
AES Performance Analysis on Several Programming Environments, Operating
Systems or Computational Platforms

Radu Tomoiaga
Faculty of Automatics and Computers
University Politehnica of Timişoara

Timisoara, V. Parvan 2, 1900 Romania
Email: radugam@mailcity.com

Mircea Stratulat
Faculty of Automatics and Computers
University Politehnica of Timişoara

Timisoara, V. Parvan 2, 1900 Romania
Email: mircea.stratulat@cs.upt.ro

Abstract — Advanced Encryption Standard’s performance is
changing depending on the platform it is run. In doing these
benchmarks, we observed the behavior of AES algorithm on
several programming environments, on different operating systems
and on various computational platforms concluding that not all of
them offer the same performance. We noticed, in doing these tests,
that the best performance is offered by CUDA environment using
the Graphic Processing Unit.

Keywords - AES; benchmark; CUDA; GPU.

I. INTRODUCTION
The quality characteristics of a system are conditioned by

the quality attributes, and each attribute is measured through
one or more metrics. One or more evaluation elements
correspond to a metric.

The performance evaluation is generally made according
to characteristics, attributes, metrics and evaluation elements.

The quality of software is determined by the quality
attributes. Each attribute is measured through one or more
metrics and one or more evaluation elements correspond to a
metric.

Luken stated that measuring the performance can be done
by measuring time [7]. When we talk about time, we refer to
the response time or execution time. So, we evaluate the
difference between the start time and end time of an event.
Ştefănescu defined the performance, as being (Execution
time)-1 [15]. In order to measure the execution time, we can
use the computer clock, more precisely the period of clock
that is measured in nanoseconds or the clock frequency
measured in megahertz. An evaluation of an informatics
system can be made according to two notions, that are MIPS
(Millions Instructions Per Second) and FLOPS/MFLOPS
(Floating Point Operations Per Second). As a base measure
for performance evaluation remains the time.

Buligiu divided the metrics in more categories:
evaluation metrics regarding the processing speed and
response time, metrics that study the transfer flux between
the system and its components, metrics regarding the
systems safety, metrics regarding the systems availability
and scalability metrics [16]. In case of the processing speed,
one of the most used metrics is the response time of the
system. In case of some benchmarks it is indicated to be
calculated an average value for the response time. This value
is obtained as an average of measured times on a large

number of run tests. Regarding the systems that need to be
evaluated, the metric is adapted to the requirements of the
respective case. In case of the cryptographic tests of the
algorithms on large files, the time necessary to finalize a
process is great. In the particularly case of symmetric
cryptography, where an algorithm of block type is used, each
block of the file is read encrypted and written in the output
file. Thus, we have a large number of iterations with
different inputs, which are processed sequentially. The
number of iterations depends on the file size and is obtained
as a ratio between the file size and the size of the input block.
In this case we obtain a time that reflects more the practical
reality of an encrypting application for the large information,
which is saved on a memory support or hard disk. This time
is theoretically greater than that assumed for the running of
the algorithm only on immediate values (e.g., that are stored
in RAM). The time for these values is greater than the ones
that can be accessed from the internal memory because the
reading / writing time from /on the hard disk is added to it. In
the second part of the benchmarks, we obtain the running
times for the algorithms when the input data are in the
memory, not being accessed from an external support. In this
case, a simple run of the algorithm is not sufficient. The
algorithms are repeated a larger number of times: 100.000 in
case [9] and 1.000.000 in the present case. After running, the
average will be calculated and thus an average result is
obtained, which reflects the necessary time for the running of
the algorithm. The testing of the calculation times of the
cryptographic function has been made in case [9] on
dimensions of 0 bytes, 26 bytes, 62 bytes and 80 bytes, and
in the present paper on the dimension of 16 bytes. Another
benchmark is that created by Groza in [3]. This material
discusses the implementation in Java of an authentication
protocol for mobile phone applications. HMAC algorithms
as well as the HASH algorithms are tested. The test platform
was a mobile phone Nokia 6288 with a multitasking
operating system and the number of repetitions was of 100
times. In order for the virtual machine not to be influenced
by other tasks, the tests were done in the profile “flight
mode”, because all communication functions are stopped.

Another type of metric for measuring speed is the latency
metric, which measures the waiting or delay time for a
system or a component [16].

2010 Fifth International Conference on Systems and Networks Communications

978-0-7695-4145-7/10 $26.00 © 2010 IEEE

DOI 10.1109/ICSNC.2010.33

172

In order to understand the project system and to reach a
better design, the performance modeling is necessary even
from the beginning [9].

II. RELATED WORK
Kahate, in his study regarding the impact of

cryptographic algorithms on the performance of the
application [5], concludes that, disregarding the algorithm,
the time necessary for the encrypting or decrypting is almost
the same and the size used for the input does not have a
major impact on the time necessary for the computation. The
used algorithms were of the type message digest (MD5,
SHA1, SHA 512), symmetric algorithms (AES, 3DES,
Blowfish) and asymmetric algorithms (RSA). The input
length had varied between 14 and 203 characters. In his
paper, there are no details regarding the way in which the
tests have been done, if the iteration has been used and if so
how many times. This experiment refers to data of very
small sizes, but doesn’t cover large data, which, obviously,
influence the computational performance.

During the last years, due to the slow processors
evolution, hard computing power application developers
oriented towards other type of processors. Graphic
Processors were taken in consideration. This were initially
designed and developed for 3D rendering, video encoding
and decoding and for game engines. Software like this
require a big amount of computing power and the processors
on personal computers couldn’t offer this. Graphic Card
developers designed more and more powerful graphical
processors and gave software developers the chance to write
their own programs to use co processing on CPU and GPU.
In [11], a list of NVIDIA video cards is presented. This cards
support CUDA environment being able to accelerate tasks.
From this list we mention GeForce and Quadro products that
can be installed in a PCI Express slot in a personal computer.

Starting from Cooks success in 2005 [1], of
implementing a cryptographic algorithm on a GPU, Yeom
analyzed the improved performances using DirectX and
OpenGL [10], and after finalizing his research he concluded
that an Intel Core 2 Quad (QX6850) processor is able of
speeds up to 96 GFLOP, while a NVIDIA GeForce
8800GTX is capable of 330 GFLOP. In his tests AES has a
4.5 Gbps and DES 2.8 Gbps performance on this GPU.

Kipper speaks about implementing AES on GPU and
concludes that the algorithm is 14.5 faster than on a classic
processor [6]. He also says that cracking AES attempts,
through brute-force attack types, is unfeasible on a
performance gain of this level. In a similar project, Luken
speaks about encrypting with AES and DES using GPU
hardware acceleration [6]. The tests were done on data
volume up to 100 Mb, and the performances were as
following: AES is 3.75 faster on GPU than on CPU and DES
is 4.5 faster on GPU than on CPU.

Manavski tested CUDA compatibility in hardware
acceleration for AES on NVIDIA graphic cards [8]. His best
result was on AES 128, for an 8 MB input file, the
performance being of 8.28 Gbps. The GPU algorithm was
19, 60 times faster than the CPU algorithm.

A Rijandael computational complexity analysis was done
by Graneli and Boato [2]. In [2], the authors compare
Rijndael, Camelia and Shacal-2, and conclude that “Rijndael
is very good and can be used as reference for benchmarks
[2]”. In Table 1, the values regarding AES are presented
according to the tests done by the authors.

TABLE I. AES COMPUTATIONAL COMPLEXITY

Name
Operations

AND OR Shift(bytes) Adding 32
bit

AES General 5836 4254 1336 0
Key expansion 1536 1536 846 144
Encrypt 4912 3624 1188 0
Decrypt 14896 11112 3654 0

Operation Algorihtm (key dimension)
128 192 256

AND 7236 8784 10334
OR 5418 6536 7667

 AES Computational complexity. Operations [2]

III. THE BENCHMARKS
In this section, the implemented benchmark applications

are described. The applications were developed in four
programming environments. For the Windows platform (XP
SP3 and 2000 SP4) Java/Eclipse and Visual Studio 2008
(Visual C# and Visual Basic) were used. In order to run these
applications within the stand alone packet option, the
operating system must have the Dot. Net. Framework 3.5
SP1 installed. Classes used in test applications belong to
System.Security.Cryptography. In order to test algorithms
mentioned in this benchmark in the UNIX operating system
the Live CD Kubuntu 9.04 distribution has been selected.
The Live CD solution has been chosen because it was the
most convenient one and could be ran on all platforms
without involving installing a new operating system and
risking problems to arise when installing it on one of the
platforms. The fact that the files have been read and written
on a NTFS partition is a disadvantage due to the fact that the
operating system natively runs on EXT2/EXT3, but at the
same time an advantage, because the results of the
benchmarks can be easily compared with the ones compiled
on Windows considering the fact they have also been ran on
NTFS partitions.

The tests have been performed in three phases.
The first phase consisted in running the algorithms on

files of 1 GB, 2 GB, 3 GB... 10 GB sizes. The algorithms in
this phase have been implemented under Windows, using
Visual Basic, C# and under UNIX, using OpenSSL libraries.

In the second phase the tests from the first one have been
repeated in Visual Basic, C# and Java, for a small amount of
data accessed from RAM. In this case the data are transferred
not from a hard disk, but more rapidly from the memory.
Given the small amount of data the test had to be redone by a
certain number of times. In the present case the number of
iterations rose to 1.000.000. “On the fly” encryption has been
completed by running the algorithms, using recursion as in
the example below:

buffer = algorithm_encryption (buffer)

173

The three phases consist on testing AES algorithm on
CUDA.

The time is calculated this way (Visual Basic example):
TimeSpan duration = stopTime - startTime;
duration.TotalMilliseconds
or for small volumes
duration.TotalMilliseconds/ NrIteratii [11].
For Unix the “time” command is used associated with

the Open SSL command like in the following example:
time openssl dgst -md5 test1mb.txt (UNIX).
The basic tools for developing cryptographic Java

applications are provided by JCA (Java Cryptography
Architecture) and JCE (Java Cryptography Extension). These
provide the developer with direct access to cryptographic
algorithms by using the so called “factory classes” [4]. The
practical aspect of the above mentioned is that the
application appeals some of the internal classes and these
will assure the functionality requested by the applications.
For the Java development environment the classes used to
develop the application are the ones used by [4]: javax.crypto
and java.security. For implementing the application Java
JDK 1.6.0.17 along with the Eclipse 3.1.2 platform has been
used [10].

During the first phase five workstations have been used
as test platforms, configured as shown in Table 2.

During the second phase three workstations have been
used, configured as shown in Table 3.

The platforms have been chosen so that the algorithms
could be tested on multiple types of units and systems.

Regarding the test done on CUDA (the third phase) we
used the implementation presented in [14] by Urmas
Rosenberg.

TABLE II. PLATFORM DESCRIPTION PHASE 1

Platform description phase 1 (information obtained with System Info for Windows)

TABLE III. PLATFORM DESCRIPTION PHASE 2

PC Processor Memory

PC1
Core(TM)2 Duo CPU
E6750 @ 2.66GHz
Conroe

Slot 1+Slot3
Kingston
2048 MBytes
DDR2 (333 MHz)

PC2 ATOM N270 @
1.60GHz Dothan

Slot 2
Samsung 1024 MBytes
(333 MHz)

PC3

Intel Core Duo
T2400 @ 1.83GHz
Yonah DC
L2 Cache Speed
1828.77 MHz

Slot 1+Slot 3
Samsung
512 MBytes
(266 MHz)

Platform description phase 2 (information obtained with System Info for Windows)

IV. RESULTS
In Figure 1, we present a comparison of AES results,

obtained on the five platforms for large volume data. PC2
has, overall, the best results. PC5 obtains the worst
performance, although it has the best hardware
configuration. The explanation for this weak performance
resides in the mirroring RAID hard drives configuration. It
seems that time increases for this type of algorithms, when
working with large data.

 AES

0

500

1000

1500

2000

2500

PC1 PC2 PC3 PC4 PC5

Ti
m

e(
Se

co
nd

s)

1 GB 2 GB 3 GB 4 GB 5 GB

6 GB 7 GB 8 GB 9 GB 10 GB

Figure 1. AES Comparison in Visual Basic

0

1

2

3

4

5

6

Ti
m

e
(S

ec
on

ds
)

VB C# OpenSSL

AES

1 Mb 100 MB

Figure 2. PC2 1 Mb and 100 Mb files

The results for benchmarking AES on PC2 in Visual
Basic, C# and OpenSSL for file sizes of 1 Mb and 100 Mb
can be seen in Figure 2. C# needs the smallest amount of
time while OpenSSL the takes the longest time to finish the

PC Processor Memory HDD

PC1
Core(TM)2 Duo

P8400 @ 2.26GHz,
CPU Wolfdale

Slot 1+ Slot3
Samsung

2048 MBytes
(400 MHz)

WD 250
GB

5400 RPM

PC2
Core(TM)2 Duo
CPU E6750 @

2.66GHz ,Conroe

Slot 1+Slot3
Kingston

2048 MBytes
(333 MHz)

Seagate 500
GB 7200

RPM

PC3
Pentium(R) 4 CPU

3.00GHz
Prescott-2M

XMM1+3
JTAG 256 MBytes

533 MHz

WD 80 GB
7200 RPM

PC4
Dual CPU E2140 @

1.60GHz CPU
Conroe-1M

Slot 1+ Slot3
Nanya 512 MBytes

(333 MHz)

Maxtor
250 GB

7200 RPM

PC5 Intel Core 2 Quad
Yorkfield

Slot 1+Slot3
Kingston

2048 MBytes
(400 MHz)

2 HDD WD
1 TB RAID

174

tests. OpenSSL running on NTFS partition could be the
reason why it needs more time to compute the given tasks.

In the next figure, doing the tests, again on PC2, but with
larger data, we observed that OpenSSL and CUDA maintain
a linear growth of time from file to file, while Visual Basic
and C# have some exceptions. Also C# has the longest time
for file larger than 6 Gb. The reason for this could be that,
being run on Windows, the application have the processor
for an amount of time, after that the operating system (which
is not a true multitasking system) gives it to another process.

AES

0
100
200
300
400
500
600
700
800
900

VB C# OpenSSL CUDA

Ti
m

e(
Se

co
nd

s)

1 GB 2 GB 3 GB 4 GB 5 GB 6 GB 7 GB 8 GB 9 GB 10 GB

Figure 3. PC2 Large Files

PC 3 AES

0

500000

1000000

1500000

2000000

2500000

3000000

1 GB 2 GB 3 GB 4 GB 5GB 6 GB 7 GB 8 GB 9 GB 10 GB

VB C# OpenSSL

Figure 4. PC3. AES [10]

0
0,1
0,2
0,3
0,4
0,5

JAVA

PC1 PC2 PC3

Figure 5. AES.Java

0
0,05
0,1

0,15
0,2

0,25

VB

PC1 PC2 PC3

Figure 6. AES.VB

0
0,05
0,1

0,15
0,2

0,25

C#

PC1 PC2 PC3

Figure 7. AES.C#

 AES

0
0,1
0,2
0,3
0,4
0,5

RAM Data encryption

VB C# JAVA CUDA

Figure 8. PC1 AES.

V. CONCLUSION AND FUTURE WORK
After analyzing the obtained results of the benchmarks,

we concluded that the processors offer performance that
varies depending on the size of the input data, the algorithms,
the memory characteristics, programming language but also
on the operating system. Regarding the tests with the data
acquired from RAM, we can say that Java usually had
computational time greater than Dot Net, meaning that in this
case Java needs more time. Between C# and Visual Basic
there were no big differences, the two having similar
performances and behavior. At this benchmarks the weakest
processor was the Atom N270. Regarding the tests done on
big volume data we can say that C# and Visual Basic have
almost identical performances beginning from 6 Gb to 10 Gb
on AES. Up to 6 Gb C# has an easy advantage (figure 5).
OpenSSL has almost the same behavior as Visual Basic up
to 9 Gb, over this step, the computing time for OpenSSL
unexpectedly increases. This behavior is characteristic for
PC3, platform that was one of the slowest from the chosen

175

ones. The surprise in these tests was PC5, which in Windows
2000 had the worst performances on Dot Net, although the
hardware configuration was better than on the other
platforms. A crucial factor for these results was the RAID
configuration for the two hard drives which was a mirroring
RAID. In the case of the platforms that were subject of this
benchmark we can easily spot a winner, but the issue is not
that simple when discussing about the programming
languages and the operating systems and winner couldn’t be
established, only CUDA seeming to gain a small advantage
over the other competitors. Every programming language
and applications that were tested get better performances
then the others in some points of the tests, been beaten by
the others in other tests, or in the same test at another level.

Looking at CUDA environment, at the implementation
done in [14] and tested on platform PC2 we can conclude
that the results of the tests done with data stored in RAM
were better then the ones on the CPU. Comparing to VB,
CUDA seems to be just a little faster, but when comparing to
C# or Java, CUDA is much faster.

Regarding the tests done using large files, the results
were inconclusive, as CUDA was better only on the 1 GB
and 2 GB files [11]. On the other files the times CUDA got
were higher than the other programming languages, except
some files on C# (Figure 3). It seems that the delay caused
by reading date from the hard disk were the large files are
stored, affects the overall time of CUDA tests. The
performance of AES implementation on CUDA is better
according to Figure 8. The time for each test increases, when
another factor influences the computational time of the entire
test (HDD read/write).

Figure 5 presents computational times obtained when
benchmarking AES in Java on the three platforms, in Figure
6, computational times obtained when benchmarking AES in
Visual Basic, in Figure 7 computational times obtained when
benchmarking AES in C#. It can be observed that PC2 (the
Atom processor) has the worst performance of the three
tested.

Based on our evaluation, CUDA environment was faster
in our experiments than the other competitors.

As a future research we will try to implement an own
AES encryption algorithm in CUDA that will run on a GPU.
The platform on which the tests will be done is PC2, this
platform having a CUDA capable graphic card: NVIDIA
GeForce 8800 GT. An optimization on the existing algorithm
that was tested [14] will be done, or developing new
approaches for these algorithms to get better performances
than the ones published in different articles. In a second
stage, we will try to integrate the algorithm from the
previous step in a software application like OpenSSL, so that
this can use the algorithm and benefit from the graphic
processor acceleration.

ACKNOWLEDGMENT
I am thankful to Mr. Groza, whose help, guidance and

support from the initial to the final level enabled me to
develop an understanding of the subject.

I offer my regards to all of those who supported me in
any respect during the completion of this project.

REFERENCES
[1] D.L. Cook, J. Ioannidis, A.D. Keromytis, and J. Luck.

"CryptoGraphics: Secret Key Cryptography Using Graphics Cards."
In RSA Conference, Cryptographer's Track (CT-RSA), pp. 334–350.
2005.

[2] F. Granelli and G. Boato, “A Novel Methodology for Analysis of the
Computational Complexity of Block Cyphers: Rjindael, Camellia and
Shacal-2 Compared”, Proceedings of 3rd Conference on Security and
Network Architectures (SAR'04), La Londe, France, June 21-25,
2004

[3] B. Groza, D. Pop, and I. Silea, “Java Implementation of an
Authentication Protocol with Application on Mobile Phones”, IEEE-
TTTC International Conference on Automation, Quality & Testing,
Robotics, AQTR 2008 (THETA 16), pp. 190-195, Cluj-Napoca,
Romania, 2008

[4] D. Hook, “Beginning Cryptography with Java”, Ed. Wiley
Publishing, 2005, ISBN-13:978-0-7645-9633-9

[5] A. Kahate, “Cryptographic Algorithms–Impact On Application
Performance”, http://www.indicthreads.com/1519/ cryptographic-
algorithms-impact-on-application-performance/, 2008

[6] M. Kipper, J. Slavkin, and D. Denisenko,” Implementing AES on
GPU”, University of Toronto, http://www.eecg.toronto.edu/
~moshovos/CUDA08/arx/AES_ON_GPU_report.pdf, 2009

[7] B. Luken and M. Ouyang “AES and DES Encryption with GPU”,
Proceedings of the ISCA 22nd International Conference on Parallel
and Distributed Computing and Communication Systems, pp 67-70,
2009

[8] S. Manavski, ”CUDA Compatible GPU as an efficient Hardware
Accelerator for AES Cryptorgraphy” , IEEE International Conference
on Signal Processing and Communication, ICSPC 2007, pp. 65–68, Nov.
2007

[9] M. Solga and B. Groza, “Computational performance evaluation for
symmetric and asimetric cryptographic functions on Windows and
Unix” unpublished.

[10] R. Tomoiaga and M. Stratulat, “Evaluation of DES, 3 DES and AES
on WINDOWS and UNIX platforms”, in press

[11] R. Tomoiaga and M. Stratulat, “AES Behavior on WINDOWS and
UNIX Platforms”, in press

[12] Y. Yeom, Y. Cho, and M. Yung “High-Speed Implementations of
Block Cipher ARIA Using Graphics Processing Units,” in
Proceedings of the 2008 International Conference on Multimedia and
Ubiquitous Engineering (April 24 - 26, 2008). MUE. IEEE Computer
Society, Washington, DC, 271-275. 2008.

[13] http://www.nvidia.com/object/cuda_learn_products.html 17.05.2010
[14] http://math.ut.ee/~uraes/openssl-gpu/ 17.05.2010
[15] http://funinf.cs.unibuc.ro/~gheorghe/curs/arhCalc/lec/l02four.pdf,

17.05.2010
[16] http://revistaie.ase.ro/content/39/I%20Buligiu.pdf, 17.05.2010

176

