
Parallelization of Spectral Clustering Algorithm  
on Multi-core Processors and GPGPU* 

 
 

Jing Zheng 
Tsinghua University, 

Beijing, China 
zheng-j06@mails.tsinghua.edu.cn 

Wenguang Chen 
Tsinghua Uniersity, 

Beijing, China 
cwg@mail.tsinghua.edu.cn

Yurong Chen 
Intel China Research Center,

Beijing, China 
yurong.chen@intel.com 

 

Yimin Zhang 
Intel China Research Center, 

Beijing, China 
yimin.zhang@intel.com 

Ying Zhao 
Tsinghua University, 

Beijing, China 
yingz@mail.tsinghua.edu.cn 

Weimin Zheng 
Tsinghua University 

Beijing, China 
zwm-dcs@mail.tsinghua.edu.cn

 
 

Abstract 
  

Spectral clustering is a widely-used algorithm in the 
field of information retrieval, data mining, machine 
learning and many others. It can help to cluster a large 
number of data into several categories without 
requiring any additional information about the dataset 
or the categories, so that people can find information 
by categories easily. In this paper, we parallelize the 
algorithm proposed by Andrew Y. Ng, Michael I. 
Jordan and Yair Weiss. We provide two versions of 
implementation: one is parallelized in OpenMP; the 
other is programmed in the NVIDIA CUDA (Compute 
Unified Device Architecture), which is the environment 
provided by NVIDIA to program on its CUDA-Enabled 
GPGPUs (General-Purpose Graphic Processing Unit). 
We can achieve about three times speedup in OpenMP 
and around ten times speedup using CUDA in our 
experiments. 
 
1. Introduction 

 
Spectral clustering was first proposed by Donath and 

Huffman to study graphic partitions in 1973. In the 
following decades, many researchers contributed to 
promote its performance and extended it to many other 
fields. Thanks to the great work of Shi and 
Malik(2000), and Andrew Y. Ng et al. (2002), spectral 
clustering became well-known in information retrieval 
fields[1]. 

Spectral clustering is very useful in information 
retrieval. For instance, as a result of the development of 
Internet, there are so many data on it that information 
needed is sometimes difficult to find. Figure 1 shows 

the search results responding to “bacon” by Google 
Search Engine. There are about 39,600,000 results 
found. It is impossible to look through all these items. 
However, if we analyze the first few items, we can find 
that the results can be divided into two categories: one 
is about the famous person named Francis Bacon; and 
the other is about a kind of food. If these two categories 
of items can be separated, it would help users to find 
the information they need more conveniently. Spectral 
clustering algorithm can cluster these items into two 
clusters according to the content of them. The 
algorithm implemented in this paper aims at document 
clustering. However, as an effective clustering 
algorithm, spectral clustering can be used widely in 
image or multi-media search and many other fields, as 
well. 
 

 
Figure 1. Google search results for bacon 

  978-1-4244-2683-6/08/$25.00 ©2008 IEEE 



Spectral clustering outperforms than other clustering 
algorithm such as kmeans at the cost of higher 
complexity. At least O(k*n2) (k is the number of 
clusters, while n is the scale of dataset) multiplications 
are needed to compute eigenvectors of a dense 
symmetric matrix. As a result, when n is over 3000, it 
takes about a minute to finish clustering. It is too long 
for a real time system such as a search engine. The 
parallelization of the algorithm can reduce the 
responding time to make it more acceptable. 

In addition, as GPGPUs do not support double 
precision floating point operations, we check all the 
test datasets we could obtain and the clustering in 
single precision achieves the same result as in double 
precision. It is probably because the matrix consisted of 
the first few eigenvectors is an approximation to the 
spectral matrix of the input matrix.  As spectral 
clustering is not precision-sensitive, we can implement 
it on GPGPUs without any accuracy loss. 

During recent years, GPGPU has been developing 
rapidly. Since NVIDIA released CUDA in February 
2007, it has attracted the attentions of many researchers 
in all kinds of communities such as weather prediction 
[4], molecular dynamics [5], fluid dynamics [6], and so 
on. Implementing spectral clustering on CUDA can 
help us to learn more about the performance of CUDA 
in the field of data mining. 

The purpose of our work is to parallelize spectral 
clustering algorithm and evaluate its performance. We 
implemented it in two parallel programming models: 
one is in OpenMP, and the other is in CUDA. We test 
the two implementations and obtain acceptable 
speedup.  
  The rest of this paper is organized as follows: 
Section 2 introduces related works. Section 3 explains 
the algorithm, a simple analysis to help parallelization 
and the parallelization of the algorithm. In section 4 we 
describe the implementation in OpenMP and in CUDA. 
Experiment results are presented in section 5. Finally, 
conclusions and Future work are discussed in Section 
6. 
 
2. Related work 

 
2.1 Spectral clustering algorithm and its 
parallelization 
 

Since the 1990s, spectral clustering has been 
extended to more fields from graph partition. Thanks to 
the excellent works of Shi and Malik (2000) and 
Andrew Y. Ng et al. (2002), spectral clustering became 
well known in information retrieval domain because of 
its better performance and acceptable complexity. 

According to the Laplacian matrix used in the 

algorithm, spectral clustering is divided into two 
categories: unnormalized spectral clustering and 
normalized spectral clustering. The main difference 
between these two kinds of algorithms is whether the 
matrix L normalized [1]. The algorithm that we 
parallelize is a normalized method.  

Few works about parallelization of clustering are 
found. However, eigenvalue problem of symmetric 
matrix, which is an important part of the algorithm, is 
studied by many researchers. Some efficient methods 
are discussed in [7, 8, 9, 10, 21]. The most popular 
algorithm to compute eigenvalues and the respective 
eigenvectors of a symmetric matrix is IRLM 
(Implicitly Restarted Lanczos Method) [8]. IRLM is 
used in most high performance linear libraries such as 
LAPACK, MATLAB and ARPACK. However, most of 
these libraries are sequential. The latest math library 
parallelized in OpenMP is Intel MKL (Math Kernel 
Library) 10.0 [20]. MKL implements most functions of 
BLAS (Basic Linear Algebra Subprograms) and 
LAPACK, which are both efficient math libraries and 
contains useful basic function in scientific computing. 
We compared our implementation with MKL in section 
5. 

 
2.2 GPGPU and CUDA 
 

NVIDIA G80 series are designed to meet the 
demand of programmable GPGPUs. It contains 
hundreds of cores and broad memory bandwidth. 
Moreover, unlike other GPGPUs, programming on 
NVIDIA G80 series does not require special 
programming language or execution through graphics 
APIs with support of CUDA [12].  

CUDA environment is created to develop on the 
NVIDIA GPUs. It supports interfaces in C language 
and Fortran language, both of which are very popular 
in high performance computing.  

Last year, many researches on CUDA showed its 
potential in various fields of general purpose 
applications such as fluid dynamics, molecular 
dynamics, as well as bioinformatics [13]. 
 
3. Spectral clustering and its parallelization 

 
The spectral clustering algorithm in this paper was 

proposed by Andrew Y. Ng, Michael I. Jordan and Yair 
Weiss in 2002[14]. The detail of the algorithm is as 
follows: 

 
Input: document-word matrix S�Rnxm, number k of 
clusters to construct, and scaling parameter σ 
1. Construct an affinity matrix A. 
2. Compute diagonal matrix D, whose i-th element 



in diagonal is the sum of the i-th row of matrix 
A 

3. Compute Laplacian Matrix L=D-1/2AD-1/2. 
4. Compute the largest k eigenvectors v1, v2, … , vk 

of L, and let V be the matrix composed with v1, 
v2, …, vk as columns. 

5. Normalize matrix V by rows. Let X to be the 
normalized matrix. xij=xij/(∑x2

ij)1/2 
6. Clustering the rows of X into k clusters, 

regarding each row of V as a point in 
k-dimension space. 

 

   
In [14], matrix A is computed according to formula 1. 

||si-sj|| (i≠j) can be computed by multiplying the i-th 
and j-th row of the sparse input matrix S. And the first 
step of spectral clustering can be considered as a series 
of sparse vector-vector multiplications. Consequently, 
this algorithm mainly consists of matrix and vector 
operations. Matrix problems usually imply huge 
possibility to parallelization because they are 
compute-intensive and matrices are able to be divided 
by rows, columns or blocks. So we can draw the 
conclusion that spectral clustering is well-suited to be 
parallelized. 

Figure 2. Flow Chart of sequential program 

Figure 3 shows the percentage of time that each 
function occupies. The datasets tr23, k1b, and sports 
are three of CLUTO [19] standard test datasets. Tr23 
contains 204 documents; k1b contains 2340; and sports 
contains 8580. It is obvious that the first two steps take 
over 90% on the three datasets of different sizes. 
Moreover, spectralComputing occupies most execution 
time when the number of documents is large enough. 
As a result, during parallelization, we focus on the first 
two steps, especially the second one. Assuming the first 
dimension of matrix S is n, the complexity of step II is 
about O(n*n*k) to compute the first k eigenvectors. 

 

 

2 2|| || / 2

0

i js s

ij
e iA

i j

σ− −⎧⎪ ≠= ⎨
j

=⎪⎩

       
                     .     Formula 1 

 
3.1 Analysis of spectral clustering 

 

 

Figure 2 is the flow chart of the algorithm. To make 
the program more organized and easier to analyze, we 
divide the program to three steps: getAffinityMatrix, 
spectralComputing, and kmeans, based on the property 
of matrixes operated in them. The matrix processed is a 
sparse matrix in step I, a square symmetric matrix in 
step II, and a matrix whose second dimension is 
reduced to k in step III.  

      Figure 3. time of different funtions 
 
3.2 Parallelization of spectral clustering 

 
Now we elaborate each step described in section 3.1. 

In step I, the n×n symmetric matrix A is computed by 
multiplying every two rows of sparse matrix S with n 
rows and m columns. The procedure can be described 



as follows: 
 
for i=0, 1,…, n do 
  for j=i, 1, …, m do 
    if i=j 
     aij←0; 
    else 
     aij←si*sj 

 
  There are two loops in step I either of which be 
parallelized. To achieve better spatial locality and 
lower cache miss, the inner loop is parallelized. To 
achieve load balance, we group rows according to the 
number of non-zero elements they contain. 
  Step II, spectralComputing, computes Laplacian 
Matrix L and its eigenvectors corresponded to the first 
k largest eigenvalues of L. As a symmetric real matrix, 
L’s eigenvalues and respective eigenvectors can be 
computed by IRLM, which is widely used in most high 
performance linear libraries such as ARPACK, 
PROPACK and MATLAB. However, these libraries 
require users to provide the function that implements 
dense matrix-vector multiplication. Our efforts on 
spectralComputing focus on the parallelization of 
dense matrix-vector multiplication. 

Step III is the classical clustering method which is 
described as follows. Although it takes much less time 
than the step I and step II, we also parallelize it and 
obtain speedup that is approximately linear. The 
parallelization of the loop in 2 in the following 
algorithm means that each thread computes the cluster 
number of one point. 

 
K-Means Algorithm 

Input:  n points in m-dimension space, number of 
clusters 
1. Generate k random points as the initial center of the 
k clusters 
2. For i=0, 1, …, n, compute the distance between the 
i-th point and each cluster center and put the point into 
the cluster that the distance is shortest. 
3. Compute the new centers of the k clusters 
4. If the new centers are the same as the old ones, Stop; 
if no, take the new ones as centers of clusters and then 
go to 2 

val --a single array contains all the non-zero 
elements of sparse matrix S. 

idx -- an integer array contains the column index of 
each non-zero elements. 

row – an integer array contains the location of the 
first element in every row in array val. 
 

The other matrixes in this program are dense and 
symmetric except the diagonal matrix D. These 
matrixes are all stored in one-dimension array in 
package format. In CUDA BLAS, matrix should be 
stored major in column. Fortunately, matrix A, D and V 
are all symmetric matrices, so the transposition is not 
necessary in our program. 
 
4.2 Implementation in OpenMP 
 
  As analyzed in section 3, the spectral clustering 
algorithm can be easily parallelized with OpenMP 
compiler directives such as “parallel for”. To reach 
higher performance, we also use BLAS in Intel MKL 
which is thread-safe. 
 
4.3 CUDA programming model 

 
In the NVIDIA CUDA programming model [15], the 

system contains a host which is usually a CPU and at 
least one GPU which is a highly-parallel coprocessor 
[16]. The host is responsible to control and memory 
management, while GPU creates thousands of threads 
to finish the work assigned by the host. 

 
 
4. Implementation 
 Figure 4 [16]. CUDA programming Model 
4.1 Data structure 

  Threads on GPU are organized in the form of blocks, 
and blocks are grouped to Grids. Blocks can be 1-, 2- 
or 3-dimension; grids can be 1- or 2- dimension. This 
makes the partition of data more flexible and can be 
determined by developers according to data structure. 

 
Sparse matrix S is stored in CSR(Compress Sparse 

Row) format. We use three arrays to represent it:  
 



Figure 4 presents the programming model of CUDA 
intuitively. 
 

Table 1. Memory Properties of GeForce 8800GTS 
 Location Size Hit 

Latency 
Read-
Only 

Program 
Scope 

Global Off-chip 640M
B 

200~300 
cycles No Global 

Shared On-chip 
16KB 

per 
SM 

≈
register 
latency 

No Function

Local Off-chip 
Up to 
640M

B 

200~300 
cycles No Function

Constant On-chip 
Cached 64K 

≈
register 
latency 

Yes Global 

Texture On-chip 
Cached 

Up to 
global 

>100 
cycles Yes Global 

 
  NVIDIA Ge80 Series have a flexible but 
complicated memory model. The memory model of 
CUDA is composed of 5 layers: global memory, shared 
memory, local memory, constant memory, and texture 
memory. Developers can explicitly declare variables in 
the assigned memory. The layout of data in different 
memories might lead to varied performance. Shared 
memory is a new feature introduced, and it makes SMs 
work more efficiently. From Table 1, the hit latency of 
shared memory is near to registers. So developers 
should try their best to put frequently-visited data into 
shared memory and read-only data in texture or 
constant memory to minimize latency of memory 
access. 
 
4.4 Implementation in the NVIDIA CUDA 
 

Spectral clustering is a matrix-based application 
which is well-suited to CUDA. In addition, CUDA 
provides CUBLAS which is an implementation of 
BLAS. CUBLAS makes it easier to implement 
complicated matrix transformations and factorizations. 
CUBLAS is an implementation of BLAS on top of the 
NVIDIA CUDA driver. It allows access to the 
computational resources of NVIDIA GPUs [17].  

When computing the affinity matrix A, we 
implement the CUDA function that computes a sparse 
matrix multiply itself in CSR format. We use hundreds 
of threads, and each of them computes a submatrix of 
matrix A. This method might be limited by the memory 
bandwidth as well as the conflicts between cache banks. 
We are trying to find better ways to solve this problem. 

Compared to getAffinityMatrix, the second step 
spectralClustering takes much more time, when the 
number of documents is over 1000. We make our best 
efforts to port the function spectralComputing to 
CUDA. SpectralComputing computes the eigenvectors 

related to the first k largest eigenvalues of matrix L. As 
a symmetric real matrix, L’s eigenvalues and related 
eigenvectors can be computed with IRLM[18]. IRLM, 
which is the used in MATLAB, is one of the most 
efficient algorithms to solve symmetric eigenvalue 
problems.  

We ported the IRLM to CUDA based on APIs 
provided by CUBLAS. The performance of Lanczos 
depends greatly on the implement of matrix-vector 
multiply. In a sense, to parallelize IRLM depends 
greatly on parallelization of dense matrix-vector 
multiplication. We create hundreds of blocks, each of 
which computes one element of the result vector.  
 
5. Experiments 

   
To evaluate our parallelization, we conduct a series 

of experiments on several platforms. We evaluate the 
OpenMP version on the platform with four 4-core 
Genuine Intel 2.4GHz CPUs and 12GB main memory. 
The CUDA version is tested on two platforms: one is 
NVIDIA 8800GTS connected to a host with a four-core 
Genuine Intel 2.66GHz CPU and 4GB main memory, 
and the other is NVIDIA S870 connected to a host with 
two Dual-core AMD Opteron Processor 2216 and 8G 
main memory. 

 
5.1 Test datasets 
 

To evaluate the performance of the program, we use 
several CLUTO [19] datasets as inputs. The scale of 
these datasets (number of documents contained) is 
shown in Table 2. 

 
Table 2.  datasets in the experiments 

dataset Number of documents Sparse ratio 
k1b 2340 0.0068 
mm 2521 0.0015 
la2 3075 0.0047 

 
5.2 Experiments on OpenMP implementation 
 
  We evaluate our OpenMP implementation on a 
server with four 4-core CPUs. Figure 5 shows the 
speedup of the above datasets. When the number of 
cores is less than four, the speedup is approximately 
linear. However, as the number of cores increases, the 
speedup is limited by the memory bandwidth. 
 



 
Figure 5. Speedup on multi-core processors 

 
In addition, the speedup of step I, II, and III is tested 

separately. Figure 6 illustrates that kmeans has the best 
speedup among the three steps. getAffinityMatrix, the 
step which consists of sparse vector multiplications has 
the worst scalability among the three steps. That is 
probably because of the special properties of sparse 
matrices. The performance of spectralComputing step 
is between the other two steps. The data partition and 
element access of dense matrices is much more 
uncomplicated than that of sparse matrices. As a result, 
step spectralComputing has better speedup than step 
getAffinityMatrix. On the other hand, some codes of 
spectralComputing cannot be parallelized while most 
part of step kmeans can be parallelized. According to 
Amdahl Law, its speedup is limited. Consequently, the 
scalability and speedup of spectralComputing is worse 
than kmeans. 

 

 
Figure 6 Speedup of different functions 

 
5.3 Experiments on CUDA 

 
We evaluate our CUDA implementation on GeForce 

8800GTS and Tesla S870. The former is a graphic card 
supporting the CUDA environment and the later is a 
server containing four GPGPUs of Tesla architecture. 

GeForce 8800GTS contains 12 eight-core 600MHz 
stream multiprocessors and 640MB global memory. 
The shared memory of each multiprocessor is 16KB 

which is divided in 16 banks. In the experiments, 
Geforce 8800GTS collaborates with an Intel Core2 
Quad 2.4GHz sharing 4G memory. S870 is a 4-GPU 
server which support CUDA environment. Each GPU 
has 1.5GB global memory. S870 is connected to a host 
with two dual-core AMD Opteron Processor 2216 and 
8G in memory. 

 
 ma

 
Figure 7. Time of matrix-vector multiplication 

threads on CPU and around ten 
tim

erformance report of NVDIA CUDA 
800GTX. 

 

 
Figure 7 shows the performance of the matrix-vector 

multiply on a multi-core CPU and in the CUDA. In the 
former environment we use Intel MKL, while in 
CUDA we utilize CUBLAS library. It is obvious that 
CUDA BLAS library can improve the function two to 
three times than four 

es in the CUDA.  
Thanks to the efficient CUBLAS, performance of 

spectral clustering on CUDA is enhanced greatly. 
Figure 8 shows the speedup on CPU and GPU. There is 
not as much improvement of performance as dense 
matrix-vector multiplication. It might result from other 
parts of the program like computing the affinity 
functions which contains a lot of sparse matrix 
operations. In addition, GeForce 8800GTS has 32 less 
cores and smaller memories than GeForce 8800GTX. 
As a result, the performance is not as effective as some 
released p
8

 
Figure 8. Execution time of spectral clustering 

 



Compared to GeForce 8800GTS, the performance on 
S870 is a little worse. The reason is that data 
transmission between the main memory and the device 
memory costs more time on S870. Table 3 illustrates 
the bandwidth to transform matrix of different sizes on 
GeForce 8800GTS and Tesla S870. We tested the 
bandwidth when executing function CudaMemcpy() 
from host to device. It is obvious that 8800GTS 
achieves better bandwidth. As a result, when the matrix 
can be totally loaded into device memory, 8800GTS 
has better performance than S870. 

Table 2.  Bandw n memory to the 

Matrix size GeFo GTS 
(  

Te  
(  

 
idth from the mai
device memory 

rce 8800
GB/s)

sla S870
GB/s)

1000*1000 2.88 1.64 
2000*2000 3.56 1.86 
3000*3000 3.76 2.41 
4000*4000 3.74 3.06 

 

ch more than data 
transmitted to the main memory. 

Table 3.  Bandw vice memory to 
t

Matrix size GeFo GTS 
(  

Te  
(  

On the other hand, it is interesting that the data 
transmission from the device memory to the main 
memory is opposite to the transmission from the main 
memory to the device memory. The bandwidth from 
device memory to the main memory is presented in 
Table 3. According to the table, S870 is trivially better 
than 8800GTS. However, the bandwidth is much worse 
than that of the main memory to device memory. 
Fortunately, in our implementation, data transmitted 
from the main memory is mu

 
idth between the de
he main memory 

rce 8800
GB/s)

sla S870
GB/s)

1000*1000 0.23 0.20 
2000*2000 0.12 0.13 
3000*3000 0.08 0.10 
4000*4000 0.06 0.08 
 
The most important advantage of Tesla S870 is its 

large global memory. On S870, larger scale matrices 
can be allocated and experiments prove that the 
speedup of matrix-vector multiplication on can also 
ac e 10 to 20 on S870. 

6. Conclusion and future work 

performance 
en

mory might not achieve good 
pe

ize the 
cu

Matrix might become 

GTS’s device memory. This 

n S870 and make full use of its 4 
PGPUs. 

eference 

ctral Clustering”, 
echnical Report No. TR-149, August 2006 

ttp://developer.nvidia.com/object/cuda.html. 

] OpenMP, http://www.openmp.org 

Workshop on Large Scale 
arallel Processing, IPDPS, 2007 

tes in Computer 
cience , vol 4873/2007, pp. 185-196, 2007 

Primitives for GPU Computing”, Graphics 
ardward, 2007 

hiev
 

 
In this paper we present a parallelization of spectral 

clustering and implement it in both OpenMP on 
multi-core processors and in CUDA on NVIDIA 
GeForce 8800GTS. We evaluate its performance on 

both platforms by a series of experiments. According to 
the experiments, the scalability and speedup are 
acceptable on 4-core CPU. The implementation on 
CUDA also achieves good speedup. We believe that 
CUDA could contribute greatly to 

hancement as an accelerator to CPU.  
Meanwhile, we also observe that data transmission 

between the main memory and the device memory in 
CUDA is not symmetric. Applications which need to 
transmit a huge amount of data from the device 
memory to the main me

rformance in CUDA. 
Our future work will focus on: 
Firstly, we will analyze the property of spectral 

clustering in CUDA further and try to optim
rrent program to obtain better performance. 
Secondly, the performance of getAffinityMatrix 

remains to be improved. After the optimization of 
spectralComputing, getAffinity
the bottleneck of the program. 
  Thirdly, the current implementation in CUDA does 
not consider the situation when a matrix is too large to 
be loaded in Geforce 8800
might be solved in future. 
  Finally, we hope that the two implementations can 
be merged, of which kernel code on CPU is also 
threaded. In NVIDIA CUDA’s sample projects, CUDA 
can work with OpenMP. With OpenMP threads on CPU, 
the computation capability of CPU can also be fully 
utilized. In that case, we can achieve better 
performance o
G
 
R
 
[1] Ulrike von Luxburg,“A Tutorial on Spe
T
 
[2] NVIDIA CUDA, 

h
 
[3
 
[4] Michalakes, J. and M. Vachharajani, “GPU Acceleration 
of Numerical Weather Prediction”, 
P
 
[5] Weiguo Liu, Bertil Schmidt, Gerrit Voss, and Wolfgang 
Müller-Wittig, “Molecular Dynamics Simulations on 
Commodity GPUs with CUDA”, Lecture No
S
 
[6] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John 
D. Owens, “Scan 
H
 



[7] K. J. Maschhoff and D. C. Sorensen, “A Portable 
Implementation of ARPACk for Distributed Memory Parallel 

rchitectures”, 1996. 

ons 
n Numerical Analysis, Volume 2, pp. 1-21, March 1994. 

 On Non-negtive Matrix Factorization”, SIGIR’03, 
003 

ect-Oriented 
rogramming, Chapman & Hall/CRC, 2007 

putation”, Intel Techonlogy Journal, 
ol 11, issue 04, 2007 

eaded GPU Using CUDA”, 
PoPP ’08, February, 2008 

hitecture”, invited talk, Tsinghua 
niversity, March, 2008 

 in 
eural Information Processing Systems, volume 14, 2002 

5] NVIDIA, http://developer.nvidia.com/object/cuda.html. 

g Guide”, 
ttp://www.nvidia.com/object/cuda_develop.html 

Library”, 
ttp://www.nvidia.com/object/cuda_develop.html 

ctions on 
umerical Analysis, vol 2, pp. 1-21, March 1994 

ttp://glaros.dtc.umn.edu/gkhome/cluto/cluto/download 

 Math Kernel Library Reference Manual”, 
pdated in 2007 

orithm”, 
ecture Notes In Computer Science, vol. 1184, 1996 

atrices for 

parallel processing”, Circuits and Systems, 1999. 

A
 
[8] D. CALVETTI y, L. REICHEL z, AND D.C. SORENSEN, 
“An Implicitly Restarted Lanczos Method For Large 
Symmetric Eigenvalue Problems”, Electronic Transacti
o
 
[9] Wei Xu, Xin Liu, Yihong Gong, “Document Clustering 
Based
2
 
[10] Andy H. Register, A Guide to MATLAB Obj
P
 
[11] Ilya Burylov, Michael Chuvelev, Bruce Greer, Grey 
Henry, Sergey Kuznetsov, and Boris Sabanin, “Intel® 
Performance Libraries: Multi-Core-Ready Software for 
Numeric-Intensive Com
v
 
[12] Shane Ryoo, Christopher I. Rodrigues, Sara S. 
Baghsorkhi, Sam S. Stone, David B. Kirk, Wen-mei W. Hwu. 
“Optimization Principles and Application Performance 
Evaluation of a Multithr
P
 
[13] David Kirk, “NVIDIA CUDA Software and GPU 
Parallel Computing Arc
U
 
[14] Andrew Y. Ng, Michael Jordan, and Yair Weiss, “On 
Spectral Clustering: Analysis and an algorithm”, Advances
N
 
[1
 
[16] NVIDIA, “NVIDIA CUDA Programmin
h
 
[17] NVIDIA, “CUDA CUBLAS 
h
 
[18] D. Calvetti, L. Reichel, and D.C. Sorensen, “A Implicitly 
Restarted Arnoldi/Lanczos Methods For Large Scale 
Eigenvalue Calculations”, Electronic Transa
N
 
[19] CLUTO,  
h
 
[20] Intel, “Intel
u
 
[21] M. Szularz, J. Weston, M. Clint and K. Murphy, “A 
Highly Parallel Explicitly Restarted Lanczos Alg
L
 
[22] W. Xiong, J. Li, R.M.M. Chen, S. Qiao, “A fast 
decomposition of banded symmetric toeplitz m



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


