
B. Introduction to Data Types

There are two kinds of data types in Java, reference data types and primitive data
types. Reference data types are passed by (or transferred by) name, where as
primitive data types are passed by value.

For example, suppose you ask for the contents of a post office box by name. You
say, “I want the contents of P.O. Box 320”. The box number serves to refer to the
contents of the box. It would be much more difficult to ask for each item in the box
by name. The box name is smaller than the names of all the items in the box.
Addtionally, the number of items in the box is flexible.

A primitive data type, on the other hand, is of a size that is a function of the type
itself. Thus, when a primitive data type is passed, the number of bits required to be
copied is a function of the type .

While Appendix A describes the syntax of the primitive and reference data types,
this section relates the syntax to the semantics.

B.1 The 8 basic data types in Java.

There are 8 basic data types in Java. Five of them are integer data types, 2 are
floating point data types. The 8th data type is the boolean type. The boolean is
valued at either true or false.

6 Introduction to Computer Graphics

Figure B.2-1. The Taxonomy of basic data types.

 Figure B.2-1 shows that the integer and real data types are kinds of numeric data
types. Thus the Taxonomy represents an A.K.O (A Kind Of) relationship for all the
basic data types. This relationship can be modeled with simple class inheritance. In
fact, the class browser in CodeWarrior was used to generate Figure B.2-1 by the
use of the following code:

public class BasicTypes {}
public class BOOLEAN extends BasicTypes {}
public class TRUE extends BOOLEAN {}
public class FALSE extends BOOLEAN {}
class NUMERIC extends BasicTypes {}
class INTEGER extends NUMERIC {}
class REAL extends NUMERIC {}
class CHAR extends INTEGER {}
class BYTE extends INTEGER {}
class SHORT extends INTEGER {}
class INT extends INTEGER {}
class LONG extends INTEGER {}
class FLOAT extends REAL {}
class DOUBLE extends REAL {}

More information is given about classes and class inheritance later in this appendix.

A summary of the different primitive data types is shown in Figure B.2-2.

Introduction to Computer Graphics 7

type name value value

boolean 1 bit true,false

char 16 bit unicode character

byte 8 bit signed -28-1K28−1 −1

short 16 bit signed -216-1K216−1 −1

int 32 bit signed -232-1K232−1 −1

long 64 bit signed -264-1K264−1 −1
float

double

32 bit

64 bit
IEEE - 754 -1985

6 - 7 sig. figs.

14 -15 sig. figs.
Figure B.2-2. Basic Data Type Summary

In some books the basic data types are called primitive data types. Unlike other
languages, Java has no facility for defining new basic data types.

B.1.1 Integer Data Types

There are five integer data types of different sizes and ranges. Four of the integer
data types are signed integers (i.e., an integer that can be negative) and are
expressed by using two's complement notation. Let n represent the number of bits
needed to make up the integer data type. The most significant bit is used to store the
sign of the number and the remaining n-1 bits are used to represent the value. The
minimum value is − −2 1()n and the maximum value is 2 11()n− − .

Integer Type Bits Width min range max range
byte 8 - 1 2 8 1 2 7
short 1 6 - 3 2 7 6 8 3 2 7 6 7
i n t 3 2 - 2 1 4 7 4 8 3 6 4 7 - 2 1 4 7 4 8 3 6 4 7
long 6 4 " -9223372036854775808" "9223372036854775807"

Fig. B.2.1-1. Signed Integer Data Types

The values used to set an integer data type are expressed as a sequence of decimal,
octal, or hexadecimal digits. Fig. B.2.1-2 shows how to formulate constants in
Java using the base of 10, 8 and 16.

8 Introduction to Computer Graphics

decimal octal hexidecimal
4 2 " 0 7 7 " 0x2a

Fig. B.2.1-2. Constants in varying Radix

A 0 is used to denote an octal number. The 0x or 0X prefix denotes a hexadecimal
number. Symbols corresponding to the decimal value of 10 - 15 are written as A -
F. Integer literals are assumed to be of type int unless they end in the letter L or l.

The integer data type may be cast into the char data type, and then printed.
Additional, the radix of the data’s’ string representation may be changed using API
invocations. For example:

public class IntegerTest {
public static void main(String args[]) {
println("hello world");
printHex(65535);
for (int i=24; i < 52; i++){

print((char)i+"");
}

}
public static void printHex(int i) {
println(Integer.toString(i,16));

}
public static void print(int i) {
System.out.print(i);

}
public static void println(int i) {
System.out.println(i);

}
public static void print(Object o) {
System.out.print(o);

}
public static void println(Object o) {
System.out.println(o);

}

public static void numberTest(
int i,
double d) {

float f = 1.2f;
short s = 3;
byte b = -4;

Introduction to Computer Graphics 9

char c = 'J';
boolean t = true;
long l = 3294;
System.out.println(

"i="+i+
"\nd="+d+
"\nf="+f+
"\ns="+s+
"\nb="+b+
"\nc="+c+
"\nt="+t+
"\nl="+l+
"\ni="+
Integer.toString(i,36)+
"+"+
Integer.toString(s,36)+
"="+
Integer.toString(s+i,36));

f = (float)d;
b = (byte)f;
c = (char)f;

}
}

The above code will print:
hello world
ffff

- !"#$%&'()*+,-./0123

B.1.2 Elementary Example of primitive data types

Primitive types must be initialized before being used in Java.

For example, in the following code:
public class TrivialApplication {

public static void main(String args[]) {
int x;
System.out.println(x);

}

}

10 Introduction to Computer Graphics

a variable, x , was declared, but not initialized before being accessed. This is a
compile-time error in Java and the compiler emits:

Error : Variable x may not have been initialized.
TrivialApplication.java line 7 System.out.println(x);

The data types of byte, short, int, long, float and double are signed. The data
types of boolean and char are unsigned. The char data type in Java is represented
by an international standard for character representation, called Unicode [Unicode].
For example:

char c = ‘a’;

It is possible to assign a numeric literal to a character-typed variable and a character
literal to an integer variable:

char theChar = 48;
integer theValue = ‘a’;

All real numbers in Java are stored either as single or double precision variables,
called float and double. The Java reals use the IEEE 754-1985 format [IEEE]. The
smallest and largest positive non zero values for floats range from 1.40239846e-45
to 3.40282347e+38 (Float.MIN_VALUE and Float.MAX_VALUE). The smallest
and largest positive non zero values for doubles range from
4.94065645841246544e-324 to 1.79769313486231570e+308
(Double.MIN_VALUE and Double.MAX_VALUE).

For example:

class FpError {
public static void main(String argv[]) {
float fmin = Float.MIN_VALUE;
float fmax = Float.MAX_VALUE;
double dmin = Double.MIN_VALUE;
double dmax = Double.MAX_VALUE;
String b = " ";
System.out.println(fmin + b + fmax +

b + dmin + b + dmax);
}

}

The above outputs:
1.4E-45 3.4028235E38 4.9E-324 1.7976931348623157E308

Introduction to Computer Graphics 11

The following program shows how to code the escape sequences into Java:

public interface Char {

char backspace = '\b';
char horizontalTab = '\t';
char newLine = '\n';
char formFeed = '\f';
char carrageReturn = '\r';
char doubleQuote ='\"';
char singleQuote ='\'';
char backSlash = '\\';
char maxOctal = '\377';
char minOctal = '\000';
char maxUnicode = '\uFFFF';
char minUnicode = '\u0000';

}

Note how the back slash “\” is used as an escape character. Thus, to print a back
slash, you must insert two back-slashes, ‘\\’. Also note, the unsigned 16 bit
characters use ‘\uxxxx’ to indicate the hexadecimal representation of the character.

B.2 Classes

This section introduces basic object oriented ideas and usage. In the first section we
describe the concept of a class.

B.2.1 Class Concepts

An instance of a class is called an object. An object can contain both the data
structure of a program and the algorithms needed to manipulate the data structure.
As a result of containing the data structures, an instance is said to contain
properties. As a result of having both properties and the methods for manipulating
them, an instance is said to be modular.

12 Introduction to Computer Graphics

variables

methods

Class

Fig. B.2.1-1 Variables and Methods in a Class

The class name consists of an identifier (which may be of any length), and the class
may extend another class. In Java, classes are able to form an AKO (A-Kind-Of)
taxonomy, as described in Appendix A. For example, if a mammal has hair, then
we can write:

public class Mammal {
boolean hasHair = true;

}

Methods in the Mammal class can alter the properties in an instance of a mammal.
For example:

public class Mammal {
boolean hasHair = true;
public void makeBald() {
hasHair = false;

}
}

In Java, we define classes of objects and then make instances of them. The data
structures in a class can be primitive data types or reference data types (i.e.,
instances of other classes). Since classes can communicate with one another, this
can cause interdependence between classes.

An instance of a class has a type. The new operator is the only way to make an
instance of a class. For example:

class point {
public double x,y;

}

Introduction to Computer Graphics 13

point p1 = new point();
p1.x = 10;
p1.y = 11;

Java allows inheritance between classes and subclasses. Subclasses can inherit
properties and methods from the superclasses. This permits subclasses to build on
the methods and data structures of the parent class. To build on the methods and
data structures of a parent class, a subclass is constructed that extends the parent
class. For example:

public class Human extends Mammal {

In this case, the Human class extends the Mammal class. This means that the
Human is a kind of Mammal. As a result, the Human class is a subclass of the
Mammal class and inherits properties (like hasHair).

All classes descend from the Object class. As a result the Object class is called the
primordial class. As a result of being a subclass of the Object class, all instances
are able to support the toString method. The toString method creates a string
representation of an instance. The string representation of the object is used to
assist in printing.

B.2.2 Overloaded Methods

A class’s methods enable manipulation of class member variables. Special method,
called the constructor enables the creation of new class instances. The constructor
must have the same name as the class. The constructor returns nothing, not even
void. If no constructor is specified then a default constructor is provided. The
default constructor takes null as an argument. The default constructor is overridden
when another constructor is specified. For example:

class Lamp {
boolean on;
int Wattage;
Lamp (int w) {
Wattage = w;

}
Lamp () {
Wattage = 100;

14 Introduction to Computer Graphics

}
}

The Lamp constructor has been overloaded with two versions. The first version
will support:

Lamp dim = new Lamp(40);

While the second version supports the constructor invocation:
Lamp bright = new Lamp();

Java requires that the methods have different signatures. The signature of the
method is determined by the number of arguments and their compile-time types.

B.2.3 Getter and Setter Methods

It is generally a good idea to use getter and setter methods when trying to read or
write a class variable from outside of a class. In order to force the usage of the
getter and setter methods, it is typical to declare the instance variables private.
For example:

public class GetterSetter {
private float salary = 40000;

public float getSalary() {
return salary;

}

public void setSalary(float _salary) {
salary = _salary;

}
}

The GetterSetter example shows that the salary cannot be accessed directly. A
public method, getSalary enables the reading of salary. To set the salary, only the
setSalary method can be used for external classes. For example:

public class Broken {
GetterSetter gs = new GetterSetter();
void test() {
gs.salary = 10;

}
}

Produces a compile time error:

Introduction to Computer Graphics 15

Error : Variable salary in class GetterSetter not accessible
from class Broken.

GetterSetter.java line 15 gs.salary = 10;

Getter and setter methods have become important in the area of Java beans. Java
beans are a component technology that is beyond the scope of this appendix to
discuss.

In some books the getter method is called the accessor and the setter method is
called the mutator.

B.2.4 Casting

Type conversion in Java is called casting. When casting is performed, it is a run-
time operation. Casting is able to convert only between compatible types and
always results in a value, not a variable.

Sometimes the only way to know for sure when types are compatible is to run the
program. If a ClassCastException is thrown at run-time, then the type conversion
failed.

It is always correct to cast an instance from a subclass to its superclass. For
example:

1. for (int i=0; i < v.size(); i++) {
2. s = (Shape) v.elementAt(i);
3. s.print();
4. }

In line 1, an instance of a Vector, v is accessed for size. The elements in the vector
are accessed using line 2. Note that each element in the vector is a class that extends
the Shape class. It is always correct to cast the subclass of the Shape class back into
the superclass. This enables print() method invocation on each shape in the vector
instance.

B.2.5 Null

One of the literals of Java is null. Null is what you get when nothing has been
created. For example:

if (some_object != null) {
System.out.println(“Object Exists!”);

}

16 Introduction to Computer Graphics

Null has a null type and is the default value for any type that has not been created.
For example:

class Test {
Lamp l;

}
Test t = new test();

At this point, tl. is equal to null. To make an instance of the Lamp instance
variable, l, you must first create an instance of Test and then instance l. Before this
time, the l instance variable will be null. For example:

Test t = new Test();
t.l = new Lamp();

B.2.6 Subclassing and Super

One feature of the Java class is that it can intrinsically represent taxonomic
structures. The taxonomic structures are formed by Java classes when a sub-class
extends a superclass. This type of extension is called direct inheritance. Thus, in
terms of knowledge representation, Java classes can represent the AKO (a-kind-of)
relationship. In addition, Java classes can represent the has-a relationship using the
class member variables. For example, we can represent the statement: “A student is
a-kind-of human” by creating a student class that extends the human class. We can
also represent the statement: “The student has-a pencil” by placing a class member
variable of pencil class type into the student class construct. In the following
section we present the syntax of Java and its relationship to the semantics of Java.

A class may be used to provide a container for an instance variable of any primitive
type. For example:

class Lamp {
boolean on;

}
...
Lamp l = new Lamp ();
l.on = true;

A Java class may be used to store a reference to named constants:
class Constants {

static final double PIon2 = Math.PI / 2;
}

Introduction to Computer Graphics 17

Notice that these class examples have no methods. When one class extends
another, we are sub-classing a superclass. The sub-class will inherit the member-
variables, and methods, of the superclass. In the case of a name conflict, the sub-
class implementation always over-rides the superclass implementation. For
example:

class Lamp extends Constants {
double power = 100 / PIon2; // watts
boolean on = true;
}

The power in the Lamp class is set using a PIon2 constant that is inherited from the
Constants class. In this case, it is not strictly correct to say that the Lamp is a-kind-
of Constants and thus the extends is being used as a programming convenience,
not a means for knowledge representation.

On the other hand:
class Student extends Human {

Pencil p;
}
class Human {

boolean bald = false;
}

Now we represent the statement that “Doug is a bald student with a pencil”:
Student doug = new Student();
doug.p = new Pencil();
doug.bald = true;

Super is a keyword that permits a subclass to call-upon the instance variable or
method of the superclass. For example:

public class SuperDemo {
public void print() {
System.out.println("Oh, super man!");

}
}

public class SubclassDemo extends SuperDemo{
public void print() {
System.out.println("We are going down, uh huh!");
super.print();

}
public static void main(String args[]) {

18 Introduction to Computer Graphics

SubclassDemo scd = new SubclassDemo();
scd.print();

}
}

Outputs:
We are going down, uh huh!
Oh, super man!

Note that the print method has a different side-effect when invoked from the
SubclassDemo than from the SuperDemo. We say that the SubclassDemo over-
rode the print() method in SuperDemo. In order to invoke the superclasse’s print
statement, a super.print() was needed.

Consider the following example:
/**

An example of storing the AKO hierarchy
using classes.

*/
public class Mammal {

private boolean hasHair = true;
}
public class Human extends Mammal {

public static void main(String args[]) {
System.out.println("Hello World!");

}
}
public class Doggy extends Mammal {
}
public class Student extends Human {
}

public class Professor extends Human {
}

Fig. B.2.6-1 shows the hierarchy in the Professor class.

Introduction to Computer Graphics 19

Fig. B.2.6-1. The Hierarchy in the Mammal class.

Fig. B.2.6-1 shows that a Doggy is a kind of Mammal. It also shows that a
Student is a kind of Human and that a Human is a kind of Mammal, etc.

In summary,

1. Subclassing permits code reuse by inheritance

2. Subclassing permits the incorporation of super class properties

3. Subclass creates and AKO hierarchy.

B.2.8 Inner Classes

Inner classes are classes that are defined locally within another class. These are
called nested classes. Nested classes can only be used within the containing
classes. For example:

/*
This example shows
how to create a nested class.
The Outer class is class called "Outer".
The Inner class is class called "Inner".
The Outer class contains the Inner class.
Inner classes are useful for defining temporary
reference data types.

*/
class Outer {

Inner i = new Inner();
public static void main(String args[]) {
Outer o = new Outer();
o.i.print();

}
class Inner {
void print() {

System.out.println("hello from Inner class!");
}

}

20 Introduction to Computer Graphics

}

The output follows:
hello from Inner class!

The inner classes are temporary and locally scoped. This means that classes that do
not contain the Outer class are unable to make instances of the Inner class directly.
For example:

class DontWork {
Inner i = new Inner();

}

creates the syntax error:
Error : Class Inner not found.
Outer.java line 23 Inner i = new Inner();

Thus the class DontWork cannot compile.

In the following example, methods are overridden in an inner implementation of a
non-inner class. This consititutes a new kind of design pattern (as of JDK 1.1)
called an adapter. The adapter pattern has seen increased use in the GUI class
libraries, but can lead to confusing code. It is probably better software engineering
to limit the use of adapters to small classes. An example adapter follows:

public interface Accountable {
public double getBalance();
public void setBalance(double d);

}

public class AccountableAdapter implements Accountable {
public double getBalance(){return 0;};
public void setBalance(double d){};

}

public class Customer {
AccountableAdapter aa
= new AccountableAdapter() {

public void setBalance(double d) {
System.out.println("balance ="+d);
super.setBalance(d);

}
};

}

Introduction to Computer Graphics 21

In summary,

1. Inner classes are always dynamically allocated.

2. Instances of inner classes are available externally.

3. You cannot make a new instance of an inner class externally.

4. Inner class duration is temporary.

5. Inner classes are locally scoped.

6. Inner classes may not have static members.

B.2.9 This
The this reference can be used when a reference is required as an argument to a
method. For example, the following class supports a print method that enables it to
print itself:

public class ThisTest {
public static void main(String args[]) {
ThisTest tt = new ThisTest();
tt.print();

}
public void print() {
System.out.println(this);

}
public String toString() {
return "Hello from ThisTest!!";

}
}

Will output:
Hello from ThisTest!!

The this reference permits disambiguation between the arguments to a method and
the class member variables. For example:

class Constructor {
int x,y;
Constructor(int x, int y) {
this.x = x; // disambiguate between x and this.x

22 Introduction to Computer Graphics

this.y = y; // which y is y?
}
Constructor() {
this(10,20); // default values being set with this!

}
void print() {
System.out.println("x,y="+x+","+y);

}
public static void main(String args[]) {
Constructor c = new Constructor();
c.print();

}
}

In the above example we see that the constructor that takes not arguments
Constructor() invokes the constructor that takes arguments,
Constructor(int x, int y). This permits a default value to be set for the variables.

The this reference permits a class to make a reference to an instance of itself. This
can be very useful, particularly when working with inner classes. For example:

class Outer {
int x=10;
Inner i = new Inner();
public static void main(String args[]) {
Outer o = new Outer();
o.i.print();

}
class Inner {
int x=20;
void print() {

System.out.println("inner x= "+x);
System.out.println("outer x= "+Outer.this.x);

}
}

}

Will print:
inner x= 20
outer x= 10

Thus, the usage of the this reference in Outer.this permits a reference to the
instance variable in the outer class, from within the inner class.

Introduction to Computer Graphics 23

B.2.7 Interfaces

An interface is like an abstract class with only abstract methods and constant fields.
The interface can hold no method implementations and is defined just like a class
except that it uses the keyword interface rather than class. What follows is the
MBNF for the interface declaration:

 interfaceDeclaration →
< modifier > "interface" identifier ["extends" interfaceName
< "," interfaceName >] "{" < fieldDeclaration > "}" .

 fieldDeclaration →
([docComment] (
 methodDeclaration |
 constructorDeclaration |
 variableDeclaration)) |
 staticInitializer | ";" .

 interfaceName →
identifier | (packageName "." identifier) .

Note that an interface declaration can extend multiple interfaces. The interface can
serve as another reference type, but can never be instanced. Thus classes that
implement an interface can always be cast back to the interface type. Here are a few
of the properties of classes and interfaces:

1. Class and interface names populate the name-space of a package and

should be unique to prevent name-space conflicts.

2. Interfaces can be declared as abstract, but this is not needed.

3. Interface variables can never be set and are allocated with storage at

compile time. It is possible to declare interface variables at static and

final, but this is not needed.

4. All fields must be initialized.

5. Interfaces have no common ancestor, like Object.

6. Field names in an interface must be unique, or it is a syntax error.

 For example:

24 Introduction to Computer Graphics

public interface RealDumb {
double PI = 4;

}
public interface Dum {

double PI = 3;
}

public interface MixedUp extends Dum, RealDumb
{double foo=PI;}

Error : Reference to PI is ambiguous. It is defined in
interface real_dumb and interface dum_constants.

constants.java line 17 {double foo=PI;}

The following are some correct uses of interfaces. For the first example we show
how interfaces may be used to group constants together:

public interface constants {
 double Pi_on_180 = Math.PI / 180;
 double PI = Math.PI;
 double Pi_on_2 = Math.PI/2;
 double Pi_on_4 = Math.PI/4;

}

Here is one where there is a large array of symbols being stored:
public interface CplusplusText {

public static String cplusplusReservedWords[] = {
"asm",
"auto",
"break",
"case",
"catch",
"char",
"class",
"const",
"continue",
"default",
"delete",
"do",
"double",
"else",
"enum",
"extern",
"float",
"friend",

Introduction to Computer Graphics 25

"for",
"goto",
"if",
"inline",
"int",
"long",
"new",
"operator",
"private",
"protected",
"public",
"register",
"return",
"short",
"signed",
"sizeof",
"static",
"struct",
"switch",
"this",
"throw",
"try",
"typedef",
"union",
"unsigned",
"virtual",
"void",
"volatile",
"while"

};

Using interfaces, Java has multiple inheritance of prototypes. It also has multiple
inheritance of constants. Consider the following example:

interface X {
double PI = Math.PI;
double PiOn2 = PI/2;

}
interface Y {

double E = Math.E;
}
interface Z extends X,Y{
}

public class

26 Introduction to Computer Graphics

GetsConstantsFromZ
implements Z {

public static void main(
String args[]) {
System.out.println(

"PI="+PI);
System.out.println(

"E="+E);

}
}

The GetsConstancesFromZ actually inherits constants from both the X and Y
interfaces. It is a compile-time error to have a name-conflict in multiply inherited
interfaces.

Here is an example of the interface extending multiple interfaces.
package interfaceExample;
public interface Drawable {

public void draw();
}
public interface Movable {

public void move(double x, double y);
}

public interface GraphicsObject extends Movable, Drawable {
}
public class Mammal implements GraphicsObject {

private boolean hasHair = true;
private double x = 0;
private double y = 0;

public void move(double _x, double _y) {
x = _x;
y = _y;

}
public void draw() {}; // does nothing right now.

}
public class Human extends Mammal {

public static void main(String args[]) {
System.out.println("Hello World!");

Introduction to Computer Graphics 27

}
}
public class Doggy extends Mammal {
}
public class Student extends Human {
}

public class Professor extends Human {
}

Figure B.2.8-1 shows the output of the class hierarchy browser in Metrowerks
when used to view the relationships described above.

Fig. B.2.8-1. Interface Example showing A.K.O Hierarchy

B.3 Summary

This appendix covers some of the basic concepts of the data types. The two basic
types covered were the reference data types and the basic data types. Brief coverage
was made for the 8 basic data types. The primary reference data type of interest is
the class data type. There are other data types, but these are covered in the
following appendix. The coverage of the class data type included coverage of the
getterand setter methods. Brief coverage was given to casting and the null
operator.

Casting is a rather difficult topic and deserves a must larger coverage. We shall
expound on casting more when we cover Container Classes in a later appendix.
The inner class coverage was also brief. This shortened version tells you almost all
you need to know. Coverage could be expanded to include anonymous classes, but
this will be described once we start to cover adapters in a later appendix.

28 Introduction to Computer Graphics

Finally, we covered the this reference. The this reference is not often used, but is,
none-the-less important to understand, particularly when accessing outer class
variables.

