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ABSTRACT
The long foreseen goal of parallel programming models is to scale
parallel code without significant programming effort. Irregular par-
allel applications are a particularly challenging application domain
for parallel programming models, since they require domain spe-
cific data distribution and load balancing algorithms. From a per-
formance perspective, shared-memory models still fall short of
scaling as well as message-passing models in irregular applica-
tions, although they require less coding effort. We present a simple
runtime methodology for scaling irregular applications parallelized
with the standard OpenMP interface. We claim that our paralleliza-
tion methodology requires the minimum amount of effort from the
programmer and prove experimentally that it is able to scale two
highly irregular codes as well as MPI, with an order of magnitude
less programming effort. This is probably the first time such a re-
sult is obtained from OpenMP, more so, by keeping the OpenMP
API intact.

1. INTRODUCTION
The convergence of parallel computer architectures provides a com-
mon ground for direct quantitative and qualitative comparisons be-
tween parallel programming models. Although contemporary high-
end architectures have physically distributed memory for the sake
of scalability, they integrate shared-memory and message-passing
in a manner that enables efficient implementations of both pro-
gramming paradigms. Programmers can use a single scalable plat-
form, such as a ccNUMA multiprocessor or a cluster of SMPs, to
reason about the advantages and disadvantages of different pro-
gramming models in terms of performance, expressiveness, and
portability. This capability is valuable, as it lets programmers seek
the long pursued sweet spot of parallel programming, that is, mini-
mize the effort required to obtain a scalable program.

Direct comparisons between parallel programming models in sev-
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eral application domains indicate interesting trends and trade-off’s
[4, 5, 16, 19]. Message-passing tends to outperform shared-me-
mory, by giving the programmer opportunities to algorithmically
minimize the communication overhead. The performance margin
between the two programming models is not prohibitive for us-
ing shared-memory though. On the contrary, it has been shown
that with a handful of manual optimizations for improving memory
access locality and load balancing, shared-memory programming
models can approximate the performance of message passing with
less coding effort [19]. Moving one step further, work from the au-
thors has shown that it is possible to use flat directive-based shared
memory parallelism without explicit interfaces for thread or data
placement, and yet be able to sustain performance as good as that
of message-passing or data-parallel models, using algorithms for
implicit data distribution at runtime [13, 15] . This result, although
interesting in itself, has been validated only with regular and em-
barrassingly parallel codes.

Irregular applications are probably the most challenging applica-
tions for parallel programming models. These applications have
two undesirable properties that prevent scalability, namely irregular
communication patterns and load imbalance. The existing experi-
mental evidence suggests that message passing is the programming
model of choice for irregular applications, yielding performance
which is typically between 50% and an order of magnitude higher
than the performance of shared-memory, data-parallel or hybrid im-
plementations of the same programs [4, 16].

Scaling irregular applications with a shared-memory programming
paradigm to perform in par with implementations of the same appli-
cations with message-passing remains an open problem. There are
some important steps taken in this direction, encompassing tech-
niques such as manual data placement, data reordering and dy-
namic subdivision of the problem space [6, 12, 19]. Unfortunately,
most, if not all, of these techniques are non-portable and require
complex code and data transformations, hence significant program-
ming effort. The lack of a systematic methodology for applying
these transformations is also a concern. It is a major research
challenge to scale irregular applications using flat directive-based
shared-memory parallelism, without explicit interfaces for data
placement, thread placement, or load balancing.

This paper addresses the aforementioned problem and contributes a
simple runtime methodology for scaling iterative irregular parallel
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codes, using the standard, unmodified OpenMP API. Our method-
ology addresses simultaneously the problems of data locality and
load balancing, using runtime performance monitoring. The idea is
to have the runtime system tape information that reflects accurately
the data access pattern of the program and potential load imbal-
ance. This information can be used for both on-line and off-line
optimization. We use two simple runtime techniques, memory ref-
erence tracing combined with user-level dynamic page migration
[15], and dynamic redistribution of loop iterations. Both techniques
bare similarities to the well-known inspector/executor model [18],
although they are faster, since they use hardware counters instead
of traces collected in software. As an alternative to the automatic
runtime optimizations, we present a simple scheme for implement-
ing arbitrary irregular data distributions through proper distribution
of the iterations of OpenMP parallel loops. This scheme can be ex-
ploited when the programmer can contribute some domain-specific
knowledge to improve data access locality or load balancing.

We ran experiments with three highly irregular codes from the In-
tegrated Forecasts System of the European Center for Medium-
Scale Weather Forecasting [20]. We parallelized the most time
consuming loops of the codes with OpenMP, spending an effort of
about a couple of hours per benchmark. Our experimental evidence
show that in two of the three codes, our runtime techniques enable
OpenMP to perform as well as MPI, while the programming effort
to reach this level of performance with OpenMP is at least an order
of magnitude less than the programming effort required by MPI.
We consider this result as the main contribution of this paper. To
the best of our knowledge, this is the first time that an implementa-
tion of OpenMP scales as well as MPI in irregular codes, without
requiring any modifications to the OpenMP API.

The rest of this paper is organized as follows: Section 2 describes
the irregular kernels used in our study. Section 3 analyzes our run-
time optimization methodology. Section 4 reports experimental re-
sults and Section 5 concludes the paper and discusses some direc-
tions for future work.

2. IRREGULAR APPLICATION KERNELS
We used three computational kernels (LG, SL and TS) from the
Integrated Forecasting System (IFS) of the European Center for
Medium-Range Weather Forecasts (ECMWF) [20]. IFS uses a
spectral forecast model for predicting weather for a period of up to
10 days ahead. The kernels perform transpositions of data between
the three main computational phases of IFS, namely the grid-point
space computation, the Fourier space computation, and the spectral
space computation. These transpositions are performed to ensure
that the computational parts of IFS are executed in parallel without
interprocessor communication. Data transpositions in the IFS code
can be implemented with appropriate data redistributions. Unfor-
tunately, the grids of the main computational phases of IFS cannot
be represented with regular (e.g. BLOCK or CYCLIC) data dis-
tributions. The physical space grid and the Fourier space grid are
quasi-regular, because the number of grid points (used to model
earth) per latitude is progressively reduced when moving from the
equatorial to the poles. The spectral space grid, which is produced
from a Legendre transform of the Fourier space grid, has a triangu-
lar shape.

An efficient message-passing implementation of these kernels re-
quires the identification of data points that may be accessed re-
motely, compilation of message send and receive lists based on
the owners of remotely accessed data, and pre-computing of com-

!HPF$ PROCESSORS PROCS(NPROC),
!HPF$& PROCSAB(NRPOCA,NPROCB)
!HPF$ DISTRIBUTE(GEN BLOCK(MAPGLA),
!HPF$& INDIRECT(MAPFLD0)) ONTO PROCSAB::ZGL
REAL ZGL(NRPOMAG,NGT0)
!HPF$ DISTRIBUTE(INDIRECT(MAPGP),*)
!HPF$& ONTO PROCS::ZGA
REAL ZGA(NGPTOTG,NGT0)

� � �

!HPF$ INDEPENDENT, NEW(J),REUSE(LREUSE)
DO JFLD=1,NGT0
!HPF$ INDEPENDENT

DO JFLD=1,NGT0
DO J=1,NGPTOTG

ZGL(INDL(J),JFLD)=ZGA(J,JFLD)
ENDDO

ENDDO
ENDDO

Figure 1: The HPF implementation of the LG kernel.

munication schedules. A data-parallel implementation can be ob-
tained with less coding effort, by computing and reusing communi-
cation schedules at runtime [1]. Nevertheless, a significant amount
of effort is still required to identify the best data distributions for
the irregular grids. Previous research has shown that the grids re-
quire generalized BLOCK distributions (i.e. distributions of vari-
able sized contiguous blocks of grid points along one dimension)
and INDIRECT distributions (i.e. arbitrary distributions of grid
points according to an indirection array that maps points to pro-
cessors) [2].

We provide a few details on the HPF implementation of the kernels
to give the reader an idea of the programming implications and the
implementation effort required to parallelize the kernels efficiently.

The LG kernel handles the transpositions of data between the phys-
ical grid point space and the Fourier space. The core of the kernel in
its HPF implementation is shown in Figure 1. NGT0 is the number
of fields to be transposed (representing different layers of the at-
mosphere) and NGPTOTG is the total number of grid points. The
GEN BLOCK distribution along the first dimension of ZGL copes
with the quasi-regular structure of the grid by implicitly balancing
the distribution of computation between processors, through the as-
signment of more grid points to processors working towards the
poles. The INDIRECT distributions along the second dimension of
ZGL and the first dimension of ZGA are used to reduce communi-
cation volume, by ensuring that grid points with the same vertical
dimension are mapped to the same processor. The REUSE clause is
used to compute and subsequently reuse the communication sched-
ules imposed by the irregular data distributions.

The SL kernel computes a trajectory from a grid point backwards
in time and interpolates some quantities at the departure and the
mid point of the trajectory, using the semi-Lagrangian method. The
main computational challenge in a parallel implementation of SL is
that computing the trajectory requires that each processor collects a
set of global grid point indices from neighboring processors. These
grid points are represented by a compact read-only data structure,
which is called a halo. This data structure is updated at runtime ac-
cording to the winds likely to be encountered in the trajectory. The
core of the kernel in its HPF implementation is shown in Figure 2.
The halo computation is modeled with an INDIRECT distribution
and a special UPDATE HALO clause, required to recompute the
halo and the associated communication schedules at runtime. The
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!HPF$ PROCESSORS PROCS(NPROC)
!HPF$ DISTRIBUTE(INDIRECT(MAPGP,
!HPF$& HALO=NSLHALO),*),
!HPF$& ONTO PROCS::ZSL1
REAL ZSL1(NGPTOTG,NFLDSLB1)
!HPF$ DISTRIBUTE(INDIRECT(MAPGP),*),
!HPF$& ONTO PROCS::ZSL2
REAL ZSL2(NGPTOTG,NFLDSLB1)

� � �

DO I=1,NSTOP
� � �

!HPF$ UPDATE HALO (ZSL1)
� � �

DO JSL=1,ISL
!HPF$ INDEPENDENT,NEW(J),REDUCTION(ZSL2)

DO JLEV=1,NFLEVG
!HPF$ INDEPENDENT,NEW(Z1,Z2,Z3,Z4,Z5,Z6)

Z1=ZSL1(NSLIND(1,J,JSL),JLEV)
Z2=ZSL1(NSLIND(2,J,JSL),JLEV)
Z3=ZSL1(NSLIND(3,J,JSL),JLEV)
Z4=ZSL1(NSLIND(4,J,JSL),JLEV)
Z5=ZSL1(NSLIND(2,J,JSL),
+ MIN(NFLEVG,JLEV+1))
Z6=ZSL1(NSLIND(3,J,JSL),MAX(1,JLEV-1)) +
+ (Z1+Z2+Z3+Z4+Z5+Z6)/(6.*ISL)

ENDDO
ENDDO

ENDDO

Figure 2: The HPF implementation of the SL kernel.

rest of the computation is a simple averaging of neighboring grid
points.

The TS kernel uses Fourier and Legendre transforms to transpose
data from the Fourier space to the spectral space and backwards.
As shown in Figure 3, the HPF implementation uses GEN BLOCK
distributions to handle the computation imbalance that stems from
the quasi-regular and the triangular grids in the Fourier and the
spectral space respectively.

3. PARALLELIZING IRREGULAR
KERNELS WITH OPENMP

Our goal is to parallelize the irregular kernels using the standard,
unmodified OpenMP interface and the minimum of programming
effort. In particular, we would like to parallelize the codes sim-
ply by enclosing the most time-consuming outermost parallel loops
with !$OMP PARALLEL DO directives1. We impose a hard con-
straint on the parallelization process, that is, the programmer should
analyze the data access pattern at most to the extent that paralleliza-
tion is determined. The programmer should spend no effort for an-
alyzing the locality of memory accesses and the load distribution
imposed by the data access pattern. Instead, the runtime system is
engaged to extract accurate information about the data access pat-
tern and load imbalance and use this information to optimize the
program in a fully- or semi-automatic manner.

We begin with a straightforward loop-based parallelization, by
identifying parallel loops and selecting the loops that are coarse
enough to worth multithreaded execution. A profile of the sequen-
tial execution of the program is used to identify these loops. The
parallelized loops are statically scheduled by dividing evenly their
iterations among processors. We then instrument the program to

�

We assume that an optimized version of the sequential code is
available.

!HPF$ PROCESSORS PROCS(NPROCS)
!HPF$ DISTRIBUTE(GEN BLOCK(MAPGLA),*)
!HPF$& ONTO PROCS::ZREEL
REAL ZREEL(NRPOMAG,KFIELD)
!HPF$ DISTRIBUTE(*,GEN BLOCK(MAPFL))
!HPF$& ONTO PROCS::ZBUFL
REAL ZBUFL(KFIELD,NFTOT2G)
!HPF$ DISTRIBUTE(*,GEN BLOCK(MAPFM))
!HPF$ ONTO PROCS::ZBUFM
REAL ZBUFM(KFIELD,NFTOT2G)

� � �

!HPF$ INDEPENDENT,
!HPF$& ONHOME(ZBUFL(:,NPNT0(J))),
!HPF$& NEW(JP),REUSE(LREUSE)
DO J=1,NFTOTG

DO JF=1,KFIELD
ZBUFL(JF,NPNT0(J))=ZBUFM(JF,NPNT1(J))
ZBUFL(JF,NPNT0(J)+1)=ZBUFM(JF,NPNT1(J)+1)

ENDDO
ENDDO

� � �

!HPF$ INDEPENDENT,NEW(JF),
!HPF$& ONHOME(ZREEL(NPNTM(J),:)),
!HPF$& REUSE(LREUSE)
DO J=1,NFTOTG

DO JF=1,KFIELD
ZREEL(NPNTM(J),JF)=ZBUFL(JF,NPNT0(J))
ZREEL(NPNTM(J)+1,JF)=ZBUFL(JF,NPNT0(J)+1)

ENDDO
ENDDO

� � �

!HPF$ INDEPENDENT,NEW(JFLD),
!HPF$& ONHOME(PREEL(J,:)), REUSE(LREUSE)
DO J=1,NGPTOTG

DO JFLD=1,KFIELD
PREEL(J,JFLD)=ZREEL(NPNTL(J),JFLD)

ENDDO
ENDDO

Figure 3: The HPF implementation of the TS kernel.

execute a few probing iterations. These iterations are used to iden-
tify two properties of the code: the exact memory access pattern
and the load imbalance of parallel loops. The required instrumen-
tation is trivial and can be automated in a compiler or preprocessor
pass. The instrumented code includes calls to the runtime system
for collecting memory access traces and a slightly expanded ver-
sion of each parallel loop, used to collect workload information
and pinpoint load imbalance. The information is collected directly
from hardware counters attached to processors and memory, there-
fore no software bookkeeping overhead is involved. The proposed
methodology is up to a certain extent similar the inspector/executor
model [18], which was recently applied in the context of OpenMP
for the parallelization of irregular reductions [10]. The most impor-
tant difference is that our instrumentation code is much simpler and
faster. It amounts to only a few calls to the runtime system for col-
lecting information from the hardware counters using standardized
interfaces.

Runtime inspection of the program is followed by a set of optimiza-
tions performed automatically by the runtime system. The runtime
system applies implicit data distribution using dynamic page mi-
gration and loop iteration redistribution for the unbalanced loops.
These optimizations are effectively combined for maximizing the
performance gain. The optimizations are also self-evaluated at run-
time and rolled back if they do not appear to improve performance.
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� � �

CALL UPMLIB INIT()
CALL UPMLIB MEMREFCNT(U, SIZE)
CALL UPMLIB MEMREFCNT(RHS,SIZE)
CALL UPMLIB MEMREFCNT(FORCING,SIZE)

� � �

DO STEP=1,NITER
CALL COMPUTE RHS
CALL X SOLVE
CALL Y SOLVE
CALL Z SOLVE
CALL ADD
IF ((STEP .EQ. 1) .OR. (NUM MIGRATIONS .GT. 0)) THEN

CALL UPMLIB MIGRATE MEMORY()
ENDIF

ENDDO

(a)

� � �

CALL UPMLIB INIT()
CALL UPMLIB MEMREFCNT(U, SIZE)
CALL UPMLIB MEMREFCNT(RHS,SIZE)
CALL UPMLIB MEMREFCNT(FORCING,SIZE)

� � �

DO STEP=1,NITER
CALL COMPUTE RHS
CALL X SOLVE
CALL Y SOLVE
IF (STEP .EQ. 2) THEN

CALL UPMLIB RECORD()
ELSE IF (STEP .GT. 2) THEN

CALL UPMLIB REPLAY()
ENDIF
CALL Z SOLVE
IF (STEP .EQ. 1) THEN

CALL UPMLIB MIGRATE MEMORY()
ELSE IF (STEP .EQ. 2) THEN

CALL UPMLIB RECORD()
CALL UPMLIB COMPARE COUNTERS()

ELSE
CALL UPMLIB UNDO()

ENDIF
ENDDO

(b)

Figure 4: Using page migration for data distribution (left) and redistribution (right) in NAS BT.

3.1 Data distribution with memory reference
tracing and dynamic page migration

The idea of implementing arbitrary data distributions by tracing
memory references and applying an intelligent dynamic page mi-
gration algorithm was recently explored by the authors [13, 15].
The key concept is to take snapshots of the memory access trace
of the program at an execution point where the trace corresponds to
the exact memory reference pattern of the enclosed parallel compu-
tation. In iterative parallel codes, this snapshot can be retrieved at
the end of one iteration2. Using this snapshot, the runtime system
can relocate pages so that each processor finds locally the data that
it accesses more frequently, no matter how data is initially placed
in memory by the operating system.

Runtime data distribution is applied using instrumentation of the
native OpenMP code. The code inserted to the program invokes the
runtime system to retrieve snapshots of the page reference counters
and apply page migration algorithms using these snapshots as an in-
dication of the memory access pattern. The snapshots are retrieved
at specific points of execution, either for the entire address space, or
for regions of the address space which are likely to incur frequent
remote memory accesses.

The runtime data distribution algorithm ensures accuracy, timeli-
ness and good amortization of the overhead of data movement.
These three requirements are met because the runtime system re-
trieves snapshots of the hardware counters that reflect the memory
access pattern with high accuracy, shortly after the beginning of
execution. Due to the iterative structure of the codes, these snap-

�

We have taken several steps to relax the constraint of optimizing
only iterative codes, but the related issues are out of the scope of
this paper.

shots indicate accurately which processor accesses each page more
frequently throughout the execution of the program. Using these
snapshots, a competitive page migration algorithm is able to move
each page to the node that minimizes the number of remote mem-
ory accesses to the page. The page migration algorithm of our run-
time system uses a criterion that considers the number of accesses
per node, an estimation of latency per access and potential con-
tention at memory modules. This criterion migrates pages so that
the latency, rather than the number, of remote memory accesses to
each page is minimized. The criterion is self-evaluated, by measur-
ing the number and latency of remote memory accesses on a per-
iteration basis. Page migrations that do not improve either of these
two performance factors are rolled back by the runtime system.

Figure 4 shows how an iterative program is instrumented with calls
to our runtime system (prefixed with upmlib ) to implement run-
time data distribution and redistribution algorithms. Earlier publi-
cations [14, 15] provide more details on this methodology.

Memory reference tracing and dynamic page migration is the first
transparent optimization that we apply to irregular codes. The tech-
nique is expected to be effective, because the runtime system is the
only entity that can infer precisely the access pattern to data blocks
in memory. No regular distribution of data is appropriate for irreg-
ular codes, while sophisticated combinations of static irregular dis-
tributions —such as variable-sized block or indirect distributions—
may be less effective than expected, because data is actually dis-
tributed at page rather than element-level granularity. Instead of
having the programmer analyze the data access pattern and im-
plement a possibly complex data distribution scheme, we have the
runtime system infer the access pattern and implement data distri-
bution implicitly, according to an accurate cost-effectiveness cri-
terion. A similar approach was taken in [11], to implement adap-
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!$OMP PARALLEL
IF (INSTRUMENT .EQ. 1) THEN

IAM=OMP GET THREAD NUM()
CALL START FLOP COUNTER(IAM)

ENDIF
!$OMP DO
DO M=1,N

LOOP BODY
END DO
IF (INSTRUMENT .EQ. 1) THEN

CALL STOP FLOP COUNTER(IAM)
INSTRUMENT = 0

ENDIF
!$OMP END PARALLEL

(a)

NPROC=OMP GET NUM THREADS()
!$OMP PARALLEL
!$OMP DO
DO I=1,NPROC

DO J=1,NPROC
DO K=1,NC(I,J)

M = C(I,J,K)
LOOP BODY

ENDDO
ENDDO

ENDDO
!$OMP END PARALLEL

(b)

Figure 5: Instrumentation of OpenMP loops for detecting load imbalance and load balancing transformation.

tive data placement in software distributed shared memory systems,
for applications in which compiler analysis or predetermined data
distribution schemes are inadequate for optimizing memory access
locality.

In our framework, the runtime system captures the irregularities of
the access pattern and place pages strictly on a thread-to-data affin-
ity basis, unless the memory access pattern is so unbalanced (in
terms of memory accesses per node), that the locality-based dis-
tribution of pages introduces memory pressure and excessive con-
tention. Although we have not quantified this problem, we plan to
address it, given that it occurs frequently in irregular codes.

3.2 Loop iteration redistribution
Our runtime data distribution method is effective in localizing
memory accesses but is not sufficient for balancing the workload
assigned to each processor. Load imbalance is a characteristic of
irregular parallel codes, because the grids used to model the prob-
lem in these codes have always some sort of physical irregularity,
which makes certain regions of them densely populated by data
points and other regions of them sparsely populated by data points.

The idea behind our runtime loop iteration redistribution technique
is to dynamically balance an unbalanced parallel loop by normaliz-
ing the chunks of iterations assigned to each processor according to
a metric of load imbalance. A similar idea was explored in [7, 17]
to balance the load on networks of workstations running software
distributed shared memory middleware. The main difference with
our work is that the authors of [7, 17] used compiler analysis to
infer the memory access pattern of the program and drive the load
balancing and data locality transformations applied by the runtime
system, while our framework relies solely on information collected
at runtime for both the memory access pattern and the load distri-
bution of the program.

The constraint that we pose in our automatic load balancing method
is that the schedule obtained for a loop after rebalancing its load
must be reusable, meaning that each processor should execute the
same set of iterations every time the loop is executed. Iteration
schedule reuse implies data reuse, which is critical for exploit-
ing locality at all levels of the memory hierarchy. It is possible
to use a single reusable schedule across multiple loops with the
same load imbalance characteristics. Note that the requirement for
a reusable iteration schedule makes it impractical to use a dynamic

work-queue based scheduling algorithm (such as forms of self-
scheduling), since the non-deterministic order of synchronization
events in these algorithms cannot guarantee a repeatable schedule.
A workaround for this problem is to use loop schedule memoiza-
tion, that is, record a dynamic loop schedule that achieves good
load balance at runtime and reuse it by constructing a static sched-
ule that assigns the same chunks of iterations and in the same order
as in the recorded dynamic schedule.

We measure load imbalance on a per-loop basis as shown in Fig-
ure 5. During one probing iteration, we instrument parallel loops to
measure the number of floating point operations executed by each
processor. Each thread maintains a private flop counter and the dif-
ference in the number of flops executed by different processors is
used as the metric of load imbalance (Figure 5(a)).

Load balancing can be an extraordinarily complex problem, even
for the symmetric case of two processors. We adopt a simple al-
gorithm. For each processor � � � � � � � � � , we compute the flop
equivalent of one iteration, denoted as � � � � 	 � 
 . Let � � � � 	 � 

be the number of flops executed by processor � in the loop. Since
the loop is initially scheduled statically, � � � � 	 � 
 � �  � � � � � � �� .
The number of floating point operations executed by the proces-
sor is measured by reading the processor’s hardware performance
counter that tallies the number of graduated floating point instruc-
tions. The algorithm transfers the flop equivalent of one iteration
from the most loaded to the least loaded processor repeatedly, until� � � � � � � 	 � 
 can not be further reduced. For each processor � ,
we record every iteration transferred to � and construct � � � chunks�

� � � � � � � � � � � � �� � , each chunk containing the iterations trans-
ferred from processor � to processor � . Chunk

�
� � contains the

iterations initially assigned to processor � by the static schedule
(i.e. iterations 	 � � � 


�
�

� � � �
�

� ), minus the iterations transferred
to other processors (i.e. � �

� � � � � � � � � � � � �� � ). The initially
unbalanced loop is transformed so that each processor executes the

� chunks of iterations
�

� � � � � � � � � � , as shown in Figure 5(b).
The chunks are stored as simple linear vectors of size equal to the
population of each chunk ( � �

� � ) for convenience.

The instrumentation pass emits both the statically scheduled and
the rebalanced version of the loop. In the rebalanced version, the
vectors

�
� � � � �� � are initially empty, while the vectors

�
� � con-

tain the iterations assigned to processor � by the static schedule.
The load balancing algorithm runs between the first and the second
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iteration of the parallel program. The selection between the two
versions of the loop in subsequent iterations is done with a condi-
tional, which is set to true if the first iteration detects that the loop
is unbalanced. A boolean variable (INSTRUMENT) is used to de-
activate the flop counters after the first iteration, in case the loop is
not rebalanced by the runtime system. The drawback of this simple
implementation is that it might cause code explosion, particularly if
most of the code is enclosed within OpenMP PARALLEL regions.

3.3 Combining runtime data distribution with
load balancing

The two optimizations presented previously are evaluated by the
runtime system at execution time. The runtime system compares
the effectiveness of loop load balancing and implicit data distri-
bution by measuring the actual execution time of loops in two it-
erations and rolls back any transformation that does not improve
performance.

The runtime system is also coping with the fact that the two op-
timizations may work in an antagonistic manner, if they are not
combined effectively. This happens because the redistribution of
loop iterations changes the memory access pattern of the program,
thus making any previously established distribution of data obso-
lete. The solution we adopt is to run the probing iterations for load
balancing, using different optimized data distributions for statically
scheduled and dynamically rebalanced loops, and select the best
performing combination based on the absolute metric of execution
time.

More specifically, the runtime system optimizes memory accesses
and treats load imbalance in the first three pairs of iterations of the
parallel computation. In the first iteration, all parallel loops are stat-
ically scheduled and at the end of the iteration the runtime system
records a snapshot of the memory access trace of the program, by
reading the page reference counters. Using this snapshot, the run-
time system identifies the best location for each page belonging to
a distributed array, in terms of remote memory access latency. The
runtime system migrates all pages that are not located in the nodes
identified by the migration criterion and proceeds to the execution
of the second iteration, where it checks if page migration reduces
the iteration execution time. If it doesn’t, the page migrations are
rolled back.

In the second pair of iterations, the runtime system detects load im-
balance, assuming that the runtime data distribution algorithm has
already optimized page placement for maximum memory access
locality. After running the load rebalancing algorithm, a fourth it-
eration is executed to evaluate whether load balancing improves
performance. In this iteration, the runtime system measures execu-
tion time on a per-loop basis. If the load balancing transformation
slows down a loop, the transformation is rolled back and the loop is
scheduled statically in subsequent iterations. A similar scheme was
explored in the SUIF compiler [3], to determine the number of pro-
cessors that must be assigned to each parallel loop for maximizing
its speedup and sequentialize loops that are too fine-grain to worth
parallelization. After the loop transformations for rebalancing the
load are committed and if there is at least one loop the iterations
of which are redistributed, the runtime system executes a third pair
of probing iterations, to optimize the placement of data according
to the new loop schedules. This step ensures that the placement of
data matches the memory access pattern of the rebalanced compu-
tation and combines effectively load balancing with memory access
locality.

3.4 A semi-automatic approach
So far, we have described a fully automated procedure that uses
a combination of transparent optimizations for data locality and
load balancing. Although the memory access locality optimization
technique is highly accurate, the careful reader will argue that the
automatic loop redistribution scheme presented previously might
suffer from inaccuracies, primarily because it does not take into
account the physical properties of the data space in the programs.
This problem can be circumvented if the programmer contributes
some domain-specific knowledge to the parallelization procedure.

Indeed, in the irregular codes used in this study, the programmer
can utilize an application-specific load balancing strategy that takes
into account the irregular structure of the grids. This load bal-
ancing scheme ensures that processors working on grid partitions
close to the poles receive more iterations than processors working
on grid partitions close to the equatorial. The key for exploiting
this domain-specific knowledge without forcing the programmer to
revert to manual data distribution, is the ability to implement the
application-specific load balancing scheme and the associated data
mapping scheme simultaneously, using only standard OpenMP par-
allelization structures.

In an OpenMP PARALLEL loop, collocation of threads and data
can be easily established by using the first-touch page placement al-
gorithm. The first-touch algorithm places each page together with
the processor that reads or writes data in the page first during the
course of execution. To ensure proper collocation, the pages that
contain shared data accessed during the loop must be invalidated
before the execution of the loop, so that the previous location of
them is discarded. This can be done transparently in the runtime
system, by having the compiler identify the data accessed during
the loop and using the mprotect() system call to invalidate ranges
of the virtual address space that contain this data [15]. With this
simple modification, the data accessed during the loop is distributed
along with the distribution of loop iterations. Having this observa-
tion in mind, the programmer can assign an arbitrarily sized and
structured block of data to a processor, simply by assigning the
loop iterations that access this block to the same processor in the
OpenMP PARALLEL loop. In the case of the irregular kernels
used in this study, the loop iteration assignment emulates as ac-
curately as possible GEN BLOCK and INDIRECT data distribu-
tions.

Figure 6 illustrates an example of how proper assignment of loop
iterations to processors implements implicit irregular data distribu-
tions, using the first-touch page placement algorithm. The example
shows an excerpt from the data transposition in the LG kernel. In
this case, ZGL is distributed using a GEN BLOCK distribution
along its first dimension. The size of each block in this distribution
is defined by the elements of an array MAPGLA. In other words,
MAPGLA(i) contains the number of data elements assigned to pro-
cessor i by the distribution. In order to implement this distribu-
tion by assigning iterations to processors, we identify the iterations
that access the elements of the block assigned to each processor
by the GEN BLOCK distribution, as shown in Figure 6(b). The
array element RINDL(J) stores the iteration of the loop that ac-
cesses the elements of row INDL(J) of ZGL. These elements must
be mapped to the processor that owns INDL(J) according to the
ONHOME clause. This is implemented by constructing a map of
iterations to processors, which is defined as a two-dimensional ar-
ray MYITER(i,j), I=1, � � � P, J=1, � � � max(MAPGLA(i)). The el-
ements of this array are set with the code fragment shown in Fig-
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!HPF$ PROCESSORS PROCS(NPROC),
!HPF$& PROCSAB(NRPOCA,NPROCB)
!HPF$ DISTRIBUTE(GEN BLOCK(MAPGLA),
!HPF$& INDIRECT(MAPFLD0)) ONTO PROCSAB::ZGL
REAL ZGL(NRPOMAG,NGT0)
!HPF$ INDEPENDENT,NEW(JFLD),
!HPF$& ONHOME(ZGL(INDL(J),:)), REUSE(LREUSE)
DO J=1,NGPTOTG

DO JFLD=1,NGT0
ZGL(INDL(J),JFLD)=ZGA(J,JFLD)

ENDDO
ENDDO

(a)

DO J=1,NGPTOTG
RINDL(INDL(J))=J

ENDDO

(b)

!$OMP PARALLEL DO PRIVATE(IAM)
DO IAM=1,OMP GET NUM THREADS()

DO J=1,MAPGLA(IAM)
MYITER(IAM,J)=RINDL(J)

ENDDO
ENDDO

(c)

!$OMP PARALLEL DO PRIVATE(IAM)
DO IAM=1,OMP GET NUM THREADS()

DO J=1,MAPGLA(IAM)
ZGL(MYITER(IAM,J),JFLD)=ZGA(J,JFLD)

ENDDO
ENDDO

(d)

Figure 6: Implementing a generalized block distribution implicitly, by proper assignment of loop iterations to processors.

ure 6(c). Intuitively, if an element � � is assigned to processor � ,
we first find the iteration � � that accesses � � , by finding the value � �

that satisfies � � � � � � � 	 
 � � . We then set � � � � � � � � 	 
 � � and
assign iteration � � to processor � by setting �  � � � � � � � � 	 
 � �

for some � � � � � � � � � � � � � � 	 . Finally, the original loop
is transformed so that each processor executes its assigned set of
iterations, as shown in Figure 6(d).

This procedure can be easily automated in an extension of the
SCHEDULE clause of the OpenMP DO directive. In analogy to
data-parallel directives implemented in variants of HPF, the
SCHEDULE clause may include a GEN BLOCK(MAP( � � � ))
parameter or an INDIRECT(MAP( � � � )) parameter. In the first
case, element � of the MAP array contains the size of a contigu-
ous chunk of iterations assigned to processor � . In the second case,
element � of the MAP array contains the mapping of an element
of a shared array to a processor, along the dimension of the array
indexed by the index of the parallelized loop. The OpenMP com-
piler should interpret this as a mapping of the iteration that updates
this element to the same processor. We are undergoing an effort to
formalize these extensions.

4. RESULTS
We provide experimental results to illustrate the bottom line of our
methodology, i.e. that our runtime techniques can scale an irregular
OpenMP code to perform as well as a well-tuned message-passing
counterpart, using at least an order of magnitude less programming
effort.

We conducted experiments on a 64-processor SGI Origin2000, with
MIPS R10000 processors running at 250 MHz. Each processor in
this system has 32 Kilobytes of split L1 cache and 4 Megabytes
of unified L2 cache. The system contains 12 Gigabytes of DRAM
memory, distributed uniformly between 32 nodes. The operating
system of the system is IRIX 6.5.5. The page size used for data
pages is 16 Kilobytes. The performance metric used for compar-
isons is the average execution time per iteration. For the bench-
marks that use our runtime system, the average is computed over

all the iterations of the program, including probing iterations.

It was our intention to compare OpenMP with both MPI and HPF.
Unfortunately, this was not possible because we did not have an
HPF compiler available for the Origin2000 by the time this paper
was in print. As a rough indication for indirect comparisons, we
report that on a Quadrics QSW CS2, the HPF+ versions of LG, TS
and SL were 26%, 55% and 12 times slower than the MPI versions
respectively [2].

Figure 7 shows the execution time per-iteration in the three irreg-
ular kernels. The codes require a number of processors equal to
a power of two, therefore we executed them on 1, 4, 16 and 64
processors. We ran 100 iterations for each kernel, using the T63
problem size, which fits the scale of the system on which we exper-
imented. We ran five versions of each code: a well tuned manually
parallelized MPI version, originally developed by the HPF+ project
consortium [2] (label MPI); a hand-parallelized OpenMP version,
obtained by enclosing the outermost loops of the data transposition
code with !$OMP PARALLEL DO directives (label OpenMP); the
OpenMP version instrumented to use implicit data distribution via
dynamic page migration (label OpenMP+mig); the OpenMP ver-
sion instrumented to use implicit data distribution together with our
automatic load balancing transformation (label OpenMP+mig+lb);
and an OpenMP version that uses implicit data distribution and load
balancing through proper assignment of loops iterations to proces-
sors, as described in Section 3.4 (label OpenMP+semiauto). Note
that the results are drawn in logarithmic scale for the sake of read-
ability.

The scalability of LG and SL is satisfactory. LG yields a speedup
of more than 32 on 64 processors. SL’s speedup is to some extent
limited by poor locality in the nearest neighbor computations along
the halo data structure. TS does not scale beyond 16 processors,
because of the granularity of its parallel loops.

The outcome of the experiments is that although straightforward
parallelization with OpenMP directives in the sequential code pro-
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Figure 7: Execution time per iteration in LG, SL and TS with
alternative OpenMP-based parallelization methods and MPI.

duces parallel code which runs almost two times slower than the
corresponding MPI code, our runtime techniques are able to make
the difference between the two programming models impercepti-
ble in LG and TS, while in SL, the slowdown is reduced by almost
50%. The mediocre performance in SL is attributed to the inability
of the runtime system to reduce communication traffic for the ele-

ments of the halo data structure. In the MPI version of the bench-
mark, the halo is constructed explicitly and each processor receives
the exact set of elements required to perform its assigned nearest
neighbor computation before the beginning of the parallel phase.
Precomputing the communication schedule for the halo minimizes
communication volume, while in the parallel phase, each proces-
sor has the required elements from its neighbors locally available.
On the contrary, in the OpenMP implementation, the elements of
the halo are shared between processors and their coherence is main-
tained by the hardware cache coherence protocol of the Origin2000.
This implies that the nearest neighbor computations of each pro-
cessor incur protocol-related communication traffic for maintaining
coherent values of the halo elements in the caches during the paral-
lel computation. In other words, the OpenMP implementation does
not exploit an optimized precomputed communication schedule for
the halo elements, but relies on cache coherence for communicating
implicitly the correct values of these elements to each processor.

The difference between MPI and OpenMP appears to be mainly an
issue of memory access locality. This conclusion is drawn from
the fact that most of the reduction in execution time per iteration
is obtained from using memory access tracing and dynamic page
migration for implicit data distribution (i.e from the OpenMP+mig
version). Load balancing plays a less critical role, although it ap-
pears to be necessary to match the performance of MPI. The semi-
automatically parallelized OpenMP versions that use application-
specific load balancing perform better than the versions that use
our automatic load balancing heuristic. This is also attributed to
data locality, which is better if the load balancing procedure assigns
contiguous rather than scattered blocks of iterations to processors.

Figures 8 through 10 explain why our page migration engine im-
proves radically the performance of OpenMP. The charts show
histograms of the number of memory accesses per-node, divided
into local and remote accesses. The page migration algorithm has
two important effects, which show up in the memory access traces
of LG and TS. First, it nearly eliminates remote memory accesses.
Second, it balances the memory accesses among nodes, thus alle-
viating contention. The latter effect is of particular importance for
ccNUMA systems and clustered architectures, because nodes that
concentrate more remote accesses are likely to suffer from con-
tention at the memory modules and network interfaces. Unfor-
tunately, in SL, our runtime optimization methods reduce remote
memory accesses only by 50% and do not alleviate contention.
One reason for this behavior is that the halo data structure intro-
duces false sharing of data at the page level (i.e. data that reside in
the same page are actively communicated between processors re-
siding in different nodes). False-sharing tends to incur ping-pong
of pages i.e. pages bounce between two or more nodes that issue
approximately the same number of remote accesses to the pages.
Our runtime system freezes any page likely to bounce between two
nodes more than once, to compensate for the unnecessary over-
head. However, the remote memory access rates to falsely shared
pages are not reduced. This effect is exacerbated by the fact that the
Origin2000 uses a relatively large page size (16 Kilobytes). Other
reasons that may explain the performance of OpenMP in SL are
under investigation.

Considering programming effort, Figure 11 shows the coding over-
head (in lines) of OpenMP and MPI, compared to the length of
the sequential code. We also present the overhead of the semi-
automatically parallelized OpenMP version, since this is the one
that performs closest to MPI. As expected, the additional code re-
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Figure 8: Per-node memory accesses of one iteration in LG, divided into local (gray part) and remote (black part) references.
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Figure 9: Per-node memory accesses of one iteration in SL, divided into local (gray part) and remote (black part) references.
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Figure 10: Per-node memory accesses of one iteration in TS, divided into local (gray part) and remote (black part) references.
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effort (lines of code) speedup (on 64 procs.) effort/speedup
MPI OpenMP MPI OpenMP MPI OpenMP

LG 3920 262 32.92 30.2 119.1 8.7
SL 2525 227 9.20 5.57 274.5 40.8
TS 3862 155 8.89 8.44 434.42 18.36

Table 1: Effort/speedup ratio of OpenMP and MPI.
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Figure 11: Coding overhead of OpenMP and MPI.

quired by OpenMP is negligible. In the worst case, it amounts to a
few directives and slightly expanded versions of redistributed par-
allel loops. On the contrary, MPI requires about 50% more lines of
code. We are aware of the fact that additional lines of code may not
be a representative metric for programming effort, because it can-
not capture the complexity of programming the parallel constructs.
However, this limitation actually favors MPI, because the message-
passing versions require a lot more sophisticated programming for
communication preprocessing.

As another indication of programming effort, Table 1 reports the ef-
fort/speedup ratio for the MPI and the OpenMP+semiauto version.
The effort/speedup metric indicates that OpenMP requires one to
two orders of magnitude less effort to obtain 92–95% of the MPI
speedup in LG and TS and 61% of the MPI speedup in SL.

5. CONCLUSIONS AND FUTURE WORK
We have presented a simple runtime methodology for scaling ir-
regular OpenMP codes with minimal programming effort. The
presented methodology addresses simultaneously the problems of
load balancing and data locality, using inspection of the runtime
behavior of the program. The runtime system collects memory ref-
erence traces and load indices per-processor and uses this infor-
mation to optimize the program on-the-fly, with transparent mech-
anisms and transformations. Our results show that in two highly
irregular codes, our runtime optimizations enable OpenMP to per-
form as well as MPI. This is probably the first time such a result
is obtained with the standard OpenMP interface, moreover, without
significant involvement from the programmer.

Porting our runtime framework to clusters of SMPs is the focus
of future work. Although our general framework for runtime opti-
mization of memory access locality and load balancing is concep-

tually applicable to clusters running software distributed shared-
memory, there is a significant amount of effort that needs to be
spent on engineering the runtime mechanisms required to imple-
ment memory access tracing. Since hardware page reference coun-
ters are not available in clustered architectures built up from com-
modity components, dynamic memory reference tracing has to be
ported to software. Although remote memory accesses can be eas-
ily intercepted with relatively low overhead in the communication
runtime system, local memory accesses cannot be tracked on a
per-page basis without introducing unacceptable operating system
overhead. We investigate workarounds for this problem. The most
appealing solution appears to be the use of fine-grain multithread-
ing and thread migration based on remote access traces, as a sym-
metric alternative to page migration [8].

We also explore the possibility of selecting different placement and
replication/migration methods for different data in the program, ac-
cording to their access pattern. More specifically, we attempt to
use runtime data access information, in order to classify data into
data that concentrate an insignificant amount of remote accesses
and can therefore be distributed across the nodes of the cluster,
data that are mostly read-shared and can be replicated across the
nodes of the cluster, and irregularly accessed data that need to be
kept coherent using a sophisticated migration/replication mecha-
nism derived from lazy release consistency or other similar soft-
ware shared-memory protocols [9].
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