
Parallel Implementation of the Recurrence Method 
for Computing the Power-Spectral Density of Thin 

Avalanche Photodiodes  
 

Yi Pan 
Department of Computer Science 

Georgia State University 
Atlanta, GA 30303, USA 
email: pan@cs.gsu.edu 

 
Constantinos S. Ierotheou 

Parallel Processing Research Group 
University of Greenwich 
London SE10 9LS, UK 

Email: C.Ierotheou@gre.ac.uk 
 

Majeed M. Hayat 
Department of Electrical & Computer Engineering 

The University of New Mexico 
Albuquerque, NM 87131-1356, USA 

Email: hayat@eece.unm.edu 
 
 

Abstract 
 

A simulation program has been developed to calculate the 
power-spectral density of thin avalanche photodiodes, 
which are used in optical networks. The program extends 
the time-domain analysis of the dead-space multiplication 
model to compute the autocorrelation function of the APD 
impulse response. However, the computation requires a 
large amount of memory space and is very time 
consuming. In this research, we describe our experiences 
in parallelizing the code using both MPI and OpenMP. 
Several array partitioning schemes and scheduling 
policies are implemented and tested. Our results show that 
the OpenMP code is scalable up to 64 processors on an 
SGI Origin 2000 machine and has small average errors. 

1 Introduction 
 
Among the semiconductor photodetectors that are 
commonly used in today's long-haul and metro-area fiber-
optic systems, avalanche photodiodes (APDs) are often 
preferred over p-i-n photodiodes due to their internal gain, 
which significantly improves the receiver sensitivity and 
alleviates the need for optical pre-amplification. 
Unfortunately, the random nature of the very process of 
carrier impact ionization, which generates the gain, is 
inherently noisy and results in fluctuations not only in the 
gain but also in the time response [1,2,3,5]. 
  

Just as accounting for dead space is essential in the correct 
prediction of the excess noise factor in thin APDs, 
accurately predicting the bandwidth characteristics of thin 
APDs necessitates having a time-response analysis of the 
avalanche multiplication that includes the effect of dead 
space. This is particularly important if we were to push the 
performance limits of thin APDs to meet the needs of next-
generation 40-Gbps lightwave systems [3]. 
 
Recently, a theory characterizing the autocorrelation 
function (or the power spectral density) of APDs has been 
developed which incorporates the dead-space effect [3]. 
The research extends the time-domain analysis of the 
dead-space multiplication model reported in [5] to 
compute the autocorrelation function of the APD impulse 
response.  This extension involves developing six 
recurrence equations, which are derived according to the 
same renewal-theory rationale used in [3]. To solve these 
equations, a program called NP3 was developed. It deals 
with the calculation of the autocorrelation function of the 
APD's impulse response.  
 
In this research, we describe our experimental results of 
parallelizing the NP3 code using both Message Passing 
Interface (MPI) [9] and OpenMP [4]. Our results show that 
the code can be parallelized efficiently and the code is also 
scalable up to at least 64 processors on an SGI Origin 2000 
machine [8]. The rest of the paper is organized as follows. 
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The numerical formulation and basic structure of the 
corresponding sequential code will be discussed in section 
2. MPI parallelization of the code is presented in section 3. 
OpenMP parallelization is discussed in section 4. 
Experimental results, observation, and discussions will be 
given in section 5. We conclude our paper in section 6. 

2 Numerical Formulations and Structure of 
Sequential Code 
 
To describe the computations involved in obtaining the 
power spectral density of APDs, we first provide a brief 
description of the mathematical model involved, drawing 
freely from the formulation developed in [3].  We begin by 
recalling key definitions involved in the dead-space 
multiplication theory developed in [3,5]. We will then 
recall the basic equations developed in [3], which 
characterise the first and second-order statistics of the 
APD’s impulse response function. The parallel computing 
technique reported in this paper is developed precisely for 
the purpose of solving these integral equations. 
 
2.1.  The dead-space multiplication model (DSMT) 
Consider an electron-injected APD with a multiplication 
region of width w. Let Ze(t,x)  be the total number of 
electrons resulting from an initial parent electron born at 
location x, t units of time after its birth. Similarly, let 
Zh(t,x) be the total number of holes resulting from an initial 
parent electron, at location x, t units of time after its birth. 
The random impulse response, which is a stochastic 
process, can be related to the functions Ze and Zh through 
the relation I(t) = (q/w) [veZe(t,0) + vh Zh(t,0)], where ve and 
ve, are, respectively, the electron and hole saturation 
velocities in the APD’s depletion region. Our goal is to 
mathematically characterize the first and second-order 
moments of I(t), which is accomplished when the statistics 
of  Ze(t,0) and veZh(t,0) are determined. 
 
As discussed in [3], it turns out that it is necessary to first 
characterize the statistics of Ze(t,x) and Zh(t,x) for all x and 
then specialize the results to x=0. We also need to 
introduce auxiliary quantities representing cases when a 
hole initiates the multiplication. In particular, let Ye(t,x)  be 
the total number of electrons resulting from a parent hole 
born at location x, t units of time after its birth, and let 
Yh(t,x) be defined similarly to Ye(t,x) but with the number 
of generated electrons replaced with the number of 
generated holes. Using the above definitions, recurrence 
equations (integral equations) characterizing the mean of 
Ze(t,x), Zh(t,x), Ye(t,x) and Yh(t,x) have been derived in [5].  
For example, if we define the mean quantities ze(t,x), 
zh(t,x), ye(t,x) and yh(t,x), then the functions ze(t,x) and  
ye(t,x) are related by the following integral equation: 
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 (1.1) 
where He(x) is the indefinite integral of he(x), which is a 
known probability density function whose form is given in 
[3], and u(x) is the unit step function. A similar integral 
equation exits for ye(t,x) (also involving ye(t,x) and ze(t,x)). 
Hence, to determine the mean quantities ze(t,x) and ye(t,x), 
we must solve two coupled integral equations of the type 
shown in (1.1). Similarly, two more coupled integral 
equations are available and must be solved to compute 
yh(t,x) and zh(t,x). This completes the description of 
computing the first-order statistics of the impulse response. 
 
We now state the equations that characterize the 
autocorrelation function of the stochastic process I(t), 
defined by RI(t1 ,t2) = E[I(t1) I(t2)]. Following [3], the 
autocorrelation can be expressed in terms of certain count 
auto and cross correlations as follows:  
 
RI(t1 ,t2) = (q/w)2 [ve

2 CZe(t1 ,t2,0) + vh
2 CZh(t1 ,t2,0) + ve vh 

Cz(t1 ,t2,0) + ve vh Cz(t2 ,t1,0)], 
 
where the count autocorrelations are defined as: CZe(t1 
,t2,x) = E[Ze(t1,x)Ze(t2,x)] and CZh(t1,t2,x) = 
E[Zh(t1,x)Zh(t2,x)], and the count cross correlation is 
defined by Cz(t1,t2,x)  = E[Ze(t1,x)Zh(t2,x)]. In [3], it is 
shown that these auto and cross correlations satisfy certain 
linear and pairwise-coupled (integral) equations. For 
example, CZe(t1,t2,x) and CYe(t1 ,t2,x) satisfy the following 
equation: 
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 (1.2) 
A similar equation exists for CYe(t1 ,t2,x), also in terms of 
CZe(t1 ,t2,x) and CYe(t1 ,t2,x), resulting in a pair of coupled 
equations. The two coupled equations must be solved to 
yield CZe(t1 ,t2,x) and CYe(t1 ,t2,x). Note that in the above 
equation, the first-order quantities ye(t,x) and ze(t,x) are 
assumed known and must be solved using the equations 
described earlier in this Section. Similarly, two coupled 
integral equations are also available characterizing CZh(t1 
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,t2,x) and CYh(t1 ,t2,x), and finally, two more are available 
for CZ(t1 ,t2,x) and CY(t1 ,t2,x). In summary, to compute the 
autocorrelation function RI(t1,t2), three pairs of pairwise 
coupled integral equations (characterizing the second-order 
statistics) and two pairwise coupled integral equations 
(characterizing the first-order statistics) must be solved.  
 
The above mentioned equations are solved numerically 
using a simple iteration technique. For example, for each 
pair of coupled integral equations (in two unknown 
functions), the unknown functions (e.g., CZe(t1 ,t2,x) and 
CYe(t1 ,t2,x)) are initially assumed to be identically zero. 
The initial values are then substituted in the integral 
equations to yield the first-order iterates, and so on. The 
iteration process is terminated when the relative change 
from one iteration to the other drops below a prescribed 
level (10-8 in the calculations in [3]). The iteration 
procedure was encoded with FORTRAN. 
 
2.2. Key subroutines used in the computations 
Subroutine mean_ze numerically implements the integral 
equation given by (1.1). It consists of three nested loops: 
two loops to exhaust the variables t and x, and a loop that 
implements the integration. (The functions He and he are 
computed outside the subroutine and are passed to the 
subroutine whenever it is called.) The t and x variables are 
discretized using a mesh size nt by ns. Moreover, for each t 
and x, equation (1.1) is carried out using the same mesh 
size used for x. The loops in the subroutine have the 
following general structure: 
 

do i=1,ns 
  do j=1,nt 
    “compute the first term of 
(1.1)” 
    do k=j,ns 
      “compute and update for 
(1.1)” 

 
Similarly-structured subroutines exist to implement the 
remaining three integral equations for the first-order 
statistics ye(t,x), yh(t,x), and zh(t,x): these subroutines are 
named mean_ye, mean_yh, mean_zh, 
respectively. 
 
The subroutines used to compute the second-order 
statistics have an added loop to handle the extra time 
variable t2. For example, subroutine auto_Cze 
numerically implements the integral equation given by 
(1.2). In addition to the three loops handling t1, t2 and x, 
there is a loop that carries out the integration. Again, the t1, 
t2 and x variables are discretized using a mesh size nt by nt 
by ns, respectively. The loops in the subroutine have the 
following general structure: 
 

 

do i=1,ns 
  do j=1,nt 
    do k=1,nt 
    “compute term 1 of (1.2)” 
      do m=j,ns 
        “compute for (1.2)” 

 
Similarly structured subroutines exist to implement the 
remaining five integral equations for the first-order 
statistics CYe(t1 ,t2,x), CZh(t1 ,t2,x) and CYh(t1 ,t2,x), CZ(t1 
,t2,x) and CY(t1,t2,x),: these are named auto_Cye, 
auto_Czh, auto_Cyh, cross_Cz , and 
cross_Cy, respectively. 
 
With the above subroutines defined, the sequential 
program structure is shown below.  
 
        Program np3 
        . . . 
   do 10 kk=1, 300 
          call mean_ye 
          call mean_ze 
          call mean_yh 
          call mean_zh 

    “check terminating condition” 
 
          . . . 
10      continue 
        . . . 
        do 11 kk=1,300 
          call cross_Cz 
          call cross_Cy 
           “check terminating condition” 
 
          . . . 
11      continue 
        . . . 
        do 101 kk=1, 300 
                    call auto_Cye 
          call auto_Czy 
          call auto_Cyh 
          call auto_Czh 
     “check terminating condition” 
          . . . 
101     continue 
        . . . 
 
As we can see from the serial code, the major work is done 
in the subroutines mean_ye, mean_ze, mean_yh, 
mean_zh, cross_Cz, cross_Cy, auto_Cye, 
auto_Czy, auto_Cyh and auto_Czh. Recall that 
all of these subroutines involve nested loops (three or 
four). In particular, the correlation subroutines are 
extremely memory and time intensive, since they involve 
three dimensional arrays and four nested loops. Clearly, if 
we can parallelize these loops efficiently, then we can 
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reduce the computation time drastically. In the following 
sections, we will describe the parallelization process in 
more detail. 

3 MPI Parallelization 

MPI is a library specification for a message-passing 
scheme, proposed as a standard by a broadly based 
committee of vendors, implementers, and users [9]. The 
main advantages of establishing a message-passing 
standard are portability and ease-of-use. In a distributed 
memory communication environment in which the higher 
level routines and/or abstractions are built upon lower 
level message passing routines, the benefits of 
standardization are particularly apparent. Furthermore, the 
definition of a message passing standard provides vendors 
with a clearly defined base set of routines that they can 
implement efficiently, or in some cases provide hardware 
support for, thereby enhancing scalability.  

An important decision for an MPI implementation is to 
decide how to partition arrays in a distributed memory 
environment. An inspection of the original NP3 serial code 
did not appear to exhibit the characteristics of a code that 
would yield a favourable level of performance when 
executed using a distributed memory parallel system. For 
example, although there were a number of multi-
dimensional arrays and nested loops, there appeared to be 
a high communication cost that would be associated with 
data movement due to the typical way in which the data 
was being accessed. As an illustration Figure 1 below 
shows a fragment of the NP3 code. 
 
        Program np3 
        . . . 
        call mean_ye 
        call mean_ze 
        call mean_yh 
        call mean_zh 
        . . . 
 
 
        subroutine mean_yh 
        . . . 
        do 21 k=1,nt+1 
          do 22 n=2,ns+1 
            sumy=0. 
            do 23 i=max1(1.,n-(((k-
1.)/lh)+1)),n-1 
              s=1+int(k-lh*(n-i)) 
              
sumy=sumy+(2*b(s,i)+a(s,i))*(gh(n-i+1)) 
  23        continue 
            c(k,n)=hh(k,n)+(sumy*dx) 
  22      continue 

21 continue 
. . . 

 
        subroutine mean_zh 
        . . . 
        do 31 k=1,nt+1 
          do 32 n=1,ns 
            sumz=0. 
            do 33        
i=n+1,min0(ns+1,n+int(((k-1.)/le)+1)) 
              s=1+int(k-le*(i-n)) 
              
sumz=sumz+(2*a(s,i)+c(s,i))*(ge(i-n+1)) 
  33        continue 
            d(k,n)=sumz*dx 
  32      continue 
  31    continue 
        . . . 
 
FIGURE 1. Typical data accesses for 
arrays in mean-based routines 
 
From this case alone there are at least two different 
scenarios that can be explored.  
 
1. The arrays a, b and c are not partitioned. This in turn 

causes the routines to be executed in serial as each 
processor will compute information for all iterations 
of all loops. Although there are very few changes 
required for some of the routines, this is not ideal and 
will have a significant impact on the performance of 
the parallel version of the code. 

 
2. Arrays a, b and c could ideally be partitioned in index 

2 (or using the n loop index). However, this has two 
undesirable effects  

 
i. arrays a and b in routine mean_yh are 

accessed in index 2 using the i index (this is 
the innermost loop of the triple nest of 
loops). This conflicts with the requirement 
to use the n loop to define the masked 
statements in the parallel implementation. 
As a result the a and b arrays need to be 
broadcast to all processors prior to their use 
in routine mean_yh.  

 
ii. for similar reasons, array c will also require 

to be broadcast prior to its usage in routine 
mean_zh. This conflict of data accesses is 
prevalent in much of the NP3 code affecting 
many two and three dimensional arrays. 

 
 
Therefore at a first glance, one would not expect to obtain 
a good quality parallelization. Scenario (2) has the greater 
scope for improvement if one can re-structure the existing 

Proceedings of the International Conference on Parallel Processing Workshops (ICPPW’02) 
1530-2016/02 $17.00 © 2002 IEEE 



code such that the data accessing of the arrays better 
reflects their alignment with their defined distribution [10]. 
One possible solution is to attempt the separation of the 
computation in routine mean_yh so that both the i index 
and the n index can be used to exploit the distribution in 
index 2. Figure 2 shows how this can be achieved for 
routine mean_yh at the expense of an increase in the 
program memory requirement. 
 
 
        subroutine mean_yh 
        . . . 
        do 21 k=1,nt+1 
          do 22 n=2,ns+1 
            sumy(n,k)=0. 
            do 23 i=max1(1.,n-(((k-
1.)/lh)+1)),n-1 
              s=1+int(k-lh*(n-i))    
sumy(n,k)=sumy(n,k)+(2*b(s,i)+a(s,i))*(
gh(n-i+1)) 
   23       continue 
   22     continue 
   21   continue 
 
        do k=1,nt+1 
          do n=2,ns+1 
            
c(k,n)=hh(k,n)+(sumy(n,k)*dx) 
          enddo 
        enddo 
        . . . 

 
FIGURE 2. Loop split to exploit 

parallelism in serial code 
 
The loop split transformation [10] is a standard 
modification to loop structures that can only be applied if 
there is no violation in the order in which the computation 
is performed. In this case it can only be applied if the 
scalar sumy is expanded to a two dimensional array, 
thereby removing the data dependence for sumy between 
iterations of the i loop. All distributed accumulations of 
sumy are made in the first triple nest of loops, this is  
followed by a double nested loop that uses the array sumy 
to update the array c.  The parallelism exploited here is 
now both at the i loop in the first nest and also at the n 
loop in the second nest. For correct parallel execution it is 
also necessary to complete the reduction operation by 
accumulating all local contributions into a single global 
summation. This would require communicating data of the 
order ns+1 instead of the broadcast cost of 
(nt+1)*(ns+1) for each individual array. 
 
The Computer Aided Parallelization toolkit [6] was used to 
attempt to perform the parallelization using the strategy 

described above and to generate a Single Program Multiple 
Data (SPMD) version of the NP3 code. There are a number 
of stages that the user needs to go through with the tools to 
generate the parallel code as shown below.   
 
Serial Fortran code: The serial FORTRAN version of the 
code is parsed and stored in an internal form by the toolkit.  
 
Dependence Analysis: the toolkit performs a detailed 
interprocedural, symbolic, value-based, dependence 
analysis. The dependence analysis defines the core of the 
toolkit and helps to identify the potential parallelism in the 
code. The user can then use the available transformation 
tools to re-structure all the necessary routines by 
performing a loop split as described in Figure 2. As part of 
this transformation process, the toolkit also check the 
legality of any transformation to ensure that the 
transformed code is valid. In addition, the user is given the 
opportunity to preview any transformed code and makes a 
decision to either accept or reject the suggested code 
changes. 
 
Data Partitioning: The data partitioning of all relevant 
arrays is then also carried out by the toolkit. This process 
requires the user to suggest an initial starting point to the 
partitioner, for example, the user can specify index 2 of 
array a in routine mean_yh. The partitioner then uses this 
information and identifies all other arrays that can be 
defined to have similar data distributions throughout the 
entire code. The strategy uses a 1D domain decomposition. 
Due to the data dependency in the other loops a 2D 
decomposition is not feasible in this case. 
 
Execution Control Masking: The re-structuring of the 
serial code to execute in parallel using an SPMD paradigm 
begins with attempting to identify and place execution 
control masks for all relevant statements. These masks 
define which processor(s) at run-time will execute any 
given statement. Ideally, one would like a uniform set of 
masks that are applied to as many statements as possible in 
the code. The use of masks that reflect the processor 
“ownership” or assignment area of the arrays is also 
desirable. So for example, if each processor at run-time has 
defined low and high assignment range limits then it 
would be more efficient to generate masks for routine 
mean_yh as shown in Figure 4. These masks exploit the 
parallelism at both the i loop and also the n loop by 
executing the statements (in italics) in parallel. 
 
        subroutine mean_yh 
        . . . 
        do 21 k=1,nt+1 
          do 22 n=2,ns+1 
            sumy(n,k)=0. 
            do 23 i=max(max1(1.,n-(((k-
1.)/lh)+1)),low),min(n-1,high) 
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              s=1+int(k-lh*(n-i)) 
              
sumy(n,k)=sumy(n,k)+(2*b(s,i)+a(s,i))*(
gh(n-i+1)) 
   23       continue 
   22     continue 
   21   continue 
 
        do k=1,nt+1 
          do 
n=max(2,low),min(ns+1,high) 
            
c(k,n)=hh(k,n)+(sumy(n,k)*dx) 
          enddo 
        enddo 
        . . . 
 
FIGURE 4. Execution control masks to 

define parallel execution 
 
Communication Generation: In order to ensure parallel 
execution similar to that for the serial code, the final step 
in the parallelization process is to identify and place 
communication calls into the modified code. The aim is to 
try and identify a minimum set of communication 
requirements to reflect the changes already made to the 
code. There are many requests for data to be 
communicated based on the distribution of the data across 
the processors. The toolkit identifies these requests and 
then attempts to migrate them higher up in the call graph. 
Further movement of the communication requests is 
prevented when they encounter a barrier and this is usually 
an assignment of the variable requested for 
communication. At this point an attempt is made to merge 
any similar requests for the same variable, finally 
culminating in a communication call to a message passing 
library routine. In this code most of the communication 
calls were based on reduction operations that were 
generated as a result of the loop split shown in Figure 2. 
The final parallel version of routine mean_yh is shown in 
Figure 5. 
 
        subroutine mean_yh 
        . . . 
        do 21 k=1,nt+1 
          do 22 n=2,ns+1 
            sumy(n,k)=0. 
            do 23 i=max(max1(1.,n-(((k-
1.)/lh)+1)),low),min(n-1,high) 
              s=1+int(k-lh*(n-i)) 
              
sumy(n,k)=sumy(n,k)+(2*b(s,i)+a(s,i))*(
gh(n-i+1)) 
   23       continue 
   22     continue 
   21   continue 

        call 
cap_mcommutative(sumy(1,1),(nt+1)*(ns+1
),2,cap_mradd) 
        do k=1,nt+1 
          do 
n=max(2,low),min(ns+1,high) 
            
c(k,n)=hh(k,n)+(sumy(n,k)*dx) 
          enddo 
        enddo 
        . . . 
 
FIGURE 5. High level communication call 
representing an array global summation 
 
Parallel code generation: The final code generation to a 
file (or files) can be defined in one of two ways depending 
on the user’s requirements. Currently, the two options are: 
 
1. To generate parallel code that still retains the original 

array declarations. Therefore, every processor will 
contain a full copy of the all the arrays in the code. 

 
2. To generate parallel code that re-defines the array 

declarations to be a function of the minimum number 
of processors used during program execution 
(generally this must be greater than 1). This will take 
into account whenever possible, the reduced memory 
requirement for each processor as a result of the 
distribution of the arrays. This approach generally has 
a better scalability property than (1) and will allow 
larger problem sizes to be solved. This was the 
selected option for the experiments conducted below. 

 

4 OpenMP Parallelization 

OpenMP's programming model uses fork-join parallelism 
where master thread spawns a team of threads as needed 
[4]. Parallelism can be added incrementally i.e., the 
sequential program evolves into a parallel program. Hence, 
we do not have to parallelize the whole program at once. A 
user finds the most time consuming loops in the code, and 
for each loop, the iterations are divided up amongst the 
available threads. In this section we will give some simple 
examples to demonstrate the major features of OpenMP.  

When parallelizing a loop in OpenMP, we may also use 
the schedule clause to perform different scheduling 
policies to effect how loop iterations are mapped onto 
threads. There are four scheduling policies available in the 
OpenMP specification. The static scheduling method deals 
out blocks of iterations of size “chunk” to each thread. In 
the dynamic scheduling method, each thread grabs 
“chunk” iterations off a queue until all iterations have been 
handled. In the guided scheduling policy, threads 
dynamically grab blocks of iterations (the size of the block 
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starts large and shrinks down to size “chunk” as the 
calculation proceeds). This helps to achieve a good load 
balance amongst the processors.  Finally, in the runtime 
scheduling method, schedule  and chunk size can either be 
set using the OMP_SCHEDULE environment variable or 
can be defined in the code for each loop. In our study we 
condsidered both static and dynamic scheduling 
approaches with varying chunk sizes. 
 
The toolkit can also be used to generate OpenMP directive 
code for shared memory machines [7] and was used here 
to parallelize the NP3 code. As with the message passing 
parallelization, there are a number of stages that the user 
needs to go through with the tools to generate the parallel 
code, but these are fewer (and somewhat easier) to 
perform.  
 
The serial FORTRAN code and Dependence analysis 
stages are the same as those described above for the 
message passing based process. The directive generation 
stage involves the structured examination of the loops 
within the code. The classification of loop types makes it 
easier to identify critical loops and also loops that can be 
potentially made parallel. The GUI directives browser 
allows the user to see at a glance and to inspect the 
different types of serial and parallel loops that have been 
identified. In conjunction with the other tools browsers 
such as the dependence graph, variable definition and 
transformation browsers, the user is able to iteratively 
refine the identification and placement of OpenMP 
directives. The generation of the OpenMP code is then 
carried out automatically. 

5 Experimental Results 
 
Two test sizes for a given test case were tried. Case 1 was 
defined by a 110x110x110 size problem and case 2 was 
defined by a 200x200x200 size problem. Results were run 
on an Origin 2000 populated with 64 300MHz processors 
and a total of 64Gb of memory. Each processor has a 
primary data cache of 32Kb, a primary instruction cache of 
32Kb and a secondary unified data/instruction cache of 
8Mb. The execution times and the speedups are shown in 
Figure 6 and Figure 7, respectively. 
 
Results for the message passing parallelization for 
110X110X110 case shows an interesting variation as the 
number of processors are increased. Between 2-16 
processors the better cache usage and relatively small 
communications give exceptional performance over the 
serial run. From about 20 processors onwards the 
communication cost becomes more significant and begins 
to outweigh the computation being carried out. The 
majority of communications are reduction operations. The 
cost of a reduction operation (implemented as a 
hypercube) is significant as the number of processors is 

increased. This cost starts to outweigh the volume of 
computation and the cache benefits (better with a small 
number of processors) being performed in the MPI 
parallelization. The larger test case shows better speedups 
and scalability.  
 
The MPI code also displays superlinear speedups when the 
number of processors used is between 4 and 16. This is 
probably caused by much reduced cache misses in the code 
due to much less memory requirement on each processor 
when we use multiple number of processors instead of a 
single processor.  
 
Several scheduling policies are used for OpenMP 
implementation. We found that the dynamic scheduling 
policy performs the best and hence its results are reported 
in figure 6 and 7. It is also clear that the OpenMP code 
performs better than the MPI code when the number of 
processors used is really large (e.g., 64). 
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Figure 6. Executions Times for the Two Test Cases. 
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Figure 7. Speedups for the Two Test Cases. 

6 Conclusions 
 
We have parallelized a sequential Fortran code, which is 
the major program for calculating the autocorrelation 
function of the impulse response for thin avalanche 
photodiodes, using both MPI and OpenMP. The 2-D 
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Fourtier transform of the autocorrelation function yields 
the power-spectral density, which, in turn, characterizes 
the fluctuations in the bandwidth. The code is parallelized 
with the aid of a toolkit, which is capable of accurately 
analysing dependencies in serial codes and generating 
portable parallel source codes in a semi-automatic and 
interactive way. Using this approach, many designs can be 
implemented quickly, and decisions can be made 
efficiently. Despite the apparent lack of parallelism present 
when performing a distributed memory parallelisation, 
running the executable on an SGI Origin 2000 
supercomputer indicates that the MPI code is still quite 
efficient and the OpenMP code is scalable up to 64 
processors on the SGI machine.  We expect that the 
scalability will be further improved once a larger problem 
size is used in the code. 
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