
GMH: A Message Passing Toolkit for GPU Clusters

Jie Chen and William Watson III

The Scientific Computing Group
Jefferson Lab

Newport News, Virginia 23606, USA
Email: {chen,watson}@jlab.org

Weizhen Mao

Department of Computer Science
College of William and Mary

Williamsburg, Virginia 23187, USA
Email: wm@cs.wm.edu

Abstract—Driven by the market demand for high-definition
3D graphics, commodity graphics processing units (GPUs)
have evolved into highly parallel, multi-threaded, many-core
processors, which are ideal for data parallel computing. Many
applications have been ported to run on a single GPU with
tremendous speedups using general C-style programming lan-
guages such as CUDA. However, large applications require
multiple GPUs and demand explicit message passing. This
paper presents a message passing toolkit, called GMH (GPU
Message Handler), on NVIDIA GPUs. This toolkit utilizes a
data-parallel thread group as a way to map multiple GPUs on
a single host to an MPI rank, and introduces a notion of virtual
GPUs as a way to bind a thread to a GPU automatically. This
toolkit provides high performance MPI style point-to-point
and collective communication, but more importantly, facilitates
event-driven APIs to allow an application to be managed and
executed by the toolkit at runtime.

Keywords-GPU; Cluster; Message Passing; MPI; CUDA

I. INTRODUCTION

In the past few decades, the performance of CPUs has

steadily increased according to Moore’s law. However, the

performance of scientific applications has not enjoyed the

same increase despite higher clock rates, larger memory

caches, and instruction-level parallelism of these CPUs.

This brings the recent multi-core processors [16], which

offer better performance for data parallel applications by

executing multiple threads simultaneously. However, the rel-

ative small number of processing cores and limited memory

bandwidth on this type of CPU prohibit further increases in

the performance for data parallel applications. On the other

hand, a modern graphics processing unit (GPU) contains

a scalable array of multi-threaded Streaming Multiproces-

sors (SMs) and offers extremely high memory bandwidth.

Each SM consists of many Scalar Processor (SP) cores

with on-chip shared memory and can execute hundreds

of threads in parallel efficiently in the Single Instruction

Multiple Thread (SIMT) fashion. Consequently, General-

Purpose computation on GPUs (GPGPU) [13] has taken

off. Excellent GPU performance speedups have become

common place in fields from molecular dynamics [2] to

lattice quantum chromodynamics (LQCD) [3]. For many

applications, GPUs have been excellent platforms providing

much better performance-to-cost ratio relative to their latest

mutil-core CPU counterparts [4].

Recently, AMD and NVIDIA have begun producing

GPUs not only tailored for the gaming community but

also suitable for high performance computing applications.

Meanwhile, GPU software development tools have evolved

rapidly as well. Several general purpose high level GPU pro-

gramming toolkits such as CUDA [9], Brook+ [1], and most

recently OpenCL [10] have replaced traditional computer

graphics development libraries, such as OpenGL [11], whose

Application Program Interfaces(APIs) are not suitable for

GPGPU. These new toolkits provide more natural GPGPU

programming environments, and expose more hardware ca-

pabilities. This paper focuses on CUDA, which is stable and

widely used by the scientific computing community.

CUDA is a general purpose programming system for

NVIDIA GPUs and was first released in the end of 2007. It

extends the C programming language to support executing

a GPU function (kernel) on a single GPU in the SIMT

fashion. A GPU kernel is very much like a regular CPU

function with minor notational change, and is executed by

all SMs using tens of thousands of threads at the same time

to achieve high performance. CUDA allows asynchronous

kernel execution and offers the capability of concurrent oper-

ations of kernels and host-GPU memory DMA transactions

on different “streams”. Furthermore, CUDA also provides

event recording APIs that enable applications to check the

progress of individual operations within an asynchronously

executing stream. Note that CPUs (hosts) are involved in

starting GPU kernels, managing GPU memory, and handling

communication among devices on the PCI buses.

Many scientific applications have achieved remarkable

speedups running on a single GPU using CUDA in compar-

ison to running on a multi-core CPU. For example, a lattice

QCD linear equation solver [3] using mixed precision on

NVIDIA GTX 280 has achieved more than a 10 times per-

formance increase relative to executing the same algorithm

on a host with dual quad-core Intel Nehalem processors.

However, large scientific applications may demand multiple

GPUs either on the same host or within a single GPU cluster

[5] because of the large memory requirement of this type of

application.

2010 16th International Conference on Parallel and Distributed Systems

1521-9097/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPADS.2010.35

35

cudaMemcpy

Application

GPU GPU

cudaMemcpy

Figure 1. Exchange a single message between two GPUs

Using multiple GPUs for multiple independent processes

or threads is trivial. However, exchanging messages among

multiple GPUs for large applications is cumbersome. Fig.

1 describes what is involved in an exchange of a single

message between two GPUs on a single host in the CUDA

programming environment using a single host buffer in a

multi-threaded application.

Since a GPU kernel can not manage GPU memory di-

rectly, a datum in a GPU memory location has to be first

transferred out from the GPU to the host by the cudaMemcpy
host function followed by another cudaMemcpy function call

to send the datum from the host to the other GPU. Multi-

threaded applications have to synchronize memory access to

the host memory buffers that are used for the transfers. In

contrast, the same type of transfers will be more complicated

for applications using multiple processes on the same host or

on different hosts because of the required message passing

from one process to another. Furthermore, to port single

GPU applications to run on multiple GPUs or to develop

applications for GPU clusters, developers usually face sev-

eral obstacles: splitting kernels to handle calculations for

interior volume and surface area respectively, overlapping

computation and communication, and so on.

To reduce the complexity of programming for multiple

GPUs, this paper presents a message passing toolkit for GPU

clusters, called the GPU message handler (GMH), which not

only provides high performance point-to-point and collective

GPU communication but also facilitates a new framework to

allow applications to be managed and executed by the toolkit

at runtime.

This paper is organized as follows. Section 2 reviews

previous related work. Section 3 describes the design and

implementation of the GMH toolkit. Section 4 overviews

the software and hardware environment where performance

evaluations are carried out. Section 5 presents the perfor-

mance data for the toolkit. Section 6 concludes.

II. RELATED WORK

Similar to parallel applications using multiple CPUs on

clusters, there are two major paradigms for programming

and implementing GPU parallel applications using GPU

clusters: shared memory paradigm that share data between

processes through shared memory and message passing

paradigm that exchange messages between processes or

threads running concurrently.

On CPU clusters, shared memory parallel programs are

widely considered easier to develop than message passing

programs. There has been research that extends shared

memory paradigm to GPU clusters. For example, a software

based distributed shared memory can be implemented by

modifying each memory access to use a GPU page table,

but the performance of this type of implementation shows

a drastic performance slowdown [8]. Therefore, distributed

memory with explicit message passing is the only viable

option known to scale well for GPU clusters.

The Message Passing Interface (MPI) [15] is the de facto

standard for developing parallel programs for CPU clusters.

Recently, there have been several research efforts to provide

MPI style message passing for parallel GPU applications.

For example, cudaMPI [6] replicates most MPI functions. It

offers message passing from CPU to GPU or from GPU to

GPU, and delivers reasonably good performance. However,

it only supports the configuration of one GPU on one

computing host, it does not provide any new framework that

simplifies development efforts of parallel GPU applications,

and it does not isolate its message passing from MPI

implementations, which may result in conflicts in sending

and receiving messages when applications mix cudaMPI and

MPI together. Nonetheless, cudaMPI takes a CPU centric

approach in the sense that all message exchanges are dictated

by CPUs. On the other hand, DCGN [17] adopts a GPU

centric approach in the way that GPUs initiate message

exchanges while CPUs serve as mere I/O processors to

poll for GPU communication. Unfortunately, it requires

hundreds of microseconds extra overhead for each GPU

message due to CPU polling for messages. In addition,

DCGN implementation does not support any application

using just one host with multiple GPUs and does not allow

mixing DCGN and MPI together. If 100% of any application

could run on GPUs, the GPU centric message passing would

be clearly preferable over the CPU centric message passing.

Until that happens, the CPU centric message passing remains

an ideal choice for most GPU parallel applications.

The GMH toolkit developed at Jefferson Lab, a national

laboratory under the Office of Science in the Department

of Energy, follows the CPU centric message passing ap-

proach. It utilizes MPI to deliver messages among hosts

where GPUs are situated. It uses a thread group on each

individual computing host as a way to map GPUs to an

MPI rank. Each thread in the thread group is bonded to

a particular GPU automatically. The message exchanges

among GPUs on a single host are carried out without host

memory copies. Furthermore, GMH is implemented as an

MPI library, therefore GMH applications can mix GMH and

MPI together. More importantly, GMH not only provides

MPI style communication primitives but also offers an event-

driven flow control framework that allows applications to be

36

SM
V

IMV IMV

IMVIMV

Messages

v accurate ?

Yes

No

Global Synchronization

SM
V

SM
V

SM
V

Figure 2. Event flow model of a parallel iterative solver

executed by GMH at run time.

III. THE GMH TOOLKIT

Solving linear systems is a common occurrence in many

scientific applications. For example, iterative linear system

solvers, such as the BiCGSTAB [14] method, have been

utilized frequently in theoretical physics LQCD calculations

[3]. A successful convergence of a parallel BiCGSTAB

execution requires many iterations, during which many

steps of parallel matrix-vector multiplications are carried

out followed by a global synchronization. Thus a parallel

iterative solver can be encapsulated into an event flow model

as illustrated in Fig. 2, where IMV stands for interior volume

matrix vector multiplications, and SMV stands for surface

area matrix vector multiplications. In the figure, message

exchanges among GPUs are initiated at the same time when

IMV kernels start execution. The SMV kernels start running

once surface messages are exchanged. The above steps re-

peat many times until a global synchronization is performed.

Then, the accuracy of the solution vector is checked to

determine whether the iteration process continues.

GMH provides a set of C programming APIs to enable

an event flow message passing programming development

in addition to the conventional MPI style message passing

primitives. Applications can either use the MPI style APIs

in the GMH library to control iterative processes or register

commands and events with GMH, whose command queues

and event handlers manage these iterative processes for the

applications. The later approach can significantly reduce

the effort of porting GPU applications running on a single

GPU to the applications running on multiple GPUs because

developers could concentrate on algorithms and event flow

instead of programming details.

A. GMH Architecture

The GMH toolkit is a multi-threaded event driven message

passing C programming library. It utilizes a dedicated CPU

core to handle each GPU to ensure good performance.

GPU 1

GPU
Kernel
Send

Memory
Recv

Memory
GPU

Kernel

CPU
Task

Reduction

GPU
Kernel
Send

Memory
Recv

Memory
GPU

Kernel

CPU
Task

Reduction

GPU 0

Figure 3. GMH run time architecture

It uses MPI as its underlying inter-host communication

mechanism and eliminates host memory copies for intra-host

GPU communication. It depends on MPI implementations

with fully threaded support to avoid unnecessary polling of

underlying communication buffers, which adds overhead to

each message. Furthermore, GMH automatically assigns and

binds a CPU thread to a GPU due to a one-to-one mapping

of CPU threads to GPUs, which is a mandate from CUDA.

A GMH thread controlling a GPU owns a command

queue, into which requests/commands such as GPU kernels

or communication calls are funneled. The GMH toolkit ex-

ecutes developer specified requests in the command queues

either synchronously or asynchronously at runtime. The

command queue can hold multiple streams so that con-

current memory transfers and kernel executions can take

place. A command is able to generate an event so that any

command can have an event dependency specified such that

the command can not be executed until some event has

finished. Similarly, GMH can explicitly wait on one or a

set of events before executing the next available command.

Fig. 3 illustrates one example of GMH command queues on

two threads managing two GPUs at run time.

B. GMH Implementation

The implementation of GMH faces several challenges.

First of all, each GPU has to be presented as a communi-

cation end point to hide the difference between inter-host

and intra-host GPU communication. Secondly, the GPUs

on a host must be managed automatically to avoid static

mapping between GMH threads and GPU devices. These

two challenges along with the goals of making GMH a high
performance, flexible and easy to use toolkit shape the final

implementation.
1) GMH Environment: The GMH environment can be

initialized by calling gmh init with the number of requested

GPUs on a single host. The initialization routine spawns the

number of threads equal to the number of requested GPUs on

the host. Each thread is bound to a GPU and executes a user

supplied thread function once the GMH environment is set

up. To better manage multiple threads and GPUs on a single

37

host, GMH employs a concept of virtual GPU: a virtual

GPU device number that always starts from 0 is assigned to

a thread once the thread is bound to a GPU. The adoption of

the concept of virtual GPUs enables GMH to launch either

one process or multiple processes on a single host without

causing GPU resource conflicts among GMH threads. Since

there is a one-to-one mapping between a GMH thread and

a GPU, this paper treats these two terms the same from

here on. In addition, a communication end point for a GMH

thread is a unique integer that combines the virtual GPU id

of the thread with the MPI rank of the process that owns

the thread attached to the GPU. The combined integers are

called GMH ranks.

2) GMH Memory: A GPU memory location is encap-

sulated into a GMH memory structure called gmh mem t,
which holds information about the GPU memory location,

its size and permission. The GMH memory is created with

a default option that a page locked (pinned) host memory

of the same size is also allocated.

3) GMH Commands and Events: Each GMH thread

attached to a GPU contains a command queue into which

an application inserts any supported commands through the

GMH APIs. A command queue qmh tasklist t is FIFO in

nature, but it may contain multiple streams. A command has

to be associated with a stream upon creation. Commands on

different streams can be executed concurrently to offer the

capability of overlapping communication and computation.

Even though the GMH commands are the most important

building blocks of the GMH toolkit, developers never inter-

act with commands directly but rather through APIs.

When applications issue a gmh init function call, the cre-

ated command queues are delivered back to the applications

as the first argument to the user provided thread functions.

The following is the definition for the user provided thread

function:

void* (*gmh thread func t) (gmh task list t , void *);

Each GMH command can be either synchronous or asyn-

chronous. An asynchronous command generates a GMH

event which can be used to track the progress of the

command. Each GMH event is comprised of one CUDA

event, one MPI request, or both. Applications can wait on a

single event or wait on a set of events. Thus, events can

be used to build up a dependency structure to enable a

command to wait for a set of events to finish before the

command can start to execute. The following code segment

illustrates the concepts of streams, commands and events.

gmh tasklist t l; gmh stream t s;

gmh event t ev, ∗evs wait;
gmh kernel t func;

int nevs; void *arg;

gmh create command stream (l, &s, 0);

gmh add gpu kernel (l, s, func, arg, nevs, evs wait, &ev);

In the above code segment, a command stream s is created

for the command queue l. A new command, which is a GPU

kernel specified by a user function func along with a user

argument arg, starts only after nevs number of events stored

in evs wait have finished and then generates a new event

denoted by ev.

4) GMH Point-to-point Communication: GMH provides

two flavors of communication APIs for applications. One

set of APIs is very much MPI alike with communication

end points defined by GMH ranks which are used to either

identify MPI processes across a cluster or to distinguish

GMH threads within a single host. GMH mandates the

underlying MPI implementation to be fully threaded since

each necessary MPI call is invoked by individual GMH

thread attached to a particular GPU. The following code

segment describes the conventional asynchronous commu-

nication APIs.

void *sbuf, *rbuf; gmh datatype t type;

gmh tasklist t l; gmh stream t s;

int dest, src, tag, count;
gmh event t sev, rev;

gmh Isend(l, s, sbuf, count,type, dest,tag, &sev);
gmh Irecv(l, s, rbuf, count, type, src,tag, &rev);

The other set of APIs takes the event flow approach.

Applications register send or receive commands to GMH

which executes these commands at run time. The following

code segment describes the idea, where block specifies

whether a routine is a blocked call.

gmh tasklist t l; gmh datatype t type;

gmh mem t sbuf, rbuf;
int dest, src, block, nevs;

gmh event t sev, rev, ev, ∗evs wait;

gmh add send buffer(l, s, sbuf, block, dest, tag, nevs,
evs wait, &sev);
gmh add recv buffer(l, s, rbuf, block, src, tag, nevs,
evs wait, &rev);

5) GMH Collective Communication: Collective commu-

nication involves global data movement and global control

among all GPUs in a cluster. Unlike point-to-point commu-

nication routines, collective communication is synchronous,

which means that all events generated before a collective

call have to be finished before the call starts. Once again,

GMH provides one set of APIs that are very similar to

MPIs and offers another set of APIs allowing applications

to register collective communication commands to GMH.

More importantly, GMH leverages the power of the under-

lying MPI collective functions to achieve high performance

for collective communication. The following code snippet

38

MPI_Bcast

Figure 4. Mapping multiple GPUs to an MPI rank

illustrates functionalities of collective communication.

gmh tasklist t l; gmh mem t sbuf, rbuf;
int root, type, op;

gmh bcast(l, sbuf, root);
gmh reduce(l, sbuf, rbuf, type, op, root);

In comparison to point-to-point communication, GMH

maps multiple GPUs to a single MPI rank during collective

communication. For example, a GMH thread with a virtual

GPU id of 0 on a host forwards the messages delivered

by MPI Bcast to other GPUs on the same host upon the

execution of gmh bcast. Fig. 4 illustrates the concept of

mapping multiple GPUs to a single MPI rank.
6) GMH Event Run Loop: A GMH thread executes

all registered commands in an event loop by issuing

gmh start(list). The event loop executes each command in-

side the command queue one after another in the FIFO order.

Commands can run concurrently if they are on different

streams. Synchronizations can be achieved through three

different ways: explicit invocations of gmh wait for events;

executing commands with defined event dependency struc-

tures; any collective communication call. The end of the loop

is determined by a control CPU task, which is a C function

returning either GMH EXIT or GMH RERUN. The control

task is registered through the following function and is a

synchronous command.

gmh tasklist t l;
gmh control task t task;

void* arg;

gmh add control task (l, task, void);

IV. HARDWARE AND SOFTWARE ENVIRONMENT

Our test environment contains 16 hosts connected by quad

data rate(QDR) infiniband networks, which provide up to 40

Gbits/sec network bandwidth. Each host is equipped with

two Intel Nehalem E5530 quad-core CPUs running at 2.4

GHz. Each host has 24 GB ECC DDR3 memory clocked at

1331 MHz. In addition, each host has two NVIDIA GTX285

GPUs, each with 2 GB GDDR3 memory and 240 processing

cores running at 1.51 GHz. Each GPU provides internal

memory bandwidth of 121 GB/sec and supports PCI Express

2.0x16 host interface that provides bi-directional CPU-GPU

memory bandwidth up to 6.4 GB/sec.

Each single computing host is running CentOS 5.3 with

Linux Kernel 2.6.18. The MPI implementation is mvapich2-

Application Application

GMH GMH

GPU GPU

MPI

cudaMemcpy cudaMemcpy

Figure 5. GMH applications send GPU data across network

1.2 from Ohio University [7] with OFED [12] version 1.4.2.

All performance test programs are compiled with gcc version

4.1.2 using optimization flag “-O3”. The GPU driver version

is 190.29 and CUDA toolkit is version 2.3.

V. PERFORMANCE RESULTS OF GMH

To fully comprehend GMH, detailed performance tests

are conducted. These tests exercise point-to-point throughput

and latency (half round-trip time) involving two GPUs on a

single host or two GPUs on two hosts, In addition, these tests

analyze how well the collective communication performs

involving all GPUs in the test cluster.

A. Memory Transfers between GPUs and CPUs

The GMH toolkit, like any other GPU message passing

library, utilizes the synchronous function of cudaMemcpy
or the asynchronous function of cudaMemcpyAsync to

transfer data from GPUs to CPUs before sending the data

to other GPUs and to move data from CPUs to GPUs

after receiving the data from other GPUs. Since GMH

focuses on the capability of overlapping communication

and computation, it uses cudaMemcpyAsync for all point-to-

point communication primitives and uses cudaMemcpy for

all collective communication routines. Fig. 5 illustrates how

cudaMemcpy is used in a single message exchange between

two GPUs on two hosts.

To understand the performance characteristics of point-to-

point communication, the memory transfer bandwidth and

latency values are collected. Especially, the bandwidth val-

ues from CPUs to GPUs are compared with the bandwidth

values from GPUs to CPUs. Unlike conventional network

devices which have the same bandwidth values regardless

of directions of data transfers, a GTX 285 GPU on the test

platform can have different transfer bandwidths depending

on the direction of data transfers. Fig. 6 shows the results of

latency and bandwidth for memory transfers between GPUs

and CPUs along with the performance results from mvapich2

for comparison purposes.

In Fig. 6, a cudaMemcpy takes about 12 μs to transfer

a small message from a GPU to a CPU and vice versa. In

contrast, a cudaMemcpyAsync along with a proper synchro-

nization mechanism such as cudaEventSynchronize takes

about 32 μs to transfer a small message. More importantly,

the transfer bandwidth from a GTX 285 to a CPU saturates

at about 1800 MB/sec in comparison to a rather large

transfer bandwidth of 4700 MB/sec from a CPU to a GTX

285. For comparison purposes, the network bandwidth from

39

0 5000 10000 15000 20000
Data Size (Bytes)

0

10

20

30

40

50
La

te
nc

y
(M

ic
ro

 S
ec

on
ds

)

cudaMemcpyAsync
cudaMemcpy
mvapich2

0 1e+06 2e+06 3e+06 4e+06
Data Size (Bytes)

0

1000

2000

3000

4000

5000

B
an

dw
id

th
 (M

B
yt

es
/s

ec
)

Host (CPU) to GPU
mvapich2
GPU to Host (CPU)

Figure 6. The performance values of memory transfers between CPUs
and GPUs

mvapich2 is approaching 3200 MB/sec, and the latency

values are very low at 3μs for small messages. The low

memory transfer bandwidth from a GTX 285 GPU to a

CPU thus dictates the overall communication bandwidth of

GMH because of relatively large network bandwidth from

mvapich2 under QDR infiniband networks.

B. Point-to-Point Communication

Point-to-point communication with GMH was measured

using micro-benchmarks of sends, receives, and ping-pong

tests. Many iterations of each type of test with varying sizes

are performed to accumulate the performance results. Spe-

cial attention is focused on the difference between intra-host

GPU communication and inter-host GPU communication.

1) Small Packet Latency: The latency benchmark mea-

sures how long it takes a datum to travel from one GPU

to another GPU. The performance data are obtained by

taking half the average round-trip time for various data

sizes. Fig. 7 presents the results of latency for GMH when

data are transferred between two GPUs on a single host

either using two GMH threads or using two GMH processes,

and between two GPUs on two hosts. Fig. 7 also displays

the latency results of mvapich2 between two hosts for

comparison purposes.

In Fig. 7, the latency values for small messages between

two GPUs on two hosts is 68 μs. This is very close to

(2 × 32 + 3) μs, where 32μs is the average latency value

for a memory transfer between a CPU and a GPU and 3μs is

the latency value of a small message for mvapich2 between

two hosts. Clearly, there is no incurred overhead in latency

for small messages, which affirms that the implementation

of GMH is highly efficient. However, the latency values

(≈ 80μs) for small messages between two GPUs on a single

host using two threads are actually larger than the latency

values between two processes. This is caused by the fine

grain synchronization overhead between two threads when

0 20000 40000 60000 80000
Data Size (Bytes)

0

40

80

120

160

200

La
te

nc
y

(M
ic

ro
 S

ec
on

d)

Inter-node
Intra-node (2 GMH processes)
Intra-node (2 threads)
Inter-node mvapich2-1.2

Figure 7. GMH application-to-application latency

0 1e+06 2e+06 3e+06 4e+06
Data Size (Bytes)

0

500

1000

1500

2000

B
an

dw
id

th
 (M

B
yt

es
/s

ec
)

Ping-Pong 2 Threads
Ping-Pong 2 Processes

One node GPU-to-GPU

0 1e+06 2e+06 3e+06 4e+06
Data Size (Bytes)

0

500

1000

1500

2000

B
an

dw
id

th
 (M

B
yt

es
/s

ec
)

Bidirection
Unidirection
Ping-pong

Two Nodes GPU-to-GPU

Figure 8. GMH point-to-point bandwidth

transferring data between them. Nonetheless, the extra cost

of copying data between processes using MPI eventually

overtakes the cost of thread synchronization when data

transfer size increases. This is shown in Fig. 7, where the la-

tency values for the intra-host threaded data transfer become

smaller than the latency values for the other two cases. This

underscores the value of using threads as intra-host GPU

data transfer mechanisms for the GMH implementation.

2) Bandwidth: The experiments that measure three types

of bandwidth are carried out. These three different types of

bandwidth capture different communication patterns occur-

ring in typical user applications. In the bidirectional ping-
pong bandwidth, data flow back and forth, in a ping-pong

fashion. In the unidirectional bandwidth, data flow in one

direction only, which reveals the bandwidth capability of

underlying devices. Finally, the bidirectional simultaneous
bandwidth simulates data transfers in both directions si-

multaneously. Fig. 8 shows the results of these types of

bandwidth for GMH.

The left part of Fig. 8 shows the values of the ping-

40

2 4 6 8 10 12
Number of Nodes

0

20

40

60

80

100
B

ro
ad

ca
st

 L
at

en
cy

 (M
ic

ro
 S

ec
on

d)

GMH GPUs
MPI CPUs

0 4000 8000 12000 16000
Data Size (Bytes)

0

50

100

150

200

B
ro

ad
ca

st
 L

at
en

cy
 (M

ic
ro

 S
ec

on
d)

12 Nodes/24 GPUs

Data Size = 4 Bytes

Figure 9. GMH broadcast latency values

pong data transfer bandwidth between two GPUs on a single

host. Clearly, the GMH bandwidth values using two threads

are much better than the GMH bandwidth values using two

GMH processes, due to the extra host memory copies when

processes are used to transfer data. The right part of Fig.

8 shows the bandwidth values of three different types of

data transfer between two GPUs on two hosts. It is as

expected that the values of the bidirectional simultaneous

bandwidth are roughly twice those of ping-pong bandwidth.

Recall from Section 5.1 that the memory transfer speed

from GPUs to CPUs is 1800 MB/s. The results of the

unidirectional bandwidth are clearly approaching the above

number, demonstrating the high performance nature of the

GMH toolkit.

C. Collective Communication

Most collective communication primitives in the MPI

specification are implemented in the GMH toolkit. There

are two steps involved in executing a GMH collective

communication function: 1) GMH utilizes the underlying

MPI implementation to attain the inter-node collective com-

munication on host memories with mapping of multiple

GPUs on a host to a single MPI rank; 2) GMH employs

each thread attached to a GPU to copy data from or to the

MPI buffer populated or used by the corresponding MPI

function to or from every GPU on the host. Thus, every

GMH collective communication function inevitably incurs

an overhead of memory copies from CPUs to GPUs and vice

versa. Fig. 9 presents the latency values for GMH broadcast.

Recall that cudaMemcpy is used in all GMH collective

communication routines, which are all synchronous calls,

and each cudaMemcpy takes about 12μs. The left part of

Fig. 9 compares the broadcast latency values for message

size of 4 bytes between GMH and mvapich2. Clearly, it takes

about 20 μs extra time for GMH to do a broadcast than what

mvapich2 takes. The extra time is inline with the duration for

one CPU-GPU and one GPU-CPU memory transfers even

4 8 12 16 20 24 28 32
Number of GPUs

40

50

60

70

80

90

100

G
Fl

op
s/

G
PU

24^2x32 Single GPU Dslash
24^3x32 Local Size Dslash
32^3x64 Single GPU Dslash
32^3x256 GLobal Size Dslash

Figure 10. The performance values of dslash using GMH

though there are many CPU-GPU and GPU-CPU memory

copies involved on every host participating the broadcast.

This is because most of the memory copies are hidden within

the MPI binomial broadcast communication [19] except the

first GPU-CPU copy on the broadcast root node and the

CPU-GPU copy on the last node. Once again, the fact that

there is no additional unaccountable overhead reaffirms that

the GMH implementation is close to optimal. The right part

of Fig. 9 illustrates the linear increase in broadcast latency

value as the data size increases. This comes at no surprise

because of the linear increase in memory copy latency and

linear increase in MPI latency against data size.

D. LQCD Benchmark

The LQCD benchmark dslash [18] is one of the most

computing intensive parts within typical LQCD iterative

solvers. At each iterative step, it sums up two matrix-vector

products along each of x, y, z, t direction for each and every

4-dimensional discretized site. On each site and for every

single step, 3× 3 complex matrices and complex vectors

from all the neighboring sites have to be retrieved before

the calculations. The single GPU version of this benchmark

achieves about 98 Gflops on a single GTX285 GPU.

To parallelize the benchmark, the original dslash GPU

kernel has to be split into two kernels: one carries out the

calculations for the interior volume the same way as the

single GPU version; the other kernel has to wait for the

matrices and vectors sent from neighbors before carrying

out the calculations. The GMH toolkit simplifies the effort

of parallelizing the benchmark by reducing the effort of

handling message passing, overlapping computation and

communication, and so on. Fig. 10 presents normalized

dslash performance results for the fixed global lattice size

(strong scaling) of 323 × 256 and the fixed local lattice size

(weak scaling) of 243 × 32 for multiple GPUs.

For the fixed local lattice size of 243 × 32 , the perfor-

mance of dslash for multiple GPUs only drops by about

41

3% compared to the performance of the single GPU version

of dslash and stays nearly constant. On the other hand,

the performance values for the fixed global lattice size of

323 × 256 are almost the same as the performance value

for single GPU up to 16 GPUs with significant dropping

in performance when there are 32 GPUs. The reason for

the above performance drop is due to the effect of large

surface-to-volume ratio when the fixed global volume is

used with the large number of GPUs . The tiny performance

degradation and excellent scalability of dslash for multiple

GPUs demonstrate the high performance implementation of

the GMH toolkit.

VI. CONCLUSIONS

This paper presents GMH, a message passing toolkit

for multiple GPUs. This toolkit provides not only high

performance MPI style communication primitives but also an

event flow programming framework to ease the development

effort for parallel iterative numerical solvers. At present,

it is the only known GPU message passing toolkit that

enables applications to transfer data among GPUs on just

one host as well as within a cluster. In addition, it is the

only known toolkit that allows applications mixing with any

thread safe MPI implementation. It utilizes a thread group

on a single host as a way to map GPU resources to an MPI

rank, eliminates host memory copies when transferring data

among GPUs on a single host, and introduces the notion

of “virtual GPU” as a way to bind a thread to a GPU

automatically when there are multiple GPUs on a single

host. In addition, GMH delivers high point-to-point data

transfer bandwidth only limited by the underlying GPU to

CPU memory transfer bandwidth, and offers low point-to-

point transfer and collective communication latency only

restrained by the internal GPU-CPU memory transfer la-

tency. More importantly, GMH offers flexible programming

interfaces such that developers can either stick with the

conventional MPI programming style or focus on the event

flow of applications, which can be managed and executed

by GMH at run time. Finally, the source code for GMH

and its test programs used in this paper can be found at

ftp://ftp.jlab.org/pub/hpc/gmh.tar.gz.

ACKNOWLEDGMENT

This work is supported by Jefferson Science Associates,

LLC under U.S. DOE Contract DE-AC05-06OR23177.

REFERENCES

[1] Advanced Micro Devices Inc., Brook+ SC07 BOF Session,
In Supercomputing Conference, 2007.

[2] J. A. Anderson, C. D. Lorenz, and A. Travesset, General
purpose molecular dynamics simulations fully implemented
on graphics processing units, In Journal of Chemical Physics,
vol. 227, no. 10, 5342-5359, 2008.

[3] M. A. Clark, R. Babich, K. Barros, R. C. Brower, and
C. Rebbi, Solving Lattice QCD systems of equations using
mixed precision solvers on GPUs, arXiv:0911.3191v2 [hep-
lat].

[4] Z. Fan, F. Qiu, A. Kaufman, S. Yoakum-Stover, GPU Clus-
ter for High Performance Computing. In Proceedings of
ACM/IEEE Supercomputing Conference, 41-47, Nov. 2004.

[5] D. Göddeke, R. Strzodka, J. Mohd-Yusof, P. McCormick, S.
H. M. Buijssen, M. Grajewski, and S. Turek, Exploring weak
scalability for FEM calculations on a GPU-enhanced cluster,
In Parallel Computing, vol. 33, no. 10-11, 685-699, 2007.

[6] O. S. Lawlor, Message Passing for GPGPU Clusters: cud-
aMPI, In Proceedings of IEEE Cluster 2009, 2009.

[7] MVAPICH: MPI over InfiniBand, 10GigE/iWARP and RD-
MAoE, http://mvapich.cse.ohio-state.edu/

[8] A. Moerschell and J. D. Owens, Distributed texture memory
in a multi-gpu environment, In Proceedings of the 21st
ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics
hardware, 31-38, 2006.

[9] J. Nickolls, I. Buck, and M. Garland, Scalable Parallel Com-
puting with CUDA, in ACM Queue, vol. 6, issue 2, 40-53,
2008.

[10] OpenCL: The open standard for parallel programming of
heterogeneous systems, http://www.khronos.org/opencl/ .

[11] OpenGL organization, http://www.opengl.org/ .

[12] OPENFABRICS ALLIANCE, http://www.openfabrics.org/ .

[13] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone,
and J. C. Phillips, GPU Computing, In Proceedings of the
IEEE, vol. 96, 879-899,2008.

[14] C. Ouarraui and D Kaeli, Developing Object-oriented Parallel
Iterative Methods, In International Journal High Performance
Computing and Networking, vol. 1, Nos. 1/2/3 , 2004.

[15] P. S. Pacheco, Parallel Programming with MPI, Morgan
Kaufmann Publishers Inc., San Francisco, CA, 1996.

[16] L. Spracklen, S. G. Abraham, Chip Multithreading: Oppor-
tunities and Challenges, In Proceedings of the International
Symposium on High-Performance Computer Architecture,
248-252, 2005.

[17] J. Stuart and J. D. Owens, Message Passing on Data-Parallel
Architecture, In IEEE International Symposium on Parallel
& Distributed Processing, 1-12, 2009.

[18] P. Vranas, The BlueGene/L Supercomputer and Quantum
ChromoDynamics, In Proceedings of ACM/IEEE Supercom-
puting Conference, 2006.

[19] D. M. Wadsworth, Z. Chen, Performance of MPI broadcast
algorithms, In IEEE International Symposium on Parallel &
Distributed Processing, 1-7,2008.

42

