
On Parallelizing Universal Kriging Interpolation based on OpenMP

Tangpei Cheng, Dandan Li, Qun Wang*
School of Information Engineering

China University of Geosciences (Beijing)
Beijing, P.R.China
qunw@cugb.edu.cn

Abstract—Kriging is one of the important interpolation
methods in geostatistics, which has been widely applied in
engineering project. In this paper, we present an efficient
method for the parallelization of universal Kriging
interpolation on shared memory multiprocessors. By using
OpenMP directives, we implement a portable parallel
algorithm, which enables an incremental approach to add
parallelism, without modifying the rest part of sequential code.
To achieve optimal performance, the parallel grain size has
been considered and analyzed. Numerical experiments have
been carried out on two multicore windows workstations, the
results of which demonstrate this method could enhance the
overall performance significantly.

Keywords- Kriging; spatial interpolation; parallel algorithm;
OpenMP

I. INTRODUCTION
Kriging interpolation method is a group of geostatistical

techniques to interpolate the value of a random field at an
unobserved location from observations of its value at nearby
locations. Kriging interpolation method has been widely
applied in mining [1], hydrogeology [2], environmental
science [3], black box modeling in computer experiments [4]
and remote sensing [5] etc., which is also a computational
bottleneck of these applications, preventing them from
obtaining desirable performance. For this reason, research on
parallel computing for Kriging interpolation has received
considerable attention in recent years to improve the overall
performance [6-10]. We note that most of these works are
implemented on high-performance computer or distributed
memory clusters by using MPI. Due to the emerging trends
of multicore CPU recently, the shared memory
multiprocessors, which support an incremental
parallelization from serial program, are readily available.
Therefore, the main objective of this work is to present a
parallel version of universal Kriging interpolation method
based on OpenMP, which could meet the intense demands
on performance.

The outline of this paper is as follows. Section 2 gives a
brief description of OpenMP programming paradigm.
Section 3 gives an overview of the universal Kriging method
and the OpenMP parallel implementation details on it.
Experimental results as well as performance analysis are
presented in Section 4 and Section 5 summarizes the work.

II. OPENMP PROGRAMMING PARADIGM
OpenMP is a shared-memory application programming

interface (API), whose features are based on prior efforts to
facilitate shared-memory parallel programming [11]. As
shown in Fig. 1, OpenMP provides a fork-and-join execution
model which supports an incremental approach to design
parallel programs. Parallel work can be explicitly coded
through the use of parallel regions, or implicitly obtained by
work-sharing constructs, such as parallel loops. Compared to
MPI, OpenMP applications are relatively easy to implement
from the standard sequential code only by placing parallel
directives around time consuming loops which do not
contain data dependences, leaving the most part of the
program unchanged. Another salient advantage of OpenMP
lies in that it could achieve low latency and high bandwidth.
Also, it adds fine granularity and enables increased and
dynamic load balancing, which may lead to performance
enhancement. More detail information about OpenMP can be
found at the web site: http://www.openmp.org.

Fork

Fork

Join

Join

a group of threads

master thread

parallel region

parallel region

time

Figure 1. The fork-join model of OpenMP. Program begins execution as a
single thread until a parallelization directive for a parallel region is found.
Then the master thread creates a group of threads and the intensive
computational work can be distributed among threads, without explicitly
distributing the data.

2010 Ninth International Symposium on Distributed Computing and Applications to Business, Engineering and Science

978-0-7695-4110-5/10 $26.00 © 2010 IEEE

DOI 10.1109/DCABES.2010.14

36

III. PARALLELIZING OF UNIVERSAL KRIGING
INTERPOLATION

A. Universal Kriging Interpolation
The basic premise of Kriging interpolation is that every

unknown point can be estimated by the weighted sum of the
known points:

 ii

n

i
ZZ λ

1

*
0 =

Σ= (1)

where *
0Z represents the unknown point, iZ refers to each

known point and iλ is the weight given to it. The body of
the Kriging algorithm is involved in the selection of the
appropriate weights. For details about the theory of Kriging
interpolation, readers may refer to [12] [13].

Universal Kriging assumes a general linear trend model.
It includes the drift functions to calculate)(xm , which is the
expectation of)(xZ . Considering

2
54

2
3210)(vauvauavauaaxm +++++= (2)

where u , v are the coordinates of point x . Then we
can get

2
05004

2
0302010

2
54

2
3210)(

yayxaxayaxaa

yayxaxayaxaa iiiiii
i

i

+++++=

+++++∑ °λ
 (3)

In order to set up Eq. (3), the following equations can be
gotten

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

==

==

==

∑∑

∑ ∑

∑ ∑

°°

°°

°°

i
ii

i
iii

i i
iiii

i i
iii

yyyxyx

xxyy

xx

2
0

2
00

2
0

2
0

0

;

;;

;;1

λλ

λλ

λλ

 (4)

Set

 ∑ ==°

i
lili lxPxP)5,4,3,2,1,0(),()(0λ (5)

in which { }22 ,,,,,1 yxyxyxPl = .
As

∑∑∑ °°° −

+=−

i
iijij

i j
i xxcxxc

ZVarZZE
),(2),(

)(])[(

0

0
2

0
*
0

λλλ
 (6)

where),(),(jiji ZZCOVxxc = and

),(),(00 ZZCOVxxc ii = , based on Lagrange multiplier rule,
we have

⎪
⎪
⎩

⎪⎪
⎨

⎧

==

==−

∑

∑ ∑
°

=

°

i
lili

j l
iilljii

lxPxP

nixxcxPxxc

)5,,1,0()()(

),,2,1(),()(),(

0

5

0
0

λ

μλ
 (7)

which could be rewritten in the matrix form such as
bAx = to calculate the value of),,2,1(nii =°λ . From Eq.

(1), finally we could get the estimation of unknown points.

B. Parallel Algorithm on Shared-memory System
As stated in section 1, the computational steps of

universal Kriging method which is based on covariance
function could be schematically summarized as follow:
Step 1 calculating the distance between each known point;
Step 2 sorting the distances according to their values;
Step 3 grouping the sorted distances;
Step 4 constructing a variogram and the covariance function

),(yxc ;
Step 5 computing covariance between each known point and
then the coefficient matrix A ;
Step 6 computing the inverse matrix of A ;
Step 7 calculating the weights []Tnλλλ ,,, 21 and then the
estimate for each unknown point.

The first task in a parallel implementation is to identify the
portions of the code where there is parallelism to exploit
[14]. In scientific codes, the most common form of
parallelism is data parallelism; and for shared-memory
systems, it typically comes from the iterative loops.

In our work, an incremental approach based on OpenMP
to parallelize the universal Kriging interpolation algorithm
was carried out. By placing directives around time
consuming loops which do not contain data dependences, the
parallelization can be applied separately to individual parts,
leaving the rest of source code unchanged. By profiling the
execution of the sequential code of universal Kriging, it is
noted that step 7, which involved a three-level nested loop,
took up the most part of computational time. The program
structure of step 7 can be briefly outlined as follow:

;
;

10:

;
;

50:
50:

;

10:
10:

endfor
endfor

estimatesthegcalculatin
doNVtojfor

endfor
endfor

weightsthegcalculatin
doNVtokfor

doNVtojfor

endfor
RHSthegcalculatin

doNVtojfor
doNPtoifor

−=

+=
+=

−=
−=

The variables i, j, and k are the loop counter of each for-

loop. The variables NP and NV refer to the number of
unknown and known points respectively. RHS denotes the
right hand side of the linear equation.

The program block is largely a three-level nested for-loop,
which mainly consists of three different computational steps.
An important consideration on parallelization the code is to

37

decide the parallel grain size. Theoretically speaking, by
analyzing the data dependency, each of the three loops could
be parallelized by OpenMP directives. Especially, enlarge
the grain size of a parallel program appears to bring better
performance as it avoids frequent fork-join operation at the
beginning of each iteration. However, the sequential code
uses the same storage space to store the RHS for each
unknown point, which means there is a loop-carried
dependence in the outer loop. Parallelizing the outer loop,
each RHS has to be made private explicitly and additional
storage spaces are required, which may prevent the program
from getting optimal performance. Therefore, making the
inner loop parallel, which results in small grain size
parallelism, is the best option for our case.

It is estimated that the second computational step of
calculating the weights which is a two-level nested for-loop
consumes the most part of execution time of the block. The
OpenMP parallelization could be written as follow:

;
;

];[_*])6(*[_:][_
50:

;0:][_
50:

),_,_,_(
),(#

endfor
endfor

kUKBkNVjUKAjUKC
doNVtokfor

jUKC
doNVtojfor

NVUKBUKAUKCshared
jkprivateforparallelomppragma

++=
+=

=
+=

The variables UKC _ , UKA_ and UKB _ are the
estimate, the inverse matrix and right hand side respectively.

IV. PERFORMANCE ANALYSIS
The numerical experiments were carried out on two win

server 2003 (x64) workstations. Workstation 1: Intel Xeon
E5310 1.6GHz (2CPU, 4 cores per each) and 2.0 GB
memory; Workstation 2: Intel Xeon 5110 (2CPU, 2 cores per
each) and 2.0 GB memory. The size of measured points and
unknown points are 947 and 15719 respectively. The
exponential variogram models and quadratic drift function
were applied to the universal Kriging algorithm.

The first experiment was designed to find the hotspots in
sequential program. The test was carried out only on
Workstation 1. From Fig. 2, we observed that step 7 which is
responsible for calculating the weights and estimates takes
up the overwhelming majority of computational time.
Another time consuming step is the computation of the
inverse matrix. However, it is comparatively small when it is
compared to step 7. Therefore, this experiment confirmed
that the parallelization of step 7 is the primary concern of our
work.

Figure 2. Time ratio for different computational steps

In the second experiment, the speedup versus different
number of threads on two workstations is tested. From Fig. 3,
it can be found that the speedup scales well from 1 to 4
threads for Workstation 1 and 1 to 2 threads for
Workstation2, which demonstrates significant progress in
reducing computational time and desirable parallel
performance. However, we observed an obvious deviation
from 4 to 8 threads for Workstation 1 and 2 to 4 threads for
Workstation 2. From our analysis, this could be attributed to
that the problem of cache coherence between two CPU in
one workstation may degrade the parallel performance.

Figure 3. Speedup vs. number of threads

V. CONCLUSIONS
This paper describes an efficient fine-grain parallel

scheme on shared-memory system, along with its
implementation for universal Kriging interpolation method.
As multiple-processors computers are currently much more
affordable and available, and OpenMP is becoming the de
facto standard for parallelizing applications, this ensures
portability over a wide range of computers. In summary, we
present a portable parallel implementation by using OpenMP
directives, which enables an incremental approach to add
parallelism, without modifying the rest part of sequential
code. The experiment results demonstrate that the parallel
scheme has achieved desirable performance. Further research
will involve the parallel implementation of universal Kriging
method on distributed shared memory architecture.

38

ACKNOWLEDGMENT
We would like to thank Prof. Nengxiong Xu for his help

with the research. This research was partially supported by
the Fundamental Research Funds for the Central Universities
of China.

REFERENCES
[1] L. Wang, P. M. Wong, M. Kanevski, T. D. Gedeon, “Combining

neural networks with kriging for stochastic reservoir modeling”, IN
SITU, 1999, vol. 23, pp. 151–169.

[2] P. Goovaerts, “Geostatistical approaches for incorporating elevation
into the spatial interpolation of rainfa”, JOURNAL OF
HYDROLOGY, 2000, vol. 228, pp. 113–129.

[3] S. J. Jeffrey, J. O. Carter, K. B. Moodie, A. R. Beswick, “Using
spatial interpolation to construct a comprehensive archive of
Australian climate data”, ENVIRONMENTAL MODELLING &
SOFTWARE, 2001, vol. 16, pp. 309–330.

[4] D. R. Jones, M. Schonlau, W. J. Welch, “Efficient global
optimization of expensive black-box functions”, JOURNAL OF
GLOBAL OPTIMIZATION, 1998, vol. 13, pp. 455–492.

[5] E. R. Richard, L. D. Jennifer, R. B. Louisa. “Kriging in the shadows:
Geostatistical interpolation for remote sensing”, Remote Sensing of
Environment, 1994, vol. 49, pp. 32–40.

[6] K. E. Kerry, K. A. Hawick, “Spatial Interpolation on Distributd,
High-Performance Computers”, DHPC Technical Report DHPC-015,
Department of Computer Science, University of Adelaide, 1997.

[7] K. E. Kerry, K. A. Hawick, “Kriging Interpolation on High-
Performance Computers”, Proceedings of the International
Conference and Exhibition on High-Performance Computing and
Networking, LNCS, Springer Berlin / Heidelberg, 1998, vol. 1401,
pp. 429–438.

[8] A. Gebhardt, “PVM kriging with R”, In Proceedings of the 3rd
International Workshop on Distributed Statistical Computing, Vienna,
2003.

[9] Nadja Samonig, Parallel computing in spatial statistics, Master’s
thesis, University Klagenfurt, 2001.

[10] J. A. Pedelty, J. T. Morisette, J. A. Smith, J. L. Schnase, C. S.
Crosier, T. J. Stohlgren, “High Performance Geostatistical Modeling
of Biospheric Resources”, Eos Trans. AGU, 2004, vol. 85.

[11] C. Barbara, J. Gabriele, V. P. Ruud, “Using OpenMP: Portable
Shared Memory Parallel Programming”, The MIT Press, 2007.

[12] C. Noel, “The origins of kriging”, Mathematical Geology, 1990, vol.
22, pp. 239–252.

[13] L. S. Michael, “Interpolation of spatial data: some theory for kriging”,
Springer Series in Statistics, 1999.

[14] J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon, A.
White, Sourcebook of Parallel Computing, San Francisco, CA:
Elsevier Science, 2003.

39

