
Parallel Implementation of the Recurrence Method
for Computing the Power-Spectral Density of Thin

Avalanche Photodiodes

Yi Pan
Department of Computer Science

Georgia State University
Atlanta, GA 30303, USA
email: pan@cs.gsu.edu

Constantinos S. Ierotheou

Parallel Processing Research Group
University of Greenwich
London SE10 9LS, UK

Email: C.Ierotheou@gre.ac.uk

Majeed M. Hayat
Department of Electrical & Computer Engineering

The University of New Mexico
Albuquerque, NM 87131-1356, USA

Email: hayat@eece.unm.edu

Abstract

A simulation program has been developed to calculate the
power-spectral density of thin avalanche photodiodes,
which are used in optical networks. The program extends
the time-domain analysis of the dead-space multiplication
model to compute the autocorrelation function of the APD
impulse response. However, the computation requires a
large amount of memory space and is very time
consuming. In this research, we describe our experiences
in parallelizing the code using both MPI and OpenMP.
Several array partitioning schemes and scheduling
policies are implemented and tested. Our results show that
the OpenMP code is scalable up to 64 processors on an
SGI Origin 2000 machine and has small average errors.

1 Introduction

Among the semiconductor photodetectors that are
commonly used in today's long-haul and metro-area fiber-
optic systems, avalanche photodiodes (APDs) are often
preferred over p-i-n photodiodes due to their internal gain,
which significantly improves the receiver sensitivity and
alleviates the need for optical pre-amplification.
Unfortunately, the random nature of the very process of
carrier impact ionization, which generates the gain, is
inherently noisy and results in fluctuations not only in the
gain but also in the time response [1,2,3,5].

Just as accounting for dead space is essential in the correct
prediction of the excess noise factor in thin APDs,
accurately predicting the bandwidth characteristics of thin
APDs necessitates having a time-response analysis of the
avalanche multiplication that includes the effect of dead
space. This is particularly important if we were to push the
performance limits of thin APDs to meet the needs of next-
generation 40-Gbps lightwave systems [3].

Recently, a theory characterizing the autocorrelation
function (or the power spectral density) of APDs has been
developed which incorporates the dead-space effect [3].
The research extends the time-domain analysis of the
dead-space multiplication model reported in [5] to
compute the autocorrelation function of the APD impulse
response. This extension involves developing six
recurrence equations, which are derived according to the
same renewal-theory rationale used in [3]. To solve these
equations, a program called NP3 was developed. It deals
with the calculation of the autocorrelation function of the
APD's impulse response.

In this research, we describe our experimental results of
parallelizing the NP3 code using both Message Passing
Interface (MPI) [9] and OpenMP [4]. Our results show that
the code can be parallelized efficiently and the code is also
scalable up to at least 64 processors on an SGI Origin 2000
machine [8]. The rest of the paper is organized as follows.

Proceedings of the International Conference on Parallel Processing Workshops (ICPPW’02)
1530-2016/02 $17.00 © 2002 IEEE

The numerical formulation and basic structure of the
corresponding sequential code will be discussed in section
2. MPI parallelization of the code is presented in section 3.
OpenMP parallelization is discussed in section 4.
Experimental results, observation, and discussions will be
given in section 5. We conclude our paper in section 6.

2 Numerical Formulations and Structure of
Sequential Code

To describe the computations involved in obtaining the
power spectral density of APDs, we first provide a brief
description of the mathematical model involved, drawing
freely from the formulation developed in [3]. We begin by
recalling key definitions involved in the dead-space
multiplication theory developed in [3,5]. We will then
recall the basic equations developed in [3], which
characterise the first and second-order statistics of the
APD’s impulse response function. The parallel computing
technique reported in this paper is developed precisely for
the purpose of solving these integral equations.

2.1. The dead-space multiplication model (DSMT)
Consider an electron-injected APD with a multiplication
region of width w. Let Ze(t,x) be the total number of
electrons resulting from an initial parent electron born at
location x, t units of time after its birth. Similarly, let
Zh(t,x) be the total number of holes resulting from an initial
parent electron, at location x, t units of time after its birth.
The random impulse response, which is a stochastic
process, can be related to the functions Ze and Zh through
the relation I(t) = (q/w) [veZe(t,0) + vh Zh(t,0)], where ve and
ve, are, respectively, the electron and hole saturation
velocities in the APD’s depletion region. Our goal is to
mathematically characterize the first and second-order
moments of I(t), which is accomplished when the statistics
of Ze(t,0) and veZh(t,0) are determined.

As discussed in [3], it turns out that it is necessary to first
characterize the statistics of Ze(t,x) and Zh(t,x) for all x and
then specialize the results to x=0. We also need to
introduce auxiliary quantities representing cases when a
hole initiates the multiplication. In particular, let Ye(t,x) be
the total number of electrons resulting from a parent hole
born at location x, t units of time after its birth, and let
Yh(t,x) be defined similarly to Ye(t,x) but with the number
of generated electrons replaced with the number of
generated holes. Using the above definitions, recurrence
equations (integral equations) characterizing the mean of
Ze(t,x), Zh(t,x), Ye(t,x) and Yh(t,x) have been derived in [5].
For example, if we define the mean quantities ze(t,x),
zh(t,x), ye(t,x) and yh(t,x), then the functions ze(t,x) and
ye(t,x) are related by the following integral equation:

 min(,)

2

(,) ([(-) /] -) [1- ()]

[2 (- () / ,) (- () / ,)] (-)
e

e e e e
x v t w

e e e e e
x

z t x u w x v t H v t

z t s x v s y t s x v s h s x ds
+

=

+ − + −∫
 (1.1)
where He(x) is the indefinite integral of he(x), which is a
known probability density function whose form is given in
[3], and u(x) is the unit step function. A similar integral
equation exits for ye(t,x) (also involving ye(t,x) and ze(t,x)).
Hence, to determine the mean quantities ze(t,x) and ye(t,x),
we must solve two coupled integral equations of the type
shown in (1.1). Similarly, two more coupled integral
equations are available and must be solved to compute
yh(t,x) and zh(t,x). This completes the description of
computing the first-order statistics of the impulse response.

We now state the equations that characterize the
autocorrelation function of the stochastic process I(t),
defined by RI(t1 ,t2) = E[I(t1) I(t2)]. Following [3], the
autocorrelation can be expressed in terms of certain count
auto and cross correlations as follows:

RI(t1 ,t2) = (q/w)2 [ve

2 CZe(t1 ,t2,0) + vh
2 CZh(t1 ,t2,0) + ve vh

Cz(t1 ,t2,0) + ve vh Cz(t2 ,t1,0)],

where the count autocorrelations are defined as: CZe(t1
,t2,x) = E[Ze(t1,x)Ze(t2,x)] and CZh(t1,t2,x) =
E[Zh(t1,x)Zh(t2,x)], and the count cross correlation is
defined by Cz(t1,t2,x) = E[Ze(t1,x)Zh(t2,x)]. In [3], it is
shown that these auto and cross correlations satisfy certain
linear and pairwise-coupled (integral) equations. For
example, CZe(t1,t2,x) and CYe(t1 ,t2,x) satisfy the following
equation:

2

1

1

1 2 2 2

min(,)

2 1 2 1
min(,)

min(,)

2 1 2 1

1 1 2 1 2 1

(, ,) ([(-) /] -) [1- ()]

[2 (- ,) (- ,)] (-)

[2 (- ,) (- ,)] (-)

2 (- ,)[(- ,) (-

e

e

e

e

e e

Z e e e

x v t w

e e e
x v t w

x v t w

Z Y e
x

e e e

C t t x u w x v t H v t

z t s y t s h s x ds

C t s C t s h s x ds

z t s z t s y t

+

+

+

=

+ ∆ + ∆

+ ∆ + ∆

+ ∆ ∆ + ∆

∫

∫
1

1

min(,)

min(,)

1 1 2 1 2 1

,)] (-)

(- ,)[2 (- ,) (- ,)] (-)

e

e

x v t w

e
x

x v t w

e e e e
x

s h s x ds

y t s z t s y t s h s x ds

+

+

∆ ∆ + ∆

∫

∫

 (1.2)
A similar equation exists for CYe(t1 ,t2,x), also in terms of
CZe(t1 ,t2,x) and CYe(t1 ,t2,x), resulting in a pair of coupled
equations. The two coupled equations must be solved to
yield CZe(t1 ,t2,x) and CYe(t1 ,t2,x). Note that in the above
equation, the first-order quantities ye(t,x) and ze(t,x) are
assumed known and must be solved using the equations
described earlier in this Section. Similarly, two coupled
integral equations are also available characterizing CZh(t1

Proceedings of the International Conference on Parallel Processing Workshops (ICPPW’02)
1530-2016/02 $17.00 © 2002 IEEE

,t2,x) and CYh(t1 ,t2,x), and finally, two more are available
for CZ(t1 ,t2,x) and CY(t1 ,t2,x). In summary, to compute the
autocorrelation function RI(t1,t2), three pairs of pairwise
coupled integral equations (characterizing the second-order
statistics) and two pairwise coupled integral equations
(characterizing the first-order statistics) must be solved.

The above mentioned equations are solved numerically
using a simple iteration technique. For example, for each
pair of coupled integral equations (in two unknown
functions), the unknown functions (e.g., CZe(t1 ,t2,x) and
CYe(t1 ,t2,x)) are initially assumed to be identically zero.
The initial values are then substituted in the integral
equations to yield the first-order iterates, and so on. The
iteration process is terminated when the relative change
from one iteration to the other drops below a prescribed
level (10-8 in the calculations in [3]). The iteration
procedure was encoded with FORTRAN.

2.2. Key subroutines used in the computations
Subroutine mean_ze numerically implements the integral
equation given by (1.1). It consists of three nested loops:
two loops to exhaust the variables t and x, and a loop that
implements the integration. (The functions He and he are
computed outside the subroutine and are passed to the
subroutine whenever it is called.) The t and x variables are
discretized using a mesh size nt by ns. Moreover, for each t
and x, equation (1.1) is carried out using the same mesh
size used for x. The loops in the subroutine have the
following general structure:

do i=1,ns
 do j=1,nt
 “compute the first term of
(1.1)”
 do k=j,ns
 “compute and update for
(1.1)”

Similarly-structured subroutines exist to implement the
remaining three integral equations for the first-order
statistics ye(t,x), yh(t,x), and zh(t,x): these subroutines are
named mean_ye, mean_yh, mean_zh,
respectively.

The subroutines used to compute the second-order
statistics have an added loop to handle the extra time
variable t2. For example, subroutine auto_Cze
numerically implements the integral equation given by
(1.2). In addition to the three loops handling t1, t2 and x,
there is a loop that carries out the integration. Again, the t1,
t2 and x variables are discretized using a mesh size nt by nt
by ns, respectively. The loops in the subroutine have the
following general structure:

do i=1,ns
 do j=1,nt
 do k=1,nt
 “compute term 1 of (1.2)”
 do m=j,ns
 “compute for (1.2)”

Similarly structured subroutines exist to implement the
remaining five integral equations for the first-order
statistics CYe(t1 ,t2,x), CZh(t1 ,t2,x) and CYh(t1 ,t2,x), CZ(t1
,t2,x) and CY(t1,t2,x),: these are named auto_Cye,
auto_Czh, auto_Cyh, cross_Cz , and
cross_Cy, respectively.

With the above subroutines defined, the sequential
program structure is shown below.

 Program np3
 . . .
 do 10 kk=1, 300
 call mean_ye
 call mean_ze
 call mean_yh
 call mean_zh

 “check terminating condition”

 . . .
10 continue
 . . .
 do 11 kk=1,300
 call cross_Cz
 call cross_Cy
 “check terminating condition”

 . . .
11 continue
 . . .
 do 101 kk=1, 300
 call auto_Cye
 call auto_Czy
 call auto_Cyh
 call auto_Czh
 “check terminating condition”
 . . .
101 continue
 . . .

As we can see from the serial code, the major work is done
in the subroutines mean_ye, mean_ze, mean_yh,
mean_zh, cross_Cz, cross_Cy, auto_Cye,
auto_Czy, auto_Cyh and auto_Czh. Recall that
all of these subroutines involve nested loops (three or
four). In particular, the correlation subroutines are
extremely memory and time intensive, since they involve
three dimensional arrays and four nested loops. Clearly, if
we can parallelize these loops efficiently, then we can

Proceedings of the International Conference on Parallel Processing Workshops (ICPPW’02)
1530-2016/02 $17.00 © 2002 IEEE

reduce the computation time drastically. In the following
sections, we will describe the parallelization process in
more detail.

3 MPI Parallelization

MPI is a library specification for a message-passing
scheme, proposed as a standard by a broadly based
committee of vendors, implementers, and users [9]. The
main advantages of establishing a message-passing
standard are portability and ease-of-use. In a distributed
memory communication environment in which the higher
level routines and/or abstractions are built upon lower
level message passing routines, the benefits of
standardization are particularly apparent. Furthermore, the
definition of a message passing standard provides vendors
with a clearly defined base set of routines that they can
implement efficiently, or in some cases provide hardware
support for, thereby enhancing scalability.

An important decision for an MPI implementation is to
decide how to partition arrays in a distributed memory
environment. An inspection of the original NP3 serial code
did not appear to exhibit the characteristics of a code that
would yield a favourable level of performance when
executed using a distributed memory parallel system. For
example, although there were a number of multi-
dimensional arrays and nested loops, there appeared to be
a high communication cost that would be associated with
data movement due to the typical way in which the data
was being accessed. As an illustration Figure 1 below
shows a fragment of the NP3 code.

 Program np3
 . . .
 call mean_ye
 call mean_ze
 call mean_yh
 call mean_zh
 . . .

 subroutine mean_yh
 . . .
 do 21 k=1,nt+1
 do 22 n=2,ns+1
 sumy=0.
 do 23 i=max1(1.,n-(((k-
1.)/lh)+1)),n-1
 s=1+int(k-lh*(n-i))

sumy=sumy+(2*b(s,i)+a(s,i))*(gh(n-i+1))
 23 continue
 c(k,n)=hh(k,n)+(sumy*dx)
 22 continue

21 continue
. . .

 subroutine mean_zh
 . . .
 do 31 k=1,nt+1
 do 32 n=1,ns
 sumz=0.
 do 33
i=n+1,min0(ns+1,n+int(((k-1.)/le)+1))
 s=1+int(k-le*(i-n))

sumz=sumz+(2*a(s,i)+c(s,i))*(ge(i-n+1))
 33 continue
 d(k,n)=sumz*dx
 32 continue
 31 continue
 . . .

FIGURE 1. Typical data accesses for
arrays in mean-based routines

From this case alone there are at least two different
scenarios that can be explored.

1. The arrays a, b and c are not partitioned. This in turn

causes the routines to be executed in serial as each
processor will compute information for all iterations
of all loops. Although there are very few changes
required for some of the routines, this is not ideal and
will have a significant impact on the performance of
the parallel version of the code.

2. Arrays a, b and c could ideally be partitioned in index

2 (or using the n loop index). However, this has two
undesirable effects

i. arrays a and b in routine mean_yh are

accessed in index 2 using the i index (this is
the innermost loop of the triple nest of
loops). This conflicts with the requirement
to use the n loop to define the masked
statements in the parallel implementation.
As a result the a and b arrays need to be
broadcast to all processors prior to their use
in routine mean_yh.

ii. for similar reasons, array c will also require

to be broadcast prior to its usage in routine
mean_zh. This conflict of data accesses is
prevalent in much of the NP3 code affecting
many two and three dimensional arrays.

Therefore at a first glance, one would not expect to obtain
a good quality parallelization. Scenario (2) has the greater
scope for improvement if one can re-structure the existing

Proceedings of the International Conference on Parallel Processing Workshops (ICPPW’02)
1530-2016/02 $17.00 © 2002 IEEE

code such that the data accessing of the arrays better
reflects their alignment with their defined distribution [10].
One possible solution is to attempt the separation of the
computation in routine mean_yh so that both the i index
and the n index can be used to exploit the distribution in
index 2. Figure 2 shows how this can be achieved for
routine mean_yh at the expense of an increase in the
program memory requirement.

 subroutine mean_yh
 . . .
 do 21 k=1,nt+1
 do 22 n=2,ns+1
 sumy(n,k)=0.
 do 23 i=max1(1.,n-(((k-
1.)/lh)+1)),n-1
 s=1+int(k-lh*(n-i))
sumy(n,k)=sumy(n,k)+(2*b(s,i)+a(s,i))*(
gh(n-i+1))
 23 continue
 22 continue
 21 continue

 do k=1,nt+1
 do n=2,ns+1

c(k,n)=hh(k,n)+(sumy(n,k)*dx)
 enddo
 enddo
 . . .

FIGURE 2. Loop split to exploit

parallelism in serial code

The loop split transformation [10] is a standard
modification to loop structures that can only be applied if
there is no violation in the order in which the computation
is performed. In this case it can only be applied if the
scalar sumy is expanded to a two dimensional array,
thereby removing the data dependence for sumy between
iterations of the i loop. All distributed accumulations of
sumy are made in the first triple nest of loops, this is
followed by a double nested loop that uses the array sumy
to update the array c. The parallelism exploited here is
now both at the i loop in the first nest and also at the n
loop in the second nest. For correct parallel execution it is
also necessary to complete the reduction operation by
accumulating all local contributions into a single global
summation. This would require communicating data of the
order ns+1 instead of the broadcast cost of
(nt+1)*(ns+1) for each individual array.

The Computer Aided Parallelization toolkit [6] was used to
attempt to perform the parallelization using the strategy

described above and to generate a Single Program Multiple
Data (SPMD) version of the NP3 code. There are a number
of stages that the user needs to go through with the tools to
generate the parallel code as shown below.

Serial Fortran code: The serial FORTRAN version of the
code is parsed and stored in an internal form by the toolkit.

Dependence Analysis: the toolkit performs a detailed
interprocedural, symbolic, value-based, dependence
analysis. The dependence analysis defines the core of the
toolkit and helps to identify the potential parallelism in the
code. The user can then use the available transformation
tools to re-structure all the necessary routines by
performing a loop split as described in Figure 2. As part of
this transformation process, the toolkit also check the
legality of any transformation to ensure that the
transformed code is valid. In addition, the user is given the
opportunity to preview any transformed code and makes a
decision to either accept or reject the suggested code
changes.

Data Partitioning: The data partitioning of all relevant
arrays is then also carried out by the toolkit. This process
requires the user to suggest an initial starting point to the
partitioner, for example, the user can specify index 2 of
array a in routine mean_yh. The partitioner then uses this
information and identifies all other arrays that can be
defined to have similar data distributions throughout the
entire code. The strategy uses a 1D domain decomposition.
Due to the data dependency in the other loops a 2D
decomposition is not feasible in this case.

Execution Control Masking: The re-structuring of the
serial code to execute in parallel using an SPMD paradigm
begins with attempting to identify and place execution
control masks for all relevant statements. These masks
define which processor(s) at run-time will execute any
given statement. Ideally, one would like a uniform set of
masks that are applied to as many statements as possible in
the code. The use of masks that reflect the processor
“ownership” or assignment area of the arrays is also
desirable. So for example, if each processor at run-time has
defined low and high assignment range limits then it
would be more efficient to generate masks for routine
mean_yh as shown in Figure 4. These masks exploit the
parallelism at both the i loop and also the n loop by
executing the statements (in italics) in parallel.

 subroutine mean_yh
 . . .
 do 21 k=1,nt+1
 do 22 n=2,ns+1
 sumy(n,k)=0.
 do 23 i=max(max1(1.,n-(((k-
1.)/lh)+1)),low),min(n-1,high)

Proceedings of the International Conference on Parallel Processing Workshops (ICPPW’02)
1530-2016/02 $17.00 © 2002 IEEE

 s=1+int(k-lh*(n-i))

sumy(n,k)=sumy(n,k)+(2*b(s,i)+a(s,i))*(
gh(n-i+1))
 23 continue
 22 continue
 21 continue

 do k=1,nt+1
 do
n=max(2,low),min(ns+1,high)

c(k,n)=hh(k,n)+(sumy(n,k)*dx)
 enddo
 enddo
 . . .

FIGURE 4. Execution control masks to

define parallel execution

Communication Generation: In order to ensure parallel
execution similar to that for the serial code, the final step
in the parallelization process is to identify and place
communication calls into the modified code. The aim is to
try and identify a minimum set of communication
requirements to reflect the changes already made to the
code. There are many requests for data to be
communicated based on the distribution of the data across
the processors. The toolkit identifies these requests and
then attempts to migrate them higher up in the call graph.
Further movement of the communication requests is
prevented when they encounter a barrier and this is usually
an assignment of the variable requested for
communication. At this point an attempt is made to merge
any similar requests for the same variable, finally
culminating in a communication call to a message passing
library routine. In this code most of the communication
calls were based on reduction operations that were
generated as a result of the loop split shown in Figure 2.
The final parallel version of routine mean_yh is shown in
Figure 5.

 subroutine mean_yh
 . . .
 do 21 k=1,nt+1
 do 22 n=2,ns+1
 sumy(n,k)=0.
 do 23 i=max(max1(1.,n-(((k-
1.)/lh)+1)),low),min(n-1,high)
 s=1+int(k-lh*(n-i))

sumy(n,k)=sumy(n,k)+(2*b(s,i)+a(s,i))*(
gh(n-i+1))
 23 continue
 22 continue
 21 continue

 call
cap_mcommutative(sumy(1,1),(nt+1)*(ns+1
),2,cap_mradd)
 do k=1,nt+1
 do
n=max(2,low),min(ns+1,high)

c(k,n)=hh(k,n)+(sumy(n,k)*dx)
 enddo
 enddo
 . . .

FIGURE 5. High level communication call
representing an array global summation

Parallel code generation: The final code generation to a
file (or files) can be defined in one of two ways depending
on the user’s requirements. Currently, the two options are:

1. To generate parallel code that still retains the original

array declarations. Therefore, every processor will
contain a full copy of the all the arrays in the code.

2. To generate parallel code that re-defines the array

declarations to be a function of the minimum number
of processors used during program execution
(generally this must be greater than 1). This will take
into account whenever possible, the reduced memory
requirement for each processor as a result of the
distribution of the arrays. This approach generally has
a better scalability property than (1) and will allow
larger problem sizes to be solved. This was the
selected option for the experiments conducted below.

4 OpenMP Parallelization

OpenMP's programming model uses fork-join parallelism
where master thread spawns a team of threads as needed
[4]. Parallelism can be added incrementally i.e., the
sequential program evolves into a parallel program. Hence,
we do not have to parallelize the whole program at once. A
user finds the most time consuming loops in the code, and
for each loop, the iterations are divided up amongst the
available threads. In this section we will give some simple
examples to demonstrate the major features of OpenMP.

When parallelizing a loop in OpenMP, we may also use
the schedule clause to perform different scheduling
policies to effect how loop iterations are mapped onto
threads. There are four scheduling policies available in the
OpenMP specification. The static scheduling method deals
out blocks of iterations of size “chunk” to each thread. In
the dynamic scheduling method, each thread grabs
“chunk” iterations off a queue until all iterations have been
handled. In the guided scheduling policy, threads
dynamically grab blocks of iterations (the size of the block

Proceedings of the International Conference on Parallel Processing Workshops (ICPPW’02)
1530-2016/02 $17.00 © 2002 IEEE

starts large and shrinks down to size “chunk” as the
calculation proceeds). This helps to achieve a good load
balance amongst the processors. Finally, in the runtime
scheduling method, schedule and chunk size can either be
set using the OMP_SCHEDULE environment variable or
can be defined in the code for each loop. In our study we
condsidered both static and dynamic scheduling
approaches with varying chunk sizes.

The toolkit can also be used to generate OpenMP directive
code for shared memory machines [7] and was used here
to parallelize the NP3 code. As with the message passing
parallelization, there are a number of stages that the user
needs to go through with the tools to generate the parallel
code, but these are fewer (and somewhat easier) to
perform.

The serial FORTRAN code and Dependence analysis
stages are the same as those described above for the
message passing based process. The directive generation
stage involves the structured examination of the loops
within the code. The classification of loop types makes it
easier to identify critical loops and also loops that can be
potentially made parallel. The GUI directives browser
allows the user to see at a glance and to inspect the
different types of serial and parallel loops that have been
identified. In conjunction with the other tools browsers
such as the dependence graph, variable definition and
transformation browsers, the user is able to iteratively
refine the identification and placement of OpenMP
directives. The generation of the OpenMP code is then
carried out automatically.

5 Experimental Results

Two test sizes for a given test case were tried. Case 1 was
defined by a 110x110x110 size problem and case 2 was
defined by a 200x200x200 size problem. Results were run
on an Origin 2000 populated with 64 300MHz processors
and a total of 64Gb of memory. Each processor has a
primary data cache of 32Kb, a primary instruction cache of
32Kb and a secondary unified data/instruction cache of
8Mb. The execution times and the speedups are shown in
Figure 6 and Figure 7, respectively.

Results for the message passing parallelization for
110X110X110 case shows an interesting variation as the
number of processors are increased. Between 2-16
processors the better cache usage and relatively small
communications give exceptional performance over the
serial run. From about 20 processors onwards the
communication cost becomes more significant and begins
to outweigh the computation being carried out. The
majority of communications are reduction operations. The
cost of a reduction operation (implemented as a
hypercube) is significant as the number of processors is

increased. This cost starts to outweigh the volume of
computation and the cache benefits (better with a small
number of processors) being performed in the MPI
parallelization. The larger test case shows better speedups
and scalability.

The MPI code also displays superlinear speedups when the
number of processors used is between 4 and 16. This is
probably caused by much reduced cache misses in the code
due to much less memory requirement on each processor
when we use multiple number of processors instead of a
single processor.

Several scheduling policies are used for OpenMP
implementation. We found that the dynamic scheduling
policy performs the best and hence its results are reported
in figure 6 and 7. It is also clear that the OpenMP code
performs better than the MPI code when the number of
processors used is really large (e.g., 64).

0
20000
40000
60000
80000

100000
120000
140000

0 50 100

MPI
110X110X110

MPI
200X200X200

OpenMP
110X110X110

OpenMP
200X200X200

Figure 6. Executions Times for the Two Test Cases.

0

10

20

30

40

50

0 20 40 60 80

MPI Test 1

MPI Test 2

OpenMP Test
1
OpenMP Test
2

Figure 7. Speedups for the Two Test Cases.

6 Conclusions

We have parallelized a sequential Fortran code, which is
the major program for calculating the autocorrelation
function of the impulse response for thin avalanche
photodiodes, using both MPI and OpenMP. The 2-D

Proceedings of the International Conference on Parallel Processing Workshops (ICPPW’02)
1530-2016/02 $17.00 © 2002 IEEE

Fourtier transform of the autocorrelation function yields
the power-spectral density, which, in turn, characterizes
the fluctuations in the bandwidth. The code is parallelized
with the aid of a toolkit, which is capable of accurately
analysing dependencies in serial codes and generating
portable parallel source codes in a semi-automatic and
interactive way. Using this approach, many designs can be
implemented quickly, and decisions can be made
efficiently. Despite the apparent lack of parallelism present
when performing a distributed memory parallelisation,
running the executable on an SGI Origin 2000
supercomputer indicates that the MPI code is still quite
efficient and the OpenMP code is scalable up to 64
processors on the SGI machine. We expect that the
scalability will be further improved once a larger problem
size is used in the code.

7 Acknowledgement

This research was supported in part by the National
Science Foundation under Grant ECS-0196569. The
authors have had many useful discussions with Prof. Joe C.
Campbell of the University of Texas at Austin.

8 References

1. J. C. Campbell, W. S. Holden, G. J. Qua, and A.
G. Dentai, ``Frequency response InP/InGaAs
APD's with separate absorption grading and
multiplication regions,'' IEEE J. Quantum
Electronics, vol. QE-21, pp. 1743--1749, 1985.

2. J. C. Campbell, B. C. Johnson, G. J. Qua, and W.

T. Tsang, ``Frequency response
InP/InGaAsP/InGaAs APD's,'' J. Lightwave
Technology, vol. 7, pp. 778--784, 1989.

3. M.M. Hayat, O.-H. Kwon, Yi Pan, P. Sotirelis,

J.C. Campbell, B.E.A. Saleh, and M.C. Teich,
``Gain-Bandwidth Characteristics of Thin
Avalanche Photodiodes,’’ IEEE Trans. on
Electron Devices, vol. 49, no. 5, pp. 770-781,
May 2002.

4. R. Chandra, L. Dagum, D. Kohr, D. Maydan, J.

McDonald, and R. Menon, Parallel Programming
in OpenMP, Morgan Kaufmann Publishers, 2000.

5. M. M. Hayat, and B. E. A. Saleh, ``Statistical

properties of the impulse response function of
double-carrier multiplication avalanche
photodiodes including the effect of dead space,''
Journal of Lightwave Technology, vol.10,
pp.1415--1425, 1992.

6. C.S. Ierotheou, S.P. Johnson, M. Cross, and P.F.
Leggett, “Computer aided parallelization tools
(CAPTools) - Conceptual Overview and
Performance on the Parallelization of Structured
Mesh Codes”, Parallel Computing, vol. 22,
pp.163-195, 1996.

7. H. Jin, M. Frumkin, and J. Yan, “Automatic

Generation of OpenMP Directives and Its
Application to Computational Fluid Dynamics
Codes,” International Symposium on High
Performance Computing, Tokyo, Japan, October
16-18, 2000, in Lecture Notes in Computer
Science, Vol. 1940, pp. 440-456.

8. J. Laudon and D. Lenoski, ``The SGI Origin: A

ccNUMA Highly Scalable Server,'' The 1997
International Symposium on Computer
Architectures, Denver, CO, pp. 241--251.

9. M. Snir, et al. MPI: the complete reference. MIT

Press, Cambridge, Mass., 1996.

10. M. Wolfe, High Performance Compilers for
Parallel Computing. Addison-Wesley Publishing
Company, 1996.

Proceedings of the International Conference on Parallel Processing Workshops (ICPPW’02)
1530-2016/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

