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Abstract 
Processors with Hyper-Threading technology can improve the 
performance of applications by permitting a single processor to 
process data as if it were two processors by executing instructions 
from different threads in parallel rather than serially. However, 
the potential performance improvement can be only obtained if an 
application is multithreaded by parallelization techniques. This 
paper presents the threaded code generation and optimization 
techniques in the Intel C++/Fortran compiler. We conduct the 
performance study of two multimedia applications parallelized 
with OpenMP pragmas and compiled with the Intel compiler on 
the Hyper-Threading technology (HT) enabled Intel single-
processor and multi-processor systems. Our performance results 
show that the multithreaded code generated by the Intel compiler 
achieved up to 1.28x speedups on a HT-enabled single-CPU 
system and up to 2.23x speedup on a HT-enabled dual-CPU 
system. By measuring IPC (Instructions Per Cycle), UPC (Uops 
Per Cycle) and cache misses of both serial and multithreaded 
execution of each multimedia application, we conclude three key 
observations: (a) the multithreaded code generated by the Intel 
compiler yields a good performance gain with the parallelization 
guided by OpenMP pragmas or directives; (b) exploiting thread-
level parallelism (TLP) causes inter-thread interference in caches, 
and places greater demands on memory system. However, with 
the Hyper-Threading technology hides the additional latency, so 
that there is  a small impact on the whole program performance; 
(c) Hyper-Threading technology is effective on exploiting both 
task- and data-parallelism inherent in multimedia applications. 

1. Introduction 
Modern processors become faster and faster, processor resources, 
however, are often underutilized by many applications and the 
growing gap between processor frequency and memory speed 
causes memory latency to become an increasing challenge of the 
performance. Simultaneous Multi-Threading (SMT) [7, 15] was 
proposed to allow multiple threads to compete for and share all 
processor’s resources such as caches, execution units, control 
logic, buses and memory systems. The Hyper-Threading 
technology (HT) [4] brings the SMT idea to the Intel architectures 
and makes a single physical processor appear as two logical 
processors with duplicated architecture state, but with shared 
physical execution resources. This allows two threads from a 

single application or two separate applications to execute in 
parallel, increasing processor utilization and reducing the impact 
of memory latency by overlapping the latency of one thread with 
the execution of another 

Hyper-Threading technology-enabled processors offer significant 
performance improvements for applications with a high degree of 
thread-level parallelism without sacrificing compatibility with the 
existing software or single-threaded performance. These potential 
performance gains are only obtained, however, if an application is 
efficiently multithreaded. The Intel C++/Fortran compilers support 
OpenMP∗ directive- and pragma-guided parallelization, which 
significantly increase the domain of various applications amenable 
to effective parallelism. A typical example is that users can use 
OpenMP parallel sections to develop an application where 
section-A calls an integer-intensive routine and where section-B 
calls a floating-point intensive routine, so the performance 
improvement is obtained by scheduling section-A and section-B 
onto two different logical processors that share the same physical 
processor to fully utilize processor resources with the Hyper-
Threading technology. The OpenMP directives or pragmas have 
emerged as the de facto standard of expressing thread-level 
parallelism in applications as they substantially simplify the 
notoriously complex task of writing multithreaded applications. 
The OpenMP 2.0 standard API [6, 9] supports a multi-platform, 
shared-memory, parallel programming paradigm in C++/C and 
Fortran95 on all popular operating systems such as Windows NT, 
Linux, and Unix. This paper describes threaded code generation 
techniques for exploiting parallelism explicitly expressed by 
OpenMP pragmas/directives. To validate the effectiveness of our 
threaded code generation and optimization techniques, we also 
characterize and study two workloads of multimedia applications 
parallelized with OpenMP pragmas and compiled with the Intel 
OpenMP C++ compiler on Intel Hyper-Threading architecture. 
Two multimedia workloads, including Support Vector Machine 
(SVM) and Audio-Visual Speech Recognition (AVSR), are 
optimized for the Intel Pentium 4 processor. One of our goals 
is to better explain the performance gains that are possible in the 
media applications through exploring the use of Hyper-Threading 
technology with the Intel compiler.  

The remainder of this paper is organized as follows. We first give 
a high-level overview of Hyper-Threading technology. We then 
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present threaded code generation and optimization techniques 
developed in the Intel C++ and Fortran product compilers for the 
OpenMP pragma/directive guided parallelization, which includes 
the Multi-Entry Threading (MET) technique, lifting read-only-
memory-references optimization for minimizing the data-sharing 
overhead among threads, exploitation of nested parallelism, and 
workqueuing model extension for exploiting irregular-parallelism. 
Starting from Section 4, we characterize and study two workloads 
of multimedia applications parallelized with OpenMP pragmas 
and compiled with the Intel OpenMP C++ compiler on Hyper-
Threading technology enabled Intel architectures. Finally, we 
show the performance results of two multimedia applications. 

2. Hyper-Threading Technology 
Hyper-Threading technology brings the concept of Simultaneous 
Multi-Threading (SMT) to Intel Architecture. Hyper-Threading 
technology makes a single physical processor appear as two 
logical processors; the physical execution resources are shared 
and the architecture state is duplicated for the two logical 
processors [4]. From a software or architecture perspective, this 
means operating systems and user programs can schedule threads 
to logical CPUs as they would on multiple physical CPUs. From a 
microarchitecture perspective, this means that instructions from 
both logical processors will persist and execute simultaneously on 
shared execution resources [4].  
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Figure 1: Traditional DP system vs. HT-capable DP system 

The optimal performance is provided by the Intel NetBurst™ 
microarchitecture while executing a single instruction stream. A 
typical thread of code with a typical mix of instructions, however, 
utilizes only about 50 percent of execution resources. By adding 
the necessary logic and resources to the processor die in order to 
schedule and control two threads of code, Hyper-Threading 
technology makes these underutilized resources available to a 
second thread, offering increased system and application 
performance. Systems built with multiple Hyper-Threading 
enabled processors further improve the multiprocessor system 
performance, processing two threads for each processor.  

Figure 1(a) shows a system with two physical processors that are 
not Hyper-Threading technology-capable. Figure 1(b) shows a 
system with two physical processors that are Hyper-Threading 
technology-capable. In Figure 1(b), with a duplicated copy of the 
architectural state on each physical processor, the system appears 
to have four logical processors. Each logical processor contains a 
complete set of the architecture state. The architecture state 
consists of registers including the general-purpose register group, 
the control registers, advanced programmable interrupt controller 
(APIC) registers, and some machine state registers. From a 
software perspective, once the architecture state is duplicated, the 

processor appears to be two processors. The number of transistors 
required to store the architecture state is a very small fraction of 
the total. Logical processors share nearly all other resources on 
the physical processor, such as caches, execution units, branch 
predictors, control logic, and buses.  Each logical processor has its 
own interrupt controller or APIC. Interrupts sent to a specific 
logical processor are handled only by that logical processor. 

With the Hyper-Threading technology, the majority of execution 
resources are shared by two architecture states (or two logical 
processors). Rapid execution engine process instructions from 
both threads simultaneously. The Fetch and Deliver engine and 
Reorder and Retire block partition some of the resources to 
alternate between the two intra-threads. In short, the Hyper-
Threading technology improves performance of multi-threaded 
programs by increasing the processor utilization of the on-chip 
resources available in the Intel NetBurst™ microarchitecture.  

3. Parallelizing Compiler 
The Intel compiler incorporates many well-known and advanced 
optimization techniques [14] that are designed and extended to 
fully leverage Intel processor features for higher performance. The 
Intel compiler has a common intermediate representation (named 
IL0) for C++/C and Fortran95 language, so that the OpenMP 
directive- and pragma-guided parallelization and a majority of 
optimization techniques are applicable through a single high-level 
intermediate code generation and transformation, irrespective of 
the source language. In this Section, we present several threaded 
code generation and optimization techniques in the Intel compiler.  

3.1 Threaded Code Generation Technique 
We proposed and implemented a new compiler technology named 
Multi-Entry Threading (MET) [3]. The rationale behind MET is 
that the compiler does not create a separate compilation unit (or 
routine) for a parallel region/loop. Instead, the compiler generates 
a threaded entry (T-entry) and a threaded return (T-return) for a 
given parallel region and loop. We introduced three new graph 
nodes in the region-based graph, built on top of the control-flow 
graph. A description of these graph nodes is given as follows: 

• T-entry denotes the entry point of a threaded code region and 
has a list of firstprivate, lastprivate, shared and reduction 
variables for sharing data among the threads. 

• T-ret denotes the exit point of a threaded code region and 
guides the lower-level target machine code generator to 
adjust stack offset properly and give the control to the caller 
inside the multithreaded runtime library.    

• T-region represents a threaded code region that is embedded 
in the original user routine.  

The main motivation of the MET compilation model is to keep all 
newly generated multithreaded codes, which are captured by T-
entry, T-region and T-ret nodes, embedded inside the user-routine 
without splitting them into independent subroutines. This method 
is different from outlining [10, 13] technique, and it provides later 
more optimization opportunities for higher performance. From the 
compiler-engineering point of view, the MET technique greatly 
reduces the complexity of generating separate routines in the Intel 
compiler. In addition, the MET technique minimizes the impact of 
OpenMP parallelizer on all well-known optimizations in the Intel 
compiler such as constant propagation, vectorization [8], PRE 
[12], scalar replacement, loop transformation, profile-feedback 
guided optimization and interprocedural optimization. 

(b) Hyper-Threading technology-capable Dual-CPU System 
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The code transformations and optimizations in the Intel compiler 
can be classified into (i) code restructuring and interprocedural 
optimizations (IPO); (ii) OpenMP directive-guided and automatic 
parallelization and vectorization; (iii) high-level optimizations 
(HLO) and scalar optimizations including memory optimizations 
such as loop control and data transformations, partial redundancy 
elimination (PRE), and partial dead store elimination (PDSE); and 
(iv) low-level machine code generation and optimizations such as 
register allocation and instruction scheduling. In Figure 2, we 
show a sample program using the parallel sections pragma. 

Figure 2. An Example with Parallel Sections 

Figure 3. Pesudo-Code After Parallelization 

Essentially, the multithreaded code generator inserts the thread 
invocation call __kmpc_fork_call(…) with T-entry node and data 
environment (source line information loc, thread number tid, etc.) 
for each parallel loop, parallel sections or parallel region, and 
transforms a serial loop, sections, or region to a multithreaded 
loop, sections, or region, respectively. In this example, the pre-
pass first converts parallel sections to a parallel loop. Then, the 
multithreaded code generator localizes loop lower-bound and 
upper-bound, privatizes the section id variable for the T-region 
marked with [T_entry, T-ret] nodes. For the parallel sections in 
the routine “parfoo”, the multithreaded code generation involves 
(a) generating a runtime dispatch and initialization routine 
(__kmpc_dispatch_init) call to pass necessary information to the 
runtime system; (b) generating an enclosing loop to dispatch loop-
chunk at runtime through the __kmpc_dispatch_next routine in 
the library; (c) localizing the loop lower-bound, upper-bound, and 
privatizing the loop control variable ‘id’ as shown in Figure 3. 
Given that the granularity of the sections could be dramatically 
different, the static or static-even scheduling type may not achieve 
a good load balance. We decided to use the runtime scheduling 

type for a parallel loop generated by the pre-pass of multithreaded 
code generation. Therefore, the decision regarding scheduling 
type is deferred until run-time, and an optimal balanced workload 
can be achieved based on the setting of the environment variable 
OMP_SCHEDULE supported in the OpenMP library at run-time.  

In order to generate efficient threaded-code that gains a speed-up 
over optimized uniprocessor code, an effective optimization phase 
ordering had been designed in the Intel compiler to make sure that 
optimizations, such as, IPO inlining, code restructuring, Igoto 
optimizations, and constant propagation, which can be effectively 
enabled before parallelization, preserve legal OpenMP program 
semantics and necessary information for parallelization. It also 
ensures that all optimizations after the OpenMP parallelization, 
such as auto-vectorization, loop transformation, PRE, and PDSE, 
can effectively kick in to achieve a good cache locality and to 
minimize the number of redundant computations and references to 
memory. For example, given a double-nested OpenMP parallel 
loop, the parallelizer is able to generate multithreaded code for the 
outer loop, while maintaining the symbol table information, loop 
structure, and memory reference behavior for the innermost loop. 
This enables the subsequent auto-vectorization for the innermost 
loop to fully leverage the SIMD Streaming Extension (SSE and 
SSE2) features of Intel processors [3, 8]. There are many efficient 
threaded-code generation techniques that have been developed for 
OpenMP parallelization in the Intel compiler. The following sub- 
sections describe some such techniques. 

3.2 Lifting Read-Only Memory References 
In this Section, we present an optimization LRMR that lifts read-
only memory de-references from inside of a loop to outside the 
loop. The basic idea is that we pre-load a memory de-reference to 
a register temporary right after T-entry, if the memory reference is 
read-only. See the OpenMP Fortran code example in Figure 4.  

Figure 4. Example of Lifting Read-Only Memory References 

The benefit of this optimization is that it reduces the overhead of a 
memory de-referencing, since the value is preserved in a register 
temporary for the read operation. In addition, another benefit is 
that it enables more advanced optimizations such if the memory 
de-references in array subscript expressions are lifted outside the 
loop. In Figure 4, for example, the address computation of array 
involves the memory de-references of the member lower and 
extent of the dope-vector, the compiler lifts the memory de-
references of lower and stride outside the m-loop by analyzing 
and identifying the read-only memory references inside a parallel 

R-entry void  parfoo( ) 
{    … …  
     __kmpc_fork_call(loc, 4, T-entry(__parfoo_psection_0), &w, z, x, &y) 
     goto L1:  
     T-entry void __parfoo_psection_0(loc, tid, *w, z[], *y, x[]) { 
         lower = 0;   upper = 1; stride = 1; 
        __kmpc_dispatch_init(…, tid, lower, upper, stride, ...);   
      L33: 
        t3 = __kmpc_dispatch_next(..,, tid, &lower, &upper, &stride) 
        if ((t3 & upper>=lower) != 0(SI32)) { 
                   pid = lower;  
          L17:  if (pid == 0) {  
                          *w = floatpoint_foo(z, 3000); 
                    } else if (pid == 1) { 
                          *y = myinteger_goo(x, 5000); 
                    } 
                    pid = pid +1; 
                    __kmpc_dispatch_fini(…);  
                    if (upper >= pid)  goto L17 
          goto L33 
       } 
       T-return; 
    } 
L1:    R-return; 
} 

void  parfoo( ) 
{   int  m, y, x[5000];   float   w, z[3000]; 
#pragma omp parallel sections shared(w, z, y, x) 
    {     w =  floatpoint_foo(z, 3000);   
      #pragma omp section 
           y =  myinteger_goo(x, 5000) ;       
    } 
} 

real allocatable:: x(:,:) 
… …                                      
!$omp parallel do shared(x), private(m,n) 
do  m=1, 100                     !!  Front-End creates a dope-vector for allocatable  
    do n=1, 100                   !!  array x           
         x(m, n) = …      Î   dv_baseaddr[m][ n] = …   
    end do 
end do 
… …  
T-entry(dv_ptr …)   !! Threaded region after multithreaded code generation  
     … …  
     t1 = (P32 *)dv_ptr->lower                         !! dv_ptr is a pointer that points 
     t2 = (P32 *)dv_ptr->extent                         !! dope-vector of array x 
     do prv_m=lower, upper              
          do prv_n =1, 100                                  !! EXPR_lower(x(m,n))  = t1 
             (P32 *)dv_ptr[prv_m][prv_ n] = …    !! EXPR_stride(x(m,n))  = t2 
          end do 
    end do  
T-return 
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region, sections or do loop. This optimization enables a number 
of optimizations such as software pipelining, loop unroll-and-jam, 
loop tiling, and vectorization, which results a good performance 
improvement in real large applications.  

3.3 Static and Dynamic Nested Parallelism  
Both static and dynamic nested parallelisms are supported by the 
OpenMP standard. However, most existing OpenMP compilers do 
not fully support nested parallelism, since the OpenMP-compliant 
implementation is allowed to serialize the nested inner regions, 
even when the nested parallelism is enabled by the environment 
variable OMP_NESTED or routine omp_set_nested(). For example, 
SGI compiler supports nested parallelism only if the loops are 
perfectly nested. PGI compiler does serialize the inner parallel 
regions. Given that broad classes of applications, such as imaging 
processing and audio/video encoding and decoding algorithms, 
have shown performance gains by exploiting nested parallelisms. 
We provided the compiler and runtime library support to exploit 
static and dynamic nested parallelism. Figure 5(a) shows a sample 
code with nested parallel regions, and Figure 5(b) does show the 
pseudo-threaded-code generated by the Intel compiler.  

Figure 5. An Example of Nested Parallel Regions 

As shown in Figure 5(b), there are two threaded regions, or T-
regions, created within the original function nestedpar(). T-entry 
__nestedpar_par_region0() corresponds to the semantics of the 
outer parallel region, and the T-entry __nestedpar_par_region1() 
corresponds to the semantics of  the inner parallel region.  For the 
inner parallel region in the routine nestedpar, the variable id is a 
shared stack variable for the inner parallel region. Therefore, it is 
accessed and shared by all threads through the T-entry argument 
id_p. Note that the variable id is a private variable for the outer 
parallel region, since it is a local defined stack variable.  

As we see in Figure 5(b), there are no extra arguments on the T-
entry for sharing local static array ‘a’, and there is no pointer de-
referencing inside the T-region for sharing the local static array 
’a’ among all threads in the teams of both the outer and inner 
parallel regions. This uses the optimization technique presented 

in [3] for sharing local static data among threads; it is an efficient 
way to avoid the overhead of argument passing across T-entries.   

3.4 Exploiting Irregular Parallelism  
Irregular parallelism inherent in many applications is hard to be 
exploited efficiently. The workqueuing model [1] provides a 
simple approach for allowing users to exploit irregular parallelism 
effectively. This model allows a programmer to parallelize control 
structures that are beyond the scope of those supported by the 
OpenMP model, while still fitting into the framework defined by 
the OpenMP specification. In particular, the workqueuing model 
is a flexible programming model for specifying units of work that 
are not pre-computed at the start of the worksharing construct. See 
a simple example in Figure 6.  

Figure 6. A While-Loop with Workqueuing Pragmas 

The parallel taskq pragma specifies an environment for the ‘while 
loop’ in which to enqueue the units of work specified by the 
enclosed task pragma. Thus, the loop’s control structure and the 
enqueuing are executed by single thread, while the other threads 
in the team participate in dequeuing the work from the taskq 
queue and executing it. The captureprivate clause ensures that a 
private copy of the link pointer p is captured at the time each task 
is being enqueued, hence preserving the sequential semantics. The 
workqueuing execution model is shown in Figure 7.  

Essentially, given a program with workqueuing constructs, a team 
of threads is created, when a parallel region is encountered. With 
the workqueuing execution model, from among all threads that 
encounter a taskq pragma, one thread (TK) is chosen to execute it 
initially. All the other threads (Tm, where m=1, …, N and m≠K)  
wait for work to be enqueued on the work queue. Conceptually, 
the taskq pragma causes an empty queue to be created by the 
chosen thread TK, enqueues each task it encounters, and then the 
code inside the taskq block is executed single-threaded by the TK. 
The task pragma specifies a unit of work, potentially executed by 
a different thread. When a task pragma is encountered lexically 
within a taskq block, the code inside the task block is enqueued 
on the queue associated with the taskq. The conceptual queue is 
disbanded when all work enqueued on it finishes, and when the 
end of the taskq block is reached. 

The Intel C++ OpenMP compiler has been extended throughout 
its various components to support the workqueuing model for 
generating multithreaded codes corresponding to the workqueuing 
constructs as the Intel OpenMP extension. More code generation 
details for the workqueuing constructs are presented in the paper 
[1]. In the next Section, we describe the multimedia application 
SVM and AVSR modified with OpenMP pragmas for evaluating 
our multithreaded code generation and optimizations developed in 
the Intel compiler together with the Intel OpenMP runtime library.   

(a) A Nested Parallel Region Example 
void nestedpar() 
{   static double a[1000];   int    id; 
#pragma omp parallel private(id) 
    {       id = omp_get_thread_num(); 
#pragma omp parallel 
             do_work(a, id, id*100); 
    } 
} 
(b) Pseudo Multithreaded Code Generated by Parallelizer 
entry extern void _nestedpar()   
{ ...... 
   ___kmpc_fork_call(___nestedpar_par_region0)(P32));  
   goto L30 
     T-entry void __nestedpar_par_region0()  
     {    t0 = _omp_get_thread_num(); 
          prv_id = t0; 
         ___kmpc_fork_call(__nestedpar_par_region1)(P32), &prv_id) 
         goto L20; 
            T-entry void __nestedpar_par_region1(id_p) 
            {    t1 = _do_work( &a, *id_p, *id_p * 100) 
                 T-return 
            } 
         L20:  T-return 
     } 
   L30:    
     return 
} 

void wq_foot(LIST *p) 
{                                   
#pragma intel omp parallel  taskq shared(p)  
  {  while (p!= NUL:L)  {        
          #pragma intel omp task captureprivate(p)            
           {   wq_work1(p, 10);  } 
          #pragma intel omp task captureprivate(p)            
           {   wq_work2(p, 20);  } 
           p= p->next; 
      } 
  } 
}

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) 



 

  

T1 T2  …  TK  …   TN 

Enqueue task 

Schedule task (work unit) 

Enqueue taskq 

Done

TK 

Tm (m=1…N, and m ≠  K) Work queue 

Dequeue task (work unit) 
Work queue empty 

Thread pool 

 

Figure 7. Workqueuing Execution Model 

4. Multimedia Workloads  
Due to the inherently sequential constitution of the algorithms of 
multimedia applications, most of the modules in these optimized 
applications cannot fully utilize all the execution units available in 
the off-the-shelf microprocessors. Some modules are memory-
bounded, while some are computation-bounded. In this Section, 
we describe the selected multimedia workloads and discuss our 
approach of parallelizing the workloads with OpenMP.  

4.1 Workload Description 
4.1.1 Support Vector Machines 
The first workload in our study is support vector machine (SVM) 
classification algorithm that is a well-known machine-learning 
algorithm [11]. Machine learning plays a key role in automatic 
content analysis of multimedia data. A common task is to predict 
the output y for an unseen input sample x given a training set 

},...,1{)},{( Niii yx ∈ consisting of input xi∈RK and its desired 
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4.1.2 Audio-visual Speech Recognition 
The second workload that we investigate is audio-visual speech 
recognition (AVSR).  There are many applications using 
automatic speech recognition systems, from human computer 
interfaces to robotics. While computers are getting faster, speech 
recognition systems are not robust without special constraints. 
Often, robust speech recognition requires special conditions, such 
as, smaller vocabulary, or very clean signal of the voice.   

In recent years, several speech recognition systems that use visual 
together with audio information showed significant increase in 
performance over the standard speech recognition systems. Figure 
8 shows a flowchart of the AVSR process. The use of visual 
feature in AVSR is motivated by the bimodality of the speech 
formation and the ability of humans to better distinguish spoken 
sounds when both audio and video are available. Additionally, the 
visual information provides the system with complementary 

features that cannot be corrupted by the acoustic noise of the 
environment. In our performance study, the system developed by 
Liang et al. [2] is used.   
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Figure 8. Process of Audio-Visual Speech Recognition 

4.2 Data-Domain Decomposition  
A way of exploiting parallelism of multimedia workloads is to 
decompose the work into threads in data-domain. As described in 
Section 4.1.1, the evaluation of trained SVMs is well-structured 
and can, thus, be multithreaded at multiple levels. On the lowest 
level, the dimensionality K of the input data can be very large. 
Typical values of K range between a few hundreds to several 
thousands. Thus, the vector multiplication in the linear, 
polynomial, and sigmoid kernels as well as the L

2
 distance in the 

radial basis function kernel can be multithreaded. On the next 
level, the evaluation of each expression in the sum is independent 
of each other. Finally, in an application several samples are tested 
and each evaluation can be done in parallel. In Figure 9, we show 
the parallelized SVM by simply adding a parallel for pragma. The 
programmer intervention for parallelizing the SVM is minor. The 
compiler generates the multithreaded code automatically.  

const int NUM_SUPP_VEC = 1000; // Number of support vectors 
const int NUM_VEC_DIM = 24*24; // Feature vector size; 24x24 pixel window 
// 1D signal scanned by sliding window for faces of size 24x24 pixels 
const int SIGNAL_SIZE = 320*240; 
const int NUM_SAMPLES = SIGNAL_SIZE-NUM_VEC_DIM+1; 
Ipp32f supportVector[NUM_SUPP_VEC][NUM_VEC_DIM]; 
Ipp32f coeffs [NUM_SUPP_VEC]; 
Ipp32f samples[SIGNAL_SIZE]; // input signal array 
Ipp32f result [NUM_SAMPLES]; // stores classification result 
float linear_kernel(const Ipp32f* pSrc1, int len, int index)   / /  Linear   Kernel  
{        Ipp32f tmp_result; 
          ippsDotProd_32f(pSrc1, supportVector[index], len, &tmp_result); 
          return tmp_result * coeffs[index]; 
} 
 
void  main()  
{        int blockSize = ...; 
          for  (int jj=0 ; jj<NUM_SAMPLES; jj+=blockSize)  { 
               for  (int i=0 ; i<NUM_SUPP_VEC; i+=1)  { 
                       int loopEnd_j = std::_MIN(NUM_SAMPLES, jj+blockSize); 
                       #pragma omp parallel for default(shared)    
                       for  (int j=jj ; j<loopEnd_j ; j++)  {  
        result[j] += linear_kernel(&samples[j], NUM_VEC_DIM, i); 
                     } 
              } 
        } 
} 

Figure 9. Exploiting Data-Parallelism of the SVM 

4.3 Functional Decomposition 
The functional decomposition is another way to multithread an 
application for exploiting task-parallelism. The AVSR application 
has clearly four different functional components. These are audio 
processing, video processing, audio-video processing, and others.  
Therefore, a natural scheme of parallelizing the AVSR is to map a 
functional component to an OpenMP worksharing section [6], as 
shown in Figure 10.  

Streams of audio and video data can be broken into pieces and be 
processed in pipeline. In our multithreaded application, while the 
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audio processing and the video processing are working on the 
current piece of the data, the AVSR processing is working on the 
previous piece of the data as well. We did parallelize not only the 
parallel tasks, but also the pipeline tasks. 

Same as exploiting data-parallelism in the SVM application, the 
programmer intervention for parallelizing the AVSR is also pretty 
small. A few OpenMP pragmas are simply added to the original 
source code. The compiler performs the threaded code generation 
presented in Section 3 together with the OpenMP library support 
to execute the AVSR application in parallel.     

#pragma omp parallel sections default(shared) 
{     #pragma omp section 
          {    DispatchThreadProc( &AVSRThData );  }  // data input and dispatch 
       #pragma omp section 
         {   AudioThreadProc( &AudioThData );  }         // process audio data   
       #pragma omp section 
        {   VideoThreadProc( &VideoThData );    }        // process video data 
       #pragma omp section 
        {    AVSRThreadProc( &AVSRThData );  }       // do avsr 
} 

Figure 10. Exploiting Task-Parallelism of the AVSR  

4.4 Exploiting Dynamic Nested Parallelism 
In addition to functional-decomposition of the AVSR application, 
we exploit the nested data-parallelism in the dynamic extent of the 
video processing section (or thread). The major motivation of 
further partitioning this thread into multiple threads is to achieve 
better load balance. The execution time breakdown of the AVSR 
workload is shown in Figure 11 in which the video processing 
takes around half of the time. To exploit task-level parallelism of 
the application on a single processor with Hyper-Threading 
technology or a dual-processor system without Hyper-Threading 
technology, the workload can be balanced well by having the 
video processing thread on one processor and having the rest on 
the other processor. However, on a dual-processor system with 
Hyper-Threading technology, pure functional decomposition 
cannot have balanced loads. This is because video processing 
takes ~50% of the total execution time. We further make dot-
product of matrices/vectors and Fourier transform into multiple 
threads, as shown in Figure 12. Thus, as shown in Figure 13, we 
have totally three threading schemes in our experiment to evaluate 
the exploitation of static nested parallelism supported by the Intel 
compiler and OpenMP runtime library. 

Video 
processing

52.1%
AV 

processing
36.6%

Audio 
processing

2.5%

Ohters 
8.8%

 

Figure 11. Execution time breakdown of the AVSR workload 
Figure 13 shows the application AVSR parallelized with OpenMP 
pragmas to exploit task and data parallelisms, where, A stands for 
audio processing, V stands for video processing, AV stands for 
audio-video processing, and O stands for other miscellaneous 

processing. Figure 13(a) shows the multi-threading model when 
we only have four threads via functional decomposition. Figure 
13(b) and (c) show the nested parallelism when video processing 
is further threaded into 2 or 4 threads. The bottom nodes denote 
the additional threads created for executing the parallel for loop 
within the dynamic extent of the parallel sections.    

// In the parent function,  the dot-product kernel is called in a parallel sections 
omp_set_nested( 1 ); 
: 
call dot-product of matrix and vector kernel  
:      
// In the dot-product of matrix and vector 
float  **matrix; // input matrix 
float  *vector,  // input vector 
 *result; // result vector 
int  rows, columns; 
// In this example the number of rows is 480, so we set chunk size to 120  
// and use static scheduling for  each thread 
#pragma omp parallel for num_threads(4) schedule(static, 120) 
for (int i=0; i<rows; i++)  
{   
     ippmDotProduct_vv_32f(matrix[i], vector, &(result[i]), columns); 
} 

Figure 12. Exploiting Nested Parallelism of the AVSR  

A V AV OA V AV O
 

(a)  (b)  (c) 

Figure 13: Task- and Data-Parallelism of the AVSR Workload 

5. Performance  
We conducted our performance evaluation with two multimedia 
applications to examine the performance of multithreaded codes 
generated by the Intel compiler. The generated codes are highly 
optimized with architecture-specific, advanced scalar and array 
optimizations assisted with aggressive memory disambiguation. 
Our results show that Hyper-Threading technology and the Intel 
compiler offer a cost-effective performance gain (10%~28%) for 
our applications on a single processor (SP+HT), and offer up to 
2.23x speedup on a dual-processor system with Hyper-Threading 
technology-enabled (DP+HT). The performance measurement of 
two multimedia applications SVM and AVSR is carried out on a 
dual–processor HT-enabled Intel Xeon™ system running at 
2.0GHz, with 1024MB memory, an 8K L1-Cache, a 512K L2-
Cache, and no L3-Cache. When we measure single-processor 
performance on a Dual-Processor (DP) system, we disable one 
physical processor from the BIOS. We disable the support of 
Hyper-Threading technology from the BIOS in order to measure 
the performance of our applications on the processor without 
using Hyper-Threading technology. To use the serial execution 
time as a base on the system experimentally in our lab setting, we 
disable one physical processor and Hyper-Threading technology, 
and run the highly optimized serial codes of applications.  

Essentially, the performance scaling is derived from the serial 
execution (SP) with Hyper-Threading technology disabled and 
one physical processor disabled on our system. The multithreaded 
execution is done with three system configurations: (1) SP+HT 
(Single-Processor with HT-enabled), (2) DP (Dual Processor with 
HT-disabled), (3) DP+HT (Dual-Processor with HT-enabled). In 
Figure 14, we show the normalized speedup of our multithreaded 
execution of the SVMs (2 kernels). The workloads achieved very 
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good performance gain using the Intel OpenMP C++ compiler for 
data-domain decomposition. For instance, from a single processor 
with HT-disabled to the single processor with HT-enabled, we 
achieve speedups ranging from 1.10x to 1.13x with 2-thread run. 
The speedup ranges from 1.92x to 1.97x for 2-thread run with DP 
configuration. The speedup ranges from 2.13 to 2.23x for 4-thread 
run with DP+HT configuration. This indicates that we utilize the 
microprocessor more efficiently.  

Figure 15 shows the speedup of the OpenMP version of the 
AVSR with different amount of nested parallelism under different 
system configuration. Again, by changing from a single processor 
Hyper-Threading technology disabled to the single processor with 
Hyper-Threading technology-enabled, a speedup ranging from 
1.18 to 1.28x is achieved with 2 threads under the SP+HT 
configuration. The speedup is 1.61x for 4 outer threads, 2.03x for 
4 outer, 2 inner threads, and 1.95x for 4 outer, 4 inner threads 
with the DP configuration. The speedup is 1.57x for 4 outer 
threads, 1.99x for 4 outer, 2 inner threads, and 1.85x for 4 outer, 4 
inner threads with DP+HT configuration. Clearly, we achieved 
~2x speedup from a single-CPU system to a dual-CPU system.  

One observation we have from Figure 15 is that the best speedup 
of AVSR workload with DP+HT configuration is 1.97% lower 
than the best speedup of the AVSR with the DP configuration. It 
attributes to one cause, that is, only three logical processors are 
effectively used when the A (2.5%) and O (8.8%) are completed 
for 4-outer-2-inner-thread execution. This means that the benefit 
from one physical processor with HT-enabled, which is evidenced 
with the performance gain under SP+HT configuration, is not 
enough to counteract the penalty of one idle logical processor 
caused by the unbalanced load. Our observation applies to the 4-
outer-4-inter-thread execution scheme as well. The challenge here 
is how to exploit parallelism in AV (36.6%), which is one of our 
future research topics beyond the scope of this paper.  

Another observation we have from Figure 15 is that the speedup 
from the 4 outer and 2 inner threads is better than the speedup 
from the 4 outer and 4 inner threads under both DP and DP+HT 
configurations. This is simply due to the less threading overheads 
are introduced with a smaller number of threads. Later, we discuss 
more about controlling parallelism and controlling spin-waiting 
for getting a good trade-off between benefits and costs. In any 
case, we have achieved ~2x speedup under both DP and DP+HT 
configurations.  

Functional decomposition may not deliver the best performance 
due to unbalanced load of all tasks among all processors in the 
system. Given the inherent variation of granularity for each task 
(or module), it is hardly to achieve the best potential performance 
without exploiting another level of parallelism. Essentially, for 
media workloads, we can exploit data-parallelism to overcome the 
issue of exploiting task-parallelism. As we show in Figure 15, by 
exploiting the inner parallelism with data-domain decomposition, 
we achieve much better speedups -- the performance gain is 
around 40% with the 4 outer and 2 inner threads comparing to 4 
outer threads (exploiting task-parallelism only). Thus, exploiting 
nested-parallelism is necessary to achieve better load balance and 
speedup. (Note: the inner-parallelism does not have to be data-
parallelism always; it can be task-parallelism as well.) On the 
other hand, Figure 15 also shows that excessive threads introduce 
more extra threading overhead, the performance improvement 
with 4 inner threads is not better than that with 2 inner threads. 
Therefore, effectively controlling parallelism is still an important 
aspect to achieve the desired performance on a HT-enabled Intel 
Xeon processor system, even though the potential parallelism 
could improve the processor utilization. With Intel compiler and 
runtime, users are allowed to control how much time each thread 
should spend spinning at run-time. An environment variable 
KMP_BLOCKTIME is supported in the library. Also, the spinning 
time can be adjusted by using the kmp_set_blocktime() API call at 
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Figure 14. Speedup of Multithreaded SVMs 
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Figure 15. Speedup of the Multithreaded AVSR  

Table 1: The workload characteristics of two multimedia applications on a SP or DP system with Hyper-Threading technology 
disabled , and a SP and DP system with Hyper-Threading technology enabled (SP+HT, DP+HT). 

SVM AVSR 
Linear Radial Basis Function 

 

SP SP+HT DP DP+HT SP SP+HT DP DP+HT 

SP SP+HT 
(with 2-inner 

threads) 
Clockticks (millions) 4,093 3,824 2,239 2,139 6,995 6,274 3,684 3,374 36,633 27,998 
Instructions retired (millions)  3,152 3,174 3,202 3,594 4,337 4,392 4,384 4,487 19,415 19,599 
IPC   (Instructions Per Cycle) 0.77 0.83 1.43 1.68 0.62 0.7 1.19 1.33 0.53 0.70 
UPC (Uops Per Cycle) 1.31 1.42 2.44 2.64 1.08 1.22 2.07 2.33 0.84 1.13 
FP/MMX/SSE/SSE-2 (millions) 1,775 1,776 1,776 1,776 2,883 2,883 2,883 2,884 7,273 7,063 
First-level cache load miss rate  2.7% 2.9% 3.0% 3.7% 3.0% 3.9% 3.2% 4.3% 11.0% 14.0% 
2nd-level cache load miss rate 2.3% 4.1% 4.5% 5.3% 2.0% 3.1% 3.4% 3.8% 50.0% 26.6% 
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runtime. On a HT-enabled processor more than one thread can be 
executing on the same physical processor at the same time. This 
indicates that both threads have to share that processor’s 
resources. It makes spin-waiting extremely expensive since the 
thread that is just waiting is now taking valuable processor 
resources away from the other thread that is doing useful work. 
Thus, when exploring the use of Hyper-Threading technology, the 
block-time should be very short so that the waiting thread sleeps 
as soon as possible allowing still useful threads to more fully 
utilize all processor resources. In our previous work, we use 
Win32 Threading Library calls to parallelize our multimedia 
workloads [5]. While we can achieve good performance, multi-
threading them takes a huge amount of effort. With the Intel 
OpenMP compiler and OpenMP runtime library support, we 
demonstrated same or better performance with much less effort. In 
other words, the programmer intervention for parallelizing our 
multimedia applications is pretty minor. 

Furthermore, we characterize the multimedia workloads by using 
Intel VTune Performance Analyzer under SP, SP+HT, DP, and 
DP+HT configurations to examine the HT benefits and costs 
instead of presenting speedup only. As shown in Table 1, 
although the numbers of instructions retired and cache miss rates 
(e.g., 2.7% vs 2.9% first-level cache miss rates for the linear 
SVM) are increased for both applications after threading due to 
execution resource sharing, cache and memory sharing, and 
contention, the overall application performance still increases. 
More specifically, the IPC is improved from 0.77 to 0.83 (8%) for 
SVM (linear) on SP, 17% for SVM (linear) on DP, 13% for SVM 
(RBF) on SP, 12% for SVM (RBF) on DP, and 30% for AVSR 
on SP. These results indicate the processor resource utilization is 
greatly improved for our multimedia applications with the Hyper-
Threading technology. 

6. Conclusions  
In this paper, we presented a set of implemented compilation 
techniques that are unique to the Intel high-performance compiler 
for OpenMP pragma-guided and directive-guided parallelization. 
Two multimedia applications are studied to demonstrate and 
evident that the multithreaded codes generated and optimized by 
the Intel compiler are very efficient, together with the support of 
the well-tuned Intel OpenMP runtime library. The performance 
improvements achieved on three SP+HT, DP and DP+HT system 
configurations are very impressive for the multimedia applications 
(SVM and AVSR) studied in this paper. The performance results 
and workload characteristics of SVM and AVSR demonstrated 
and evidenced our three main observations: (a) the multithreaded 
code generated by the Intel compiler yields a good performance 
gain with the parallelization guided by the OpenMP pragmas; (b) 
the exploited thread-level parallelism (TLP) causes inter-thread 
interference in caches, and places greater demands on the memory 
system. However, the Hyper-Threading technology hides the 
additional latency, so that there is only a very small impact on the 
whole program performance, and the overall performance gain 
makes this little impact not visible on Hyper-Threading enabled 
Intel platforms; (c) Hyper-Threading technology is effective on 
exploiting both task- and data-parallelism through functional and 
data decomposition in multimedia applications.  
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