
OpenMP on Networks of Workstations
Honghui Lu , Y. Charlie Hu , and Willy Zwaenepoel

 Department of Electrical and Computer Engineering, Rice University
 Department of Computer Science, Rice University

! Here is the PostScript version of this paper.

Abstract:

We describe an implementation of a sizable subset of OpenMP on networks of workstations (NOWs). By
extending the availability of OpenMP to NOWs, we overcome one of its primary drawbacks compared to MPI,
namely lack of portability to environments other than hardware shared memory machines. In order to support
OpenMP execution on NOWs, our compiler targets a software distributed shared memory system (DSM) which
provides multi-threaded execution and memory consistency.

This paper presents two contributions. First, we identify two aspects of the current OpenMP standard that make
an implementation on NOWs hard, and suggest simple modifications to the standard that remedy the situation.
These problems reflect differences in memory architecture between software and hardware shared memory and
the high cost of synchronization on NOWs. Second, we present performance results of a prototype
implementation of an OpenMP subset on a NOW, and compare them with hand-coded software DSM and MPI
results for the same applications on the same platform. We use five applications (ASCI Sweep3d, NAS 3D-
FFT, SPLASH-2 Water, QSORT, and TSP) exhibiting various styles of parallelization, including pipelined
execution, data parallelism, coarse-grained parallelism, and task queues. The measurements show little
difference between OpenMP and hand-coded software DSM, but both are still lagging behind MPI. Further
work will concentrate on compiler optimization to reduce these differences.

Introduction
The OpenMP Application Program Interface (API) [7] describes a model for parallel programming on shared
memory architectures. In summary, OpenMP provides a number of compiler directives that allow a user to
indicate the parts of the program that are to be executed in parallel. Directives allow a step-wise migration from
a sequential program to a parallel one, independent of the availability of tools for automatic parallelization.
Therefore, this approach to parallelization is highly popular among users. OpenMP appears to be attracting
wide-spread support among hardware and software vendors and among application developers (see
http://www.openmp.org).

OpenMP currently exists only for shared memory architectures, putting it at a disadvantage compared to MPI,
which runs on both shared memory and distributed memory machines. In this paper we describe an
implementation of a subset of OpenMP on distributed memory machines, and in particular on a network of
workstations (NOW). Such an implementation would lend increased portability to OpenMP programs and
thereby further its acceptance. We use a software distributed shared memory (DSM) system to implement a
shared memory abstraction on a NOW. Our compiler targets the interface provided by that software DSM.

This paper presents our experience in targeting OpenMP to a NOW. First, we describe some aspects of the
proposed OpenMP standard that make compiling it for a software DSM difficult. These difficulties relate to the
cost of synchronization on a NOW and to the difference in memory architecture between hardware and software
shared memories. We suggest some simple modifications to remedy the situation. These modifications
correspond to good programming practice in any shared memory environment, and therefore in our opinion do
not impede programmability or performance on a hardware shared memory platform. Second, we report the
performance of a prototype implementation of the resulting system. We have developed a compiler for a subset

Page 1 of 14OpenMP on Networks of Workstations

Proceedings of the 1998 ACM/IEEE SC98 Conference (SC’98)
0-8186-8707-X/98 $17.00 © 1998 IEEE

of OpenMP, based on the SUIF toolkit [1], and we target the TreadMarks DSM system [2]. The system is
portable to all platforms supported by TreadMarks, which includes most common Unix and Windows NT
platforms. We report performance results for five applications (ASCI Sweep3D, NAS 3D-FFT, SPLASH-2
Water, TSP, and QSORT) on a switched 100Mbps Ethernet connecting 8 PentiumPro's, and we compare them
to TreadMarks and MPI performance results for the same applications on the same platform.

OpenMP

OpenMP [7] provides a set of directives that allow the user to annotate a sequential program to indicate how it
should be executed in parallel. The directives appear as special Fortran comments. The Fortran API assumes a
fork-join model of parallel execution. The sequential code sections are executed by a single thread, called the
master thread. The parallel code sections are executed by all threads, including the master thread. OpenMP
provides three kinds of directives: parallel and work sharing directives, data environment directives, and
synchronization directives. We only explain the directives relevant to this paper, and refer interested readers to
the OpenMP standard [7] for the full specification. In order to support both Fortran and C, we have introduced
directives for C similar to those defined in the standard document for Fortran.

The two basic parallel directives are parallel and parallel do. The parallel and end parallel directives define a
parallel region, which is a block of code that is to be executed by multiple threads in parallel. The parallel do
directive specifies a parallel region that contains a single do loop.

The data environment directives control the data environment during parallel execution. They appear at the
beginning of a parallel region, immediately following the parallel directives. There are four data environment
directives, shared, private, firstprivate and reduction, each of which is followed by a list of variables. Variables
default to shared, which means shared among all the threads in a parallel region. Private variables have one
separate copy per thread. Their values are undefined when entering or exiting a parallel region. Firstprivate
variables have the same attributes as private variables, but, in addition, the private copies are initialized to the
value of the corresponding variables right before the parallel region. The reduction directive identifies reduction
variables. According to the standard, reduction variables must be scalar, but we extend the standard to include
arrays. Finally, the Fortran standard provides the threadprivate directive for named common blocks. Variables
in a threadprivate common block are private to each thread, but they are global in the sense that they are
defined for all parallel regions in the program, unlike private variables which are defined only for a particular
parallel region.

The synchronization directives include barrier, critical, and flush. When a thread encounters a barrier, it waits
until all of the other threads in the parallel region have reached this point. After the barrier, all threads are
guaranteed to see all modifications made before the barrier. A critical directive restricts access to the enclosed
code to only one thread at a time. When a thread enters a critical section, it is guaranteed to see all
modifications made by all the threads that entered the critical section earlier. The flush directive guarantees that
all prior modifications to the variables named in the flush are seen by all threads after this point. If no variables
are specified, then all prior modifications to all of memory are seen by all threads after this point.

Proposed Modifications to the Standard
We propose two modifications to the OpenMP standard:

1. Variables in a parallel region default to private instead of shared, or, in other words, all shared variables
must be explicitly declared as such.

2. We remove flush, and introduce condition variables and semaphores.

Page 2 of 14OpenMP on Networks of Workstations

Proceedings of the 1998 ACM/IEEE SC98 Conference (SC’98)
0-8186-8707-X/98 $17.00 © 1998 IEEE

Private Versus Shared
We propose to make variables default to private in the software DSM implementation of OpenMP. This
modification reflects the difference between the memory architectures of software and the hardware shared
memory.

On a hardware shared memory machine the entire address space is shared by all threads. Variables in statically
allocated memory, such as global variables in C and common blocks in Fortran, are shared among threads.
Similarly, dynamically allocated memory, such as the heap in C, is shared by all threads. Each thread has a
separate stack, which is invisible to other threads by lexical scope rules. However, a variable on a thread's stack
can be shared with other threads by passing them a pointer to that variable.

We suspect that the decision to make shared the default in the OpenMP standard reflects the fact that, on a
hardware shared memory machine, shared variables are less expensive to implement than private variables.
Global shared variables require no additional support, and local shared variables can be implemented by passing
a pointer to the variable from the master to the slaves. On the other hand, private variables need some extra
support. If a private variable exists only in a single parallel region, it can be implemented by redeclaring that
variable so that a private copy appears on the stack of each thread. If a global private variable is to persist
through the program i.e. as a result of the use of the threadprivate directive, a copy of the global variable has to
be generated for each thread.

In contrast, in software DSMs, only part of the address space is shared. Software DSMs vary in what part of the
address space is shared. In some systems, the statically allocated variables are shared, in others the heap, in still
others a special shared memory allocation routine needs to be called to declare an area of memory as shared.
The stack is private, and inaccessible to other threads. This design is a result of the high cost of tracking shared
memory accesses in software, a cost that would quickly become prohibitive if all of memory is to be shared.

In our software DSM implementation of OpenMP, variables default to private. Since different threads have
partly disjoint address spaces, private variables come for free by allocating them in the disjoint portions of the
address spaces. For shared variables, the compiler must infer the actual memory locations that are shared from
the shared directives, and relocate these memory locations to the shared part of the address space. If a variable
is declared shared in one parallel region and private in another, the compiler resorts to the hardware shared
memory solution for private variables, and redeclares the variable for the region in which it is declared as
private.

By defaulting to private, shared variables have to be explicitly marked as such. It can be argued that making
shared the default improves sequential portability, because the majority of variables may be shared. In addition,
in the fork-join model, a shared variable can be used to pass values from the master to the slaves. In our
experiments, we use firstprivate variables for this purpose. So far, our experience shows that only a small
number of variables must be marked shared or firstprivate. Moreover, since access to shared variables must be
synchronized, knowing exactly what is shared helps ensuring the program's correctness. In practice, the two
different approaches can be unified by requiring that all shared and all private variables be declared as such.

Synchronization Directives
OpenMP provides three synchronization directives, critical section, barrier, and flush. These synchronization
primitives can lead to awkward programming constructs for pipelined or task-queue based parallelism. In
addition, flush is expensive to implement on software DSMs. To mitigate these problems, we introduce
condition variables and semaphores.

Pipeline

Page 3 of 14OpenMP on Networks of Workstations

Proceedings of the 1998 ACM/IEEE SC98 Conference (SC’98)
0-8186-8707-X/98 $17.00 © 1998 IEEE

In a pipeline, the consumer must wait until the data has been written by the producer. The next round of the
producer cannot start until the consumer finishes reading the data, because the producer may overwrite it. A
producer/consumer pair can be synchronized by two shared flags, available and done, as shown in Figure 1.
Both flags are initialized to false. The producer writes the data, sets the available flag, and flushes. On the other
side, the consumer busy-waits in a while loop until available becomes true. The consumer then resets available
to false, reads the data, sets done to true, and flushes. The producer has to spin until done is true, then resets it to
false before going to the next iteration. In summary, threads have to busy-wait, because there is no mechanism
to put waiting threads to sleep, and wake them up once a particular condition becomes true.

Figure 1: Pipeline implemented with flush

Task Queue

A task queue is another common work sharing construct. Although the details may differ from one application
to another, many have the general structure depicted in Figure 2. The EnQueue operation adds a task to the task
queue, and the DeQueue operation removes one. The DeQueue subroutine returns a pointer to the task, with a
null pointer indicating the end of the program. If the task queue is empty when a thread tries to dequeue a task,
the thread waits either until the task queue becomes non-empty, or until all threads are waiting for tasks,
indicating the end of the program. The program uses a shared counter nwait to keep track of the number of
waiting threads. A thread increases the counter by one before waiting, and decreases the counter by one after
having resumed the computation. A thread needs exclusive access to the task queue and the counter in order to
modify them.

Figure 2 shows the implementation of the EnQueue and the DeQueue operations using critical sections and
flush. The EnQueue is protected by a single critical section. However, the DeQueue operation employs two
critical section directives to allow the thread to wait outside any critical section, so that other threads are able to
update the queue. A thread flushes after adding a task to the queue and after incrementing the counter. Again,
the solution requires busy-waiting. In this particular case, we have a critical section inside the busy-wait loop. In
addition, the queue may be a complicated data structure, in which case flushing it may be expensive.

Page 4 of 14OpenMP on Networks of Workstations

Proceedings of the 1998 ACM/IEEE SC98 Conference (SC’98)
0-8186-8707-X/98 $17.00 © 1998 IEEE

Figure 2: Task queue implemented with critical sections and flush

New Synchronization Directives

We propose to remove flush, and we introduce semaphores and condition variables. Both are powerful
synchronization tools well known in the operation system textbooks (see, for example, [10]). The condition
variables are included in the POSIX Pthreads standard [4]. Semaphores and condition variables are suitable for
different applications. Returning to our examples, semaphores are suitable for pipelines, and condition variables

Page 5 of 14OpenMP on Networks of Workstations

Proceedings of the 1998 ACM/IEEE SC98 Conference (SC’98)
0-8186-8707-X/98 $17.00 © 1998 IEEE

for task queues. In both cases, the new synchronization primitives allow a simpler expression of the problem
and a more efficient implementation than using flush.

Semaphores
A semaphore S is a shared integer variable that, except for initialization, is accessed only through two
standard atomic operations: sema_wait and sema_signal. The classic definitions of sema_wait and
sema_signal are:

 sema_wait(S): while (S <= 0) do no-op;
 S--;

 sema_signal(S): S++;

It is guaranteed that a thread completing sema_wait on a semaphore sees the updates of all the threads
that have previously issued a sema_signal on the same semaphore. An implementation can avoid busy-
waiting by blocking the waiting thread and putting it in a queue. A sema_signal wakes up one waiting
thread, if any.

Condition Variables
Condition variables must be used within critical sections. They are used to atomically block threads until
a particular condition is true. There are three primitives:

 cond_wait(id): Block on a condition variable
 cond_signal(id): Unblock one waiting thread
 cond_broadcast(id): Unblock all waiting threads

A cond_wait blocks the calling thread until a corresponding cond_signal is issued by another thread. The
cond_wait also causes the thread to exit the critical section, so that other threads can enter and change the
shared variables. A cond_signal unblocks one thread waiting on the same condition variable within the
same critical section (any critical section with the same name). In contrast to the signal in semaphores,
cond_signal has no effect if no thread is waiting. A cond_broadcast signals all the waiting threads. Upon
wakeup, a thread contends for access to the critical section, and, when successful, resumes its execution
from the statement after the cond_wait.

A pipeline can be easily implemented with semaphores, as shown in Figure 3. The flags are declared as
semaphores and initialized to zero. Compared to the implementation using flush, busy-waiting is eliminated.

Figure 3: Pipeline implemented with semaphores

A pipeline can also be expressed with condition variables, but the code is not as concise, because the operations
on the condition variables have to be within critical sections, and an additional shared variable is needed to

Page 6 of 14OpenMP on Networks of Workstations

Proceedings of the 1998 ACM/IEEE SC98 Conference (SC’98)
0-8186-8707-X/98 $17.00 © 1998 IEEE

remember the number of signals that have occurred before the wait.

A solution for the task queue problem using condition variables is shown in Figure 4. Compared with the
implementation using flush, a cond_signal call replaces the flush after adding a task to the queue, and a
cond_broadcast replaces the flush after the nwait counter reaches the number of threads. Only one critical
section is used in DeQueue which protects the entire operation. Instead of the busy-waiting loop, a single call to
cond_wait blocks the thread until a signal is issued.

One can also implement a task queue using critical sections and semaphores, but, as when using flush, it would
require leaving the critical section to perform the sema_wait, and then re-entering a second critical section.

Page 7 of 14OpenMP on Networks of Workstations

Proceedings of the 1998 ACM/IEEE SC98 Conference (SC’98)
0-8186-8707-X/98 $17.00 © 1998 IEEE

Performance Issues

Introducing the two new synchronization primitives not only eliminates busy-waiting, but also allows a more
efficient implementation in software shared memory.

Implementing flush on hardware shared memory machines is straightforward and incurs little overhead. It
suffices to write back the changes to shared variables currently in registers and issue a write barrier afterwards.
It is, however, expensive to implement flush in software DSM. Without knowing which thread is waiting for the
condition, the flushing thread has to notify all other threads of its modifications to the shared memory. For n
threads, a total of 2(n-1) messages are sent, half of which are used for acknowledgments. Most of these
messages are redundant, and numerous threads are interrupted unnecessarily.

Semaphores and condition variables can be implemented with a small constant number of messages, because
the synchronization information only flows from the signaling thread to the waiting thread, perhaps via a third-
party manager, who keeps track of the waiting threads (see Section 4.1.2).

Implementation
We have developed a compiler for a subset of OpenMP, based on the SUIF toolkit [1]. The compiler targets the
TreadMarks software DSM system [2].

TreadMarks Distributed Shared Memory
TreadMarks [2] is a user-level DSM system that runs on most commonly available Unix systems and on
Windows NT. It provides a global shared address space on top of physically distributed memories. The parallel
threads synchronize via primitives similar to those used in hardware shared memory machines: barriers, mutex
locks, condition variables and semaphores. In Fortran, the shared data are placed in a common block loaded in a
standard location. In C, the program has to call the Tmk_malloc routine to allocate shared variables in the shared
heap. To support OpenMP-style environments, recent versions of TreadMarks include Tmk_fork and Tmk_join
primitives, specifically tailored to the fork-join style of parallelism expected by OpenMP and most other shared
memory compilers [1]. For performance reasons, all threads are created at the beginning of the execution.
During sequential execution, the slave threads are blocked waiting for the next Tmk_fork issued by the master.

Memory Consistency Model

TreadMarks relies on user-level memory management techniques provided by the operating system to detect
accesses to shared memory at the granularity of a page. A lazy invalidate version of release consistency (RC)
and a multiple-writer protocol are employed to reduce the amount of communication involved in implementing
the shared memory abstraction.

RC is a relaxed memory consistency model. In RC, ordinary shared memory accesses are distinguished from
synchronization accesses, with the latter category divided into acquire and release accesses. RC requires
ordinary shared memory updates by a thread to become visible to another thread only when a subsequent
release by becomes visible to via some chain of synchronization events. In practice, this model allows a
thread to buffer multiple writes to shared data in its local memory until a synchronization point is reached.

With the multiple-writer protocol, two or more threads can simultaneously modify their own copies of a shared
page. Their modifications are merged at the next synchronization operation in accordance with the definition of
RC, thereby reducing the effect of false sharing.

The lazy implementation delays the propagation of consistency information until the time of an acquire.

Page 8 of 14OpenMP on Networks of Workstations

Proceedings of the 1998 ACM/IEEE SC98 Conference (SC’98)
0-8186-8707-X/98 $17.00 © 1998 IEEE

Furthermore, the releaser notifies the acquiring thread of which pages have been modified, causing the
acquiring thread to invalidate its local copies of these pages. A thread incurs a page fault on the first access to
an invalidated page, and obtains up-to-date value for that page from previous releasers.

Synchronization Primitives

Barrier arrivals are modeled as releases, and barrier departures are acquires. Barriers have a centralized
manager. At a barrier arrival, each thread sends a release message to the manager, and waits for a departure
message. The manager broadcasts a barrier departure message to all threads after all have arrived at the same
barrier.

The two primitives for mutex locks are lock release and lock acquire. Each lock has a statically assigned
manager. The manager records which thread has most recently requested the lock. All lock acquire requests are
sent to the manager, and, if necessary, forwarded by the manager to the thread that last requested the lock. In the
lazy release consistency protocol, the releasing threads delays the propagation of consistency data to the
acquiring thread until after receiving the acquiring request.

Each condition variable is associated with a lock. The lock manager maintains a queue of waiting threads for
each condition variable. On a cond_wait, a thread releases the lock, and contacts the manager who inserts it in
the queue of threads waiting on this condition variable. A cond_signal also contacts the manager. If there are
any threads in the condition variable's queue, the manager removes the first thread from that queue, and puts it
at the end of the queue for the lock. The waiting thread will regain the lock after all previous lock acquires for
the same lock are released.

A sema_signal corresponds to a release in the release consistency model, and a sema_wait corresponds to an
acquire. Each semaphore has a statically assigned manager. A signaling thread sends a message to the manager
including the consistency information. A thread performing a sema_wait also sends a message to the manager,
who replies with the necessary consistency information once the waiting thread is allowed to continue. Thus a
sema_signal or a sema_wait costs two messages, including an acknowledgment.

An OpenMP to TreadMarks Compiler
The compiler analysis is relatively simple, because TreadMarks provides a shared memory API on top of a
workstation cluster. Since only part of the memory space is shared, the compiler has to identify the shared
variables and allocate them in the shared memory. Other than this, the transformation from sequential programs
to multi-threaded TreadMarks programs is straightforward.

Compiler Analysis for Shared Variables

The compiler analysis has two phases, where the first phase infers the actual shared locations from the
directives, and the second phase finds the locations that are declared both shared and private in different parallel
regions. In the absence of recursion and variable subroutine names, each can be done by one pass over the
subroutines.

In the first phase, the subroutines are sorted so that a callee always appears before its callers, and the callees are
examined first. If a pointer passed down the call chain is marked shared in the subroutine, this phase finds out
the location it points to. An actual parameter is marked shared if the variable is passed by reference, and the
corresponding formal parameter is already marked shared in the callee.

The second phase starts with the callers, and processes a caller before its callees. This phase allows the compiler

Page 9 of 14OpenMP on Networks of Workstations

Proceedings of the 1998 ACM/IEEE SC98 Conference (SC’98)
0-8186-8707-X/98 $17.00 © 1998 IEEE

to spot conflicting variable declarations in different subroutines. In this phase, if a pointer to the shared data is
passed down in a subroutine call, the corresponding formal parameter is marked shared. The compiler then
allocates shared variables on the shared memory. For variables marked both shared and private in different
parallel regions, an error is given if the variable is a pointer. Otherwise the variable is redeclared in the parallel
region in which it is marked private.

Compiler Transformations

Our compiler translates the sequential program annotated with a subset of OpenMP directives into a fork-join
parallel program. The compiler encapsulates each parallel region into a separate subroutine. This subroutine
also includes code, generated by the compiler, allowing each thread to determine, based on its thread identifier,
which portions of a parallel region it needs to execute. At the beginning of a parallel region, the master passes a
pointer to this subroutine to the slaves at the time of the fork. Pointers to shared variables and initial values of
firstprivate variables are copied into a structure and passed at fork. The OpenMP synchronization directives
translate directly to the TreadMarks synchronizations.

Applications and Their OpenMP Implementations
We use five applications in this study: ASCI Sweep3D, NAS 3D-FFT, SPLASH-2 Water, TSP, and QSORT.
Table 1 summarizes the problem sizes, the sequential running times, and the parallel and synchronization
directives used in the OpenMP implementations of the applications. The sequential running times are used as
the basis for the speedup figures reported in the next section.

Table 1: Applications, input data sets, sequential execution time, and parallel and synchronization directives in
the OpenMP versions

Sweep3D
The Sweep3D benchmark from the DOE ASCI Blue Benchmark suite (http://www.llnl.gov/
asci_benchmarks/) solves a one-group time-independent discrete-ordinates three-dimensional Cartesian
geometry neutron transport problem. The main data structure is a 3-D mesh. The code uses a level of
blocking along all three dimensions to achieve certain level of granularity. It then performs multiple 2-D
wavefront sweeping over the 3-D blocks.

In OpenMP, the data dependence between two neighbor threads along each pipeline is expressed using
our proposed sema_signal/sema_wait synchronization directives.

3D-FFT
3D-FFT from the NAS benchmark suite [3] solves a partial differential equation using three dimensional
forward and inverse FFT. The program has three shared arrays of data elements and an array of
checksums. The computation is decomposed so that every iteration includes local computation and a
global transpose, with both expressed as data parallel operations.

Page 10 of 14OpenMP on Networks of Workstations

Proceedings of the 1998 ACM/IEEE SC98 Conference (SC’98)
0-8186-8707-X/98 $17.00 © 1998 IEEE

In OpenMP, the data parallelism is naturally expressed using the parallel do directive.

Water
Water from the SPLASH-2 [11] benchmark suite is a molecular dynamics simulation. The main data
structure in Water is a one-dimensional array of records, in which each record represents a molecule.
During each time step, both intra- and inter-molecular potentials are computed. The parallel algorithm
statically divides the array of molecules into equally sized contiguous blocks, assigning each block to a
processor. The bulk of the interprocessor communication from synchronization that takes place during the
inter-molecular force computation.

In OpenMP, the evaluation of intra-molecule potentials requires no interactions between molecules and is
parallelized using the parallel do directive. The evaluation of inter-molecule potentials can also be
parallelized with parallel do, but to avoid excessive synchronization, we use coarse-grain parallelism,
e.g., we divide the molecules among the nodes, and have one thread work on all the molecules on the
same node. This level of coarse-grain parallelism is expressed using the parallel region directive.

TSP
TSP solves the traveling salesman problem using a branch-and-bound algorithm. The major data
structures are a pool of partially evaluated tours, a priority queue containing pointers to tours in the pool,
a stack of pointers to unused tour elements in the pool, and the current shortest path. A process repeatedly
dequeues the most promising path from the priority queue, extends it by one city, and enqueues the new
path, or takes the dequeued path and tries all permutations of the remaining nodes.

In OpenMP, the threads are created using the parallel\ region directive. The mutually exclusive accesses
to the priority queue are expressed using critical. Because of the use of priority queue, the dequeue and
the following enqueue operations by the same processor are actually carried out within one critical
section. Therefore, there is no need to use condition variables for TSP.

SQORT
Quicksort sorts an array of integers by recursively partitioning the array into subarrays, and resorting to
bubblesort when the subarray is sufficiently short. Quicksort employs a task queue, wherein each task
element is a pointer to a subarray. A thread repeatedly removes a subarray from the task queue,
subdivides it, and puts generated tasks back to the task queue.

The OpenMP EnQueue and DeQueue operations are implemented with critical sections and a condition
variable, as shown in the task queue example in Figure 4.

Experiments

Our experiments compare the performance of our compiler transformed OpenMP codes with that of hand-
written TreadMarks as well as MPI codes.

Our experimental platform is a network of eight 166MHz Pentium Pros running FreeBSD 2.2.5 and connected
by a switched, full-duplex 100Mbps Ethernet. Some basic performance characteristics of TreadMarks and MPI-
CH on our platform are as follows. TreadMarks uses the UDP/IP protocol for interprocessor communication.
The round-trip latency for a 1-byte message using the UDP/IP protocol is 196 microseconds on this platform.
The time to acquire a lock varies from 256 to 393 microseconds. The time for an eight processor barrier is
481 microseconds. The time to obtain a diff varies from 387 to 1,225 microseconds. MPI-CH uses the TCP
protocol. The empty message round trip time is 510 microseconds. The maximal bandwidth is 11.3 MB/s.

Page 11 of 14OpenMP on Networks of Workstations

Proceedings of the 1998 ACM/IEEE SC98 Conference (SC’98)
0-8186-8707-X/98 $17.00 © 1998 IEEE

Figure 5 shows the speedup comparison on eight processors for the OpenMP, TreadMarks, and MPI versions of
each application. First, the OpenMP versions of codes achieve performance within 3 - 17% of their TreadMarks
counterparts, suggesting that our compiler and the fork-join multithreading model incur very little overhead.
Figure 5 further shows that the OpenMP version of the applications perform within 41% of the MPI versions on
eight processors. This slowdown of TreadMarks codes is explained by the fact that both OpenMP and
TreadMarks send more messages and data than MPI (see Table 2). Separation of synchronization and data
transfer, the use of an invalidate protocol, and false sharing contribute to this extra communication and data [5,
9]. As has been demonstrated by Dwarkadas et al. [6], many of these costs can be overcome with additional
compiler support, which is currently not present in our prototype.

Figure 5: Speedup comparison among the OpenMP, TreadMarks, and MPI versions of the applications

Table 2: Amount of data transmitted and number of messages in the OpenMP, TreadMarks, and MPI versions
of the applications

Related Work
Cox et al. [5] evaluated the use of software DSM as the target for a parallelizing compiler on a message passing
machine. They identified the factors that account for the performance differences, estimated their relative
importance, and described methods to improve the performance. They used the APR shared memory
parallelizing compiler (SPF), and the directives of the source programs are restricted to parallel do. Keleher and
Tseng [8] also performed a similar study using the Stanford SUIF [1] parallelizing compiler to generate parallel
programs for software DSM systems. Their study is also restricted to do loops.

Conclusions

Page 12 of 14OpenMP on Networks of Workstations

Proceedings of the 1998 ACM/IEEE SC98 Conference (SC’98)
0-8186-8707-X/98 $17.00 © 1998 IEEE

We have demonstrated that it is possible to implement an OpenMP-like environment on a NOW. Only minor
modifications to the standard are required, and these could easily be incorporated into later versions of the
standard. Our prototype implementation is reasonably efficient, although still lagging behind MPI. In our
further work we will focus on various compiler optimizations to reduce the performance difference between
OpenMP and MPI.

Acknowledgments
This work is supported in part by the National Science Foundation under Grants CCR-9521735 and CDA-
9626318.

References
1 S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and C. W. Tseng. The SUIF compiler for scalable

parallel machines. In Proceedings of the 7th SIAM Conference on Parallel Processing for Scientific
Computing, February 1995.

2 C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and W. Zwaenepoel.
TreadMarks: Shared memory computing on networks of workstations. IEEE Computer, 29(2):18-28,
February 1996.

3 D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS parallel benchmarks. Technical Report TR
RNR-91-002, NASA Ames, August 1991.

4 David R. Butenhof. Programming With POSIX Threads. Addison-Wesley, 1997.

5 A.L. Cox, S. Dwarkadas, H. Lu, and W. Zwaenepoel. Evaluating the performance of software distributed
shared memory as a target for parallelizing compilers. In Proceedings of the 11th International Parallel
Processing Symposium, pages 474-482, April 1997.

6 S. Dwarkadas, A.L. Cox, and W. Zwaenepoel. An integrated compile-time/run-time software distributed
shared memory system. In Proceedings of the 7th Symposium on Architectural Support for Programming
Languages and Operating Systems, pages 186-197, October 1996.

7 The OpenMP Forum. OpenMP Fortran Application Program Interface, Version 1.0.
http://www.openmp.org, Octorber 1997.

8 P. Keleher and C. Tseng. Enhancing software DSM for compiler-parallelized applications. In
Proceedings of the 11th International Parallel Processing Symposium, April 1997.

9 H. Lu, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. Quantifying the performance differences between
PVM and TreadMarks. Journal of Parallel and Distributed Computing, 43(2):56-78, June 1997.

10 J.L. Peterson and A. Silberschatz. Operating System Concepts. Addison-Wesley, Reading, Massachusetts,
second edition, 1985.

11 S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The splash-2 programs: characterization and
methodological considerations. In Proceedings of the 22nd Annual International Symposium on
Computer Architecture, pages 24-36, June 1995.

Page 13 of 14OpenMP on Networks of Workstations

Proceedings of the 1998 ACM/IEEE SC98 Conference (SC’98)
0-8186-8707-X/98 $17.00 © 1998 IEEE

Biographies
Honghui Lu received the B.S. degree from Tsinghua University, China, in 1992, and the M.S. degree from
Rice University in 1995. She is currently a computer engineering Ph.D. student under the direction of Professor
Willy Zwaenepoel. Her research interests include parallel and distributed systems, including both the compiler
and the runtime system.
e-mail: hhl@cs.rice.edu URL: http://www.cs.rice.edu/~hhl

Y. Charlie Hu received the B.S. degree from the University of Science and Technology of China in 1989, the
M.S. degree from Yale University in 1992, and the Ph.D. degree from Harvard University in 1997, all in
Computer Science. He is currently a research scientist at Rice University. His research interests include parallel
and distributed systems, high performance computing, N-body simulations, and performance modeling and
evaluation. Dr. Hu is a member of ACM, IEEE, and SIAM.
e-mail: ychu@cs.rice.edu URL: http://www.cs.rice.edu/~ychu

Willy Zwaenepoel received the B.S. degree from the University of Gent, Belgium, in 1979, and the M.S. and
Ph.D. degrees from Stanford University in 1980 and 1984. Since 1984, he has been on the faculty at Rice
University. His research interests are in distributed operating systems and in parallel computation. While at
Stanford, he worked on the first version of the V kernel, including work on group communication and remote
file access performance. At Rice, he has worked on fault tolerance, protocol performance, optimistic
computations, distributed shared memory, nonvolatile memory, and system support for scalable network
servers.
e-mail: willy@cs.rice.edu URL: http://www.cs.rice.edu/~willy

Honghui Lu
Tue Aug 11 14:04:46 CDT 1998

Page 14 of 14OpenMP on Networks of Workstations

Proceedings of the 1998 ACM/IEEE SC98 Conference (SC’98)
0-8186-8707-X/98 $17.00 © 1998 IEEE

