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Abstract

We present a scalable parallel implementation for exact
inference in Bayesian Networks. We explore two levels of
parallelization: top level parallelization which uses pointer
jumping to stride across nodes; and node level paralleliza-
tion which parallelizes the node level computations which
are independent from each other. For a junction tree with n
cliques, using p processors, the worst-case running time is

n

p
(log n) ∗ rw (1)

where w is the clique width and r is the maximum range or
number of states of the variable.

We have implemented the algorithm using MPI and
OpenMP. We consider three different types of input junc-
tion trees: linear junction trees, balanced trees and random
junction trees, and obtained speedups of 203, 181 and 190
respectively over 256 processors.

Keywords: Bayesian Networks, Junction Tree, Par-
titioning, Scalability, Pointer-Jumping, Loop level paral-
lelization.

1 Introduction

The joint probability distribution of two discrete random
variables X and Y is a function whose domain is the set of
ordered pairs (x, y), where x and y are possible values for
X and Y , respectively, and whose range is the set of prob-
ability values corresponding to the ordered pairs in its do-
main. A full joint probability distribution for any real-world
system can be used for inference, however such distribu-
tions grow intractably large as the number of variables used
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to model the system grows. While dealing with joint prob-
ability distributions it is seen that independence and con-
ditional independence relationships can greatly reduce the
size of the probability distributions. This property is taken
advantage of by belief networks.

Bayesian reasoning has been used in Artificial Intelli-
gence since the 1960s, especially in medical diagnosis [1].
Belief networks have found application in a number of do-
mains, including consumer help desks, nuclear reactor di-
agnosis, tissue pathology, pattern recognition, credit assess-
ment, data mining[2], image analysis, robotics, genetics[3]
and computer network diagnosis [1]. To solve a belief net-
work also known as inference, is to solve the conditional
probability of the query nodes given a set of evidence nodes;
i.e. we find the probability of the query variable being true,
given knowledge of the evidence variables in the network.

There are two main approaches for computing prob-
abilities in a Bayesian network - exact inference and
approximate inference. The Lauritzen Speigelhalter [4]
algorithm is the most popular exact inference algorithm.
Exact inference is NP hard [5] and computationally very
expensive. The time complexity of exact inference is ex-
ponential with the density of the network and the number
of states in the random variable - the number of states of a
random variable referring to the set of values it can take.

This paper explores a scalable, parallel algorithm, which
is topology independent. There has been considerable work
in the field of parallelizing exact inference. These include
(D’Ambrosio [6]; Diez and Mira [7]; Kozlov [8]; Kozlov
and Singh [9]; Shachter, Andersen, and Szolovits [10] and
Pennock [5]). The popular exact inference junction tree
algorithm for multiply connected networks (Lauritzen and
Spiegelhalter [4]) was also conceived as a parallel algorithm
with one processor per clique. DAmbrosio [6] examines the
possibility of parallelizing the symbolic probabilistic infer-
ence (SPI) algorithm. Two sources of concurrency are iden-
tified: topological parallelism and conformal product par-
allelism, in the former case only independent computations
are exploited. Kozlov and Singh [9] present a parallel im-
plementation of the junction tree algorithm, however they
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only consider parallelizing independent operations. Pen-
nock [5] presents a logarithmic time Bayesian inference al-
gorithm. The implementation in this paper is based on this
algorithm. The algorithm is based on a theoreotical model:
the CREW PRAM and does not take into account issues
such as communication costs between parallel processors.
The state of the art in parallel techniques in exact inference
involve partitioning the graph and assigning the partitions to
various processors [5]. However, this technique is topology
dependent.

Some networks are inherently more parallelizable than
others. In some networks, the computation of two different
nodes may be independent whereas in others dependencies
may exist, hence the computations can not be performed
concurrently. Simple partitioning techniques when applied
on long-chain topologies will have the same running time
as the serial algorithm.

We implemented a parallel version of the exact inference
algorithm which overcomes this dependency. We exploit
parallelization at the node as well as the clique level. Hence
our implementation runs on a junction tree with n cliques in
n
p (log n)∗rw time, using p processors, where w is the clique
width and r is the maximum range or number of states of the
variable, regardless of the topology of the junction tree. We
have implemented the algorithm using MPI and OpenMP
on the clusters at San Diego Supercomputer Center. We
consider three different types of input junction trees: lin-
ear junction trees, balanced trees and random junction trees.
Our implementation demonstrates linear scalability.

The rest of the paper is organized as follows: in Sec-
tion 2 we cover the basics of Bayesian inference. Section
3 describes the parallel exact inference algorithm and our
implementation. Section 4 describes the experiments which
were conducted to prove scalability and efficiency of the
parallel algorithm. We also present detailed experimental
results obtained. Finally Section 5 concludes the paper and
discusses possible future work.

2 Bayesian Inference

A Bayesian network is represented by a graph which is
composed of a set of nodes, each node represents a vari-
able, and a set of edges. Each edge connects two nodes,
and an edge can have an optional direction assigned to it.
An edge between two nodes indicates a relation between
the nodes and the direction indicates the causality. Let the
variables be {X(1), ..., X(n)}. The probability that vari-
able X(i) has a value ki, is given as P (X(i) = ki) where
k(i) ε {k1, k2, k3.......kr}. Any random variable X(i) can
take r values, {k1, k2, k3.......kr}.

If there is an arc from node A to another node B, then
we say that A is a parent of B. If a node has a known value,
it is said to be an evidence node. Let parents(A) be the

parents of the node A. Then the joint distribution for X(1)
through X(n) is represented as the product of the probabil-
ity distributions P (X(i)|parents(X(i))) for i = 1 to n. In
mathematical notation the joint probability also known as
the conditional probability table (CPT) is expressed as

P (A) = Π(P (X(i)|parents(X(i)))) (2)

In a network, when we get new information about vari-
ables in the network, we update the conditional probabil-
ity tables, to reflect this new information. This updating is
known as evidence propagation. Once all the beliefs are
updated, the conditional probability tables contain the most
recent beliefs in any variable and can be queried like a sim-
ple database to evaluate probabilities.

Most exact inference algorithms like the popular LS al-
gorithm [4] do not work on the Bayesian network directly,
instead they work on an intermediate data structure - the
junction tree. Evidence propagation based on Bayes rule
can not be applied directly to nonsingly connected networks
i.e a Bayesian network with loops. Loops are undirected cy-
cles in the underlying network.

If we ignore the existence of loops, and permit the nodes
to communicate with each other as if the network were
singly connected, then there is a possibility that the mes-
sages may circulate indefinitely in these loops.

Pearl[11] has presented several methods to overcome
the problem namely conditioning and stochastic simulation.
Lauritzen and Spiegelhalter[4] approached the problem of
nonsingly connected networks from a mathematical per-
spective. This method involves the extraction of an undi-
rected triangulated graph from the directed acyclic graph in
the causal network, and the creation of a tree whose ver-
tices are the cliques of this triangulated graph. Such a tree
is called ”join” or ”junction” tree. Probabilites in the origi-
nal causal network are updated by passing messages among
the vertices in this tree.

The steps involved in converting the bayesian network to
a junction tree is well documented in earlier papers such as
[4]. The steps include moralization, triangulation, identify-
ing cliques and constructing the junction tree.

All our experiments were conducted on a junction tree.
Tools are available that convert arbitrary Bayesian networks
to a junction tree [12].

3 Parallel Algorithm

In our implementation, the Bayesian network is con-
verted into a junction tree and provided as input. A potential
table for any clique in a junction tree, lists the probabilities
associated with all the possible combinations of the random
variables in that clique. Our implementation accepts one
evidence variable coming in at the root of the junction tree.
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An extension of this, allowing the evidence to come in at
any node in the network, would involve re-rooting the junc-
tion tree so that the evidence node is at the head of the new
junction tree. The procedure for re-rooting the tree is de-
scribed in [5]. A parallel version of arc reversal may be
used. This technique is possible since in any Bayesian net-
work, the edges can be reversed, and the resulting network
would represent the same joint distribution as long as no
directed cycle is created [5].

3.1 Parallel Rewrite of CPT

The algorithm we implement overcomes the topological
dependencies of other parallel techniques, by the use of a
well known parallel technique: pointer jumping. Pointer
jumping has been used earlier in devising parallel algo-
rithms, list ranking, minimum spanning tree, etc .

The key to pointer jumping is to rewrite the conditional
probability table of each clique, in terms of its grandparent.
Mathematically this operation can be represented as:

P (A(j)|A(j − 2)) =
∑

Aj−1

P (A(j)|A(j − 1))P (A(j − 1)|A(j − 2)) (3)

The equation represents how the conditional probability ta-
ble for any node in a Bayesian network can be written in
terms of it’s grandparent. The same equation can be ex-
tended for junction trees; the potential table in a junction
tree being the product of the conditional probability tables
of the individual variables.

3.2 Parallel Update of Cliques

Each clique has rw entries in the potential table, which
are updated every iteration. Every iteration involves rewrit-
ing the potential table of a clique in terms of it’s grandpar-
ents. The first step involves dividing the potential entries
by the separator set entries, to obtain the conditional prob-
ability table. Mathematically this operation is represented
as:

φX = φX/φR (4)

where φX is the belief potential associated with cluster X
and φR is the potential associated with cluster R. φY is
the belief potential associated with Y , Y is the parent of
X . The final clique update operation: Step 5 of Figure 4 is
mathematically represented as:

φRold = φR (5)

φR =
∑

Y/R

φY (6)

φX =
φR

φrold
φX (7)

These operations are independent. Each clique update in-
volves dividing all the potential entries by the old sepera-
tor set entries, followed by multiplying them with the new
seperator set entries. In our implementation, when any pro-
cessor is idle, the independent clique updating operations
are parallelized, sending the required entries of the poten-
tial table to the idle processor.

Figure 1 presents the parallel algorithm illustrating the
pointer jumping operations. Figure 2 presents the parallel
algorithm including the node level parallelization.

3.3 Implementation Details

The MPI commands used were MPI Send and
MPI Recv. The MPI Send performs a basic send. We
specify the destination processor, the datatype of the in-
formation being sent and the number of bytes being sent.
The MPI Recv performs a basic receive. We once again
specify the source processor, the datatype and the number
of bytes being received. These commands are a part of
the MPICH library for C. The OpenMP directive used was
#pragma omp parallel. The connectivity matrix is a n×n
matrix, which stores information about the connections be-
tween various cliques. By traversing this matrix row-by-
row, it is possible to ascertain the parent of the parent of
any clique.

We created our own data structure, The data structure
stores the following parameters:

* The indices of the nodes in each clique
* The clique connectivity matrix
* The number of nodes in each clique
* The ranges of the nodes in each clique
* The entries in the potential tables
* The nodes in the separator sets
* The separator set potential tables

The input junction tree with n cliques is partitioned among
the p processors. Each processor is allocated n/p cliques,
and all the information about those cliques are stored in the
local memory of that processor. During the pointer jumping
operation, if the clique is present locally in the same pro-
cessor, the local memory is accessed to update the potential
tables. If the clique has been allocated to some other proces-
sor, the data structure is sent using MPI Send to the cor-
responding processor, where the updating of the potential
tables takes place. The number of operations taking place
during the updating of a clique is rw multiply and divide
operations, where w is the number of random variables in a
clique and r is the number of states of the random variable.
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1: Mark the Evidence Node/Root Clique as done
2: For all children of root clique compute

P(Aj)=P(Aj|Aroot=evidence)
3: While there is a clique not marked done
4: For each clique Aj in parallel
5: if potential table of parent clique not present in local

memory then
6: MPI SEND(potential table from parent clique to

clique)
7: end if
8: if parent of clique not marked done then
9: Compute Equation (2)

10: else
11: Divide all potential entries by old Separator Set en-

tries
12: Multiply all potential entries by new Separator Set

entries
13: end if
14: if parent(Aj) is marked done then
15: the mark Aj done
16: else
17: Ascertain parent(parent(clique)) from connectivity

matrix
18: Reassign parent(clique) to parent(parent(clique))
19: end if
20: Update all Separator Set entries

Figure 1. Algorithm for parallel exact infer-
ence

1: Mark the Evidence Node/Root Clique as done
2: For all children of root clique compute

P(Aj)=P(Aj|Aroot=evidence)
3: While there is a clique not marked done
4: For each clique Aj in parallel
5: if potential table of parent clique not present in local

memory then
6: MPI SEND(potential table from parent clique to

clique)
7: end if
8: if parent of clique not marked done then
9: OMP parallelize (public potential table)

10: Compute Equation (2)
11: else
12: Divide all potential entries by old Separator Set en-

tries
13: Multiply all potential entries by new Separator Set

entries
14: End OMP
15: end if
16: if parent(Aj)is marked done then
17: the mark Aj done
18: else
19: Ascertain parent(parent(clique)) from connectivity

matrix
20: Reassign parent(clique) to parent(parent(clique))
21: end if
22: Update all Separator Set entries

Figure 2. Algorithm for parallel exact infer-
ence incorporating loop level parallelization

3.4 Analysis

Theoretically best speedups are obtained for junction
trees with long linear chains compared to the straight for-
ward technique of partitioning. This is because the pointer
jumping technique overcomes the dependencies between
the cliques present in a long chain; whereas a straight-
forward parallel technique would have the same time com-
plexity as a serial code. Inference on a junction tree with n
cliques with n processors takes O(log n) time. Inference on
a balanced junction tree with n cliques takes O(log log n)
time. As the clique-width increases the execution time in-
creases. This is because the time complexity is exponential
with increase in clique width. The number of floating point
operations during each parallel clique update is rw: the rw

entries in the potential table are updated. The communica-
tion cost is separator set width * r2. The separator set
width can not exceed clique width w. During each clique
update, the conditional probability table of the parent clique
is accessed. The number of entries in a CPT for a random
variable with r states is r2. Hence the MPI communication
overheads are minimal as compared to the computational

cost during a single clique update. For a junction tree with
n cliques, using n processors, the worst-case running time
is

(log n) ∗ (rw + w ∗ r2) (8)

where w is the clique width and r is the maximum range or
number of states of the variable.

If p processors are used, the worst case running time is

n

p
(log n) ∗ (rw + w ∗ r2) (9)

Since w >> 2, the time complexity can be reduced as

n

p
(log n) ∗ rw (10)

4 Experimental Results

4.1 Computing Facilities

We used the USC SMP, the SDSC DataStar and the Ter-
aGrid for our experiments. The SMP at USC is a SunFire
15K system. It has 64 UltraSPARC III 1.2 GHz processors.
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It has a 150 MHz Sun Fireplane redundant 18X18 data, ad-
dress, and response crossbar interconnect. The operating
system is SUN OS 5.9 with MPICH for communication.
For larger experimental runs we accessed the computing re-
sources at the San Diego Supercomputer Center at UCSD.
One of the machines is a DataStar cluster. It has 1024 IBM
P655 nodes running at 1.5 GHz with 2 GB of memory per
processor. The theoreotical peak performance of this ma-
chine is 15 TeraFLOPS. It uses a federation interconnect.
Furthermore each channel is connected to a GPFS (paral-
lel file system) through a fiber channel. The second large
machine we ran the experiments on is the Teragrid machine
- Rachel, a SMP machine. It has 1.15 GHz EV7 proces-
sors with 256 Gbytes of shared memory. It runs Tru64 Unix
operating system with MPICH 1.2.6 for communication.

4.2 Experiments

We used a moderate sized input graphs of 512 and 1,024
nodes. We used three types of input junction trees: linear
networks, balanced networks and arbitrary networks. The
specification of the input graphs are as follows:
* Linear Junction Trees: Number of nodes = 512, 1024;
Number of States = 2, 4, 16; maxOutDegree = maxInDe-
gree=1; clique width = 2
* Balanced Junction T rees: Number of nodes =
512, 1024; Number of States = 2, 4, 16; maxInDe-
gree=1;maxOutDegree=2; clique width = 2
* Arbitrary Junction Tree: Number of nodes = 512,
1024; Number of States = 2, 4, 16; maxDegree=5; clique
width = 2
The junction trees were generated synthetically. We imple-
mented tree generating codes, where the number of nodes,
the number of states, maximum degree can be specified.
The potential tables were populated with random numbers
between 0 and 1. Functional verification of the exact infer-
ence implementation was performed by comparing results
for the junction trees against the Bayesian Network Tool-
box [13].

4.3 Scalability

4.3.1 Results of MPI based Implementation

Figure 3 presents the results obtained on the DataStar Clus-
ter for the three types of junction trees: linear, balanced and
random. Similar results were obtained for a 512 clique tree
on the DataStar and the Teragrid [14].

4.3.2 Results of OpenMP Implementation

We explored a possible avenue for speedup by paralleliz-
ing clique level updating. We implemented the parallel ex-
act inference algorithm in OpenMP and the execution times

for the linear, balanced and arbitrary junction trees of 1024
nodes are shown in Figure 4. We also integrated top level
pointer jumping with loop level OpenMP parallelization.
These results are shown in Figure 5 and 6.

We observed that for a given set of input junction trees,
the MPI implementation outperforms the OpenMP imple-
mentation by a factor of 1.5. We also observed that incorpo-
rating loop level parallelization in the OpenMP implemen-
tation, improves the time performance by a factor of 1.6.
We got a maximum speedup of 202 for a linear junction
tree, 181 for a balanced tree and 190 for a random tree.

4.4 Baseline comparisons

4.4.1 Automatic parallelization of serial code

To analyze scalability, we parallelized the serial version of
the exact inference algorithm by inserting OpenMP direc-
tives and ran it on 1 to 32 processors. We compared the
execution times obtained versus our implementation of the
exact inference algorithm (see Figure 7). Each junction tree
had 1024 nodes and 16 states. The OpenMP directives used
were pragma omp parallel and parallel for. When we
compare the execution times we see that the parallelized
serial code of the exact inference algorithm initially outper-
forms the implementation of the pointer jumping for exact
inference. However the pointer jumping extracts data in-
dependent parallelism at the clique level, hence it is more
scalable as seen in the results.

4.4.2 Probabilistic Network Library (PNL)

PNL[15] is a full function, free, open source, graphical
models library released under a BSD style license. PNL
has a parallel version which uses OpenMP.

We conducted experiments to explore the scalability of
the exact inference algorithm using the PNL library. The
inputs were linear, balanced and random graphs. The graph
had 1024 cliques, each random variable having 16 states.
We observed that the algorithm using PNL had less scalabil-
ity as compared to our parallel pointer jumping technique.
The results are shown in Figure 8.

5 Conclusion

We have presented an implementation of a parallel al-
gorithm for exact inference on junction trees. It accepts
an input as one evidence variable, coming in at the root of
the n variable junction tree and runs in n

p (log n) ∗ rw time.
We have demonstrated scalability of the parallel technique.
There are several avenues for improving and extending the
current implementation.
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Figure 3. Execution times using MPI on
DataStar
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Figure 4. Execution times using OpenMP on
DataStar
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Figure 5. Execution times using loop level
parallelization on DataStar
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Figure 6. Execution times using loop level
parallelization on DataStar

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06) 
0-7695-2612-8/06 $20.00 © 2006 IEEE 



Li
ne

ar
 J

un
ct

io
n 

Tr
ee

100

10000

1 10

Number of processors

Ex
ec

ut
io

n 
tim

e
in

 s
ec

on
ds

Scalable Parallel
Implementation of Exact
Inference
Serial Exact Inference
(parallelized)

Figure 7. Execution times on linear junction
tree

100

1000

1 10

Number of processors

E
xe

cu
tio

n 
tim

e 
in

 s
ec

on
ds

PNL: Linear
PNL: Balanced
PNL: Random

Figure 8. Execution time for exact inference
using PNL

We can extend the number of the evidence variables and
we need not limit them to coming at the root of the junc-
tion tree. We can also parallelize the operations involved in
converting the Bayesian network to a junction tree. There
are opportunities for exploring load balancing, when clique
sizes are unequal. We expect to include additional results in
the full version of the paper [14].
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