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Abstract— The introduction of multi-core architectures 
generates a higher demand for parallelism in order to fully 
exploit the potential of modern computers. It is of vital 
importance that a compiler can allocate parallel workload in a 
cost-aware manner in order to achieve optimal performance on 
a multi-core architecture. This paper presents an adaptive 
OpenMP-based mechanism capable of generating a reasonable 
number of representative multi-threaded versions for a given 
loop, and selecting at runtime a suitable version to execute on a 
multi-core architecture. Preliminary experimental results show 
that, on average, it achieves 87% of the highest performance 
improvement across a whole spectrum of input sizes on two 
multi-core platforms. 

Keywords: parallelization; multi-versioning; machine 
learning; OpenMP 

I.  INTRODUCTION 
The past decade has seen major chip manufacturers 

turning their focus from making one processor run faster to 
the development of multi-core architectures, in which 
multiple processors are placed on the same chip, 
communicating via hardware channels and shared memory. 
This architecture has generated a new demand for techniques 
that can fully exploit the architectural potential.  

Parallelism[9] is one of the main sources of performance 
improvement in modern computing environments. However, 
it does not guarantee the most efficient use of shared 
memory, nor even performance improvement. Prior 
experience with multi-threaded Java[11] shows that when the 
workload is improperly shared among too many number of 
threads, the extra cost to create and synchronize them will 
offset the performance improvement achieved via 
parallelization. In many new application domains, this cost 
becomes non-negligible when compared to workload, or 
even results in performance degradation instead of 
improvement. Therefore, it is of vital importance that, when 
given a program, a compiler can adaptively allocate 
workload among multiple threads in order to achieve optimal 
performance in a multi-core environment.  

OpenMP[19] is an industrial standard API that supports 
explicitly multi-threaded, shared memory parallelism among 
a variety of shared memory architectures and platforms. It 
offers programmers full control over parallelization via 
compiler directives, runtime libraries as well as environment.  

This paper presents an adaptive mechanism which can 
generate for a given loop a reasonable number of 
representative OpenMP versions, and select at runtime which 

one to execute based on the runtime context. Preliminary 
experimental results show that it can efficiently allocate the 
workload among a suitable set of parallel threads and 
achieve optimal performance.  

The outline of this paper is as follows. Section II presents 
the motivation of our work. The mechanism is explained in 
section III, before details are explained in section IV and V 
respectively. Preliminary experimental results are then 
presented in section VI, followed by a review of related 
works in section VII. A discussion about future work is 
given in section VIII, before some concluding remarks in 
section IX. 

II. MOTIVATION 
OpenMP[19] uses a fork-join model of parallel execution. 

It provides an directive omp_set_num_threads(numthreads)  
for programmers to explicitly specify/alter the number of 
team threads to be used in parallel regions. If not explicitly 
specified, the compiler will detect the hardware 
configuration, keep one core for the master thread, and 
generate one thread for each of the remaining cores within 
the processor.  

 

 
 

Figure.1 The performance of 100x100 matrix multiplication  
under various numbers of threads. 

 
However, OpenMP does not necessarily guarantee the 

most efficient use of shared memory, i.e. the introduction of 
multiple team threads does not necessarily result in better 
performance. For instance, we ran a 100x100 matrix 
multiplication on a platform containing a 1GHz AMD 
Athlon(tm) 64 X2 Dual Core Processor 3600+ and 1G RAM, 
with gcc x86_64-linux-gnu 4.3, running under Ubuntu Linux 
4.3.2-1ubuntu12 (kernel 2.6.27-14-generic). Different 
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versions with various numbers of threads (1, 2, 4, 5, 8, 10, 16, 
20, 25, 32, 40, 50, 64, 80 and 100 respectively) were tested 
and the resulting speedups were then plotted against the 
number of threads, as shown in Figure.1. It shows that, 
generally saying, the speedup is on a rise as the number of 
threads increases, i.e. higher speedups are obtained when 
there are more team threads sharing the workload. It reaches 
its peak (speedup = 2.67) when 32 threads are used. 
Nevertheless, no better performance can be achieved when 
even more team threads are used. Instead, the speedups drops, 
as the 40- and 50-thread cases demonstrate. This is because 
the extra cost to create and synchronize the additional team 
threads has offset the performance gain obtained via 
parallelization. More interestingly, although we presume a 
further performance drop when even more threads are used, 
this is actually not the case, since the performances of 64, 80 
and 100 threads are not much lower than that of 50 threads.  

The above example shows that different numbers of 
threads result in varied performances. We have observed 
similar performance variances on other programs and on 
different platforms, which shows that this phenomenon is 
program-, data- and platform-relevant. This suggests that a 
compiler shall not make this number-of-thread decision in a 
static manner. Instead, this decision should be made at 
runtime based on the runtime context. 

III. AN ADAPTIVE MULTI-VERSIONING PARALLELIZATION 
MECHANISM 

First, confirm that you have the correct template for your 
paper size. This template has been tailored for output on the 
US-letter paper size. If you are using A4-sized paper, please 
close this template and download the file for A4 paper 
format called “CPS_A4_format”. 

Given a specific program, it is difficult to precisely 
predict the best number of team threads for parallelization at 
compile time. Adaptive optimization [14] is therefore needed 
in order to make this decision based on runtime context.  

Adaptive optimization is achieved via techniques such as 
dynamic compilation, and multi-versioning, etc. However, 
dynamic compilation needs extra time for runtime re-
compilation of some code regions, which makes it not 
suitable in our cases. Multi-versioning is a reasonable 
approach because it is unlikely that any single static version 
can adapt and yield high performance across different 
runtime contexts. This motivates us to find an adaptive 
mechanism (as demonstrated in Figure.2) to generate 
representative versions and, at runtime, make version 
selection decision based on the runtime context.  
Given a program, it shall generate only a reasonable number 
of representative versions in order to avoid code explosion, 
as explained later. In addition, a runtime decision making 
structure should be constructed (as the switch structure in 
Figure.2(B)) in order to decide at run-time which version to 
execute in order to achieve higher performance. It is worth 
noting that this framework as well as most of the codes can 
be implemented as a static code template. 

Previous related works indicated that making this version 
selection decision at runtime is not straightforward. However, 
they found that programs with similar workload are likely to  

// the sequential version 
for (i=0; i<N; i++) 

 … …  // loop body 
(A) a given loop in its original sequential form 

 
// the OpenMP parallel version 

   switch (certain conditions) { 
      case …:  // the tn0 thread version 
          #ifndef NOOMP 
         omp_set_num_threads(tn0); 

#pragma omp parallel default(none)   
{  #pragma omp for 

             #endif 
             for (i=0;i<N;i++) 
                 … … // loop body 
          }  break; 
      … …    

//  more OpenMP version with various numbers 
//  of threads  

     case …:  // the tnv-1 thread version 
          #ifndef NOOMP 
         omp_set_num_threads(tnv-1); 

#pragma omp parallel default(none)   
{  #pragma omp for 

             #endif 
             for (i=0;i<N;i++)  
                 … …  // loop body 
          }  break; 
     … …    
   default:  // the tnv thread version 

          #ifndef NOOMP 
         omp_set_num_threads(tnv); 

#pragma omp parallel default(none)   
{  #pragma omp for 

             #endif 
             for (i=0;i<N;i++) 
                 … …  // loop body 
          } break; 

 } 
(B) its adaptive multi-versioned OpenMP version 

 
Figure.2 Illustration of our proposed framework, which turns a sequential 

loop (A) into a multi-versioning OpenMP-parallelized equivalent (B) 
 

benefit from the same or similar parallelization scheme[11]. 
A compiler can exploit this observation and make the 
parallelization decision based on its previous experience with 
similar programs. 

Machine learning[13] is a natural approach to exploit 
such similarities. We choose instance-based learning and use 
features of a program/loop to make an implicit estimate of its 
workload. They are not only easy to capture but also 
sufficient for training purpose, whilst an explicit estimate is 
more difficult to obtain.  

Our proposed adaptive multi-versioning mechanism 
works in the following manner. When a program/loop is 
encountered, the compiler first generates a reasonable 
number of versions (each with a different number of threads) 
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in an iterative manner. These versions are then evaluated 
with inputs of various sizes. Then, based on the performance 
feedback, the compiler selects a small number of candidate 
parallel versions for the final executable, before the code for 
runtime version selection is also generated and embedded 
into the executable, which maps the features (of both 
program and runtime input) to versions.  

IV. GENERATION OF CANDIDATE VERSIONS 
By using the omp_set_num_threads(…) directive to 

specify various numbers of threads, a compiler can generate 
for a given loop as many versions as necessary. Previous 
experiments show that these different versions usually result 
in various performances. In order to maximize the mean 
performance across all possible inputs, the compiler shall 
consider only those of good performance as the candidates. 
Furthermore, because the inclusion of too many versions will 
lead to code explosion, it shall pick only a reasonable 
number of them from all possible options. In addition, these 
candidates are expected to be representative, in that they 
could achieve high performance across the whole spectrum 
of possible inputs. Decisions must be made in order to 
balance these three concerns discussed above. 

A heuristic approach (as in Figure.3) is developed to 
select representative versions for a given program/loop. First, 
a set of parallel versions are generated for testing purpose, 
each with a different numbers of threads. They are then 
evaluated with various inputs of selected input sizes szs. 
Each test case is specified by the static code features such as 
loop nest depth, number of arrays used and the others, as 
well as the dynamic feature in data set size. The 
corresponding performances (speedup) (Pf,tns) are recorded 
together with both the program feature vectors fs and the 
corresponding thread numbers tns, in the form of a triple (f, tn, 
Pf,tn). Let BPf be the highest speedup achieved for each f. It is 
considered as the best among all possible parallel versions. 
The efficiency of each version Ef,tn = Pf,tn/BPf is therefore be 
obtained.  

Next, we calculate each tn’s profitability across different 
program versions in search of tns that can bring high 
performance across various input sizes. It is worth noting 
that, as we cannot completely eliminate the impact of noise 
or other unknown factors on performance (as shown in 
Figure.1), the compiler considers the tns that yield similar 
performance equivalent and tends to pick the smallest tn 
from them. A simple credit system is developed to award 
each tn certain credits if its efficiency reaches a certain level 
on a certain test case. For instance, if the efficiency of a tn is 
95% or higher in one test case, it is awarded five points, and 
it is awarded another four points if its efficiency for another 
case is between 90% and 95%, etc. A sorted list L of tns is 
then obtained by sorting them in descending order of their 
credits/profitability.  

Finally, we select from top of list L a certain number of 
thread numbers. The selection algorithm in Figure.3 shows 
that, for a given loop, the compiler can create v candidate 
versions, each corresponds to a parallel version with each of 
these selected thread number tns.  

 

// P: the program to be parallelized 
// v: a predefined no. of candidate versions 
// s: the set of thread numbers selected 
generate versions of P by parallelizing it with  

various numbers of threads tns; 
test-run each these versions Pis with inputs of  

various sizes, and record their performances; 
for each input size { 

find the best performance BP; 
}  
for each test-run { 

       calculate each version’s efficiency; 
       if (its efficiency reaches a certain level) 

award the corresponding tn a certain points; 
} 
sort all tns in a temporary list L according to their  

points awarded 
s = {}; count =0; 
repeat { 

       pick the first thread number tn from L; 
       if (tn is not too close to any element in s) { 
           s = s+{tn}; count++;  

} 
} until (count ==v); 
generate parallel versions of P according to  

the thread numbers selected in s; 
 

Figure.3 Pseudo code of the candidate selection algorithm  
 

It is worth noting that we do not necessarily pick from L 
the tn that gives the very best performance, if its neighboring 
tns have already been selected, as demonstrated by the if-
statement with the condition (tn not too close to any element 
in s) in Figure.3. The motivation/rationality behind this 
heuristic is that we hope to prevent the candidate versions 
aggregate within a small spectrum, this helps improve the 
representativeness of these candidate versions and, in turn, 
coverage and applicability of the executable. 

Both thresholds Ethreshold and v are currently specified as 
compile-time parameters in the –Ox form in our prototype 
system. Fine-tuning of these parameters and the credit 
system is left to future work. 

V. VERSION SELECTION FRAMEWORK 
Prior research in learning based optimizing compiler 

[1][4][5][11][12] use various static or dynamic features to 
reveal important details of a given program and to make an 
implicit estimate of its workload. Considering the loop 
parallelization problem described above, we consider only 
static loop-related features and associate them with various 
parallel scheme (numbers of threads used) and the 
corresponding performance (speedups achieved), as 
explained in the previous section.  

In-depth analysis[11][12] shows that loop size is the 
dominating factor among them and is sufficient for our 
version selection purpose. It also suggests that the number of 
features might not be as important as the distribution of the 
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values of them[12]. Therefore, we use size of the outmost 
loop as the only feature to estimate similarities among loops. 

The generation of the version selection code is relatively 
straight forward. K-nearest neighbor algorithm is used in our 
adaptive mechanism, which associates each of the thread 
numbers tnis selected in the previous section with a specific 
loop size lsi. When a loop is encountered at runtime, its size 
is captured and compared with all the tnis. If it is identical or 
closest to a particular tnk, then the corresponding version vk is 
selected for execution. The resulting switch-like code 
structure is generated via a predefined code template, as 
shown in Figure.2(B), before being embedded in the 
executable. 

VI. PRELIMINARY EXPERIMENTAL RESULTS 

A. Experiment Setup 
We evaluated the proposed mechanism in two different 

environments. One is the AMD-Athlon environment as 
specified in section 2, the other is a Dell PowerEdge 2950 
server which contains an Intel QuadCore(tm) processor with 
four 2GHz Xeon E5405 cores and 2G RAM, and the 
compiler is gcc x86_64-suse-linux version 4.3.2, running 
under openSUSE Linux 2.6.27.7-9-default. 

Two programs (one numeric and the other non-numeric) 
are used in our preliminary experiments. One is the matrix 
multiplication widely used in traditional high performance 
computing, with various data sizes (matrix sizes) from 100 to 
2000, denoted respectively as MM100, .. MM2000 etc. The 
other is TF-IDF used in information retrieval[10], which 
calculates the term frequencies and inverse document 
frequencies before calculating the vectors of a list of 
documents. It uses a vocabulary of size 2000 and data sizes 
(numbers of documents) vary from 100 to 2000, denoted as 
TFIDF100, … TFIDF2000 respectively.  

The experiments are carried out in the following manner. 
Take MM as an example. First, we select three data sizes 
(one small (MM200), one medium (MM800) and one 
large(MM1500)) and test-run them with various numbers of 
threads. The results are used to train the compiler as 
discussed before. Once trained, the compiler generates a 
multi-versioned MM executable. To keep the code size 
modest, the compiler generates only a three-versioned one, 
and evaluates it with data sets of various sizes. Its 
performance is then compared against that of a random 
algorithm. The results of experiments carried out on the 
above two platforms are summarized in Table I to  IV 
respectively. 

B. Results on Matrix Multiplication 
Table I and II show that, on both platforms, the adaptive 

mechanism outperforms its random counterpart in all but one 
test cases with data sizes vary from 100 to2000. For instance, 
on the AMD-Athlon platform, for all the eleven cases, the 
efficiencies are all above 90%. Particularly, they are even 
higher at 95% or above in seven of them, indicating that the 
adaptive mechanism is capable of identifying the sub-
optimal parallel schemes for data sets of various sizes. We  

TABLE I.  PERFORMANCE COMPARISON BETWEEN THE PROPOSED 
ADAPTIVE MECHANISM AND A RANDOM MECHANISM FOR MATRIX 
MULTIPLICATION ON AMD-ATHLON. THE PROPOSED ADAPTIVE 

MECHANISM OUTPERFORMS THE LATTER BY 11%. 

Random Learning Program 
speedup % speedup % 

MM100 2.13 80% 2.47 93%
MM300 2.36 85% 2.61 93%
MM400 1.74 84% 1.90 91%
MM500 1.63 85% 1.78 92%
MM600 1.69 86% 1.92 97%
MM700 1.75 86% 2.04 99%
MM900 1.68 86% 1.92 99%
MM1000 1.59 78% 1.83 99%
MM1200 1.59 86% 1.82 99%
MM1800 1.56 87% 1.75 98%
MM2000 1.54 87% 1.73 98%
Average 85% 96%

TABLE II.  PERFORMANCE COMPARISON BETWEEN THE PROPOSED 
ADAPTIVE MECHANISM AND A RANDOM MECHANISM FOR MATRIX 

MULTIPLICATION ON INTEL-QUADCORE. THE PROPOSED ADAPTIVE 
MECHANISM OUTPERFORMS THE LATTER BY 8%. 

Random Learning Program 
speedup % speedup % 

MM100 1.66 76% 1.46 67%
MM300 2.74 84% 3.12 96%
MM400 3.07 82% 3.63 98%
MM500 2.95 87% 3.23 95%
MM600 3.07 88% 3.41 99%
MM700 3.10 89% 3.44 99%
MM900 3.15 91% 3.48 100%
MM1000 3.12 89% 3.49 100%
MM1200 3.31 92% 3.53 99%
MM1800 3.43 89% 3.74 97%
MM2000 3.44 91% 3.73 99%
Average 87% 95%

 
believe this is due to the fact that, once properly trained, the 
compiler can make a more precise estimation of the 
workload based on runtime profile collected from test-runs, 
instead of based on a predictive model. 

Similar performance can also be found on the Intel-
QuadCore platform, where our learning based mechanism 
reaches an average efficiency of 95%, compared to that of 
87% from the random selection mechanism. It is worth 
noting that the random mechanism outperforms our 
mechanism in MM100 which has a small data set. In-depth 
look at the raw profile (Figure.1) suggests that the 
performance of MM is very sensitive to the number of team 
threads used when the data set is of small, as also suggested 
in many related research. On average, our adaptive multi- 
versioning mechanism achieves 96% and 95% of the highest 
performance improvement across all eleven programs on 
these two platforms. Similar performances have also been 
achieved if we pick training cases in a similar manner. 

On average, our adaptive multi-versioning mechanism 
achieves 96% and 95% of the highest performance 
improvement across all eleven programs on these two 
platforms. Similar performances have also been achieved if 
we pick training cases in a similar manner.  
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TABLE III.  PERFORMANCE COMPARISON BETWEEN THE PROPOSED 
ADAPTIVE MECHANISM AND A RANDOM MECHANISM FOR TF-IDF ON AMD-

ATHLON. THE PROPOSED ADAPTIVE MECHANISM OUTPERFORMS THE 
LATTER BY 10%. 

Random Learning Program 
speedup % speedup % 

TFIDF100 - - - -
TFIDF300 - - - -
TFIDF400 1.09 68% 1.29 80%
TFIDF500 1.15 71% 1.35 84%
TFIDF600 1.18 79% 1.42 95%
TFIDF700 1.29 73% 1.34 76%
TFIDF900 1.41 81% 1.73 100%
TFIDF1000 1.38 79% 1.58 90%
TFIDF1200 2.13 84% 2.32 92%
TFIDF1800 2.13 82% 2.60 100%
TFIDF2000 1.57 77% 1.63 80%
Average 62% 72%

TABLE IV.  PERFORMANCE COMPARISON BETWEEN THE PROPOSED 
ADAPTIVE MECHANISM AND A RANDOM MECHANISM FOR TF-IDF ON INTEL-

QUADCORE. THE PROPOSED ADAPTIVE MECHANISM OUTPERFORMS THE 
LATTER BY 9%. 

Random Learning Program 
speedup % speedup %

TFIDF100 - - - -
TFIDF300 1.51 75% 1.66 83%
TFIDF400 1.57 78% 1.68 83%
TFIDF500 1.50 75% 1.90 95%
TFIDF600 1.59 86% 1.75 95%
TFIDF700 1.53 81% 1.81 97%
TFIDF900 1.60 86% 1.83 98%
TFIDF1000 1.60 86% 1.74 93%
TFIDF1200 1.64 88% 1.74 93%
TFIDF1800 1.64 89% 1.79 96%
TFIDF2000 1.65 89% 1.79 96%
Average 75% 84%

 

C. Results on TFIDF 
Table III and IV show that similar results have been 

found for TFIDF on both platforms. Our adaptive 
mechanism outperforms the random algorithm by 10% and 
9% respectively. However, the OpenMP schemes chosen for 
TFIDF100 and 300 (on AMD-Athlon) and TFIDF100 (on 
Intel-QuadCore) provide no performance improvement. The 
raw profile shows that no scheme except the 4-thread one 
can improve the performance of TF-IDF100. But our 
mechanism chose a 2-thread scheme instead, based on the 
profile collected from TFIDF200. This could also explain the 
failure of our mechanism for TFIDF300 on AMD-Athlon, 
and that for TFIDF100 on both platforms. On average, our 
adaptive multi-versioning mechanism achieves only 72% 
and 84% of the highest performance improvement across all 
11 programs on these two platforms.  

On average, our adaptive multi-versioning mechanism 
achieves only 72% and 84% of the highest performance 
improvement across all 11 programs on these two platforms. 
Both are lower than those of the matrix multiplication cases, 
mainly because of the three no-improvement cases explained 
above. This suggests that further improvement should be 
made to deal with data of smaller sizes.  

Furthermore, we have also applied the above learning 
results to a new TFIDF with an even larger vocabulary of 
3000 and 5000 respectively. The results show that, on 
average, it achieved 93% of the highest speedups across 
input sizes between 6000 and 10000. This demonstrates the 
applicability of our mechanism across an even larger data 
spectrum. It is also worth noting that, for MM and TFIDF, 
the results learned from the AMD-Athlon platform are very 
similar to that from the Intel-QuadCore one, which hints 
portability to a certain extent.  

VII. RELATED WORK 
There is a rich literature about parallelism[9], covering 

topics from parallel compiler[1] to architectural supports[6]. 
Blume et.al.[3] gives a comprehensive review of the state of 
the art in this area, as well as a good description of the 
challenges. 

Wang.et.al.[16] presents two predictors based on 
artificial neural network and support vector machine. They 
can use a model learned offline to select the best mapping 
(including the number of threads and the scheduling policy) 
for parallel programs on multi-core processors. This is very 
similar to our mechanism. The main differences are: 1) they 
choose the dynamic compilation approach whilst our work 
uses multi-versioning; 2) they use machine learning not only 
to model a machine’s behavior but also to predict the best 
number of threads and the scheduling policy for a given 
program; 3) they use 6 features (3 about code and 3 about 
data and runtime performance) whilst we use only one in 
size of the outmost loop (as explained above). 4) they use 
artificial neural network to solve the scalability problem and 
a support vector machine model to solve the scheduling 
policy classification problem, both approaches known to be 
time-consuming in training. On the contrary, we use a much 
simpler instance-based learning approach and achieve 
similar performance. 5) our mechanism generates a multi-
versioning executable valid across all input sizes, whilst 
they to use the pre-built model to decide at runtime the best 
number of threads; and finally, we have not tackled the 
problem of mapping a given parallel program to a platform 
as they have done.  

Tournavitis et.al.[15] further improves Wang’s work in 
developing a profile-driven approach which is capable of 
not only identifying potential parallelisms but also mapping 
them on a given platform. Machine learning techniques are 
used to make better mapping decision and provide more 
scope for adaptation to different target architectures. 

There are some other related works which develop 
heuristics, analytical and feedback direct models in order to 
achieve adaptive task scheduling. Corbalan etl.al.[8] 
proposed an adaptive loop scheduler which selects both 
thread numbers and scheduling policy for a parallel region 
in SMPs based on feedback-directed runtime decisions[14]. 
Blagojevic et.al.[2] presents an approach to allocate 
processor for loops at runtime. An analytical model is 
proposed in [18] which use program and architectural 
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information to model a parallel program. These models are 
inevitably architecture-specific and therefore not portable. 
Xekelakis et.al.[17] combines three multi-threaded 
execution models (thread level speculation, helper threads 
and run-ahead execution) into a single one and single 
hardware infrastructure. It results in an adaptive system 
which can find the most appropriate execution model for a 
given program at runtime.  

Machine learning[13] has recently been introduced to 
compiler optimization at system level. Various approaches 
are used in iterative optimization[1][7] to explore a large 
optimization space. [4] builds a performance model based on 
only a small number of evaluations, which significantly 
reduces the cost of evaluating the impact of compiler 
optimizations. Logistic regression is used in [5] to derive a 
predictive model that selects suitable optimizations to apply 
to each method based on code features. [11] use instance-
based learning to select the most promising workload 
allocation scheme for a Java program and it does not 
generate multiple versions for runtime selection. 
Wang.et.al.[16] presents two predictors based on artificial 
neural network and support vector machine. They can use a 
model learned offline to select the best mapping (including 
the number of threads and the scheduling policy) for parallel 
programs on multi-core processors.  

VIII. CONCLUSIONS 
This paper presents an adaptive mechanism which, when 

given a loop, can generate a reasonable number of 
representative OpenMP versions, and select at runtime which 
one to execute based on the runtime context. Preliminary 
experimental results show that, on average, it achieves 87% 
of the highest performance improvement on two different 
platforms, compared to 77% of a random selection algorithm. 

Further improvement could be made for the purposed 
mechanism. For instance, the adoption of low-cost profiling 
techniques could lower the cost of iterative evaluation of 
various code versions. Machine learning techniques could be 
used to select representative code sizes for testing. 
Furthermore, additional code features could provide useful 
hint to the workload of each iteration so that the learning 
results could benefit not only the current program-to-compile, 
but also all the programs encountered in the future. Machine 
learning techniques such as PCA could be used to identify 
good features from all the potential candidates, in order to 
keep a proper balance between the efficiency of learning and 
the number of features used. We are also working on the 
selection of proper threshold values (such as the number of 
versions to be generated), in order to further lower the cost of 
compilation without loss in efficiency.  

REFERENCES 
[1] F.Agakov, E.Bonilla, J.Cavazos, B.Franke, G.Fursin, 

M.F.P.O’Boyle J.Thomson, M.Toussaint and C.Williams, “Using 
machine learning to focus iterative optimization,” Proc. of the 2006 
International Symposium on Code Generation and Optimization 
(CGO’06), 2006 

[2] F.Blagojevic, X.Feng, K.Cameron and D.S.Nikolopoulos, “Modeling 
multi-grain parallelism on heterogeneous multicore processors: a case 
study of the Cell BE,” Proc. of the International Conference on High 
Performance Embedded Architectures & Compilers (HiPEAC’08). 
2008. 

[3] W.Blume, R.Eigenmann, J.Hoeflinger, D.Padua, L.Rauchwerger and 
T.Peng, “Automatic detection of parallelism, a grand challenge for 
high performance computing,” IEEE Parallel and Distributed 
Technology, 2(3), 1994. 

[4] J.Cavazos, C.Dubach, F.Agakov, E.Bonilla, M.O’Boyle, G.Fursin 
and O.Temam, “Automatic performance model construction for the 
fast software exploration of new hardware design,” Proc. of 
International Conference on Compilers, Architecture and Synthesis 
for Embedded Systems (CASES'06), 2006. 

[5] J.Cavazos and M.F.P.O’Boyle, “Method-specific dynamic 
compilation using logistic regression,” Proc. of ACM SIGPLAN 
Conferences on Object-Oriented Programming, Systems, Languages, 
and Applications (OOPSLA'06), 2006. 

[6] M.Cintra, J.Martinez, and J.Torrellas, “Architectural support for 
scalable speculative parallelization in shared-memory 
multiprocessors,” Proc. of the Intl. Symp. on Computer Architecture 
(ISCA), 2000. 

[7] K.Cooper, D.Subranmanian and L.Torzon, “Adaptive optimizing 
compilers for the 21st century,” Journal of Supercomputing, 23(1), 
2001. 

[8] J.Corbalan, X.Martorell and J.Labarta, “Performance driven 
processor allocation,” IEEE Transactions Parallel Distribution System, 
16(7). 2005.  

[9] J.Dongarra, I.Foster, G.Fox, K.Kennedy, W.Gropp, L.Torczon and 
A.White, Sourcebook of parallel computing, Morgan Kaufmann, US, 
2003. 

[10] D.A.Grossman and O.Frieder, Information Retrieval, Algorithms and 
Heuristics (2nd ed), Springer, 2004.  

[11] S.Long, G.Fursin and B.Franke, “A cost-aware parallel workload 
allocation approach based on machine learning techniques,” Proc. of 
the IFIP International Conference on Network and Parallel 
Computing (NPC) , 2007. 

[12] L.Luo, Y.Chen, C.Wu, S.Long and G.Fursin, “Finding representative 
sets of optimizations for adaptive multiversioning applications,” Proc. 
of the 3rd Workshop on Statistical and Machine learning approaches 
to Architecture and compilaTion (SMART'09), 2009 

[13] T.Mitchell, Machine learning, McGraw-Hill, US, 1997. 
[14] M.Smith, “Overcoming the challenges to feedback-directed 

optimization,” Proc. of the ACM SIGPLAN Workshop on Dynamic 
and Adaptive Compilation and Optimization (Dynamo’00), 2000. 

[15] G.Tournavitis, Z.Wang, B.Franke and M.O'Boyle. “Towards a 
holistic approach to auto-parallelization: integrating profile-driven 
parallelism detection and machine-learning based mapping,” Proc. of 
the ACM SIGPLAN 2009 Conference on Programming Language 
Design and Implementation (PLDI '09), 2009. 

[16] Z.Wang and M.F.P.O'Boyle, “Mapping Parallelism to Multi-cores: A 
Machine Learning Based Approach,” Proc. of the 14th ACM 
SIGPLAN Symposium on Principles and Practice of Parallel 
Programming (PPoPP), 2009. 

[17] P.Xekelakis, N.Ioannou and M.Cintra, “Combining thread level 
speculation, helper threads and runahead execution,” Proc. of the 
2009 International Conference on Supercomputing (ICS09), 2009. 

[18] Z.Yun and V.Michael, “Runtime empirical selection of loop 
shcedulers on hyperthreaded SMPs,” Proc. of 2005 IEEE 
International Parallel & Distributed Processing Symposium 
(IPDPS’05). 2005 

[19] OpenMP homepage, www.openmp.org. 

 

912


