
Towards Efficient Multi-Level Threading of H.264 Encoder on Intel
Hyper-Threading Architectures

Yen-Kuang Chen1, Xinmin Tian2, Steven Ge3, and Milind Girkar2

1Architecture Research Laboratory, Intel Corporation
2Intel Compiler Laboratory, Software Solution Group, Intel Corporation

1,23600 Juliette Lane, Santa Clara, CA 95054, USA
3China Research Center, Intel Corporation, Beijing, P.R. China

{Yen-Kuang.Chen, Xinmin.Tian, Steven.Ge, Milind.Girkar}@intel.com

Abstract
Exploiting thread-level parallelism is a promising way to
improve the performance of multimedia applications that
are running on multithreading general-purpose processors.
This paper describes the work in developing our threaded
H.264 encoder. We parallelize the H.264 encoder using the
OpenMP programming model, which allows us to leverage
the advanced compiler technologies in the Intel C++
compiler for Intel Hyper-Threading architectures. After we
present our design considerations in the parallelization
process, we describe two efficient methods for multi-level
data partitioning, which can improve the performance of
our multithreaded H.264 encoder. Furthermore, we exploit
different options in the OpenMP programming. While one
implementation that uses the task queuing model is slightly
slower than the other implementation, it is easier to be read
than the other one. The results have shown good speedups
ranging from 3.74x to 4.53x over the well-optimized
sequential code performance on a system of 4 Intel Xeon™
processors with Hyper-Threading Technology.

Keywords: H.264 standard, Hyper-Threading Technology,
thread-level parallelism, OpenMP, multimedia

1. Introduction
H.264 [8] is an emerging video coding standard proposed
by the Joint Video Team (JVT). The new standard is aimed
at high-quality coding of video contents at very low
bit-rates. H.264 uses the same hybrid block-based motion
compensation and transform coding model as those existing
standards, such as, H.263 and MPEG-4 [7]. Moreover, a
number of new features and capabilities have been
introduced in H.264 to efficiently improve the coding
performance. As the standard becomes more complex, the
encoding process requires much more computation powers
than most existing standards. Hence, we need a number of
mechanisms to improve the speed of the encoder.

One possible mechanism to improve the application speed
is to process the task in parallel. In [20], it is demonstrated
that using MMX/SSE/SSE2 technology can speedup the
H.264 decoder performance by 2-4x. We applied the same
technique to the H.264 reference encoder as well. Table 1
shows the speedups for each key module residing in H.264

encoder. Although the encoder is 2~3x faster with SIMD
optimization, its speed is still not fast enough to meet the
expectation of real-time video processing. Furthermore, the
optimized sequential code can not take advantage of
Hyper-Threading Technology and multiprocessor
supported by the Intel architecture. In other words, there
are still a lot of rooms for us to continue improving the
performance of the H.264 encoder by exploiting
thread-level parallelism.

Recently, multithreading with computer architecture and
compiler support becomes increasingly common. While
using multithreaded hardware to improve throughput of
multiple workloads is straight-forward, using it to improve
the performance of single-threaded workloads requires
parallelization. Converting sequential programs into
multithreaded programs is difficult for many applications.
However, the explicit parallel programming offered by
OpenMP shared-memory programming model [5, 11, 12,
15] provides a rich set of features, which allow a compiler
to exploit thread-level parallelism and optimize the
performance of applications by adding a very few
pragmas. The compiler support enables developers to take
advantage of the state-of-the-art architecture features, such
as, Hyper-Threading Technology [10].

This paper describes how to efficiently multithread a H.264
encoder using Intel OpenMP compiler and demonstrates
speedup on quad-processor systems with Hyper-Threading
Technology. The remainder of this paper is organized as
follows. The Section 2 presents an overview of the Intel
parallelizing compiler. Section 3 gives a brief of the
Hyper-Threading architecture. Section 4 presents our
design and implementations for parallelizing H.264
encoders. In Section 5, we show our performance results

Module Speedup

SAD Calculation 3.5x

Hadamard Transform 1.6x

Sub-Pel Search 1.3x

Integer Transform and Quantization 1.3x

¼ Pel Interpolation 2.0x

Table 1: Speedups of the key modules in H.264
encoder using SIMD-optimization only

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

and conduct discussion on the results. Section 6 discusses
related work. Finally, concluding remarks can be found in
Section 7.

2. Compiler Overview
The Intel OpenMP implementation in the compiler strives
to: (a) generate multithreaded code which gains a true
speedup over well-optimized sequential code, (b) integrate
parallelization tightly with advanced interprocedural, scalar
and loop optimizations such as intra-register vectorization
[2, 4] and memory hierarchy oriented optimizations [16, 19]
to achieve better cache locality and efficiently exploit
multi-level parallelism, and (c) minimize the overhead of
data-sharing among threads. The Intel compiler has a single
common intermediate representation named IL0 for the
C++/C and Fortran95 languages. Hence, OpenMP
pragma-guided parallelization, as well as a majority of
other optimizations, is applicable through a single
high-level transformation [15] irrespective of the high-level
source language. Throughout the rest of this paper, we refer
to the Intel C++ and Fortran95 compilers for Intel
architectures collectively as “the Intel compiler”. In order
to establish the context in which the OpenMP
parallelization works, we give a brief overview of the Intel
compiler.

Multi-Entry Threading (MET): we have developed and
implemented the new compiler technology named
Multi-Entry Threading (MET). The rationale behind MET
is that the compiler does not create a separate compilation
unit (or routine) for a parallel region or loop. Instead, the
compiler generates a threaded entry and a threaded return
for a given parallel region or loop [15, 16].

Multi-Level Parallelism (MLP): Intel compiler supports
intra-register vectorization for Pentium family processor [2],
and software pipelining for Itanium family processor for
exploiting instruction-level parallelism (ILP) on top of
exploiting thread-level parallelism (TLP). Exploiting MLP
(TLP+ILP) ensures the compiler fully utilizes the rich set
of performance features of Intel architecture for achieving
the highest application performance.

Inter-Procedural Optimization (IPO): this component
includes points-to analysis and mod/ref analysis required
by many other optimizations. Points-to analysis expands
the capabilities of memory disambiguation by determining
that which memory locations may be referenced by a
memory reference.

High-Level Optimization (HLO): those optimizations in
HLO include loop transformations such as loop fusion,
loop tiling, loop unroll-and-jam, loop distribution,
profile-guided data prefetching, scalar replacement and
data optimizations to improve data locality and reduce
memory access latency.

Other Scalar Optimization Components: Intel compiler
implements an extensive set of scalar optimizations such as

branch-merging, strength reduction, constant propagation,
dead code elimination, copy propagation, partial dead store
elimination, and partial redundancy elimination (PRE) [4].

Task Queuing Model: The Intel compiler supports a task
queuing model [16] that can be used to effectively exploit
irregular parallelism inherent in applications. This model
allows a programmer to parallelize control structures that
are beyond the scope of those supported by the standard
OpenMP programming model, while still fitting into the
framework defined by the OpenMP specification.

Architecture-specific code generation components include
instruction scheduling, register allocation, code ordering,
advanced instruction selection, and global code scheduling.

3. Hyper-Threading Architecture
Intel’s Hyper-Threading technology brings the concept of
Simultaneous Multithreading (SMT) to Intel Architecture.
However, unlike a proposed research-type SMT processor
[17] where most, if not all micro-architectural structures are
shared between logical processors, the micro-architectural
resources in Intel hyper-threaded processors are managed
differently. As detailed in [10], a hyper-threaded processor
dynamically operates in one of two modes; in ST (Single
Threading) mode, all on-chip resources in Table 2 are given
to a single application thread, and in MT (Multi-Threading)
mode, resources can be shared, duplicated or partitioned
between the two logical processors. As shown in Table 2,
structures like caches and execution units are shared
between the two logical processors, very much like
resource sharing on a research SMT processor [17]. On the

Shared Trace cache, u-code ROM, execution units,
instruction fetch, instruction decode,
instruction scheduler, allocator, uop
retirement logic, DTLB, L1 D-cache, L2
cache, global history array

Duplicated Per logical processor architecture state,
instruction pointers, renaming logic, ITLB,
streaming buffers, return stack buffer, branch
history buffer

Partitioned Re-order buffer, uop queue, memory
instruction queue, general instruction queue

Table 2: HW Configuration of Hyper-Threaded Processor

A rch S ta te

P roc esso r E xec u tion
R esou rc e

A rch S ta te

A rc h S ta te A rc h S ta te A rch S ta te A rch S ta te

P roc esso r E xec u tion
R esou rc e

P roces sor E x ecu tion
R esou rce

P roc esso r E xec u tion
R esou rc e

(a) T ra d i tion al D ua l-C P U system

Figure 1: Traditional DP system vs. HT-capable DP system

(b) Hyper-Threading technology-capable Dual-CPU System

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

other hand, structures like the reorder buffer are evenly
hard-partitioned to prevent one logical processor from
taking up the whole resource. In addition,
micro-architectural resources like the ITLB and the return
stack buffer are replicated for each logical processor.

The Hyper-Threading Technology makes a single physical
processor appear as two logical processors; the physical
execution resources are shared and the architecture state is
duplicated for the two logical processors [10]. Figure 1(a)
shows a system with two physical processors that are not
Hyper-Threading Technology-capable. Figure 1(b) shows a
system with two physical processors that are
Hyper-Threading Technology-capable. In Figure 1(b), with
a duplication of the architectural state on each physical
processor, the system appears to have 4 logical processors.
From the software or architecture perspective, this means
operating systems and user programs can schedule threads
to logical CPUs as they would on multiple physical CPUs.
From the micro-architecture perspective, this means that
instructions from both logical processors will persist and
execute simultaneously on shared execution resources [10].

4. Multithreaded Implementations
There are many potential opportunities in the H.264
encoder for exploiting parallelism at different levels. In
order to achieve the best speedup over its well-tuned
sequential code on processors with Hyper-Threading
Technology, we present our considerations and our design
to parallelize the H.264 encode in this section. Section 4.1
describes our criteria of choosing data or task partition.
Section 4.2 and Section 4.3 describes our judgments of
thread granularity. Section 4.4 depicts our first proposed
implementation that uses two slice queues. Section 4.5
shows our second proposed implementation using one task
queue.

4.1 Data and Task Decomposition
The H.264 encode process can be divided into multiple
threads via data domain decomposition or via functional
decomposition naturally.

• Data domain decomposition: As shown Figure 2, in
H.264, a sequence of video is consisted of many
groups of pictures (GOP). Each GOP includes a
number of frames. Each frame is divided into slices,
which is the self-content encoding unit and is
independent of other slices in the same frame. The
slice can be further decomposed into macroblock,
which is the unit of motion estimation and entropy
coding. Finally, the macroblock can be separated into
block and sub-block. These are all possible places to
parallelize an H.264 encoder.

• Functional decomposition: Each frame should
experience a number of functional steps: motion
estimation, motion compensation, integral
transformation, quantization and entropy coding. The

reference frames also need inverse qualification,
inverse integral transformation and filter. It is also
possible to explore the parallelism amount the
functions.

To choose the best data or task partition scheme, we list the
advantages and disadvantages of two schemes below:

• Scalability: In the data-domain decomposition, to
increase the number of threads, we can decrease the
size of the processing unit of each thread. Because of
the hierarchical structure in GOPs, frames, slice, MBs,
and blocks of H.264 encoder, there are many choices
to select the size of processing unit. Thus, it seems
easy to achieve good scalability. In functional
decomposition, each thread has difference function. In
order to increase the number of threads, we must select
partition a function into two or more threads. It is a
difficult task when the function is unbreakable.

• Load balance: In the data domain decomposition,
each thread processes the same operation on different
data block that has the same dimension. In theory
(without cache misses or other non-deterministic
factors), all threads should have the same process time.
On the other hand, it is difficult to achieve good load
balance among functions, as the execution time of each
function is determined by the algorithm. Furthermore,
how to functionally decompose the video encoder with
good load balance highly depends on algorithms. As
the standard keeps improving, the algorithms will
change over time.

Considering these factors we discussed above, we decided
to use the data-domain decomposition as our
multithreading scheme.

4.2 Slice-Level Parallelism
After deciding the thread partition scheme, we should
decide the thread granularity. One possible scheme of
decomposition is to divide a frame into small slices.

The advantage of parallelizing among slices is that the
slices in a frame are independent. Thus, we can
simultaneously encode all slices in any order. On the other

Frames in
sequence

Slices in
frame

MBs in
slice

Blocks
in MB

Figure 2: Hierarchy of data domain decomposition in H.264

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

hand, the disadvantage is that it will increase the bit rate.
Figure 3 shows the video encoder performance
(rate-distortion) when a frame is divided into different
numbers of slices. When a frame is divided into 9 slices,
the bit-rate at the same quality is about 15~20% higher.
This is because slices break the dependence between
macroblocks. When a macroblock in one slice can not
exploit another macroblock in another slice for
compression, the compression efficiency decreases. In
order not to increase the bit-rate at the same video quality
of the parallelized encoder, we should exploit other
parallelism in the video encoder.

4.3 Frame-Level Parallelism
Another possible scheme of exploiting parallelism is to
identify independent frames. Normally, we encode a
sequence of frames using an IBBPBBP… structure. 1

There are two B frames between P frames. While P frames
are reference frames (which other P or B frames depend on),
B frames are not. The dependence among the frames is
showed in Figure 4. In this PBB encoding structure, the
completion of encoding a P frame will make the subsequent
one P frame and two B frames ready for encoding. The
more frames encoded simultaneous, the more parallelism
we can explore. Therefore, P frames are on the critical
point in the encoder. Accelerating P-frame encoding will
bring more frames ready for encoding, and avoid the idle of
threads. In our implementation, we will encode I or P
frames first, then B frames.

1 (1) I-frame in video codecs stands for intra frames, which can
be encoded or decoded independently. Normally, there is an
I-frame per 15~60 frames. (2) P-frame stands for predicted
frames, each of which is predicted from a previously encoded
I-frame or P-frame. Because a P-frame is predicted from the
previously encoded I/P-frame, the dependency makes it harder
to encode two P-frame simultaneously. (3) B-frame stands for
bi-directional predicted frames, which are predicted from a two
previously encoded I/P-frames. No frame depends on
B-frames.

Unlike dividing a frame into slices, utilizing parallelism
among frames will not increase the bit rate. However, the
dependence among them will limit the threads scalability.
The trade-off is to combine the above two approaches into
one implementation. We first explore the parallelism
among frames; we can gain performance from it without bit
rate increase. After we reach the upper limit of the thread
number can be reached by the frame-level parallelism, we
will explore the parallel among slices subsequently. As a
result, we utilize processor resources as much as possible
and keep the compression ratio as high as possible (the
bit-rate as low as possible).

4.4 First Implementation Using Two Slice
Queues
We divided the encoder into three parts: input
pre-processing, encoding, and output post-processing. The
input processing will read uncompressed images, perform
some preprocesses, and then issue the images to encoding
threads. The preprocessed images are put in a buffer, called
image buffer. The output processing will check the
encoding status of each frame and commit the encoded
result to the output bit-stream sequentially. After that, the
entries in the image buffer are reused to prepare the image
for encoding. Although the input and output processes of
the encoder must be sequential due to the natural of the
H.264 encoder, the computation complexity of input and
output processes are insignificant compared to the encode
process. Therefore, we use one thread to handle the input
and output processes. This thread is the master thread in
charge of checking all the data dependency.

We use another buffer, called slice buffer, to explore the
parallelism among slices. After each image is preprocessed,
the slices of the image will put into the slice buffer. The
slices in the slice buffer are independent and ready for
encoding (the readiness of reference frames is checked
during the input process). In this case, we can encode these
slices out of order. To distinguish the priority differences
between the slices of B frames and the slices of I or P
frames, we use two separate slice queues to handle them.

2 In video codec, there are two orders. One is the display order;
the other one is the encoding order. While the display order is
a GOP is IBBPBBP, the encoding order is actually IPBBPBB.

Quality vs # slices (Forman, CIF)

32.0
32.5
33.0
33.5
34.0
34.5
35.0
35.5
36.0

200 250 300 350 400

Bit-rate (kbits/s)

Q
u

al
ity

 (P
S

N
R

, d
B

)

1 slice 4 slices 9 slices

Figure 3: Encoded picture quality vs the # of slices in a
picture

0(I) 3(P) 6(P)

1(B)

2(B)

9(P)

4(B)

5(B)

12(P)

7(B)

8(B)

Figure 4: Data dependence among frames. The numbers are
the display order2 of the video frames

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Figure 5 depicts the final multithreading implementation.
Figure 6 shows the pseudo code. We use one thread to
process input and output in order and use other threads to
encode slices out of order.

4.5 Second Implementation Using the Task
Queuing Model
While our first implementation uses OpenMP pragma, the
structure of the parallel code is very different from that of a
sequential code. Therefore, in this section, we demonstrate
our second proposed implementation that uses the task
queuing model [16] supported by Intel OpenMP compiler.

Essentially, given a program with task queuing constructs,
a team of threads is created, when a parallel region is
encountered. As shown in Figure 7, with the task queuing
execution model, from among all threads that encounter a
taskq pragma, one thread (TK) is chosen to execute it
initially. All the other threads (Tm, where m=1, …, N and
m≠K) wait for work to be enqueued on the work queue.
Conceptually, the taskq pragma causes an empty queue to
be created by the chosen thread TK, enqueues each task it
encounters, and then the code inside the taskq block is
executed single-threaded by the TK. The task pragma
specifies a unit of work, potentially executed by a different
thread. When a task pragma is encountered lexically within
a taskq block, the code inside the task block is enqueued on
the queue associated with the taskq. The conceptual queue
is disbanded when all work enqueued on it finishes, and
when the end of the taskq block is reached.

ImgBuffer

Thread 0
Input File

Output File

Slice Queue 0 (I/P)

Slice Queue 1 (B)

Thread 1

Thread 2

Thread 3

Thread 4

I(0) N/A N/A P(3) B(1) B(2) P(6) B(4) B(5)

Figure 5: Implementation with image and slice buffers

omp_set_nested(# of encoding thread + 1)
#pragma omp parallel sections
{
#pragma omp section
 {
 while (there is frame to encode)
 {
 if (there is free entry in image buffer)
 issue new frame to image buffer
 else if (there are frame encoded in image buffer)
 commit the encoded frame, release the entry
 else //
dependency are handled here
 wait;
 }
 }

#pragma omp section
 {
 #pragma omp parallel num_threads(# of encoding thread)
 {
 while (1)
 {
 if (there is slice in slice queue 0)
 encode one slice // higher
priority for I/P-frames
 else if (there is slice in slice queue 1)
 encode one slice // lower
priority for B-frames
 else if (all frames are encoded)
 exit;
 else
 wait; // wait for the main
thread to put more slices
 }
 }
 }
}
Figure 6: Pseudo code of the multithreaded H.264 encoder

using two slice queues

T1 T2 … TK … TN

Enqueue task

Schedule task (work unit)

Enqueue taskq

Done

TK

Tm (m=1…N, and m ≠ K) Work queue

Dequeue task (work unit)
Work queue empty

Thread pool

 Figure 7: Task queuing Execution Model

#pragma intel omp parallel taskq
{
 while (there is frame to encode)
 {
 if (there is no free entry in image buffer)
 commit the encoded frame, release the entry;
 load the original picture to memory, prepare for encoding;
 for (all slice in this frame)
 {
 #pragma intel omp task
 {
 encoder one slice;
 }
 }
 }
}
Figure 8: Pseudo code of the multithreaded H.264 encoder

using the task queuing model

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Our first proposed multi-threaded H.264 scheme uses two
FIFO buffers: (1) image buffer and (2) slice buffer. The
main thread is in charge of (1) moving raw images into the
image buffer when the image buffer has space, (2) moving
slices of the image buffer into slice buffers when the slice
buffer has space and the image is not yet dispatched, (3)
moving the encoded images out the image buffer when the
image is encoded. The working threads are in charge of
encoding new slices when there is a slice waiting to be
encoded in the slice buffer. All these operations are
synchronized through the image buffers. Hence, it is very
natural to use the task queuing model supported by Intel
OpenMP compiler.

Figure 8 shows the pseudo code of the multi-threading of
H.264 encoder using the task queuing model. The new
multi-threaded source code is closer to the single-thread
code. The only difference is the pragma---which is one of
the goals of OpenMP. Furthermore, in this scheme, there is
no more control thread. There are only n working threads
in total.

5. Performance Results and Analysis
We conduct the performance measurements of our
multithreaded H.264 encoder on (1) Dell 530 MT

workstation, built with dual Intel Xeon processors (4
logical processors) running at 2.0GHz with
Hyper-Threading enabled, 512K L2 Cache, 1GB memory;
(2) SHAST server, built with quad Intel Xeon processors (8
logical processors) running at 2.8GHz with
Hyper-Threading enabled, 512K L2 Cache (no L3 Cache),
2GB memory. Unless specified otherwise, the resolution of
the input video is CIF-resolution (352x288 in pixels or
22x18 in MBs). It is guaranteed that there are enough slices
for eight threads, when we take slice as the basic encoding
unit for a thread.

5.1 Tradeoff between Speedup and
Compression Efficiency
A frame can be partitioned up to 18 slices. Taking a slice as
the base encoding unit for a thread can reduce the
synchronization overhead because there is no data
dependency among slices in a single frame for performing
encoding. As we mentioned earlier, partitioning the frame
into multiple slices can increase the degree of parallelism,
but, it also increases the bit-rate. One of challenges is that
we aim at achieving a higher speedup with a lower bit-rate
without sacrificing any image quality. Therefore, we should
choose the slicing threshold carefully.

Figure 9 shows the speedup of encoding and the bit rate
with variation of the number of slices for each frame in two
machine configurations.3 In Figure 9(a), the number of
slices ranges from 1 to 18 with a constant quality of
encoded frames. There is a good speedup when the number
of slices for a frame is 1 to 2 on the DELL 530 platform,
and the speedup is almost flat while the number of slices
changing from 2 to 18. Meanwhile, the bit-rate increasing
is smaller if the number of slices is less than 3, but it starts
going up from 3 slices to 18 slices. One important
observation is that partitioning a frame to 2 or 3 slices
delivers the best tradeoff that achieves a higher speedup
and a lower bit rate. Figure 9(b) shows that we need more
than 3 slices to keep 8 logical processors busy on the
SHAST platform. Essentially, we need 9 threads to achieve
an optimal performance for 4 physical processors with
Hyper-Threading enabled.

This can be explained from the profile of threads. Figure
10(a) shows the profile when there is only 1 slice in a frame.
Figure 10(b) shows the profile when there are 9 slices in a
frame. In Figure 10(b), the 8 encoder threads are all busy
except the setup time. In this case, almost all processor
resources are used---only 3.70% execution time is waiting.
On the other hand, in Figure 10(a), about 61.19% execution
time of encoder thread is waiting. This is because there is
not enough parallelism. Therefore, during the process of
doing trade-off, we should carefully choice the best point.

3 In order to contrast the speedup vs the number of slices in a
frame over different numbers of processors, we use a
2-processor system and an 8-logical-processor system.

-

0.50

1.00

1.50

2.00

2.50

3.00

1 2 3 6 9 18

of slices

S
p

ee
d

-u
p

0.80

1.00

1.20

1.40

1.60

B
it

-r
at

e
(r

at
io

)

Speed-up for 2 processors w/o HT BitRate

(a)

-

1.00

2.00

3.00

4.00

5.00

1 2 3 6 9 18

of slices

S
p

ee
d-

u
p

0.80

1.00

1.20

1.40

1.60

B
it

-r
at

e
(r

at
io

)

Speed-up for 4 processors with HT BitRate

(b)
Figure 9: Speedup and bit rate vs the # of slices in a frame

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

The criterion is keep the slices number in the low level
while provide enough slices to let all encoder threads busy.
If the slices number is smaller than the threads number, the
speedup will decrease. (Figure 13 also shows that the
execution time on QP+HT is longer than that on QP if there
are only a small number of threads.)

Our heuristic is to keep the number of slices roughly same
as the number of logical processors. This is a simple yet
and efficient way to achieve a good performance and a
good image quality with an optimal tradeoff while
generating enough slices to keep threads busy for encoding.

5.2 Performance on Multiprocessor with HT
and Microarchitecture Metrics
Figure 11 shows the speedup of our multithreaded H.264
encoder on the SHAST quad-processor system with
Hyper-Threading Technology. In our implementation, a
picture frame was partitioned into 9 slices. In general, our
multithreaded H.264 encoders achieved a speedup ranging

from 1.8x to 2.0x on 2 processors, a speedup ranging from
3.1x to 3.7x on 4 processors, and a speedup ranging from
3.7x to 4.5x on 4 processors with Hyper-Threading enabled
for five different input video sequences.

To explain the 1.2x speedup with Hyper-Threading
Technology enabled, let’s take a look the microarchitecture
metrics.

First, Table 3 shows the distribution of the number of
instructions retired per cycle. The data is collected on the
Dell 530 dual-processor system with the second processor
disabled. Although there is no instruction retired for almost

123

2973 2717 3214 2974
2223

3428
4247 3707

8862 454040005518

6025
52745034

5536
5993

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 1 2 3 4 5 6 7 8

Thread ID

T
im

e

Run Time Wait Time

(a)

847

3802 3804 3699 3714 3774 3795 3732 3696

3159

18524416820418227816486

0

1000

2000

3000

4000

5000

0 1 2 3 4 5 6 7 8

Thread ID

T
im

e

Run Time Wait Time

(b)
Figure 10: The execution time profile of the first
implementation using two slice queues when (a) there is only
one slice in a frame and (b) there are 18 slices in a frame
(both on our SHAST system with HT).

2.
00

3.
51 3.

7
4

1.
99

3.
66

4.
21

2.
00

3.
81

4.
37

2.
00

3.
6

8 4.
4

1

1.
92

3.
60

4.
5

3

-

1

2

3

4

5

DP QP QP+HT
Machine Configuration

S
pe

ed
-u

p

720X480 news (CIF) paris (CIF) stefan (CIF) mobile (CIF)

(a)

1.
81

3.
13

3.
71

1.
87

3.
38 3.

92

1.
87

3.
44 3.

98

1.
88

3.
45

4.
08

1.
86

3.
47

4.
10

-

1

2

3

4

5

DP QP QP+HT
Machine Configuration

S
pe

ed
-u

p

720X480 news (CIF) paris (CIF) stefan (CIF) mobile (CIF)

(b)

Figure 11: Encoder speedups on different video sequences
after multithreading. (a) uses two slices queues. (b) uses one
task queue.

 Without HT With HT

Retired 1 instruction 20.03% 25.67%

Retired 2 instructions 16.52% 18.62%

Retired 3 instructions 7.79% 8.55%

Table 3: Instructions retired breakdown

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

half of the execution time, the probability of retiring more
instructions is higher with Hyper-Threading Technology.
This indicates that higher processor utilization is achieved
with Hyper-Threading Technology.

Second, as shown in Table 4, about 80% of the time the
trace cache is under the deliver mode (good for
performance) while 18% is under the build mode (bad for
performance) without Hyper-Threading Technology.
However, when Hyper-Threading Technology is enabled,
the deliver mode percentage drops to 70% while the build
mode percentage increases to 25%. This indicates the front
end of Hyper-Threading system cannot provide enough
uops to execution unit. Similarly, the first level cache load
miss rate also show the same issue. The number of first
level cache misses increase about 50% when
Hyper-Threading enabled (miss rate increased from 6% to
9%). This is because the two logic processors in one
physical package share the only first-level cache of
8KBytes. In short, our performance gains on
Hyper-Threading Technology are limited by the trace cache
and the L1 cache for our multithreaded H.264 encoder.

There is no notable impact on other microarchitecture
metrics except front-side-bus utilization rate. The number
of bus activities does not increase significantly along with
the increasing of number of threads. The execution time is
reduced due to the better use of processor resources by
exploiting enough thread-level parallelism. It results in the
increased front-side-bus utilization rate.

5.3 Performance Comparison between
2-Slice-Queue and 1-Task-Queue Schemes
As shown in Figure 11, there are some performance
difference between the first implementation with two slices
queues and the second implementation with only one task
queue. The performance gap is larger when there are more
processors. Because the implementation uses two queues to
accelerate the encoding of I or P frames, it can provide
more slices ready for encoding, especially when there are a
large number of processors. On the other hand, the task
queuing model in OpenMP maintains only one queue. In
this case, all slices are treaded equal. Therefore, there is
more idle time in the execution threads when there are a lot

of processors, as we will see more details at the end of this
section.

Figure 12 shows the execution time profile of the second
implementation using one task queue. As mentioned earlier,
because the task queuing model in OpenMP only maintains
one queue, all slices are treaded equal. Therefore, there
may not be enough ready-to-encode slices, as we can see
from the amount of idle time in the execution threads.
Compared to Figure 10(b), Figure 12 shows that the
processors are utilized less efficiently.

5.4 Threading Overhead
In our previous discussion, we mentioned that the number
of threads equal to the number of logical processors
delivers a good tradeoff between speedup and parallelism.
In this section, we study the performance in the case of the
number of threads that is greater or less than the number of
logical processors. Figure 13 shows that the speedup (of the
first implementation using two slice queues) changes along
with the number of threads. The speedup grows up along
with increasing of the number of threads, it gets to the peak
performance when the number of threads equals to the
number of logical processors.

An interesting observation is that the speedup is pretty
much flat or it drops only slightly when the number of

 DELL 530 SHAST

 UP UP+HT DP DP+HT UP DP QP QP+HT

Instruction per cycle 0.79 0.90 1.57 1.81 0.76 1.50 2.86 3.20

uops per cycle 1.11 1.26 2.17 2.48 1.112 2.139 4.036 4.365

Trace cache deliver mode % 80.80% 71.13% 80.39% 69.06% 83.73% 82.88% 83.71% 71.98%

Trace cache build mode % 17.59% 25.15% 17.27% 25.42% 16.74% 17.31% 17.08% 22.23%

1st level cache load misses rate 6.24% 9.19% 6.42% 9.02% 5.95% 6.24% 5.87% 8.87%

2nd level cache load misses rate 0.45% 0.56% 0.54% 0.54% 0.15% 0.17% 0.20% 0.28%

Front-side-bus utilization rate 0.65% 1.51% 1.57% 3.74% 0.96% 2.93% 8.53% 13.09%

Table 4: uArch metrics on DELL 530 and SHAST

4284 4205 4397 4106 4340 4219 4052 4305

1033561896830211203124

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8

Thread ID

T
im

e

Run Time Wait Time

Figure 12: The execution time profile of the second
implementation using one task queue (on our SHAST system
with HT).

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

threads is greater than the number of logical processors. It
indicates that the overhead due to threading is minor. In
other words, the multithreaded code generated by the
compiler is efficient on exploiting effective parallelism, and
the overhead of the multithreaded runtime library is small.
Furthermore, our multithreaded H.264 encoder should have
good scalability for large-scale multiprocessor systems
because the performance is not sensitive to the number of
threads.

6. Related and Future Work
Previously, [18] presented an implementation of
multithreading H.264 decoder, and there are also some
works on exploiting parallelism in MPEG encoders
[1][3][13][14]. To the best of our knowledge, we are the
first one who developed the multithreaded implementation
of H.264 encoder on the multithreading architecture [6]. In
addition, we have done an in-depth study on different
tradeoffs in video quality and parallelization. [1][3][13]
used the most straightforward approach to encoding the
video sequences either by pictures or by slices. Our scheme
is slightly more complicated in exploiting both the
slice-level and frame-level parallelism.

In the future, we will further analyze the performance
impact from different image resolutions. While the
resolution of source image can scale from QCIF, CIF, SD
to HDTV, most of our current analysis focused on the CIF
resolution. Figure 11 shows that the speedup of SD
(720x480) format is slightly less than that of CIF (352x288)
format. While the speedup is determined by several factors
(such as, synchronization and degree of parallelism), our
experimental results show that the number of
synchronizations per second during encoding SD video is
only 1/3 of that during encoding CIF video. Furthermore,
SD has a higher degree of parallelism. It will be great to
understand the reasons why the speedup of encoding
higher-resolution video is less than that of lower-resolution
video.

7. Conclusions
As the emerging codec standard becomes more complex,
the encoding and decoding processes require much more

computation power than most existing standards. H.264
standard includes a number of new features and requires
much more computation than most existing standards, such
as MPEG-2 and MPEG-4. Even after media instruction
optimization, the H.264 encoder at CIF resolution is still
not fast enough to meet the expectation of real-time video
processing. Hence, we exploit the parallelism to improve
the performance of H.264 encoders.

To the best of our knowledge, this paper presented the very
first and efficient multithreaded implementation of the
H.264 video encoder, which exploits multiple levels of
parallelism. Tradeoffs of using different parallelism in
video codec and the final implementation scheme have
been illustrated in detail. We are the first one who
considers compression efficiency degradation as well as
parallel speedup. Thus, the proposed scheme not only
provides good execution speedup, but also keeps the video
degradation as minimal as possible.

Our multithreaded implementation based on OpenMP
programming model also demonstrated that it is very
simple yet and efficient to exploit parallelism through
adding a few pragmas in the serial code. The programmers
can rely on the parallelizing compiler to convert the serial
code to multithreaded code automatically. We also
demonstrated the tradeoff between the source code
complexity and the performance using
application-managed queues and the task queuing model
supported by Intel OpenMP compiler.

The performance results have shown that the code
generated by the Intel OpenMP compiler delivers an
optimal speedup truly over the well-optimized sequential
code on the Intel Hyper-Threading architecture. Our work
demonstrated that Hyper-Threading Technology can gain
us ~20% performance, which is a performance gain beyond
the multiprocessor performance with very little additional
cost. The performance speedup ranging from 3.74x to
4.53x have supported the merit of our implementation and
the efficiency of multithreaded code generated by the Intel
OpenMP compiler.

Acknowledgements
The authors thank all members of the Intel compiler team
for their contribution in developing the Intel C++/Fortran
high-performance compiler. We also acknowledge the great
efforts of Eric Q. Li and Xiaosong Zhou at Intel China
Research Center in developing the SIMD-optimized
encoder.

References
[1] D. M. Barbosa, J. P. Kitajima, and W. Meira Jr.,

“Real-Time MPEG Encoding in Shared-Memory
Multiprocessors,” in Int’l Conf. on Parallel Computing
Systems, 1999.

0

1

2

3

4

5
0+

1

1+
2

1+
4

1+
6

1+
8

1+
10

1+
12

1+
14

1+
16

Threads

S
pe

ed
up

QPHT QP DP UP

Figure 13: Speedups vs the number of threads

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

[2] A. Bik, M. Girkar, P. Grey, and X. Tian, “Automatic
Intra-Register Vectorization for the Intel Architecture,”
in Int’l Journal of Parallel Programming, April 2002.

[3] Y.-K. Chen, M. Holliman, E. Debes, S. Zheltov, A.
Knyazev, S. Bratanov, R. Belenov, and I. Santos,
"Media Applications on Hyper-Threading
Technology," Intel Technology Journal, pp. 47-57, Feb.
2002.

[4] F. Chow, S. Chan, R. Kennedy, S.-M. Liu, R. Lo, and
P. Tu, "A New Algorithm for Partial Redundancy
Elimination Based on SSA Form," in ACM Conf. on
Programming Language Design and Implementation,
June 1997, pp. 273-286.

[5] J.-H. Chow, L. E. Lyon, and V. Sarkar, “Automatic
Parallelization for Symmetric Shared-Memory
Multiprocessors,” in Proc. of CASCON, pp. 76-89,
Nov. 1996.

[6] S. Ge, X. Tian, and Y.-K. Chen, “Efficient
Multithreading Implementation of H.264 Encoder on
Intel Hyper-Threading Architectures,” in IEEE
Pacific-Rim Conf. on Multimedia, Dec 2003.

[7] International Standard Organization, “Information
Technology-Coding of Audio-Visual Objects,
Part2---Visual,” ISO/IEC 14496-2.

[8] ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC,
Document JVT-D157, 4th Meeting: Klagenfurt,
Austria, July 2002.

[9] H. Malvar, A. Hallapuro, M. Karczewicz, and L.
Kerofsky, “Low-Complexity Transform and
Quantization with 16-Bit Arithmetic for H.26L,” Int’l
Conf. on Image Processing, vol. 2, pp. 489-492, Oct.
2002.

[10]D. Marr, F. Binns, D. L. Hill, G. Hinton, D. A.
Koufaty, J. A. Miller, and M. Upton,
“Hyper-Threading Technology Microarchitecture and
Architecture,” Intel Technology Journal, Vol. 6, Q1,
2002.

[11]OpenMP Architecture Review Board, “OpenMP C and
C++ Application Program Interface,” Version 2.0,
March 2002, http://www.openmp.org

[12]OpenMP Architecture Review Board, “OpenMP
Fortran Application Program Interface,” Version 2.0,
November 2000, http://www.openmp.org

[13]K. Shen, L. Rowe, and E. Delp, “A Parallel
Implementation of an MPEG-1 Encoder: Faster than
Real-Time,” in SPIE Conf. on Digital Video
Compression: Algorithms and Techniques, 1995.

[14]H. H. Taylor et al. “An MPEG Encoder
Implementation on the Princeton Engine Video
Supercomputer,” in Proc. of Data Compression
Conference, pp. 420–429, 1993.

[15]X. Tian, A. Bik, M. Girkar, P. Grey, H. Saito, E. Su,
“Intel OpenMP∗ C++/Fortran Compiler for
Hyper-Threading Technology: Implementation and
Performance,” Intel Technology Journal, Vol. 6, Q1,
2002

[16]X. Tian, Y.-K. Chen, M. Girkar, S. Ge, R. Lienhart, S.
Shah, “Exploring the Use of Hyper-Threading
Technology for Multimedia Applications with Intel
OpenMP Compiler,” in Int’l Parallel & Distributed
Processing Symposium, pp. 36-43, Apr. 2003.

[17]D. M. Tullsen, S. J. Eggers, H. M. Levy.
“Simultaneous Multithreading: On-Chip Parallelism,”
in Int’l Symposium on Computer Architecture, June
1995.

[18]E. B. van der Tol, E. G. T. Jaspers, and R. H.
Gelderblom, “Mapping of H.264 Decoding on a
Multiprocessor Architecture,” in SPIE Conf. on Image
and Video Communications and Processing, Jan. 2003.

[19]M. J. Wolfe, High Performance Compilers for Parallel
Computers, Addison-Wesley Publishing Company,
Redwood City, California, 1996.

[20]X. Zhou, E. Q. Li, and Y.-K. Chen, “Implementation
of H.264 Decoder on General-Purpose Processors with
Media Instructions,” in SPIE Conf. on Image and
Video Communications and Processing, Jan. 2003.

Intel is a registered trademark of Intel Corporation or its subsidiaries in
the United States and other countries.

∗Other brands and names may be claimed as the property of others.

* Performance tests and ratings are measured using specific
computer systems and/or components and reflect the
approximate performance of Intel products as measured by those
tests. Any difference in system hardware or software design or
configuration may affect actual performance. Buyers should
consult other sources of information to evaluate the performance
of systems or components they are considering purchasing. For
more information on performance tests and on the performance
of Intel products, visit http://www.intel.com/procs/perf/
limits.htm or call (U.S.) 1-800-628-8686 or 1-916-356-3104.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

