
OPENMP-BASED PARALLEL IMPLEMENTATION OF A CONTINUOUS SPEECH
RECOGNIZER ON A MULTI-CORE SYSTEM

Kisun You, Youngjoon Lee, and Wonyong Sung

School of Electrical Engineering, Seoul National University
San 56-1, Shillim-dong, Kwanak-gu, Seoul 151-744 Korea

{ksyou,yjlee}@dsp.snu.ac.kr, wysung@snu.ac.kr

ABSTRACT

We have implemented a 20,000-word continuous speech recognizer
on a multi-core based system. A fine grain parallel processing ap-
proach is employed for good scalability, and the OpenMP library is
used for enhanced portability. In the emission probability computa-
tion, a dynamic workload distribution method is employed for good
load balancing. However, the search network involved in the Viterbi
beam search is statically partitioned into independent subtrees to re-
duce memory synchronization overhead. In order to further improve
the performance, a workload predictive thread assignment strategy
as well as a false cache line sharing prevention method are employed.
The test was conducted using WSJ1 20k test and development set.
We achieved the speed-up of 3.90 by utilizing four threads paral-
lelization in a four-core system compared to four copies of the base-
line single thread speech recognizer running simultaneously. The
final recognition system runs about twice the speed of the real-time
requirement.

Index Terms— Speech recognition, OpenMP, Parallelization

1. INTRODUCTION

In these days, many multi-core systems appear in various platforms
ranging from servers, PC’s, and down to embedded systems. A
multi-threaded implementation is an attractive approach for devel-
oping a real-time large vocabulary speech recognizer (LVCSR).

However, software needs to be carefully designed to make use of
the multi-core systems efficiently. Especially, most of the multi-core
systems still have a quite limited main memory bandwidth because
all of the processor cores are connected to one or two memory sys-
tems. Thus, the reduction of memory access contention as well as
the load balancing are important in parallel implementation.

There have been various researches about the parallelization of
speech recognizers [1] [2]. The AT&T speech recognizer was paral-
lelized for the implementation on a Unix-based symmetric multipro-
cessor (SMP) workstation [1]. However, the implementation is based
on a specific thread library, thus it is not easily portable to other
platforms. A parallel LVCSR system for a cellular-phone-oriented
multiprocessor platform was developed in [2]. However, their work
based on a coarse grain approach does not seem to be easily scalable
when the vocabulary size or the number of cores increases.

In this paper, we implemented a multi-thread version of a speech
recognizer using OpenMP which enables easy portability. For good
scalability with respect to the vocabulary size as well as the number
of processors, a fine grain parallel processing approach is employed.
In this approach, we need to consider neither the inter-block depen-
dency nor the size balance of each block since the parallelization is

master thread
time

fork join fork join

thread 0

thread 1

thread 2

thread 3

thread 0

thread 1

thread 2

thread 3

sync

Fig. 1. OpenMP execution diagram.

usually conducted for each loop. However, we need a prudent ap-
proach to reduce the size of sequential parts, evenly distribute the
workload, and remove the coherency overhead.

The rest of this paper is organized as follows. Section 2 de-
scribes the OpenMP application programming interface and the
baseline implementation of the speech recognizer. The paralleliza-
tion procedures using OpenMP are shown in Section 3. The op-
timization techniques to achieve a higher performance gain are
presented in Section 4. Section 5 shows the experimental results.
Finally, concluding remarks are given in Section 6.

2. BACKGROUND

2.1. OpenMP Parallelization

OpenMP is an application programming interface for a shared mem-
ory multiprocessor environment [3]. OpenMP facilitates fork/join
parallelism which is illustrated in Fig. 1. The execution starts with a
single master thread. When the execution reaches a parallel region,
the master thread forks several threads for parallel processing. Since
the difference in execution time among the threads leads to stall time
for some threads, OpenMP supports several scheduling techniques
such as static, dynamic, and guided [3] to balance the workload well.

OpenMP is used for this development since we consider that
the speech recognition program can be efficiently parallelized by
the fork/join programming model. We employed a fine grain par-
allel processing approach which basically transforms small program
blocks, such as loops, into multiple threads. Although the fine grain
parallel processing approach may need more cycles for synchroniza-
tion, it is advantageous for achieving a good load balancing. Since
the fine-grain parallel processing finds out the parallelism inside of
an algorithmic block or a function, we do not need to care the depen-
dencies among the algorithmic blocks in speech recognition. Note
that the computation or data access workload for each functional
block in speech recognition varies much according to several factors
such as the vocabulary size and the pruning-level. This also makes
the coarse-grain parallel processing hard to be applied.

621978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009

2.2. Baseline Implementation of a Speech Recognition System

In this paper, we implemented an HMM(Hidden Markov Model)-
based continuous speech recognizer. The recognition system con-
sists of three functional blocks - feature extraction, emission proba-
bility computation, and Viterbi beam search [4].

We employed a tree-lexicon based search network to reduce the
search space and the amount of computation for accumulated like-
lihoods [5]. Tree copies and language model factoring are applied
to support the back-off bigram language model and efficient beam
pruning respectively. [6].

In order to reduce the amount of memory required for the search
space, we developed a token based search algorithm. The idea is
inspired by the HTK token passing algorithm [7], however the im-
plementation is different. For every tree branch in the search space,
there are tokens that store the accumulated likelihood and the vo-
cabulary history. Since memory is allocated only when the token is
active, we can save dynamically allocated memory space.

The memory access especially in the token processing can be
reduced by applying the beam pruning with a predicted threshold
[8]. Tokens are updated and newly created at every frame. However,
many of the updated and newly created tokens will be pruned out
in the beam pruning stage. All the likelihood values of the active
tokens are written to the memory, the threshold value for the prun-
ing is determined next, and then the tokens having low values are
deleted. These sequential steps need a lot of memory accesses, such
as allocating memory for the tokens, writing all the token values,
reading them to determine the threshold, and de-allocating memory
for the tokens after the pruning. In order to avoid these complex and
memory-access intensive operations, we predict the pruning thresh-
old based on the maximum accumulated likelihoods of previous two
frames. In this scheme, the tokens with low likelihoods are deleted
immediately without memory accesses.

3. PARALLEL IMPLEMENTATION USING OPENMP

We parallelized the baseline recognizer using OpenMP. The feature
extraction is omitted in this work because it needs relatively simple
computation, mostly FFT (fast Fourier transform), and can be well
parallelized. The parallel implementation of the emission probabil-
ity computation and the Viterbi beam search are described in this
section.

3.1. Parallelized Emission Probability Computation

The emission probability computation is the most computation in-
tensive part, and has a regular structure. It computes the likelihood
for every active shared HMM state. Since the computation of each
HMM state is independent of the others, the emission probability can
be easily computed in parallel. The number of active HMM states is
counted at every frame to distribute the computation evenly to each
thread. We found out that the serial execution time to count the active
HMM states is small enough not to affect the overall performance.

3.2. Parallelized Viterbi Beam Search

The Viterbi beam search traverses all the active tree branches in the
search network to compute the accumulated likelihood of every path
candidate. There are several levels of parallelism we can exploit.
First of all, the operations inside any lexicon tree are independent
of the ones in the other trees. Note that we have many tree copies
for the bigram language model support. Thus, the easiest way to

partition the workload is to group the trees and assign each group
to different threads. Second, the operations inside the tree branches
are independent of the ones in the other tree branches. We can par-
allelize the workload by assigning different threads to the groups
of tree branches. In this work, the tree branch is the unit of work-
load distribution. The lexical-tree based workload distribution suf-
fers from severe load imbalance since the workload of the lexical
tree varies due to the pruning during recognition.

For each thread, we made an independent active branch list. Be-
fore processing the active lists in a parallel manner for each frame,
we should assign thread numbers to the branches newly activated in
the previous frame.

For good load balance, we can distribute the newly activated
branches evenly to each thread by dynamic allocation. However,
we found out that the dynamic allocation degrades the cache per-
formance due to false cache line sharing. Since many tree branches
which reside in contiguous memory region might be modified by
different threads, the overhead of the cache coherency protocol be-
comes larger. We will describe the effect of false cache line sharing
further in Section 4.

Instead of dynamic workload allocation, we applied a static
workload assignment strategy. The thread number for each tree
branch is determined in off-line. Whenever a tree branch is being
activated, it is assigned to a designated thread.

Since there is a large number of tree branches in the search net-
work, it is undesirable to store the thread numbers for all the tree
branches. Thus, we partitioned the lexical tree into sub-trees. After
the partitioning, all the tree branches inside a sub-tree have the same
thread number. This approach has two advantages. First, it reduces
the overhead of accessing the thread number look-up table as well as
the size of the look-up table itself. Once the first-level tree branches
have been activated in a thread, all the children tree branches can be
processed in the same thread. Second, it helps to balance the work-
load since the active regions inside a lexical tree are usually in the
same level.

After all the tree branches are processed, the likelihood values of
the active leaf states should be propagated to the following unigram
or bigram trees. Since there are many branches that write their values
to the same destination, it will incur much synchronization overhead
when parallelized. Thus, this part is not parallelized.

4. OPTIMIZATION OF THE OPENMP PARALLEL
SPEECH RECOGNIZER

We applied two optimization techniques to improve the performance
of the parallel version developed in Section 3. The optimization
techniques are avoiding false cache line sharing and adopting an ef-
ficient thread assignment strategy.

4.1. Avoiding False Sharing of Data Cache Lines

Modern processors have long cache lines to compensate for the
DRAM latency. Note that no global variable should be duplicated
and accessed by different threads to avoid false sharing. For in-
stance, assume that a global variable accessed by multiple threads is
defined as follows:

int nActBranch → int nActBranch[4] (1)

Then the four elements in the array will probably reside in the same
cache line, incurring the false cache line sharing problem. To allo-
cate these variables in different cache lines, we added appropriate

622

Small
Tree A

Small
Tree B

Thread 0
Thread 1

Partition Score Table

Thread 1 Thread 2 Thread 3

Thread 0

Global Score Table

Normal
Tree

Fig. 2. An illustration of the static load assignment strategy.

padding to the variables as follows:

int nActBranch[4] → int nActBranch[4 << 4] (2)

We need to adjust the number of padding variables according to the
cache line size. Since the cache line size is 64 bytes, we shifted the
index value to left by four.

4.2. Workload Predictive Thread Assignment Strategy

Since the parallelized Viterbi beam search processes the branches in
the ancestor-to-descendent way to reduce unnecessary synchroniza-
tion, sibling branches in each sub-tree are processed continuously in
each thread. As a result, there are many consecutive memory ac-
cesses for several sibling branches. Thus, we stored the data of the
tree branches in the sub-tree in the breadth-first order to help the
cache exploit the data locality.

The baseline parallel recognizer assigns the thread numbers to
the first level branches using the round-robin strategy. This strategy
helps distributing the workload evenly since the tree search network
is usually imbalanced. However this strategy is not enough to guar-
antee good load balance.

To achieve a well-balanced thread assignment, we divided the
direct child branches into four consecutive chunks which have dif-
ferent sizes. Note that each chunk has a subtree consisting of all the
descending branches which will be processed in each thread.

Since we need to decide the size of the chunks for all the trees,
it is difficult to find the optimum solution. In this work, we pro-
pose a heuristic method that decides the size of each chunk based
on the expected workload of its subtree. Figure 2 illustrates the pro-
posed thread assignment strategy. First, we estimate the workload of
a branch with its number of states and its language model probabil-
ity. The number of states of a branch implies the maximum number
of tokens to process, and the language model probability reflects the
probability of a branch being activated. After assessing the expected
workload of all the descending branches, we can decide the work-
load score of each subtree by accumulating them. Starting from the
unigram tree, the size of the chunk is determined to evenly distribute
the workload. Global workload scores of the threads are kept to bal-
ance the workload over the trees. For trees with a small number
of branches, we assign all the branches to only one thread to avoid
unnecessary partitioning and utilize the data locality.

0

2

4

6

8

10

12

14

16

1 thread 2 threads 4 threads 2 threads
(Optimized)

4 threads
(Optimized)

C
yc

le
s

(G
)

Others

Viterbi Search

Emission Prob.

(1.0)

(1.43)

(1.61) (1.63)

(2.05)

Fig. 3. Execution cycle counts for various implementations (speed-
up).

5. EXPERIMENTAL RESULTS

5.1. Experimental Setup

The target system is an Intel Core 2 Quad Q6600 CPU based SMP
system. It has four identical processor cores in a chip, and each core
has its own L1 instruction (32KB) and L1 data (32KB) caches. Two
cores share one unified L2 cache (4MB), and the L2 cache lines are
dynamically assigned to the cores. The operating frequency of the
processor cores is 2.4GHz.

The acoustic model of the recognizer was trained by HTK, an
open-source speech recognition toolkit [7], using the speaker inde-
pendent training set in WSJ1 corpus, and the test was conducted
using WSJ1 20K test and development set [9]. The acoustic beam
width was set to 350.0, the language model beam width was set to
100.0, and the language model weight was given to 16.0. The word
error rate (WER) was 20.5% for 216 test sentences. Note that the
WER can be improved by employing several advanced training tech-
niques, which do not increase the complexity of the recognizer. We
verified that the recognition result is the same with the one obtained
by the HTK recognizer.

For performance measurements such as cycle counts and load
balancing, we used a speech sample of 6.15 seconds long. OProfile
[10] which utilizes the hardware performance counters in the CPU
was used for profiling.

5.2. Execution Time and Load Balancing

The execution cycle counts of the parallel implementations are
shown in Fig. 3. The OpenMP based parallel speech recognizer
achieved the speedup of 1.43 and 1.61 for two and four threads im-
plementations, respectively. The further optimized parallel speech
recognizer, where the false cache line sharing prevention method
and the workload predictive thread assignment strategy are applied,
resulted in the speedup of 1.63 and 2.05 for two and four threads,
respectively. It takes 2.79 seconds for processing a speech sample
of 6.15 seconds long.

The relatively low speedup with the four thread version is due to
the limited bus or main memory bandwidth of the multi-core system.
The CPI (Cycle Per Instruction) of the optimized four thread version

623

Table 1. Load balance of the parallelized system
Cycles (M) Core 0 Core 1 Core 2 Core 3
Emission Prob. 3,700 3,725 3,724 3,677
Viterbi Search 2,425 2,721 2,593 2,657
Others 147 58 33 39
Total 6,272 6,504 6,350 6,373

Table 2. Execution cycle counts comparison of multi-copy and
multi-thread versions

Utilization Multi-copy Multi-thread Speedup
Two cores 17,753 8,550 2.08
Four cores 26,155 6,703 3.90

increased from 1.08 to 1.98 when compared with the baseline single
thread version. Assuming that the CPI does not change, the speedup
of the four thread version will be 3.77. This clearly means that mem-
ory access reduction of the speech recognizer is critical to achieve a
higher speed-up with a multi-core system.

Table 1 shows the load balance of the optimized 4 threads
speech recognizer. Since the emission probability adopted the dy-
namic workload distribution, it is well balanced. The Viterbi search
with the static workload assignment is also moderately balanced
even though it has some peak value in Core 1. Note that load
imbalance of other functions are mainly due to serial blocks.

5.3. Comparison with Bandwidth Limited Reference

We also compared the two and four thread implementation results
with those of the two and four copies of the single thread baseline
program running simultaneously on the multi-core system, respec-
tively. Note that, in the two copy version, one copy is allocated to
Core 0 and the other copy is mapped to Core 2 to avoid L2 cache
sharing. Core 0 and 1 share one L2 cache memory, and Core 2 and 3
share another L2 cache memory in the employed four-core system.
In the four copy system, only one copy is allocated to each core,
and four duplicated programs share the L2 cache and the bandwidth
of the memory system. This comparison seems more reasonable
because the original single thread baseline version solely used the
bandwidth resource. The results are summarized in Table 2, which
indicates that both the two and four thread versions achieve the al-
most ideal speedup when compared with two and four copy versions.
Thus we can find that the memory bandwidth limitation is the most
critical bottleneck of low speedup in our multi-thread implementa-
tion. The load-balancing and the coherency problems seem solved
well by the proposed methods.

6. CONCLUDING REMARKS

We have implemented an OpenMP based multi-thread speech rec-
ognizer that is not only portable but also scalable. We developed
a workload predictive static scheduling method for Viterbi beam
search. With the OpenMP based parallel implementation, we
achieved a speedup of 1.43 and 1.61 when two and four threads
are employed, respectively. Further optimization of the parallelized
versions resulted in the speedup of 1.63 and 2.05 for two and four
thread cases, respectively. When compared with the bandwidth
limited reference, the speedup increases to 2.08 and 3.90 with a
two-core and four-core systems, respectively. The profiling results
show that the CPI of the four threads version, 1.98, is quite high

when compared with the single thread version, 1.08. This explains
that the relatively low speed-up of the four threads version is due
to the limited memory bandwidth of the multi-core system, not the
imbalance of the parallelized workloads. The implemented four
threads version achieves the real-time factor of 0.45.

7. ACKNOWLEDGEMENTS

This work was supported in part by the Brain Korea 21 Project and
ETRI SoC Industry Promotion Center Human Resource Develop-
ment Project for IT SoC Architect.

8. REFERENCES

[1] S. Phillips and A. Rogers, “Parallel speech recognition,” Int.
Journal of Parallel Programming, vol. 27, no. 4, pp. 257–288,
1999.

[2] S. Ishikawa, K. Yamabana, R. Isotani, and A. Okumura, “Par-
allel LVCSR algorithm for cellphone-oriented multicore pro-
cessors,” IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing, vol. 1, pp. 177–180, May 2006.

[3] M. J. Quinn, Parallel Programming in C with MPI and
OpenMP, McGraw-Hill, 2003.

[4] X. Huang, A. Acero, and H. W. Hon, Spoken Language Pro-
cessing - A Guide to Theory, Algorithm, and System Develop-
ment, Prentice Hall PTR, New Jersey, 2001.

[5] H. Ney, R. Haeb-Umbach, B. H. Tran, and M. Oerder, “Im-
provement in beam search for 10000-words continuous speech
recognition,” IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing, vol. 1, pp. 9–12, 1992.

[6] M. Federico, M. Cettolo, F. Brugnara, and G. Antoniol, “Lan-
guage modelling for efficient beam-search,” Computer Speech
and Language, vol. 9, no. 4, pp. 353–379, 1995.

[7] S. Young, G. Evermann, D. Kershaw, G. Moore, J. Odell,
D. Ollason, V. Valtchev, and P. Woodland, The HTK Book Ver-
sion 3.3, 2005.

[8] E. Lin, Y. Kai, R. Rutenbar, and T. Chen, “A 1000-word vo-
cabulary, speaker independent, continuous live-mode speech
recognizer implemented in a single FPGA,” ACM/SIGDA 15th
Int. Symp. on FPGA, pp. 60–68, 2007.

[9] P. C. Woodland, J. J. Odell, V. Valtchev, and S. J. Young,
“Large vocabulary continuous speech recognition using HTK,”
IEEE Int. Conf. on Acoustics, Speech, and Signal Processing,
vol. 2, pp. 125–128, 1994.

[10] J. Levon, OProfile - A System Profiler for Linux,
http://oprofile.sourceforge.net.

624

