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Abstract—Graphics Processing Units (GPUs) are having a
transformational effect on numerical lattice quantum chromo-
dynamics (LQCD) calculations of importance in nuclear and
particle physics. The QUDA library provides a package of mixed
precision sparse matrix linear solvers for LQCD applications,
supporting single GPUs based on NVIDIA’s Compute Unified
Device Architecture (CUDA). This library, interfaced to the
QDP++/Chroma framework for LQCD calculations, is currently
in production use on the “9g” cluster at the Jefferson Labora-
tory, enabling unprecedented price/performance for a range of
problems in LQCD. Nevertheless, memory constraints on current
GPU devices limit the problem sizes that can be tackled. In this
contribution we describe the parallelization of the QUDA library
onto multiple GPUs using MPI, including strategies for the
overlapping of communication and computation. We report on
both weak and strong scaling for up to 32 GPUs interconnected
by InfiniBand, on which we sustain in excess of 4 Tflops.

I. INTRODUCTION

Lattice quantum chromodynamics (LQCD) is the lattice dis-

cretized theory of the strong nuclear force, the force that binds

quarks together into particles such as the proton and neutron.

High precision predictions from LQCD are required for testing

the standard model of particle physics, a task with increased

importance in the era of the Large Hadron Collider (LHC),

where deviations between numerical LQCD predictions and

experiment could be signs of new physics. LQCD also has a

vital role to play in nuclear physics, where such calculations

are used to compute and classify the excited states of protons,

neutrons and other hadrons; to study hadronic structure; and

to compute the forces and binding energies in light nuclei.
LQCD is a grand challenge subject, with large-scale com-

putations consuming a considerable fraction of publicly avail-

able supercomputing resources. The computations typically

proceed in two phases: in the first phase, one generates

thousands of configurations of the strong force fields (gluons),

colloquially referred to as gauge fields. This computation is a

long-chain Monte Carlo process, requiring the focused power

of leadership class computing facilities for extended periods.

In the second phase, these configurations are analyzed, a

process that involves probing the interaction of quarks and

gluons with each other on each configuration. The interactions

are calculated by solving systems of linear equations with

coefficients determined by elements of the gauge field. On

each configuration the equations are solved for many right

hand sides, and the solution vectors are used to compute the

final observables of interest. This second phase can proceed

independently on each configuration, and as a result, cluster

partitions of modest size have proven to be highly cost-

effective for this purpose. Until a few years ago, the analysis

phase would often account for a relatively small part of the

cost of the overall calculation, with analysis corresponding to

perhaps 10% of the cost of gauge field generation. In recent

years, however, focus has turned to more challenging physical

observables and new analysis techniques that demand solu-

tions to the aforementioned linear equations for much larger

numbers of right hand sides (see, e.g., [1], [2]). As a result,

the relative costs have shifted to the point where analysis often

requires an equal or greater amount of computation than gauge

field generation.

The rapid growth of floating point power in graphics

processing units (GPUs) together with drastically improved

tools and programmability has made GPUs a very attractive

platform for LQCD computations. The QUDA library [3], [4]

provides a package of optimized kernels for LQCD that take

advantage of NVIDIA’s Compute Unified Device Architec-

ture (CUDA). Once coupled to LQCD application software,

e.g., Chroma [5], this provides a powerful framework for

lattice field theorists to exploit. The “9g” GPU cluster at

Jefferson Laboratory features 192 NVIDIA GTX 285 GPUs

providing over 30 Tflops of sustained performance in LQCD,

when aggregated over single GPU jobs. For problems that

can be accommodated by the limited GPU memory, the

price/performance compared to typical clusters or massively

parallel supercomputers (e.g., BlueGene/P) is improved by

around a factor of five. However, for problem sizes that are

too large, individual GPUs have no benefit.

Even for problems that do fit on a single GPU, the

economics of constructing a GPU cluster tend to motivate

provisioning each cluster node with multiple GPUs, since the

incremental cost of an additional GPU is fairly small. In this

scenario, it is possible to run multiple independent jobs on

each node, but then the size of the host memory may prove

to be the limiting constraint. The obvious recourse in both

cases is therefore to parallelize a single problem over multiple

GPUs, which is the subject of our present work.

The paper is organized as follows. In Sections II and III we
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review basic details of the LQCD application and of NVIDIA

GPU hardware. We then briefly consider some related work

in Section IV before turning to a general description of the

QUDA library in Section V. Our parallelization of the quark

interaction matrix is described in VI, and we present and

discuss our performance data for the parallelized solver in

Section VII. We finish with conclusions and a discussion of

future work in Section VIII.

II. LATTICE QCD

The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly

used for calculations in other quantum field theories, such as

electrodynamics. Quarks, the fundamental particles that are at

the heart of QCD, are described by the Dirac operator acting

in the presence of a local SU(3) symmetry. On the lattice,

the Dirac operator becomes a large sparse matrix, M , and the

calculation of quark physics is essentially reduced to many

solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the

Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the

Dirac operator. When acting in a vector space that is the tensor

product of a 4-dimensional discretized Euclidean spacetime,

spin space, and color space it is given by

Mx,x′ = −1
2

4∑
μ=1

(
P−μ ⊗ Uμ

x δx+μ̂,x′ + P+μ ⊗ Uμ†
x−μ̂ δx−μ̂,x′

)

+ (4 + m + Ax)δx,x′

≡ −1
2
Dx,x′ + (4 + m + Ax)δx,x′ . (2)

Here δx,y is the Kronecker delta; P±μ are 4 × 4 matrix

projectors in spin space; U is the QCD gauge field which

is a field of special unitary 3× 3 (i.e., SU(3)) matrices acting

in color space that live between the spacetime sites (and hence

are referred to as link matrices); Ax is the 12×12 clover matrix

field acting in both spin and color space,1 corresponding to

a first order discretization correction; and m is the quark

mass parameter. The indices x and x′ are spacetime indices

(the spin and color indices have been suppressed for brevity).

This matrix acts on a vector consisting of a complex-valued

12-component color-spinor (or just spinor) for each point in

spacetime. We refer to the complete lattice vector as a spinor

field.

Since M is a large sparse matrix, an iterative Krylov

solver is typically used to obtain solutions to (1), requiring

many repeated evaluations of the sparse matrix-vector product.

The matrix is non-Hermitian, so either Conjugate Gradients

[7] on the normal equations (CGNE or CGNR) is used, or

more commonly, the system is solved directly using a non-

symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the μ − ν plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uμ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution

finding process, where the nearest neighbor property of the

Dx,x′ matrix (see Fig. 1) is exploited to solve the Schur com-

plement system [9]. This has no effect on the overall efficiency

since the fields are reordered such that all components of

a given parity are contiguous. The quark mass controls the

condition number of the matrix, and hence the convergence of

such iterative solvers. Unfortunately, physical quark masses

correspond to nearly indefinite matrices. Given that current

leading lattice volumes are 323 × 256, for > 108 degrees of

freedom in total, this represents an extremely computationally

demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is

effectively an independent parallel processor with its own

locally-attached memory, herein referred to as device memory.

The GPU relies on the host, however, to schedule blocks of

code (or kernels) for execution, as well as for I/O. Data is

exchanged between the GPU and the host via explicit memory

copies, which take place over the PCI-Express bus. The low-

level details of the data transfers, as well as management of

the execution environment, are handled by the GPU device

driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-

erogeneous architecture. Each node consists of one or more

processors (the CPU) that is optimized for serial or moderately

parallel code and attached to a relatively large amount of

memory capable of tens of GB/s of sustained bandwidth. At

the same time, each node incorporates one or more processors

(the GPU) optimized for highly parallel code attached to a

relatively small amount of very fast memory, capable of 150

GB/s or more of sustained bandwidth. The challenge we face is

that these two powerful subsystems are connected by a narrow

communications channel, the PCI-E bus, which sustains at

most 6 GB/s and often less. As a consequence, it is critical

to avoid unnecessary transfers between the GPU and the host.



GB/s Gflops GiB
Card Cores Bandwidth 32-bit 64-bit RAM
GeForce 8800 GTX 128 86.4 518 N/A 0.75
Tesla C870 128 76.8 518 N/A 1.5
GeForce GTX 285 240 159 1062 88 1.0 - 2.0
Tesla C1060 240 102 933 78 4.0
GeForce GTX 480 480 177 1345 168 1.5
Tesla C2050 448 144 1030 515 3.0

TABLE I
SPECIFICATIONS OF REPRESENTATIVE NVIDIA GRAPHICS CARDS.

For single-GPU code, the natural solution is to carry out all

needed operations on the GPU; in the QUDA library, for

example, the linear solvers are written such that the only

transfers needed are the initial upload of the source vector

to the GPU and the final download of the solution, aside

from occasional small messages needed to complete global

sums. A multi-GPU implementation, however, cannot avoid

frequent large data transfers, and so the challenge becomes

to overlap the needed communication with useful work. This

is exacerbated further if one wishes to take advantage of

many GPUs spread across multiple nodes, since the bandwidth

provided the fastest available interconnect, QDR InfiniBand,

is half again that provided by (x16) PCI-E.

We turn now to the architecture of the GPU itself. Our

purpose is only to highlight those features that have directly

influenced our implementation. We focus here on cards pro-

duced by NVIDIA and specifically on the GT200 generation,

as typified by the Tesla C1060 and the GeForce GTX 285,

since the latter will serve as our test bed. The GT200 series is

the second of the three extant generations of CUDA-enabled

cards, representative examples of which are listed in Table I.

The most recent generation, embodying NVIDIA’s “Fermi”

architecture, is only now becoming available in mid-2010.

We note that while hardware features and performance differ

between generations, these have relatively little impact on

our multi-GPU strategy. Likewise, most of the considerations

we discuss would apply even to an OpenCL implementation

targeting graphics cards produced by AMD/ATI.

GPUs support a single-program multiple-data (SPMD) pro-

gramming model with up to thousands of threads in flight at

once. Each thread executes the same kernel, using a unique

thread index to determine the work that should be carried out.

The GPU in the GeForce GTX 285 card consists of 240 cores

organized into 30 multiprocessors of 8 cores each. Each core

services multiple threads concurrently by alternating between

them on successive clock cycles, so a group of 32 threads (a

warp in NVIDIA’s parlance) is executing on the multiprocessor

at a given moment. At the same time, many additional threads

(ideally hundreds) are typically resident on the multiprocessor

and ready to execute. This allows the multiprocessor to swap in

a new set of 32 threads when a given set stalls – while waiting

for a memory access to complete, for example. In order to hide

latency, it is desirable to have many threads resident at once,

but each such thread requires a certain number of registers and

quantity of shared memory, which limits the total. Just as on a

CPU, a register is where a variable is stored while it is being

operated on or written out. Registers are not shared between

threads. Shared memory, on the other hand, may be shared

between threads executing on the same multiprocessor. Strictly

speaking, the threads must belong to the same thread block, a

group of threads whose size is specified by the programmer;

each thread block must consist of a multiple of 64 threads, and

one or more thread blocks may be active on a multiprocessor

at a time. The GeForce GTX 285 provides 16,384 single-

precision registers (8,192 in double precision) and 16 KiB of

shared memory per multiprocessor.

The CUDA programming model treats the threads within a

block as independent threads of execution, as though they were

executing on cores that were true scalar processors; threads

may take independent code paths, read arbitrary locations in

memory, and so on. In order to obtain optimal performance,

however, it is better to treat the multiprocessor as a single

32-lane or 16-lane SIMD unit. This follows from two consid-

erations. First, when threads within a set of 32 (a warp) take

different paths at a branch, the various paths are serialized and

executed one after another, a condition known as “warp diver-

gence.” Second, when accessing device memory, maximum

bandwidth is achieved only when 16 threads access contiguous

elements of memory, where each such element is a 4-byte, 8-

byte, or 16-byte block. (The CUDA C language defines various

short vector types for this purpose, e.g., float2, float4, double2,
short4, etc.) This allows the transfer to proceed as a single

“coalesced” memory transaction. As described in Section V

below, this consideration directly influences the layout of our

data.

An additional consideration has to do with the physical

organization of the device memory. Like many classic vector

architectures but unlike commodity CPUs, GPUs are equipped

with a very wide memory bus (512-bit on the GTX 285) with

memory partitioned into multiple banks (eight on the GTX

285). Successive 256-byte regions in device memory map to

these partitions in a round-robin fashion. This organization

is generally transparent to the programmer, but if memory is

accessed with a stride that results in traffic to only a subset of

the partitions, performance will be lower than if all partitions

were stressed equally. Such “partition camping” can result

in an unexpected loss of performance for certain problem

sizes [10]. As discussed in [4] and Section V below, this was

found to be a problem for certain lattice volumes in our LQCD

application, with the solution being to pad the relevant arrays

to avoid the camping.

To summarize, the GPU memory hierarchy consists

of globally-accessible device memory and local per-

multiprocessor shared memory, often used as a manually-

managed cache, as well as local registers. In addition, GPUs

such as the GTX 285 provide two special-purpose caches. The

first is a read-only texture cache, which speeds up reads from

device memory for certain kinds of access patterns. It also

provides various addressing modes and rescaling capability.

As described further in Section V, we take advantage of

the latter in our half-precision implementation. Finally, each



multiprocessor provides a small constant cache (8 KiB on the

GTX 285), which is useful for storing run-time parameters

and other constants, accessible to all threads with very low

latency.

IV. RELATED WORK

GPUs were first used to perform LQCD calculations in

[11]. This pioneering study predated various programmability

improvements, such as the C for CUDA framework, and

hence was implemented using the OpenGL graphics API. It

targeted single GPU devices. The QUDA library [3] was dis-

cussed extensively in [4], [12], where the primary techniques

and algorithms for maximizing the efficient use of memory

bandwidth were presented for a single GPU device. LQCD

on GPUs has also been explored in [13], which focused

on questions of fine grained vs. coarse grained parallelism

on single GPU devices. In addition, there are several as

yet unpublished efforts aimed at exploiting GPUs for LQCD

underway.

LQCD has also been implemented on other heterogeneous

devices, primarily on the Cell Broadband Engine. Efforts in

this direction have been reported in [14], [15] as part of the

“QCD Parallel Computing on the Cell Broadband Engine”

(QPACE) project and elsewhere [16], [17].

Outside the context of LQCD, general challenges of imple-

menting message passing on heterogeneous architectures have

been considered for GPUs in [18] and for the RoadRunner

supercomputer in [19]. An effort to provide a general message

passing framework utilizing CUDA, MPI, and POSIX threads

is also underway at Jefferson Laboratory [20].

V. QUDA

The QUDA library is a publicly available collection of

optimized QCD kernels built on top of the CUDA framework,

with a simple C interface to allow for easy integration with

LQCD application software. Currently, QUDA provides highly

optimized CG and BiCGstab linear solvers for a variety of

different discretizations of the Dirac operator, as well as other

time critical components.

A. General Strategy

The power of GPUs may only be brought to bear when a

large degree of parallelism is available. LQCD is fortunate

in this regard, since parallelism can easily be achieved by

assigning one thread to each lattice site. The mapping from

the linear thread index to the 4-dimensional spacetime in-

dex is easily obtained through integer division and modular

arithmetic involving the lattice dimensions. These runtime

parameters (and others, such as boundary conditions) are

stored in the constant cache.

In applying the lattice Dirac operator, each thread is thus

responsible for gathering its eight neighboring spinors (24

numbers apiece), applying the appropriate spin projector for

each, multiplying by the color matrix connecting the sites (18

numbers), and accumulating the results together with the local

spinor (24 numbers) weighted by the mass term. The Wilson-

clover discretization also requires an extra multiplication by

the clover matrix (72 numbers) before the result (24 numbers)

is saved to memory. In total, the application of the Wilson-

clover matrix requires 3696 floating point operations for every

2976 bytes of memory traffic in single precision (assuming

kernel fusion to minimize memory traffic).

B. Field Ordering
The ordering typical on a CPU is to place the spacetime

dimensions running slowest, with internal dimensions (color,

spin, and real/imaginary) running fastest. However, since

memory coalescing is only achieved if adjacent threads load

consecutive blocks of 4, 8, or 16 bytes, the fields must be

reordered to ensure this condition. This can be achieved if we

abandon the naive ordering,

iold = xNint + n, (3)

in favor of the new mapping

inew = Nvec

(
V

⌊
n

Nvec

⌋
+ x

)
+ n mod Nvec. (4)

Here V is the spacetime volume; x is the linear spacetime

index running from 0 through V − 1; n corresponds to

the internal index running from 0 through Nint − 1, with

Nint = 24, 12, and 72 elements for the spinor, color (see

Section V-C1), and clover fields respectively; and Nvec is

the length of the vector type used (e.g., Nvec = 1, 2, 4 for

float, float2, and float4). We have found that using Nvec = 4
and Nvec = 2 is optimal in single and double precision,

respectively, each corresponding to a length of 16 bytes.
QUDA follows the usual lattice site assignment for the color

matrices. The color matrix connecting sites x and x + μ̂ is

denoted by Uμ
x and stored at lattice site x. It follows that Uμ

x−μ̂,

which is required for the gather from the backwards direction

for site x, is stored at site x − μ̂. (The matrix conjugation is

performed at no cost through register relabeling in the kernel.)
As anticipated in Section III, for certain problem sizes

performance may be affected by partition camping. The simple

solution QUDA takes to this problem is to pad the gauge,

spinor, and clover fields by one spatial volume, Vs = XY Z,

so that the linear indexing is given by

i = Nvec

(
(T + 1)Vs

⌊
n

Nvec

⌋
+ x

)
+ n mod Nvec. (5)

Here X , Y , Z and the T are the lengths of the respective

spacetime dimensions, with V = VsT . Although not originally

intended for this purpose, padding the fields by an extra spatial

volume is also convenient for the parallelization process (see

Section VI). We illustrate the field ordering in Fig. 2.

C. Reducing Memory Traffic
Given the peak instruction and bandwidth throughputs of

current GPUs (Table I), evaluation of the Wilson-clover matrix

vector product is strongly bandwidth bound. The approach

taken by QUDA is to minimize memory traffic, even at the

expense of additional floating point operations, to accelerate

performance using the following techniques:



Fig. 2. The field ordering used in QUDA: NintV numbers are broken up
into Nint/Nvec blocks of V short vectors ( = NvecV numbers). Successive
threads thus read successive short vectors ensuring coalescing of the memory
transfers. Within a block the time index runs slowest, implying that the two
faces on the temporal boundaries are each contiguous within the block; each
face is stored in Vs vectors. The blocks are separated by a padding region to
avoid partition camping. As an example, in single precision one would use the
float4 vector type (Nvec = 4), and thus 6 blocks would be needed to store
the 24V numbers that make up a color-spinor. Likewise, in 2-row storage, the
gauge field would need 3 blocks to store the 12V numbers needed for each
direction μ. With 4 such directions, altogether 12 blocks are needed to store
all the link matrices. With the size of the padding chosen to be Vs = XY Z
sites, the ghost zone of link matrices Uμ

x−μ̂
can be hidden entirely in the

padding.

1) Gauge field compression: Only the first two rows of

the color matrices are stored in device memory, and using

unitarity, the third row is reconstructed in registers from the

complex conjugate of the cross product of the first two rows.

2) Similarity transformations: Physically motivated simi-

larity transformations are employed to increase the sparsity of

the matrix. In particular, the spin projectors in the temporal

dimension P±4 are diagonalized by changing from the con-

ventional chiral basis to a “non-relativistic” basis,

P±4 =

⎛
⎜⎜⎝

1 0 ±1 0
0 1 0 ±1

±1 0 1 0
0 ±1 0 1

⎞
⎟⎟⎠ =⇒ (6)

P+4 =

⎛
⎜⎜⎝

2 0 0 0
0 2 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , P−4 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 2

⎞
⎟⎟⎠ .

This has the benefit that only 12 real numbers need be loaded

when gathering neighboring spinors in the temporal direction

and also aids our parallelization approach (See Section VI).

3) Precision Truncation: Further acceleration is obtained

through the use of 16-bit fixed point storage, from here on

referred to as half precision. This is implemented by reading

the gauge field and spinor field elements via the texture cache,

using the read mode cudaReadModeNormalizedFloat. When

a texture reference is defined using this mode, a signed 16-bit

(or even 8-bit) integer read in from device memory will be

automatically converted to a 32-bit floating point number in

the range [−1, 1]. This format is immediately suitable for the

color matrices since all of their elements lie exactly in this

range, as a consequence of unitarity. The spinors require an

extra normalization, which is shared between all elements of

a single spinor.2 Thus in half precision a spinor is stored as 6

short4 arrays and a single float normalization array.

D. Mixed-precision Linear Solvers

The use of mixed-precision iterative refinement for solving

linear equations is fairly commonplace on GPUs and other

architectures where the use of double precision comes with a

significant performance penalty. Such an approach allows the

bulk of the computation to be performed in fast low precision,

with periodic updates in high precision to ensure accuracy

of the final solution. Even on architectures where there is

parity between peak single and double precision performance,

a factor of two difference in memory traffic is unavoidable,

and so for bandwidth-bound problems such as our sparse

matrix-vector product, the use of mixed precision remains

advantageous. QUDA uses a variant of reliable updates [21] to

implement mixed-precision iterative refinement. This approach

has the advantage that a single Krylov space is preserved

throughout the solve, as opposed to the traditional approach

of defect correction which explicitly restarts the Krylov space

with every correction, increasing the total number of solver

iterations [4]. It was found that the best time to solution

is typically obtained using either double-half or single-half

approaches.

E. Auto-tuned Linear Algebra Kernels

QUDA provides the additional vector-vector linear algebra

(BLAS1-like) kernels needed to implement the linear solvers.

These additional routines take advantage of kernel fusion

wherever possible to reduce memory traffic and hence improve

performance of the complete solver. Since each of these

kernels and their various half, single, and double precision

variants may have different optimal CUDA parameters (i.e.,

sizes of the thread blocks and the number of blocks treated at

once), an auto-tuning approach is taken to ensure maximum

performance. All possible combinations of parameters are

tested for each kernel, and the optimal values are written

out to a header file for inclusion in production code after a

recompilation of the library. Due to the memory bandwidth

intensity of these (essentially streaming) kernels, the complete

solver typically runs 10 to 20% slower than would the matrix-

vector product in isolation.

2This sharing of a common normalization factor among spinor elements is
motivated by the fact that the action of the Wilson-clover matrix upon each
spinor involves a mixing of all color and spin components.



VI. MULTI-GPU IMPLEMENTATION

A. General Strategy

In parallelizing across multiple GPUs, we have taken the

simplest approach by only dividing the time dimension, with

the full extent of the spatial dimensions confined to a single

GPU. This approach was motivated by the asymmetric nature

of the lattice dimensions under study (243×128 and 323×256),

and in order to simplify this initial parallelization. In this form,

since we are parallelizing over the slowest running spacetime

index, the changes required to the single GPU kernel code

were relatively minimal. If one were to attempt to scale to

hundreds of GPUs or more, multi-dimensional parallelization

would clearly be needed to keep the local surface to volume

ratio under control. Given current lattice sizes, however, such

extreme parallelization would imply small local volumes and

require rethinking of the fundamental algorithms. Work in this

direction is underway.

For parallelizing across multiple GPUs, each GPU can either

be controlled using a distinct CPU thread or with a distinct

process. The potential advantage of the threaded approach is

that it avoids unnecessary copies within a node; however, this

advantage has decreased on recent CPUs that feature integrated

memory controllers and much higher memory bandwidth

(compared to pre-Nehalem Xeons, for example), reducing the

overhead of an additional local memory copy. To communicate

between GPUs on different nodes, a message passing approach

is necessary since the memory space is by definition separate.

While mixed-mode programming is possible (threads within

a node, message passing between the nodes), we exclusively

used a message passing approach since initial investigations

suggested no improvement would be gained from the use of

threads. In particular, we used QMP (QCD Message Passing)

which is an API built on top of MPI that provides convenient

functionality for LQCD computations [22].

In parallelizing the action of the Wilson-clover matrix onto

a spinor field partitioned between N distinct GPUs, we slice

the temporal dimension into N equal sized volumes of size

V/N = VsT/N . Referring to (2), the only part of the matrix

that connects different lattice sites is the action of Dx,x′ , since

the clover matrix Ax is local to a given lattice site. When

updating the sites on either end of the local temporal boundary,

the adjacent spinors which are on the neighboring GPUs are

required, as well as the gauge field matrix connecting these

sites.

B. Gauge Field Ghost Zone

The link matrix Uμ
x connecting sites x and x + μ̂ is stored

at site x; hence the required link matrix for the receive from

the forward temporal direction for sites in the last spatial

volume (or timeslice) will already be present locally, and

only the adjacent spinor is required. For the receive from

the backward temporal direction into the first timeslice, the

required link matrix will be on the adjoining GPU and so must

be transferred. Since the link matrices are constant throughout

the execution of the linear solver, we transfer the adjoining

link matrices in the program initialization. Compared to the

original single GPU code, this posed the obvious question:

where should the extra face (the ghost zone) of gauge field

matrices be stored? Given that the fields were already padded

by an extra spatial volume, a very natural location is within the

padded region since this is exactly the correct size to store the

additional gauge field slice (see Fig. 2). Altering the kernel for

this change simply required that if the thread id corresponded

to the first timeslice (local to the GPU) then the gauge field

array indices are set to the padded region. Extra constants were

introduced to describe the boundary conditions at the start and

end of the local volume, since one of these boundaries might

correspond to a global boundary and not just a local boundary.

C. Spinor Field Ghost Zone

Our initial strategy for storing the transferred faces was

to put them in the padded regions of the destination GPU’s

spinor field. Like the gauge field ghost zone this seems very

natural, but it introduced complications into the reduction

kernels used in the Krylov solvers: these assume a contiguous

memory buffer, and so without careful rewriting the ghost

zones would be double counted. The approach we opted for

instead was to oversize the spinor fields by the size of the

two transferred faces. When doing reductions, this end zone

can be simply excluded ensuring correctness. As described

in Section V-C2 the spin projectors in the temporal direction

are diagonalized, halving the amount of data that needs to

be transferred in the temporal gathering,3 and so the extra

total storage required is actually only 24Vs components. The

upper 12 spinor components which arise from the receive

from the backward direction occupy the first half of the end

zone, and the lower 12 spinor components arising from the

receive from the forward direction occupy the second half.

For half precision the extra normalization constant for each

(12 component) spinor is also required, and hence an end zone

of size 2Vs elements is added to the normalization field. We

illustrate the spinor ghost zones and the basic communication

requirements in Fig. 3.

With the ghost zone elements stored in the end zone, extra

indexing logic was required to ensure that the correct spinors

would be loaded by the threads updating the boundaries.

Fortunately, this extra logic introduced minimal overhead since

warp divergence is avoided because the number of spatial sites

Vs is divisible by the warp size, a condition that is met by the

lattice dimensions under consideration here (and all production

LQCD calculations that we aware of).

D. Communication Strategies

1) No Overlap: The first and simplest approach to paral-

lelization is to perform all of the communications up front

and then do the computation for the entire volume in a single

3We note that it is true in general (for all directions) that only 12 numbers
need be transferred, regardless of whether or not the projector has been
diagonalized. In the general case one has to apply the spin projector explicitly
to the 24 components to obtain 12 components before initiating the transfer. In
this special case, since the spin projector is diagonal, we merely need to copy
the first (second) 12 components directly for the positive (negative) projector.



Fig. 3. Spinor ghost zones and communication steps: We show the source
spinor on the sending device (top) assuming Nvec = 4, corresponding to
6 blocks from Fig. 2. The grey buffers at the end correspond to the ghost
zones. The top 3 blocks correspond to the P+4 projected components, while
the lower 3 blocks nearer the ghost zone correspond to P−4. Data from
the back faces (green) needs to be gathered into a communications buffer
on the sending host and likewise for the forward face (orange). The faces
are then transferred to the receiving host via QMP/MPI. Once transferred the
faces are transferred to the ghost zones on the receiving device (bottom of
diagram), which then uses the data directly from the ghost zones, hence the
corresponding faces have been greyed out.

kernel. The device-to-host transfers are achieved through the

use of separate cudaMemcpy calls (one for each face block),

with half precision requiring an extra cudaMemcpy for the face

of the normalization array. Once on the host, all of these blocks

are contiguous in memory, allowing for a single message

passing in each direction. The received faces are sent to the

device using a single cudaMemcpy for each face (with an extra

cudaMemcpy required for each of the normalization faces in

half precision) and placed in the end zone of the spinor field.

Finally the Wilson-clover kernel is executed.

2) Overlapping Communication and Computation: Our

second implementation aimed to overlap all of the commu-

nication with the computation of the internal volume. To do

so, the CUDA streaming API was used, which allows for a

CUDA kernel to execute asynchronously on the GPU at the

same time that data is being transferred between the device

and host using cudaMemcpyAsync.4

Additionally this makes use of non-blocking MPI commu-

nication possible: after the backward face has been transferred

to the host, the MPI exchange of this face to its neighbor is

overlapped with the transfer of the forward face from device

to host. In turn, when the first face has been received, this

can be sent to the device while the second face is being

communicated. This approach requires three CUDA streams:

one to execute the kernel on the internal volume, one for the

face send backward / receive forward, and one for the face

send forward / receive backward. An additional required step is

that the streams responsible for gathering the faces to the host

must be synchronized, using cudaStreamSynchronize, before

message passing can take place to ensure transfer completion.

In principle, we could also overlap the host-to-device transfer

4The Fermi architecture improves upon this model by allowing for bidirec-
tional transfers over the PCI-E bus.

of the second face and the computation involving the first face.

This would yield a minimal speedup at best, since the time

spent executing the face kernel is not the limiting factor, and

it may actually reduce overall performance since the kernel

would be updating half as many sites at a time, reducing

parallelism and potentially decreasing kernel efficiency.

E. Parallelizing the Linear Solver

Aside from the parallelization of the sparse matrix vector

product, the only other required addition to the code was the

insertion of MPI reductions for each of the linear algebra

reduction kernels.

VII. SOLVER PERFORMANCE RESULTS

A. Details of the Numerical Experiments

Our numerical experiments were carried out on the “9g”

cluster at Jefferson Laboratory. This cluster is made up of 40

nodes containing 4 GPUs each, as well as an additional 16

nodes containing 2 GPU devices each that are interconnected

by QDR InfiniBand on a single switch. In this study, we

focused our attention primarily on the partition made up of the

16 InfiniBand connected nodes, with one or two exceptions.

The nodes themselves utilize the Supermicro X8DTG-QF

motherboard populated with two Intel Xeon E5530 (Nehalem)

quad-core processors running at 2.4 GHz, 48 GiB of main

memory, and two NVIDIA GeForce GTX 285 cards with 2

GiB of device memory each.

The nodes run the CentOS 5.4 distribution of Linux with

version 190.29 of the NVIDIA driver. The QUDA library

was compiled with CUDA 2.3 and linked into the Chroma

software system using the Red Hat version 4.1.2-44 of the

GCC/G++ toolchain. Communications were performed using

version 2.3.2 of the QCD Message Passing library (QMP) built

over OpenMPI 1.3.2. In all our tests we ran in a mode with

one MPI process bound to each GPU.

The numerical measurements were taken from running the

Chroma propagator code and performing 6 linear solves for

each test (one for each of the 3 color components of the

upper 2 spin components), with the quoted performance results

given by averages over these solves. Statistical errors were

also determined but are generally too small to be seen clearly

in the figures. Importantly, all performance results are quoted

in terms of “effective Gflops” that may be compared with

implementations on traditional architectures. In particular, the

operation count does not include the extra work done to

reconstruct the third row of the link matrix.

We carried out both strong and weak scaling measurements.

The strong scaling measurements used lattice sizes of V =
243 × 128 and V = 323 × 256 sites respectively. Both the

lattice sizes and the Wilson-clover matrix had their parameters

chosen so as to correspond to those in current use by the

Anisotropic Clover analysis program of the Hadron Spectrum

collaboration. The lattices used were weak field configurations.

Such configurations are made by starting with all link matrices

set to the identity, mixing in a small amount of random noise,

and re-unitarizing the links to bring the links back to the



SU(3) manifold. We emphasize that while these lattices were

not physical, we have tested the code on actual production

lattices on both the volumes mentioned for correctness. The

concrete physical parameters do not affect the rate at which

the code executes but control only the number of iterations

to convergence in the solver. The weak scaling tests utilized

local lattice sizes of V = 324 and V = 243 × 32 sites per

GPU, respectively.

The solver we employed was the reliably updated BiCGstab

solver discussed in [4]. We ran the solver in single precision

and mixed single-half precision with and without overlapped

communications in the linear operator. For the lattices with

Vs = 243 spatial sites, we also ran the solver in uniform

double precision and in mixed double-half precision modes.

When run in single or single-half mixed precision modes the

target residuum was ||r|| = 10−7, whereas in the double

precision and mixed double-half precision modes the residuum

was ||r|| = 10−14. In addition, the delta parameter was set to

δ = 10−3 in single, δ = 10−1 in mixed single-half, δ = 10−5

in double and δ = 10−2 in the mixed double-half modes of

the solver respectively. The meanings of these parameters are

explained fully in [4].

B. Weak Scaling

Our results for weak scaling are shown in Fig. 4. We see

near linear scaling on up to 32 GPUs in all solver modes.

In the case with V = 324 sites per GPU, we were unable

to fit the double precision and mixed double-half precision

problems into device memory, and hence we show only the

single and single-half data. In the case with local volume of

243×32 we show also double precision and mixed double-half

precision data. It is gratifying to note that the mixed double-

half precision performance of Fig. 4(b) is nearly identical to

that of the single-half precision case. Both mixed precision

solvers are substantially more performant than either the

uniform single or the uniform double precision solver. We

note that for lattices with 324 sites per GPU we have reached

a performance of 4.75 Tflops.

C. Strong Scaling

Fig. 5 shows our strong scaling results. In Fig. 5(a) we

show the data for the lattices with V = 323 × 256 sites.

We see a clear deviation from linear scaling as the number

of GPUs is increased and the local problem size per GPU is

reduced. This is not unexpected, since as the number of GPUs

is increased the faces represent a larger fraction of the overall

work. The improvement from overlapping communication

with computation is increasingly apparent as the number of

GPUs increases. The benefits of mixed precision over uniform

single precision can clearly be seen. However, we note that

performing the mixed precision computation comes with a

penalty in terms of memory usage: the mixed precision solver

must store data for both the single and half precision solves,

and this increase in memory footprint means that at least 8

GPUs are needed to solve this system. The uniform single

precision solver requires only the single precision data and
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Fig. 4. Weak scaling results for up to 32 GPUs on lattices with local volumes
of (a) V = 324 and (b) V = 243 × 32 sites per GPU. In subfigure (a)
we show performance results for the single precision solver and the mixed
single-half precision solver. In subfigure (b) we also show results for double
precision and mixed double-half precision. In both (a) and (b), the data come
from solvers where communications and computation have been overlapped,
as this performed fastest in weak scaling tests.

can be solved (at a performance cost) already on 4 GPUs. We

highlight the fact that the 32 GPU system is made up of 16

cluster nodes, which themselves contain 128 Nehalem cores.

We have performed a solution of this system on the Jefferson

Lab “9q” cluster, which is identical in terms of cores and

InfiniBand networking but does not contain GPUs. On a 16-

node partition of the “9q” cluster we obtained 255 Gflops in

single precision using highly optimized SSE routines, which

corresponds to approximately 2 Gflops per CPU core. In our

parallel GPU computation, on 16 nodes and 32 GPUs we

sustained over 3 Tflops which is over a factor of 10 faster

than observed without the GPUs.

Fig. 5(b) shows our strong scaling results for the lattice with

V = 243 × 128 sites. This lattice has half the time extent of

the larger lattice, and thus we expect strong scaling effects to

be noticeable at smaller GPU partitions than in the previous
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Fig. 5. Strong scaling results for up to 32 GPUs on lattices with total volumes
of (a) V = 323 × 256 sites and (b) V = 243 × 128 sites. We show data
for single precision without overlapping communications and computation
(black), mixed single-half precision without overlapping communications
and computation (red), single precision with overlapped communications
and computation (green), and mixed single-half precision with overlapped
communications and computation (blue). In subfigure (a) we also show mixed
single-half precision with overlapped communications but with deliberately
bad NUMA placement (maroon).

case. Further, the spatial volume is a factor of 2.3 smaller for

the V = 243 × 128 lattices than for the larger case. We were

surprised that the trend in our results is different from that in

Fig. 5(a). Notably, in this case we seem to gain little from

overlapping communication and computation in the mixed

precision solver. Indeed, for more than 8 GPUs the mixed

precision performance reaches a plateau and is surpassed even

by the purely single precision case. We believe this dropoff in

the strong scaling is due to additional overheads incurred in

overlapping communications with computations arising from

system and driver issues. We will return to this point in

Section VII-D, where we discuss latency microbenchmarks,

but suffice it to say that using cudaMemcpyAsync appears to

have a higher latency than cudaMemcpy. This may be a feature
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Fig. 6. Strong scaling results for the V = 243 × 128 lattice in single
precision, double precision, single-half mixed precision, and double-half
mixed precision. We used the solver that did not overlap computations and
communications for these results, since as shown in Fig. 5 it was faster than
the overlapped solver for the V = 243 × 128 lattice in single and mixed
single-half precisions.

of our motherboard or the version of the NVIDIA driver we

are using. In the case of the V = 323×256 lattice, probably the

volume in the body is large enough to hide this extra latency.

In the case of the V = 243×128 lattice, our data suggests that

the local volume may be sufficiently small that the overhead

of setting up the asynchronous transfers dominates and that in

this instance the lower latency of synchronous cudaMemcpy
calls can result in better performance.

Fig. 6 shows the strong scaling data for various precision

combinations for the V = 243 × 128 lattice, where we

now include uniform double and mixed double-half precision

results and do not overlap communication with computation.

Again we see that the mixed precision solvers employing

half precision outperform both single and double uniform

precision solvers. Note that uniform double precision exhibits

the best strong scaling of all because this kernel is less

bandwidth bound due to the much lower double precision peak

performance of the GTX 285 (see Table I).

D. System Issues

The PCI-E architecture in our Supermicro nodes was such

that the two GPU devices were each on a bus with a direct

connection to a separate socket on the motherboard. In our

tests we launched two MPI processes per node. In order to

obtain maximum bandwidth on the buses, it was necessary

to explicitly bind each MPI process to the correct socket.

We accomplished this using the processor affinity feature of

OpenMPI.

In Fig. 5(a) we show the performance a deliberately badly

chosen NUMA configuration (with maroon x-symbols). We

bound each process to the opposite socket from the CUDA

device it was using. One can see that the performance is

noticeably lower than the correctly bound case denoted by

blue asterisks in Fig. 5(a).



Secondly, as alluded to previously, we note that on

these nodes the latencies of cudaMemcpy (used in the non-

overlapped communication code) and of cudaMemcpyAsync
(followed immediately by a cudaSynchronizeThread) call are

quite different.
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Fig. 7. Latency microbenchmark showing tranfer times from host to device
or vice versa for messages of varying sizes. We show data for: device to host
using cudaMemcpy (black), host to device using cudaMemcpy (red), device to
host using cudaMemcpyAsync + cudaSynchronizeThreads (green) and host to
device using cudaMemcpyAsync+cudaSynchronizeThreads (blue). The timings
are taken over 500,000 message transfers

As shown in Fig. 7, using cudaMemcpyAsync incurs a

latency of just under 50 microseconds whereas a synchronous

cudaMemcpy has a much shorter latency of 11 microseconds.

It can also be seen that once out of the latency limited

region, the graphs show different gradients for the host-to-

device and device-to-host transfers, indicating different host-

to-device and device-to-host bandwidths. These features may

depend somewhat on the version of the NVIDIA driver and

motherboard BIOS used, but additional testing so far suggests

that the main culprit is a hardware limitation in the early revi-

sion of the Intel 5520 (Tylersburg) chipset used in the nodes.

Therefore the decision on whether to overlap communication

and computation or not may depend on the system under

consideration, as well as the problem size.

VIII. CONCLUSION AND FUTURE WORK

We have demonstrated what we believe is the first successful

attempt to use multiple GPU units in parallel for LQCD

computations. We have weak scaled our application to 4.75

Tflops on 32 GPUs and have strong scaled the application,

on a problem size of scientific interest, to over 3 TFlops. In

this latter case, we have achieved over a factor of 10 increase

in performance compared to not using GPUs (255 Gflops

on a “regular” cluster partition containing the same number

processors). We believe that the order of magnitude increase in

computing power is an enabling technology for sophisticated

modern analysis methods of great interest to particle and

nuclear physics. Indeed the solver we have described is now

in use in production LQCD calculations of the spectrum of

hadrons using the technique of distillation [2], [23]. Current

calculations use lattice configurations of the same size as

described in Section VII which were generated on leadership

computing platforms under DOE INCITE and NSF TeraGrid

allocations (granted to the USQCD and Hadron Spectrum col-

laborations, respectively). The calculations involve 32768 calls

to the solver for each configuration and benefit enormously

from the speedup delivered by the GPU solver.

Prior to parallelizing the QUDA library, our larger volume

dataset was not amenable to solution on GPUs due to memory

constraints. The use of multiple GPUs allows the solution

to proceed, realizing the large increases in cost effectiveness

promised by GPUs.

A slightly more nuanced point is that the nodes containing

4 GPUs (and no InfiniBand) may now be more efficiently

utilized. Prior to parallelization, one could solve the 243 ×
128 problem on a single GPU and analyze two configurations

simultaneously on a single node. One could not analyze more,

due to the limitations on the host (primarily memory capacity).

Now one can analyze 2 configurations simultaneously using

2 GPUs each, optimally utilizing all 4 GPUs in the node.

The exact optimization of a node configuration in terms of

InfiniBand cards, GPUs, and operating model is an interesting

issue but is beyond the scope of this paper.

There are many avenues for future exploration. Currently

only the solvers have been accelerated in the QUDA library.

Parallelization onto multiple GPUs may make gauge genera-

tion on GPU clusters an interesting and desirable possibility.

We are also interested in porting more modern algorithms to

the GPUs such as the adaptive multigrid solver discussed in

[24] to speed up computations even further. We follow the

development of the OpenCL standard with interest with a

view to potentially harness GPU devices from AMD as well

as NVIDIA, and we await future hardware and software im-

provements to allow better coexistence of GPUs and message-

passing (such as sharing pinned memory regions between

CUDA and MPI). Finally, we hope that the lessons learned

from GPUs will be usefully applicable on heterogeneous

systems in general as we head towards the exascale.
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