
Prototype Visualization Tools For Multi-Experiment Performance Analysis

Roberto Araiza, Jaime Nava, Alan Taylor, and Patricia
Teller

University of Texas-El Paso, El Paso, TX
{raraiza, jenava, amtaylor, pteller}@utep.edu

David Cronk and Shirley Moore
University of Tennessee-Knoxville,

Knoxville, TN
{cronk, shirley}@cs.utk.ed

Abstract

 The analysis of modern, parallelized applications,
such as scientific modeling, is of interest to a variety of
people within the computing community of the
Department of Defense (DoD). Persons desiring insight
into the performance of these large programs include
application users, application programmers/developers,
portfolio and center managers, and others. The analysis
needed requires the examination of large data sets
obtained from various performance analysis sources
including, but not limited to, hardware counters, software
event counters, communications event counters, and
unrelated instrumentation code inserted into programs.
 The PCAT (PerformanCe Analysis Team) at the
University of Texas-El Paso (UTEP) has developed a
suite of tools consisting of a performance database access
tool and four different visualization methods to aid
diverse DoD users in analyzing certain performance
issues associated with serial and, especially, parallel
programs. The tools are written in Java and provide
multiple views of different aspects of performance metrics
associated with a performance database. Preliminary
analysis of two different codes resulted in PCAT users
identifying possible sources of performance degradation
solely from examination of performance metrics, without
access to the source code.

1. Introduction

 The demand for High Performance Computing
(HPC) within the Department of Defense (DoD) for
modeling physical events and processes continues to
increase. Programmers, program managers, computer
center managers, and other interested people need more
tools to assist them in increasing the productivity of HPC
centers. The increased complexity of programs demands
tools that can be used to quickly identify subtle
performance problems.
 Computationally-intensive parallel programs
executed on multiprocessors not only encounter

performance degradation at the individual CPU level, but
also at the system intercommunication level. Thus, the
HPC community requires the means to not only find low-
level performance bottlenecks, such as functional unit
stalls, but higher-level ones as well, such as inter-
processor communication stalls. The results of running
such applications are of interest to a variety of people, but
not for the same reasons. The people that are interested
in the execution of these applications are:

• application users,
• application developers,
• portfolio managers,
• center managers/directors, as well as
• other interested parties.

 Application users, on the one hand, are concerned
with finding a machine or configuration of machines that
will run their codes the fastest, so they may get results
quickly. Center directors, on the other hand, are more
concerned with having all of the machines in the center
fully utilized all the time, so supercomputer cycles are not
wasted. Data captured from running applications may
answer questions of interest to all the types of people
interested in the execution of applications on
supercomputers (hereinafter called users); however, the
data must be presented in an appropriate format in order
for it to be useful to the intended audience.
 Scientific applications instrumented to record events,
such as hardware metrics from microprocessors and
communications events (e.g., barriers), to evaluate the
performance of the applications, generate large amounts
of data. Although storing this data in a database
facilitates its analysis, it is essential that tools that access
the data and display it to users do so in a way that is easily
understood.
 Application developers and users of modern
scientific, parallel applications need easy-to-use, well-
engineered tools to determine how well their applications
are performing and to analyze and improve application
performance. Developers/programmers may collect
performance data about the state of the system and the
program at runtime by instrumenting applications with

HPCMP Users Group Conference (HPCMP-UGC'06)
0-7695-2797-3/06 $20.00 © 2006

tools such as the Performance Application Programmer
Interface (PAPI, http://icl.cs.utk.edu/papi/) and the
Tuning and Analysis Utilities (TAU,
www.cs.uoregon.edu/research/tau/). The obtained data
sets help developers identify potential performance
problems in applications. Instrumentation of
contemporary applications to collect performance data
yields huge multi-dimensional data sets, the sizes of
which depend on the number of processors involved in
the execution, the number of instrumentation points, and
the number and type of monitored events. Discovering
performance insights in such massive data sets remains a
challenge in application performance analysis.
 Application developers and users frequently have
access to a variety of configurations for compiling and
running their applications. Having accessibility to
different compilers and optimization levels, MPI
implementations, operating systems, and system
architectures (including those with the same general
architecture but different numbers of processors, and
those with the same number of processors but different
general architectures) makes it difficult for developers
and users to determine which configuration is the best for
their particular applications.
 Typical questions asked by developers and users
include, but are not limited to, the following:
 Developers:

DQ1. Are there any parts of my code that would
benefit from performance tuning?

DQ2. Now that I have found out which routines are
taking the most time, how do I tell if they are
running well, i.e., with good performance?

DQ3. Which portions of my code are not scaling
well?

DQ4. Is the performance I am getting portable – i.e.,
after developing the code for one platform,
will it run well on other platforms?

DQ5. Are parts of my code memory bound?
Communication bound? I/O bound?

DQ6. Where does my code have
communication/synchronization deficiencies?

DQ7. Hardware counter data I have collected
indicate one or more of the following:
i. large number of L1/L2, instruction/data

cache misses,
ii. large number of translation look aside

buffer (TLB) misses,
iii. large number of stall cycles,
iv. large number of misaligned loads, and
v. large number of mispredicted branches.

DQ8. How do I determine if these factors are
adversely affecting performance and, if so,
how do I fix the problems?

DQ9 I have made some changes to the code and
now it runs faster (slower)? Why?

 Users:
UQ1. On which machine(s) will my code get the best

performance?
UQ2. On a given platform, which compiler options

will give the best performance for my code?
UQ3. How long will my code take to run on a given

platform with a given input set?
UQ4. How do different input sets affect

performance?
UQ5. What is the best number of processors on

which to run my parallel code on a given input
set?

UQ6. What performance problems does my code
have that I may report to the developer?

2. Survey of HPC User Community

 In order to best serve the DoD HPC user community
with respect to tools that may aid them in performance
data collection and analysis and could answer some of the
questions noted above, a small survey of the community
was conducted in Fall 2005. The results of the survey
indicate a need for such tools and a need for tools that
provide a means to simplify the data under analysis using
methods such as thresholding and statistical analysis.
Anecdotally, one user indicated that s/he used “printf”
statements in pursuit of bugs and performance problems
of multiprocessor programs, and welcomed any
improvement in performance analysis tools.

3. Visualization Tools

 Under a contract from the DoD, the Performance
Analysis Team (PCAT) at the University of Texas at El
Paso (UTEP) developed an integrated suite of
visualization tools targeted at the DoD HPC community.
All tools are written in Java in order to maximize
portability and avoid platform dependence, and may be
run on any desktop computer that has a Java Virtual
Machine installed. In order to minimize learning time for
the user, all tools within the suite are controlled via
Graphical User Interfaces (GUI’s). The input to the tool
set consists of data that was previously obtained from
instrumented HPC programs and then stored in a database
according to an existing schema. The tool set consists of
a:

• database query tool,
• colored tree viewer,
• two-dimensional (2-D) visualizer,
• comparator, and
• three-dimensional (3-D) visualizer.

 The database query tool is used to access
performance data stored in a database and to download
data to a local desktop computer. The colored tree viewer

HPCMP Users Group Conference (HPCMP-UGC'06)
0-7695-2797-3/06 $20.00 © 2006

enables the user to quickly determine which parts of a
program are associated with the greatest values of a given
metric. The 2-D visualizer provides a means to examine
results from multiple runs of an application on different
computational platforms in terms of time. The
comparator, on the other hand, gives users the ability to
quickly compare two different runs of an application in
terms of all available metrics. Finally, the 3-D visualizer
offers the ability to analyze one or more functions
(subroutines/code regions) of an application in terms of
multiple metrics, across multiple processors.
 The database query tool provides a means to access
large data sets stored within a given database. It uses a
Graphical User Interface (GUI) to display the call graph
of the program under analysis to the user. If there is no
call graph in the data, a flat tree is displayed; however, all
other tools in the PCAT tool suite may not work properly
without call graph information. The database query tool
requires the address of the database, name of the database
to be accessed, name of the port to use, a login, and
password. Once the database is accessed, the user clicks
on the desired program for analysis, and the database tool
downloads all available data. This is necessary to build
the various data structures used by the different tools in
the PCAT tool suite. Large data sets may require some
time to download; one data set analyzed, associated with
the LAMMPS code, took over 45 minutes to download; of
course, the time depends on network load. However,
once the data are downloaded, the database does not need
to be accessed again; the analysis is done locally given
that the PCAT tool suite is installed locally. Figure 1
shows a view of the database query tool configured to
obtain data from the SHAMRC code database.
 Once all data are available for analysis on a local
computer, the user may employ any of the several PCAT
tools as appropriate. A typical analysis might center on
the execution time of an application, leading the user to
select the colored tree viewer to determine which
functions (subroutines/code regions) of the application
take the most time to execute. The tree viewer shows
inclusive values of the metric under analysis to the right
of a function name, and a colored arrow to the left of a
function name provides a quick indication of the
magnitude of the value of the metric that is associated
with the function. The redder or “hotter” the arrow is, the
larger the magnitude of the metric. The bluer or “cooler”
the arrow is, the smaller the magnitude. Thus, by merely
downloading data from the database and opening the tree
viewer, the user, in pursuit of performance problems, can
quickly locate functions that are consuming the most
time, generating the most resource stalls, etc. Figure 2
shows the colored tree viewer displaying the call graph of
the SHAMRC code; note the yellow arrow pointing to the
function H2, indicating a larger amount of time consumed
within that function.

 Having located one or more functions of interest, the
user then has three tools that can be used for further
analysis; the 2-D visualizer, the comparator, and the 3-D
visualizer. Each tool has a distinct purpose, and may not
work on some data sets.
 The 2-D visualizer requires multiple runs of the same
application on different platforms and is specifically
intended to assist users in determining such things as
which computing platform can execute the application in
the least amount of time. Figure 3 shows a comparison
among different SHAMRC runs, each executed on a
different number of processors, in terms of execution
time.
 The comparator provides a rapid method for
comparing metrics of two different executions (runs) of
the same program. Metrics obtained from a program run
are displayed in bar graph format with a unique bar for
each program function. A separate view is generated for
each collected metric. Metrics may be displayed either as
raw or normalized counts, providing a quick comparison
between two different runs of the same program. Figure 4
compares two different versions of the SHAMRC code
run on the same computing platform in terms of resource
stalls. The first version of the code is in blue, and the
second is in red. The second version shows a lower
number of resource stalls in all the functions (associated
with available data), especially MOVEZ and H1.
 The 3-D visualizer represents metric counts in the
form of colored spheres, with each sphere uniquely
associated with a metric/function/process tuple. The
larger the sphere, the larger the count it represents. Color
is used to differentiate among metrics in the Z direction,
while the X and Y directions are used to differentiate
among functions and processes. Navigation within the
view is performed with mouse-controlled buttons and
sliders, enabling the user to stretch and shrink all three
axes, zoom in and out of the view, as well as view only
one function in a bar-graph view. Figure 5 shows the 3-D
visualizer displaying multiple metric counts, from
multiple functions, on two processors that executed the
SHAMRC code.
 The PCAT visualization tools were used to analyze
performance data from the SHAMRC and LAMMPS
programs, two DoD codes. Comparing two different
versions of SHAMRC via the comparator, a serial version
and the original parallelized version executed on a single
processor, it was found that the serial version executed
faster than the parallel version and there were notable
differences in functions MOVEZ and H1, especially in
critical metrics such as floating-point stalls, number of
clocks with no instructions completed, and number of
clocks with no instructions issued. Analyzing an
improved version of the parallel program, there was a
reduction in execution time, as compared to the original
parallel version, and a decrease in floating-point and

HPCMP Users Group Conference (HPCMP-UGC'06)
0-7695-2797-3/06 $20.00 © 2006

pipeline stalls, as indicated by “no instructions
completed” and “no instructions issued”. Also, the
improved parallel version executed on a single processor
had the same execution time as the serial version.
Although the observation that the number of stalls
increased with execution time provided a “clue”, the
actual reason for the difference in the performance of the
two parallel versions of SHAMRC, which use the same
MPI communication methods, was associated with array
allocation. The original parallel version dynamically
allocates a large array, which was allocated statically in
the serial version, while the improved parallel version
statically allocates the array. Note that in this case a
performance bug in the Intel compiler prevents the use of
dynamic allocation without performance degradation.
 Although the LAMMPS program contains many
more functions (code subsections/subroutines) than
SHAMRC, the colored tree viewer was effective in
analyzing its performance. Using the viewer, it was
determined that the overall program required 1.683 E 10
time units, and a function called Verlet consumed 1.161 E
10 time units, which accounts for the majority of program
execution time. Within Verlet, a function called
Verlet:iterate consumed virtually all the time, 1.160 E 10
time units. Verlet::iterate called 16 other functions, many
of which involved communication. One, in particular,
Comm::exchange, consumed 4.685 E nine time units and,
another one, Neighbor::build, required 1.311 E9 time
units, making them the best candidates for performance
analysis.
 Using the 3-D viewer, it was found that a large
number of floating-point stalls, branch mispredictions and
resource stalls were located within these two functions,
especially with respect to the MPI functions, such as
MPI_Wait, MPI_Sendrecv, MPI_Send and MPI_Irecv, all
of which are involved in interprocessor communications.
Thus, the utility of the PCAT visualization tools to locate
potential performance problems using only performance
data and derived metrics, with no access to the source
code, was demonstrated.

4. Conclusions and Future Work

 The PCAT has created multiple visualization tools
that, in conjunction with a database query tool, offer the
DoD HPC community another means of locating
performance problems within scientific applications. The
tools have been demonstrated using performance data
associated with DoD codes and stored in a database.
 Providing the integrated PCAT visualization tools to
a small number of DoD HPC programmers, as a prototype
for evaluation, and re-surveying a larger portion of the
DoD HPC community on the subject of visualization tools
would be logical extensions to this work. A web site

intended to assist users of the PCAT tools could be
created in a fairly short period of time and at modest cost.
Feedback from those programmers who evaluate the tools
would provide direction for further development.

Figure 1. PCAT database query tool accessing

SHAMRC database

Figure 2. PCAT colored tree viewer displaying

SHAMRC call graph

HPCMP Users Group Conference (HPCMP-UGC'06)
0-7695-2797-3/06 $20.00 © 2006

Figure 3. PCAT 2-D visualizer showing SHAMRC

execution time for different numbers of processors
Figure 5. PCAT 3-D visualizer displaying multiple

metrics across multiple functions, on two processors

Figure 4. PCAT comparator displaying different

versions of shamrc code in terms of resource stalls

HPCMP Users Group Conference (HPCMP-UGC'06)
0-7695-2797-3/06 $20.00 © 2006

