
Refactoring Sequential Java Code for Concurrency via Concurrent Libraries

Danny Dig, John Marrero, Michael D. Ernst
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Laboratory
{dannydig,marrero,mernst}@csail.mit.edu

Abstract

Parallelizing existing sequential programs to run ef-
ficiently on multicores is hard. The Java 5 package
java.util.concurrent (j.u.c.) supports writing concur-
rent programs: much of the complexity of writing thread-
safe and scalable programs is hidden in the library. To use
this package, programmers still need to reengineer existing
code. This is tedious because it requires changing many
lines of code, is error-prone because programmers can use
the wrong APIs, and is omission-prone because program-
mers can miss opportunities to use the enhanced APIs.

This paper presents our tool, CONCURRENCER, that enables
programmers to refactor sequential code into parallel code
that uses three j.u.c. concurrent utilities. CONCURRENCER

does not require any program annotations. Its transfor-
mations span multiple, non-adjacent, program statements.
A find-and-replace tool can not perform such transforma-
tions, which require program analysis. Empirical evalua-
tion shows that CONCURRENCER refactors code effectively: CON-

CURRENCER correctly identifies and applies transformations
that some open-source developers overlooked, and the con-
verted code exhibits good speedup.

1 Introduction

Users expect that each new generation of computers runs
their programs faster than the previous generation. The
computing hardware industry’s shift to multicore processors
demands that programmers find and exploit parallelism in
their programs, if they want to reap the same performance
benefits as in the past.

It is arguably easier to design a program with concur-
rency in mind than to retrofit concurrency later [6, 10].
However, most desktop programs were not designed to be
concurrent, so programmers have to refactor existing se-
quential programs for concurrency. It is easier to retrofit
concurrency than to rewrite, and retrofitting is often possi-
ble.

The dominant paradigm for concurrency in desktop pro-
grams is multithreaded programs where shared-memory ac-
cesses are protected with locks. However, programming
with locks is error-prone: too many locks can slow down
or even deadlock an application, while too few locks result
in data races.

Java 5’s java.util.concurrent (j.u.c.) package sup-
ports writing concurrent programs. Its Atomic* classes offer
thread-safe, lock-free programming over single variables.
Its thread-safe abstract data types (e.g., ConcurrentHash-
Map) are optimized for scalability.

Java 7 will contain the ForkJoinTask framework [8,
11] for fine-grained parallelism. Many computationally-
intensive problems take the form of recursive divide-and-
conquer. Classic examples include sorting (e.g., merge-
sort, quicksort), searching, and many data structure or im-
age processing algorithms. Divide-and-conquer algorithms
are good candidates for parallelization since the subprob-
lems can be solved in parallel.

In order to benefit from Java’s concurrent utilities and
frameworks, the Java programmer needs to refactor exist-
ing code. This is tedious because it requires changing
many lines of code. For example, the developers of six
widely used open-source projects changed 1019 lines when
converting to use AtomicInteger and ConcurrentHashMap.
Second, manual refactoring is error-prone because the pro-
grammer can choose the wrong APIs among slightly similar
APIs. In the above-mentioned projects, the programmers
four times mistakenly used getAndIncrement API meth-
ods instead of incrementAndGet, which can result in off-
by-one values. Third, manual refactoring is omission-prone
because the programmer can miss opportunities to use the
new, more efficient API methods. In the same projects, pro-
grammers missed 41 such opportunities.

This paper presents our approach for incrementally
retrofitting parallelism through a series of behavior-
preserving program transformations, namely refactorings.
Our tool, CONCURRENCER, enables Java programmers to refac-
tor their sequential programs to use j.u.c. utilities: the
programmer selects shared data and a target refactoring, and

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE 397

CONCURRENCER analyzes all accesses to the shared data and ap-
plies the transformation. Ultimately, it is the programmer’s
responsibility to identify all shared data and target it with
the refactorings.

Currently, CONCURRENCER supports three refactorings: (i)
CONVERT INT TO ATOMICINTEGER, (ii) CONVERT HASHMAP TO CONCUR-

RENTHASHMAP, and (iii) CONVERT RECURSION TO FORKJOINTASK. Al-
though these are not all the refactorings that one needs for
parallelization, the first two refactorings are among the most
commonly used in practice, as evidenced by our study [3]
of how open-source developers parallelized five projects.
These three refactorings are are a proof-of-concept for the
toolset that one needs for parallelization.

The first refactoring, CONVERT INT TO ATOMICINTEGER, enables
a programmer to convert an int field to an AtomicInteger,
a utility class that encapsulates an int value. The encap-
sulated field can be safely accessed from multiple threads,
without requiring any synchronization code. Our refactor-
ing replaces all field accesses with calls to AtomicInteger’s
thread-safe APIs. For example, it replaces expression f =

f + 3 with f.addAndGet(3) which executes atomically.
The second refactoring, CONVERT HASHMAP TO CONCURRENT-

HASHMAP, enables a programmer to convert a HashMap field to
ConcurrentHashMap, a thread-safe, highly scalable imple-
mentation for hash maps. Our refactoring replaces map up-
dates with calls to the APIs provided by ConcurrentHash-

Map. For example, a common update operation is (i) check
whether a map contains a certain key, (ii) if not present,
create the value object, and (iii) place the value in the map.
CONCURRENCER replaces such an updating pattern with a call to
ConcurrentHashMap’s putIfAbsent which atomically exe-
cutes the update, without locking the entire map.

The third refactoring, CONVERT RECURSION TO FORKJOINTASK,
enables a programmer to convert a sequential divide-and-
conquer algorithm to a parallel algorithm. The parallel al-
gorithm solves the subproblems in parallel using the Fork-
JoinTask framework. Using the skeleton of the sequential
algorithm, CONCURRENCER extracts the sequential computation
into tasks that run in parallel and dispatches these tasks to
the ForkJoinTask framework.

Typically a user would first make a program thread-safe,
i.e., the program has the same semantics as the sequen-
tial program even when executed under multiple threads,
and then make the program run concurrently under multi-
ple threads. CONCURRENCER supports both kinds of refactor-
ings. The first two refactorings are “enabling transforma-
tions” that make a program thread-safe. The third refactor-
ing makes a sequential program run concurrently.

The transformations performed by these refactorings re-
quire matching certain code patterns which can span several
non-adjacent program statements, and they require program
analysis which uses data-flow information. Such transfor-
mations can not be safely executed by find-and-replace.

This paper makes the following contributions:

• Approach. We present an approach for retrofitting
parallelism into sequential applications through auto-
mated, but human-initiated, program transformations.
Since the programmer is expert in the problem domain,
she is the one most qualified to choose the code and the
program transformation for parallelizing the code.

• Tool. We implemented three transformations for us-
ing thread-safe, highly scalable concurrent utilities and
frameworks. Our tool, CONCURRENCER, is conveniently
integrated within Eclipse’s refactoring engine. Since
CONCURRENCER is neither complete, nor sound, it can not
guarantee absolute thread-safety. Nevertheless, it is
safer and faster than making all the changes by hand.
CONCURRENCER can be downloaded from:
http://refactoring.info/tools/Concurrencer

• Empirical Results. We used CONCURRENCER to refac-
tor the same code that the open-source developers of
6 popular projects converted to AtomicInteger and
ConcurrentHashMap. By comparing the manually vs.
automatically refactored output, we found that CONCUR-

RENCER applied all the transformations that the develop-
ers applied. Even more, CONCURRENCER avoided the er-
rors which the open-source developer committed, and
CONCURRENCER identified and applied some transforma-
tions that the open-source developers omitted. We also
used CONCURRENCER to parallelize 6 divide-and-conquer
algorithms. The parallelized algorithms perform well
and exhibit good speedup. These experiences show
that CONCURRENCER is useful.

2 Convert Int to AtomicInteger

2.1 AtomicInteger in Java

The Java 5 class library offers a package j.u.c.atomic

that supports lock-free programming on single variables.
The package contains wrapper classes over primitive

variables, for example, an AtomicInteger wraps an int

value. The main advantage is that update operations execute
atomically, without blocking. Internally, AtomicInteger

employs efficient machine-level atomic instructions like
Compare-and-Swap that are available on contemporary pro-
cessors. Using AtomicInteger, the programmer gets both
thread-safety (built into the Atomic classes) and scalabil-
ity (the lock-free updates eliminate lock-contention under
heavy accesses [6]).

2.2 Code Transformations

A programmer who wanted to use CONCURRENCER to make
all accesses to an int thread-safe would start by selecting

398

Figure 1: Using CONCURRENCER to convert an int to
AtomicInteger in Apache Tomcat. The screenshot shows
a preview of the changes.

the field and invoking the CONVERT INT TO ATOMICINTEGER refac-
toring. CONCURRENCER changes the declaration type of the int

field to AtomicInteger and replaces all field updates with
their equivalent atomic API methods in AtomicInteger.

Figure 1 shows how CONCURRENCER refactors some code
from Apache Tomcat.

Initialization. Because the refactored value field is an
AtomicInteger object, CONCURRENCER initializes it in the field
initializer (otherwise a NullPointerException is thrown
the first time that a method is invoked on value). CONCUR-

RENCER uses the field initializer expression or the implicit ex-
pression ‘0’.

Field Accesses. Table 1 shows how CONCURRENCER re-
places field accesses with AtomicInteger’s atomic APIs.
AtomicInteger only provides APIs for replacing infix ex-
pressions involving the + operator. The last rows show that
CONCURRENCER converts a subtract expression into an addi-
tion expression. If the program contains updates involving
other operators (e.g., multiplication, division), then CONCUR-

RENCER warns the user that these update expressions cannot
be made thread-safe using AtomicInteger. The reason is
that AtomicInteger has no atomic APIs for these updates.

Synchronization. CONCURRENCER converts both a sequen-
tial program into one which is thread-safe, and also an
already thread-safe program into one which is more scal-
able. If the original code contains synchronized accesses
to the int field, CONCURRENCER tries to remove the syn-
chronization since this becomes superfluous after the con-
version to AtomicInteger (thread-safety is built into the
AtomicInteger).

Conservatively, CONCURRENCER only removes the lock if
(i) the refactored code corresponding to the original syn-
chronized block contains only one call to AtomicInteger’s

Access int AtomicInteger

Read f f.get()

Write f = e f.set(e)

Cond. Write if (f==e) f=e1 f.compareAndSet(e,e1)

Prefix Inc. ++f f.incrementAndGet()

Postfix Inc. f++ f.getAndIncrement()

Infix Add f = f + e f.addAndGet(e)

Add f += e f.addAndGet(e)

Prefix Dec. --f f.decrementAndGet()

Postfix Dec. f-- f.getAndDecrement()

Infix Sub. f = f - e f.addAndGet(-e)

Subtract f -= e f.addAndGet(-e)

Table 1: CONCURRENCER replaces accesses to field f with
calls to AtomicInteger APIs (e denotes an expression).

APIs, and (ii) the original synchronization block accesses
one single field. The first condition ensures that a thread
interleaving does not occur between two consecutive calls
to atomic APIs. The latter ensures the multivariable in-
variants are still preserved, since AtomicInteger ensures
thread-safety for only one single field.

For example, CONCURRENCER removes the synchronization
in the code fragment below:

synchronized(lock){
value = value + 3;

}

but does not remove synchronization for the code fragment
below:

synchronized(lock){
value = value + 3;
..............
value ++;

}

neither for the code fragment below:

synchronized(lock){
value = value + 3;
anotherField ++;

}

3 Convert HashMap to ConcurrentHashMap

3.1 ConcurrentHashMap in Java

The j.u.c. package contains several concurrent collec-
tion classes. ConcurrentHashMap is a thread-safe imple-
mentation of HashMap.

Before the introduction of j.u.c., a programmer
could create a thread-safe HashMap using a synchro-
nized wrapper over a HashMap (e.g., Collections-

.synchronizedMap(aMap)). The synchronized HashMap

achieves its thread-safety by protecting all accesses to the
map with a common lock. This results in poor scalability

399

when multiple threads try to access different parts of the
map simultaneously, since they contend for the lock.

ConcurrentHashMap uses a more scalable locking strat-
egy. All readers run concurrently, and lock-striping allows
a limited number of writers to update the map concurrently.
The j.u.c. implementation uses N locks (the default value
is 16), each of them guarding a part of the hash buckets. As-
suming that the hash function spreads the values well, and
that keys are accessed randomly, this reduces the contention
for any given lock by a factor of N .

ConcurrentHashMap includes the API methods offered
by HashMap. In addition, it contains three new APIs
putIfAbsent(key, value), replace(key, oldValue,

newValue), and a conditional remove(key, value). Each
of these new APIs:

• supersedes several calls to HashMap operations, and
• executes atomically.

For example, putIfAbsent (1) checks whether the
map contains a given key , and (2) if absent, inserts the
〈key , value〉 entry.

Replacing a synchronized HashMap with Concurrent-

HashMap offers dramatic scalability improvements [6].

3.2 Code Transformations

To make all accesses to an HashMap field thread-safe, a
pogrammer would select the field and invoke the CONVERT

HASHMAP TO CONCURRENTHASHMAP refactoring.
Initialization and Accesses. CONCURRENCER changes the

declaration and the initialization of the field. Because
HashMap and ConcurrentHashMap implement the same in-
terface (Map), initialization and map accesses remain largely
the same.

Map Updates. CONCURRENCER detects update code pat-
terns and replaces them with the appropriate Concurrent-

HashMap API method.
Figure 2 shows the basic update patterns that CONCUR-

RENCER replaces with map.putIfAbsent(key, value). The
patterns have a similar structure: (1) check whether the map
contains a certain key, and (2) depending on the result, in-
voke put(key, value). This structure has small variations.
For example, the check can invoke containsKey (like in (i)
and (ii)), or get (like in (iii) and (iv)). A temporary variable
might hold the result of the check (like in (ii) and (iv)).

Before invoking putIfAbsent, the value to be inserted
must be available. If the value to be placed in the
〈key , value〉map entry is simply created by invoking a con-
structor (e.g., map.put(key, new ClassX())), then, in the
refactored code, CONCURRENCER constructs the value similarly
(e.g., map.putIfAbsent(key, new ClassX())). However,
the creational code for value may span multiple statements,
and the pattern elements may not be on adjacent statements.

(i) if (!map.containsKey(key))
map.put(key, value);

(ii) boolean keyExists = map.containsKey(key);
if (!keyExists)

map.put(key, value);

(iii) if (map.get(key) == null)
map.put(key, value);

(iv) Object testValue = map.get(key);
if (testValue == null)

map.put(key, value);

Figure 2: Basic code patterns that are replaced with
map.putIfAbsent(key, value).

parameters:
Statements: BEFORE PUT , AFTER PUT
variables: testValue , newValue

if !isReadIn(AFTER PUT , testValue) then1

deleteVariable(testValue);2

else3

//testValue is read later, do not delete it4

if isWrittenIn(BEFORE PUT , testValue)5

∧return(putIfAbsent()) == success then6

testValue ← newValue7

Figure 3: The algorithm for deciding whether to delete
from the refactored code the testValue variable (i.e., the
variable that holds the presumed value associated with
a key). BEFORE PUT denotes statements inside the
if statement that preced the call to put. AFTER PUT
denotes statements that succeed the call to put (both in-
side and outside the if statement). If testValue can not be
deleted, CONCURRENCER generates the code in lines 6–7 that
conditionally reassign testValue .

Consider the example in Figure 4, whose left side high-
lights an example of pattern (iv) in Figure 2. On the
right side of Figure 4, CONCURRENCER has extracted the cre-
ational code (lines 9–12 on the left side) into a creational
method (createTimeZoneList), calls it and stores the re-
sult in the variable newTZList (from hereon referred as the
newValue variable), and then passes the newValue as the
argument to putIfAbsent. Since the variable timeZoneList
(from hereon referred as testValue) is no longer passed to
putIfAbsent, can it be deleted?

Figure 3 gives the analysis to determine whether to delete
the testValue variable. CONCURRENCER checks whether the
testValue variable is not live (i.e., not in use) after the
call to put (from hereon these statements are referred as
AFTER PUT , e.g., lines 15–19 in Fig. 4), thus it can
be deleted. Otherwise, if the testValue is reassigned in
the BEFORE PUT statements (i.e., inside the pattern’s
if statement, but before calling map.put (e.g., lines 9–12

400

1 // before refactoring
2 private HashMap<Locale, String[]> timeZoneLists;
3 private String[] timeZoneIds;
4

5 public String[] getTimeZoneList() {
6 Locale locale = JiveGlobals.getLocale();

7 String[] timeZoneList = timeZoneLists.get(locale);

8 if (timeZoneList == null) {

9 timeZoneList = new String[timeZoneIds.length];
10 for (int i = 0; i < timeZoneList.length; i++) {
11 . . . // populate timeZoneList
12 }
13

14 timeZoneLists.put(locale, timeZoneList);

15 . . . // Code AFTER_PUT
16 }
17

18 return timeZoneList;
19 }

// after refactoring
private ConcurrentHashMap<Locale, String[]> timeZoneLists;
private String[] timeZoneIds;

public String[] getTimeZoneList() {
Locale locale = JiveGlobals.getLocale();

String[] timeZoneList = timeZoneLists.get(locale);
String[] newTZList = createTimeZoneList(locale);
if (timeZoneLists.putIfAbsent(locale,newTZList)==null){
timeZoneList = newTZList;
. . . // Code AFTER_PUT

}
return timeZoneList;

}

private String[] createTimeZoneList(Locale locale) {
String[] timeZoneList;
timeZoneList = new String[timeZoneIds.length];
for (int i = 0; i < timeZoneList.length; i++) {
. . . // populate timeZoneList

}
return timeZoneList;

}

Figure 4: The user selects the timeZoneLists HashMap field (line 2) to be made thread-safe, and Concurrencer performs all
the transformations. The figure shows an example from Zimbra where the putIfAbsent pattern requires invoking a creational
method to hold the value to be placed in the map. The pattern elements in the original code that correspond to Figure 2.(iv)
have a gray background. The changes in the refactored code are underlined.

in Fig. 4)), in the refactored code CONCURRENCER assigns
newValue to testValue . To preserve the original seman-
tics (i.e., testValue is reassigned only if the 〈key , value〉 is
placed in the map), the generated code uses the return sta-
tus of putIfAbsent (null denotes that the call succeeded) to
determine whether to reassign the testValue .

Functions isReadIn and isWrittenIn lexically analyze
the statements for read or write accesses to the testValue
variable. CONCURRENCER’s implementation of this analysis is
intraprocedural and does not handle aliasing.

In the refactored code, the creational code is executed
regardless of whether the newValue is placed into the map.
This can result in (i) a semantical change if the creational
code has side effects and (ii) creating unnecessary objects.

CONCURRENCER warns the user if the creational method has
side effects. Our analysis is an intraprocedural MOD Anal-
ysis [15] that ignores aliasing. The analysis checks whether
the creational method locally modifies any fields.

To minimize the cost of creating unnecessary objects,
CONCURRENCER could use the “double-checked lazy initializa-
tion” pattern [4]: first test whether the map does not con-
tain the key (in an unsafe manner), and only if the test
succeeds invoke the creational code followed by a thread-
safe putIfAbsent. Although this strategy does not com-
pletely eliminate the chance of creating unnecessary ob-
jects, it minimizes the window of opportunity for creating
unnecessary objects, while still ensuring thread-safety (in
the end, checking and possibly placing the new value in the
map is thread-safe, guaranteed by putIfAbsent).

Synchronization. If the original method contained syn-

chronization locks around map updates, CONCURRENCER re-
moves them when they are superfluous (ConcurrentHash-
Map has thread-safety built in). CONCURRENCER uses simi-
lar checks with the ones used when removing locks from
AtomicInteger.

4 Convert Recursion to ForkJoinTask

4.1 ForkJoinTask Framework in Java 7

Java 7 will contain a framework, ForkJoinTask, for fine-
grained parallelism in computationally-intensive problems.
Divide-and-conquer algorithms are natural candidates for
such parallelization when the recursion tasks are completely
independent, i.e., they operate on different parts of the
data or they solve different subproblems. Many recur-
sive divide-and-conquer algorithms display such properties,
even though they were never designed with parallelism in
mind. Furthermore, static analyses (e.g., [13]) can deter-
mine whether there is any data dependency between the re-
cursive tasks, e.g., the recursive tasks write within the same
ranges of an array.

Fig. 5 shows the sequential and parallel versions of a
divide-and-conquer algorithm. In the parallel version, if
the problem size is smaller than a threshold, the problem is
solved using the sequential algorithm. Otherwise, the prob-
lem is split into independent parts, these are solved in par-
allel, then the algorithm waits for all computations to finish
and composes the result from the subresults.

401

// Sequential version

solve (Problem problem) {
if (problem.size <= BASE_CASE)
solve problem directly

else {
split problem into independent tasks

solve each task

compose result from subresults
}

}

// Parallel version

solve (Problem problem) {
if (problem.size <= SEQ_THRESHOLD)
solve problem SEQUENTIALLY

else {
split problem into independent tasks
IN_PARALLEL{ //fork

solve each task
}
wait for all tasks to complete //join
compose result from subresults

}
}

Figure 5: Sequential and parallel pseudocode for a divide-and-conquer algorithm.

Since threads have high overhead (creating, schedul-
ing, destroying) which might overwhelm the useful com-
putation, Java 7 introduces ForkJoinTask, a lighter-weight
thread-like entity. A large number of such tasks may
be hosted by a pool containing a small number of actual
threads. The framework schedules the tasks effectively and
keeps all cores busy with useful computation.

The most important API methods in ForkJoinTask are:
fork() which spawns the execution of a task in paral-
lel, join() which waits for the current task to finish,
invokeAll(Tasks) which is syntactic sugar for forking
the given tasks and then waiting for them to finish, and
compute(), which encapsulates the main computation per-
formed by the task.

ForkJoinTask has several subclasses for different pat-
terns of computation. RecursiveAction is the proper
choice for the recursive tasks used in divide-and-
conquer computations. The framework also defines
ForkJoinExecutor, an object that executes ForkJoinTask

computations using a pool of worker threads.

4.2 Code Transformations

CONCURRENCER converts a recursive divide-and-conquer al-
gorithm to one that runs in parallel using the ForkJoinTask
framework. The programmer needs only select the divide-
and-conquer method and supply the SEQ THRESHOLD
parameter that determines when to run the sequential ver-
sion of the algorithm. Using this user-supplied information,
CONCURRENCER automatically performs all transformations.

We made a design choice to keep the original interface
of the recursive method unchanged, so that an outside client
would still invoke the method as before. The fact that the
refactored method uses the ForkJoinTask framework is an
implementation detail, hidden from the outside client.

We illustrate the transformations that CONCURRENCER per-
forms on a classic merge sort algorithm. The left-hand side
of Figure 6 shows the original, sequential version of the
merge sort algorithm. The sort method takes as input the
array to be sorted, and it returns the sorted array. The al-
gorithm starts with the base case (line 27). In the recursive

case (lines 29–40), it copies the first half of the array and
the second half of the array, sorts both halves, and merges
them (code for merge not shown).

Creating the ForkJoinTask. CONCURRENCER creates a
RecursiveAction class (line 16), which is a subclass of
ForkJoinTask. This class encapsulates the parallel com-
putation of the original recursive method, thus CONCURRENCER

names this class by adding the Impl suffix to the name of
the original recursive method.

Since the compute method neither takes any arguments,
nor returns a value, SortImpl has fields for the input argu-
ments and the result of the computation. The constructor
initializes the input fields (line 21).

Implementing the compute method. The compute

method is called by the framework when it executes a
ForkJoinTask. CONCURRENCER implements this method us-
ing the original recursive method as the model for compu-
tation. CONCURRENCER performs three main transformations
on the original recursive method: (i) it changes the base
case of the recursion, (ii) it replaces recursive calls with
RecursiveAction instantiations, and (iii) it executes the
parallel tasks and then gathers the results of the subtasks.

First, CONCURRENCER infers the base-case used in the recur-
sion: the base case is a conditional statement which does not
contain any recursive calls and which ends up with a return
statement. Then CONCURRENCER replaces the base-case condi-
tional expression with the SEQ THRESHOLD expression
provided by the user (line 25). Next, CONCURRENCER replaces
the return statement in the base case of the original recur-
sive method with a call to the sequential method (line 26).
If the original method returned a value, CONCURRENCER saves
this value in the result field.

Second, CONCURRENCER replaces the recursive calls with
creation of new RecursiveAction objects (lines 34, 35).
The arguments to the recursive call are passed as argu-
ments to the constructor of the RecursiveAction. CONCUR-

RENCER stores the created tasks into local variables task1 and
task2.

Third, CONCURRENCER executes the parallel tasks and then
assembles the result from the subresults of the tasks.
CONCURRENCER calls the invokeAll method while passing

402

// Sequential version

public class MergeSort {

public int[] sort(int[] whole) {
if (whole.length == 1) {

return whole;
} else {

int[] left = new int[whole.length / 2];
System.arraycopy(whole, 0, left, 0, left.length);
int[] right = new int[whole.length - left.length];
System.arraycopy(whole, left.length,

right, 0, right.length);
left = sort(left);
right = sort(right);

merge(left, right, whole);
return whole;

}
}

private void merge(int[] left, int[] right,
int[] whole) {

. . . . merge left and right array into whole array
}

}

1 // Parallel version
2

3 import jsr166y.forkjoin.ForkJoinPool;
4 import jsr166y.forkjoin.RecursiveAction;
5

6 public class MergeSort {
7

8 public int[] sort(int[] whole) {
9 int processorCount = Runtime.getRuntime().availableProcessors();

10 ForkJoinPool pool = new ForkJoinPool(processorCount);
11 SortImpl aSortImpl = new SortImpl(whole);
12 pool.invoke(aSortImpl);
13 return aSortImpl.result;
14 }
15

16 private class SortImpl extends RecursiveAction {
17 private int[] whole;
18 private int[] result;
19

20 private SortImpl(int[] whole) {
21 this.whole = whole;
22 }
23

24 protected void compute() {
25 if ((whole.length < 100)) {
26 result = sort(whole);
27 return;
28 } else {
29 int[] left = new int[whole.length / 2];
30 System.arraycopy(whole, 0, left, 0, left.length);
31 int[] right = new int[whole.length - left.length];
32 System.arraycopy(whole, left.length,
33 right, 0, right.length);
34 SortImpl task1 = new SortImpl(left);
35 SortImpl task2 = new SortImpl(right);
36 invokeAll(task1, task2);
37 left = task1.result;
38 right = task2.result;
39 merge(left, right, whole);
40 result = whole;
41 }
42 }
43

44 private int[] sort(int[] whole) {
45 . . . copy the original, sequential implementation
46 }
47 }
48

49 private void merge(int[] left, int[] right,
50 int[] whole) {
51 merge left and right array into whole array
52 }
53 }

Figure 6: The programmer selects the divide-and-conquer method and provides the sequential threshold (whole.length
< 100). Concurrencer converts the sequential divide-and-conquer into a parallel one using the ForkJoinTask framework.
The left-hand side shows the sequential version, the right-hand side shows the parallel version (changes are underlined).

the previously created tasks as arguments. CONCURRENCER

places the invokeAll method after the last creation of
RecursiveAction (line 36). Then CONCURRENCER saves the
subresults of the parallel tasks into local variables. If the
original recursive method used local variables to store the
results of the recursive calls, CONCURRENCER reuses the same
variables (lines 37, 38). Subsequent code can thus use the
subresults to assemble the final result (line 39). Lastly, CON-

CURRENCER assigns to the result field the combined subre-
sults (line 40).

Reimplementing the recursive method. CONCURRENCER

rewrites the implementation of the original recursive
method to invoke the ForkJoinTask framework (lines 9–
12). CONCURRENCER creates a new task and initializes it with
the array to be sorted, then it passes the task to the execu-

tor. invoke blocks until the computation finishes, then the
sorted array in the result field is returned (line 13).

Discussion. CONCURRENCER handles several variations on
how the subresults are combined to form the end result. For
example, the subresults of the recursive calls might not be
stored in temporary variables, but they might be combined
directly in expressions, like in the fibonacci function:
return fibonacci(n-1) + fibonacci(n-2).

CONCURRENCER creates and executes the parallel tasks as
before, and during the subresult combination phase it uses
the same expression to combine the subresults:
result = task1.result + task2.result

With respect to where the recursive method stores the re-
sult, there can be two kinds of recursive methods: (i) recur-
sive methods that return a value, the result, and (ii) recursive

403

methods that do not return any value, but they mutate one
of the arguments to hold the result of the computation.

Fig. 6 is an example of the first kind of computation.
The transformations for recursive methods that mutate one
of their arguments to store the result are similar to the ones
presented above, even slightly simpler: CONCURRENCER does
not generate the code involving the result field.

5 Discussion

Similar with other practical refactoring engines, our ap-
proach is not complete because it relies on a set of patterns
and transformations. Even though they might not cover all
possible scenarios, they do cover the most common ones,
as illustrated by the evaluation on real-world codebases (see
Section 6). Moreover, it is easy to extend these transforma-
tion patterns.

Also since the analysis does not handle aliasing and it is
intraprocedural, our approach is not sound. However, for
the currently supported refactorings, not handling aliasing
is not harmful. An int field used in CONVERT INT TO ATOMICIN-

TEGER cannot be aliased, while in general programmers do
not alias an HashMap field used in CONVERT HASHMAP TO CONCUR-

RENTHASHMAP. Even though our approach is neither sound,
nor complete, it is still useful. That is, CONCURRENCER saves
programmer’s time overall.

CONCURRENCER does not remove the user-defined lock for
some field accesses (e.g., when the synchronized block pro-
tects accesses to 2 fields), while it removes the lock for other
accesses that can be safely protected by the j.u.c. library.
An interleaving can still occur between lock-protected and
library-protected accesses (since they are not protected by
the same mechanism). If CONCURRENCER cannot remove the
user-defined lock for all field accesses, it warns the user,
who can decide to cancel the refactoring. Most of the times
a user does not have to analyze the output of the refactoring,
but only when CONCURRENCER raises warnings.

6 Evaluation

Research Questions. To evaluate the effectiveness of
CONCURRENCER, we answered the following questions:

• Q1: Is CONCURRENCER useful? More precisely, does it
ease the burden of making sequential code thread-safe
and of writing parallel code?

• Q2: Are the results thread-safe? How does the manu-
ally refactored code compare with code refactored with
CONCURRENCER in terms of using the correct APIs and
identifying all opportunities to replace field accesses
with thread-safe API calls?

Refactoring # of LOC changed
& project refactorings total by CONCURRENCER

Convert Int To AtomicInteger
MINA 5 21 21
Tomcat 5 26 26
Struts 0 0 0
GlassFish 15 60 60
JaxLib 29 240 240
Zimbra 10 54 54

Convert HashMap To ConcurrentHashMap
MINA 6 14 14
Tomcat 0 0 0
Struts 6 68 68
GlassFish 14 86 82
JaxLib 7 62 62
Zimbra 44 388 377

Total 141 1019 1004

Convert Recursion to ForkJoinTask
mergeSort [13] 1 36 36
fibonacci [11] 1 25 25
maxSumConsecutive [11] 1 68 68
matrixMultiply [5, 11, 13] 1 108 108
quickSort (Zimbra) 1 35 35
maxTreeDepth (Eclipse) 1 30 30

Total 6 302 302

Table 2: Case studies of refactorings. The last two columns
show the number of lines of code that were changed to per-
form the refactoring, and how many of those lines can be
changed by CONCURRENCER. The remaining changes must be
performed manually.

• Q3: With respect to running concurrent tasks in paral-
lel, is the refactored code more efficient than the origi-
nal sequential code?

We evaluated CONCURRENCER’s refactorings in two ways.
For code that had already been refactored to use Java
5’s AtomicInteger and ConcurrentHashMap, we compared
the manual refactoring with what CONCURRENCER would have
done. This answers the first two questions. For CONVERT

RECURSION TO FORKJOINTASK, we could not find projects using
ForkJoinTask, since it is scheduled for Java 7’s release. We
used CONCURRENCER to refactor six divide-and-conquer algo-
rithms. This answers the first and the third questions.

6.1 Methodology

Setup for CONVERT INT TO ATOMICINTEGER and CONVERT HASH-

MAP TO CONCURRENTHASHMAP.
Table 2 lists 6 popular, mature open-source projects that

use AtomicInteger and ConcurrentHashMap. We used the
head versions from their version control system as of June
1, 2008.

We used CONCURRENCER to refactor the same fields that
open-source developers refactored to AtomicInteger or

404

ConcurrentHashMap. We compare the code refactored with
CONCURRENCER against code refactored by hand. We look at
places where the two refactoring outputs differ, and quan-
tify the number of errors (i.e., one of the outputs uses the
wrong concurrent APIs) and the number of omissions (i.e.,
the refactored output could have used a concurrent API, but
it instead uses the obsolete, lock-protected APIs).

For AtomicInteger the projects’ version control repos-
itory contains both a version with the int field and a later
version with the AtomicInteger field, thus we use the ver-
sion with int as the input for CONCURRENCER. For CONVERT

HASHMAP TO CONCURRENTHASHMAP we were not able to find the
versions which contained HashMap. It seems that those
projects were using ConcurrentHashMap from the first ver-
sion of the file. In those cases we manually replaced only
the type declaration of the ConcurrentHashMap field with
HashMap; then we ran CONCURRENCER to replace HashMap up-
dates with the thread-safe APIs (putIfAbsent, replace,
and delete) in ConcurrentHashMap. For both kinds of
refactorings we carefully examined the refactored source
code to check whether the open-source programmers or CON-

CURRENCER ommitted to make some accesses thread-safe.
Setup for CONVERT RECURSION TO FORKJOINTASK.
We used CONCURRENCER to parallelize six divide-and-

conquer algorithms. We use two sets of inputs: (i) clas-
sic divide-and-conquer algorithms used in others’ evalu-
ations [5, 11, 13], and (ii) divide-and-conquer algorithms
from real projects.

Table 2 shows the input programs. maxSumConsecu-

tive takes an array of positive and negative numbers and
computes the subsequence of consecutive numbers whose
sum is maximum. matrixMultiply multiplies two matri-
ces. maxTreeDepth computes the depth of a binary tree.

6.2 Q1: Is CONCURRENCER useful?

The top part of Table 2 shows the number of refactor-
ings that open-source developers performed in the selected
real world projects. The penultimate column shows how
many lines of code were manually changed during refactor-
ing. Using CONCURRENCER, the developers would have saved
editing 1004 lines of code; instead they would have had to
only change 15 lines not currently handled by CONCURRENCER.
We show one such example at the end of Section 6.3.

The bottom part of Table 2 shows the LOC changed
when converting the original recursive algorithm to one that
uses the ForkJoinTask framework. To do the manual con-
version, it took the first author an average of 30 minutes for
each conversion. This includes also the debug time to make
the parallelized algorithm work correctly. Using CONCUR-

RENCER, the conversion was both correct and took less than
10 seconds. Doing the conversion with CONCURRENCER saves
the programmer from changing 302 LOC.

6.3 Q2: How does manually and automat-
ically refactored code compare?

CONCURRENCER applied all the correct transformations that
the open-source developers applied. We noticed several
cases where CONCURRENCER outperforms the developers: CON-

CURRENCER produces the correct code, or it identifies more
opportunities for using the new, scalable APIs.

For CONVERT INT TO ATOMICINTEGER, we noticed cases where
the developers used the wrong APIs when they refactored
by hand. We noticed that developers erroneously replaced
infix expressions like ++f with f.getAndIncrement(),
which is the equivalent API for the postfix expression f++.
They should have replaced ++f with f.incrementAndGet().
Table 3 shows that the open-source developers made 4 such
errors, where CONCURRENCER made no error. The erroneous
usage of the API can cause an “off-by-one” value if the re-
sult is read in the same statement which performs the up-
date. In the case studies, the incremented value is not read
in the same statement which performs the update. Never-
theless, this shows the manual conversion is error-prone.

For CONVERT HASHMAP TO CONCURRENTHASHMAP we noticed
cases when the open-source developers or CONCURRENCER

omitted to use the new atomic putIfAbsent and conditional
delete operations, and instead use the old patterns involv-
ing synchronized, lock-protected access to put and delete,
or leave the code totally unprotected. Even when they used
the locks, the refactored code is not thread-safe, since they
used different locks than the ones that ConcurrentHash-

Map’s implementation uses. Moreover, the refactored code
is non-optimal for these lines of code because it locks the
whole map for the duration of update operations. In con-
trast, ConcurrentHashMap’s new APIs offers better scala-
bility because they do not lock the whole map.

Table 4 shows the number of such omissions in the case-
study projects. We manually determined all the uses of put
or delete that could be replaced with the new putIfAbsent,
replace, or conditional delete. We found that the open-
source developers missed many opportunities to use the new
APIs. This intrigued us, since the studied projects are all de-
veloped professionally, and are known to be of high-quality
(e.g., Zimbra was acquired by Yahoo, Struts is developed
by Apache foundation, GlassFish is developed mainly by
SUN). Also, we found several instances when the open-
source developers correctly used the new APIs, so they cer-
tainly were aware of the new APIs.

We can hypothesize that the open-source developers did
not convert to the new APIs because the new APIs would
have required creational methods which had side effects.
Therefore, we conservatively only count those cases when
the creational method is guaranteed not to have side-effects
(e.g., the value to be inserted in the map is produced by sim-
ply instantiating a Java collection class). Even so, Table 4

405

incrementAndGet decrementAndGet
correct erroneous correct erroneous
usages usages usages usages

Tomcat 0 1 0 1
MINA 0 1 0 1

Table 3: Human errors in using AtomicInteger updates
in refactorings performed by open-source developers.

putIfAbsent remove
potential omissions potential omissions

uses human tool uses human tool
MINA 0 0 0 0 0 0
Tomcat 0 0 0 0 0 0
Struts 6 1 0 0 0 0
GlassFish 7 3 1 6 5 0
JaxLib 11 2 0 0 0 0
Zimbra 49 27 9 4 3 0

Total 73 33 10 10 8 0

Table 4: Human and CONCURRENCER omissions in us-
ing ConcurrentHashMap’s putIfAbsent and condi-
tional remove.

shows that the open-source developers missed several op-
portunities to use the new APIs. CONCURRENCER missed many
fewer opportunities. These are all rare, intricate patterns
currently not supported by CONCURRENCER, but they could
all be supported by putting more engineering effort in the
tool. Below is one such example of potential usage of
putIfAbsent coming from Zimbra code:
private ConcurrentHashMap<String, Component> components;

public void addComponent(String subdomain)
throws ComponentException {

Component existingComponent = components.get(subdomain);
if (existingComponent != null) {
throw new ComponentException("Domain already taken");

}
components.put(subdomain, component);

}

The example above is a rare variation of the pattern iv in
Figure 2: the condition in the ifStatement is reversed.

6.4 Q3: What is the speedup of the par-
allelized algorithms?

Table 5 shows the speedup of the parallelized algorithms
(speedup = timeseq/timepar). For the sorting algo-
rithms we use random arrays with 10 million elements. For
fibonacci we compute the fibonacci value for the number
45. For maxSumConsecutive we use an array with 100 mil-
lion random integers. For matrixMultiply we use matrices
with 1024x1024 doubles. For maxTreeDepth we use a dense
tree of depth 50.

7 Related Work

The earliest work on interactive tools for paralleliza-
tion stemmed from the Fortran community, and it targets

program speedup
2 cores 4 cores

mergeSort 1.18x 1.6x

fibonacci 1.94x 3.82x

maxSumConsecutive 1.78x 3.16x

matrixMultiply 1.95x 3.77x

quickSort 1.84x 3.12x

maxTreeDepth 1.55x 2.38x

Average 1.7x 2.97x

Table 5: Speedup of the parallelized divide-and-conquer
algorithms.

loop parallelization. Interactive tools like PFC [7], Para-
Scope [9], and SUIF Explorer [12] rely on the user to spec-
ify what loops to interchange, align, replicate, or expand.
ParaScope and SUIF Explorer visually display the data de-
pendences. The user must either determine that each loop
dependence shown is not valid (due to conservative analy-
sis), or transform a loop to eliminate valid dependences.

Freisleben and Kielman [5] present a system that paral-
lelizes divide-and-conquer C programs, similar in spirit to
our CONVERT RECURSION TO FORKJOINTASK refactoring. To use their
system, a programmer annotates (i) what computations are
to be executed in parallel, (ii) the synchronization points af-
ter which the results of the subproblems are expected to be
available, (iii) the input and output parameters of the recur-
sive function, and (iv) the sequential threshold. The anno-
tated program is preprocessed and transformed into a pro-
gram which uses message-passing to communicate between
the slave processes that execute the subproblems. Unlike
their system, CONCURRENCER is not restricted to algorithms that
use only two recursive subdivisions of the problem, and
CONCURRENCER automatically infers all the parameters of the
transformation (except the sequential threshold).

Bik et al. [2] present Javar, a compiler-based, source-
to-source restructuring system that uses programmer anno-
tations to indicate parallelization of loops and of recursive
algorithms. Javar rewrites the annotated code to run in par-
allel using multiple threads. Javar’s support for parallelizing
recursive functions is not optimal: each recursive call forks
a new thread, whose overhead can be greater than the useful
computation. Unlike Javar, (i) CONCURRENCER does not require
any programmer annotations, (ii) the parallel recursion ben-
efits from the efficient scheduling and load-balancing of the
ForkJoinTask framework, and (iii) we report on experiences
with using CONCURRENCER to parallelize several divide-and-
conquer algorithms.

Vaziri et al. [14] present a data-centric approach to mak-
ing a Java class thread-safe. The programmer writes anno-
tations denoting atomic sets, i.e., sets of class fields that
should be updated atomically, and units-of-work, i.e., meth-

406

ods operating on atomic sets that should execute without
interleaving from other threads. Their system automati-
cally generates one lock for each atomic set and uses the
lock to protect field accesses in the corresponding units-of-
work. Their system eliminates data races involving multiple
variables, whereas CONCURRENCER works with AtomicInteger

and ConcurrentHashMap that are designed to protect only
single-variables. However, CONCURRENCER does not require
any programmer annotations.

Balaban et al. [1] present a tool for converting between
obsolete classes and their modern replacements. The pro-
grammer specifies a mapping between the old APIs and the
new APIs, and the tool uses a type-constraint analysis to
determine whether it can replace all usages of the obsolete
class. Their tool can replace only a single API call at a time,
whereas our tool replaces a set of related but dispersed API
calls (like the ones in Fig. 4).

8 Conclusions and Future Work

Refactoring sequential code to introduce concurrency is
not trivial. A good way to introduce concurrency into a pro-
gram is via use of a library such as j.u.c.. Reengineer-
ing existing programs in this way is still tedious and error-
prone.

Even seemingly simple refactorings—like replacing data
types with thread-safe, scalable implementations—is prone
to human errors. In this paper we present CONCURRENCER,
which automates three refactorings for converting integer
fields to AtomicInteger, for converting hash maps to Con-

currentHashMap, and for parallelizing divide-and-conquer
algorithms. Our experience with CONCURRENCER shows that it
is more effective than a human developer in identifying and
applying such transformations, and the parallelized code ex-
hibits good speedup.

We plan to extend CONCURRENCER to support many other
features provided by j.u.c.. Among others, CONCUR-

RENCER will convert sequential code to use other thread-safe
Atomic* and scalable Collection classes, will extract other
kinds of computations to parallel tasks using the Executors

framework (task parallelism), and will convert Arrays to
ParallelArrays, a construct which enables parallel execu-
tion of loop operations (data parallelism).

As library developers make better concurrent libraries,
the “introduce concurrency” problem will become the “in-
troduce a library” problem. Tool support for introducing
such concurrent libraries is crucial for the widespread use
of such libraries, resulting in thread-safe and scalable pro-
grams.

Acknowledgements. John Brant, Adam Kiezun, Sasa
Misailovic, Ralph Johnson, Jeff Overbey, Nick Chen, and
the anonymous reviewers gave insightful comments on

drafts of this paper. This work was funded in part by
DARPA contract HR0011-07-1-0023.

References

[1] I. Balaban, F. Tip, and R. Fuhrer. Refactoring support for
class library migration. In OOPSLA’05, pages 265–279.

[2] A. J. C. Bik, J. E. Villacis, and D. Gannon. Javar: A pro-
totype Java restructuring compiler. Concurrency - Practice
and Experience, 9(11):1181–1191, 1997.

[3] D. Dig, J. Marrero, and M. D. Ernst. How do programs be-
come more concurrent? A story of program transformations.
Technical Report MIT-CSAIL-TR-2008-053, MIT, Septem-
ber 2008.

[4] Double-checked lazy initialization pattern. http://artisans-
serverintellect-com.si-eioswww6.com/default.asp?W122

[5] B. Freisleben and T. Kielmann. Automated transforma-
tion of sequential divide-and-conquer algorithms into paral-
lel programs. Computers and Artificial Intelligence, 14:579–
596, 1995.

[6] B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, and
D. Lea. Java Concurrency in Practice. Addison-Wesley,
2006.

[7] J.R. Allen and K. Kennedy. PFC: A program to convert For-
tran to parallel form. In Supercomputers: Design and Appli-
cations, pages 186–205, 1984.

[8] JSR-166y Specification Request for Java 7.
http://gee.oswego.edu/dl/concurrency-interest/.

[9] K. Kennedy, K. S. McKinley, and C.-W. Tseng. Analysis
and transformation in the Parascope editor. In ICS’91, pages
433–447.

[10] D. Lea. Concurrent Programming in Java. Second Edition:
Design Principles and Patterns. Addison-Wesley, 1999.

[11] D. Lea. A Java fork/join framework. In JAVA’00, pages
36–43.

[12] S.-W. Liao, A. Diwan, J. Robert P. Bosch, A. Ghuloum, and
M. S. Lam. SuifExplorer: an interactive and interprocedural
parallelizer. SIGPLAN Not., 34(8):37–48, 1999.

[13] R. Rugina and M. C. Rinard. Automatic parallelization of
divide and conquer algorithms. In PPoPP ’99, pages 72–83.

[14] M. Vaziri, F. Tip, and J. Dolby. Associating synchroniza-
tion constraints with data in an object-oriented language. In
POPL ’06, pages 334–345.

[15] M. Wolfe. High Performance Compilers for Parallel Com-
puting. Addison-Wesley, 1996.

407

