
Abstract
The NAS Conjugate Gradient (CG) benchmark is an
important scientific kernel used to evaluate machine
performance and compare characteristics of different
programming models. Global Arrays (GA) toolkit
supports a shared memory programming paradigm and
offers the programmer control over the distribution
and locality that are important for optimizing
performance on scalable architectures. In this paper,
we describe and compare two different parallelization
strategies of the CG benchmark using GA and report
performance results on a shared-memory system as
well as on a cluster. Performance benefits of using
shared memory for irregular/sparse computations have
been demonstrated before in the context of the CG
benchmark using OpenMP. Similarly, the GA
implementation outperforms the standard MPI
implementation on shared memory system, in our case
the SGI Altix. However, with GA these benefits are
extended to distributed memory systems and
demonstrated on a Linux cluster with Myrinet.
1. Introduction
The NAS Conjugate Gradient (CG) benchmark is often
used to evaluate machine performance and compare
characteristics of different programming models. It
solves an unstructured sparse linear system by the
conjugate gradient method. The CG benchmark is quite
memory intensive; it tests irregular long distance
communication and employs unstructured sparse
matrix vector multiplication. The benchmark has been
parallelized and studied in context of multiple
programming models [3, 4, 5, 8, 9, 10, 14, 16],
including shared memory.
The shared/global view of data often leads to elegant
and efficient implementations, especially for sparse and
irregular problems [1, 19]. The OpenMP shared-
memory programming model has been shown effective
for parallelization of the CG benchmark and has
delivered performance superior to that of the reference
MPI implementation [8]. Shared memory is well
established for small and medium scale systems as both
a simple to use and efficient programming approach.
However, large scalable shared-memory architectures
have been more difficult and expensive to build than
distributed memory systems. The underlying Non-
Uniform Memory Access (NUMA) characteristics of

such systems requires consideration of the data
distribution and locality of reference to achieve
performance, yet the traditional shared-memory
programming style provides very little support to the
programmer to address these issues.
The purpose of the current work was to evaluate the
effectiveness of the Global Arrays (GA) shared-
memory approach as the parallelization strategy for the
NAS CG benchmark on representative modern parallel
systems. They are the SGI Altix and the Linux cluster
with Myrinet that represent shared- as well as
distributed- memory designs, respectively. GA is
implemented as a library with multiple language
bindings (Fortran, C, C++, Python). It provides a
portable interface through which each process in a
parallel program can independently, asynchronously,
and efficiently access logical block of physically
distributed matrices, with no need for explicit
cooperation by other processes. This characteristic is
similar to the traditional shared-memory programming
model. However, the GA model also acknowledges
that remote data is slower to access than local ones, and
it allows data locality to be explicitly specified and
used. In these respects, it is similar to message passing.
Thanks to these, as well as other advanced features of
GA— such as non-blocking communication operations
and direct access to shared-memory data— the GA
implementation of the NAS CG benchmark exceeded
the MPI performance on the systems used in the study.
For example, for Class C performance, improvement of
25.65% is achieved on 32 processors of the Linux
cluster and 44.32% on 64 processors of the SGI Altix
over the standard MPI implementation. The
corresponding improvement rates for Class B are
26.49% and 33.82%. For the smallest problem size
represented by Class A, performance of the GA and
MPI versions were comparable. This paper describes
and discusses merits of two parallelization strategies
for this benchmark: one fully distributed and the other
partially distributed. As the abstract machine model
targeted by both implementations, a cluster with
shared-memory nodes is assumed.
The rest of this paper is organized as follows. Section 2
introduces the kernel CG algorithm. Section 3 outlines
characteristics of GA while Section 4 describes our
implementations of the CG benchmark and contrasts
them to the MPI-based counterparts. Section 5

Parallelization of the NAS Conjugate Gradient Benchmark Using
the Global Arrays Shared Memory Programming Model

†Yeliang Zhang, ‡Vinod Tipparaju, ‡Jarek Nieplocha, †Salim Hariri
†University of Arizona

‡Pacific Northwest National Laboratory

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

compares performance of the GA and MPI strategies,
related work is described in Section 6, and Section 7
summarizes our research and presents conclusions.
2. Kernel CG Description
NAS kernel CG is to solve an unstructured sparse
linear system by the conjugate gradient method. It uses
the inverse power method to find an estimate of the
largest eigenvalue of a symmetric positive definite
sparse matrix with a random pattern of nonzero values
[6]. The inverse power method involves solving a
linear system of equations Az = x using the conjugate
gradient method. Figure 1 illustrates the algorithm. The
values for the size of the system n, number of outer
iterations, and the shift λ for different problem sizes in
the benchmark are given in [6]. In every iteration, the
calculated eigenvalue estimate ζ must agree with the
reference value ζREF within a tolerance of 1.0 × 10-10,
i.e., |ζ - ζREF| � 1.0 × 10-10.

z=0
r = x
ρρρρ = rTr
p = r
do i = 1, 25

q = Ap
αααα = ρρρρ / (pTq)
z = z + ααααp
ρρρρ0 = ρρρρ
r = r - ααααq
ρρρρ = rTr
ββββ = ρρρρ / ρρρρ0

p = r + ββββp
enddo
compute residual norm explicitly: ||r|| = ||x – Az||

Figure 1: Conjugate Gradient Method: algorithm (left)
and parameters for three problem sizes (right)

3. Global Array Toolkit
In the traditional shared-memory programming model,
data is located either in “private” memory (accessible
only by a specific process) or in “global” memory
(accessible to all processes). In shared-memory
systems, global memory is accessed in the same
manner as local memory, i.e., by load/store operations.
The shared-memory paradigm eliminates the
synchronization that is required when message passing
is used to access non-private data. A disadvantage of
many shared-memory models is that they hide the Non-
Uniform-Memory-Access (NUMA) memory hierarchy
of the underlying distributed-memory hardware. The
GA programming model exposes to the programmer
the hierarchical memory of modern high performance
computer systems, and by recognizing the

communication overhead for remote data transfer, it
promotes data reuse and locality of reference [17,22].
The distribution and locality information is available
through library operations that 1) specify the array
section held by a given process, 2) specify which
process owns a particular array element, and 3) return
list of processes and the blocks of data owned by each
process corresponding to a given section of an array.
Figure 2 shows a dual view of the global array data
structure.
The GA programming model can be characterized as
follows. Processes can communicate with each other
by creating and access GA distributed matrices as well
as conventional message-passing (MPI). Global arrays
are physically distributed blockwise, either regularly or
as the Cartesian product of irregular distributions on
each axis. Each process can independently and
asynchronously access any two-dimensional patch of a
GA distributed matrix, without requiring cooperation
by the application code in any other process. Each
process is assumed to have fast access to some portion
of each distributed matrix, and slower access to the
remainder. These speed differences define the data as
being ‘local’ or ‘remote’, respectively. If the data is
‘local’, process can directly access the memory block
to retrieve data instead of using ‘get’ access. Each
process can determine which portion of each
distributed matrix is stored ‘locally’ and can access it
directly (by a local pointer). Every element of a
distributed matrix is guaranteed to be ‘local’ to exactly
one process. In addition to the one-sided asynchronous
operations, GA provides a set of collective operations
that work on sections or whole global arrays. They
include BLAS-like data-parallel operations such as dot
product, scale, or vector addition. Some of these
operations were useful for implementing the CG
algorithm.
GA has been used intensively in scientific applications
and shown high performance and scalability [17,22].

Figure 2: Dual view of global array data structure

Size n # iter non-zeros
per row

λλλλ

Class A 14000 15 11 20

Class B 75000 75 13 60

Class C 150000 75 15 110

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

4. Analysis and Design
We profiled the serial version of the CG benchmark to
gain some insight into where most of the computation
time was spent. The main iteration loop of CG contains
one sparse matrix vector multiplication, two reduction
sums, and a few scalar operations. The most
computationally expensive part of the code is the
sparse matrix vector multiplication: q = A ×××× p. This
operation takes 99.6%, 96.5%, and 95.7% of the total
execution time on the Class A, B, and C problem sizes,
respectively. Thus, this seemed to be the area where we
needed to effectively utilize the GA model and analyze
the different implementation options we have. More
than the mere implementation of the CG benchmark
using the GA toolkit, our objective is to analyze the
effectiveness in GA’s ability and efficiency of its
feature set, and to provide efficient shared-memory
programming style for both distributed and shared-
memory architectures.
We hence start by describing how we implemented a
fully distributed version of the CG benchmark where
the array A and vectors q and p were fully distributed
among the participating processors. The term “fully
distributed” is used here to emphasize the difference
from the standard MPI CG version that uses a hybrid
distributed/replicated scheme for storing vectors used
in the CG algorithm in order to minimize
communication time. The first distributed
implementation (naïve) was then compared to the
standard (hybrid) MPI version. To better understand
the effects of replication of vectors in the MPI CG code
of the NAS NPB 2.3 suite, we modified it to fully
distribute vectors q and p. We also improved the
original naïve GA version of the benchmark by
exploiting the locality information the GA model
provides and contrasted it against the fully distributed
MPI implementation.
After learning that the replicated/distributed based
scheme of MPI was essential for reducing the
communication volume that limited scaling, we
subsequently implemented a similar solution in the GA
code. That modification would not be feasible to
implement without support for processor groups most
recently introduced to GA. An alternative solution
would require collective high-level linear algebra
operations used in the fully distributed version to be
replaced by low-level code.
4.1 Naive GA Implementation
Our first implementation of CG involved distributing
the array A in rows among processes and distributing
the vectors p and q. This is the simplest and most
natural parallelization strategy for the CG benchmark
using GA, and it was derived by closely following the
serial version of the benchmark (rather than the MPI

version). Figure 3 shows the distribution of matrix A
and vector p, q with respect to four processors. The
subscript in Figure 3 stands for the processor rank. This
parallelization scheme leads to quite a compact (in
comparison to MPI code) and straightforward code
and, in particular, it relies on the vector addition and
dot product operations GA provides. We call this
implementation “naïve” since this implementation
might represent code written by a user unfamiliar with
the features GA offers for optimizing locality or
exploiting the underlying machine model.
For “i” representing the process rank, the operation of
qi = Ai × p is shown in Figure 4. On each processor, the
partial matrix-vector multiplication result is first stored
in a temporary local buffer w, then the put operation is
used to copy the data into a global array. In fact this
copy is unnecessary since we could use direct memory
access by storing result in the local part of vector q.
Because all processes do not store a full copy of p and
q, the naïve GA implementation uses less local buffer
space for these vectors than the standard MPI
implementation, described in the following section. In
addition, the constraint imposed by the MPI
implementation on the number of processors being a
power of two is not applicable: the GA version can use
an arbitrary number of processors.
4.2 MPI Implementation of CG
The MPI CG code accepts a power of two number of
processors that are mapped onto a grid of row by
column processors. The total number of processors is
equal to processors per row times processors per
column. If total number of processors is not a square,
then processors per column are double the processors
per row. The subroutine makea generate an n/nprows
by n/npcols submatrix for each processor. Computation
load is equally distributed among processors. The
vectors p and q are replicated and distributed (same
applies to r and z). Specifically, vectors are replicated
along the rows -- within every row, vectors are
distributed, but among rows, the vectors are duplicated.
For example, 16 processors would be divided into 4x4
processor grid. Vectors would be distributed into four
blocks and then the identical copy of each block is
stored on four corresponding processors.
In order to obtain the correct copy of q vector, there are
two transpose processor communications to update q
on different processor rows in each iteration. Profiling
results on the Linux cluster showed that more than 90%
of the computation cost is contributed to the matrix-
vector multiplication q = Ap. After the calculation, the
partial multiplication results are summed across rows.
Then processors on different logical grid rows
exchange piece of q to assure every logical processor
row has the identical copy of q for the next iteration.
Most of the communication time is spent in these two

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

operations. Table 1 shows communication time to all-
reduce q from all the processes, the total
communication time during the benchmark execution,
the time spent on matrix-vector multiplication and the
total execution time. (Class A and Class C have similar
characteristics.)
The standard MPI version of CG uses multiple replicas
of vectors p, q, r, z apparently to reduce the volume of
communication. To better understand performance
implication of this technique, we implemented a
version of the MPI benchmark that avoids the
replication and compared its performance against the
standard version. In the MPI fully distributed CG
implementation, every process is assigned a strip of
rows of matrix A. Accordingly, every vector is
distributed within the processes. Every process first
retrieves the whole vector p then does the matrix-
vector multiplication. Then the MPI_Allgather
operation is used to store the partial matrix-vector
multiplication result into vector q. In this
implementation, there are two major data-
communication phases. The first occurs in the matrix
multiplication; every process needs to obtain the
portion of vector p it does not own. Second is the
MPI_Allgather operation to assure every process has
the current value of q. Figure 5 illustrates that the

replicated/distributed scheme used by the standard MPI
implementation is very effective strategy for extending
scalability over the fully distributed implementations of
CG.
4.3 Optimized Fully Distributed GA Version
GA allows a process to access the memory allocated
for a global array by any other process in the same
SMP node. This is possible because for performance
reasons shared memory is used for storing global
arrays. Thus, although every process only updates the
portion of q it owns, all the other processes in the same
SMP node are able to access this memory directly,
thereby avoiding unnecessary copies. In case of the
SGI Altix, a process can access data in the entire global
array directly. To make such capability useful to the
programmer, GA offers query interfaces about task
mapping to individual SMP nodes of a cluster in the
parallel job.
In the case of the CG benchmark, we can easily
eliminate the put operation for vector q (storing the
product in the local part of q instead of the temporary
vector w, see section 4.2) and get operation for parts of
p located on the same SMP node. The communication
time across the network can be optimized as well.
Specifically we would like to hide the cost of the data
transfers by overlapping communication with
computations involved in the sparse matrix vector
multiplication and pipelining these operations for
multiple logical blocks, see Figure 4. The overlap is
accomplished through the use of the GA nonblocking
get operation that was introduced in version 3.3 of the
package. The number of logical blocks does not have
to match the number of processors. We found that a

0

50

100

150

200

250

300

350

400

1 2 4 8 16 32

Number of Processes

Ti
m

e
(s

ec
on

ds
)

MPI

MPI fully distributed

GA Naïve

Figure 5: CG Class B performance of the standard
and fully distributed MPI implementations
compared to the naïve GA implementation on the
Linux cluster with Myrinet

p0

p2

p1

p3

q0

q2

q1

q3

= ×

Figure 3: Fully distributed p and q in CG
matrix-vector multiplication

Ai0 Ai1 Ai2 Ai3=qi ×

p0

p2

p1

p3

Figure 4: Local product qi = Ai × p

A0

A2

A1

A3

P Communic
ation of q
vector

Total
communica
tion

Matrix-vector
multiplication
execution time

Total
time

2 3.38 3.58 156.42 167.25

4 4.31 5.4 78.40 87.67

8 4.58 5.83 41.79 49.84

16 4.78 5.87 21.12 28.25

Table 1: Major components of the execution time
in seconds in the MPI version for Class B on the
Linux cluster

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

good performance is achieved if the ratio of the number
of blocks and processors ranges from half to one. The
best approach to initiate the pipeline process is to start
computations with blocks of p that are stored on the
local SMP node for which the data is directly available
through shared memory. Thus we can overlap the
computation with communication for next remote
block.
4.4 Process Group Based Implementation
Global Arrays can be created under two process group
contexts: within the whole world group or within a
specified processor group. The GA operations can be
performed on arrays created in either context. The MPI
NAS Parallel CG algorithm replicates its vectors p and
q. One of the ways to achieve a similar replication
effect for these vectors in GA is to create the p and q
vectors over a group of processes. This can be done
such that vectors are replicated between the processor
groups and distributed within the group. Because of
similar distributions, MPI and our implementation will
have similar calculation and communication patterns.
Collective linear algebra operations in the GA
implementation can be made to operate within the
scope of any group. A processor group, based on how
many processes it is created with, could encompass
more than one SMP node.
We start off by determining the number of rows of the
matrix A that should be assigned to each processor
group. Within every processor group, the vectors p and
q are distributed; across groups, they are replicated.
When possible, matrix-vector multiplication exploits
shared memory but the computation load remains the
same as in the MPI version. Figure 6a shows the access
to matrix A on 4 processes in MPI and GA. The thick
lines define array blocks assigned to processors.
Because the corresponding vector p required to
perform multiplication is located in shared memory,
processors on the same node can access each other’s p.
We change the access to matrix A such that the two
processes that are on the same SMP node could share

access and compute a partial q. Access of matrix A can
similarly be modified for a general case such that all
the processes in the SMP node compute a partial q.
As in the MPI implementation, after the matrix-vector
multiplication, there are two stages of communication:
1) Summation of q within the processor group, and 2)
Exchange vector q among the groups. The summation
operation involves adding parts of the computed q
within a group. This is done in a pair wise manner
using a pair wise all-reduce algorithm as shown in
Figure 6b. In addition to this, an exchange with the
transpose process needs to be done. This is
accomplished by doing a non-blocking put to the
transpose processor. From Figure 7, it can be seen that
GA has one additional transpose but when running on
SMP nodes with more than one process per node, this
extra transpose is done within the node.
5. Performance Evaluation
Two classes of systems were chosen to perform the
experimental evaluation. They have been chosen to
show the impact of shared and distributed memory
architectures on effectiveness of the two different
programming paradigms evaluated in this paper using
the fully distributed and hybrid process group based
methods.
1) Cluster of 24 dual 1GHz Itanium-2 nodes. The
compute nodes run Red Hat Linux with kernel 2.4-20.
The compute nodes have 6 GB of memory per node
and are interconnected with the dual port Myrinet E
cards.
2) SGI Altix 3000 128-way SMP with the Intel
Itanium-2 1.5 GHz processors. It runs ProPack 3.0,
with SMP NUMA enhanced Linux 2.4.21. The
processors are connected with Dual-plane, fat-tree
topology to provide 3.2 GB/s bidirectional bandwidth
per link.
We used GNU C compiler version 3.3 and Intel Fortran
compiler version 7.0 on both platforms.
5.1 Fully Distributed Implementations

Access pattern for
matrix A in MPI

Access pattern for
matrix A in GA

Figure 6a: Access pattern for four processes Figure 6b: Summation of q within a group of 4
processors – Exchange based All-reduce

Partial q
vector

Partial q vector
Buffer

Buffer

+ +
0

1 3

2

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

The implementation of CG used here is the standard
MPI distributed version described in Section 4.2.
We compare it to the optimized fully distributed Global
Array implementation of the CG benchmark described
in section 4.3. On shared memory architectures like the
Altix, GA utilizes the shared memory and does not
require any explicit copies to access data. For the fully
distributed case on the Altix, both the MPI and the
optimized GA implementations scale well for Class B
and Class C given that the size of the data transfer is
large. For class A, the scaling curve flattens after 16
processors and the constant overhead is clearly
reflected in the numbers from there on. Figure 8 shows
the execution results of the fully distributed case on
Altix1. The time axis in Figure 8 is in log scale.
On the cluster for the optimized fully distributed case,
GA implementation performs better than the NAS MPI
implementation for Class B and Class C and the results
indicate good scalability (Figure 9). The performance
of the fully distributed method, on clusters is dependant
on how efficient the underlying network
communication in GA operations is. With the use of
ARMCI’s non-blocking RMA underneath, GA

operations are efficient and have been designed to
overlap as much of the communication as possible
[15]. For the smallest problem size (Class A) when the
data each processor operates on is very small the GA
optimized fully distributed implementation does not
perform as well as MPI primarily due to the amount of
computations being insufficient to overlap with
communication and the higher overhead associated
with global index translation for GA data structures.
The Class A results (Figure 9) show the slightly higher
overhead in using GA over MPI which is perceived
when the amount of data to be handled per processor is
very less, and the amount of parallelism is depleted for
the small size of the benchmark. This overhead is a
small tradeoff for the ease of programming and the
higher level of abstraction GA provides [18].
5.2 Process Group Based Implementations
We compared the Global Array implementation
described in section 4.4 with the standard unmodified
MPI version of the CG benchmark. These are
equivalent versions that use similar distribution
strategies for vectors in the CG algorithm, see Figure 1.
Performance results presented in Figures 10 and 11,

0

1

10

100

1000

10000

1 2 4 8 16 32Number of Processes

Ti
m

e
(s

ec
on

ds
)

MPI - Class A
GA - Class A
MPI - Class B
GA - Class B
MPI - Class C
GA - Class C

Figure 9: Fully distributed GA and MPI
implementations of NAS CG on the Linux cluster

0.1

1

10

100

1000

10000

1 2 4 8 16 32 64

Number of Processes

Ti
m

e
(s

ec
on

ds
)

MPI - Class A
GA - Class A
MPI - Class B
GA - Class B
MPI - Class C
GA - Class C

Figure 8: Fully distributed GA and MPI
implementations of NAS CG on the SGI Altix

0.1

1

10

100

1000

10000

1 2 4 8 16 32 64

Number of Processes

Ti
m

e
(s

ec
on

ds
)

MPI - Class A

GA - Class A

MPI Class B

GA - Class B

MPI Class C

GA - Class C

Figure 10: Performance of group-based GA and
standard MPI implementations on the SGI Altix

MPI version

Figure 7: Transpose exchange on 2-way SMP node

q0

q1

send

q2

q3

GA version

qw0

qw1

qw2

qw3

update

copy

copy

update

q0

q1

q2

q3

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

demonstrate that GA version is faster than the fully
distributed MPI implementation with exception for a
few data points for the smallest problem size. This is
in part due to computation overlapped with data
exchange that replaces the all-gather operation in MPI.
Direct use shared memory access contributes to
efficient execution of matrix-vector multiplication and
data exchange is done within local node, while the MPI
counterpart code requires more time to complete these
two operations.
6. Related Work
The NPB is a suite of well-recognized benchmarks for
testing compilers, parallel hardware and parallelization
tools [20,21]. Its popularity comes the fact that the
benchmarks are derived from real world computational
fluid dynamics and aerophysics applications.
In addition to the MPI implementation of NPB CG
benchmark distributed by NASA, there exist a number
of other implementations. In [10], CG was
implemented with HPF replicating vector p, r and z on
each process. However, the HPF implementation
shows poor scalability because of the daxpy operations
on a replicated vector p. CG was also implemented
using OpenMP in [8] and [9]. Since OpenMP uses
compiler directives to achieve parallelization and does
not provide much control over data locality, it is rather
difficult to optimize performance. Paper [8] shows that
an OpenMP implementation can outperform MPI on a
shared memory system but requires substantial
programming efforts on data set adaptation and the
optimization of the inter-thread communications. In
[14], the authors compared the Unified Parallel C
(UPC) and MPI CG implementations. MPI showed
better performance and scalability than UPC. The
paper authors claimed that UPC implementation does
not give a better result because the high cost of the
UPC collective operations. In [16], CG is implemented
on PVM system tested on Ethernet and two types of

FDDI networks. The authors stated that using PVM
fast send and receive calls for direct transfer of data
without requiring buffer initialization and packing
would bring the PVM performance comparable to that
of MPI implementation on certain platforms. CG has
also been implemented using a high-level parallel
programming language ZPL [2, 3, 12]. The ZPL
version used parallel array remapping to reduce the
communication time. For Class C ZPL version showed
performance comparable to MPI on the IBM SP2 and
Linux. It was however less competitive on the Cray
T3E [2]. The remap operator of ZPL makes the code
simpler and runable on any number of processor while
in MPI implementation, the total number of processors
is limited to be a power of two.
The Co-Array Fortran (CAF) CG implementation in [5]
relies on ARMCI which is the same run-time system in
GA used in our CG implementation; it can perform
data transfers on the memory directly using a NIC
DMA engine to achieve good computation-
communication overlapping. The CAF implementation
allocates buffer for vector p used in CG as static data.
After the DMA get is initiated, data was copied from
temporary buffer into the q array. The buffer size is
large with a starting memory address independent of
the addresses of the common blocks. This layout of
memory and buffer cause L3 cache misses 3 times
larger than the corresponding MPI code. Though
converting vector q into a co-array reduces the
potential cache misses, the CAF implementation shows
very close performance to that of MPI. However on
certain numbers of processes, the CAF implementation
performs worse than MPI. Hybrid models were also
used to exploit shared memory architectures. Papers [7,
11, 13] try to use a hybrid programming model of MPI
and OpenMP to take advantage of the SMP
architecture while keeping the flavor of message
passing. All of these studies show that hybrid
implementations of CG can achieve better results than
a pure MPI implementation when a favorable data
distribution on each SMP node is adopted. However,
the hybrid implementations are difficult to develop.
In all of these studies, MPI was hard to outperform:
none of the other models showed as consistent
performance advantage over the MPI implementation
as the GA group version achieved.
7. Conclusions
The NAS CG benchmark exhibits a large amount of
communication, memory reference and computation
patterns which are very common in real-world
scientific applications. Two implementations, fully
distributed version and process group based version, of
the CG benchmark using GA were discussed. They
involve different distributions and communication
patterns that needed to be appropriately optimized. On

0

1

10

100

1000

1 2 4 8 16 32
Number of Processes

T
im

e
(s

ec
on

ds
)

MPI Class A
GA - Class A
MPI - Class B
GA - Class B
MPI - Class C
GA - Class C

Figure 11: Performance of group-based GA and
standard MPI implementations on the Linux cluster

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

both cluster and shared memory architectures, GA
implementation of CG demonstrates better
performance than MPI in all the cases, except the
smallest Class A on larger processor counts. This is
significant since GA is a substantially higher-level
programming model than MPI, and MPI performance
has long been studied and optimized by a broad
research community as well as computer vendors. We
found that the higher-level abstractions GA model
offers enabled a fairly quickly parallelization of the
CG benchmark; and the availability of interfaces for
exploiting locality and optimizing communication
allowed us to achieve competitive performance as
compared to the reference MPI implementation [18].
The key factor to achieving performance was
exploitation of locality and underlying machine
configuration to reduce the access contention, and
overlapping the computation with communication. The
zero copy protocol used by GA reduces the memory
access contention and speeds up the data
communication; therefore, more computation can be
overlapped with the communication. Accessing
directly data located in shared memory leads to further
performance improvements.
References
[1] A. George, E. Ng, Some Shared Memory is
Desirable in Parallel Sparse Matrix Computation, ACM
SIGNUM, Vol. 23, 2, 1988.
[2] B.L. Chamberlain, S. Choi, Steven J. Deitz, L.
Snyder. The high-level parallel language ZPL improves
productivity and performance. Proc. PPHEC’ 04.
[3] C. Lin, L. Snyder, R. Anderson, B. Chamberlain,
S. Choi, G. Forman, E. Lewis, and W. D. Weathersby.
ZPL vs. HPF: A comparison of performance and
programming style. Tech. Report 95--11--05, U.
Washington, 1995.
[4] Clmenon, C., K.M. Decker et al., HPF and MPI
implementation of the NAS Parallel Benchmarks
supported by integrated program engineering tools,
Proc. PDCS'96, 1996.
[5] C. Coarfa, Y. Dotsenko, J. Eckhardt, J. M.
Mellor-Crummey: Co-array Fortran Performance and
Potential: An NPB Experimental Study. LCPC 2003.
[6] D. Bailey, T. Harris, W. Saphir, R. Van der
Vijingaart, A. Woo, and M. Yarrow, The NAS Parallel
Benchmarks 2.0, Technical Report NAS-95-020,
NASA Ames Research Center, 1995.
[7] F. Cappello, D. Etiemble, "MPI versus
MPI+OpenMP on the IBM SP for the NAS
Benchmarks," Proc. SC’2000.
[8] G. Krawezik, F. Cappello. Performance
Comparison of MPI and three OpenMP Programming
Styles on Shared Memory Multiprocessors. Proc. 15th
ACM SPAA, 2003

[9] H. Jin, M. Frumkin, and J. Yan. The OpenMP
Implementation of NAS Parallel Benchmarks and Its
Performance. NAS Tech. Report NAS99 -011, 1999.
[10] M. Frumkin, H. Jin, J. Yan, Implementation of
NAS Parallel Benchmarks in High Performance
Fortran. Proc. IPDPS’ 2000.
[11] N. Drosinos,N. Koziris, Performance Comparison
of Pure MPI vs. Hybrid MPI-OpenMP Parallelization
Models on SMP Clusters, Proc. IPDPS'04.
[12] S. J. Deitz, B. L. Chamberlain, and L. Snyder.
The design and implementation of a parallel array
operator for the arbitrary remapping of data. ACM
Conference on Principles and Practice of Parallel
Programming. 2003.
[13] T. Viet et al., Optimization for Hybrid MPI-
OpenMP Programs on a Cluster of SMP PCs, Japan-
Tunisia Workshop on Computer Systems and
Information Technology, 2004.
[14] T. El-Ghazawi, F. Cantonnet, UPC Performance
and Potential: A NPB Experimental Study
Supercomputing 2002.
[15] V. Tipparaju, M. Krishnan, J. Nieplocha, G.
Santhanaraman, D. Panda, Exploiting Non-blocking
Remote Memory Access Communication in Scientific
Benchmarks, in Proc. HiPC'2003.
[16] S. White, S., Alund, A., and Sunderam, V. S.
Performance of the NAS parallel benchmarks on PVM-
Based networks. Journal of Parallel and Distributed
Computing 26,1 (1995), 61--71.
[17] J. Nieplocha, B. Palmer, V.Tipparaju, M.
Krishnan, H. Trease, Advances, Applications and
Performance of the Global Arrays Shared Memory
Programming Toolkit, to appear in Intern. J. High Perf.
Comp. Applications, 2005.
[18] D. Bernholdt, J. Nieplocha, P. Saddayappan,
Raising the Level of Programming Abstraction in
Scalable Programming Models, Proc. P-PHEC 2004
[19] F. T. Chong, A. Agarwal, Shared Memory versus
Message Passing for Iterative Solution of Sparse,
Irregular Problems, Parallel Processing Letters, Vol. 9,
No. 1, 1999.
[20] T. Ngo, L. Snyder, B. Chamberlain, Portable
Performance of Data Parallel Language. SC 97, 1997.
[21] V. Adve, G. Jin, J. Mellor-Crummery, Q. Yi,
High Performance Fortran Compilation Techniques for
Parallelizing Scientific Codes. SC’98
[22] J. Nieplocha, R. Harrison, R. Littlefield, Global
Arrays: A portable shared memory model for
distributed memory computers, Supercomputing'94.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

