
Accelerating batched 1D-FFT with a
CUDA-capable computer

Calling CUDA library functions from a Java environment

R. de Beer and D. van Ormondt
Dept. of Applied Physics, Univ. of Technology Delft, NL

E-mail: r.debeer@tudelft.nl

F. Di Cesare and D. Graveron-Demilly
CREATIS-LRMN, Univ Lyon 1, CNRS UMR 5220

INSERM U630, INSA Lyon, FR
E-mail: Danielle.Graveron@univ-lyon1.fr

D.A. Karras
Chalkis Inst. of Technology, Dept. Automation,

Hellas, GR
E-mail: dakarras@ieee.org

Z. Starcuk
Dept. of Magnetic Resonance and Bioinformatics,

Inst. of Scientific Instruments of the ASCR, Brno, CR
E-mail: starcuk@ISIBrno.Cz

2010-05-16 12:19

Index Terms—Batched 1D-FFT, CUDA-enabled GPU,
CUFFT library, Java bindings, home-assembled PC,
jMRUI software package, exhaustive search in MRS

I. INTRODUCTION

This work concerns the application of CUDA-based
software (Compute Unified Device Architecture), de-
veloped by NVIDIA for programmable Graphics Pro-
cessing units (GPUs) [1]. CUDA code is written in
‘C for CUDA’, indicating the standard C programming
language with NVIDIA extensions. The advantage of
using CUDA is that one can accelerate numerical compu-
tations, traditionally handled by Central Processing Units
(CPUs), by CUDA-enabled GPU devices, particularly if
the numerical problems at hand are suited for parallel
computing.

A. Our goal
Our goal was to find out, whether batched (multi-

ple) one-dimensional Fast Fourier Transformation (1D-
FFT), often encountered in various fields of signal pro-
cessing, can be speeded up significantly by exploiting
the parellel-processing power of a low-cost, standard,
CUDA-enabled graphics card in a home-assembled PC.

Batched 1D-FFT is of particular interest to us for the
following reasons:

• It is applied extensively in the Java Magnetic Reso-
nance User Interface (jMRUI) software package of
our ‘FAST’ European Union project[2].

• In our recent work on handling unknown Mag-
netic Resonance Spectroscopy (MRS) lineshapes,
batched 1D-FFT plays an essential role when ap-
plying exhaustive search in a semi-parametric, two-
criterion, NLLS fit of the MRS parameters [3].

Since the GUI of our jMRUI software package has
been written in Java, we want to call relevant CUDA
library fuctions from a Java environment. To that end
the Java bindings for CUDA approach of jcuda.org [4],
based on the Java Native Interface (JNI), was employed.

Ultimately, we want to embed the Java-bindings based
calls to CUDA into a plug-in for the jMRUI platform [5].

Figure 1. NVIDIA GeForce 9600 GT -based graphics card (CUDA-
enabled) in a home-assembled desktop PC.

II. METHODS

The methods applied can be devided into hardware-
and software-based. The hardware concerns a home-
made assemblage of a low-cost CUDA-capable desktop
PC. It’s essential parts are mentioned in II-A.The soft-
ware part, described in II-B, concerns the installation of
the CUDA software [1] and, in turn, the installation of
the Java bindings for CUDA software package [4].

A. Hardware
In order to get an impression of the cost and time

involved in building a CUDA-capable computer, we have

978-1-4244-6494-4/10/$26.00 ©2010 IEEE

assembled a low-cost desktop PC. The parts, chosen,
reflect the PC state-of-the-art of about 1 1

2 years ago. We
like to mention the following essential parts:

• An ASUS P5Q PRO Turbo motherboard with Intel
Core 2 Duo E8400 CPU and 4 GB RAM.

• An ASUS EN9600GT/DI/512MD3 graphics card
with NVIDIA GeForce 9600 GT chipset (CUDA-
enabled GPU) and 512 MB DDR3 memory (see
Figure 1).

B. Software
1) Operating system: The home-assembled desktop

PC is equipped with the Ubuntu 9.10 (32-bit version)
Linux operating system. It was installed from a running
live CD, which gave the opportunity of first checking
the hardware. The basic installation took about one hour
(applying a software update by the Update Manager
included).

2) Installing a certified Linux NVIDIA driver: It is
important for the performance of a CUDA-capable Linux
system that one has installed a recent version of the
Linux NVIDIA driver. We have chosen to work with
the latest certified NVIDIA driver, which at the time of
this study was version 190.42.

3) Installing the CUDA software: The CUDA Devel-
opment Tools for Linux 32-bit operating systems, that
we have used, had release number 2.3. They include
two parts, called the CUDA Toolkit and the CUDA
SDK respectively. The Toolkit contains the tools to build
and compile CUDA applications and the SDK contains
code samples. Their installer files (shell scrips) can be
downloaded from the CUDA website [1].

The CUDA Development Tools should be installed
by running their installer shell scrips. Before being able
to compile and execute CUDA applications, one should
take care of the required inclusions for the environment
variables PATH and LD LIBRARY PATH.

4) Installing the Java bindings for CUDA software:
In order to provide access to the CUDA software from a
Java environment, we have downloaded and installed the
Java bindings for CUDA software package (JCuda). Its
download archive file contains all JAR files and library
SOs required for 32-bit Linux [4].

An important aspect of installing the JCuda software
is to provide the correct Java CLASSPATH to the JCuda
JAR files. We found it the easiest approach of using the
-classpath option, when calling the Java program-
ming language compiler (javac) and Java application
launcher (java).

III. RESULTS

A. Assembling the CUDA-capable desktop PC
The cost of the CUDA-capable desktop PC (the moni-

tor excluded) amounted to about C600. Its total (summed
up) assemblage time was of the order of a few days.

B. Running the CUDA SDK test programs

In order to verify the CUDA installation, one should
run the CUDA SDK test programs deviceQuery and
bandwidthTest.

Figure 2. Valid result for the CUDA deviceQuery test program.

The result for the deviceQuery test on our system
is shown in Figure 2. When comparing with the result
in the CUDA Getting Started manual [6] it can be seen
that it is a valid result for the NVIDIA GeForce 9600
GT device. The output also shows the fewer potentials of
GeForce 9600 GT with respect to more recent NVIDIA
GeForce devices.

C. Performing CUDA-based batched 1D-FFT within a
Java environment

In order to test the computation time of CUDA-based
batched (multiple) 1D-FFT, when called from a Java
program, we took as a starting point the JCufftSam-
ple.java code from the jcuda.org website [4]. In that
sample Java code a CUFFT-library [7] -based complex-
to-complex forward 1D-FFT is executed and compared
with the result obtained from the Java JTransforms
[8] approach.

Since in the original JCufftSample.java program the
batch input parameter for the CUFFT 1D-FFT initial-
ization (function cufftPlan1d) is set at 1, we could
not test the opportunity of performing batched 1D-FFT
in a parallel fashion [7]. We therefore have extended
the code, particularly by introducing a series (batch) of
1D input signals for the 1D-FFT (for JTransforms as
well as for CUFFT) and by introducing timing code.

The essential (generalized) CUDA part of the extended
source code can be seen in Figure 3. Note that we have
included timing for cufftPlan1d as well as for the
actual 1D-FFT execution (function cufftExecC2C).

.................................
int batch = 1024;
int size = 1024;
long timing1 = 0;
long timing2 = 0;
float data[][];
data = new float[batch][size*2];
float tmp[];
tmp = new float[batch*size*2];
.................................
..for looping over JTransforms...
.................................
for (int i=0; i<batch; i++)
{

for (int j=0; j<size*2; j++)
{

tmp[i*size*2+j] = data[i][j];
}

}

cufftHandle plan = new cufftHandle();

long time1 = System.nanoTime();

JCufft.cufftPlan1d(plan, size,

cufftType.CUFFT_C2C, batch);

long time2 = System.nanoTime();

JCufft.cufftExecC2C(plan, tmp, tmp,

JCufft.CUFFT_FORWARD);

long time3 = System.nanoTime();
timing1 = time2 - time1;
timing2 = time3 - time2;
for (int i=0; i<batch; i++)
{

for (int j=0; j<size*2; j++)
{

data[i][j] = tmp[i*size*2+j];
}

}

JCufft.cufftDestroy(plan);

.................................

Figure 3. Snippet of extended code (generalized, essential CUDA part)
of the JCufftSample.java sample program [4]. The grey colorboxes
denote the actual JCuda calls to the CUFFT library. Note the batch
parameter.

Table 1: Elapsed time (in msec) for batched JTransforms (not
shown in the code of Figure 3) and batched JCufft.cufft-
ExecC2C as a function of batch and size (both param-
eters were equalized). Also the JCufft 1D-FFT initialization
time (JCufft.cufftPlan1d) is given. Finally, factor de-
notes the ratio of the batched JTransforms and batched
JCufft.cufftExecC2C times.

256 512 1024 2048
JTransforms 38 199 351 385

JCufft.cufftExecC2C 8 9 16 36
JCufft.cufftPlan1d 65 64 64 64

factor 5 22 22 11

In Table 1 the benchmark results for batched 1D-FFT
via JTransforms and via JCufft.cufftExecC2C
as a function of the input parameters batch and size
are given. In these tests both parameters were set equal
to each other. Note, that although the timing function

System.nanotime() in Figure 3 suggests a very
high time resolution, the accuracy of the resulting timing
values appeared to be much less.

D. Performing batched 1D-FFT with ‘C for CUDA’ code

In order to get an impression of the overhead, caused
by calling CUDA functions from a Java environment (as
was done for getting the results described in III-C), we
repeated the CUDA part of the benchmark with code
written directly in ‘C for CUDA’.
.................................
int batch = 1024;
int size = 1024;
struct timeval tv_start, tv_stop;

cufftComplex *data_h, *data_d;

size_t memsize = batch*size*sizeof

(cufftComplex);

cudaMallocHost((void**)&data_h, memsize);

cudaMalloc((void**)&data_d, memsize);

.....insert data into data_h.....

cufftHandle plan;

cudaMemcpy(data_d, data_h, memsize,

cudaMemcpyHostToDevice);

cufftPlan1d(&plan, size, CUFFT_C2C, batch);

gettimeofday(&tv_start, NULL);

cufftExecC2C(plan, data_d, data_d,

CUFFT_FORWARD);

gettimeofday(&tv_stop, NULL);
double timing_tv = (double)

(tv_stop.tv_usec - tv_start.tv_usec)/1000.0;

cudaMemcpy(data_h, data_d, memsize,

cudaMemcpyDeviceToHost);

.....extract data from data_h....

cufftDestroy(plan);

cudaFreeHost(data_h);

cudaFree(data_d);

.................................

Figure 4. Snippet of ‘C for CUDA’ code (generalized) for batched
1D-FFT. The grey colorboxes denote the actual CUDA calls. For the
sake of simplicity only one timing is shown. Note again the batch
parameter.

In Figure 4 the (generalized) code for the ‘C for
CUDA’-based benchmark is presented. Compared to
Figure 3 there are more lines of code since memory
allocation/freeing (on host and CUDA device) as well
as data transfer between host and device memory now
explicitly must be stated.

Table 2: Elapsed time (in msec) for batched cufftExecC2C as a
function of batch and size (again both parameters were equalized).
Note the lack of the JCufft naming part, when compared to Table
1, indicating that now ‘C for CUDA’ code was used for the bench-
mark. Again also the 1D-FFT initialization time (cufftPlan1d) is
given. Finally, the data-transfer times to and from the CUDA device
(cudaMemcpy) are given.

256 512 1024 2084
cufftExecC2C 0.08 0.08 0.13 0.15
cufftPlan1d 0.04 0.04 0.06 0.06

cudaMemcpyHostToDevice 0.1 0.4 1.7 6.2
cudaMemcpyDeviceToHost 0.2 0.7 3.2 14.0

Table 3: Data-transfer bandwidth (in GB/sec) for cudaMemcpy as a
function of batch and size (both parameters were equalized).

256 512 1024 2084
cudaMemcpyHostToDevice 4.2 4.6 4.7 5.0
cudaMemcpyDeviceToHost 2.4 2.8 2.5 2.2

In Table 3 the data-transfer bandwidth (the rate)
for cudaMemcpy (to and from the CUDA device) is
presented, as calculated from

bandwidth =
1000×memsize
time× 10243

, (1)

where bandwidth is in GB/sec, memsize is the number
of bytes of the batched, complex-valued, float, data
array and time is the elapsed time (timing) in msec.
The bandwidth quantity often is an important factor for
measuring performance in the field of GPU computing
[9].

E. User-guided exhaustive search in MRS parameter
space

When performing in vivo quantitation of metabolites
in MRS, one ususally applies some form of nonlinear
least-squares (NLLS) fitting of a physical model function
to the MRS data. In order to handle unknown lineshapes,
i.e. unknown decays in the measurement (time) domain,
we recently [3] have introduced a second NLLS criterion,
based on the general prior knowledge that the width
of the lineshape is limited. In the results, presented in
this subsection, we have replaced this second NLLS
optimization step by an exhaustive search of the relevant
MRS parameters.

The method has as a starting point [3], that under
certain conditions an in vivo MRS signal s(t) can be
modelled by

s(t) = decay(t)ŝnodecay(t) + noise(t), (2)

where decay(t) is the (usually unknown) decay function
and ŝnodecay(t) the a priori known non-decaying version
of the model function, obtained by summing over the
contributions from the individual metabolites. In this
context the ˆ on ŝnodecay(t) indicates a known mathe-
matical function with unknown values of the parameters.

In the code listed below (see Figure 5) we have illus-
trated the example case of having three MRS parameters
(amplitudes) a1, a2 and a3, representing the concentra-
tions of three metabolites. Since in the exhaustive search
only the ratio of the amplitudes can be determined, the
third parameter a3 was kept fixed at 1.0 and the values of

the others were varied. The starting ratio was assumed to
be found by a separate round of the first NLLS criterium.

After applying a simple estimator for decay(t) [3]
(for all values of a1 and a2 in the exhaustive-search
grid), an essential next step in the method is to perform
a batched 1D-FFT of all nmax

1 ×nmax
2 decay functions.

Finally, the (a1,a2)-combination is to be determined at
which the quantity |Re:FFT[decay(t)]| summed over the
region |ν| > νthreshold is minimal.
.................................
int n1max = 90;
int n2max = 90;
int n3max = 1;

int batch = n1max*n2max*n3max;
int ndp = 1024;

int n1mul = n2max*n3max*ndp;
int n2mul = n3max*ndp;
int n3mul = ndp;

float summin = 1000000.0;

float a1start = 0.25;
float a2start = 0.50;
float a3start = 1.00;

float a1step = 0.0001;
float a2step = 0.0001;
float a3step = 0.0;

float sum;
float *a1, *a2, *a3, *modlshape;

cufftComplex decay, *data_h;

......other initializations......

.........and assignments.........

for (n1=0; n1<n1max; n1++)
{
a1[n1] = a1start - (float)

0.5*n1max*a1step + (float) n1*a1step;
for (n2=0; n2<n2max; n2++)
{
a2[n2] = a2start - (float)

0.5*n2max*a2step + (float) n2*a2step;
for (n3=0; n3<n3max; n3++)
{
a3[n3] = a3start - (float)

0.5*n3max*a3step + (float) n3*a3step;
for (n=0; n<ndp; n++)
{

...estimate decay from MRS signal...

index = n1*n1mul + n2*n2mul + n3*n3mul
+ n;

data_h[index].x = decay.x;
data_h[index].y = decay.y;

}
}

}
}

....batched 1D-FFT via cufft.....

for (n1=0; n1<n1max; n1++)
for (n2=0; n2<n2max; n2++)
for (n3=0; n3<n3max; n3++)

{
sum = 0.0;
for (n=0; n<ndp; n++)
{

index = n1*n1mul + n2*n2mul + n3*n3mul
+ n;
modlshape[n] =

sqrtf(data_h[index].x
*data_h[index].x);

if ((n > (int)(0.2*(float)ndp)) &
(n < (int)(0.8*(float) ndp)))

{
sum = sum + modlshape[n];

}
}

if (sum < summin)
{

summin = sum;
n1tune = n1;
n2tune = n2;
n3tune = n3;
a1tune = a1[n1tune];
a2tune = a2[n2tune];
a3tune = a3[n3tune];

}
}

.................................

Figure 5. Snippet of ‘C for CUDA’ code (generalized) for user-guided
exhaustive search in MRS parameter space. The grey colorboxes denote
CUFFT-based code (see Figure 4). For the sake of simplicity timings
are not shown now.

Table 4: Elapsed time (in msec) and data-transfer bandwidth (in
GB/sec) for various parts of the exhaustive-search ‘C for CUDA’ code
in Figure 5 (batch = 8100 and ndp = 1024).

time bandwidth
insert data into data_h 417
cudaMemcpyHostToDevice 12 5.0

cufftPlan1d 0.06
cufftExecC2C 0.18

cudaMemcpyDeviceToHost 18 3.4
extract data from data_h 249

In Table 4 the benchmark results for various parts of
the exhaustive-search ‘C for CUDA’ code in Figure 5
are shown. In this sample case we have worked with the
simulated MRS signal (noiseless version) used in our
lineshape study [3].

Figure 6 gives an impression of the minimizing of
|Re:FFT[decay(t)]| (summed over |ν| > νthreshold),
when varying (a1,a2) (the third amplitude a3 was kept
fixed at 1.0). We have found an amplitude ratio of 0.2498
: 0.4994 : 1.0, which agrees well with the true ratio of
0.25 : 0.5 : 1.0.

Finally we like to note that we have called this subsec-
tion ‘User-guided exhaustive search’ because, firstly, we
have assumed to have a reasonably good starting ratio
for the amplitudes (obtained with a separate round of the
first NLLS criterium) and, secondly, we have established
in a user-interactive way a suited grid for (a1,a2).

IV. DISCUSSION

A. Concerning the Java-based benchmark
The numbers in Table 1 show that the JCufft

initialization time is larger than the batched JCufft
execution time itself. Moreover, the initialization time is
independent of the batch and size parameters (for the
given range). This suggests that acceleration of batched
JCufft with respect to batched JTransforms, as
indicated by factor in Table 1, is realized only if
batched JCufft is performed several times with using
the same JCufft initialization.

Concerning the acceleration factor of 22 in Table
1 (for batch = 512, 1024) we like to mention that
this result more or less agrees with results that can be
deduced from tables in [8] (for the case of single 1D-
FFT). Moreover, in the latter benchmark it also is shown
that JTranforms has comparable execution times with
respect to FFTW [10]. This is of interest to us since
the FFTW method is applied in our jMRUI software
package.

Figure 6. The quantity |Re:FFT[decay(t)]| as a function of index
(see text and Figure 5).

B. Concerning the ‘C for CUDA’-based benchmark
When comparing Table 1 with 2, a striking differ-

ence in 1D-FFT initialization time (see timings of the
cufftPlan1d’s) seems to be indicated. However, from
inspection of the JCufft Java class (see source code
[4]) it can be learned that its cufftPlan1D method
performs dynamic library loading (library initialization),
if it is the first time a JCufft method is being called.
We have investigated this aspect any further in a separate
code, in which the JCufft.cufftPlan1D method
was called twice. The timing found for the second call
yielded a negligible small value, in agreement with the
‘C for CUDA’-results for cufftPlan1D listed in Table
2.

Another point of interest in the Table 1 - 2 com-
parison is the difference in cufftExecC2C tim-
ings. Again here the explanation can be found in

the source code of the JCufft Java class. It ap-
pears that memory allocation/freeing and data transfer
(between host and CUDA device), as mentioned in
III-D, are included in the JCufft.cufftExecC2C
method. This is clearly demonstrated by the fact that the
summed timings for cudaMemcpyHostToDevice
and cudaMemcpyDeviceToHost (in Table 2) are
of the same order of magnitude as the timings for
JCufft.cufftExecC2C (in Table 1).

Finally we like to note that the data-transfer band-
widths, presented in Table 3, are of the same order of
magnitude as the 8 GB/sec bandwidth reported for the
PCI Express 2.0×16 bus [9] (used in our desktop PC).

C. Concerning the exhaustive-search benchmark

From inspection of Table 4 it can be seen that inserting
data into or extracting from data_h (the array involved
in the batched 1D-FFT) by far is the dominant timing
factor. This clearly is caused by the two fourfold for-
statement loopings involved (see Figure 5). This suggests
that these code parts also must be carried out in the
CUDA device.

V. CONCLUDING REMARKS

Summarizing we like to make the following conclud-
ing remarks:

• We have assembled a low-cost CUDA-capable
desktop PC, reflecting the PC state-of-the-art of
about 1 1

2 years ago.
• Via the Ubuntu 9.10 Linux operating system we

could enable CUDA by installing a recent Linux
NVIDIA driver and the CUDA software (version
2.3).

• By applying the Java-bindings based JCuda soft-
ware package we could call CUFFT library func-
tions from a Java environment.

• We could easily perform batched (multiple) 1D-
FFT in a parallel fashion by exploiting the batch
facility of CUFFT 1D-FFT for a CUDA-enabled
GPU device. In this way we could avoid for state-
ment looping, needed for the (CPU-based) reference
method.

• We could speed up the batched 1D-FFT execution
time by about a factor of 20 by applying the GPU-
based rather than the CPU-based approach.

• Easy comparison of Java-based and ‘C for CUDA’-
based benchmarking appeared to be hindered by the
choices made for the JCuda implementation.

• The CUDA-based benchmark results, reported in
this work, seemed to be limited by the data-transfer
bandwidth of the computer PCI Express 2.0×16
bus.

• If data-transfer speed indeed is the limiting factor,
significant computational accelerations can only be

achieved if major parts of the numerical calculations
can be carried out in the CUDA GPUs.

• In the context of the latter, enhanced double-
precision and amount of local memory of re-
cent/future CUDA devices will become important.

• Using CUDA-based batched 1D-FFT, we could
carry out a sample user-guided exhaustive-search
in MRS parameter space.

ACKNOWLEDGMENT

This work is supported by Marie-Curie Research Training Network
‘FAST’ (MRTNCT-2006-035801, 2006-2009).

REFERENCES

[1] NVIDIA, “CUDA 2.3 downloads,”
http://developer.nvidia.com/object/cuda 2 3 downloads.html,
2009.

[2] D. Stefan, F. D. Cesare, A. Andrasescu, E. Popa, A. Lazariev,
E. Vescovo, O. Strbak, S. Williams, Z. Starcuk, M. Cabanas,
D. van Ormondt, and D. Graveron-Demilly, “Quantitation of
magnetic resonance spectroscopy signals: the jMRUI software
package,” Meas. Sci. Technol., vol. 20, p. 104035 (9pp), 2009.

[3] E. Popa, E. Capobianco, R. de Beer, D. van Ormondt, and
D. Graveron-Demilly, “In vivo quantitation of metabolites with
an incomplete model function,” Meas. Sci. Technol., vol. 20, p.
104032 (9pp), 2009.

[4] Jcuda.org, “Java bindings for CUDA,”
http://www.jcuda.org/, 2010.

[5] D. Stefan, A. Andrasecu, E. Popa, H. Rabeson, O. Strbak,
Z. Starcuk, M. Cabanas, D. van Ormondt, and D. Graveron-
Demilly, “jMRUI Version 4 : A Plug-in Platform,” in IEEE
International Workshop on Imaging Systems and Techniques, IST
2008, Chania, Greece, 10-12 September 2008, pp. 346–348.

[6] NVIDIA, “CUDA Getting Started, version 2.3,”
http://developer.nvidia.com/object/cuda 2 3 downloads.html,
2009, manual.

[7] ——, “CUDA CUFFT Library, version 2.3,”
http://developer.nvidia.com/object/cuda 2 3 downloads.html,
2009, manual.

[8] P. Wendykier, “JTransforms,”
http://sites.google.com/site/piotrwendykier/software/jtransforms,
2009, an open source multithreaded FFT library written in pure
Java.

[9] NVIDIA, “CUDA Best Practices Guide, version 2.3,”
http://developer.nvidia.com/object/cuda 2 3 downloads.html,
2009, manual.

[10] M. Frigo and S.G. Johnson, “FFTW,”
http://www.fftw.org/, 2010, a C subroutine library for computing
the discrete Fourier transform.

