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Abstract—This work presents the Kinetics PreProcessor: Accelerated (KPPA), a general analysis and code generation tool that

achieves significantly reduced time-to-solution for chemical kinetics kernels on three multicore platforms: NVIDIA GPUs using CUDA,

the Cell Broadband Engine, and Intel Quad-Core Xeon CPUs. A comparative performance analysis of chemical kernels from WRF-

Chem and the Community Multiscale Air Quality Model (CMAQ) is presented for each platform in double and single precision on coarse

and fine grids. We introduce the multicore architecture parameterization that KPPA uses to generate a chemical kernel for these

platforms and describe a code generation system that produces highly tuned platform-specific code. Compared to state-of-the-art serial

implementations, speedups exceeding 25� are regularly observed, with a maximum observed speedup of 41:1� in single precision.

Index Terms—KPPA, multicore, NVIDIA CUDA, Cell Broadband Engine, OpenMP, chemical kinetics, atmospheric modeling, Kinetics

PreProcessor, WRF-Chem, CMAQ.
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1 INTRODUCTION

CHEMICAL kinetics models trace the evolution of chemical
species over time by solving large numbers of partial

differential equations. The Weather Research and Forecast
with Chemistry model (WRF-Chem) [1], the Community
Multiscale Air Quality Model (CMAQ) [2], the Sulfur
Transport and dEposition Model (STEM) [3], and GEOS-
Chem [4] approximate the chemical state of the Earth’s
atmosphere by applying a chemical kinetics model over a
regular grid. Computational time is dominated by the
solution of the coupled equations arising from the chemical
reactions, which may involve millions of variables [5]. The
stiffness of these equations, arising from the widely varying
reaction rates, prohibits their solution through explicit
numerical methods.

These models are embarrassingly parallel on a fixed grid
since changes in concentration of species yi at any grid point
depend only on concentrations and meteorology at the same
grid point. Yet, chemical kinetics models may be respon-
sible for over 90 percent of an atmospheric model’s
computational time. For example, an RADM2 kinetics
mechanism combined with the SORGAM aerosol scheme
(RADM2SORG chemistry kinetics option in WRF-Chem)
involves 61 species in a network of 156 reactions. On a
typically sized 40� 40 grid with 20 horizontal layers, the

meteorological part of the simulation (the WRF weather
model itself) is only 160� 106 floating-point operations per
time step, about 2.5 percent the cost of the full WRF-Chem
with both chemical kinetics and aerosols. As a second
example, Fig. 1 shows the performance of serial and parallel
runs of the global tropospheric model GEOS-Chem. The
cost of chemical kinetics dominates in both runs, even as the
number of threads increases. A strong scaling approach is
needed to improve performance.

The new generations of multicore processors mass
produced for commercial IT and “graphical computing”
(i.e., video games) achieve high rates of performance for
highly parallel applications, such as atmospheric models
which contain abundant coarse- and fine-grained paralle-
lism. Successful use of these novel architectures as accel-
erators on each node of large-scale conventional compute
clusters will enable not only larger, more complex simula-
tions, but also reduce the time-to-solution for a range of
earth system applications.

Writing chemical kinetics code is often tedious and error-
prone work, even for conventional scalar architectures.
Emerging multicore architectures, particularly heteroge-
neous emerging architectures such as the Cell Broadband
Engine Architecture (CBEA) and General Purpose Graphics
Processing Units (GPGPUS), are much harder to program
than their scalar predecessors. For these architectures, a
deep understanding of the problem domain is required to
achieve good performance. General analysis tools like the
Kinetic PreProcessor (KPP) [5] make it possible to rapidly
generate correct and efficient chemical kinetics code on
scalar architectures, but these generated codes cannot be
easily ported to strong-scaling emerging architectures.

This work presents the Kinetics PreProcessor: Accelerated
(KPPA), a general analysis and code generation tool that
achieves significantly reduced time-to-solution for chemical
kinetics kernels. KPPA facilitates the numerical solution of
chemical reaction network problems and generates code
targeting OpenMP, NVIDIA GPUs with CUDA, and the
CBEA, in C and Fortran, and in double and single precision.
KPPA-generated mechanisms leverage platform-specific
multilayered heterogeneous parallelism to achieve strong
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scalability. Compared to state-of-the-art serial implementa-
tions, speedups as high as 41:1� are observed.

The rest of this paper is organized as follows: Related
work is shown in Section 2. An overview of KPPA is
presented in Section 3. Formulation of a chemical kinetics
model is briefly discussed in Section 4. A typical homo-
geneous multicore chipset, NVIDIA GPUs, and the CBEA are
outlined in Section 5. We conduct preliminary work with the
RADM2 kinetics kernel on three multicore platforms in
Section 6. Multicore code generation is described in Section 7,
and the performance of three KPPA-generated codes is given
in Section 8. We conclude this paper in Section 10.

2 RELATED WORK

Implementing chemical kinetics models on emerging multi-
core technologies can be unusually difficult because
expertise in kinetics and atmospheric modeling must be
combined with a strong understanding of various multicore
paradigms. For this reason, existing literature tends to focus
on the model subcomponents, such as basic linear algebra
operations [6], [7], [8], and does not comprehensively
address this problem domain for chemical kinetics and
related problems on real-world domains.

2.1 Atmospheric Modeling and Linear Algebra

Research into using GPUs to accelerate the transport and
diffusion of atmospheric constituents is ongoing. Fan et al.
[9] used a 35-node cluster to simulate the dispersion of
airborne contaminants in the Times Square area of New
York City with the lattice Boltzmann model (LBM). For only
$12,768, they were able to add a GPU to each node and
boost the cluster’s performance by 512 gigaflops to achieve
a 4:6� speedup in their simulation. Perumalla [10] used an
NVIDIA GeForce 6800 Go GPU to explore time-stepped and
discrete event simulation implementations of 2D diffusion.
Large simulations saw a speedup of up to 16� on the GPU
as compared to the CPU implementation. As previously
mentioned, transport forms a relatively small fraction of the
computational cost of comprehensive atmospheric simula-
tion with chemistry.

Like many scientific codes, linear algebra operations are a
core component of chemical kinetics simulations. The
literature of the last four years abounds with examples of
significantly improved linear algebra performance for both
GPUs and the CBEA. Williams et al. [8], [11] achieved a
maximum speedup of 12:7� and power efficiency of 28:3�
with double-precision general matrix multiplication, sparse

matrix vector multiplication, stencil computation, and Fast
Fourier Transform kernels on the CBEA as compared to
AMD Opteron and Itanium2 processors. Dongarra et al. [12]
report up to 328 single-precision gigaflops when computing
a left-looking block Cholesky factorization on a prereleased
NVIDIA T10P. Bolz et al. [13] implemented a sparse matrix
conjugate gradient solver and a regular-grid multigrid solver
on NVIDIA GeForce FX hardware. The GPU performed
120 unstructured (1,370 structured) matrix multiplies per
second, while an SSE implementation achieved only 75 un-
structured (750 structured) matrix multiplies per second on a
3.0 GHz Pentium 4 CPU. Krüger and Westermann [14]
investigated solvers for Navier-Stokes equations on GPUs.
They represented matrices as a set of diagonal or column
vectors, and vectors as 2D texture maps to achieve good basic
linear algebra operator performance on NVIDIA GeForce FX
and ATI Radeon 9800 GPUs. More recent efforts include the
MAGMA project [15] which is developing a successor to
LAPACK but for heterogeneous/hybrid architectures.

Our work uses the heterogeneous parallelism of the CBEA
in a way similar to that introduced by Ibrahim and Bodin in
[16]. They introduced runtime data fusion for the CBEA
which dynamically reorganizes finite-element data to facil-
itate SIMD-ization while minimizing shuffle operations.
Using this method, they achieved a sustained 31.2 gigaflops
for an implementation of the Wilson-Dirac Operator.
Runtime data fusion is not applicable to chemical kinetic
models, but we use the PPU in a similar manner to reorganize
data from the WRF-Chem model to facilitate SIMD-ization in
a way specific to WRF-Chem.

2.2 General Analysis, Code Generation, and Tuning

Autotuning techniques like those found in ATLAS [17] and
FFTW [18] are being applied to linear algebra on GPUs. Li
et al. [19] designed a GEMM autotuner for NVIDIA CUDA-
enabled GPUs that improved the performance of a highly
tuned GEMM kernel by 27 percent.

KPP [5] is a general analysis tool that facilitates the
numerical solution of chemical reaction network problems.
It automatically generates Fortran or C code that computes
the time evolution of chemical species, the Jacobian, and
other quantities needed to interface with numerical integra-
tion schemes. KPP has been successfully used to treat many
chemical mechanisms from tropospheric and stratospheric
chemistry, including CBM-IV [20], SAPRC [21], and NASA
HSRP/AESA. The Rosenbrock methods implemented in
KPP typically outperform backward differentiation formu-
las, like those implemented in SMVGEAR [22], [23].

3 OVERVIEW OF KPPA

KPPA (Fig. 2) combines a general analysis tool for chemical
kinetics with a code generation system for scalar, homo-
geneous multicore, and heterogeneous multicore architec-
tures. It is written in object-oriented C++ with a clearly
defined upgrade path to support future multicore archi-
tectures as they emerge. KPPA has all the functionality of
KPP 2.1, the latest version of KPP, and generates mechan-
ism code in C, Fortran, or other platform-specific languages,
such as CUDA.

KPPA’s input files and lexical parser are enhanced
versions of the same components from KPP. Several new
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Fig. 1. Performance breakdown of GEOS-Chem. DO_CHEMISTRY,
DO_CONVECTION, and DO_TRANSPORT are the wall-clock time
spent fully computing chemical kinetics, convective transport, and
advective transport, respectively. (a) Serial (b) Parallel with eight
threads.



keywords describing the target architecture, loop unrolling
parameters, and other new features have been added to the
parser, but all original KPP functionality is retained.

The general analysis component was rewritten from
scratch but borrows heavily from KPP. It is used to
formulate the chemical system as described in Section 4.
Many atmospheric models, including WRF-Chem and
STEM, support a number of chemical kinetics solvers that
are automatically generated at compile time by KPP.
Reusing these analysis techniques in KPPA insures its
accuracy and applicability. KPPA is backwards-compatible
with KPP and can be used as a drop-in replacement in
many situations. KPPA is released under the GNU General
Public License (GPL) and can be downloaded from http://
people.cs.vt.edu/jlinford/kppa.

The code generation component is written from scratch
to accommodate the 2D design space of programming
language/target architecture combinations (Table 1). Given
the model description from the analytical component and a
description of the target architecture, the code generation
component produces a time-stepping integrator, the ODE
function, and ODE Jacobian of the system, and other
quantities required to interface with an atmospheric model.
It can generate code in several languages, and can be
extended to new target languages as desired. Its key feature
is the ability to generate fully unrolled, platform-specific
sparse matrix/matrix and matrix/vector operations which
achieve very high levels of efficiency. Code generation is
described in Section 7.

4 ATMOSPHERIC CHEMICAL KINETICS

Regardless of computational architecture or modeling
application, the solution to the chemical reaction network
problem is calculated in the same way. A time-stepping
method advances the system of coupled and stiff1 ODEs
through time.

4.1 Forming the Chemical System

Given a reaction network and initial concentrations as input
files, KPPA generates code to solve the differential equation
of mass action kinetics to determine the concentration at
any future time. The derivation of this equation is given at
length in [5] and summarized here.

Consider a system of n chemical species with R chemical

reactions, r ¼ ½r1; . . . ; rR�T . Let y be the vector of concentra-

tions of all species involved in the chemical mechanism,

y ¼ ½y1; . . . ; yn�T . The concentration of species i is denoted by

yi. We define kj 2 k ¼ ½k1; . . . ; kR�T to be the rate coefficient of

reaction rj.
The stoichiometric coefficients si;j are defined as follows:

s�i;j is the number of molecules of species yi that react (are

consumed) in reaction rj. Similarly, sþi;j is the number of

molecules of species yi that are produced in reaction rj. If yi
is not involved in reaction rj, then s�i;j ¼ sþi;j ¼ 0.

The principle of mass action kinetics states that each

chemical reaction progresses at a rate proportional to the

concentration of the reactants. Thus, the jth reaction in the

model is stated as

ðrjÞ
X

s�i;jyi �!
kj X

sþi;jyi; 1 � j � R; ð1Þ

where kj is the proportionality constant. In general, the rate

coefficients are time-dependent: kj ¼ kjðtÞ.
The reaction velocity (the number of molecules perform-

ing the chemical transformation during each time step) is

given in molecules per time unit by

!jðt; yÞ ¼ kjðtÞ
Yn
i¼1

y
s�i;j
i : ð2Þ

Here, yi changes at a rate given by the cumulative effect of

all chemical reactions:

d

dt
yi ¼

XR
j¼1

�
sþi;j � s�i;j

�
!jðt; yÞ; i ¼ 1; . . . ; n: ð3Þ

If we organize the stoichiometric coefficients in two

matrices,

S� ¼
�
s�i;j
�

1�i�n;1�j�R; Sþ ¼
�
sþi;j
�

1�i�n;1�j�R;

then (3) can be rewritten as

d

dt
y ¼ ðSþ � S�Þ!ðt; yÞ ¼ S!ðt; yÞ ¼ fðt; yÞ; ð4Þ

where S ¼ Sþ � S� and !ðt; yÞ ¼ ½!1; . . . ; !R�T is the vector

of all chemical reaction velocities.
Equation (4) gives the time-derivative function in

aggregate form. Depending on the integration method,
other forms, such as a split production-destruction form
may be preferred. KPPA can produce both aggregate and
production-destrucion forms. Implicit integration methods
also require the evaluation of the Jacobian of the
derivative function:
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Fig. 2. Principal KPPA components and its program flow.

TABLE 1
Language/Architecture Combinations Supported by KPPA

�� indicates functionality offered by existing tools.

1. Lambert defines stiffness in [24]: “If a numerical method is forced to
use, in a certain interval of integration, a step length which is excessively
small in relation to the smoothness of the exact solution in that interval, then
the problem is said to be stiff in that interval.”
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4.2 Solving the Chemical System

The solution of the ordinary differential equations is
advanced in time by a numerical integration method. We
focus on the Rosenbrock integrator with three implicitly
solved Newton stages as an example, but KPPA also
supports Runge-Kutta methods [25]. The Rosenbrock
implementation takes advantage of sparsity as well as
trading exactness for efficiency when reasonable. An out-
line of the implementation is shown in Fig. 3.

If the system is autonomous, the reaction rates do not
depend on the time variable t and may be computed only
once. Otherwise, they must be recomputed during the
integration stages as in Fig. 3. Autonomicity is largely
irrelevant to the implementation of both serial and multicore
solver implementations since the reaction rates are calculated
from data external to the integrator. Multicore architectures
with limited per-thread memory (such as the CBEA) can take
advantage of this independence by overlaying the integration
routine with the reaction rate updates. In our experience,
however, there is sufficient per-thread memory in any
architecture to make this optimization unnecessary.

A chemical mechanism may be so stiff that it will not
converge without double-precision floating-point computa-
tion. One example is the SAPRCNOV mechanism [21]. KPPA
can generate code in either double or single precision. The
choice of target architecture may have a profound impact on
performance if double precision is required.

Once an iterative solver has been generated, an
atmospheric model applies the solver to every point on

a fixed-domain grid. Chemical kinetics are embarrassingly
parallel between cells, so there is abundant data paralle-
lism (DLP). Generally, within the solver itself, the ODE
system is coupled so that, while there is still some data
parallelism available in lower level linear algebra opera-
tions, parallelization is limited largely to the instruction
level (ILP). Some specific chemical mechanisms are only
partially coupled and can be separated into a small
number of subcomponents, but such intermodule decom-
position is rare under the numerical methods examined in
this work. Thus, a three-tier parallelization is generally
possible: ILP on each core, DLP using single-instruction
multiple-data (SIMD) features of a single core, and DLP
across multiple cores (using multithreading) or nodes
(using MPI). The coarsest tier of MPI and OpenMP
parallelism is supplied by the atmospheric model.

5 MULTIcORE ARCHITECTURES

Once the general analysis component has formulated the
chemical system as in Section 4, the code generation
component constructs the architecture- and language-spe-
cific implementation of the numerical integration method.
KPPA can generate code for homogeneous multicore
chipsets, NVIDIA GPUs with CUDA, and the CBEA. Since
power consumption and thermal issues have become the
principle limitation to computing power, both the peak
gigaflops and the gigaflops per dissipated watt should be
considered when investing in a new technology. This section
reviews these architectures.

5.1 Homogeneous Multicore Chipsets

Homogeneous multicore design has supplanted single-core
design in commercial servers, workstations, and laptops.
The Intel Xeon 5400 Series [26] is typical of this design. A
quad-core chip at 3 GHz has a theoretical peak floating-
point performance of 48 gigaflops with nominal 90 W
dissipation. It achieves 40.5 gigaflops (0.5 gigaflops/watt) in
the LINPACK benchmark [27]. We include it in this study
as an example of the current industry standard and the
baseline performance metric.

5.2 GPGPUs and NVIDIA CUDA

GPUs are low-cost, massively-parallel homogeneous micro-
processors designed for visualization and gaming. Because
of their power, these special-purpose chips are being used
for nongraphics “general-purpose” applications, hence the
term GPGPU. The NVIDIA Tesla C1060 has 4 GB of GDDR3
device memory and 240 1.2 GHz processing units on
30 multiprocessors. Each multiprocessor has 16 KB of fast
shared memory and a 16 K register file. The C1060’s
theoretical peak performance is 933 single-precision giga-
flops (4.96 gigaflops/watt) or 76 double-precision gigaflops
(0.41 gigaflops/watt) [28]. GPU performance is often an
order of magnitude above that of comparable CPUs, and
GPU performance has been increasing at a rate of 2:5� to
3:0� annually, compared with 1:4� for CPUs [29]. GPU
technology has the additional advantage of being widely
deployed in modern computing systems. Many desktop
workstations have GPUs which can be harnessed for
scientific computing at no additional cost.

Recent versions of NVIDIA GPUs incorporate a hard-
ware double-precision floating-point unit in addition to

122 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 1, JANUARY 2011

Fig. 3. A general outline of the three-stage Rosenbrock solver for
chemical kinetics. Here, t is the system time, h is the small time step,
Stages is the result of Rosenbrock stage s, � is an error threshold, and
kðt; yÞ, fðt; yÞ, and Jðt; yÞ are as given in Section 4.1. Ynew is the new
concentration vector.



eight SIMD streaming processors on each multiprocessor.
Since double-precision operations must be pipelined
through this unit instead of executing on the streaming
processors, the GPU has a penalty for double precision
beyond just the doubling of data volumes. In practice, this is
highly application-specific. Applications that perform well
on the GPU do so by structuring data and computation to
exploit registers and shared memory and have large
numbers of threads to hide device memory latency.

5.3 The Cell Broadband Engine Architecture
(CBEA)

The CBEA describes a heterogeneous multicore processor
that has drawn considerable attention in both industry and
academia [30]. It consists of a multithreaded Power
Processing element (PPE) and eight Synergistic Processing
elements (SPEs) [31]. These elements are connected with an
on-chip Element Interconnect Bus (EIB) with a peak
bandwidth of 204.8 gigabytes/second. The PPE is a 64-bit
dual-thread PowerPC processor. Each SPE is a 128-bit SIMD
processor with two major components: a Synergistic
Processor Unit (SPU) and a Memory Flow Controller
(MFC). All SPE instructions are executed on the SPU. The
SPE includes 128 registers of 128 bits and 256 KB of software-
controlled local storage.

The MFC’s DMA commands are subject to size and
alignment restrictions. Data transferred between SPE local
storage and main memory must be 8-byte aligned, at most
16 KB large, and in blocks of 1, 2, 4, 8, or multiples of 16 bytes.

The Cell Broadband Engine (Cell BE) is the game box
implementation of the CBEA and may have either six or
eight SPEs. It is primarily a single-precision floating-point
processor with a peak single-precision FP performance of
230.4 gigaflops (2.45 gigaflops/watt) and a double-precision
peak of only 21.03 gigaflops (0.22 gigaflops/watt) [30]. The
PowerXCell 8i processor is the latest implementation of the
CBEA intended for high-performance, double-precision
floating-point intensive workloads that benefit from large-
capacity main memory. It has nominal dissipation of 92 W
and a double precision theoretical peak performance of
115.2 gigaflops (1.25 gigaflops/watt) [32]. Roadrunner at
Los Alamos, the first computer to achieve a sustained
petaflop, uses the PowerXCell 8i processor [33], and the top
seven systems on the November 2008 Green 500 list use the
PowerXCell 8i [34].

5.4 Benchmark Systems

The benchmarks presented in this work assume a 200 watt
power budget for the principal computing chipset. Within
this envelope, two Quad-Core Xeon chips, two CBEA chips,
or one Tesla C1060 GPU can be allocated. Supporting
systems, such as memory and I/O, are not included in the
budget, and since the Tesla GPU coprocesses for a CPU, it
exceeds the budget by at least 90 watts. The quad-Core
Xeon benchmarks are performed on a Dell Precision T5400
workstation with two Intel E5410 CPUs and 16 GB of
memory on a 667 MHz bus. NVIDIA GPU benchmarks are
performed on the NCSA’s experimental GPU cluster. Each
cluster node has two dual-core 2.4 GHz AMD Opteron
CPUs and 8 GB of memory (only one Opteron is used in this
study). CBEA benchmarks are performed on an in-house

PlayStation 3 system, an IBM BladeCenter QS22 at
Forschungszentrum Jülich, and an IBM BladeCenter QS20
at Georgia Tech. The PlayStation 3 and the QS20 use the
Cell Broadband Engine and lack hardware support for
pipelined double-precision arithmetic. The QS22 uses the
PowerXCell 8i and includes hardware support for pipelined
double-precision arithmetic. The PlayStation 3 has 256 MB
XDRAM, the QS20 has 1 GB XDRAM, and the QS22 has
8 GB XDRAM. Both the QS20 and the QS22 are configured
as “glueless” dual processors: two CBEA chipsets are
connected through their FlexIO interfaces to appear as a
single chip with 16 SPEs and 2 PPEs. The PS3 has only six
SPEs available for yield reasons.

6 MULTIcORE CHEMICAL KINETICS

Serial implementations of chemical kinetics mechanisms
have been studied for decades. However, the uniqueness of
the architectures described in Section 5 makes it difficult to
anticipate implementation details of a general mechanism,
that is, it was unknown what a highly optimized multicore
implementation of chemical kinetics “looked like.” In order
to develop KPPA code generation functionality, a detailed
exploration of a specific mechanism on every target
architecture was therefore required.

6.1 RADM2 on Multicore

We begin our investigation by hand-porting and bench-
marking the RADM2 chemical kernel from WRF-Chem on
three multi-core platforms. RADM2 was developed by
Stockwell et al. [35] for the Regional Acid Deposition Model
version 2 [36]. It is widely used in atmospheric models to
predict concentrations of oxidants and other air pollutants.
The RADM2 kinetics mechanism combined with the
SORGAM aerosol scheme involves 61 species in a network
of 156 reactions. It treats inorganic species, stable species,
reactive intermediates, and abundant stable species (O2, N,
H2O). Atmospheric organic chemistry is represented by
26 stable species and 16 peroxy radicals. Organic chemistry
is represented through a reactivity aggregated molecular
approach [37]. Similar organic compounds are grouped
together into a limited number of model groups (HC3, HC5,
and HC8) through reactivity weighting. The aggregation
factors for the most emitted VOCs are given in [37].

The KPP-generated RADM2 mechanism uses a three-stage
Rosenbrock integrator. Four working copies of the concen-
tration vector (three stages and output), an error vector, the
ODE function value, the Jacobian function value, and the LU
decomposition of 1

h� � Jac0 are needed for each grid cell. This
totals at least 1,890 floating-point values per grid cell, or
approximately 15 KB of double-precision data. While porting
to each platform, care was taken to avoid any design which
was specific to RADM2. Thus, our hand-tuned multicore
RADM2 implementations form templates the KPPA code
generator can reuse when targeting these architectures.

Input data to the RADM2 solver was written to files from
WRF-Chem using two test cases: a coarse grid of 40� 40 with
20 layers and a 240-second timestep, and a fine grid of 134�
110 with 35 layers and a 90-second timestep. The unmodified
Fortran source files for the RADM2 chemical kinetics solver
(generated by KPP during WRF-Chem compilation), along
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with a number of KPP-generated tables of indices and
coefficients used by the solver, were isolated into a stand-
alone program that reads in the input files and invokes the
solver. The timings and output from the original solver
running under the stand-alone driver for one time step
comprised the baseline performance benchmark.

For the accelerated architectures, it was necessary to
translate the serial Fortran code to C. CUDA is an extension
of C and C++, and although two Fortran compilers exist for
the CBEA (gfortran 4.1.1 and IBM XL Fortran 11.1), these
compilers have known issues that make fine-tuning easier
in C. Once the C model was developed, Fortran code for
the CBEA could be generated automatically following the
same design.

Table 2 shows the baseline serial performance in seconds
based on 10 runs of the benchmark on a single core of an
Intel Quad-Core Xeon 5400 series. “Rosenbrock” indicates
the inclusive time required to advance chemical kinetics one
time step for all points in the domain. It corresponds to the
process described in Fig. 3 and includes “LU Decomp.,”
“LU Solve,” “ODE Function,” and “ODE Jacobian,” which
are also reported. “LU Decomp” and “LU Solve” are used to
solve a linear system within the Rosenbrock integrator.
“ODE Function” and “ODE Jacobian” are the time spent
computing the mechanism’s ODE function fðt; yÞ and
Jacobian function Jðt; yÞ, respectively.

Table 3 shows the performance in seconds of the RADM2
multicore ports. The labels are identical to those in Table 2.

Several operations in the fine-grid double-precision case
took so long on the PlayStation 3 that the SPU hardware
timer overflowed before they could complete. Accurate
timings cannot be supplied in this case. Only the overall
solver time was available for the “Tesla (a)” implementation
because the entire solver is a single CUDA kernel. The
benchmark results are discussed in Section 6.2.

6.1.1 Intel Quad-Core Xeon with OpenMP

Since the chemistry at each WRF-Chem grid cell is
independent, the outermost iteration over cells in the
RADM2 kernel became the thread-parallel dimension; that
is, a one-cell-per-thread decomposition. The Quad-Core
Xeon port implements this with OpenMP. Attention had to
be given to all data references, since the Rosenbrock
integrator operates on global pointers to global data
structures. These pointers were specified as threadpri-

vate to prevent unwanted data sharing between threads
without duplicating the large global data structures. Other
variables could simply be declared in the private or
shared blocks of the parallel constructs.

6.1.2 NVIDIA CUDA

The CUDA implementation takes advantage of the very high
degree of parallelism and independence between cells in the
domain, using a straightforward cell-per-thread decomposi-
tion. The first CUDA version (“a” in Table 3) implemented
the entire Rosenbrock mechanism (Fig. 3) as a single kernel.
This presented some difficulties and performance was
disappointing (Table 3). The amount of storage per grid cell
precluded using the fast but small (16 KB per multiprocessor)
shared memory to speed up the computation. On the other
hand, the Tesla GPU has 384K registers which can be used to
good effect, since KPP generated fully unrolled loops as
thousands of assignment statements. The resulting CUDA-
compiled code could use upward of one hundred registers
per thread, though this severely limited the number of
threads that could be actively running, even for large parts of
the Rosenbrock code that could use many more.

The second CUDA implementation addressed this by
moving the highest levels of the Rosenbrock solver back onto

124 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 1, JANUARY 2011

TABLE 2
RADM2 Timing (Seconds) of the Serial Fortran Chemical Kernel

Executed for One Time Step on a Single Core of an Intel
Quad-Core Xeon 5410

TABLE 3
RADM2 Timings (Seconds) of the Multicore Kernels

Each time shown is the minimum over several successive runs. Category labels are explained in detail at the end of Section 6.1.



the CPU. The lower levels of the Rosenbrock call tree were
coded and invoked as separate kernels on the GPU. As with
the single-kernel implementation, all data for the solver was
device-memory resident and arrays were stored with cell-
index stride-one so that adjacent threads access adjacent
words in memory. This coalesced access best utilizes
bandwidth to device memory on the GPU. This design was
also easier to debug and benchmark since the GPU code was
spread over many smaller kernels with control returning
frequently to the CPU, and it compiled considerably faster.
Most importantly, it limited the impact of resource bottle-
necks to only those affected kernels. Performance-critical
parameters such as the size of thread blocks and shared
memory allocation were tuned kernel-by-kernel without
subjecting the entire solver to worst case limits.

The principal disadvantage of moving time and error
control logic to the CPU is that all cells are forced to use the
same minimum time step and iterate the maximum number
of times, even though only a few cells required that many to
converge. For the benchmark workloads, 90 percent of the
cells converge in 30 iterations or fewer. The last dozen or so
cells required double that number. While faster by a factor
of 3 to 4 on a per-iteration basis, the increase in wasted work
limited performance improvement to less than a factor of
two. On the Tesla, the improvement was only 9.5 seconds
down to about 5 seconds for the new kernel. The “(b)”
results in Table 3 were for the multikernel version of the
solver, but with an additional refinement: time, step length,
and error were stored separately for each cell and vector
masks were used to turn off cells that were converged. The
solver still performed the maximum number of iterations;
however, beyond the half-way mark, most thread blocks
did little or no work and relinquished the GPU cores very
quickly, resulting in a reduced wall-clock time.

6.1.3 Cell Broadband Engine Architecture

The heterogeneous Cell Broadband Engine Architecture
forces a carefully architected approach. The PPU is capable
of general computation on both scalar and vector types, but
the SPUs diverge significantly from general processor
design [31]. Recognizing this, we chose a master-worker
approach for the CBEA port. The PPU, with full access to
main memory, is the master. It prepares grid data for the
SPUs which process them and return them to the PPU. In
order to comply with size and alignment restrictions (see
Section 5.3), the PPU buffers the incontiguous WRF-Chem
data into an aligned and padded array so that it can be
safely accessed by the MFC.

The SPU’s floating-point SIMD ISA operates on 128-bit
vectors of either four single-precision or two double-
precision floating-point numbers. To take advantage of
SIMD, the PPU interleaves the data of four (or two) grid
points into an array of 128-bit vectors, which is padded,
aligned, buffered and transfered exactly as in the scalar case.
This achieves a four-cells-per-thread (two-cells-per-thread in
double precision) decomposition. Only one design change in
the Rosenbrock integrator was necessary to integrate a vector
cell. As shown in Fig. 3, the integrator iteratively refines the
Newton step size h until the error norm is within acceptable
limits. This will cause an intravector divergence if different
vector elements accept different step sizes. However, it is
numerically sound to continue to reduce h even after an

acceptable step size is found. The SIMD integrator reduces
the step size until the error for every vector element is within
tolerance. Conventional architectures would require addi-
tional computation under this scheme, but because all
operations in the SPU are SIMD this actually recovers lost
flops. This enhancement doubled (quadrupled for single
precision) the SPU’s throughput with no measurable over-
head on the SPU.

6.2 RADM2 Performance Analysis and Discussion

Table 3 shows the performance of all the parallel imple-
mentations. The benchmark systems are described in
Section 5.4. Plots of fine-grid performance and further
discussion can be found in [38].

Of the three platforms investigated, Quad-Core Xeon
with OpenMP was by far the easiest to program. A single
address space and single ISA meant only one copy of the
integrator source was necessary. Also, OpenMP tool chains
are more mature than those for GPUs or the CBEA. As
shown in Fig. 4, this port achieved nearly linear speedup
over eight cores.

The CBEA implementation achieves the best perfor-
mance. On a fine-grain grid, two PowerXCell 8i chipsets are
11:5� faster in double precision than the serial implementa-
tion, and 41:1� faster in single precision. Coarse grained
single-precision grids see a speedup of 26:6�. The CBEA’s
explicitly managed memory hierarchy and fast on-chip
memory provide this performance. Up to 40 RADM2 grid
cells can be stored in SPE local storage, so the SPU never
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Fig. 4. RADM2 speedup as compared to the original serial code. A line
indicates the maximum GPU speedup since the thread models of the
GPU and conventional architectures are not directly comparable.
(a) Single precision. (b) Double precision.



waits for data. Because the memory is explicitly managed,
data can be intelligently and asynchronously prefetched.
However, the CBEA port was difficult to implement. Two
optimized copies of the solver code, one for the PPU and
one for the SPU, were required. On-chip memory must be
explicitly managed and careful consideration of alignment
and padding are the programmer’s responsibility.

The NVIDIA CUDA implementation was straightfor-
ward to program; however, it proved to be the most difficult
to optimize. CUDA’s automatic thread management and
familiar programming environment improve programmer
productivity: our first implementation of RADM2 on GPU
was simple to conceive and implement. However, a deep
understanding of the underlying architecture is still re-
quired in order to achieve good performance. For example,
memory access coalescing is one of the most powerful
features of the GPU architecture, yet CUDA neither hinders
nor promotes program designs that leverage coalescing. In
our case, the GPU required the most effort to achieve
acceptable performance. On a single-precision coarse grid,
this implementation achieves an 8:5� speedup over the
serial implementation. The principal limitation is the size of
the on-chip shared memory and register file, which prevent
large-footprint applications from running sufficient num-
bers of threads to expose parallelism and hide latency to the
device memory. The entire concentration vector must be
available to the processing cores, but there is not enough on-
chip storage to achieve high levels of reuse, so the solver is
forced to fetch from the slow GPU device memory. Because
the ODE system is coupled, a per-species decomposition is
generally impossible. However, for certain cases, it may be
possible to decompose by species groups. This will reduce
pressure on the shared memory and boost performance.

7 MULTIcORE CODE GENERATION

KPPA’s code generation module generalizes the hand-tuned
RADM2 kernels developed in Section 6. Initially, we sought
to extend KPP to support multicore architectures; however,
KPP’s design does not facilitate such an approach. KPP is a
highly tuned procedural C code that uses a complex
combination of function pointers and conditional statements
to translate chemical kinetics concepts into a specific
language. While efficient, this design is not extensible.
Adding new features to KPP requires careful examination of
many hundreds of lines of complex source code. Targeting
multiple architectures in multiple languages creates a 2D
design space (Table 1), increasing the complexity of the KPP
source code to unmaintainable levels. Furthermore, the
design space will only continue to grow as future archi-
tectures are developed. Hence, a completely new code
generation module was developed from scratch.

KPPA’s code generation component is object-oriented to
enable extensibility in multiple design dimensions. Abstract
base classes for Language objects and Architecture objects
define the interfaces a Model object uses to produce an
optimized chemical code. The Bridge Pattern [39] connects
an Architecture to a Language, facilitating future architec-
ture or language implementations. Adding a new language
or architecture is often as simple as inheriting the abstract
class and implementing the appropriate member functions
and template files.

7.1 Language-Specific Code Generation

KPPA generates code in two ways: complete function
generation using lexical trees, and template file specifica-
tion. Complete function generation builds a language-
independent expression tree describing a sparse matrix/
matrix or matrix/vector operation. For example, the
aggregate ODE function of the mechanism is calculated by
multiplying the left-side stoichiometric matrix by the
concentration vector, and then adding the result to elements
of the stoichiometric matrix. KPPA performs these opera-
tions symbolically at code generation time, using the matrix
formed by the analytical component and a symbolic vector,
which will be calculated at runtime. The result is an
expression tree of language-independent arithmetic opera-
tions and assignments, equivalent to a rolled-loop sparse
matrix/vector operation, but in completely unrolled form.
The language-independent lexical tree is translated to a
specific language by an instance of the abstract Language
class. Each concrete Language subclass defines how assign-
ments, arithmetic operations, and type casts are performed
in a specific language.

KPPA uses its knowledge of the target architecture to
generate highly efficient function code. Language-specific
vector types are preferred when available, branches are
avoided on all architectures, and parts of the function can
be rolled into a tight loop if KPPA determines that on-chip
memory is a premium. An analysis of four KPPA-
generated ODE functions and ODE Jacobians targeting
the CBEA showed that, on average, both SPU pipelines
remain full for over 80 percent of the function implemen-
tation. Pipeline stalls account for less than 1 percent of the
cycles required to calculate the function. For example, in
the SAPRCNOV mechanism on CBEA, there are only
20 stalls in the 2,989 cycles required by the ODE function
(0.66 percent), and only 24 stalls in the 5,490 cycles
required for the ODE Jacobian (0.43 percent). Clever use of
the volatile qualifier can reduce the number of cycles to
2,778 and eliminate stalls entirely.

Fig. 5 shows the SPU pipelines during the SAPRCNOV
ODE function execution as given by the IBM Assembly
Visualizer for CBEA. This tool displays the even/odd SPU
pipelines in the center, with an “X” marking a full pipeline
stage. Stalls are shown as red blocks (no stalls are visible in
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Fig. 5. SPU pipeline status while calculating the ODE function of the
SAPRCNOV mechanism as shown by the IBM Assembly Visualizer for
CBEA. No stalls are observed for all 2,778 cycles. The pattern repeats
with minor variations for 2,116 of 2,778 cycles.



Fig. 5). When the pipelines achieve 100 percent utilization,
smooth chevrons of “X”s are formed, similar to the patterns
shown. Code of this caliber often requires meticulous hand
optimization, but KPPA is able to generate this code
automatically in seconds.

When template file specification is used, source code
templates written in the desired language are copied from a
library and then “filled in” with code appropriate to the
chemical mechanism being generated and the target plat-
form. This is the method used to generate the outer loop of
the Rosenbrock integrator, BLAS wrapper functions, and
other boilerplate methods. The platform-specific codes from
our RADM2 implementations, such as the vectorized
Rosenbrock solver and its associated BLAS wrapper
functions, were easily converted to templates and added
to the KPPA library. Boilerplate code for platform-specific
multicore communication and synchronization was also
imported from the RADM2 implementations.

Template file specification enables the rapid reuse of pre-
tested and debugged code, and it allows easy generation of
architecture-specific code (such as the producer-consumer
integrator for CBEA) without making KPPA overly complex.
However, it necessitates a copy of every template file
translated in every language. In practice, this has not
hindered the addition of new languages to KPPA, since most
languages are in some way descended from Fortran and/or
C. This fact, combined with the small size of the template files,
makes by-hand translation of a C or Fortran template to the
new language straightforward. Another alternative is to
generate code from the original C or Fortran templates and
then link against language-specific codes, if supported.

7.2 Multicore Support

General computing approaches require a fairly sophisti-
cated machine parameterization, perhaps describing the
memory hierarchy of the machine, the processor topology,
or other hardware details [40]. Fortunately, because KPPA
targets a specific problem domain, only a few architectural
parameters are required, and because KPPA has domain-
specific knowledge, it is able to generate highly optimized
platform-specific code.

Our experiences in Section 6 show that only four
parameters are required to generate a chemical mechanism
with multilayered heterogeneous parallelism (see Table 4).
The target architecture name must be specified. The architec-
ture name is passed as a string to the code generator and is
used to locate the correct code template files and determine
the scalar word size of the architecture. The architecture’s
instruction cardinality must be known. Instruction cardinality

specifies how many (possibly heterogeneous) instructions of
a given precision can be executed per processor per cycle. For
the CBEA, this is dictated by the size of a vector instruction,
i.e., two in double precision and four in single. CUDA-
enabled devices execute instructions in fixed sizes called
warps. A single-precision warp is 32 threads on the GTX 200
architecture, making its instruction cardinality 32. In double
precision, one DP unit is shared between 32 threads, so the
cardinality is 1; however, this architectural detail is hidden
from the CUDA developer. Therefore, we still consider the
cardinality to be 32 in this case. Scalar cores have an
instruction cardinality of 1. Keeping the instruction cardin-
ality independent of the architecture name allows for
improvements in existing architectures.

An architecture’s integrator cardinality is closely related to
its instruction cardinality. It is the optimal number of grid
cells that are processed simultaneously by one instance of
the integrator. In theory, integrator cardinality could be
arbitrarily large for any platform, but, in practice, the
optimal number of cells per integrator is dictated by the
instruction cardinality. In single precision, the CBEA is
most efficient when processing four cells per integrator
instance. On the other hand, the sophisticated thread
scheduling hardware in CUDA devices encourages a very
large integrator cardinality to hide latency to device
memory, so CUDA’s integrator cardinality is limited only
by the size of device memory.

The scratch size is the amount of (usually on-chip)
memory which can be explicitly controlled by a single
accelerator thread. KPPA uses this information to generate
multibuffering and prefetching code. For an SPE thread on
the CBEA, the scratch size is equivalent to the size of SPE
local storage. CUDA devices share 16 KB of on-chip
memory with every thread in a block (up to 512 threads
for current architectures). Traditional architectures have an
implicitly managed memory hierarchy, so there is no
explicitly controlled cache.

In addition to the architecture parameterization, KPPA
must be aware of the language features specific to the target
architecture. Compilers targeting the CBEA have 128-bit
vector types as first-level language constructs, and CUDA
introduces several new language features to simplify GPU
programming. In KPPA, a language is encapsulated in a C++
class that exposes methods for host- and device-side function
declaration, variable manipulation, and other foundational
operations. Support for platform-specific language features
is achieved by inheriting a language class (i.e., C for CUDA)
and then overriding member functions as appropriate.

8 KPPA MECHANISM PERFORMANCE

We used KPPA to explore the performance of an auto-
matically generated RADM2 kernel and three other popular
kernels: SAPRC’99, SMALL_STRATO, and SAPRCNOV. The
benchmark systems are described in Section 5.4. The kernels
were applied on the coarse domain grid from Section 6.1 with
a KPPA-generated Rosenbrock integrator with six stages for
24 simulation hours. Except for SAPRCNOV, all mechanisms
are calculated in single precision.

To test KPPA’s extensibility, we used it to generate SSE-
enhanced versions of state-of-the-art serial and OpenMP
codes for each of these kernels. To generate SSE-enhanced
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TABLE 4
Parameterizations of Three Multicore Platforms in

Single and Double (DP) Precision



code, we specified an instruction and integrator cardinality
of 4 for single precision (2 for double), described SSE
intrinsics to the language generation module, and provided
vector math functions from the Intel Math Kernel Library
[41] in place of the scalar math library functions. In total,
this effort took less than one week. Except for SAPRCNOV,
the SSE-enhanced codes are approximately 2� faster than
the state-of-the-art serial codes. SAPRCNOV requires
double-precision calculations, which limited the speedup
to only 1:2�. It may be possible to improve on these
speedups by using more advanced SSE intrinsics.

The Community Multiscale Air Quality Model (CMAQ)
[2] is an influential model with a large user base including
government agencies responsible for air quality policy, and
leading atmospheric research labs. CMAQ uses a SAPRC
mechanism [21] with 79 species in a network of 211 reactions
to calculate photochemical smog. The performance of the
KPPA-generated SAPRC mechanism from CMAQ is shown
in Fig. 6a. The CBEA implementation of SAPRC ’99 achieves
the highest speedup of 38:6� when compared to the state-
of-the-art production code, or 19:3� when compared with
the SSE-enhanced serial implementation. However, this
mechanism’s large code size pushes the architecture’s
limits. Only four grid cells can be cached in SPU local
storage, and its extreme photosensitivity results in an
exceptionally large number of exponentiation operations
during peak sunlight hours. The GPU code achieves a
maximum speedup of only 13:7� (6:8� compared to SSE)
due to high memory latencies and a shortage of on-chip fast
shared memory, just as described in Section 6.2.

SMALL_STRATO (Fig. 6b) is a stratospheric mechanism
with seven species in a network of 10 reactions. It represents
both small mechanisms and mechanisms with a separable
Jacobian permitting domain decomposition within the
mechanism itself. Its program text and over 100 grid points
can be held in a single SPE’s local store, resulting in a
maximum speedup of 40:7� on the CBEA (20:5� compared
to the SSE-enhanced serial implementation). On the GPU,
even though this mechanism is exceedingly small, it still
cannot fit into the 64 KB shared memory since a thread
block size of at least 128 is recommended, leaving only
512 bytes of shared memory per thread. This results in a
maximum speedup of 11:2� (4:4� compared to SSE).
NVIDIA’s new Fermi architecture [42] with larger on-chip
cache may produce better results.

SAPRCNOV is a particularly complex mechanism with
93 species in a network of 235 reactions. Its stiffness
necessitates a double-precision solver, and its size makes it
an excellent stress test for on-chip memories. The compiled
program code alone is over 225 KB large, and each grid cell
comprises over 19 KB of data. Fig. 6c shows this mechanism’s
performance. The Quad-Core Xeon system, with its large L2
cache is not notably affected; however, the performance of the
CBEA is drastically reduced. In order to accommodate the
large program text, the ODE Function, ODE Jacobian, and all
BLAS functions are overlayed in the SPE local storage by the
compiler. When any of these functions are called, the SPE
thread pauses and downloads the program text from main
memory to an area of local storage shared by the overlayed
functions. LU solve and the ODE function are called several
times per integrator iteration, which multiplies the pause-
and-swap overhead. Even with overlays, there is only enough
room for two grid cells in local store, so triple-buffering is not

an option. The CBEA achieves only 10:4� speedup (8:7�
compared to the SSE-enhanced serial implementation). The
GPU achieves the highest speedup of 13:3� (11:1� compared
to SSE).
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Fig. 6. Speedup of KPPA-generated chemical kernels as compared to
SSE-enhanced serial code. A line indicates the maximum GPU speedup
since the thread models of the GPU and conventional architectures are
not directly comparable. Speedups in (a), (b), and (d) approximately
double when compared to state-of-the-art serial codes. (a) SAPRC ’99
from CMAQ. (b) SMALL_STRATO from KPP. (c) SAPRCNOV from
STEM. (d) RADM2 from WRF-Chem.



The performance of the KPPA-generated RADM2 kernel
was similar to the performance of the hand-tuned code
discussed in Section 6. This is not surprising, since the
hand-tuned code is the template KPPA uses in template
instantiation, and the hand-tuned RADM2 code was
developed from the KPP-generated serial code.

9 FUTURE WORK

Future work will concentrate on alternate numerical meth-
ods, frameworks for calling KPPA-generated mechanisms
remotely, and extending KPPA to other multicore platforms.
The numerical methods presented have strong data depen-
dencies and cannot adequately use fast on-chip memories.
Other methods, such as Quasi-Steady-State-Approximation
[43], may be appropriate if a high level of accuracy is not
required. Installing multicore chipsets as accelerators in
traditional clusters is viable [9]; however, not every cluster
can be easily upgraded. Clusters of ASIC nodes, such as IBM
BlueGene [44], do not support accelerator cards, or thermal
dissipation and power issues may prohibit additional
hardware in the installation rack. These systems can still
benefit from accelerated multicore chipsets by offloading
computationally-intense kernels to remote systems. If a
kernel is 20� or 30� faster on a specific system, as
demonstrated in this work, then the overhead of a remote
procedure call may be acceptable, even for large data sets.
We are investigating existing solutions, such as IBM
Dynamic Application Virtualization [45], and will extend
KPPA to generate model interfaces for remote kernels.

The recent acceptance of the OpenCL standard [46]
makes OpenCL support an obvious next step for KPPA.
Chemical codes targeting OpenCL will be more portable
than CUDA- or CBEA-specific mechanisms, and may be
supported on as-yet undeveloped architectures. A study
comparing KPPA to other tools, such as Intel Ct [47]
(formally RapidMind), is also a future work.

The results and analysis presented here are a snapshot in
time; for example, newer versions of homogenous multicore
processors (e.g., Intel’s i7, IBM’s Power6, and others) are
already showing significant improvement in speed and
multicore efficiency over their previous generations (see
Fig. 7). Similarly, NVIDIA is moving forward with their
300-series Fermi GPUs. Currently, none has a clear
advantage. However, given that chemical kinetics is a

challenging benchmark in terms of sheer size and complex-
ity per grid cell, performance and cost performance (both
monetary and electrical efficiency) of new homogenous and
heterogeneous multicore architectures will be important
gating factors for climate chemistry, air quality, wildfire,
and other earth science simulation in the coming decade.

10 CONCLUSION

We have presented KPPA, a general analysis tool and code
generator for serial, homogeneous multicore, and hetero-
geneous multicore architectures. KPPA generates time-
stepping codes for general chemical reaction networks in
several languages, and is well-suited for use in atmospheric
modeling. Optimized ports of four chemical kinetics kernels
(RADM2 from WRF-Chem, SAPRC from CMAQ, SAPRC-
NOV, and SMALL_STRATTO) for three multicore plat-
forms (NVIDIA CUDA, the Cell Broadband Engine
Architecture (CBEA), and OpenMP)) were presented.

A detailed performance analysis for each platform was
given. The CBEA achieves the best performance due to its fast,
explicitly managed on-chip memory. Compared to the state-
of-the-art serial implementation, RADM22 from WRF-Chem
achieves a maximum speedup of 41:1�, SAPRC ’99 from
CMAQ achieves 38:6� speedup, SAPRCNOV achieves 8:2�
speedup, and SMALL_STRATTO achieves 28:1� speedup.
OpenMP implementations achieve almost linear speedup for
up to eight cores. Additional optimizations, such as SSE and
cache manipulation, are in development. The GPU’s perfor-
mance is severely hampered by the limited amount of on-chip
memory. The CBEA’s performance is limited when the size of
the code of a chemical kernel exceeds 200 KB; however, most
atmospheric chemical kernels will fit within this envelope.
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