
Scalability of a Parallel JPEG Encoder on Shared
Memory Architectures

David Castells-Rufas1, Jaume Joven2, Jordi Carrabina3
CEPHIS-Universitat Autònoma de Barcelona

Edifici Enginyeria, Campus UAB, Bellaterra, Spain
1david.castells@uab.es

2jaume.joven@uab.es

3jordi.carrabina@uab.es

Abstract— Embedded multimedia systems are expected to fully
embrace the future many-core wave. As a consequence parallel
programming is being revamped as the only way to exploit the
power of coming chips. While waiting for them we try to
extrapolate some lessons learned from current multi-cores to
influence future architectures and programming methods. In this
paper we investigate the parallelism and scalability of a JPEG
image encoder, which is a typical embedded application, on
several shared memory machines using the OpenMP
programming framework. We identify the Huffman coding as
the bottleneck that blocks the application from scaling above a 7x
factor. We propose a strategy to parallelize the Huffman coding,
which introduces a small degradation in some parts of the image,
allowing to reach higher speedup factors. A factor of 18.8x has
been reached in SGI Altix 4700 using 22 threads. Contrasting
these results with some previous works using message passing
architectures we consider that the use of OpenMP on top of
shared memory architectures should be reconsidered for future
chips in favor of message passing architectures and
programming models.

Keywords— JPEG, encoder, OpenMP, performance,
parallelization

I. INTRODUCTION
JPEG encoding is present as an important function of many

embedded devices such as smart phones and still cameras. In
such embedded environments it is cost effective to have
dedicated hardware to assist the JPEG encoding, which is a
computational demanding task. However, with a new wave of
many-core processors on the horizon, which are expected to
land in the embedded arena, maybe it will not be cost effective
to add a specific core to assist the task if the already present
many-core processor can do the job.

There is no consensus about what paradigm will be used in
future many-core processors. Many of the current proposals
are based on the shared memory paradigm. Shared memory is
perceived as a beneficial paradigm because it offers an easy
programming environment that relies upon having good
compilers and runtimes. However we would like to show how
shared memory paradigm limits the scalability of applications,
like JPEG encoding, which could be further accelerated using
other more scalable paradigms like message passing or stream
processing.

II. PREVIOUS WORK
The high compression ratios achieved by the JPEG

standard are based on the fact that only few values can be used
to describe each block of an image after DCT transform and
quantization processes has been applied. These few values are
then Huffman coded to reduce the final number of bits that are
finally stored (see Figure 1).

JPEG encoding has received much attention because of its
commercial interest and has been implemented in many
different platforms. There is a vast amount of literature about
the different parts of the encoder and also many
implementations in several different platforms. Since it is
difficult to cover the entire work in the literature, we only
provide some pointers to some representative contributions.

Fig. 1 Block diagram of the JPEG encoding process

To the best of our knowledge, the maximum JPEG
encoding performance is obtained when custom hardware is
used, usually as part of an ASIC. Nethra claims in [1] that his
commercially available NI2065/66 chip offers a performance
of 75MPixels/s. Kovac and Ranganathan claim in [2] that, if
implemented, their Jaguar chip design would give
100MPixels/s working at 100Mhz clock frequency. ASIC
designs offer a very good performance, but this comes with a
sacrifice to flexibility since the chips can not be reused for
other tasks.

Some more flexibility is offered by DSPs, ASIPs and
FPGAs. For instance, Cast, Inc. claims in [3] that their
encoder IP can encode more than 30 frames per second at a
4/3 HDTV resolution in an Altera EP3SE50 device running at
250Mhz. This is equivalent to more than 50MPixels/s. The

2010 39th International Conference on Parallel Processing

0190-3918/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPP.2010.58

502

same performance is claimed by Texas Intruments in [4] using
the TMS320DM355 chip running at 216Mhz.

Hardware implementations often require using the minimal
amount of memory, so they are commonly based on a
pipelined design (see Figure 2). The way to achieve the
maximum performance is to split the process in the greater
possible number of stages and reduce the pipelining period,
which is determined by the time needed by the slowest stages.

Fig. 2 Hardware pipeline

This parallelization strategy gives impressive performance
and can also be implemented in software quite effectively as
reported by Shee in [5] and Osorio in [6]. These works use
Xtensa SL, and Ambric many-core processors respectively,
which are message passing architectures in which pipeline can
be easily implemented. The maximum reported performance
is 31MPixels/s.

On the other hand, Shared Memory architectures are not
specially addressed to pipelined processes and their natural
programming frameworks, like OpenMP, encourage
exploiting the parallelism at the data level. However it is
shocking to notice the few number of works that have
addressed the parallelization of embedded applications in this
kind of architectures, and the few number of processors used
in most scalability studies. For instance, Oh ([7]), Kodaka
([8]), and more recently Tumeo ([11]) have addressed the
parallelization of JPEG encoding on shared memory
architectures and its scalability up to just four processors.

III. IDENTIFICATION OF THE ALGORITHMIC BOTTLENECKS
The sequential JPEG encoding process could be described

by the following pseudo-code.

write headers
for each block of the image
{
 r0 = rgb2yuv(block)
 r1 = dct(r0)
 r2 = q(r1)
 r3 = zigzag(r2)
 eDC = dcEncode(r3[0], lastDC)
 write(eDC)
 lastDC = r3[0];
 rles = RLE (r3)
 eAC = Huffman(rles)
 write(eACs)
}

With a simple profiling of the above sequential encoder
implementation we can prove, as reported by innumerable
works before, that the most time-consuming functions of the

encoding processes are 2D DCT transform, color conversion,
quantization, and Huffman coding, respectively.

All the functions work with a small amount of memory (a
block of 64 values at most) and each block is almost
processed totally independently from the rest. A first problem
that prevents us from treating each block independently is the
data dependency between a block and the previous one,
because the previous DC value is needed to compute the
differential encoding of the DC coefficients.

If we split the loop in two, we can have a fist loop with the
DCT and Quantization and Zig-Zag and a second loop with
the remainder. But in order to do that, we need a large
intermediate memory to store the results of the Zig-Zag
function for each block of the image. So the modified pseudo-
code would be as follows.

write headers
for each block of the image
{
 r0 = rgb2yuv(block)
 r1 = dct(r0)
 r2 = q(r1)
 r3[block] = zigzag(r2)
}

for each block of the image
{
 eDC = dcEncode(r3[block][0],
 r3[prev_block][0])
 write(eDC)
 rles = RLE (r3)
 eAC = Huffman(rles)
 write(eACs)
}

Now the first loop contains the most computing demanding
functions and can be totally parallelized. But as we do that we
observe the Amdahl's Law effects as the second sequential
loop becomes dominant. Figure 3 depicts this effect in a
hypothetical 4 processor system encoding a 8 block image.
Four processors are simultaneously computing Color, DCT, Q,
ZZ functions of different blocks until all blocks are computed.
Afterwards Huffman codes must be serially processed. In the
image different colors represent the data dependencies among
functions. Each box represents a function that is executed in a
processor.

Fig. 3 First loop parallelization

Most works in the literature pay much attention to the
parallelization of this first loop, resulting in designs that show
poor scalability. We have implemented a first parallel version
of the encoder that only parallelizes the first loop.

The scalability results are shown in Figure 4. In this simple
test we have encoded the bruno image on several Shared
Memory platforms. In section 5 more details will be given
about test images and execution platforms.

P1

P2

P3

P4

P5

P6

D
Q

Z

c

D
Q

Z

c

D

Q
Z

c
D

Q
Z

c

H
I/
O
H

I/
O
H

I/
O

H

I
/O

D
Q

Z

c
D

Q
Z

c

D

Q

Z

c
D

Z

c

H H H H
I/
O I/

O I/
O I/

O

Q

DCT Q ZZColor Huf P1

P2

P3

P4 DCT Q ZZColor

DCT Q ZZColor

DCT Q ZZColor

I/
O

Huf I/
O

Huf I/
O

Huf I/
O

DCT Q ZZColor

DCT Q ZZColor

DCT Q ZZColor

DCT Q ZZColor

Huf
I/
O

Huf
I/
O

Huf
I/
O

Huf
I/
O

503

As previously discussed, the scalability of the encoder is
poor due to the sequential Huffman loop. The maximum
achieved speedup is 7x in Altix machine which is the slowest
system of the set. In faster Xeon machines the maximum
speedup is below 4x.

Fig. 4 Scaling of trivial parallelization of the JPEG encoding in various
Shared Memory Platforms.

The parallelization of the second loop is harder because it
writes the Huffman codes to the output bitstream. This is a
problem because writing should be done in order and the
written codes have a variable length, so it is not possible to
calculate the offset for each result into the output bitstream.
But even more important is the fact that resulting codes are bit
aligned. So, in case we could compute the codes in parallel we
would need to join them properly by a costly process of bit
alignment, which is much more complex than a desirable
simple memory copy.

Cook presented in [9] and [10] various strategies to perform
the bit alignment and overcome this bottleneck, showing how
JPEG could be effectively parallelized. Later on some
extensions were added to JPEG coding ([12]) to allow the
tiled coding of images, providing better error correction
features and enabling the parallel encoding and decoding of
the images. In order to do that, some new restart markers
where introduced to identify the boundaries of the tiles and
ensure that the critical information was byte aligned. These
features have received the attention of the industry as shown
in [13] but their use is far from universal.

IV. PROPOSED PARALLELIZATION
Having a variable length output from the Huffman coding

is very beneficial to provide a high compression ratio but
complicates the concatenation of several parallely computed
bitstreams. Recall that, if the results from the Huffman coding
were byte aligned, we could produce them in parallel and join
them easily in a final step. Could we force a byte alignment
resynchronization in certain parts of the bistream ?

We propose a way to parallelize the JPEG encoder without
using JPEG extensions or the realignment techniques used by
Cook. Instead, we propose to use the cause of the problem as
the solution to the problem. If the variable Huffman codes
create a byte misalignment, we could use an arbitrary number
of "convenient" Huffman codes to realign the bitstream to
byte boundaries.

Figure 5 describes this method. The top bitstream
corresponds to a hypothetic JPEG image. In the figure we can
see a complete block and the beginning of the following block.
A block starts with the encoded value of the DC coefficient,
and is followed by an undetermined number of encoded run-
lengths of AC coefficients. Notice that encoded values have a
variable length and are not byte aligned. The bottom bitstream
is the result of applying the proposed method. When the first
shown block is encoded, it is specified that realignment must
be applied. So, after the DC a number of Huffman codes with
odd length are written to the bitstream until byte boundaries
are reached.

Fig. 5 Realignment to byte boundaries by replacing some Huffman codes by
convenient ones

Since we parallelize the outer loop of the block iteration
(the row loop) we apply the substitution at the last block of the
row. This process eventually degrades the quality of the image
since important AC component are removed. But, since the
selected blocks contain the Cr color component information,
and their associated Y and Cb components are preserved, the
quality loss will not be noticeable for most large photographic
images.

Fig. 6 Detail of large original images (left) and their parallely encoded results
(right) for photographic images

The effect of the parallelization strategy on the image
quality is shown in Figures 6 and 7. As we eliminate the high
frequency coefficients from the last block of each row, a
blurred band is created at the right edge of the image.
Synthetic images are more affected than photographic images
because they usually contain more high frequency information.
Photographic images usually have less variability in the

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Threads

Sp
ee

du
p

Ideal Speedup
Xeon E7310
Xeon E7350
Xeon X5670
Ultra Sparc T2
SGI Altix 4700

DC ACs ACs ACs ACs ACs ACsDC

DCX ACs DC X X
Realigned

Missaligned

504

chrominance fields so the degradation is less evident to the
human eye.

Fig. 7 Detail of large original images (left) and their parallely encoded results
(right) for synthetic images

We have to modify the encoding algorithm in order to
incorporate the byte realignment feature we are proposing.
The second loop has to be spitted again in two loops and
partial bitstreams must be created for each row. So, now the
second loop writes the encoded values in the bitstream
associated to each row, and when the end of the row is
detected the last block is forced to realign to byte boundaries.
Finally a third loop concatenates all row bitstreams to the final
bitstream by simple memory copy operations.

This algorithm can be effectively parallelized because the
first loop (DCT, Q, Zig-Zag) and second loop (Byte-aligned
Huffman by row) have no data dependencies between
iterations.

write headers
for each block of the image
{
 r0 = rgb2yuv(block)
 r1 = dct(r0)
 r2 = q(r1)
 r3[block] = zigzag(r2)
}

for each row of the image
 for each block of the row
 {
 eDC = dcEncode(r3[block][0],
 r3[prev_block][0])
 write(eDC, encRow[row])

 if (block is last)
 {
 realign(encRow)
 }
 else
 {
 rles = RLE(r3)
 eAC = Huffman(rles)
 write(eACs, encRow[row])
 }
 }

for each row of the image
{
 write(encRow[row])
}

The second loop no longer represents a bottleneck to
prevent the application scaling, and greater speedups can be
achieved. The parallelization strategy is graphically depicted
in Figure 8.

Fig. 8 Proposed parallelization strategy

V. IMPLEMENTATION & RESULTS
We test the encoder performance with two big resolution

images bruno and women. The bruno image is a 3MPixels
(2000x1502) color image, the women image is a 16MPixels
(4992x3328) color image.

The test platforms are Shared Memory architectures. Intel
Xeon 7310, Intel Xeon 7350, Intel Xeon X5560, Ultra Sparc
T2 (see Table 1). Although not addressed to the embedded
market, these CPUs can give us an idea of the features that
would offer future embedded Shared-Memory many-core
processors.

TABLE I
TEST PLATFORMS

 Xeon
7310

Xeon
7350

Xeon
X5570

Ultra
Sparc

T2

SGI
Altix
4700

Processors 16 16 8 4 256
Threads x
processor 1 1 1 8 1

Threads 16 16 8 32 256
Clock
Freq. 1.6GHz 2.93GHz 2.93GHz 1.2GHz 1.6GHz

Cache 2x2MB 2x4MB 8MB 4MB 8MB

Figure 9 shows the time taken by different processors to

compress the women image. The Xeon X5570 (Nehalem
architecture) offers the best Single Thread performance, and
when using multiple threads gets the lowest encoding times:
51ms and 275ms to encode the bruno and women images
respectively. In terms of pixel performance this is almost 60
MPixels/s, which is higher than all FPGA and DSP reported
implementations and very close to pure ASIC ones. But this is
not a very fair comparison because hardware assisted encoders
run at lower clock frequencies offering a much better power
efficiency ratio.

If we just focus on performance, although ASIC and DSP
implementations could try to increase their clock frequency,
this is not a feasible task for current FPGA devices. On the
other hand, message passing many-core architectures, like
Ambric, have shown less performance but running at a
significantly lower clock frequency.

DCT Q ZZColorP1

P2

P3

P4 DCT Q ZZColor

DCT Q ZZColor

DCT Q ZZColor

Huf I/
O

Huf
I/
O

Huf

I/
O

Huf

I/
ODCT Q ZZColor

DCT Q ZZColor

DCT Q ZZColor

DCT Q ZZColor

Huf
Huf
Huf
Huf

I/
O

I/
O

I/
O

I/
O

505

Fig. 9 Time to compress women image on different platforms for different
threads (Y axis is in logarithmic scale)

We have scaled up to 32 threads to analyze the scalability
of the application on the different platforms (see Figure 11).
We get a maximum speedup factor of 18x in Altix machine
using 22 threads. After 22 threads the Altix machine has an
erratic performance and the T2 offers little speedup after
adding threads.

Fig. 10 Application scalability on different plaforms for the bruno image

Fig. 11 Application scalability on different platforms for the women image

We cannot measure the power consumption of the tested
machines to observe the energy efficiency of the different
computing platforms. But what we can do is use clock cycles
instead of time to normalize the disparity of frequencies of
operation. Since clock frequency is one of the main drivers of
dynamic power consumption this can be a feasible way to
have an idea of the efficiency of the different platforms. Of
course, this analysis should be taken with skepticism because
frequency is not the only driver to energy consumption. In
Figure 12 we can see that, although shared memory approach
is feasible and gives acceptable performance, it has a much
lower efficiency of all the other alternatives. Looking at
results published by Osorio (in [6]) it is interesting to see their
message passing implementation has a much better ratio than
our developed shared memory ones.

1000,00

200,00

103,33

23,18
20,10

14,44
8,90

5,86
2,67

1,00 10,00 100,00 1000,00

Jaguar

Altera

Ambric

Xeon E7310

Xeon X5670

Xeon E7350

Altix

Ultra Sparc T2

Blackfin

Performance/Frequency in MPixels/GHz

Fig. 12 Performace/Frequency ratio for different platforms in MPixels/GHz.

VI. CONCLUSIONS
We have proved that, introducing an small reduction of

quality in the image, JPEG encoding can be speeded up to 20x
by performing the Huffman coding on independent byte-
aligned bitstreams that can be finally joined using a fast
memory copy operation. This allows surpassing the
performance offered by previous referenced shared memory
implementations by more two fold.

However, the scalability depends on the image size and the
platform used. It is important to notice that in most platforms
the encoder shows a linear speedup for less than 16 threads,
but after that the application scales poorly. Extrapolating the
results one could see no significant benefits going above 32
processors.

Data locality is the key to good scalability, but shared
memory architectures must provide a logical common global
memory view. These contradictory requirements are projected
to the programming frameworks. Shared Memory frameworks,
like OpenMP, are embraced for the sake of programmer's ease
of use, expecting to have a compilation tool-chain or runtime
environment that will do a reasonable good job. But to
efficiently place data into the global space some complex
pragmas or access patterns must be performed. In fact, this is

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Threads

Ideal Speedup
Xeon E7310
Xeon E7350
Xeon X5670
Ultra Sparc T2
SGI Altix 4700

0,275

2,048

1,298

0,1

1

10

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Threads

Ex
ec

ut
io

n
Ti

m
e

Xeon E7310
Xeon E7350
Xeon X5670
Ultra Sparc T2
SGI Altix 4700

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Threads

Ideal Speedup
Xeon E7310
Xeon E7350
Xeon X5670
Ultra Sparc T2
SGI Altix 4700

Sp
ee

du
p

Sp
ee

du
p

506

introducing some explicit communication details and, indeed,
deriving into a more complex code.

On the other hand, being free from a global memory view,
message passing architectures can exploit data locality at its
best at the cost of more programming effort. In addition, we
should argue that this claim is sometimes gratuitous. If we
take, for instance, the common pipelined design of a JPEG
encoder it turns out to be more complex to implement in
OpenMP than in MPI.

From the obtained results we observe that a typical
embedded application like JPEG encoder do not scale above
32 threads using the shared memory paradigm, and
programming frameworks like OpenMP cannot easily express
convenient pipeline designs or control data locality. We
advocate for adopting message passing architectures and
programming methods for future embedded many-cores that
allow closing the gap between them and ASICs in terms of
energy efficiency.

ACKNOWLEDGMENTS
The authors want to thank Alejandro Duran, Eduard

Ayguade and Barcelona Supercomputing Center for granting
access to their Altix machine and their valuable support.

This work was partly supported by the European ITEA2
ParMA (Parallel programming for Multicore Architectures)
Project, the Spanish Ministerio de Industria, Turismo y
Comercio project TSI-020400-2009-26 and Ministerio de
Ciencia y Innovacion project TEC2008-03835/TEC, the
Catalan Government Grant Agency Ref. 2009SGR700.

REFERENCES
[1] Nethra Imaging, NI-2065/66. 3.2 Megapixel Smart Camera Module

Image Processor with JPEG Encoder (available at
http://www.nethra.us.com/pdf_files/ProdBrief_NI2065-66.pdf)

[2] Kovac, M. & Ranganathan, P. JAGUAR: a high speed VLSI chip for
JPEG image compression standard VLSI Design, International
Conference on, IEEE Computer Society, 1995, 0, 220

[3] http://www.altera.com/products/ip/dsp/image_video_processing/m-cas-
jpeg-e.html

[4] http://focus.ti.com/docs/prod/folders/print/tms320dm355.html
[5] Shee, S.; Erdos, A. & Parameswaran, S. Heterogeneous multiprocessor

implementations for JPEG:: a case study Proceedings of the 4th
international conference on Hardware/software codesign and system
synthesis, 2006, 222

[6] Osorio, R. R.; Díaz-Resco, C. & Bruguera, J. D. Highly Parallel Image
Processing on a Massively Parallel Processor Array XX Jornadas de
Paralelismo, A Coruña, 2009

[7] Oh, J.; Kim, S. & Kim, C. OpenMP and Compilation Issues in
Embedded Applications Lecture notes in computer science, Springer,
2003, 109-121

[8] Kodaka, T.; Kimura, K. & Kasahara, H. Multigrain parallel processing
for jpeg encoding on a single chip multiprocessor Proceedings of the
International Workshop on Innovative Architecture for Future
Generation High-Performance Processors and Systems (IWIA'02),
2002, 57

[9] Cook, G. W. & Delp, E. J. The Use of High Performance Computing in
JPEG Image Compression the Twenty-Seventh Asilomar Conference
on Signals, Systems, and Computers, 1993, 846-851.

[10] Cook, G. & Delp, E. An investigation of JPEG image and video
compression using parallel processing IEEE International Conference
on Acoustics, Speech and Signal Processing, 1994, 5

[11] Tumeo, A.; Monchiero, M.; Palermo, G.; Ferrandi, F. & Sciuto, D. A
design kit for a fully working shared memory multiprocessor on FPGA
Proceedings of the 17th ACM Great Lakes symposium on VLSI, 2007,
222

[12] ITU-T Recommendation T.84 | ISO/IEC 10918-3:1996, Information
Technology Digital Compression and Coding of Continuous-Tone Still
Images: Extensions

[13] Moussavi, F.; Lin, S.; Kopet, T. & Jabbi, A. Method and apparatus for
parallelization of image compression encoders, US Patent App.
11/730,718, 2007.

507

