
Employing Nested OpenMP for the Parallelization of Multi-Zone Computational
Fluid Dynamics Applications

Eduard Ayguade, Marc Gonzalez, Xavier Martorell
Centre Europeu de Parallelism de Barcelona, Computer Architecture Department (UPC)

cr. Jordi Girona 1-3, Modul D6,08034 – Barcelona, Spain
eduard@ac.upc.es

Gabriele Jost1

NAS Division, NASA Ames Research Center, Moffett Field, CA 94035-1000, USA
gjost@nas.nasa.gov

1 The author is an employee of Computer Sciences Corporation

Abstract

In this paper we describe the parallelization of the
multi-zone code versions of the NAS Parallel Benchmarks
employing multi-level OpenMP parallelism. For our study
we use the NanosCompiler, which supports nesting of
OpenMP directives and provides clauses to control the
grouping of threads, load balancing, and synchronization.
We report the benchmark results, compare the timings
with those of different hybrid parallelization paradigms
and discuss OpenMP implementation issues which effect
the performance of multi-level parallel applications.

1.Introduction

Parallel architectures are an instrumental tool for the
execution of compute intensive applications. Current pro-
gramming models support distributed memory, shared
memory, and clusters of shared memory architectures. An
example of the support of distributed memory program-
ming is MPI [12], which provides the functionality for
process communication and synchronization. OpenMP
[13] was introduced as an industrial standard for shared-
memory programming with directives. The directives sup-
port loop level parallelization. The OpenMP programming
paradigm provides ease of programming when developing
parallel applications. For applications exhibiting multiple
levels of parallelism the current most common program-
ming paradigms are hybrid approaches such as the
combination of MPI and OpenMP, or the MLP [15] model
developed at NASA Ames. However, there is not much
experience in the parallelization of applications with mul-
tiple levels of parallelism using OpenMP only.

The lack of compilers that are able to exploit further
parallelism inside a parallel region has been the main

cause of this problem, which has favored the practice of
combining several programming models to exploit multi-
ple levels of parallelism on a large number of processors.
The nesting of parallel constructs in OpenMP is a feature
that requires attention in future releases of OpenMP com-
pilers. Some research platforms, such as the OpenMP
NanosCompiler [4], have been developed to show the fea-
sibility of exploiting nested parallelism in OpenMP and to
serve as testbeds for new extensions in this direction. The
OpenMP NanosCompiler accepts Fortran-77 code contain-
ing OpenMP directives and generates plain Fortran-77
code with calls to the NthLib thread library [10]. NthLib
allows for multilevel parallel execution such that inner
parallel constructs are not being serialized. The
NanosCompiler programming model supports several ex-
tensions to the OpenMP standard allowing the user to
control the allocation of work to the participating threads.
By supporting nested OpenMP directives the NanosCom-
piler offers a convenient path to multilevel parallelism.

Multi-zone codes are a class of applications featuring
multiple levels of parallelism. They are commonly used in
large scale Computational Fluid Dynamics (CFD) applica-
tions. A single mesh is often not sufficient to describe a
complex domain and multiple meshes are used to cover it.
These meshes are referred to as zones which yield the
name multi-zone code. It is common to solve the flow
equations independently within each zone. After each it-
eration boundary values are exchanged between
neighboring zones. Solutions within each zone can be
computed independently, providing coarse grain parallel-
ism. Fine grain loop level parallelism can be exploited
within each zone. A set of benchmarks has recently been
released which captures this behavior and allows the
analysis and evaluation of multi-level programming para-
digms. These benchmarks are multi-zone versions of the

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

well known NAS Parallel Benchmarks [2]. The NPB
Multi-Zone (NPB-MZ) are described in [16]. A serial and
two hybrid parallel reference implementations of the NPB-
MZ are available. We have developed a nested OpenMP
version of the NPB-MZ and used the NanosCompiler to
evaluate the efficiency on several hardware platforms.

The rest of the paper is structured as follows: Section 2
summarizes the NanosCompiler extensions to the
OpenMP standard. Section 3 describes the implementation
of the NPB-MZ. Section 4 presents timing results for the
benchmark codes. Related work is discussed in Section 5
and the conclusions are presented in Section 6.

2.The NanosCompiler

OpenMP provides a fork-and-join execution model in
which a program begins execution as a single process or
thread. This thread executes sequentially until a
PARALLEL construct is found. At this time, the thread
creates a team of threads and it becomes its master thread.
All threads execute the statements lexically enclosed by
the parallel construct. Work-sharing constructs (DO,
SECTIONS and SINGLE) are provided to divide the exe-
cution of the enclosed code region among the members of
a team. All threads are independent and may synchronize
at the end of each work-sharing construct or at specific
points (specified by the BARRIER directive). Exclusive
execution mode is also possible through the definition of
CRITICAL and ORDERED regions. If a thread in a team
encounters a new PARALLEL construct, it creates a new
team and it becomes its master thread. OpenMP v2.0 pro-
vides the NUM_THREADS clause to restrict the number of
threads that compose the team.

The NanosCompiler extension to OpenMP to support
multilevel parallelization is based on the concept of thread
groups. A group of threads is composed of a subset of the
total number of threads available in the team to run a par-
allel construct. In a parallel construct, the programmer
may define the number of groups and the composition of
each one. When a PARALLEL construct defining groups is
encountered, a new team of threads is created. The new
team is composed of as many threads as the number of
groups. The rest of the threads are used to support the exe-
cution of nested parallel constructs. In other words, the
definition of groups establishes an allocation strategy for
the inner levels of parallelism. To define groups of
threads, the NanosCompiler supports the GROUPS clause
extension to the PARALLEL directive.

C$OMP PARALLEL GROUPS (gspec)

Different formats for the GROUPS clause argument
gspec are allowed [5]. The simplest specifies the num-
ber of groups and performs an equal partition of the total
number of threads to the groups:

gspec = ngroups

The argument ngroups specifies the number of groups to
be defined. This format assumes that work is well bal-
anced among groups and therefore all of them receive the
same number of threads to exploit inner levels of parallel-
ism. At runtime, the composition of each group is
determined by equally distributing the available threads
among the groups. Another possible format is:

gspec = ngroups, weight

In this case, the user specifies the number of groups
(ngroups) and an integer vector (weight) indicating
the relative weight of the computation that each group has
to perform. From this information and the number of
threads available in the team, the threads are allocated to
the groups at runtime. The weight vector is allocated by
the user and its values are computed from information
available within the application itself (for instance itera-
tion space or computational complexity).

3.The Multi-Zone Versions of the NAS Paral-
lel Benchmarks

The purpose of the NPB-MZ is to capture the multiple
levels of parallelism inherent in many full scale CFD ap-
plications. Multi-zone versions of the NAS Parallel
Benchmarks LU, BT, and SP were developed by dividing
the discretization mesh into a two-dimensional tiling of
three-dimensional zones. Within all zones the LU, BT, and
SP problems are solved to advance the time-dependent
solution. The same kernel solvers are used in the multi-
zone codes as in the single-zone codes. Exchange of
boundary values takes place after each time step. A de-
tailed discussion of the NPB-MZ can be found in [16].
Figure 1.a shows the general structure for all benchmarks.
We will refer to the multi-zone versions of the LU, BT,
and SP benchmarks as LU-MZ, BT-MZ, and SP-MZ.

3.1. The Hybrid Implementations

The source code distribution of the NPB-MZ includes
two different hybrid implementations, as shown in Figure
1.b. The first hybrid implementation is based on using
MPI for the coarse grained parallelization on zone-level
and OpenMP for fine grained loop level parallelism within
each of the zones. The MPI programming paradigm as-
sumes a private address space for each process. Data is
transferred by explicitly exchanging messages via calls to
the MPI library. This model was originally designed for
distributed memory architectures but is also suitable for
shared memory systems. In the NPB-MZ MPI/OpenMP
implementation the number of processes is defined at
compile time. Each process is assigned a number of zones
and spawns a number of OpenMP threads in order to

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

achieve a balanced load. Data is communicated at the be-
ginning of the time step loop using MPI. There is no
communication during the solution of the LU, BT, and SP
problems within one zone. The OpenMP parallelization is
similar to the single-zone versions as described in [6].

The second hybrid implementation that is part of the
NPB-MZ is based on the MLP programming model devel-
oped by Taft [15] at NASA Ames Research Center. The
MLP programming model is similar to MPI/OpenMP,
using a mix of coarse grain process level parallelization
and loop level OpenMP parallelization. As it is the case
with MPI, a private address space is assumed for each
process. The MLP approach was developed for ccNUMA
architectures and explicitly takes advantage of the avail-
ability of shared memory. A shared memory arena which
is accessible by all processes is required. Communication
is done by reading from and writing to the shared memory
arena. Libraries supporting the MLP paradigm usually
provide routines for process creation, shared memory allo-
cation, and process synchronization. Details about the

process level parallelization in the MLP paradigm and
corresponding library support can be found in [7]. The
MLP implementation of the NPB-MZ is very similar to the
MPI/OpenMP implementation. Communication is handled
by copying the boundary values to and from the shared
memory arena. The OpenMP parallelization is identical in
both versions.

Both hybrid implementations apply a load balancing
algorithm to determine the number of threads that each
process spawns. A detailed description of the reference
implementations, which are part of the benchmark distri-
bution, can be found in [8].

3.2. The Nested OpenMP Implementations

The nested OpenMP implementation is currently not
part of the NPB-MZ distribution. It has been developed by
the authors using the thread group extensions mentioned
before. This implementation combines a coarse grained
parallelization (inter-zone) and parallelization within the
zones (intra-zone), but employing OpenMP on both levels.
The intra-zone parallelization is identical in the hybrid and
the nested OpenMP implementations. The inter-zone par-
allelism is implemented by creating groups of threads and
by assigning one or more zones to a thread group. The
whole address space is shared by default among the
threads working at both levels of parallelism. Data ex-
change at the zone boundaries is done in parallel by
reading from and writing to the original application data
structures. There is no need for using any special primi-
tives such as MPI communication routines or MLP
synchronization routines. This implementation just re-
quires the addition of less than half a dozen OpenMP
directives in each application. The same function that
maps zones to MPI or MLP processes is used to map
zones to thread groups. The mapping function generates
two vectors that indicate which group executes each zone
(pzone_id) and how many threads are allocated to each
group (pn_thr). Since zones are not mapped in a con-
secutive way and the number of zones assigned to each
group may be different, a couple of statements in the par-
allel regions at the outer level to control the execution of
zones had to be added. The number of groups
(num_grps) is controlled by an environment variable.
Figure 2 shows an excerpt of the parallelization for the
LU-MZ benchmark. The first part shows the parallelism at
the inter-zone level. The intra-zone parallelization occurs
in routine ssor, which is identical to the parallelization
used in the other two strategies (MPI+OpenMP and MLP).

(a)

(b)
Figure 1: a) General structure for NPB-MZ and
b) parallelization strategies

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

At this point the reader may want to know why there
is a necessity for extending OpenMP to support thread
groups. The current specification for OpenMP includes the
NUM_THREADS clause which tells the runtime envi-
ronment the number of threads to be used in the execution
of the PARALLEL region. With this extension it is possi-
ble to implement a nested parallel strategy similar to the
one described above. However, it requires that the pro-
grammer explicitly controls the allocation of threads at
each level of parallelism, as shown in Figure 3 (equivalent
to Figure 2). This implies that the vectors that control the
allocation of zones to groups are visible to the thread that
is going to spawn the inner level of parallelism (common
block inside routine ssor).

Two problems are worth mentioning about this im-
plementation. The first one is the lack of modularity of the
approach. For example, now the programmer has coded in
the application itself the fact that this routine is called
from inside a parallel region; if called from a serial part of

the application the behavior would not be appropriate. In
addition, if more levels of parallelism were available, cod-
ing the allocation of threads would be painful using
NUM_THREADS. The version employing the
NanosCompiler GROUPS clause extension is more modu-
lar since the context is implicit in the OpenMP runtime
support and the code is valid in all possible situations. The
second problem is related to the usual implementation of
nested parallelism in OpenMP. It is common practice to
implement a pool of threads, so that when a thread arrives
at a PARALLEL region the desired number of threads is
taken from the pool. In the example depicted in Figure 3
this would be the number specified by the
NUM_THREADS clause. This is the case for example in
the runtime system of the IBM XL compiler [17]. How-
ever, there is no guarantee that a particular thread is
always executed on the same processor, so that data local-
ity is not necessarily exploited. The definition of thread
groups establishes an allocation strategy for the inner lev-

 do step = 1, itmax
 call exch_qbc(u, qbc, nx,…)

C$OMP PARALLEL
C$OMP& PRIVATE(iam, zone,…)
C$OMP& GROUPS(num_grps, pn_thr)

 iam = omp_get_thread_num()
 do zone = 1, num_zones
 if (iam .eq. pzone_id(zone)) then
 call ssor(u,rsd,…)

 end if
 end do
C$OMP END PARALLEL
 end do
 ...

 subroutine ssor(u, rsd,…)
 ...

!$OMP PARALLEL DEFAULT(SHARED)
!$OMP& PRIVATE(m,i,j,k,…)

 do k = 2, nz-1
!$OMP DO
 do j = 2, ny-1
 do i = 2, nx-1
 do m = 1, 5

 rsd(m,i,j,k)=dt*rsd(m,i,j,k)
 end do
 end do
 end do
!$OMP END DO nowait
 end do
 ...
!$OMP END PARALLEL
 ...

Figure 2: Parallelization of LU-MZ using the
Nanos GROUPS clause

 do step = 1, itmax
 call exch_qbc(u, qbc, nx,…)
C$OMP PARALLEL
C$OMP& PRIVATE(iam, zone,…)
C$OMP NUM_THREADS (num_grps)
 iam = omp_get_thread_num()
 do zone = 1, num_zones
 if (iam .eq. pzone_id(zone)) then

 call ssor(u,rsd,…)
 end if
 end do
C$OMP END PARALLEL
 end do
 ...

 subroutine ssor(u, rsd,…)
 ...
integer pn_thr (num_zones)

 common /thr_mapping/ pn_thr

!$OMP PARALLEL DEFAULT(SHARED)
!$OMP& PRIVATE(m,i,j,k,…)
!$OMP& NUM_THREADS(pn_thr
 (omp_get_thread_num()))
 do k = 2, nz-1
!$OMP DO
 do j = 2, ny-1
 do i = 2, nx-1
 do m = 1, 5
 rsd(m,i,j,k)=dt*rsd(m,i,j,k)
 end do
 end do
 end do
!$OMP END DO nowait
 end do
 ...
!$OMP END PARALLEL
 ...

Figure 3: Parallelization of LU-MZ using the
NUM_THREADS clause.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

els of parallelism, so that multiple instances of the same
PARALLEL region or different regions with the same
GROUPS definition will always use the same
thread/processor mapping. In other words, the definition of
GROUPS is more static than the definition of
NUM_THREADS, which we consider more dynamic.

4.Timing Results

We ran the BT-MZ, LU-MZ, and SP-MZ benchmarks
of problem classes W, A, and B. The aggregate sizes for
all benchmarks are:

• Class W: 64x64x8 grid points
• Class A: 128x128x16 grid points
• Class B: 304x208x17 grid points

Our tests were executed on two hardware platforms: an
SGI Origin 3000 located at the NASA Ames Research
Center and one frame of an IBM Regatta p690 located at
the FZ Juelich Center in Germany.

The SGI Origin 3000 is a ccNUMA architecture with 4
CPUs per node. The CPUs are of type R12K with a clock
rate of 400 MHz, 2 GB of local memory per node, and 8
MB of L2 cache. The peak performance of each CPU is
0.8 Gigaflops. The MLP implementations use the SMPlib
library as described in [7]. The MIPSpro 7.4 Fortran Com-
piler [11] is used to compile the hybrid codes and the
NanosCompiler for the nested OpenMP code. The com-
piler options –mp –O3 and –64 are set in both cases.

The IBM Regatta frame has 32 processors of type
Power4+, running at 1.7 GHz. The main memory is 64
MB and the cache hierarchy has three levels: internal L1
cache with 64 KB instruction and 32 KB data (per proces-
sor), shared L2 cache with 1.5 MB (per chip = 2
processors), and shared L3 cache with 512 MB. The IBM
XL Fortran compiler with the option -qsmp=omp is used
to compile the hybrid MPI/OpenMP codes. The
NanosCompiler supporting the GROUPS extension is used
for the nested OpenMP codes. On the IBM platform there
was no library support for the MLP programming model
available. The native IBM compiler supports nested paral-
lelism. Some tests were run employing the native IBM
compiler together with the NUM_THREADS clause (as
shown in Figure 3) to achieve nested parallelism. The op-
tion -qsmp=omp:nested_par was set in this case to compile
the nested OpenMP version. The option -O3 was used for
all cases. In the charts we use the following notation to
refer to the different versions:

• MPI+OpenMP: Hybrid version implemented
with MPI and OpenMP.

• MLP: Hybrid version implemented using the
MLP approach.

• NTH: Nested OpenMP implementation using the
NanosCompiler and the GROUPS clause.

• IBM Nested: Nested OpenMP implementation us-
ing the native IBM compiler and the
NUM_THREADS clause.

• NPxNT: Number of CPUs expressed as number of
processes (NP) times number of threads (NT). For
the nested OpenMP code NP refers to the number
of thread groups or threads used at the outer paral-
lel level.

4.1. The BT-MZ Benchmark

The number of zones grows with the problem size. The
number of zones is 4x4 for Class W and A, and 8x8 for
Class B. The sizes of the zones vary widely. The ratio of
the largest to the smallest zone is approximately 20. In
order to achieve a good load balance a different number of
threads has to be assigned to each group in the nested
OpenMP codes. The same is true for the number of threads
that are spawned by the processes in the hybrid codes.

Figure 4: Timings for 20 iterations of BT-MZ

Figure 4 shows results for the hybrid MPI/OpenMP ver-
sion and the nested OpenMP version compiled with the
IBM native compiler and runtime system on the IBM Re-
gatta. The timings show that the current implementation of
nested parallelism in the native IBM system is not achiev-
ing the scalability of the hybrid version. We suspect that
the implementation of nested parallelism using a pool of
threads does not exploit data locality. Timings for different
allocations of threads to the outer and inner levels are
shown in Figure 5. Although the runtime environment may
ensure that the outer level of parallelism always uses the
same kernel thread to execute each OpenMP thread, this is
not guaranteed at the inner level. At the inner level, the
threads that compose each team are dynamically selected
from the pool, so there is no guarantee that the same ker-
nel threads are used in all parallel regions. Notice that the
performance of the IBM Nested implementation is best
when all threads are used on the inner level because in this
case the same threads are always used to execute the inner

BT-MZ Class A Timings, IBM Regatta

0

1

2

3

4

5

6

7

2 4 8 16 32

Number of CPUs

T
im

e
in

 s
ec

on
ds MPI/OpenMP

IBM Nested

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

level of parallelism. The hybrid MPI/OpenMP version
behave better when nested parallelism is used, taking ad-
vantage of load balancing on the inner level of parallelism
and data locality.

Figure 5: Timings for 20 iterations of BT-MZ with
16 processors

Figure 6 shows the speedup achieved by the hybrid
MPI/OpenMP and the NTH versions for BT-MZ class A
on the IBM Regatta system. Although the performance of
the NTH version is slightly worse than the performance of
the hybrid MPI/OpenMP version, the behavior is the same.
The performance is worse due to the current implementa-
tion of the runtime system supporting the NanosCompiler.

The MIPSpro compiler and runtime environment on
the SGI Origin do not support nested parallelism. The exe-
cution times of the hybrid MPI/OpenMP and the NTH
versions are shown in Figure 7. Due to load balancing, the
number of threads per process and the number of threads
per group varies. We indicate the average number of
threads per process or group in the timings charts. The

performance of the nested OpenMP implementation is
nearly identical to that of the hybrid codes. The thread
groups implementation in the Nanos compiler and runtime
environment guarantee the same mapping of kernel
threads to OpenMP threads in all parallel regions, both at
the outer and inner levels. This improves memory behav-
ior and results in performance levels that are comparable
to the hybrid versions. This demonstrates the importance
of having these extensions in OpenMP and provides an
efficient implementation for nested parallelism in
OpenMP.

Figure 8 shows the impact of different combinations of
processes or groups and threads. The timings are shown
for the problem Class B and 128 CPUs. The problem Class
B has 64 zones. Using 64 processes or 64 thread groups
did not allow the most efficient load balancing. The best
load balancing was achieved using 16 processes in the
hybrid codes and 16 groups in the NanosCompiler nested
OpenMP code. Since the number of threads per process or
group varies, we report the average number of threads per
process.

Figure 6: Timings for the complete execution of BT-MZ class A on the IBM Regatta system

BT-MZ Timings, SGI Origin 3000

0
1
2
3
4

4x
1(W

)

4x
4

(W
)

16
x4

(W
)

4x
4 (

A)

4x
16

 (A
)

8x
16

 (A
)

16
x4

(B
)

16
x8

 (B
)

Number of CPUs (Benchmark Class)
T

im
e

in
 S

ec
on

ds M PI/OpenM P
M LP

NTH

Figure 7: Timings for 20 iterations of BT-MZ

BT-MZ Class A on IBM Regatta, 16 CPUs

0
0,5

1
1,5

2
2,5

3
3,5

4

1x16 2x8 4x4 8x2 16x1

Number of CPUs (NPxNT)

T
im

e
in

 S
ec

on
ds MPI/OpenMP

IBM Nested

BT-MZ Class A Timings on IBM Regatta

0
10
20
30

40
50
60
70

1x
2

2x
1

1x
4

2x
2

4x
1

1x
8

2x
4

4x
2

8x
1

1x
16 2x
8

4x
4

8x
2

16
x1

1x
32

2x
16 4x
8

8x
4

16
x2

Number of CPUs (NPxNT)

T
im

e
in

 S
ec

o
n

d
s

MPI/OpenMP

NTH

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Figure 8: Timings for 20 iterations of BT-MZ with
128 processors

 To demonstrate the scalability of the different imple-
mentations on the SGI Origin 3000 the Gigaflop rate as
reported by the benchmark is shown in Figure 9.

Figure 9: Performance of BT-MZ in Gigaflops
when increasing the number of processors

The Class B performance for the number of processes
or thread groups that produced the best results is reported.
This number was the same for all three implementations.
This is not surprising since the load balancing issue is the
same in all versions. The three implementations show al-
most identical scalability, achieving about 28 Gigaflops/s
for 128 CPUs.

To illustrate the load balancing issue in this bench-
mark, we show timeline views of time spent in useful
calculations for different numbers of thread groups in Fig-
ure 10.

4.2. The SP-MZ Benchmark

 Here the mesh is partitioned such that zones are iden-
tical in size. The number of zones grows with the problem
size. The number of zones is 4x4 for Class W and A, and
8x8 for Class B. The computations are naturally load bal-
anced on the coarse level. Timings for the different
implementations and different benchmark classes on the
SGI Origin are shown in Figure 11. As before, we report
the timings for the best combinations of processes or
groups and threads.

Figure 11: Timings for 20 iterations of SP-MZ

Figure 10: Timeline views of two BT-MZ Class B runs on 64 threads. Dark shading indicates useful
computation time, light shading indicates idle time. The views show the timeline for 3 iterations.
The left image results from a run using 64 thread groups, the right image from a run using 16
thread groups. The large amount of useful computation time in the right image demonstrates a
well balanced workload. The time scale in the right view is about 1/3 of the one in the left which
demonstrates the high efficiency

BT-MZ Class B Timings, SGI Origin, 128 CPUs

0

0.5

1

1.5

2

2.5

3

3.5

64x2 32x4 16x8 8x16

Number of CPUs (NPxNT)

T
im

e
in

 s
ec

on
ds

MPI/OpenMP
MLP
NTH

BT-MZ Class B Performance, SGI Origin 3000

0

5

10

15

20

25

30

35

4x1 16x1 16x4 16x8

Number of CPUs (NPxNT)

T
ot

al
 G

ig
af

lo
ps

/s MPI/OpenMP

MLP
NTH

SP-MZ Timings, SGI Origin 3000

0

0.2

0.4

0.6

0.8

1

4x
1(

W
)

16
x1

(W
)

16
x4

(W
)

16
x1

(A
)

16
x2

(A
)

16
x4

(A
)

64
x1

(B
)

64
x2

(B
)

Number of CPUs (NPxNT)

T
im

e
in

 s
ec

on
ds MPI/OpenMP

MLP
NTH

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

The hybrid implementations achieve the best performance
when employing a maximum number of processes on the
coarse level. The use of multiple threads per process is
only advantageous when the number of CPUs exceeds the
number of zones. The situation is similar for the nested
OpenMP code: It is best to employ groups consisting of
only 1 thread, unless the number of CPUs exceeds the
number of zones. As an example we show in Figure 12 the
timings for problem Class B on different process or group
and thread combinations.

Figure 12: Timings for 20 iterations of SP-MZ

On the IBM Regatta is was advantageous to use mul-
tiple threads per process or group for the Class A
benchmark. The timings for both MPI/OpenMP and NTH
are comparable, as shown in Figure 13.

4.3. The LU-MZ Benchmark

In this case the number of zones is 4x4 for all problem
sizes. The overall mesh is partitioned such that the zones
are identical in size. This makes load balancing easy. The
coarse grain parallelism in the hybrid codes is limited to

16 processes due to the structure of the benchmark. Paral-
lelism beyond that has to be obtained at the fine grained
level. In the nested OpenMP code the number of thread
groups is limited to 16.

The timings for the SGI Origin are shown in Figure 14.
As before, we show the combinations of processes or
groups and threads that yielded the best results for the hy-
brid codes and the NanosCompiler nested OpenMP code,
respectively. The best timings were achieved by the same
combinations in the hybrid and the nested OpenMP codes.
In the case of LU-MZ the nested OpenMP code does not
achieve the performance of the hybrid implementations.

LU-MZ Timings, SGI Origin 3000

0
0,5

1
1,5

2
2,5

3
3,5

4x
1(

w)

16
X1

(w
)

16
x4

(w
)

16
x1

(A
)

16
x4

(A
)

16
x4

 (B
)

16
x8

 (B
)

Number of CPUs NPxNT (Benchmark Class)

T
im

e
in

S
ec

on
ds

MPI/ OpenMP

MLP

NTH

Figure 14: Timings for 20 iterations of LU-MZ

The major difference between LU-MZ and the two pre-
vious benchmark implementations is that both, BT-MZ
and SP-MZ perform one time step before timing of the
actual iteration loop. This ensures efficient data placement
in case of a first touch data placement policy. For LU-MZ
this is not the case. While it does not effect the hybrid
codes, the lack of touching the data before the start of the
iteration yields to a dramatic increase in time for the first
iteration in the nested OpenMP code, which had a signifi-
cant impact due to the fact that we were only timing the

SP-MZ Timings, Class B, SGI Origin 3000,
128 CPUs

0

0,5

1

1,5

2

64x2 32x4 16x8 8x16

Number of CPUs (NPxNT)

T
im

e
in

 s
ec

on
ds

MPI/OpenMP

MLP

NTH

SP-MZ Class A Timings on IBM Regatta

0
10
20
30
40
50
60
70
80

1x
2

2x
1

1x
4

2x
2

4x
1

1x
8

2x
4

4x
2

8x
1

1x
16 2x

8
4x

4
8x

2
16

x1
1x

32
2x

16 4x
8

8x
4

16
x2

Number of CPUs (NPxNT)

Ti
m

e
in

S
ec

on
ds MPI/OpenMP

NTH

Figure 13: Timings for the complete execution of SP-MZ class A on the IBM Regatta system

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

first 20 iterations. We have modified the nested OpenMP
code to include an iteration to touch the data appropriately,
analogous to BT-MZ and SP-MZ. Figure 15 shows the
scalability of the nested OpenMP and the MPI/OpenMP
code for problem size of Class B. The figure includes the
performance achieved by the modified code that touches
data before the start of the iteration: column NTH (touch
data).

LU-MZ Class B Performance,
SGI Origin 3000

0

5

10

15

20

25

1x1 4x1 8x1 16x1 16x2 16x4 16x8

Number of CPUs (NPxNT)

G
ig

af
lo

ps
/s

MPI/OpenMP
NTH
NTH (touch data)

Figure 15: Performance of LU-MZ in Gigaflops

The timings for LU-MZ Class A on the IBM Regatta
are shown in Figure 16. Due to the small number of CPUs
on a single node, the scalability problem observed on the
SGI Origin does not show. Hybrid and nested parallelism
are advantageous for more than 16 CPUs.

5. Related Work

Most current commercial and research compilers
mainly support the exploitation of a single level of paral-
lelism and special cases of nested parallelism (e.g. double
perfectly nested loops as in the SGI MIPSpro compiler
[11]). The KAI/Intel compiler offers, through a set of ex-

tensions to OpenMP, work queues and an interface for
inserting application tasks before execution (WorkQueue
proposal [14]). The KAI/Intel proposal mainly targets dy-
namic work generation schemes (recursions and loops
with unknown loop bounds). In this proposal, there is no
explicit (at the user or compiler level) control over the
allocation of threads so they do not support the logical
clustering of threads in the multilevel structure, which we
think is necessary to allow good work distribution and data
locality exploitation. The IBM XL [17] Fortran compiler
supports nested parallelism. The execution environment
provides a pool of threads from which any parallel region
can take some for parallel execution. The user has the pos-
sibility to limit the number of threads on the outer level or
parallelism by using the NUM_THREADS clause in the
PARALLEL directive. We have discussed the problems
that may result from this approach in subsection 3.2.

There are a number of papers reporting experiences in
combining multiple programming paradigms to exploit
multiple levels of parallelism (e. g. [15]). Experiences on
employing multiple level of parallelism in OpenMP are
reported in [1]. Implementation of nested parallelism by
means of controlling the allocation of processors to tasks
in a single-level parallelism environment is discussed in
[3]. The authors show the improvement due to nested par-
allelization. The performance of code containing
automatically generated nested OpenMP directives is dis-
cussed in [9].

6. Conclusions and Future Work

A nested OpenMP implementation of the multi-zone
versions of the NAS Parallel Benchmarks was developed.
The nested OpenMP code makes use of the NanosCom-
piler extensions to OpenMP, allowing the creation of
thread groups and load-balancing among the thread

LU-MZ Class A Timings on IBM Regatta

0

10
20

30

40

50
60

70

1x
2

2x
1

1x
4

2x
2

4x
1

1x
8

2x
4

4x
2

8x
1

1x
16 2x

8
4x

4
8x

2
16

x1
1x

32
2x

16 4x
8

8x
4

16
x2

Number of CPUs (NPxNT)

T
im

e
in

S
ec

o
nd

s MPI/OpenMP

NTH

 Figure 16: Timings for the complete execution of LU-MZ on the IBM Regatta system

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

groups. The NanosCompiler was then used to evaluate the
performance of the nested OpenMP code on two different
hardware platforms. The performance was compared to
corresponding hybrid implementations of the benchmarks
using the MPI/OpenMP and the MLP programming para-
digms. For all three benchmarks the performance of the
OpenMP code was comparable to that of the hybrid im-
plementations. On the SGI Origin the LU-MZ benchmark
required touching the data before the start of the iteration
in order to achieve the performance of the hybrid codes.

The first conclusion of the study is that the OpenMP
paradigm allowed a very rapid development of the parallel
code. The second observation is that the thread groups
implementation in the NanosCompiler and runtime system
was crucial to obtaining good performance. The reason is
that the implementation guarantees the same mapping of
kernel threads to OpenMP threads in all parallel regions,
both at the outer and inner levels. This improves memory
access time and results in performance levels that are
comparable to the hybrid versions. Another important fea-
ture of the NanosCompiler is the possibility to assign
weights to the thread groups in order to achieve a well
balanced work load distribution.

We plan to conduct further case studies to compare the
performance of parallelization based on nested OpenMP
directives with hybrid and pure message passing parallel-
ism. We will consider other hardware platforms, larger
benchmark classes, and full-scale applications.

Acknowledgments

This work was supported by NASA contract DTTS59-99-
D-00437/A61812D with Computer Sciences Corpora-
tion/AMTI, by the CEPBA-IBM Research Institute
(CIRI), by the Spanish Ministry of Science and Technol-
ogy of Spain under contract TIC2001-0995-C02-01 and by
the FET European Project POP. We thank Jesús Labarta
for his comments on the experiments shown in this paper
and Bernd Mohr and FZ Juelich Center in Germany for
providing the access to the IBM platform.

References

[1] E. Ayguade, X. Martorell, J. Labarta, M. Gonzalez
and N. Navarro, Exploiting Multiple Levels of Paral-
lelism in OpenMP: A Case Study, Proc. Of the 1999
International Conference on Parallel Processing,
Ajzu, Japan, September 1999.

[2] D. Bailey, T. Harris, W. Saphir, R. Van der
Wijngaart, A. Woo, and M. Yarrow, The NAS Paral-
lel Benchmarks 2.0, RNR-95-020, NASA Ames
Research Center, 1995.

[3] R. Blikberg and T. Sorevik. Nested Parallelism: Al-
location of Processors to Tasks and OpenMP
Implementation. 2nd European Workshop on
OpenMP. Edinburgh. September 2000.

[4] M. Gonzalez, E. Ayguadé, X. Martorell, J. Labarta,
N. Navarro and J. Oliver. NanosCompiler: Support-
ing Flexible Multilevel Parallelism in OpenMP.
Concurrency: Practice and Experience. Special issue
on OpenMP. vol. 12, no. 12. pp. 1205-1218. October
2000.

[5] M. Gonzalez, J. Oliver, X. Martorell, E. Ayguadé, J.
Labarta and N. Navarro. OpenMP Extensions for
Thread Groups and Their Run-time Support. 13th In-
ternational Workshop on Languages and Compilers
for Parallel Computing (LCPC’2000), New York
(USA). pp. 317-331. August, 2000.

[6] H. Jin, M. Frumkin, and J. Yan, The OpenMP Im-
plementations of NAS Parallel Benchmarks and Its
Performance, NAS Technical Report NAS-99-011,
1999.

[7] H. Jin, G. Jost, Performance Evaluation of Remote
Memory Access Programming on Shared Memory
Parallel Computer Architectures, NAS Technical re-
port NAS-03-001, NASA Ames Research Center,
Moffett Field, CA, 2003.

[8] H. Jin, R. F. Van der Wijngaar, Performance Char-
acteristics of the Multi-Zone NAS Parallel
Benchmarks, to appear in the Proceedings of IPDPS
2004, Santa Fe, New Mexico, USA, April 2004.

[9] H. Jin, G. Jost, E. Ayguade, M. Gonzalez, X. Marto-
rell, Automatic Multilevel Parallelization Using
OpenMP, Scientific Programming Vol. 11, No 2,
2003.

[10] X. Martorell, E. Ayguadé, N. Navarro, J. Corbalan,
M. Gonzalez and J. Labarta. Thread Fork/join Tech-
niques for Multi-level Parallelism Exploitation in
NUMA Multiprocessors. 13th International Confer-
ence on Supercomputing (ICS’99), Rhodes (Greece).
pp. 294-301. June 1999.

[11] MIPSPro 7 Fortran 90 Commands and Directives
Reference Manual 007-3696-03

[12] MPI 1.1 Standard, http://www-
unix.mcs.anl.gov/mpi/mpich.

[13] OpenMP Fortran Application Program Interface,
http://www.openmp.org/.

[14] S. Shah, G. Haab, P. Petersen and J. Throop. Flexible
Control Structures for Parallelism in OpenMP. In 1st
European Workshop on OpenMP, Lund (Sweden),
September 1999.

[15] J. Taft, “Achieving 60 GFLOP/s on the Production
CFD Code OVERFLOW-MLP”, Parallel Computing,
27 (2001) 521.

[16] R. F. Van Der Wijngaart, H. Jin, “NAS Parallel
Benchmarks, Multi-Zone Versions,“ NAS Technical
Report NAS-03-010, NASA Ames Research Center,
Moffett Field, CA, 2003.

[17] XL Fortran for AIX User’s Guide Version 8.11, IBM
sc09-4948-01, IBM Corp. Second Edition, June
2003.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

