and estimate the best Np ×Nt combina-
tion for running the hybrid codes. We plan to further ver-
ify our performance model by extending runs on the IBM
Power3 and HP/Compaq SC45 parallel computers.
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