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ABSTRACT 
 

This paper reports on our experience with data structure 

design for systems having both multiple CPU cores and a 

programmable graphics card. We integrate our data 

structures into the game-like application OpenSteerDemo 

and compare our data structures on two pc-systems. One 

System has a relative fast single core CPU and slower 

GPU, whereas the other one uses a high-end GPU with a 

slower multi core CPU. We design two grid based data 

structures for effectively solving the k-nearest neighbor 

problem. The static grid uses grid cells of uniform size, 

whereas the dynamic grid does not rely on given grid 

cells, but creates them at runtime. The static grid is 

designed for fast data structure creation, whereas the 

dynamic grid is designed to provide high GPU simulation 

performance. The high performance is achieved by taking 

advantage of the GPU memory system at the cost of a 

more complex construction algorithm. Our experiments 

show that with a slower CPU the algorithm for creating 

the dynamic grid becomes the bottleneck and no overall 

performance increase is possible compared to the static 

grid. This also holds true when the simulation is run with 

a faster CPU and a slower GPU, even though the break-

even point is different. We experimented with data 

structure creation on the GPU, but the performance of the 

static grid is not feasible. The dynamic grid cannot be 

created on the GPU due to the lack of recursive function 

support. We provide a dynamic grid creation algorithm, 

which uses multiple CPU cores. This algorithm is slower 

than its sequential counterpart due to the parallelization 

overhead.  
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1. INTRODUCTION 
 

Computer games are one of the most compute intense 

applications for end user and their demand in processing 

power increases with every generation. Their current 

performance needs can hardly be satisfied with the slow 

increase in single core performance. There are two 

hardware development trends, which provide end-user 

systems with an additional increase in computing 

resources. Additional CPU core are added to a single chip, 

so the overall performance of the CPU is increasing at a 

high rate, even though when single core performance 

cannot be increased. Furthermore the programmability of 

the last generation of graphics processing units (GPUs) 

has reached a level at which they can be programmed 

without requiring any knowledge of graphics APIs like e.g. 

OpenGL and can thereby easily be used as an additional 

computing resource. The additional processing power for 

both multiple CPU cores and programmable GPUs cannot 

be achieve by recompiling the application, but require a 

change in both software architecture and algorithm design. 

 

This paper reports on our experience with the 

modification of a game-like application called 

OpenSteerDemo to use both multiple CPU cores and a 

programmable GPU. We outline problems and solutions 

that occur during development. OpenSteerDemo is written 

in C++ and is the demo application of the OpenSteer 

steering library. Steering refers to life-like navigation of 

autonomous characters, so-called agents used for instance 

in computer games [1]. Each agent follows a so called 

steering behavior, which is solely based on the local 

environment of the agent. OpenSteerDemo is used to 

simulate different kinds of steering behaviors; each of 

them is implemented in a separate plugin. The software 

design of OpenSteerDemo and its plugins is similar to that 

of games. It runs a main loop calculating the steering 

behaviors and drawing the agents to the screen. We 

worked with a plugin called Boids, which simulates 

flocking. Agents in this scenario compute their seven 

nearest neighbors’ and decide based on the neighbors’ 

positions where to move next. 

 

The original plugin relies on OpenMP [2] to support 

multiple CPU cores [3]. OpenMP is a thread based 

programming system using pragmas to allow easy work 
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distribution among threads. We continue to use OpenMP 

for our work as the pragmas can be easily integrated into 

existing applications and only require small changes of the 

existing code. 

 

We first develop a plugin utilizing the GPU for the 

simulation and then design two spatial data structures used 

at the GPU to increase performance. Both data structures 

partition the world into cuboidal parts (cells) and store 

which agents are within a cell. This information is used to 

speed up the neighbor search, which is the most time-

consuming part of the simulation. The first data structure 

– called static grid – relies on given grid cell with a fixed 

size, whereas the so called dynamic grid creates cells at 

runtime based on the current position of the agents. The 

static grid requires less CPU processing power than the 

dynamic grid, but provides slower simulation performance 

on the GPU. Choosing the best performing data structure 

depends on both the available CPU/GPU processing 

power and the number of simulated agents. Data structure 

creation becomes the performance bottleneck for all our 

test systems when reaching a certain number of agents. 

We also experimented with data structure creation with 

multiple CPU core or the GPU, but the results were not 

practical usable. 

 

We program the GPU with NVIDIAs CUDA [4] even 

though it only supports NVIDIA GPUs. The underlying 

concept of CUDA strongly resembles that of OpenCL [5], 

which is expected to support GPUs from different vendors, 

so our solution could easily be implemented with OpenCL 

as well. We cannot use OpenCL, as compilers are not 

available to public at the time of writing. 

 

The paper is organized as follows. First, Section 2 gives a 

brief overview of the used programming systems and 

describes the differences between GPUs and CPUs. The 

next Section (Section 3) gives an introduction to the 

architecture of OpenSteerDemo and the Boids plugin. 

Section 4 describes the parallelization approach of the 

existing multi core plugin and shows that a similar 

approach can be used with CUDA as well. The main part 

(Section 5) explains the design of spatial data structures. 

Section 6 gives a final performance overview of all 

developed plugins. Section 7 discusses related work, 

while Section 8 summarizes the paper and gives a brief 

outline of possible future work.   

 

2. PROGRAMMING SYSTEM  
 

We used OpenMP throughout our work to support 

multiple CPU cores. OpenMP is a programming system 

designed for shared memory architectures and uses 

threads. The OpenMP thread creation relies on a fixed 

fork-join-structure. Work that should be executed in 

parallel must be embedded within a parallel region. At the 

start of a parallel region a number of threads, which 

execute whatever code is embedded within the region, is 

created. At the end of the parallel region all created 

threads must be joined. Using a parallel region thereby 

imposes some overhead. Access to variables shared by 

multiple threads must be synchronized. OpenMP 3.0, 

which was released in May 2008, added support for non-

regular task parallelism with the so called task construct. 

When a thread reaches a task construct it may decide to 

directly execute the embedded code or may skip this code 

and put the task into a work queue, which is being worked 

at by all threads [2]. A detailed overview of OpenMP can 

be found in Chapman et al. [6]. 

 

GPUs are not designed to be used for sequential 

computations and consist of hundreds of processors for 

which one cannot provide reasonable performance. This 

concept is difference to that of CPUs and necessitates new 

programming systems. During our work we used 

NVIDIAs CUDA, which provides the power of the GPU 

in the C programming language. The CUDA information 

presented in the rest of this section is based on [7] if not 

explicitly stated otherwise.  

 

NVIDIAs CUDA is a general-purpose programming 

system only available for NVIDIA GPUs and was first 

publicly released in the end of 2007. By using CUDA, the 

GPU (called device) is exposed to the CPU (called host) 

as a co-processor with its own memory. The device 

executes a function (called kernel) in the SPMD model, 

which means that a user-configured number of threads run 

the same program on different data. Threads executing a 

kernel must be organized within so called thread blocks, 

which may consist of up to 512 threads; multiple thread 

blocks are organized in a grid, which may consist of up to 

2
32

 thread blocks. One thread block is always scheduled 

onto one so called multiprocessor of the device. One 

multiprocessor consists of 8 processors. The number of 

multiprocessors of a device depends on hardware used. 

The current maximum of multiprocessors on a single 

device is 30. Furthermore thread blocks are important for 

algorithm design, as only threads within a thread block 

may be synchronized and synchronization of threads 

within different thread blocks is not possible. NVIDIA 

suggests having at least 64 threads in one thread block and 

up to multiple thousands of thread blocks – and thereby 

more threads than the device has processors – to achieve 

high performance at the device. 

 

In contrast to main memory used by the CPU, its GPU 

counterpart – called global memory – is not cached and 

accessing it costs an order of magnitude more than most 
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calculations. For example, 32 threads require 400 - 600 

clock cycles for a read from global memory to complete, 

whereas an addition executed by the same amount of 

threads takes only 4 clock cycles. Due to the high cost for 

reading data from global memory, the device offers 

multiple ways to circumvent this overhead. The device 

uses an efficient thread scheduler that uses the massive 

parallelism approach of the device to hide the latency by 

removing threads that issued a global memory read from 

its processor and scheduling a thread that is not waiting 

for data. This is one of the reasons why the device 

requires more threads than there are processors available 

to achieve good performance. Another way of reducing 

global memory accesses is by using a special kind of 

memory called shared memory. Shared memory is fast 

memory located on the multiprocessors of the device itself 

and is shared by all threads of a thread block. Accessing 

shared memory cost about 4 clock cycles for 32 threads 

and may be used as a developer managed cache. Global 

memory usage cannot be circumvented, since this is the 

only kind of memory, which can be accessed by both host 

and device. Data that is stored in main memory must be 

copied from main memory to global memory by a CUDA 

memcopy like function call, if it should be accessed by the 

device. Results of a kernel must be stored in global 

memory and the CPU must issue a memcopy from global 

memory to main memory to use them. All transfers done 

by CUDA memcopy functions are DMA transfers and 

have a rather high cost of initialization and a rather low 

cost for transferring the data itself. See figure 1 for an 

overview of the CUDA memory model. We use only 

registers, shared memory and global memory in our 

implementations. 

 

 
 

Figure 1. CUDA Memory Model [7] 

We use CuPP [8] to ease the integration of CUDA into 

OpenSteerDemo. CuPP is a framework we explicitly 

designed to ease the integration of CUDA into C++ 

applications. It provides techniques freeing the developer 

from manually transferring data from main memory to 

global memory and vice versa. We use a STL vector like 

data structure provided by CuPP that makes the data 

stored automatically available at both host and device. 

The CuPP vector monitors if e.g. the device changes the 

data and then automatically updates the host data as soon 

as it is accessed. For example, if a CuPP vector is filled 

with data by the host and then only used by the device, 

only one memory transfer transferring the initial data to 

global memory will be issued. We use the CuPP vector for 

all data accessed by both host and device, if not explicitly 

stated otherwise. 

 

CuPP furthermore provides a technique called type 

transformations, which allows the developer to use two 

data representations for the same data on host and device. 

CuPP transforms the data from one representation into the 

other, when transferring from one memory domain into 

the other. The transformation is done by the CPU. We call 

the type used at the CPU hosttype, whereas the type used 

at the GPU devicetype. The type transformations are used 

in section 5.1 to provide the CPU with a data 

representation that can be created effectively, whereas the 

devicetype allows fast transfer to global memory. A 

detailed description of CuPP can be found in [9]. 

 

3. OpenSteerDemo ARCHITECTURE 
 

OpenSteer [10] is a C++ open-source library written by 

Reynolds in 2002. It provides simple steering behaviors 

and a basic agent implementation. OpenSteerDemo is the 

demo application of OpenSteer. The Boids plugin is a 

plugin for OpenSteerDemo, which simulates flocking [1] 

in a three dimensional world. All agents in the Boids 

plugin can move freely across a finite spherical world. If 

one agent leaves the world at one side, it is put back into 

the world at the diametric opposite of its original position. 

The calculation to determine where the agent wants to 

move next is only based on its current state – e.g. its speed 

– and its seven nearest neighbors. 

 

The following architecture of the Boids plugin was 

developed by Knafla and Leopold [3]. The simulation 

done by the Boids plugin can be divided in two stages. 

First the new state of all agents is calculated (called 

update stage) and then drawn to the screen (called draw 

stage). The update stage itself is again divided into two 

substages. The first substage is called simulation substage 

and includes the steering calculations and the search to 

identify the 7 nearest neighbor agents. The algorithm used 
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to find the 7 nearest neighbors of one agent is a fairly 

simple O(n) algorithm, which searches through all agents 

and returns the 7 nearest ones. The results of the 

simulation substage are vectors representing the direction 

and speed every agent wants to move. These vectors are 

used in the next substage called modification substage to 

update the position of every agent. The draw stage is 

executed after the modification substage and draws the 

new agent positions to screen. The design of 

OpenSteerDemo itself is similar to the ones of games. It 

runs a main loop executing first the update stage and then 

the draw stage. The main loop is part of the OpenGL 

Utility Toolkit (known as GLUT) and the stages are 

functions, which are called by GLUT. 

 

4. PARALLEL BOIDS PLUGIN 
 

Exposing the parallelism of the calculation of the Boids 

plugin to use multi core CPUs was already done by Knafla 

and Leopold [3]. The implementation uses OpenMP and 

splits all agents equally among the threads. A thread 

calculates both the simulation and modification substage 

for the agents associated with. In the simulation substage 

the agent’s position are read, whereas in the modification 

substage the positions are changed, so both substages 

must not be carried out in parallel. Barrier synchronization 

is used to prevent this. Knafla and Leopold demonstrate 

that their parallelization approach works well on multi 

core systems and provides an almost linear speedup 

regarding the update stage. The speedup of the overall 

application is not linear as the draw stage is still executed 

sequentially. 

 

The first version we developed to incorporate the GPU is 

based on the multi core plugin developed by Knafla and 

Leopold. We replaced the original used STL C++ vectors 

with CuPP vectors to free us from the need to manually 

transfer data from main memory to global memory or vice 

versa. Analysis of the memory transfers done by CuPP 

shows that data is only transferred when it is must be 

transferred – meaning when the data stored on the device 

or the host is out of date. A detailed description of how 

CuPP achieves this functionality can be found in [9]. The 

code running at the GPU is mostly just a copy and paste 

work of the original OpenSteer code, except for the 

modifications outlined next. 

 

Our parallelization approach at the device is similar to 

what Knafla and Leopold proposed for multi core CPUs 

and only differs in detail. Instead of having one thread 

calculate multiple agents, we use a separate thread for 

each agent and thereby can provide the device with a high 

number of threads. We use the GPU to calculate the 

complete update stage and use the CPU only for the draw 

stage. By using this approach, we only need to transfer the 

initial data to global memory at the beginning of the 

simulation and do not need to update the data at the GPU. 

The only data that must be transferred in every simulation 

step is a matrix representing the position and orientation 

of the agents, as this is used by the draw stage. 

 

Synchronization of all threads within a kernel is not 

possible, so we must use two kernels, one for each 

substage. There are no data dependencies between the 

agents in one substage, so we do not need to guarantee 

any order of how the threads are put into the thread blocks. 

During the neighbor search all threads must access the 

position of all agents. We use shared memory to cache 

position data. We load chunks of position data from 

global memory into shared memory, have all threads 

searches for neighbors in them and then continue with the 

next chunk. A detail description of this technique and 

technical details regarding the implementation can be 

found in [11]. We refer to this plugin as the basic plugin. 

The basic plugin can simulate about four times the number 

of simulation step per second compared to the OpenMP 

based one; it is possible to simulate about 10240 agents at 

24 frames per second (fps). 

 

5. NEIGHBOR SEARCH WITH SPATIAL 

DATASTRUCTURES 
 

The basic plugin does not use an efficient algorithm for 

the neighbor search as every agents needs to look at all 

other agents to find its neighbors. We now describe a 

spatial data structure called grid that we use to speed up 

neighbor search. 

 

A grid subdivides the world into small areas, which we 

call cells. Agents are assigned to cells based on their 

current position, so one cell contains all the agents that are 

within its range. A grid can be used to improve the 

neighbor search performance, as one agent does not need 

to look at all other agents to find its neighbors, but only at 

the agents stored in the cells within its search radius. The 

search inside a cell is done with the brute force approach 

described before. 

 

5.1. Static Grid 
 

We refer to our grid implementations shown in this 

section as static grid. The term static was chosen to 

distinct this solution to the dynamic grid demonstrated in 

the next section and indicates the way cells are created. 

The static grid subdivides the world in cubic cells all of 

them the same size. The number of cells cannot be 

changed after a grid has been created and is identical for 

each dimension, so the overall shape of the static grid is a 
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cube as well. The dynamic grid on the other hand creates 

cells with different sizes dynamically. 

 

We provide for two different implementation of the static 

grid – one creates the grid at the CPU and transfers it to 

global memory, whereas the other one directly uses the 

GPU to create the grid and thereby does not need to 

transfer any data to global memory. 

 

We use the CuPP type transformations to work with two 

different data representations for the CPU created static 

grid. The creation of the grid is done before the simulation 

substage is executed and redone for every simulation step 

– meaning we never update the grid, but clear and refill it 

with new data in the next simulation step. We choose this 

way for simplicity, however we do not expect updating an 

existing grid to be more efficient than creating a new one. 

 

The hosttype of the static grid is an aggregation of 

multiple C++ STL vectors, each vector represents a cell. 

Cells store the agent indexes of the agents within the range 

of a cell. All cell vectors are stored in another vector, so 

the grid itself is a vector of vectors storing agent 

references. The benefit of this approach is that adding 

elements to the grid is a O(1) operation. To add an 

element we must calculate the index of the cell vector and 

append the element. Appending an element to a C++ STL 

vector is guaranteed to be a O(1) operation, when no 

memory reallocation is done. To prevent unneeded 

memory reallocations, we clear the used C++ STL vectors 

instead of creating new ones. C++ vectors never free 

memory already allocated so after the agents are 

distributed equally throughout the world, the cell vectors 

hardly need to grow beyond their current size. 

 

Based on our previous experience described in [9] and 

that memory transfers to global memory are DMA 

transfers, we expect transferring one large memory block 

to be preferred over transferring multiple smaller memory 

blocks. We designed the devicetype to consist of only two 

independent memory blocks. One memory block contains 

the data of the cell vectors ordered by their index (called 

data memory block) and the other one (called index 

memory block) contains the indexes to find the cell 

vectors within the first memory block. 

 

Transferring the hosttype to global memory would require 

one memory transfer per cell, whereas the devicetype 

requires two memory transfers to transfer all data. 

Transforming the hosttype into the devicetype is a O(n) 

operation, as we have to copy all n agent-references stored 

in the hosttype into a new continuous memory block. 

Creating the index memory block is a O(k) operation, with 

k being the number of grid cells. Creating the devicetype 

is therefore a O(n+k) operation. 

Our GPU constructed static grid only uses the devicetype. 

The creation itself is split into three distinct steps. Each 

step is implemented in a separate kernel to guarantee 

synchronization between the steps. The first two kernels 

are used to build up the index structure, whereas the last 

kernel fills the data memory block. We describe the three 

steps of our algorithm next.  

 

Count The count kernel counts, the number of agents, 

which must be stored within each grid cell, and 

saves the results within the index memory block. 

The count kernel uses one thread per grid cell. The 

threads are distributed among multiple thread 

blocks. Each thread looks at all agents and counts 

the number of agents within its grid cell boundaries. 

We use shared memory as a cache for agent data. 

The results are written to the index memory block. 

 

Scan The scan kernel calculates the start position of each 

cell within the data memory block by issuing an 

exclusive scan on the index memory block. Scan is 

also known as parallel all-prefix-sums done on an 

array. Scan uses a binary associate operator ∆ with 

the identity I and an array of n elements as input 

 

[a0, a1, ..., an-1] 

 

and returns the array 

 

[I, a0, (a0 ∆ a1), ..., (a0 ∆ a1 ∆ ... ∆ an-2)] 

 

as a result. Our implementation is based on one 

provided by NVIDIA, which is discussed in [12]. 

Our kernel executes the all-prefix-sums on the 

index data using addition as the binary operator, so 

the index data at position 0 contains a 0, position 1 

contains the number of agents to be stored in the 

0th cell, and position 2 contains the number of 

agents to be stored in both the 1st and the 0th cell 

and so on. 

 

Fill The fill kernel fills the data memory block with the 

references to the agents. We use one thread per 

grid cell to store agent references in the data 

memory block. All threads scan through all agent 

positions and write the agents’ index to the data 

memory block, if the agent is within grid cell of the 

current thread. The position, to which the agent 

references should be written in the data memory 

block, is based on the values stored in the index 

data structure and the number of agents already 

belonging to the cell. We use shared memory as a 

cache. 
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Executing these 3 steps after one another creates the 

device type of the static grid on the device. The benefit of 

this solution is that there is no need to transfer any data to 

global memory for the simulation – except for the first 

simulation step, at which we transfer the initial data of the 

agents to the device. We only transfer the data required to 

issue the draw calls back to main memory. 

 

We can use shared memory as a cache in the first GPU 

based plugin, because all agents simulated by one thread 

block look at the same agents to find their neighbors. The 

plugins using the static grid cannot use shared memory as 

a cache for agent position data, as agents of a thread block 

are not guaranteed to have any common data requirements. 

Agents are put in thread blocks without any order, so the 

agents located in one grid cell are distributed throughout 

the CUDA grid. Reading from global memory is one of 

the most expensive operations on the device so we expect 

this to reduce performance of the static grid based 

implementation, however the profiling tools currently 

available do not allow us to explicitly measure the time 

required in chosen code regions. 

 

Introducing the static grid into our application increases 

the performance of the simulation by a factor up to 35 

compared to the plugin using no spatial data structure. 

Creating the grid on the device is slower than creating it 

on the CPU and transferring it to global memory, so using 

the GPU to create the static grid does not increase 

performance. Achieving good performance with the static 

grid requires finding an appropriate number of cells to be 

used by the simulated scenario. If a wrong number of cells 

is used, the performance may be reduced by up to 90%. A 

detailed overview of the performance can be found at 

section 6. 

 

5.2. Dynamic Grid 
 

The plugin using the static grid cannot use shared memory 

to cache global memory accesses, because the agents 

within one thread block have no common data 

requirements. We now propose a new mapping scheme to 

solve this issue and thereby increase performance in some 

scenarios. We continue to use one thread per agent, but 

map a group of agents close together to one thread block. 

A group of agents close together must look at roughly the 

same agents to find their neighbors, so we can use shared 

memory to store chunks of agent position data in shared 

memory. We use this mapping scheme for the simulation 

kernel, but continue to use the old scheme in the 

modification substage as there would be no benefit from 

using the new scheme. 

 

Combining the new mapping scheme with the static grid is 

complex. We could try to map one grid cell to one thread 

block, but the number of agents in one grid cell varies 

between 0 and n – with n being the number of agents 

currently simulated. This variant causes two problems. 

 

• The number of threads per thread block is fixed 

and limited to a maximum of 512. If we want to 

simulate more than 512 agents with one thread 

block, we must simulate multiple agents per 

thread, which is possible but requires a complete 

redesign of the kernel. 

• One grid cell could contain all agents. If this 

would be the case, the whole simulation is 

executed by one multiprocessor, which leads to a 

poor work balance at the device. 

 

We solve these problems by introducing a new data 

structure called dynamic grid. 

 

In contrast to the static grid discussed in the last section, 

the dynamic grid relies not on given grid cells, but creates 

them on the fly. A grid cell of the dynamic grid occupies a 

cuboidal part of the world. All grid cells can differ in size, 

but have a common maximum number of agents within its 

borders. We call the maximum number of agents in one 

grid cell max throughout the rest of this section. In our 

case, max is identical to the number of threads per thread 

block used to execute the simulation kernel. This 

restriction is required, as we map one grid cell to one 

thread block. All thread blocks simulating less than max 

agents, have idle threads. 

 

Despite allowing the usage of shared memory on the 

device, the dynamic grid also automatically adopts to the 

simulated scenario, so there is no more need to manually 

choose the number of grid cells. 

 

The internal data structure of the dynamic grid consists of 

two vectors. One vector – called data vector – stores 

tuples of agent positions and agent reference for all agents. 

The second vector – called cell vector – stores the 

dimension of the grid cell, its position and which agents 

are within the cell. The algorithm to create the dynamic 

grid guarantees that the agents of one cell are stored 

continuously within the data vector, so we only need to 

store the first and the last agent within the cell to identify 

all agents of the cell. The algorithm to create the dynamic 

grid is split into 2 steps. 

 

• Fill the data vector. 

• Recursively partition the data vector in a way 

that agents stored next to each other are close 

together in the simulated world. A partition with 

≤ max agents is a cell. 
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In the first step the data vector is filled in an unordered 

fashion with pairs consisting of both the agent position 

and a reference to the agent itself. 

 

The second step in our algorithm is similar to Quicksort. It 

recursively subdivides and partitions the data vector. The 

partitioning of the agents is done by one of three 

dimensions of the simulation. The algorithm to choose the 

dimension is based on practical experiments. The 

dimension is chosen at runtime by first calculating the 

distance from the center point of all agents in the current 

partition to the border of the space covered by the 

partition. Afterwards we partition alongside the dimension 

with the minimal distance to the border. The algorithm 

stops to subdivide a partition as soon as the number of 

agents is ≤ max. 

 

Creating the dynamic grid is done on the host, because the 

device does not support recursive functions. However, we 

can use multiple CPU cores to construct a dynamic grid in 

parallel. The parallel algorithm uses OpenMP tasks. Each 

recursive subdivision of a partition is a task, until the size 

of the partition reaches a certain threshold. We stop at a 

certain threshold to prevent the overhead generated by the 

OpenMP task construct for small tasks. Synchronization is 

only required to ensure that all tasks are completed and 

when a partition contains ≤ max agents. At this point we 

must take care that not multiple threads add a cell into the 

cell vector at the same time. 

 

The performance of the dynamic grid strongly depends on 

the used system. The dynamic grid requires more CPU 

processing power and less at the GPU. On a system with a 

rather slow CPU and a fast GPU the performance is 

decreased compared to the performance of the static grid, 

whereas on a system with a faster CPU and a slower GPU 

the performance is increased. The next section gives more 

details of the performance on both kinds of systems. 

 

Table 1. System Specification 

 

 System I System II 

CPU AMD Athlon 64 3700+ 

(2,4 GHz) 

2 x AMD Opteron 270 

(2 x 2 x 2 GHz) 

GPU GeForce 8800 GTS 

(640 MB) 

GeForce GTX 280 

(1 GB) 

 

 

6. PERFORMANCE 
 

The specifications of the systems used to benchmark our 

plugins can be found in Table 1. System I uses a faster 

single core CPU and a slower GPU compared to System II, 

which uses two dual core CPUs and one of the fastest 

GPUs currently available. 

 

When simulating 2
17 

agents on System I the static grid 

provides about 14 simulation steps per second, whereas 

the basic plugin can only simulate 0.4 fps per second. 

Experimenting with the static grid at System II shows that 

for up to 2
15

 agents the performance of System II is 

superior to that of System I; however with more agents the 

creation of the grid becomes more time consuming. 

System I provides about 1.4 times the performance of 

System II when simulating 2
16

 agents. 

 

Creating the static grid at the GPU is no feasible option 

for System I as both the count and fill kernel require more 

time than creating the grid at the CPU and transferring it 

to GPU memory. System II provides better performance, 

but both kernels are not faster than creating the data 

structure at the CPU and copy it to GPU memory. The 

GeForce GTX 280 of System II provides additional 

functionality like atomic operations, which may be used to 

design a faster algorithm at the cost of lost compatibility. 

 

The dynamic grid was designed to reduce the runtime of 

the kernel at the GPU at the cost of a high CPU utilization. 

The overall performance of the dynamic grid plugin is 

better than that of the static grid plugin for up to about 2
15

 

on System I. Experiments with the parallel creation of the 

grid show that this is not practical for the amount of 

agents that can be simulated in real time. On System II it 

takes about 0.08 seconds to create a dynamic grid for 

40960 agents in one simulation step with one thread. 

Running the code with 4 threads doubles the time required 

to construct the grid. The performance lost is resulted 

from the overhead of both the OpenMP task construct and 

creating and joining the threads for every simulation step. 

We cannot prevent the reoccurring creating and joining of 

the threads, as the simulation is implemented in functions 

that are repeatedly called by GLUT. 

 

7. RELATED WORK 
 

PSCrowd by Reynolds [13] simulates 15.000 agents in a 

similar scenario to the Boids plugin at the Playstation 3 

(PS3). He uses the PowerPC processor of the PS3 to 

construct the spatial data structure and the Synergistic 

Processor Units (SPUs) to execute the calculation for all 

agents. PSCrowd uses a technique called SkipThink, 

which only simulates a fraction of the agents in one 

simulation step, but still provides a reasonable overall 

result. In contrast to Reynolds we work on a different 

platform and concentrate on data structure design instead 

of the overall implementation of a crowd simulation. 

Lauterbach et al. [14] have developed two algorithms to 
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construct bounding box based algorithms on modern 

GPUs or other many core architectures. The performance 

of their implementation with CUDA is similar to that of 

CPU based implementation. Lauterbach et al. say that the 

performance of their algorithm should increase, as soon as 

GPUs offer higher flexibility e.g. recursive function calls 

or better synchronization primitives. The work of 

Lauterbach et al. is focused on ray tracing and relies on 

heuristics that may not work well in our scenario. 

 

8. CONCLUSION / FUTURE WORK 
 

In this paper we show our experience of how to take the 

full benefit of current end user systems with a focus on 

how to include programmable GPUs. Our work with 

different data structures shows that data structure design 

should not necessarily be designed for maximum 

performance when it is used, but also that data structure 

creation itself may easily become the performance 

bottleneck. This experience by itself is not novel, but if 

the GPU is used for calculations the break even point may 

come sooner than expected, especially with current high-

end GPU providing almost one teraflop of processing 

power. Using the GPU for data structure creation is not a 

good option when the first generation of CUDA capable 

GPUs should be supported. We expect our results to be 

valid for OpenCL as well, as it strongly reassembles the 

programming model of CUDA. However, as OpenCL is 

supposed to support a wide range of different hardware, 

the performance and break even point of all implemented 

may vary. Furthermore upcoming hardware, like Intel’s 

Larrabee [15], which is expected to provide reasonable 

sequential performance, may be used to construct the data 

structure. 

 

Future work on OpenSteerDemo could try to expose the 

functionality of the latest generation of GPUs to create the 

data structures and thereby free the CPU for other 

calculations. Furthermore experiments with a more 

flexible multi core programming system could possible be 

used to effectively create the data structure in parallel. It 

may also be useful to exploit the parallelism of being able 

to use the GPU and the CPU at the same time. 
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