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Abstract

Different parallelization methods vary in their system
requirements, programming styles, efficiency of exploring
parallelism, and the application characteristics they can
handle. Different applications can exhibit totally different
performance gains depending on the parallelization method
used. This paper compares OpenMP, MPI, and Strings( A
distributed sharved memory) for parallelizing a complicated
tribology problem. The problem size and computing infras-
tructure are changed and their impacts on the paralleliza-
tion methods are studied. All of the methods studied exhibit
good performance improvements. This paper exhibits the
benefits that are the result of applying parallelization tech-
niques to applications in this field.

Key Words: Molccular Dynamics, OpenMP, MPI, Dis-
tributed Sharcd Mcmory.

1 Introduction

Traditionally supercomputers were the tools used to
solve so-called “Grand challenge” problems. Recent im-
provements in processors and networks have provided an
opportunity to conduct these experiments within an every-
day computing infrastructure by utilizing clusters of sym-
metrical multiprocessors (SMPs) or even networks of work-
stations (NOWSs). Friction, the resistance to relative mo-
tion between sliding surfaces that are in contact, is omno-
present in human life and is an expensive problem facing
the industry today. Understanding the origin of frictional
forces [14] and energy dissipation during this process [15]
has both theoretical and practical importance and has, there-
fore, attracted considerable interest in the study of tribology.
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With recent developments of experimental techniques [16]
and theories [14], physicists and chemists have been able
not only to probe the atomic-level friction process but also
to “see” what really takes place at the sliding interface via
computer simulation.

In a MD simulation, the motion of each atom is gov-
erned by Newton’s equations of motion and their positions
are determined by the time evolution of the Newton’s equa-
tion. Ateach time integration step, the force between atoms,
the potential energies and kinetic energies are evaluated.
The computational effort grows linearly with the number
of Newton’s equations, so it is an ideal method to treat mid-
sized systems (e.g. 10% atoms). However, there are gener-
ally two factors limiting the application of MD to large scale
simulations (e.g. 108 atoms). First, the time step of an inte-
gration in a MD simulation is usually about a femtosecond
(10715 5). In contrast to this, the time scale for tribology ex-
periments is at minimum, in nanoseconds (107? s). As are-
sult a large number of integration steps are required to reach
a desired total evolution time. Second, when the number of
atoms in the simulation system increases, the computation
time for force evaluation increases rapidly.

In this paper, we report a practical implementation of
parallel computing techniques for performing MD simu-
lations of friction forces between sliding hydroxylated a-
aluminum oxide surfaces. Besides system requirements,
different parallelization approaches vary in programming
style and performance gain. Some methods enable pro-
grammers to write code easily, or even provide paralleliza-
tion service completely transparent to programmers. Other
methods might require programmers to put a significant ef-
fort in order to achieve substantial gain. The tribology code
is written using OpenMP, MPI, and Strings (a software dis-
tributed shared memory). OpenMP can be used only for
shared memory systems (single SMPs) whereas MPI and
Strings can be used for cluster of SMPs as well. The pro-
gramming paradigms in each of these are very different;
with labor requirements ranging from “little” for OpenMP
to “large” for MPI.
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The remainder of this paper is organized as follows: Sec-
tion 2 describes various parallelization approaches in high-
performance computing, scction 3 discusscs the molecular
dynamics program in detail and how we plan to parallclize
it. In Scction 4 we present some experiment results and dis-
cuss performance benefits. We wrap up with conclusions
and continuing work in Section 5.

2 Parallelization Approaches

There are several approaches suitable for transforming
sequential Tribology programs into parallel ones. These
approaches impose different requirements on compilers, 1i-
braries, and runtime support systems. Some of them can
execute only on shared memory multiprocessors whereas
others can achieve speedups on networks of machines.

2.1 Parallelization with vendors’ Support

Some vendors, such as Sun Microsystems, provide com-
piler or library options for parallel processing. Sun MP C is
an extended ANSI C compiler that can compile code to run
on SPARC shared memory multiprocessor machines. The
compiled code, may run in parallel using the multiple pro-
cessors on the system [4].

The MP C compiler gencerates parallel code for those
loops that it determines are safe to parallelize. Typically,
these loops have iterations that are independent of each
other. For such loops, it does not matter in what order the
iterations are executed or if they are executed in parallel.
This compiler is also able to perform extensive automatic
restructuring of user code. These automatic transformations
expose higher degrees of loop level parallelization. They in-
clude: loop interchange, loop fusion, loop distribution and
software pipelining. This C compiler provides explicit and
automatic capabilities for parallelizing loops.

2.2 OpenMP

As an emerging industry standard, OpenMP is an Ap-
plication Program Interface (API) that may be used to ex-
plicitly direct multi-threaded, shared memory parallelism in
C/C++ and Fortran on all architectures, including Unix plat-
forms and Windows NT platforms. It is comprised of three
primary API components: compiler directives, runtime li-
brary routines, and environment variables. OpenMP is a
portable, scalable model that gives shared-memory parallel
programmers a simple and flexible interface for developing
parallel applications for platforms ranging from the desktop
to the supercomputer [6]. OpenMP utilizes the fork and join
model of parallel computing (see Figure 1).

Iaster thread

Master thread

| Parallel constructs |

Figure 1. OpenMP execution model

23 MPI

MPI is a message-passing application programmer inter-
face, together with protocol and semantic specifications for
how its fcaturcs must behave in any implementation (as a
message buffering and message delivery progress require-
ment) [9]. The main advantages of establishing a message-
passing standard are portability and ease-of-use. In a dis-
tributed memory communication environment in which the
higher level routines and/or abstractions are build upon
lower level message passing routines the benefits of stan-
dardization are particularly apparent. Furthermore, the defi-
nition of a message passing standard provides vendors with
a clearly defined base set of routines that they can imple-
ment efficiently, or in some cases provide hardware support
for, thereby enhancing scalability [8].

2.4 Distributed Shared Memory (DSM) systems

Developing parallel applications using Distributed
Shared Memory systems is easier when compared to de-
veloping the same applications using MPI. Since hardware
shared memory machines do not scale well and are rela-
tively expensive to build, software distributed shared mem-
ory (DSM) systems are gaining popularity for providing a
logically shared memory over physically distributed mem-
ory. These software DSM systems combine programming
advantages of shared memory and the cost advantages of
distributed memory. The programmer is given the illusion
of a large global address space encompassing all available
memory, thereby eliminating the task of explicitly moving
data between processes located on separate machines.

Research projects with DSMs have shown good perfor-
mance, for example TreadMarks [12], Millipede [11] and
Strings [13]. This model has also been shown to give good
results for programs that have irregular data access patterns
which cannot be analyzed at compile time, or indirect data
accesses that are dependent on the input data-set.

We parallelize the tribology program by using a multi-
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threaded DSM, Strings, designed for clusters of Symmet-
rical Multiprocessors (SMPs). Strings was developed at
Wayne State University and consists of a library that is
linked with a sharcd memory paralle]l program. Strings is
built using POSIX threads, which can be multiplexed on
kernel lightweight processes. The kernel can schedule these
lightweight processes across multiple processors on sym-
metrical multiprocessors (SMPs) for better performance.
Therefore, in Strings, each thread could be assigned to any
processor on the SMP if there is no special request, and all
local threads could run in parallel if there are enough pro-
cessors. Strings is designed to exploit data parallelism by
allowing multiple application threads to share the same ad-
dress space on a node. Additionally, the protocol handler
is multi-threaded. The overhead of interrupt driven network
I/0 is avoided by using a dedicated communication thread.
Strings is designed to exploit data parallelism at the appli-
cation level and task parallelism at the run-time level.

Strings starts a master process that forks child processes
on remote nodes using rsh(). Each of these processes cre-
ates a dsm_server thread and a communication thread. The
forked processes then register their listening ports with the
master. The master process enters the application proper
and creates shared memory regions. It then creates appli-
cation threads on remote nodes by sending requests to the
dsm_server threads on the respective nodes. Shared memory
identifiers and global synchronization primitives are sent as
part of the thread create call. The virtual memory subsys-
tem is uscd to enforce coherent access to the globally shared
regions.

24.1 Shared memory

Strings implements shared memory by using the mmap()
call to map a file to the bottom of the stack scgment. Al-
lowing multiple application threads on the same node lcads
to a peculiar problem. Once a page has been fetched from a
remote node, its contents must be written to the correspond-
ing memory region, so the protection has to be changed to
writable. At this time no other thread should be able to ac-
cess this page. Suspending all kernel level threads can lead
to a deadlock and also reduce concurrency. In Strings, ev-
ery page is mapped to two different addresses. It is then
possible to write to the shadow address without changing
the protection of the primary memory region.

A release consistency model using an update protocol
has been implemented. When a thread tries to write to a
page, a twin copy of the page is created. When either a lock
is released or a barrier is reached, the difference (diff) be-
tween the current contents and its twin are sent to threads
that share the page. Multiple diffs are aggregated to de-
crease the number of messages sent.

3 Molecular Dynamics
3.1 Model system

The sequential code has been used to study the friction
force of sliding hydroxylated a-aluminum surfaces. Struc-
ture of an a-aluminum surface has been described in detail
before [18]. The model system consists of a smaller block
of Al»Os surface (upper surface) moving on a much larger
slab of Al,O3 surface(bottom surface). The broken bonds
at the contacting surfaces are saturated by bonding with H
atoms. To simulate experiments, pressure is applied on top
of the upper surface and the driving force that moves the up-
per surface with respect to the bottom surface is added to the
system. By selecting “iop” options as described in the code
[26], different pressure and driving forces, i.e. different en-
ergy dissipative systems, are selected. Besides the driving
force that moves the upper sliding surface, each atom in
the system is exposed to the interaction with other atoms.
The general types of interaction can be divided into two
categories: intramolecular bonded and inter-molecular non-
bonded forces. The bonded forces are represented by in-
ternal coordinate bond distance, bond angles, and constants
determined by the interacting atoms. The inter-molecular
forces are Van der Waals interaction. The simulation are
carricd out with a constant number of atoms, constant vol-
ume and constant temperature (NVT). Temperature control
is achicved by Berenden’s method [19]. The integration of
Newton’s equation of motion is done by using Velocity Ver-
let algorithm [20].

3.2 Simulation procedure

The simulation is carried out by solving the classical
equations of motion. Initial velocities are either set to zero
or calculated by the program according to the user’s de-
mand. Newton’s equation is numerically integrated to pre-
dict the position of all atoms in the next short period of time.
The atomic forces are evaluated during each of the integra-
tion step. In the hydroxylated a-alumina systems, the type
of forces are bonded and non-bonded. The sequential code
used in the tribology study here has the structure depicted
in Figure 2 [26].

3.2.1 Bonded forces calculation

The interactions between adjacent atoms connected by
chemical bonds are described by bonded forces. The
bonded forces are two-centered harmonic stretches with
three centered harmonic bends. Their interaction potential
functions are modelled by harmonic potential energy func-
tions
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Figure 2. Flow chart of MP simulation
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Vstr = ikstr(r - TO)

where kg, 7 and r¢ are bond stretching force constant,
bond length, and equilibrium bond distance and

(D

1 .
Vo = Sko(6 —60)° @)
where kg, 6 and f are the bond angle bending force con-
stant, bond angle, and equilibrium bond angle, respectively.
The forces are assigned to each involved atom by taking
the first derivatives of the potential.

3.2.2 The nonbonded calculation

The nonbonded interactions here contain only Lennard-
Jones type of potentials
Vi (rij) = de[ 5 — 5] 3)
Ty Tij

where r;; is the distance between atom 7 and atom j. &
and o represent the nonbonded iteraction parameters.

Although the computation effort for bonded interactions
grows linearly with the size of the system, the nonbonded
interaction exhibits a quadratic dependence on the number
of atoms. Hence, the evaluation of the nonbonded Lennard-
Jones terms are generally the most computationally inten-
sive constituent in the MD code.

Lennard-Jones type of interaction is long range interac-
tion that vanishes slowly at large distance. To reduce the

computation effort for calculating the small forces on atoms
at large distance, a cut-off radius is generally introduced. A
neighbor scarch is carricd out to find the atoms within the
cut off radius. By introducing the cut off radius the com-
putational cffort scales lincarly with the number of atoms.
However, the nonbonded force is still the most time con-
suming part in the each iteration of the force evaluation.

3.3 Tmplementation

There are various data partition schemes in parallel
molecular dynamics simulation[8-12]. In general three par-
allel algorithms are often used to decompose and distribute
the computational load.

First, the number of atoms in the simulation system is
equally divided and assigned to each processor; Second,
the forces of interaction are equally divided and assigned
to each processor; Third, the spacial region is equally di-
vided and assigned to each processor. Each algorithm has
its advantages and therefore they are often implemented ac-
cording to the specific problem under study, i.e., system size
and evolution time. For example, when use MPI to imple-
ment the third method, the molecular system are divided
into subspaces, each processor calculates the forces on the
atoms within the subspace and update the corresponding po-
sitions and velocities. However, the extent of forces always
cover the neighboring subspaces or even the whole space,
the updating of forces on atoms requires communication at
least among neighboring subspaces at each integration step.
The cost increases with number of processors and increase
in size of integration steps. Therefore, this algorithm is of-
ten used for large molecular system with relatively fewer
integration steps.

In the tribology application considered here, the evalu-
ation of forces (98-99% cxccution time) is the most time
consuming. So the parallelization is focused on evaluation
of forces. To compare the performance between OpenMP,
MPI, and DSM Strings methods, the basic parallel algo-
rithm is maintained. Forces on atoms are evenly assigned to
each processor. For bonded forces, the computational load
on each processor/threads equals the number of harmonic
stretch forces divided by the number of processors/threads
in MPI, OpenMP, and Strings. For the nonbonded force
terms, there are two situations. The nonbonded interac-
tion with the same surfaces are distributed to each pro-
cessor/thread in the same way as for bonded forces. The
Lennard-Jones interactions between different surface atoms
are calculated by searching the neighbor list and therefore
the atom dividing scheme is employed. There are obvi-
ous shortcomings for this simple algorithm for both MPI
and DSM Stings implementation. Even though the force
calculation is divided into small parts, the communication
between all processors to update the coordinates has to be
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done at each integration step. Therefore, it is necessary for
comparison to be done for different size of system and dif-
ferent time integration step.

4 Experiments and Analysis

The computing environment used and the analysis of
data from the experiments is described in this section.

4.1 Experiment Infrastructure

The experiments were carried out using a cluster of
SMPs. The SMPs used were a SUN Enterprise E6500
with 14 processors (4Gbytes of RAM) , and three SUN En-
terprise E3500s with 4 processors (and 1Gbytes of RAM)
each. Each of these processors were 330 MHz Ultra-
Sparclls. The operating system on the machines was Sun
Solaris 5.7. The interconnect was fast ethernet using a Net-
Gear switch.

The MPICH implementation was used for MPI. The
OpenMP code was compiled using the SUN High Perfor-
mance Compiler. Both the MPI and the Strings version of
the application were also run on the large SMP in order to
compare their performance with OpenMP. Two data sizes,
one small another large were used. The comparisons were
done for the application on one node using one, two, four
and eight processors each, on two nodes with one, two and
four processors each and finally on four nodes with one, two
and four processors each.

4.2 Results and Analysis

This scction describes the results. In case of onc large
SMP, it can be scen from Figures 3 and 4, that immate-
rial of the problem size, the results arc consistent. OpenMP
outperforms the others on the large SMP. For OpenMP, the
SUN High Performance Compiler was used, which was able
to optimize it for the SUN Enterprise machines. For MPI,
we used the MPICH implementation, which being portable
loses out on performance compared to OpenMP. The per-
formance for MPI and Strings is very similar on one SMP.

When considering multiple SMPs, we could only use the
MPI version and the Strings version of the application. We
used up to four SMPs each with four processors. Again for
both program sizes, the results are consistent. For MPI, it
was observed that performance degraded when we used 4
processes per nodes, for both 2 nodes and 4 nodes. This can
be directly attributed to the substantial increase in commu-
nication as seen from Figures 7 and 8. Another observation
was that for MPI, increasing the number of processes per
machine increases the total communication time. This is be-
cause the MPI code uses MPI_Reduce and MPI_Broadcast
calls at the end of each computation cycle. This is an area

where performance could be improved by using other MPI
primitives.

For the distributed shared memory (Strings) version of
the application, it can be scen that increasing the number
of compute threads always results in an increase in perfor-
mance. As we increase the number of nodes that the ap-
plication uses, the performance degrades as this increases
communication. For example, the application on 1 machine
and 4 compute threads performs better than on 2 machines
with 2 compute threads, which in turn is better than 4 ma-
chines with 1 compute thread. This shows that within an
SMP, Strings is able to effectively use shared memory to
communicate. Another interesting observation was that the
total execution time when using 4 compute threads on 4 ma-
chines, is very close to the execution time when using 2
compute threads on 4 machines. It can be seen from Fig-
ure 10, that increasing the number of nodes increases the
number of page faults, both read and write.

In the final analysis, it can be seen that Strings outper-
forms MPI for this application by a big margin when run-
ning on a cluster of SMPs. The fraction of time spent in
communication for Strings is much less than that of MPI
(see Figures 7, 8, and 9). Also using the SUN High Perfor-
mance Compiler and OpenMP provides the best results for
a single SMP.

64

DSM Strings

32

Execution Time (s)

2 4 6 8
Number of Processes/Threads

Figure 3. The smaller MD program executed
oh 1 node.

5 Conclusion and future work

This paper compared OpenMP, MPI, and Strings based
parallelization for a tribology application. These par-
allelization methods vary in their system requirements,
programming styles, efficiency of exploring parallelism,
and the application characteristics they can handle. For
OpenMP and Strings, one writes threaded code for an
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64
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Number of Processes/Threads

Figure 4. The bigger MD program executed on
1 node.

128

MPI - 2 nodes ——
Strings - 2 nodes ----x-—
MPI - 4 nodes -

Strings - 4 nodes @

Execution Time (s)

1 2 3 4
Number of Threads per Node

Figure 5. The smaller MD program executed
on 2 and 4 nodes.

SMP and they are relatively easy to program. MPI on the
other hand requires writing a program with message passing
primitives and is more cumbersome to program. The effort
in programming is least for OpenMP and most for MPI. For
SMPs, the SUN High Performance Compiler and OpenMP
provides the best results for a single SMP. For cluster of
SMPs, Strings outperforms MPI for this application by a
big margin when running on a cluster of SMPs.

It appears that combining OpenMP and Strings would
yield best results for a cluster of SMPs. We are currently
implementing OpenMP and Strings together. Also, we are
looking into different types of parallelization of the tribol-
ogy code. One method would divide the atoms in the sim-
ulations equally among the processors. Another method
would divide the spatial region equally among the proces-
Sors.

4096

MPI - 2 nodes ——
Strings - 2 nodes -
MPI -4 nodes -

Strings - 4 nodes e

2048

1024 e

Execution Time (s)

512 e T — —

256

Number of Threads per Node

Figure 6. The bigger MD program executed on
2 and 4 nodes.
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