
Reduction of Complexity and Automation of Parallel
Execution Through Loop Level Parallelism

Robert A. Tefft
Department of Computer Science

Central Michigan University
Mount Pleasant, Michigan 48859

Email: bobtefft@gmail.com

Roger Y. Lee
Software Engineering and Information

Technology Institute (SEITI)
Central Michigan University

Email: acis@acisinternational.org

Abstract

SIMD (Single Instruction Multiple Data) is a

processor architecture classification from Flynn's
taxonomy. The concept is that a single instruction set
operates on multiple units of data simultaneously.
Computers use this processor architecture are known
as array processors or vector processors. Most
computers in use today are SISD (single instruction
single data) though allowing a single instruction to
operate on multiple data can also be applied to a
virtual machine that is capable of parallel execution
through the use of multi-threading/multi-core
processors, or distributed parallel execution on a
multi-computer grid. This paper proposes a language
structure that applies the SIMD concept to the Java
virtual machine. The motive is to reduce the
complexity of the code and ease implementation of
parallelization by running a single set of instructions
concurrently on an entire collection of objects.

Index Terms

Concurrency control, Parallel languages, Parallel
processing, Parallel programming, Parallelizing
compilers, Vector processing

1. Introduction

Parallel executing language statements do exist for
supercomputing environments but to my knowledge
not for general purpose personal computers. The
statement discussed in this paper is an unconditional
branch statement which will be referred to as an “all
statement.“ The ability to map this instruction to
current parallel code is proved through an algorithm
that translates Java code with the statement block to
standard multi-threaded Java code.

At the time of this writing Multi-threading and
Multi-core processors are beginning to flood the
personal computer and server markets. Processors
such as the Intel core duo series and the AMD Athlon
X2 series have brought multiple cores to the personal
computer market, and these companies currently have
introduced quad core processors.

As size and heat factors are limiting processor clock
speeds the trend to add more and more processors in a
single package will continue. For example in the
server market the Sun Microsystems T2000 server has
eight cores, and even the Playstation three game
console has eight processing elements with its IBM
cell processor[1]. In addition to multiple cores most of
these processors are able to handle more then one
thread of execution on each core. This adds up to quite
a few simultaneously executing threads. For instance
eight simultaneous threads on a quad core processor
with hyper threading or even thirty two simultaneous
threads on the Sun Utra-Spark processor with its fine
grained multi threading technology[2].

As can be seen by the previous examples many new
processor architectures are emerging that emphasize
parallelism and multi-threading. On previous single
core processors with a single thread of execution
conventional wisdom held that multi threading was
only beneficial for programs that mixed computation
with input and output. In this scenario multiple threads
would all run on the same processor having the same
effect as a single thread. When I/O was involved
threads would be blocked while waiting for events,
allowing a single processor to benefit through
executing additional threads. With new more parallel
processors parallelization now benefits all programs.
Computationally bound programs can now be split up
with computations carried out simultaneously.

In addition to the fact that most processors have
historically been single core, concurrent programming
turns out to be more difficult introducing: more

Seventh International Conference on Quality Software (QSIC 2007)
0-7695-3035-4/07 $25.00 © 2007

complex code, race conditions, and interprocess
communication issues. For these reasons most
software has yet to take advantage of the increased
ability of processors.

Furthermore programming languages designed for
the single processor model need to have non standard
extensions or complicated library routines in order to
run programs in multiple threads. In many cases
development of multi threading is avoided as it would
add another layer of complexity to a programming
project. An easier method of parallelization is needed.

The idea is to test a statement that introduces loop
level parallelism to the Java programming language.
Loop level parallelism works much like the SIMD
(Single Instruction Multiple Data) processor
architecture classification from Flynn's taxonomy[9].
The concept is to take a collection and apply a single
block of code to every object in the collection in
parallel. An example is the FORALL statement in
HPF[8]. What I propose is adding such a statement,
called an “all statement”, to a language (Java in the
example). This will certainly not solve the problem in
itself, and would indeed (at this point) be just another
non-standard language extension, but it is expected that
this study sheds perhaps a little light on the problem of
parallel execution.

In order to better explain the statement first we will
introduce the non parallel “for next” style loop as
found in recent scripting languages such as Python, and
recently added to Java with the release of Java 5. An
example of this style of for loop:

 for(obj x in List)
 x.method()

For each iteration inside the body of the loop (here
just one statement), the object x refers to the next
object in the collection named List. In this manner the
collection is iterated over with no need for an
incremental index number as found in many standard
for loop implementations. Any collection with
ordering is traversed and each object in the collection
is given to the block of code in sequence. If the
constraint of guaranteed in order traversal is taken
away this allows for the code block to execute in any
order through the list.

Interestingly enough this allows the code to be
applied to all elements at the same time since finishing
each thread at different times would not be a problem.
This is the idea behind “loop level parallelism” and the
“all” statement. The body of the “loop” is executed on
each object in the list in parallel. As can be seen on the
diagram below the statement is actually an
unconditional branch, not a loop. The syntax though is
nearly identical:

 all(obj x in List)
 x.method()

2. Related Work

Concurrency support has long been a topic of
research in the high performance computing area, and
is an active topic of research due to the increased
availability of multi-processor computers. In addition
there are examples of applying the single instruction on
multiple data even with no aim toward parallelism.
These language features are simply implemented for
reduction of code. Some examples of this sort of
language feature are: the Python map built in
function[3].

Fig. 2. all statement

Fig. 1. for
next loop

Seventh International Conference on Quality Software (QSIC 2007)
0-7695-3035-4/07 $25.00 © 2007

More equivalent statements to the one presented in
this paper add parallel execution as a goal of the
statement. These can be found in language extensions
to standard programming languages aimed at
increasing parallelism in high performance
computation. Examples that add loop level parallelism
are in high performance Fortran and high performance
C (HPF and HPC respectively). The statement in these
languages is the FORALL statement[8]. More
examples of parallel language extensions and sets of
compiler directives include MPI (message passing
interface)[7], OpenMP (Open Message Passing)[4].
and ADAPTOR (Automatic DAta Parallelism
TranslatOR)[10].

Another approach that is more appropriate if
reduction of complexity is the goal is to write a
language that inherently supports concurrency. Many
such efforts exist such as AKL[5], Fortress[6],
Mozart/Oz, Erlang, E, and many more. Other then
Java most of these languages are still in development
or have yet to have a major following. It is worth
mentioning that concurrency is possible in other
languages such as C, but it is not considered a
concurrent language because the parallelism is not built
in.

3. Objective

Allow for parallel execution with as clean and
simple code as possible. Standard multi threaded Java
code requires modification to several parts of the code.
It includes writing an object that implements the
runnable interface, overriding the abstract run method,
and later invocation of the method. The goal of this
study is to reduce this complexity while maintaining
the advantages of Java cross platform code.

Furthermore I intend to demonstrate that this syntax
is complete through mapping the code to standard Java
and running the code. Furthermore I will verify if
multi-threaded Java code runs on multiple processing
cores. In addition the parallel code will be tested on
fine grained and course grained computation. I suspect
that there will be a large speed up for course grained
computation, but the fine grained computation would
be worse off due to the overhead of generating threads.
In addition I hope to further clarify what conditions are
necessary for loop level parallelization. If such
conditions are well known perhaps the compiler could
detect them in standard for loops and generate parallel
code where applicable. Though automatically
detecting the extent of a computation remains a
problem.

4. Method

 The idea will be tested by an algorithm that maps the
“all statement” embedded in Java code to standard
multi threaded Java code. The ability to map one type
of code to the other shows that the code has equivalent
meaning.
 The mapping results in two versions of the multi
threaded code. The nonstandard version with the all
statement, and the standard multi-threaded Java code.
The reduction of complexity benefit will be measured
by comparing the number of lines of code in the two
versions. In addition the number of different places the
code introduces modifications will be considered.

// Given a statement:
// all(Object X : Collection)
// Body

file inFile
file outFile

copy inFile to outfile

if(“all” ∊ inFile):
 add “import java.lang.Thread” to outFile
end

for(allStatement a in inFile):
 //Modify outFile as follows
 add an inner class extending Thread
 add a member variable representing X

 add a constructor that initializes X
 copy “Body” from inFile
 add “Body” to the run() method of outFile
 replace the “all” with a “for” in outFile
 in outFile initiate threads in for loop
 in outFile wait for threads to finish
end

Fig. 3. Mapping Algorithm Pseudocode

5. Results

A program that increments all the values in a vector
was written as a simple example of the statement. This
simple case with only one line of code in the body of
the statement allows for analysis of the complexity of
the two versions. The version with the all statement to

Seventh International Conference on Quality Software (QSIC 2007)
0-7695-3035-4/07 $25.00 © 2007

add loop level parallelism and one with standard
parallel Java code.

The version with the new statement is completely
compatible with the Java 5 “for each” style statement if
one only replaces the “all” with “for.” That said the
added complexity is minimal and requires a single
point of modification.

The lines of code is two or more; counting at least
one for the body and one for the statement.

//Java code with loop level parallelism
package forall;
import java.util.*;

public class IncrementTest {
 static Vector v = new Vector(1000);

 public IncrementTest() {
 for(int n=0;n<1000;n++){
 v.add(n);
 }
 all(Object x : v){
 x = ((Integer)x).intValue() + 1;
 }
 }
}

Fig. 4. Java Code With "all" Statement

The “standard threaded” version of the code was
more complex and is included in appendix B. It
required modification to eight or more lines of code
(not counting curly braces). The code took five points
of modification as follows:

1. Include of the library
2. A new class for the threaded code
3. Implementation of the run() method
4. Invocation of the threads
5. Implementation of code in the constructor to

reference an object in the collection
The thread objects were created in an inner class to

the original object. This gives the threads access to the
host objects instance variables.

For safety sake the threads should take care on
writes to such variables. The fact that each thread is
passed a reference to an individual element of the
vector allows each thread to have an individual object
that is safe to modify.

//Standard multi-threaded Java code
package forall;
import java.util.*;

import java.lang.Thread;

public class Threaded {
 static Vector v = new Vector(1000);
 public Threaded() {
 for(int n=0;n<1000;n++){
 v.add(n);

 }
 for(Object x : v){
 new TheThread(x).start();
 }
 }
 class TheThread extends Thread{
 Object x;
 TheThread(Object x){
 this.x = x;
 }
 public void run(){
 x = ((Integer)x).intValue() + 1;
 }
 }

}

Fig. 5. Multi-Threaded Java Code

In a less naive implementation the modifications
would be constrained to the collection object, however,
access to the outer object will be maintained to handle
any valid block of code that could be in the original
block. Special clones of the host (outer) object could
be made immutable and passed with the thread to a
cluster of remote computers for processing.

6. Conclusion

The auto-threaded statement has marginally less
code. Although the reduction in code in this instance
was five lines when dealing with large blocks of code
the difference will be minimal.

The forall statement however, has been shown to be
far less complex in points of modification one vs. five.
When dealing with the complexity of the code separate
places that need modification are going to quickly
burden the designers and programmers of the system.
The human mind can only contain so many separate
ideas at one point in time. This makes a single point to
consider far more desirable.

Seventh International Conference on Quality Software (QSIC 2007)
0-7695-3035-4/07 $25.00 © 2007

7. Further Study

Further study need to be done on the performance
characteristics of such a statement. Including the
possibility of distributed parallel execution.

In addition there might be an even easier way to
perform operations in parallel on sets. Some possible
examples are the use of closures as in Smalltalk, Ruby,
or Groovy where a block of code can be passed to a
method. The following two lines is an entire single
threaded simple test program using closures in the
groovy programming language. Adding an “all”
method instead of an “each” method would be to only
change needed to multi thread if the all method existed
on the Array class.

 myList = (0..999).toList()
 myList.each{ it++ }

Fig. 6. Single-Threaded Groovy Code

The map and reduce functions that operate on every

element in a collection as found in Python and other
scripting languages can also be made to operate in
parallel.

In addition an implementation might benefit if after
dispatching all the worker threads the parent thread
could wait for all the child threads to finish before
continuing past the parallel statement.

The question remains if such a specialized structure
is needed. Loop level parallelism would definitely
benefit a language that can operate on all the new
multiprocessing desktop systems, but it may not
require something as drastic as a new language
statement. Implementation as a standard library would
have the same reduction of complexity with only the
added requirement of including a library.

References

[1] S. Williams, J. Shalf, L. Oliker, S. Kamil, P.
Husbands, K. Yelick. The Potential of the Cell

Processor for Scientific Computing. ACM CF'06, May
2006, Ischia, Italy.

[2] J. De Gelas, SUN’s UltraSparc T1 - the Next
Generation Server CPUs. http://www.anandtech.com

[3] Python Language Reference
http://docs.python.org/lib/built-in-funcs.html

[4] L. Dagum, R. Menon. OpenMP: An Industry
Standard API for Shared Memory Programming.
IEEE Computational Science & Engineering, January
1998

[5] S Janson, S Haridi. An Introduction to AKL A
Multi-Paradigm Programming Language. Swedish
Institute of Computer Science , December 14, 1993

[6] E Allen, D Chase, J Hallett , V Luchangco ,JW
Maessen, S Ryu, G. Steele, S Tobin- Hochstadt et. al.
The Fortress Language Specification. Sun
Microsystems, Inc. September 19, 2006

[7] R. Graham, G. Shipman, B. Barrett, R. Castain, G.
Bosilca, A. Lumsdaine. Open MPI: A High-
Performance, Heterogeneous MPI. Proceedings, Fifth
International Workshop on Algorithms, Models and
Tools for Parallel Computing on Heterogeneous
Networks. Barcelona, Spain September, 2006

[8] High Performance Fortran http://hpff.rice.edu/

[9] R. Duncan. A Survey of Parallel Computer
Architectures. IEEE Computer. February 1990, pp. 5-
16.

[10] S. Benkner, T. Brandes. Efficient Parallel
Programming on Scalable Shared Memory Systems
with High Performance Fortran. Concurrency and
Computation: Practice and Experience, John Wiley &
Sons Ltd. Special Issue of HPF Users Group Meeting
2000, Tokyo

Seventh International Conference on Quality Software (QSIC 2007)
0-7695-3035-4/07 $25.00 © 2007

