
1c2.3

Efficient Multithreading Implementation of M.264 Encoder on Intel
Hyper-Threading Architectures

Steven Ge’, Xinmin Tian’, and Yen-Kuang Chen3
Intel China Research Center, Intel Corporation, Beijing, P.R. China

Intel Compiler Laboratory, Software Solution Group, Intel Corporation
3Microcomputer Research Laboratories, Intel Corporation

2.33600 Juliette Lane, Santa Clara, CA 95054, USA

1

2

Abstract
Exploiting thread-level parallelism is a promising way to
improve the performance of multimedia applications
running on multithreading general-purpose processors.
This paper describes our work in developing the first
multithreading implementation of the H.264 encoder. We
parallelize the encoder using the OpenMP programming
model, which allows us to leverage the advanced
compiler technology in the Intel8 C++ compiler for Intel
Hyper-Threading architectures. We present our design
considerations in the parallelization process. We describe
an efficient multi-level data partitioning scheme that
increases performance of a multithreaded H.264 encoder.
Our experiments show parallel speedups ranging from
4 . 3 1 ~ to 4 . 6 9 ~ on a 4-CPU Intel Xeonm system with
Hyper-Threading Technology.

1. Introduction
H.264 [2] is an emerging video coding standard proposed
by the Joint Video Team (JVT). It is aimed at high-
quality coding of video contents at very low bit-rates.
H.264 uses the same hybrid block-based motion
compensation and transform coding model as existing
standards such as H.263. However, a number of new
features and capabilities have been added in H.264 to
improve its coding performance. As a result, the H.264
encoding process is more computationally intensive than
existing standards. Hence, we are motivated to improve
the speed of the encoder.
In [7], it is demonstrated that using MMX/SSE/SSE2
technology can speed up the H.264 decoder performance
by 24x . We apply the same technique to the H.264
reference encoder as well. Table 1 shows the speedups
for each key module residing in H.264 encoder. Although
the encoder is 2-3x faster with SIMD optimization, it is
still not fast enough for real-time video processing. One
way to accelerate the encoder further is to parallelize it to
exploit multiprocessor and Hyper-Threading Technology
supported by the Intel architecture.
Recently, both hardware and software support for
multithreading has increased. While using multithreading
hardware to improve throughput of multiple workloads is
straightforward, using it to improve the performance of a
single workload requires parallelization. Converting

sequential programs into multithreaded programs is often
difficult. However, the OpenMP shared-memory
programming model [4, 51 provides a rich set of features,
which allow the compiler to exploit thread-level
parallelism and optimize the performance of applications
with a few pragmas. The compiler support enables
developers to take full advantage of the state-of-the-art
architecture features such as Hyper-Threading
Technology [3].
Previously, [6] presented an implementation of a
multithreaded H.264 decoder, and there is also some
work on exploiting parallelism in MPEG encoders [I]. To
the best of our knowledge, we are the first to develop a
multithreaded implementation of H.264 encoder. In
addition, we study on tradeoffs between video quality and
many parallelization schemes. [l] used the most
straightforward approach, which parallelizes the encoding
process at the slice-level. Our scheme is exploiting both
slice-level and Frame-level parallelism.

This paper describes how to efficiently parallelize an
H.264 encoder using the Intel OpenMP compiler and
demonstrates a speedup of 4 . 3 1 ~ to 4 . 6 9 ~ on quad-
processor systems with Hyper-Threading Technology.
The remainder of this paper is organized as follows.
Section 2 presents a brief overview of the Intel compiler
and Hyper-Threading architecture. Section 3 presents our
implementation for a threaded H.264 encoder. Section 4
shows performance results and discusses the results.
Finally, Section 5 concludes the paper.

2. Compiler and Architecture
Intel Compiler: The Intel OpenMP implementation in
the compiler strives to: (a) generate multithreaded code
which gains a hue speedup over well-optimized
sequential code, (b) integrate parallelization tightly with
advanced interprocedure, scalar and loop optimizations
such as intra-register vectorization and memory hierarchy
oriented optimizations to achieve better cache locality
and efficiently exploit multi-level parallelism, and (c)
minimize the overhead of data-sharing among threads.
The Intel compiler has a single common intermediate
representation named ILO for the C++K and Fortran95
languages. Hence, OpenMP parallelization, as well as a
majority of other optimizations, is applicable through a
single high-level transformation irrespective of the high-

0-7803-8185-8/03/$17.00 0 2003 IEEE 469

Module
SAD Calculation
Hadamard Transform
Suh-Pel Search
Integer Transform and Quantization
% Pel Interpolation

encoder using SIMD-optimization only

level source language [5]. Throughout the rest of this
paper, we refer to the Intel C* and ForIran compilers for
Intel architectures collectively as “the Mtel compiler”. In
order to establish the context in which the OpenMP
parallelization is enabled.
Architecture: Hyper-Threading (HT) technology brings
the concept of Simultaneous Multithreading (SMT) to
Intel Architecture. HT makes a single physical processor
appear as two logical processors; the physical execution
remurces are shared and the architecture state is
duplicated for the two logical processors [3]. From a
software or architecture perspective, this means operating
systems and user programs can schedule threads to
logical CPUs as they would on multiple physical CPUs.
From a microarchitecture perspective, this means that
instructions from both logical processors will persist and
execute simultaneously on shared execution resources [3].
Figure l(a) shows a system with two physical processors
that are not Hyper-Threading Technology-capable. Figure
l(b) shows a system with two physical processors that are
Hyper-Threading Technology-capable. In Figure I@),
with a duplicated copy of the architectural state on each
physical processor, the system appears to have four
logical processors. Each logical processor contains a
complete set of the architecture state.
With HT technology, the majority of execution resources
are shared by two architecture states (or two logical
processors). Rapid execution engine process instructions
from both threads simultaneously. The Fetch and Deliver
engine and Reorder and Retire block partition some of the
resources to alternate between the two intra-threads. In
short, HT technology improves performance of threaded
programs by increasing the processor utilization of the
on-chip resources available in the Intel NetBurstm micro-
architecture.

Speedup
3.5x
1 . 6 ~
1 . 3 ~
1.3x , ”
2.0x

I I
I I

(a) Traditional Dual-CPU system

~ ~ ~ ~

IbJ H \ p r I hmiding lcchnolugy.-rswhlc IhdlCI’U 3pIcm
Figure I: Traditional DP system VF. HT-capable DP s)stcm

mm
Slice

inm Hh H
Figure 2: Hierarchy of data domain decomposition in H.264

3. Multithreaded Implementation
There are many oppoltunities in the H.264 encoder for
exploiting parallelism at different levels. In order to
achieve the hest speedup over its well-tuned serial code
on processors with Hyper-Threading Technology, our
design is to divide the H.264 encode process into multiple
threads via data domain decomposition. A sequence of
video is consisted of many groups of pictures (GOP). As
shown Figure 2, each GOP includes a number of frames.
Each frame is divided into slices, which is the self-content
encoding unit and is independent of other slices in the
same frame. The slice can he further decomposed into
macroblock, which is the unit of motion estimation and
entropy coding. Finally, the macroblock can he separated
into block and sub-block. These are all possible places to
parallelize an H.264 encoder. Section 3.1 describes our
judgments of thread granularity. Section 3.2 depicts our
proposed implementation.

3.1 Slice-Level vs Frame-Level Pa ra l l e l i sm
First, we should decide the thread granularity. One
possible scheme of decomposition is to divide a frame
into small slices. The advantage of parallelizing among
slices is that the slices in a frame are independent. Thus,
we can simultaneously encode all slices in any order. On
the other hand, the disadvantage is that it will increase the
hit rate. Figure 3 shows the video encoder performance
(rate-distortion) when a frame is divided into different
numbers of slices.’ When a frame is divided into 9 slices,
the hit-rate at the same quality is about 15-20% higher.
This is because slices break the dependence between
macroblocks. When a macroblock in one slice cannot
exploit another macroblock in another slice for
compression, the compression efficiency decreases. In
order not to increase the hit-rate at the same video quality
of the parallelized encoder, we should exploit other
parallelism in the video encoder.
Another possible scheme of exploiting parallelism is to
identify independent frames. Normally, we encode a

I In H.264, a slice can be as large as a frame. Breaking a frame
into multiple slices is not required

470

Quality vs # slices (Fonnan, CIF)

36.0
E 35.5
? 35.0 -
E 34.5 g 34.0
- f 33.5
5 33.0
0 32.5 ~

32.0 7

--I slim - - 4 s l i m -_ -. 9 s l i m

. r -/. ' -* 'I-- --

Figure 3: Encoded picture quality vs the # of slices in a picture

sequence of frames using an IBBPBBP ...
There are two B frames between P frames. While P
frames are reference frames (which other P or B frames
depend on), B frames are not necessary. In our
implementation of H.264 encoder, we treat B frames as
non reference frames to explore more parallelism. In the
rest of this paper, we will assume this simplification by
default. The dependence among the frames is showed in
Figure 4. In this PBB encoding shucture, the completion
of encoding a P frame will make the subsequent one P
frame and two B frames ready for encoding. The more
frames encoded simultaneous, the more parallelism we
can explore. Therefore, P frames are on the critical point
in the encoder. Accelerating P-frame encoding will bring
more frames ready for encoding, and avoid the idle of
threads. In our implementatiob we will encode I or P
frames first, then B frames.
Unlike dividing a frame into slices, utilizing parallelism
among frames will not increase the bit rate. However, the
dependence among them will limit the threads scalability.
The trade-off is to combine the above two approaches
into one implementation. Wefirst explore the parallelism
amongframes; we can gain perjbrmance from it without
bit rate increase. Afer we reach the upper limit of the
thread number can be reached by the fmme-level
parallelism, we will explore the parallel among slices
subsequently. As a result, we utilize processor resources
as much as possible and keep the compression ratio as
high as possible (the bit-rate as low as possible). (More
details will be given in Section 4.1.)

3.2 Implementation
We divide the encoder into three parts: input pre-
processing, encoding, and output post-processing. The

(I) I-frame in video cdecs stands for intra frames, which can
be encoded or decoded independently. Normally, there is an
I-frame per 15-60 frames. (2) P-frame stands for predicted
frames, each of which is predicted from a previously encoded
I-frame or P-frame. Because a P-frame is predicted from the
previously encoded 1P-frame, the dependency makes it
harder to encode two P-frame simultaneously. (3) B-frame
stands for bidirectional predicted frames, which are predicted
from a two previously encoded IR-frames.

M-B pjlRC"I m B m
Figure 4: Data dependence among frames. The numbers

are the display order' of the video frames

input processing will read uncompressed images, perform
some preprocesses, and then issue the images to encoding
threads. The preprocessed images are put in a buffer,
called image buffer. The output processing will check the
encoding status of each frame and commit the encoded
result to the output bit-stream sequentially. After that, the
entries in the image buffer are reused to prepare the
image for encoding. Although the input and output
processes of the encoder must be sequential due to the
natural of the H.264 encoder, the computation complexity
of input and output processes are insignificant compared
to the encode process. Therefore, we use one thread to
handle the input and output processes. This thread is the
master thread in charge of checking all the data
dependency.
We use another buffer, called slice buffer, to explore the
parallelism among slices. After each image is
preprocessed, the slices of the image will put into the
slice buffer. The slices in the slice buffer are independent
and ready for encoding (the readiness of reference frames
is checked during the input process). In this case, we can
encode these slices out of order. To distinguish the
priority differences between tbe slices of B frames and
the slices of I or P frames, we use two separate slice
queues to handle them.
Figure 5 depicts the final multithreading implementation.
Figure 6 shows the pseudo code. We use one thread to
process input and output in order and use other threads tn
encode slices out of order.

4. Performance Results and Analysis
We conduct the performance measurements of our
multithreaded H.264 encoder on (1) Dell 530 MT
workstation, built with dual Intel Xeon processors (4
logical processors) mnning at 2.0GHz with Hyper-
Threading enabled, 512K L2 Cache, IGB memory; (2)
IBM 360 Server, built with quad Intel Xeon processors (8
logical processors) running at 1.5GHz with Hyper-
Threading enabled, 256K L2 Cache, S12K L3 Cache,
2GB memory. Unless specified otherwise, the resolution
of the input video is 352x288 in pixels or 22x18 in MBs.
It is guaranteed that there are enough slices for eight
threads, when we take slice as the basic encoding unit for
a thread.

' In video codec, there are two orders. One is the display order;
the other one is the encoding order. While the display order
in a COP is IBBPBBP, the encoding order is actually
IPBBPBB.

47 1

w

Ezl
E5
E3

Figure 5: Implementation with image and slice buffers
,mp_setLnested(# of encoding thread + 1)
Ypragma amp parallel sections
I
Ypragma omp section

(
while (there is frame to encode)
f

i f (there is free enny in image buffer)
issue new frame to image buffer

else if (there are frame encoded in image buffer)
commit the encoded frame, release the entry

else
wait:

I/ dependency are handled here

Ypragma omp section
(
Upragma amp parallel nun-threads(# of enccding thread)

while (1)
(

if (there is slice in slice queue 0)

else if(there is slice in slice queue 1)

else if (all frames are encoded)

else

encode one slice

encode one slice

exit;

wait;

11 higher pnority for W-frames

11 lower prioity for B-frames

/I wait for the main thread to put more slices
I

1
1

)
Figure 6: Pseudo code of the multithreaded H.264 encoder

fie profile of encoder is configured as following: (1) all
intersearch types are enabled; (2) only the nearest
previous frame is used for inter motion search; (3)
maximum search range is 16; (4) 114-pel motion vector
resolution is used; (5) hadamard transform is enabled; (6)
quad parameter is set to 16 for all frames; and (7) rd-
optimization without restrictions and losses is used.

4.1 Tradeoff Between Speedup and
Compression Efficiency
A frame can be partitioned up to 18 slices. Taking a slice
as the base encoding unit for a thread can reduce the
synchronization overhead because there is no data
dependency among slices in a single frame for performing

+Speed-up for 2 processorj w/o HT -x- BitRate

2.50 3’00 r-----l
1.40 3 .- P 2.00 --g U

8 L

p ? 1.50 ~ +/ 1 1-20 f
m
&

1.00 B v) 1.00 -x/x’x
0.50

- 0.80
1 2 3 6 9 1 8

#of slices

(a)
1 +Speed-up for 4 processors with HT -x-BitRate I

5.00

4 3.00
P g 2.00 e
U) 1.00 $I 1 .oo

- - 0.80
1 2 3 6 9 1 8

#of slices

@)
Figure 7: Speedup and bit rate vs the #of slices in a frame

encoding. As we mentioned earlier, partitioning the frame
into multiple slices can increase the degree of parallelism,
but, it also increases the bit-rate. One of challenges is that
we aim at achieving a higher speedup with a lower bit-
rate without sacrificing any image quality. Therefore, we
should choose the slicing threshold carefully.
Figure 7 shows the speedup of encoding and the bit rate
with variation of the number of slices for each frame. In
Figure 7(a), the number of slices ranges from 1 to 18 with
a constant quality of encoded frames. There is a good
speedup when the number of slices for a frame is 1 to 2
on the DELL 530 platform, and the speedup is almost flat
while the number of slices changing from 2 to 18.
Meanwhile, the bit-rate increasing is smaller if the
number of slices is less than 3, but it starts going up from
3 slices to 18 slices. One important observation is that
partitioning a frame to 2 or 3 slices delivers the best
tradeoff that achieves a higher speedup and a lower bit
rate. Figure 7(b) shows that we need more than 3 slices to
keep 8 logical processors busy on the IBM 360 platform.
Essentially, we need 9 threads to achieve an optimal
performance for 4 physical processors with Hyper-
Threading enabled. Our heuristic is to keep the number of

412

Retired 1 instruction
Retired 2 instructions
Retired 3 instructions

video codec and the final implementation scheme have
been illustrated in detail. We are the first one who
considers compression efficiency degradation as well as
parallel speedup. Thus, the proposed scheme not only
provides good execution speedup, but also keeps the
video degradation as minimal as possible.

Our multithreaded implementation based on OpenMP
programming model also demonstrates that it is very
simple yet and efficient to exploit parallelism through
adding a few pmgmas in the serial code. The
programmers can rely on the parallelizing compiler to
convelt the serial code to multithreaded code
automatically. The performance results have shown that
the code generated by the Intel OpenMP compiler
delivers an optimal speedup truly over the well-optimized
sequential code on the Intel Hyper-Threading architecture.
Our work demonstrates that Hyper-Threading
Technology can gain us -20% performance, which is a
performance gain beyond the multiprocessor performance
without limited additional cost. The performance
speedups ranging from 4 . 3 1 ~ to 4 .69~ supports the merit
of our implementation and the efficiency of multithreaded
code generated by the Intel OpenMF’ compiler. The
techniques demonstmted in this work can he applied not
only to H.264, hut also to other r ideohage
coding/decoding applications on personal computers.

Acknowledgements
The authors thank the Intel compiler group for developing the
Intel C++ high-performance compiler. We also acknowledge
the efforts of Eric Q. Li and Xiaosong Zhou at Intel China
Research Center in developing the SIMD-optimized encoder.

References
[I] Y.-K. Chen, M. Holliman, E. Debes, S. Zheltov, A.

Knyazev, S. Bratanov, R. Belenov, and I. Santos, “Mema
Applications on Hyper-Threading Technology,“ Intel
Technology Journal, pp. 47-57, Feb. 2002.

[2] ITU-T Rec. H.264 I lSO/TEC 14496-10 AVC, Document
IVT-D157,4th Meeting: Klagenfwt, Austria, July 2002.

[3] D. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, I.
A. Miller, and M. Upton, “Hyper-Threading Technology
Microarchitecture and Architecture,’’ Intel Technology
Journul, Vol. 6, QI , 2002.

[4] OpenMP Architecture Review Board, ’OpenMP C and
C++ Application Program Interface,” Version 2.0, March
2002, hnp:ilwww.openmp.org

[5] X. Tian, Y.-K. Chen, M. Girkar, S. Ge, R. Lienhaxt, S.
Shah, “Exploring the Use of Hyper-Threading Technology
for Multimedia Applications with Intel OpenMP
Compiler”, in Proc. of Int’l Purullel & Disrn’buted
Processing Symposium, April 2003.

[6] E. B. van der Tal, E. G. T. Jaspers, and R. H. Gelderblorn,
“Mapping of N.264 decoding on a multiprocessor
architecture”, in Pmc. of SPIE Conf. on image and Video
Communications and Processing, Jan. 2003.

[7] X. Zhou, E. Q. Li, and Y.-K. Chen, “Implementation of
H.264 Decoder on General-Purpose Processors with Media
Instructions,” in Proc. of SPIE Conf. on Image and Video
Communications and Processing, Jan. 2003.

Without HT With HT
20.03% 25.67%
16.52% 18.62%
7.79% 8.55%

473

http://hnp:ilwww.openmp.org

