Fourth International Conference on Industrial and Information Systems, ICIIS 2009, 28 - 31 December 2009, Sri Lanka

Accelerating High Performance Applications with
CUDA and MPI

N. P. Karunadasa & D. N. Ranasinghe
University of Colombo School of Computing, Sri Lanka
nishantha@opensource.lk, dnr@ucsc.cmb.ac.lk

Abstract—Compute Unified Device Architecture
(CUDA) programmed,Graphic Processing Units (GPUs)
are rapidly becoming a major choice in high performance
computing. Hence, the number of applications ported to
the CUDA platform is growing high. Message Passing
Interface(MPI) has been the choice of high performance
computing for more than a decade and it has proven
its capability in delivering higher performance in
parallel applications. CUDA and MPI use different
programming approaches but both of them depend on
the inherent parallelism of the application to be effective.
However, much less research had been carried out to
evaluate the performance when CUDA is integrated
with other parallel programming paradigms. This paper
investigates on integration of these capabilities of both
programming approaches and how we can achieve
superior performance in general purpose applications.
Thus, we have experimented CUDA+MPI programming
approach with two well-known algorithms (Strassens
Algorithm & Conjugate Gradient Algorithm) and shown
how we can achieve higher performance by means of
using MPI as computation distributing mechanism and
CUDA as the main execution engine. We have developed
a general purpose matrix multiplication algorithm and
a Conjugate Gradient algorithm using CUDA and MPI.
In this approach, MPI functions as the data distributing
mechanism between the GPU nodes and CUDA as the
main computing engine. This allows the programmer
to connect GPU nodes via high speed Ethernet without
special technologies. Thus, the programmer is enabled
to view each GPU node separately as they are and to
execute different components of a program in several
GPU nodes.

Index Terms—CUDA, MPI, High Performance Comput-
ing.

I. INTRODUCTION

CUDA is gaining its position as the choice of high
performance computing[1] community gradually and
there are growing amount of work being carried out
around the world[2][3]. MPI has been the choice of
high performance computing for more than a decade
and it has proven its capability in delivering higher

331

978-1-4244-4837-1/09/$25.00 ©2009 IEEE

performance in parallel applications. CUDA and MPI
use different programming approaches but both of them
depend on the inherent parallelism of the application to
be effective. CUDA runs on the GPU and the GPU is
a magnitude order faster than the common CPU.But the
the performance of the GPU depends on the application
which is executed by the GPU. There are several factors
dictate the processing speed of the GPU. One of them are
the number of cores it has. The GPU, unlike the CPU
uses less number of registers to store data temporally
while they are processing. Therefore, GPU can uses
more registers to data processing and that is one of
the major reason to have many execution cores inside
the GPU. In addition, the GPU has a faster memory
bandwidth between device memory and the processing
cores. However, any given algorithm won’t gain the
performance which are showed in the GPU specification
because only the algorithm those are specially designed
for the GPU environment will only enjoy the perfor-
mance of the GPU. So that if the CUDA application
has real parallel components, even a single GPU card
is capable of delivering significant performance[4]. MPI
typically runs on CPU clusters so that it does not have the
support of hardware level performance acceleration like
what CUDA has. However using MPI, we can execute
different components of different programs in different
CPUs in the cluster whereas we can only run one kernel
at a time inside the GPU while we are using CUDA[5]. In
other words MPI is excellent in distributing the parallel
components within a parallel environment and CUDA
has mastered in executing parallel components exploiting
threads. In this paper we will describe how we integrate
these capabilities of both programming approaches and
how we can achieve superior performance in general
purpose applications.

In this research work, we have experimented
CUDA+MPI programming approach with two well-
known algorithms and we have showed how we can
achieve higher performance by means of using MPI
as computation distributing mechanism and CUDA as
the main execution engine. However this CUDA+MPI

programming paradigm is not the ideal approach for all
parallel applications because there are instances where
this programming approach delivers poor performance.
In the Strassen algorithm, we have shown that effectively
we can use CUDA+MPI approach whereas Conjugate
Gradient algorithm, is less effective.

In addition CUDA is not capable of communicating
between GPU cards that are in different machines.
NVIDIA SLI technology can be used to connect multiple
GPUs that are in one computer and as of the latest release
of the CUDA sdk, all those SLI connected GPU cards
can only be seen as one single GPU by the programmer.
But we can connect GPU cards in different computers
using ethernet and exploit CUDA+MPI model so that
it enables the user to see different GPUs in different
computer as separate processing engines. Hence the pro-
grammer can execute different kernels in one application
on different GPUs at the same time. In the literature there
are only a few research work that has been carried out
with respect to the CUDA+MPI environment[6] whereas
there are a lot of general purpose applications that have
been ported to pure CUDA based applications. In the
following section we will be describing CUDA and MPI
briefly and shall move into the section which describes
our implementations of Strassen and Conjugate Gradient
algorithms. Then the results are illustrated at the end and
the conclusion will summarize what we have done.

II. CUDA AND MPI
A. CUDA

CUDA (Compute Unified Device Architecture)[7]
is the programming language provided by NVIDIA to
run general purpose applications on NVIDIA GPUs.
The CUDA incorporates an Application Programmer
Interface, a runtime, couple of higher level libraries
and a device driver for the underline GPU. The most
important thing about the CUDA is that it has almost ad-
dressed some of the inherited general purpose computing
problems with GPUs. CUDA’s API for the programmer
is something like an extension to the C programming
language and CUDA allows developer to scatter data
around the DRAM as well as it features a parallel data
cache or on chip shared memory for bringing down the
bottleneck between the DRAM and the GPU.

The programming model of the CUDA is much biased
to the thread model because, by using the thread model,
the language can achieve the parallelism given by the
data in much effective way. A particular code segment
which always executes on different data sets can be
isolated to a function and that is named as a kernel.
This kernel is implemented using thread model and

332

CUDA Optimized Libraries:
math.h, FFT, BLAS, ...

CPU + GPU
Code

Nvidia C Compiler

Nvidia Assembly — .
for Computing (PTX) GF sk Cade
Cuda Debugger : o
Driver Profiler =tandardic Eorpllet
GPU CPU

Fig. 1. CUDA language architecture

those threads are categorized to thread blocks and grids.
Threads, those should communicate and synchronize
with each other are batched together to a thread block
which executes a particular section of the kernel. A
thread grid consists of thread blocks but however, thread
blocks inside a thread grid cannot communicate or syn-
chronize with each other. This feature provides a robust
characteristic to the CUDA because it allows the program
written in CUDA to run on platforms which have various
levels of parallelism. In other words, thread block and
grid concept allows CUDA program to run on various
GPUs which has different numbers of execution cores
without recompiling. If the number of cores is high, all
the blocks or sub set of the blocks inside the grid can
be run in parallel.

The execution model of the CUDA can be described as
follows by considering the GPU has n number of cores
and those cores are divided into 10 multi processors
sections. The grid of blocks is scheduled for processing,
assigning each block to a particular multi processor.
Then the block is again split into sub sections calls warps
and each warp contains equal number of threads and each
warp is executed by the multiprocessor in SIMD fashion.
The thread scheduler switch between each warp for
maximize the processor efficiency. The multiprocessor
is given the blocks as batches and the batch which is
processed now is called as active block. CUDA has
been designed in a way that it can be considered as
an extension for the C programing language in order
to reduce the leaning curve of the language.

B. MPI

MPI provides a standard set of subprogram defi-
nitions which allow parallel programs to be written
using a distributed memory programming model. In this
paradigm a unique subset of the available memory is
associated directly with each of the parallel processes.
Only the memory associated with a particular process

may be accessed by it and so computations can only be
performed by a process on data stored in its own subset
of memory. In order to allow more than one process to
perform computations on a given set of data copies of
this data must be sent to any process which requires it
(to be saved on that process’s memory). This is referred
to as message passing.

Over 100 C and Fortran message passing subpro-
grams are defined by the MPI standard which was first
published in 1994[8]. This library is now supported by
almost all parallel computer manufacturers and numer-
ous public domain implementations also exist to allow
clusters of workstations to be used as if they were a
single parallel machine. Moreover, it is possible (and
often extremely efficient) to install versions of MPI on
most shared memory computers so as to program them
using a distributed memory model. The main advantage
that has resulted from the acceptance of MPI as a
message passing standard over the past few years is
that scientists and engineers are now able to develop
portable parallel programs for the first time. Prior to
the widespread use of MPI each manufacturer tended to
provide their own message passing routines which meant
that a program written for one manufacturer’s computers
could not be directly ported to a different manufacturer’s
machines.

III. ALGORITHMS AND IMPLEMENTATIONS
A. Strassens algorithm

Strassen’s algorithm for matrix multiplication is an
O(n?®3) efficient approach. We consider two matrices
A and B and the A, B matrices are divided in to 4 equal
sized matrices creating 8 sub matrices of size n/2 if
the size of the original matrices is n. The 7 Strassens
Equations[9] are applied on above sub matrices creating
7 temporary sub matrices of size n/2.

P1 = (A1l + A22) x (B11 + B22) 4))
P2 = (A21 + A22) x B11 2)
P3 = All % (B12 — B22) 3)
P4 = A22 % (B21 — B11) 4)
P5 = (A1l + A12) x B22 (5)
P6 = (A21 — Al11) % (B11 4 B12) (6)
P7 = (A12 — A22) x (B21 + B22) (7)

333

The temporary sub matrices are used to calculate 4
sub matrices of result C.

C11 = P1+ P4 — P5+ P7 (8)
C12 = P3+ P5 9)
C21 = P2+ P4 (10)
C22 = P1+ P3 — P2+ P6 (11)

When parallelizing above multiplication using a divide
and conquer approach following tasks are done by the
root master.

o Creation of A and B matrices.

o Scattering A and B in to 8 sub matrices.

« Do addition and subtractions on calculating P1...P7
sub matrices

« Sending the added or subtracted sub matrices to the
slave to do only the multiplication, while keeping
sub matrices to do one multiplication locally.

o Do the multiplication on local sub matrices calcu-
lating say, P7.

« Receive the PI...P6 sub matrices from the slave.

o Solve the 4 equations to calculate C//..C22, doing
additions and subtractions.

o Gather the C//...C22 sub matrices creating C.

The tasks of the slave would be,to receive the two
added or subtracted matrices from master and recursively
apply Strassens algorithm by becoming a sub master and
do the multiplication using conventional method on the
sub matrices. Finally the result is sent back to the master.

The matrix multiplication part of the algorithm is
delivered to the GPU in each node because the GPU is
capable of high performance matrix multiplication[10].
We implemented the GPU based matrix multiplication
using basic CUDA language but the data transfer over-
head between the GPU memory and the CPU memory
will reduce the overrall performance of the application.
However the data which is copied to the GPU memory
is copied again to the cache of the each execution core
cluster in the GPU.This method speeds up the data
collection of processing cores to execute tremendously
and it reduces the total processing time dramatically. So
it enhances the performance in a manner that it hides the
latency between GPU memory and the host memory.

B. Conjugate Gradient method

Conjugate Gradient method can be recommended over
simple Gaussian elimination if matrix A is very large and
sparse. Theoretically the Conjugate Gradient algorithm
will yield the solution of the system Ax=b in at most
n steps. In practice however the algorithm is used as

an iterative method to produce a sequence of vectors
converging to the solution.

In this algorithm, the loop is the most compute
intensive part and we were not able to find a single
entity which is independent of other components of the
algorithm in order to execute on the GPU using CUDA.
Therefore small computation parts were transformed
into CUDA and executed on the GPU. Because of the
data dependency among computations, MPI root node
requires to gather data and send the new data to slave
nodes inside every cycle of the loop.

Input x A, b, M e,
r €b-Ax

v E€r

ce(rr)

for k=1 to M do

if (v, v)'? < fthen exit loop
Z € Av

t «cfiv, 2)

X € x+ tv

r <rtz

d€(r.r)

if d < e then exit loop

Vv € r+(d/ic)v

ced

output k ,x ,r

end do

Fig. 2. Conjugate Gradient algorithm

IV. RESULTS AND ANALYSIS
A. System specifications

We have executed these programs in a CPU cluster
with 6 nodes and on a 2 node GPU cluster. In CPU
cluster there are 6 nodes each of which has two 3.0 GHz
Intel Pentium 4 processors with 2GB RAM. In the GPU
cluster there are two nodes where one node has a 2.4
GHz Intel Quad Core processor with 3GB RAM and the
other one has a 3.0 GHz Intel Dual Core processor with
1GB RAM.The quad core processor node is named as
A and the dualcore processor node is named as B. Each
GPU node has a NVIDIA 8800 GT graphic card and with
768MB graphic memory. We executed each program 10
times in each scenario and calculated average execution
time.

B. Results

According to figure 3, Strassen’s algorithm performs
better in the A computer than the B. this is because
the A computer has higher hardware specification than
B regardless GPU card it hosts. The host processor

200 -
180
160 -
140
120 -
100 -
80 -
60 -
40 -
20 -

—4—2 Nodes

B4 Nodes

TimelnSeconds

6 Nodes

L

256 512 1024 2048

MAG¢rixSize

Fig. 3. Strassen’s on CPU cluster with MPI

60

50

40

30

20

TimelnSeconds

10

e

128 256 512 1024 2048 4096

MatrixSize

Fig. 4. Strassen’s on each GPU node

and the host memory plays a critical role in GPGPU
computing, because the GPU is not capable of doing
anything by itself but it needs the help of the CPU and
the host memory in order to work. Figure 4 shows that
how CUDA+MPI based Strassen’s algorithm performs
against single GPU based node. In this scenario, we
have used the A computer as the single GPU node
and algorithm was implemented with CUDA language.
In that figure, CUDA+MPI program does not show
significant performance gain because the B computer is
comparatively slow in computing as mentioned earlier.

When comparing figure 2 and figure 4, the
CUDA+MPI based Strassen’s algorithm out performed
the CPU cluster/MPI based one. The CUDA+MPI based
program has more then 20 times faster than the six node
CPU cluster version. This is to be expected due to the
real power of the GPU in parallel processing.

In contrast the Conjugate Gradient algorithm as figure
1 based on a one huge loop and there are data dependen-
cies inside the loop. Therefore according to the firure 5
and 6,the algorithm doesn’t give predictable performance
improvement in the CPU clustering environment as well
as on the GPU cluster. The most significant fact is that
the normal MPI based implementation delivers higher
performance than the CUDA+MPI version as the figure

334

4.5

35 =

25 /
: / A
15
—il— CUDA+MPI
1
05

.9 _._..—.-——.'/

1024

TimelnSeconds

128 256 512 2048 4096

MatrixSize

Fig. 5. Strassen’s on single GPU node vs CUDA+MPI
400
350 r 3
'E 300 ¥
5 250
o
v
'2 ZEy 42 Nodes
g 150 —l—4 Nodes
= 100)N -6 Nodes
50 e
L A e Bl d
ol e S o
360 720 1080 1440 1800 2160 2520
MatrixSize
Fig. 6. Conjugate Gradient method in CPU cluster

7. By carefully examining the program, we note that
this is because of the lack of second level parallelism in
the Conjugate Gradient method. Therefore CUDA is not
especially usefull in this scenario. Infact the GPU can
handle some parts of the computations but because of
the memory latency between the GPU memory and the
CPU memory, it won’t give much performance gain

C. Analysis

First of all we should consider the major difference
between above two algorithms. In Strassen, it has a
parallel implementated component within the matrix
multiplication. Matrix multiplication requires consider-
able amount of processing power. But in Conjugate
Gradient method, after distributing data among nodes,
it does not have a parallel component which requires
considerable amount of processing and also does have
the data dependency. In other words after expressing
parallelism using MPI, Starssen has another level of
parallelism which can easily be expressed using CUDA
but the Conjugate Gradient algorithm does not have
such second level parallelism. Therefore Strassen’s gives
higher performance than normal MPI version when it is
combined with CUDA+MPI. But the Conjugate Gradient
method does not deliver much higher performance than

250

200 S —

.

150

100 $=E

AT =

200 400 600 800 1000 1200 1400 1600

TimelnSeconds
L

MatrixSize

Fig. 7. Conjugate Gradient method on each GPU node
250
¢
200 F—="
“
o
c
g 150 +
- ¥ +—B
T 100 o
E > —-A
= 50 ¥ A CUDA+MPI
0 -—[‘—.",—."/.\/
200 400 600 800 1000 1200 1400 1600
MatrixSize
Fig. 8. MPI Conjugate Gradient method vs CUDA+MPI version

normal MPI when it executed with CUDA+MPL
Threfore When we consider achieving performance
using CUDA+MPI, there are two things that we should
consider
o The first is, does the algorithm have two levels of
parallelism?. If the algorithm has second level paral-
lelism then the second factor should be considered.
o The second factor is that whether the second level
parallelism have some compute intensive part that
can be processed with in a GPU? If it has not
a considerable amount of work which cannot be
easily handled by the GPU, then there will not be
much higher performance by executing that second
level parallel components with CUDA as expected.
In our GPU cluster, there are two nodes each having one
GPU card. These two machines have different hardware
specifications except that they have identical GPU cards.
Therefore we can connect heterogeneous computers
those having GPU cards by means of CUDA+MPI. This
is important because if we want to build a GPU cluster
for high performance applications, we can get it done
by adding GPU cards to existing heterogeneous CPU
cluster.

V. CONCLUSION

Using CUDA+MPI we can accelerate parallel applica-
tions which have certain inherent parallelism characteris-

335

tics. In such cases, the performance enhancement is more
than that of by a MPI cluster. CUDA+MPI approach
has also highlighted the fact that it will help to build
high performance computing clusters at low cost. The
latency between the GPU memory and the host memory
is a major drawback of the CUDA runtime but there are
ways to enhance the performance in way that it hide
that latency. Finally we hope to enhance the capabilities
of CUDA+MPI programming approach by introducing
automatic load balancing in a cluster in which load is
dynamically varying.

ACKNOWLEDGMENT

We wish to extend our gratitude to Mr. Mahesh
Kandegedara, Mr Malik Silva, Mr Roshan Weerasuriya
and Mr Ganeshamoorthi for providing support during the
project.

REFERENCES

[1] H. Kasim , V. Marchl, R. Zhang, S. See.Survey on Parallel
Programming Mode.Proceedings of the IFIP International Con-
ference on Network and Parallel Computing (IFIP 2008)

[2] G.Vasiliadis, S.Antonatos, M. Polychronakis, E. Evangelos,
P.Markatos, S. Ioannidis..Gnort: High Perormance Network In-
trusion deection Using Graphics Processors.Institute of Computer
Science, Foundation for Research and Technology Hellas,Greece.

[3] P. Harish, J. Narayanan.Accelerating large graph algorithms on
the GPU using CUDA.Center for Visual Information Technology.
International Institute of Information Technology Hyderabad,
India.

[4] S. tomov, J.Dongarra.M. Baboulin.. Towards Dense Linear Alge-
bra for Hybrid GPU Accelerated Manycore Systems.

[5] NVIDIA CUDA.Compute Unified Device Architecture Program-
ming Guide. Version 2.

[6] A. Richardson, A. Gray.Utilisation of the GPU architecture for
HPC.EPCC, The University of Edinburgh

[7] T.R. Halfhill.Parallel Processing With CUDA, Nvidias High-
Performance Computing Platform Uses Massive Multithreading.
International Journal on Microprocessors,01/28/08-01.

[8] Message Passing Interface Forum, MPI: A Message-Passing
Interface Standard, International Journal of Supercomputer Ap-
plications, Vol. 8, No. 3/4,1994.

[9] J. Green. Strassens Fast Multiplication of Matrices Algorithm
and Spreadsheet Matrix Multiplications.

[10] S.Dinkins.performance and scalability analysis on paralleled
matrix multiplication on shared memory.August 3, 2007

[11] P.K. Jimack and N. Touheed, Developing Parallel Finite Ele-
ment Software Using MPI Computational PDE Unit, School of
Computer Studies University of Leeds, UK.

336

