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Abstract—In this paper, we construe key factors in design and evaluation of image processing algorithms on the massive parallel

graphics processing units (GPUs) using the compute unified device architecture (CUDA) programming model. A set of metrics,

customized for image processing, is proposed to quantitatively evaluate algorithm characteristics. In addition, we show that a range of

image processing algorithms map readily to CUDA using multiview stereo matching, linear feature extraction, JPEG2000 image

encoding, and nonphotorealistic rendering (NPR) as our example applications. The algorithms are carefully selected from major

domains of image processing, so they inherently contain a variety of subalgorithms with diverse characteristics when implemented on

the GPU. Performance is evaluated in terms of execution time and is compared to the fastest host-only version implemented using

OpenMP. It is shown that the observed speedup varies extensively depending on the characteristics of each algorithm. Intensive

analysis is conducted to show the appropriateness of the proposed metrics in predicting the effectiveness of an application for parallel

implementation.

Index Terms—GPU, CUDA, image processing, parallel implementation, GPGPU.
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1 INTRODUCTION

A long standing challenge in the field of image
processing is that intensive computation power is

required to achieve high accuracy and real-time perfor-
mance. Real-time image processing of video frames is
difficult to attain even with the most powerful modern
CPU. High-resolution video capture devices and increased
requirements for accuracy make it even harder to realize
real-time performance.

Recently, GPU has evolved into an extremely powerful
computation resource. For example, NVIDIA GTX 280 with
240 processing cores at 602 MHz and 1 GB of GDDR3 running
through a 512-bit memory bus performs 933 GFLOPS in its
peak performance. As a comparison, 3.2 GHz Intel Core2
Extreme (QX9775) operates at roughly 51.2 GFLOPS. In
addition, modern GPUs are equipped to support high-level
languages. This significantly increases user programmability
and facilitates use of GPUs for general purposes, also known
as general-purpose computation on GPU (GPGPU) [1], [2],
[3]. Most of image processing and computer vision tasks

perform the same computation on a number of pixels, a
typical data parallel operations. Thus, they can exploit the
single instruction multiple data (SIMD) architecture and be
effectively parallelized on GPU.

Before the release of compute unified frameworks, such
as NVIDIA CUDA [4] and OpenCL [5], the legacy GPGPU
architecture provides limited support for GPGPU as a
corner case of 3D graphics pipelines. The major bottleneck
has been the restricted scatter operation, i.e., the output of
the parallel process is limited to a single pixel color in only a
few bytes. This limits the flexibility to the design of parallel
algorithms for nongraphics experts. However, the recent
compute unified framework provides user-controllable
parallelism at the thread level and allows unrestricted
usage of the global memory space for both gather (read
from) and scatter (write to) operations. Moreover, it equips
on-chip shared memory for much faster access to data and
efficient communication between parallel threads. Conse-
quently, a wider variety of algorithms are now being
designed and implemented on the GPU. In this paper, we
adopt NVIDIA CUDA [4] for the computing framework.

The purpose of using GPU as an alternative computa-
tional platform is to achieve acceleration for computation-
ally intensive tasks beyond the domain of graphics
applications. Image processing is selected from a number
of areas that involve high computing complexity, since the
common problem structure matches GPU’s SIMD architec-
ture well. More specifically, GPU is well suited to address
massive data parallel processing with high floating-point
(FP) arithmetic intensity. Many image processing applica-
tions that process large data sets involve highly complex
mathematical and logical operations. This particular struc-
ture fits very well with the GPU data parallel programming
model and facilitates significant acceleration.

However, not all image processing algorithms are ported
to GPU with a significant speedup. Modern GPUs have
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indigenous architecture and hardware limitations that must
be taken into account when the target algorithm is designed
and implemented. Although image processing algorithms
are well suited to the massive parallel architecture of the
GPU in general, a large number of algorithms fail to achieve
satisfactory performance gain, since the inherent nature of
the algorithms and the GPU platform is uncooperative.
Therefore, it is critical to evaluate the algorithm-platform
cooperativeness correctly during the design and implemen-
tation process and reflect it to obtain the best performance.

In this paper, we deduce key common factors for
designing and evaluating image processing algorithms on
the massive parallel GPU with the CUDA framework. These
are defined as measurable metrics to characterize each
algorithm in a quantitative manner. We choose popular
algorithms in four major domains (3D imaging, feature
extraction, image compression, and computational photo-
graphy) to experimentally show the effectiveness of the
proposed metrics. We implement them on the CUDA
programming model, while exploring the relationship
between the measured metrics to achieve the significant
speedup over CPU (using OpenMP [6]).

This research aims to accomplish an efficient application
of image processing algorithms for intensive computation
using GPUs. The contributions of this paper are twofold:
First, based on the characteristics of image processing, we
propose measurable metrics to numerically evaluate the
inherent parallelism present in popular image processing
algorithms. The resultant numerical data obtained from the
metrics allow us to predict the effectiveness of the problem
for the parallel implementation. An alternative use for the
proposed metrics is to compare the two implementations of
the same algorithm on the GPU. Second, we propose design
and implementation of algorithms on the CUDA program-
ming model using multiview stereo matching, linear feature
extraction, JPEG2000 encoding, and nonphotorealistic ren-
dering (NPR), as our example applications. Preliminary
version of this paper was presented in [7].

The remainder of the paper is organized as follows:
Section 2 addresses notable previous GPGPU researches.
Section 3 provides a brief survey of the CUDA programming
model. In Section 4, a set of metrics is proposed to characterize
algorithms for parallel implementation. Section 5 describes
the algorithms investigated in this work and their mapping
on the GPU. Section 6 presents a brief survey on CUDA
benchmarking and optimization tools. Experimental results
are shown in Section 7. Finally, Section 8 concludes this paper.

2 RELATED WORK

The design and implementation strategy of the GPGPU
algorithm on the compute unified device architecture
(CUDA) platform is quite different from the legacy
shader-based one using Cg [8], DirectX high level shading
language [9] (HLSL), and OpenGL Shading Language [10]
(GLSL). In this section, we introduce notable previous work
implemented on different platforms.

2.1 Image Processing on the Legacy GPGPU
Platform

Traditionally, general-purpose GPU was accomplished
using a shader-based framework [10]. More general use of
GPU for nongraphics has become popular over the last five

years. A survey of general-purpose computation on
graphics hardware is intensively described in [2].

Shen et al. [11] implemented motion compensation and
color space conversion of MPEG video encoding on GPU
using DirectX to achieve two to three times speedup.
However, they focused on the collaboration of CPU and
GPU, instead of fully utilizing resources on the GPU. Yang
and Pollefeys [12] proposed GPU-based real-time stereo
matching with multiple images. They implemented rectifica-
tion and disparity computing using standard use of texture.

A few interesting projects build an image processing and
computer vision library on the GPGPU platform. For
example, GpuCV [13] and MinGPU [14] are open-source
computer vision libraries that users can use transparently
without any knowledge of GPU and GPGPU. GpuCV
supports GLSL-based and CUDA-based platforms simulta-
neously. OpenVIDIA [15] is another open-source library
that provides a set of useful computer vision functionalities.

2.2 Image Processing on the Compute Unified
Platform

There is a strong desire to use GPU to accelerate
computationally intensive tasks in the image processing
and computer vision domain, mainly due to recent
advances in the development of the compute unified
framework, i.e., CUDA by NVIDIA. In [16], several
computer vision algorithms are implemented on the GPU.
These include scale invariant feature detection, Canny edge
detection, Kanade-Lucas-Tomasi (KLT) tracking, optical
flow computation, graph cuts, stereo depth, shape from
motion, visual hull computation, K-nearest neighbor (KNN)
search, and particle filtering. Most of the above works
focused on how to map algorithms onto the GPU
architecture. Systematic analysis and guidance for applica-
tion to other domains are lacking.

Ryoo et al. [17] described several useful principles to
optimize implementations on the G80 architecture. How-
ever, their main goal is efficient use of shared resources. This
is difficult to generalize in the image processing domain.

Recently, CUJ2K [18] has been developed as a fast
encoder for JPEG2000. For 2D DWT, it adopts the lifting
scheme. In the case of Tier-1, its implementation involves
parallelism at the code block level, which is the same as in
our implementation (see Section 5.4.4). However, their
method is not based on the standard JPEG2000 codec, such
as [19], and performance evaluation in terms of rate
distortion is lacking.

3 GPU WITH CUDA FRAMEWORK

Recently, NVIDIA released the CUDA, a new GPU
programming model, to assist developers in general-
purpose computing [4]. All the latest NVIDIA graphics
hardware such as GeForce, Quadro-FX, Tesla, and ION are
CUDA compliant. In this section, we describe the hardware
and software architecture of the CUDA framework.

3.1 Hardware Architecture

A CUDA compliant device is a set of multiprocessor cores,
capable of executing a very high number of threads
concurrently, that operates as a coprocessor to the CPU or
host. Each multiprocessor has a single-instruction multiple
thread (SIMT) architecture; that is, each processor of the
multiprocessor executes a different thread but all the
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threads run the same instructions, operating on different
data based on its thread ID, at any given clock cycle. In
concept, it is similar to SIMD architecture, often employed
by vector processors in which it processes four clusters of
data, but SIMT processes more clusters of data with an
array of scalar processors.

G80/G92 has 16 multiprocessors with eight scalar
processors in each multiprocessor. The device maintains
its own DRAM, referred to as device memory. Device memory
is divided into three different types: global memory, constant
memory, and texture memory. These can all be read from or
written to by the host and are persistent through the life of
the application. Multiprocessors also have on-chip memory
in the form of registers, shared memory, constant cache, and
texture cache. The registers (32-bit) are the fastest available but
only support a limited amount of space (32-64 KB). A
parallel data cache of shared memory is shared by all the
processors and is limited to 16 KB. A constant cache speeds
up reads from the constant memory. Similarly, texture cache
is used to speed up reads from the texture memory.

3.2 Software Architecture

A parallel application that is executed many times, but
independently on different data, is a function that is
executed on the device by many threads running on
different processors of the multiprocessors. Such a function,
called a kernel, is compiled to the instruction set. A thread
block is a batch of threads that synchronize their execution
using shared memory. Each thread block executes on one
multiprocessor. The number of threads in a thread block is
limited to 512. A group of thread blocks of equal
dimensions and size executes the same kernel and is
batched together into a grid of thread blocks. Threads are
organized into warps or groups of 32 threads, where each
warp executes one kernel instruction at a time. CUDA
includes C/C++ software development tools that allow
programmers to combine host code with device code. To do
so, CUDA programming requires a single program (kernel)
written in C/C++ with some extensions [20]. Each source
file containing these extensions must be compiled with the
CUDA nvcc compiler [21].

4 METRICS TO CHARACTERIZE PARALLEL

IMPLEMENTATION OF IMAGE PROCESSING

ALGORITHMS ON GPU

In this section, we propose novel metrics to characterize the
algorithm to judge the effectiveness of the algorithm for
parallel implementation.

4.1 Characteristics of Image Processing Algorithms

Image processing algorithms are too diverse to define a
general aspect for parallel implementation. However, in
practice, image processing involves independent processing
of a massive pixel or feature set. This can benefit from
SIMD-style GPU architecture. More importantly, image
processing involves large memory buffers to store pixel
data and needs frequent access to them, where the access
pattern is often regular and sequential, as row-major or
column-major order. The complexity of operations applied
to the pixel data depends on the characteristics of the
algorithm. However, the complexity is generally high due
to intensive floating-point and logical operations. In
addition, image processing algorithms consist of a mixture
of subalgorithms, for which the efficiency of implementa-
tion on the GPU is affected by the dependency of the task
order and data exchange between consequent tasks.

4.2 Proposed Metrics

Based on the characteristics of image processing algorithms,
we propose six metrics. These are

1. parallel fraction;
2. the ratio of floating-point computation to global

memory access;
3. per-pixel floating-point instructions;
4. per-pixel memory access;
5. branching diversity; and
6. task dependency.

The metrics are customized for image processing tasks.
Table 1 shows the relationship between the characteristics
of image processing algorithms and each of the above
metrics. The fundamental idea when defining each of the
metrics is to consider their dependence on the character-
istics of image processing tasks. Each of the metrics is
numerically evaluated using the serial CPU code before
implementation using CUDA. The resultant numerical
values obtained from the metrics facilitate efficient analysis
of inherent parallelism in a given algorithm and provide
information on the bottleneck, if any. The following
describes each of the above metrics in detail along with
the method of their numerical evaluation.

4.2.1 Parallel Fraction

In parallel computing, Amdahl’s law [22] is used to predict
the theoretical maximum speedup using multiple proces-
sors. For the parallelization scenario, Amdahl’s law states
that if f is the fraction of a program that can be made
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parallel and ð1� fÞ is the fraction that cannot be paralle-
lized, i.e., that must remain serial, then the maximum
speedup that can be achieved using N processors is

S � 1

1� f þ f
N

: ð1Þ

In practice, performance falls rapidly once there is even a
small component of ð1� fÞ. If N is fixed, the maximum
speedup that can be achieved using parallel implementa-
tion is bottlenecked by the fraction ð1� fÞ. In the above
context, the numerical value of parallel fraction f helps
determine the theoretical maximum speedup.

In the case of image processing algorithms, a problem is
more often divided into a mixture of subalgorithms. The
parallel fraction is directly proportional to the fraction of
these subalgorithms that are parallelized. Note that Am-
dahl’s law presents speedup between implementation on
multiple cores and a single core with the same computing
capability (CPU or GPU).

4.2.2 Floating-Point Computation to Memory Access

Ratio

In the CUDA framework, a memory access instruction
includes any instruction that reads from or writes to shared,
local, or global memory space. When the threads in a warp
are coherent, a multiprocessor takes four clock cycles to
issue one memory instruction. However, when accessing
local or global memory, there are, in addition, 400-600 clock
cycles of memory latency. The latency caused by local or
global memory access can be hidden if there are sufficient
independent floating-point instructions. This allows the
GPU to perform arithmetic operations, while certain
threads are waiting for the memory access to be completed.
We estimate the ratio between the number of floating-point
instructions and the global memory access to numerically
evaluate the above property. The higher the ratio is, the
better the utilization of the multiprocessor resources; this is
reflected in the performance of the parallel implementation.

In the image processing context, most algorithms involve
intensive floating-point arithmetic operations along with
frequent access to the global memory space, both of which
are, respectively, proportional to the memory buffer size.
However, the floating-point computation to memory access
ratio is independent of the memory buffer size.

4.2.3 Per-Pixel Floating-Point Computation

Modern GPUs outperform CPUs in floating-point opera-
tions per second by an approximate factor of 20�. The
reason behind this discrepancy in floating-point capability
is that the GPU is specialized for intensive computing,
highly parallel computation, and therefore, designed such
that more transistors are devoted to data processing. More
specifically, the GPU is well suited to address problems
with high floating-point intensity. In the above context, the
number of per-pixel floating-point computations provides
an estimate of the computational strength of an algorithm
and its effectiveness for parallel implementation.

Most image processing algorithms involve intensive
floating-point operations that are indirectly correlated with
frequent access to memory buffer.

4.2.4 Per-Pixel Device Memory Access

Current GPUs have 10� higher main memory bandwidth
and use data parallelism to achieve more operations per
second than CPUs. An image processing algorithm having
frequent memory access per pixel can exploit the high
memory bandwidth to achieve significant speedup.
Furthermore, in the CUDA framework, much higher
memory access (100� compared to GPU device memory)
is efficiently processed using coherent memory access and
on-chip shared memory to achieve substantially higher
performance. The number of per-pixel memory accesses
determines the frequency of memory access in a given
algorithm. It should be noted that the sequential memory
access pattern associated with some of the image processing
algorithms often limits the peak memory bandwidth due to
incoherent memory access.

4.2.5 Branching Diversity

In CUDA architecture, for every instruction instance, the
SIMT unit selects a warp that is ready to execute and issues
the next instruction to the active threads of the warp. A
warp executes a single common instruction at a time, so full
efficiency is realized when all 32 threads in the warp agree
on their execution path. However, flow control instructions
such as if, switch, do, for, while can significantly
degrade parallel efficiency by causing threads of the same
warp to diverge, i.e., to follow different execution paths that
have to be serialized. Many image processing algorithms
involve heavy logical operations using control flow instruc-
tions other than arithmetic and memory lookup operations.
These control flow instructions significantly reduce the
parallelism among threads in a warp, forcing the threads to
be serialized.

We measure the load balance between threads belonging
to the same warp to evaluate the divergence caused by
control flow instructions, i.e., branching diversity. We
measure the execution time for all tasks (typically in a
for loop) to be parallelized and normalize it. Then, we
compute the variances of task groups consisting of 32
consecutive tasks and take the maximum of these. A greater
variance implies that the load is imbalanced, and conse-
quently, the branching diversity is higher.

4.2.6 Task Dependency

CUDA architecture offers three-key abstractions at its core:
a hierarchy of thread groups, shared memory, and per-
block/global barrier synchronization. A typical CUDA
implementation partitions the problem into subproblems
(kernels) that can be solved independently. Then, each
subproblem is partitioned into finer pieces (threads) that
can be solved cooperatively in parallel using thread blocks.
The number of global barrier synchronization required by
an application defines task dependency. In an image
processing context, the task dependency is resolved by the
number of kernels that are executed sequentially.

Note that CUDA has no global synchronization, as it
becomes expensive to build in hardware for GPUs with a
high processor count. Therefore, this necessitates multiple
kernel launches to achieve global synchronization.

In addition, large memory buffer size can affect task
dependency. For example, in large-resolution video proces-
sing or 3D medical image processing, the required memory
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size is often bigger than the amount of device memory.
Consequently, multiple kernel calls are used to process the
decomposed data.

4.3 Relative Importance of the Metrics

Based on the characteristics of image processing algorithms,
we state the relative importance of the proposed metrics as:
Parallel Fraction > Branching Diversity > Per-Pixel FP
Computation > Per-Pixel Memory Access > FP Computa-
tion to Memory Access Ratio > task Dependency.

The parallel fraction determines the intrinsic parallelism
in a given application and limits the maximum speedup.
Therefore, parallel fraction’s influence to the speedup is
largest. GPU is well suited to address massive data
parallelism, which is the major source of speedup. Hence,
maximization of thread parallelism dominates all other
factors influencing the speedup. In this context, branching
diversity impedes the degree of thread parallelism, which
makes it the next most important metric.

Modern GPUs are designed to achieve approximately
10� higher memory bandwidth than CPU. However, in
order to achieve peak memory bandwidth, the memory
access pattern needs to be coalesced with efficient use of
cache and shared memory. Furthermore, general image
processing algorithms involve higher per-pixel floating-
point computations than memory access. The two reasons
stated above make the per-pixel floating-point computation
more important than the per-pixel memory access. Floating-
point computation to memory access ratio hides the
potential stalls caused by high-latency global memory
access. However, the use of an efficient cache and shared
memory alleviates the latency problem, reducing the
importance of this metric. Additionally, floating-point
computation to memory access ratio can be computed
using per-pixel floating-point computations and per-pixel
memory access, which reduces the information entropy.

Task dependency generally shows the ease of imple-
mentation and has less influence on the actual speedup.
Hence, it stands at the lowest position in the relative
importance hierarchy.

5 TEST ALGORITHMS AND THEIR IMPLEMENTATION

ON THE GPU

5.1 Criteria for Algorithm Selection

Image processing has a broad spectrum of domains. In
this paper, we select four major domains (3D shape

reconstruction, feature extraction, image compression, and
computational photography) based on the general research
interest of the society. In each domain, we select target
algorithms (multiview stereo matching, linear feature
extraction, JPEG2000 image encoding, and nonphotorea-
listic rendering) to implement and analyze on the GPU
platform. These include a variety of image processing
routines such as Gaussian smoothing, window matching,
bilateral filtering, Canny edge detection, quantization,
arithmetic coding, and wavelet transform. Furthermore,
common means of error evaluation, such as sum of the
absolute difference (SAD) and normalized cross correla-
tion (NCC), are part of these algorithms.

The inherent structure and the nature of the selected
algorithms are quite diverse; hence, several important
design and implementation issues on the GPU with CUDA
framework can be exploited. For example, multiview stereo
matching has massive parallel pixel domain processing
with low divergence, while JPEG2000 embedded block
coding with optimized truncation (EBCOT) has small-scale
parallel threads with high divergence. Linear feature
extraction processes a variable number of image features,
which makes it difficult to parallelize. JPEG2000 encoding
involves multiscale image processing, i.e., discrete wavelet
transform (DWT), as well as an encoding stage that has a
complex context decision procedure. Finally, nonphotorea-
listic rendering involves a purely mask convolution opera-
tion on the image space and has high floating-point
arithmetic intensity. The characteristics of the selected
algorithms are summarized in Table 2.

5.2 Multiview Stereo Matching

A multiview stereo (MVS) matching problem is formulated
as follows: Given N calibrated images I ¼ fI0; I1; . . . ; IN�1g
and corresponding projection matrix P ¼ fP0; P1; . . . ; PN�1g,
find a set of 3D points X ¼ fX0; X1; . . . ; XM�1g where the
projection ofXi to its supporting images (images in whichXi

is visible) preserves photoconsistency. That is, the local
window around the projected position is well matched in
terms of the SAD or NCC metrics.

5.2.1 Algorithm Description

Although there are many different algorithms in this field,
including the state-of-the-art one [23], the core computation
in MVS is massive local window matching between input
images. Individual local window matching is independent
and is a type of computation that GPU does very well. In
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this paper, we are not going to select and implement the
whole flow of a particular MVS algorithm but only the
initial matching stage that is common.

Given a pixel position ðx; yÞ of a reference image Ii, the
depth value is determined as follows: As shown in Fig. 1,
the sampled 3D points along the line of sight and inside the
bounding volume are projected one-by-one onto one of the
neighboring images (for example, Ii�1 and Iiþ1) to match.
Among them, a 3D point with minimum SAD or NCC is
stored as the local best match. The same process is
performed for other neighboring images. Finally, a 3D point
is determined as the correct depth point if its count of local
best match is above the given threshold (MIN COUNT). The
entire process is repeated for every other reference image
and all pixel positions.

The total computational complexity is OðN2WHLÞ,
where N , W , H, and L are the number of input images,
the horizontal and vertical image resolution, and the size of
the (cubic) bounding box, respectively.

5.2.2 Mapping on the GPU

In our implementation on the GPU, W �H threads are
created such that each thread computes the depth of a
single pixel. We need OðNÞ calls to the kernel function to
compute the depth map of a single reference image, in
which the complexity of each call is OðLÞ. Since GPU can
execute a fixed maximum number of threads Tmax (which is
12,288 for G80 and 30,720 for GX200), actual computational
complexity is OðNWHL

Tmax
Þ for large W and H. Therefore, the

parallel implementation has reduced complexity OðN2WHL
Tmax

Þ,
since the kernel has to be invoked N times to obtain the
depth map of all the input images. The input images are
copied to the global memory for read/write by threads. The
local window coefficients of the reference image are stored
in the shared memory for frequent but faster access.

5.3 Linear Feature Extraction

Linear feature (piecewise line fitting of visual edge) plays
an important role in many object recognition applications,
especially when the target object is composed of linear
structures. Appropriate applications include building de-
tection, road lane detection, bin picking in robot assembly,
and many other systems that deal with man-made objects.

5.3.1 Algorithm Description

We employ Nevatia and Babu’s algorithm [24] as a base
algorithm and replace edge detection with Canny’s method
[25]. The basic algorithm starts with edge detection
followed by a thinning procedure. Then, edges are grouped
into linked edge chains considering eight-neighborhood
connectivity. After edge chains are obtained, iterative line
fitting is performed on each edge chain.

A chain is first approximated by a line segment
connecting the end points. If the fitting error (maximum
deviation from the line segment to the chain) is above the
threshold, the chain is broken into two separate chains at
the edge pixel with maximum deviation. This procedure is
performed iteratively until all the chains are fitted with line
segments whose fitting errors are below the threshold.

5.3.2 Mapping on the GPU

The input and pattern images are stored in the texture
memory to achieve faster access than would be the case
using global memory. The parallel implementation on the
GPU consists of six different kernel functions that work per-
pixel, as follows:

1. Canny edge detection is performed where thread
kernel function performs per-pixel filtering.

2. Edge pixels are classified and labeled according to
their neighboring (3� 3) edge pattern (Initialization
step in Fig. 2).

3. Edge pixels are traversed to both directions
sequentially, until the end is reached, yielding the
start position S and the end position E of the
connected edge chain to which the edge pixel
belongs (Linking step).

4. Per-pixel deviation is computed for the edge pixels
by calculating the distance to SE (Fitting step).

5. Maximum deviation Dmax is found. If it is above the
threshold, then the chain is broken into two
subchains and the start and end positions of the
edges involved are updated (Splitting step).

6. Repeat steps 3-5 until there is no new subchain.

Threads are issued for all the pixels in the image to avoid
counting the edge pixels and keep the number of threads
unchanged. Consequently, this involves unnecessary thread
issues for nonedge pixels. More importantly, there is
unavoidable redundant traversing along the edge chain.
This causes serious over computation, although all of the
procedure in Fig. 2 is implemented and run on the GPU.
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5.4 JPEG2000 Encoding

Approved as an International Standard (ISO/IEC 15444-1)
[26] in December 2000, JPEG2000 is an emerging image
compression standard for next-generation digital imagery.
It offers a host of features beyond the scope of conven-
tional JPEG. Better quality at low bit rate, progressive
transmission by pixel accuracy and resolution, region of
interest (ROI) coding, random code stream access and
processing, error resilience, and both lossy and lossless
compression are among the most important features of the
JPEG2000 standard. JPEG2000 is targeted for rapidly
growing diverse imaging applications, e.g., digital photo-
graphy, printing, mobile applications, medical imagery,
and wireless image transmission.

JPEG2000 architecture consists of DWT, scalar quantiza-
tion, context modeling, arithmetic coding, and rate alloca-
tion [26], [27]. It employs the idea of EBCOT Tier-1 [28] for
context modeling and arithmetic coding. Although the
DWT and EBCOT Tier-1 algorithm offers many benefits for
JPEG2000; unfortunately, both algorithms are computation
and memory intensive (typically more than 70 percent) in
software-based implementations [19]. The intensive com-
plexity of DWT is due to multilevel filtering and down-
sampling. The EBCOT Tier-1 algorithm adopts fractional
bitplane coding using three coding passes; this introduces
considerable computation time. In EBCOT Tier-1, each
subband is divided into rectangular code blocks and the
coding of each code block proceeds by bitplanes. To achieve
efficient embedding, the EBCOT Tier-1 block coding
algorithm further adopts the fractional bitplane coding
ideas, and each bitplane is coded by three coding passes.
However, the three coding passes introduce considerable
computation time.

Numerous studies have targeted DWT and EBCOT Tier-
1 for hardware implementation [29], [30], [31], [32]. This
involves replacing the software implementation with
dedicated hardware. Although hardware implementation
offers a real-time solution, extra cost is needed to fabricate
the dedicated hardware. The wavelet transform part is
clearly the most demanding part of the algorithm, followed
by the encoding stage. Fortunately, both DWT and EBCOT
Tier-1 stages can be parallelized. Intrinsically, sequential
parts of the algorithm are image and bitstream I/O and R/
D allocation. These have relatively low complexity. In this
work, we have explored the mapping of the DWT and
EBCOT Tier-1 algorithm on modern GPUs using the CUDA
programming model.

5.4.1 Algorithm Description: DWT

DWT has traditionally been implemented using two
different algorithms, usually known as the filter bank
scheme (FBS) [33] and the lifting scheme (LS) [34]. In this
work, we adopt the filter bank scheme for parallelizing. The
2D-DWT is obtained by applying a separate 1D transform
along each dimension. From an implementation viewpoint,
one of the most interesting advantages of LS is that it
requires fewer arithmetic operations and consumes less
memory. Conversely, FBS uses a pair of quadrature mirror
filters. It consumes more memory and requires more
computation. However, the LS advantages are at the
expense of introducing intermediate value sharing; this

becomes a bottleneck on most GPUs. Hence, the paralleliz-
able FBS approach is more favorable.

Let xjn be the approximate signal at level j. A low-pass h
and high-pass g filter kernels are convolved with the signalxjn
to produce low- and high-pass subband sequences, given by

LPj�1
n ¼

X
k

hkx
j
2n�k; ð2Þ

HPj�1
n ¼

X
k

gkx
j
2nþ1�k: ð3Þ

5.4.2 Mapping on the GPU : DWT

For 2D DWT, a 2D convolution filter requires NMð1þKÞ
multiplications and additions for each output pixel, where
N and M are the width and height of the filter kernel and K
is the measure of additional computation required for array
indexing. Separable filters are special filters that can be
expressed as the composition of two 1D filters, one on the
rows on the image, and one on the columns. A separable
filter requires only N þMð1þKÞ multiplies and adds for
each output pixel. Generally, K ¼ 4 for a 2D convolution
filter and K ¼ 3 for the separable filter case.

. Horizontal filter: Fig. 3 shows the layout of the thread
block grid for the horizontal filter. For the shared
memory load, each active thread loads one pixel. If
the neighboring pixels go beyond the image bound-
ary of the current level, we adopt symmetric periodic
extension [35], which mirror pixels across the
boundary. This is followed by convolution filtering
that involves Row Tile Width number of threads
with each thread producing one output pixel. Each
thread (input base position) is mapped to the output
position �. The output pixel position � is given by

� ¼
tid� 1

2
þ l

2
; if ðtid%2Þ;

tid

2
; otherwise;

8><
>:

ð4Þ

where l is the length of the input signal at level j and
tid is the thread index. The convolution takes place
with the input base position at the center and �dN0

2 e
neighboring pixels, whereN0 is the length of the filter
kernel. We determine if the current output pixel
belongs to the high-pass or the low-pass region based
on the position of �, such that it belongs to the high-
pass region if � > l

2 . Fig. 4 describes the mapping
operation from output index to input base position.

. Vertical filter: Fig. 5 shows the layout of the thread
block grid for the vertical filter. Each thread
processes more than one pixel to achieve higher
efficiency. In a thread block, Col Tile Width �
ðCol Tile HeightþN0Þ numbers of pixels are pre-
fetched into shared memory. The convolution stage
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Fig. 3. Layout of the thread block grid for the horizontal filtering.



processes ðCol Tile Width � Col Tile HeightÞ num-
ber of threads, each producing one output pixel. The
convolution filter stage is similar to the horizontal
filter described above.

5.4.3 Algorithm Description: EBCOT Tier-1

EBCOT Tier-1 [28] consists of two major parts: context
modeling and arithmetic encoder. The quantized transform
coefficients are coded by the context modeling and the
adaptive binary arithmetic coder to generate the com-
pressed bitstream. The encoding method in the context
modeling is bitplane coding. In this module, each wavelet
coefficient is divided into one sign bitplane and several
magnitude bitplanes. Each bitplane is then coded by three
coding passes to generate a context-decision (CX-D) pair.
The adaptive-context-based arithmetic encoder, which is
also called the MQ-coder, utilizes the probability (CX) to
compress the decision (D). In the MQ-coder, symbols in a
code stream are classified as either most-probable symbol
(MPS) or least-probable symbol (LPS). The basic operation
of the MQ-coder is to divide the interval recursively based
on the probability of input symbols.

5.4.4 Mapping on the GPU: EBCOT Tier-1

Fig. 6 shows the thread mapping for Tier-1. The approach
followed in this work is to change as little as possible the
original jasper code for parallelization. We utilize multi-
thread CUDA architecture in the Tier-1 stage. Intrinsically,
the context modeling and arithmetic coder are highly
recursive and serialized. However, no synchronization is

required for encoding code blocks due to the processing of
independent code blocks.

We parallelized context modeling and arithmetic encod-
ing. Each code block is assigned as input to a separate thread
inside a CUDA kernel. The encoded bitstream obtained
from each thread is then passed to Tier-2 for rate allocation.

5.5 Nonphotorealistic Rendering

As an active example of computational photography,
nonphotorealistic rendering has received much attention.
Stroke-based rendering for painterly rendering is the main
interest in this paper. In this application, images are
rerendered as an artistic depiction, like cartoon-style render-
ing, pen-ink drawing, and water/oily-style painting [36].

5.5.1 Algorithm Description

In this paper, cartoon-style and oily-style rendering are
selected and implemented on the GPU. Cartoon-style
rendering is a combination of image filtering algorithms
such as bilateral filtering [37] and Canny edge detection. In
this paper, the goal is not to design a new algorithm but to
build common building blocks on the GPU. First, bilateral
filtering is applied to several times the input image (10 times
in our experiment) to reduce the color level while keeping
the boundary unblurred. Next, the edge image obtained by
Canny’s algorithm is dilated and overlaid on the bilateral
filtered image to achieve simple cartoon-style stylization of
the input image.

Oily-style rendering is more complex. We employ
Hertzmann’s algorithm [38] as a base in which multiple
brush strokes are sequentially applied from rough to fine
(imitating the painters’ actual technique). A set of strokes
for each brush should be generated from the input image to
simulate the brush effect. First, the pixelwise square root
difference of the Gaussian blurred input (reference image)
and the current canvas is computed, in which the standard
deviation is proportional to the brush size. The stroke is
generated if the sum of differences on the brush area is
above the threshold. The position with local maximal
difference is selected as the starting point of the brush.
The stroke is extended along the gradient direction and
saved if the length is sufficiently long. After strokes are
generated, a round-shaped colored brush is swept along the
stroke while updating the canvas. Starting from the initial
canvas with uniform background, this procedure is iterated
from the biggest brush size to the smallest, yielding oily-
style painterly rendering.

5.5.2 Mapping on the GPU

Implementation of cartoon-style rendering is straightfor-
ward. Since all the computation is per-pixel mask
convolution, which is independent from other processes,
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Fig. 4. Mapping to the output position.

Fig. 5. Layout of the thread block grid for the vertical filtering.

Fig. 6. Thread mapping for Tier-1.



we issue the same number of threads as the number of
pixels and perform the convolution in a per-pixel/per-
thread manner in the kernel function.

Conversely, direct implementation of the oily-style
rendering on the GPU is impractical, since the brush
touches of different strokes usually overlap. In the proposed
parallel implementation, drawing is not done per-stroke but
per-pixel, assuming that a brush stroke with a brighter color
would be made later than those with darker colors. At each
level of brush size, we also issue the same number of
threads as the number of pixels. Each thread selects the
brightest color from the overlapped brush touches, i.e., the
stroke with the brightest color from the nearby strokes,
where the distance from the thread’s corresponding pixel
and the stroke trajectory is within the brush size. The thread
finally updates the corresponding pixel’s color with the
selected color. After repeating the process for all levels of
brush size, the final oily-style rendered image is obtained.
All input images are stored in the texture memory space to
utilize fast access to read-only memory.

6 CUDA BENCHMARKS AND OPTIMIZATION

This section describes some of the CUDA benchmarking
tools. The benchmarks facilitate the determination of the
effectiveness of the parallel implementation, while debug-
ging and optimizing the CUDA code. Five different basic
principles are considered when benchmarking a CUDA
implementation of an image processing algorithm:

1. global memory coalescing;
2. shared memory access to global memory access ratio;
3. global memory transfer;
4. GPU occupancy; and
5. data dependency.

For further details, refer to [20]:

GM coalesced ¼ fgld coalescedþ gst coalescedg=
fgld coalescedþ gld uncoalesced
þ gst coalescedþ gst uncoalescedg:

ð5Þ

6.1 Global Memory Coalescing

Memory coalescing helps conserve bandwidth, while redu-
cing effective latency. Abstractly, it is comparable to loading
an entire cache line from memory versus loading one word
at a time. Each thread of a half-warp during execution of a
single read or write from the global memory is coalesced
into a single contiguous and aligned memory access.

We use the CUDA Visual Profiler to evaluate global
memory coalescing. We define global memory coalescing
GM coalesced, as shown in (5), where gld coalesced,
gld uncoalesced, gst coalesced, and gst uncoalesced denote
the amount of coalesced global memory load, the amount of
uncoalesced global memory load, the amount of coalesced
global memory store, and the amount of uncoalesced global
memory store, respectively.

6.2 Shared Memory Access to Global Memory
Access Ratio

The access to off-chip global memory does not provide a
cache mechanism. Therefore, access to the global memory

space has high memory latency (400-600 clock cycles). This
makes reading from and writing to the global memory
extremely expensive and causes a major bottleneck. Con-
versely, on-chip shared memory space is much faster than
the local and global memory space. For threads in a single
warp, shared memory access can be as fast as access to a
register. In our experiments, we compute the ratio between
shared memory and global memory access as a benchmark
tool to determine how efficiently memory access is designed.

6.3 Global Memory Transfer

A PC’s GPU card is usually connected via a PCI-Express
bus. The image data transfer rate from CPU to GPU
(HostToDevice) and GPU to CPU (DeviceToHost) is crucial
to the performance of a CUDA implementation. The CUDA
framework requires programmers to explicitly manage the
data exchange between the host and the device. The
memory transfer overhead can have a significant impact
on the performance of the overall application. The transfer
time increases linearly with the amount of data. The
memory transfer overhead presents a significant bottleneck
in processing algorithms involving large memory buffer
and low floating-point computations.

6.4 GPU Occupancy

GPU occupancy is defined in terms of multiprocessor
occupancy. The multiprocessor occupancy is the ratio
between the active warps and the maximum number of
active warps supported on a multiprocessor. We adopt the
CUDA Occupancy Calculator to determine GPU occupancy.
The occupancy is determined by the amount of shared
memory and registers used by each thread block. Due to
this, programmers need to choose the size of thread blocks
carefully to maximize occupancy. GPU occupancy assists in
choosing thread block size based on shared memory and
register requirements.

Note that higher occupancy does not necessarily give
better performance. Higher occupancy will help only if the
kernel is bottlenecked by global memory access. Blindly
choosing a large number of threads to increase occupancy
can create pressure on registers and register spills into local
memory can reduce the performance.

6.5 Data Dependency

Parallelism among threads in a thread block is serialized
when some threads need to synchronize to share data
between each other through memory access. This synchroni-
zation among threads is achieved using__syncthreads().
The total number of calls to __syncthreads() addresses
the data dependency of a CUDA kernel.

7 EXPERIMENTAL RESULTS AND DISCUSSION

Selected algorithms are implemented on the CPU and are
parallelized subsequently using CUDA on the GPU. Our
experimental platform is equipped with a quad-core Intel
CPU (Q9450 with 42.56 GFLOPS) and an NVIDIA G92
(GeForce 9800 GTX) with 128 cores and 512 MB video
memory. G92’s peak performance is as high as 648 GFLOPS.
We employ the latest GPU (GTX 280) to measure the
speedup obtained with respect to GeForce 9800 GTX for the
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GPU scalability test. Note that GTX 280 has 240 cores with
peak performance of 933 GFLOPS. CPU code is implemen-
ted using OpenMP to maximize CPUs performance so that
four cores run in parallel.

7.1 Metrics Evaluation

We performed an application study using the metrics
described in Section 4 to determine the effectiveness of the
algorithm for parallel implementation. Table 3 lists the
numerical results obtained for different algorithms. We
wrote debugging codes to estimate the intensity of floating-
point operations and frequency of memory access.

The parallel fraction (f) shows that a significant fraction
of the original serial code is parallelized. The input/output
(I/O) data read and write overhead associated with linear
feature extraction and EBCOT Tier-1 encoding lowers the
parallel fraction, limiting potential application speedup.

The floating-point computation to memory access ratio
shows the extent of memory latency hiding. Significant
ratios are obtained for algorithms other than multiview
stereo matching. This reflects the algorithms’ inherent
nature for parallelism. Although multiview stereo matching
suffers from a memory latency problem, the huge number
of low-latency floating-point operations and efficient use of
GPU memory bandwidth are major factors in its speedup.
Linear feature extraction shows high floating-point compu-
tation intensity. However, this is mainly due to over-
computation involved in thread allocation for nonedge
pixels and during the line fitting procedure, where all the
pixels in an edge link have to be traversed.

The low computational intensity per pixel associated
with JPEG2000 encoding serves as a bottleneck and reflects
its inability to effectively utilize resources on the GPU,
limiting the potential acceleration. Even with low computa-
tional intensity, DWT can achieve a respectable perfor-
mance increase due to the GPU’s ability to run a large
number of threads simultaneously. With efficient use of
cache and shared memory, DWT can exploit the high GPU
memory bandwidth to achieve respectable performance.
Conversely, the high branching diversity associated with
EBCOT Tier-1 encoding is the preliminary reason for its low
acceleration. This limits the thread parallelism in a warp
forcing the kernel to run threads in serial mode.

Cartoon-style NPR and oil-style NPR involve high
computational intensity and frequent access to the memory
buffer, while minimizing branching diversity. Both NPR

algorithms show encouraging results for the metrics with
no major bottlenecks.

The task dependency shows the ease of implementation.
High task dependency often requires more modification
and significant effort to port to the CUDA framework; the
most extreme being the Oil-Style NPR, which involves a
number of iterations with updates to the frame buffer in
each of those iterations.

From the above analysis, we deduce that multiview
stereo matching, cartoon-style NPR, and oil-style NPR with
no major bottlenecks are expected to achieve significantly
higher speedup for parallel implementation. High thread
concurrency and efficient use of cache and shared memory
in DWT are expected to reign over low computational
intensity to achieve respectable performance. However,
EBCOT Tier-1 encoding and linear feature extraction are
likely to achieve the lowest performance, being bottle-
necked by high branching diversity and low parallel
fraction, respectively.

7.2 Evaluation of CUDA Benchmarks

In this section, we discuss some of the CUDA benchmarks
that significantly affect the performance. Table 4 shows the
results obtained for the CUDA benchmarking tools dis-
cussed in Section 6. We obtain the profiling results using
CUDA Visual Profiler Version 1.0. Data dependency, source
lines, and kernel lines are counted manually from the
source code.

In general, memory coalescing is useful to maximize
global memory bandwidth. However, most image proces-
sing algorithms involve highly random and frequent access
to the memory buffer. This causes the memory access
pattern to be uncoalesced. Each uncoalesced access is a
separate DRAM request, limiting device’s memory band-
width. For algorithms other than JPEG2000 encoding, the
problem is alleviated by high floating-point computation to
memory access ratio. In JPEG2000 encoding, we ease the
problem using efficient on-chip shared memory as reflected
by the high SM to GM ratio in Table 4.

The multiview stereo matching algorithm involves a
large-size memory buffer (47 images), increasing the global
memory transfer overhead. For other applications, global
memory transfer overhead is minimal. Applications other
than EBCOT Tier-1 encoding achieve 33-83 percent active
GPU occupancy. In case of Tier-1 encoding, the number of
parallel threads depends on the number of code blocks. This
is significantly less than the maximum concurrency in
modern GPUs. Efficient tile-based thread clustering in DWT
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Application Performance Analysis in Terms of Preimplementation Metrics (FP: Floating Point)

(" ) denotes bigger is better (and vice versa).



significantly reduces the number of registers per thread,
increasing the multiprocessor occupancy.

Data dependency refers to the number of per-block
barrier synchronizations or, in other words, the number of
times an application breaks to synchronize threads in its
parallel execution. Linear feature extraction shows high
data dependency, indicating high complexity in designing
parallel implementation. Additionally, data dependency
causes potential kernel halts when threads in a warp suffer
from load imbalance, as in Tier-1 encoding.

Source and kernel line count shows the complexity of
parallel implementation. Larger source code often requires
more modification to port to CUDA; the most extreme case
was EBCOT Tier-1 encoding, which involved a large-scale
code transformation to extract context-decision (CX-D) pair.

7.3 Results

In this section, we present the analysis of speedup for parallel
GPU implementation of different algorithms. Fig. 7 shows the
subjective evaluation of different parallel algorithms. The

approach followed in our parallel implementation is to
achieve an image quality identical or nearly identical to that
of serial execution.

Table 5 shows the acceleration results of image data with
varying resolutions for parallel implementation using the
CUDA programming model. The images are shown in
Fig. 8. The GPU execution time includes the data transfer
(HostToDevice and DeviceToHost) and kernel(s) execution
time. It can be inferred from the table that speedup does not
vary significantly with the image resolution, since even for
smallest image resolution, i.e., 512� 512, the degree of
concurrency is relatively high. Additionally, execution time
depends on the image content when processing the image
feature set. This varies for images with the same resolution.

The algorithms in Table 5 with the highest acceleration,
namely, multiview stereo matching, cartoon-style NPR, and
oil-style NPR, have a high parallel fraction and spend most
of their execution time performing computation or accessing
low-latency memory. The cartoon-style NPR and oil-style
NPR achieve significantly higher speedups and require
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Fig. 7. Visual results of implemented algorithms. (a) Multiview stereo matching. (b) Linear feature extraction. (c) Cartoon-style NPR. (d) Oily-style

NPR.

TABLE 4
Result of CUDA Benchmarking (SM: Shared Memory, GM: Global Memory)



additional explanation. One major reason for their perfor-
mance is that both the algorithms involve sequences of
filtering, which are primarily pixelwise operations, invol-
ving a massive SIMD-style instruction set. The GPU, with its
fitting SIMD architecture, executes these instructions much
faster than the CPU. We significantly improved the CPU
version of our algorithms using OpenMP [6] multicore
architecture. This is approximately 4:0� faster than the
original code running on a single core CPU.

As concluded from the metrics results in Section 7.1,
DWT achieves respectable performance owing to its
efficient cache and shared memory utilization and its high
thread concurrency. Despite having low parallel fraction
and computation overhead, linear feature extraction

achieved an average speedup of 2:38�. This is mainly due
to the high floating-point computation to memory access
ratio, which hides potential halts caused by high-latency
memory access.

Major bottlenecks appeared in EBCOT Tier-1 encoding,
limiting its acceleration. Bottlenecks appeared in two ways.
First, Tier-1 encoding is limited in the number of active
threads, since parallelism is exploited at the code block level,
compared to the pixel level in other algorithms. In addition,
the high register usage per thread (50 in this case) also limits
the number of active threads. Second, the high intensity of
logical operations causes load imbalance among threads in a
warp; this is the primary performance bottleneck. High
thread divergence compels the threads in a warp to diverge
and process sequentially.
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Fig. 8. Test images for Table 5. The resolution is (a) 512� 512, (b) 1;024� 768, (c) 1;280� 1;024, (d) 1;200� 1;800, (e) 2;288� 1;712, and
(f) 3;024� 2;089.

TABLE 5
Runtime Analysis (in Milliseconds) for the Test Images in Fig. 8

Q9450 is Intel Quad Core CPU. G92 and GX200 represent GeForce 9800 GTX and GTX 280, respectively.



It is worth noting that the speedup performance in Table 5
corresponds to the discussion in Section 7.1.

8 CONCLUSION

In this paper, we explored the design and implementation
issues of image processing algorithms on GPUs with the
CUDA framework. We selected four major domains 3D
shape reconstruction, feature extraction, image compres-
sion, and computational photography and implemented
multiview stereo matching, linear feature extraction,
JPEG2000 image encoding, and nonphotorealistic rendering
as example applications. The selected algorithms are
parallelized efficiently on the GPU. A set of metrics was
proposed to parameterize quantitatively the characteristics
of parallel implementation of selected algorithms. In
addition, these metrics can be used alternatively to compare
the two implementations of the same algorithm on the GPU.
Acceleration achieved for individual algorithms is evalu-
ated in terms of the proposed metrics, while intensive
analysis is conducted to show the appropriateness of the
proposed metrics. These results can be shared and
employed by other researchers to predict the appropriate-
ness of their algorithm for parallel implementation.
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