B. Introduction to Data Types

There are two kinds of datatypesin Java, reference data types and primitive data
types. Reference data types are passed by (or transferred by) name, where as
primitive data types are passed by value.

For example, suppose you ask for the contents of a post office box by name. Y ou
say, “1 want the contents of P.O. Box 320”. The box number servesto refer to the
contents of the box. It would be much more difficult to ask for each item in the box
by name. The box nameis smaller than the names of all the itemsin the box.
Addtionally, the number of itemsin the box isflexible.

A primitive datatype, on the other hand, is of asize that isafunction of the type
itself. Thus, when a primitive data type is passed, the number of bits required to be
copied isafunction of the type.

While Appendix A describes the syntax of the primitive and reference data types,
this section relates the syntax to the semantics.

B.1 The 8 basic data types in Java.

There are 8 basic data types in Java. Five of them are integer datatypes, 2 are
floating point data types. The 8th datatype is the boolean type. The boolean is
valued at either true or false.

Introduction to Computer Graphics

—| BOOLEAN |'F|—[

TRUE

—[F]
o]

BasicTypes W'— — —| INT

S ENEE —[o]
[er]

Figure B.2-1. The Taxonomy of basic data types.

[reaL]y]

Figure B.2-1 shows that the integer and real datatypes are kinds of numeric data
types. Thus the Taxonomy represents an A.K.O (A Kind Of) relationship for al the
basic datatypes. This relationship can be modeled with simple classinheritance. In
fact, the class browser in CodeWarrior was used to generate Figure B.2-1 by the

use of the following code:
public class BasicTypes {}
public class BOOLEAN ext ends Basi cTypes {}
public class TRUE extends BOOLEAN {}
public class FALSE ext ends BOOLEAN {}

cl ass
cl ass
cl ass
cl ass
cl ass
cl ass
cl ass
cl ass
cl ass
cl ass

NUMERI C ext ends Basi cTypes {}
| NTEGER ext ends NUMERI C {}
REAL extends NUVERI C {}

CHAR ext ends | NTEGER {}

BYTE extends | NTEGER {}

SHORT ext ends | NTEGER {}

I NT extends | NTEGER {}

LONG extends | NTEGER {}

FLOAT extends REAL {}

DOUBLE extends REAL {}

More information is given about classes and class inheritance later in this appendix.

A summary of the different primitive data typesis shown in Figure B.2-2.

Introduction to Computer Graphics

type name | value

value

1 bit
16 bit
8 hit
16 bit
32 bit
64 bit

boolean
char
byte
short
int
long

true, false
unicode
signed
signed
signed
signed

_28—1
_216—1

_232—1

_264—1

character

L28 -
L2rtt -1
L.2% -
L.2% -

32 hit
64 bit

float
double

|EEE - 754 -1985

Figure B.2-2. Basic Data Type Summary

6-74g. figs
14-159g. figs.

In some books the basic datatypes are called primitive datatypes. Unlike other
languages, Java has no facility for defining new basic data types.

B.1.1 Integer Data Types

There arefive integer data types of different sizes and ranges. Four of the integer
data types are signed integers (i.e., an integer that can be negative) and are
expressed by using two's complement notation. Let n represent the number of bits
needed to make up the integer datatype. The most significant bit is used to store the
sign of the number and the remaining n-1 bits are used to represent the value. The
minimum valueis -2 and the maximum valueis 2"™ -1.

Integer Type |Bits Width

min range

max range

byte 8

-128

127

short 16

-32768

32767

int 32

-2147483647

-2147483647

long 64

"-9223372036854775808"

"9223372036854775807"

Fig. B.2.1-

1. Signed Integer Data Types

The values used to set an integer datatype are expressed as a sequence of decimal,
octal, or hexadecimal digits. Fig. B.2.1-2 shows how to formulate constants in
Java using the base of 10, 8 and 16.

8 Introduction to Computer Graphics

decimalloctal |hexidecimal
421"077"|0x2a

Fig. B.2.1-2. Constants in varying Radix

A 0isused to denote an octal number. The Ox or OX prefix denotes a hexadecimal
number. Symbols corresponding to the decimal value of 10 - 15 are written as A -
F. Integer literals are assumed to be of typeint unlessthey end in the letter L or |.

Theinteger datatype may be cast into the char datatype, and then printed.
Additional, the radix of thedata’s string representation may be changed using AP
invocations. For example:
public class IntegerTest {
public static void main(String args[]) {

println("hello world");

pri nt Hex(65535) ;

for (int i=24; i < 52; i++){

print((char)i+"");
}

}

public static void printHex(int i) {
println(lnteger.toString(i,16));

}

public static void print(int i) {
Systemout.print(i);

}

public static void println(int i) {
Systemout.println(i);

}

public static void print(Cbject o) {
System out. print(0);

}

public static void println(Cbject o) {
System out. println(o);

}

public static void nunber Test (
int i,
doubl e d) {
float f 2f ;
short s
byte b =

1.
3;
_4,

Introduction to Computer Graphics

char ¢ = 'J";
boolean t = true;
long | = 3294,
System out . printl n(
"=+
"\ nd="+d+
"\ nf="+f +
"\ ns="+s+
"\ nb="+b+
"\'nc="+c+
"\ nt ="+t +
"\nl ="+ +
"\ni ="+
Integer.toString(i,36)+
"
Integer.toString(s, 36)+
won oy
Integer.toString(s+i, 36));

f = (float)d;
b = (byte)f;
¢ = (char)f;

}

The above code will print:
hello world
ffff
- IUHSUR () *+, -. /0123

B.1.2 Elementary Example of primitive data types
Primitive types must be initialized before being used in Java.

For example, in the following code:
public class Trivial Application {

public static void main(String args[]) {
int Xx;
Systemout.println(x);

}

10 Introduction to Computer Graphics

avariable, x , was declared, but not initialized before being accessed. Thisisa
compile-time error in Java and the compiler emits:

Error : Variable x may not have been initialized.

Trivial Application.java line 7 Systemout.printin(x);

The data types of byte, short, int, long, float and double are signed. The data
types of boolean and char are unsigned. The char datatype in Javais represented
by an international standard for character representation, called Unicode [Unicode].

For example:
char ¢ = *a’;

It is possible to assign anumeric literal to a character-typed variable and a character
literal to an integer variable:

char theChar = 48;

i nteger thevalue = ‘a’;

All real numbersin Javaare stored either as single or double precision variables,
called float and double. The Javareals use the IEEE 754-1985 format [|EEE]. The
smallest and largest positive non zero values for floats range from 1.40239846e-45
to 3.40282347e+38 (Float. MIN_VALUE and Float. MAX_VALUE). The smallest
and largest positive non zero values for doubles range from
4.94065645841246544e-324 to 1.79769313486231570e+308

(Double MIN_VALUE and Double MAX_VALUE).

For example:

class FpError {
public static void main(String argv[]) {
float fmin Fl oat . M N_VALUE;
float fmax Fl oat . MAX_VALUE;
doubl e dm n Doubl e. M N_VALUE;
doubl e dmax Doubl e. MAX_VALUE;
String b =" ";
Systemout.printin(fmn + b + fmax +
b +dmn + b + dmax);

The above outputs:
1. 4E- 45 3.4028235E38 4. 9E-324 1.7976931348623157E308

Introduction to Computer Graphics 11

The following program shows how to code the escape sequences into Java:
public interface Char {

char backspace = '\b';
char horizontal Tab = "\t'
char newLine = '"\n';

char fornFeed = "\f';
char carrageReturn =
char doubl eQuote =\"";
char singl eQuote \'
char backSlash = "\\"';

char nmaxCct al "\377";
char m nCct al "\ 000';
char nmaxUni code "\ uFFFF ;
char m nUni code "\ u0000' ;

"\r';

}

Note how the back slash “\” is used as an escape character. Thus, to print a back
dlash, you must insert two back-slashes, ‘\\'. Also note, the unsigned 16 bit
characters use ‘\uxxxx’ to indicate the hexadecimal representation of the character.

B.2 Classes

This section introduces basic object oriented ideas and usage. In the first section we
describe the concept of aclass.

B.2.1 Class Concepts

Aninstance of aclassiscaled an object. An object can contain both the data
structure of aprogram and the agorithms needed to manipulate the data structure.
Asaresult of containing the data structures, an instance is said to contain
properties. As aresult of having both properties and the methods for manipulating
them, an instance is said to be modular.

12 Introduction to Computer Graphics

variables

methods

Class
Fig. B.2.1-1 Variables and Methods in a Class

The class name consists of an identifier (which may be of any length), and the class
may extend another class. In Java, classes are able to form an AKO (A-Kind-Of)
taxonomy, as described in Appendix A. For example, if amammal has hair, then

we can write:
public class Manmal {
bool ean hasHair = true;

}

Methods in the Mammal class can alter the propertiesin an instance of amammal.

For example:
public class Manmal {
bool ean hasHair = true;
public void makeBal d() {
hasHair = fal se

}
}

In Java, we define classes of objects and then make instances of them. The data
structuresin aclass can be primitive data types or reference data types (i.e.,
instances of other classes). Since classes can communicate with one another, this
can cause interdependence between classes.

An instance of aclass has atype. The new operator is the only way to make an

instance of aclass. For example:
class point {
public double x,y;
}

Introduction to Computer Graphics

point pl = new point();
pl. x 10;
pl.y 11,

Java allows inheritance between classes and subclasses. Subclasses can inherit
properties and methods from the superclasses. This permits subclasses to build on
the methods and data structures of the parent class. To build on the methods and
data structures of a parent class, a subclassis constructed that extends the parent

class. For example:
public class Human extends Mamal {

In this case, the Human class extends the Mammal class. This means that the
Human is akind of Mammal. As aresult, the Human classis a subclass of the
Mammal class and inherits properties (like hasHair).

All classes descend from the Object class. As aresult the Object classis called the
primordial class. Asaresult of being a subclass of the Object class, al instances
are able to support the toString method. The toString method creates a string
representation of an instance. The string representation of the object is used to
assist in printing.

B.2.2 Overloaded Methods

A class' s methods enable manipulation of class member variables. Special method,
called the constructor enables the creation of new class instances. The constructor
must have the same name as the class. The constructor returns nothing, not even
void. If no congtructor is specified then adefault constructor is provided. The
default constructor takes null as an argument. The default constructor is overridden
when another constructor is specified. For example:

class Lanmp {
bool ean on;
i nt Wattage;
Lamp (int w {
VWatt age = w,
}

Lanp () {
Watt age = 100;

13

14 Introduction to Computer Graphics

}

The Lamp constructor has been overloaded with two versions. Thefirst version
will support:
Lanp di m = new Lanmp(40);

While the second version supports the constructor invocation:
Lanp bright = new Lanp();

Javarequires that the methods have different signatures. The signature of the
method is determined by the number of arguments and their compile-time types.

B.2.3 Getter and Setter Methods

It isgenerally agood ideato use getter and setter methods when trying to read or
write a class variable from outside of a class. In order to force the usage of the
getter and setter methods, it istypical to declare the instance variables private.
For example:
public class GetterSetter {
private float salary = 40000;

public float getSalary() {
return sal ary;

}

public void setSalary(float _salary) {
salary = _sal ary;

}
}

The Getter Setter example shows that the salary cannot be accessed directly. A
public method, getSalary enables the reading of salary. To set the salary, only the

setSalary method can be used for external classes. For example:
public class Broken {
CetterSetter gs = new CetterSetter();
void test() {
gs.salary = 10;
}
}

Produces a compile time error:

Introduction to Computer Graphics 15

Error : Variable salary in class GetterSetter not accessible
from cl ass Broken.
GetterSetter.java line 15 gs.salary = 10;

Getter and setter methods have become important in the area of Java beans. Java
beans are a component technology that is beyond the scope of this appendix to
discuss.

In some books the getter method is called the accessor and the setter method is
called the mutator.

B.2.4 Casting

Type conversion in Javais called casting. When casting is performed, it isarun-
time operation. Casting is able to convert only between compatible types and
alwaysresultsin avalue, not avariable.

Sometimes the only way to know for sure when types are compatible isto run the
program. If a ClassCastException is thrown at run-time, then the type conversion
failed.

It isaways correct to cast an instance from a subclassto its superclass. For
example:

1. for (int i=0; i < v.size(); i++) {
2. s = (Shape) v.elenentAt(i);

3. s.print();

4. }

Inline 1, an instance of aVector, v is accessed for size. The e ementsin the vector
are accessed using line 2. Note that each element in the vector is a class that extends
the Shape class. It is always correct to cast the subclass of the Shape class back into
the superclass. This enables print() method invocation on each shape in the vector
instance.

B.2.5 Null

One of theliterals of Javaisnull. Null iswhat you get when nothing has been
created. For example:
if (some_object !'=null) {
System out. println(“Object Exists!”);
}

16 Introduction to Computer Graphics

Null has anull type and isthe default value for any type that has not been created.

For example:
class Test {
Lanp |;
}

Test t = new test();

At thispoint, tl. is equal to null. To make an instance of the Lamp instance
variable, |, you must first create an instance of Test and then instance|. Before this

time, the | instance variable will be null. For example:
Test t = new Test();
t.l = new Lanp();

B.2.6 Subclassing and Super

One feature of the Javaclassisthat it can intrinsically represent taxonomic
structures. The taxonomic structures are formed by Java classes when a sub-class
extends a superclass. Thistype of extension is called direct inheritance. Thus, in
terms of knowledge representation, Java classes can represent the AKO (a-kind-of)
relationship. In addition, Java classes can represent the has-a relationship using the
class member variables. For example, we can represent the statement: “A student is
akind-of human” by creating a student class that extends the human class. We can
also represent the statement: “ The student has-a pencil” by placing a class member
variable of pencil class typeinto the student class construct. In the following
section we present the syntax of Java and its relationship to the semantics of Java

A class may be used to provide a container for an instance variable of any primitive

type. For example:
class Lamp {
bool ean on;

}

Lanp | = new Lanp ();
[.on = true;

A Java class may be used to store areference to named constants:
class Constants {
static final double Plon2 = Math.Pl / 2;

}

Introduction to Computer Graphics 17

Notice that these class examples have no methods. When one class extends
another, we are sub-classing a superclass. The sub-class will inherit the member-
variables, and methods, of the superclass. In the case of a name conflict, the sub-
class implementation always over-rides the superclass implementation. For
example:

cl ass Lanp extends Constants {

doubl e power = 100 / Plon2; // watts
bool ean on = true;

}

The power in the Lamp classis set using a Plon2 constant that is inherited from the
Constants class. In this case, it is not strictly correct to say that the Lamp is a-kind-
of Constants and thus the extends is being used as a programming convenience,
not a means for knowledge representation.

On the other hand:
cl ass Student extends Human {
Pencil p;
}
cl ass Human {
bool ean bald = fal se

}

Now we represent the statement that “Doug is a bald student with a pencil”:
St udent doug = new Student();
doug.p = new Pencil ();
doug. bald = true;

Quper isakeyword that permits a subclass to call-upon the instance variable or

method of the superclass. For example:
public class SuperDeno {
public void print() {
System out. println("GCh, super nan!");
}
}

public class Subcl assDenp ext ends Super Denp{
public void print() {
Systemout.println("W are goi ng down, uh huh!");
super.print();
}

public static void main(String args[]) {

18 Introduction to Computer Graphics

Subcl assDenb scd = new Subcl assDeno() ;
scd. print();
}
}

Outputs.
We are goi ng down, uh huh
Oh, super man!

Note that the print method has a different side-effect when invoked from the
SubclassDemo than from the Super Demo. We say that the SubclassDemo over-
rode the print() method in SuperDemo. In order to invoke the superclasse’s print
statement, a super.print() was needed.

Consider the following example:

/**

An exanpl e of storing the AKO hierarchy
usi ng cl asses.

*/

public class Manmal {
private bool ean hasHair = true;

}

public class Hunman extends Manmal ({

public static void main(String args[]) {
Systemout.printin("Hello World!'");

}

public class Doggy extends Manmal {
}

public class Student extends Hunan {

}

public class Professor extends Human {

}

Fig. B.2.6-1 shows the hierarchy in the Professor class.

Introduction to Computer Graphics 19

:m—[-
Hurman
—

Fig. B.2.6-1. The Hierarchy in the Mammal class.

Fig. B.2.6-1 shows that a Doggy is akind of Mammal. It also shows that a
Sudent isakind of Human and that a Human is a kind of Mammal, etc.

In summary,
1. Subclassing permits code reuse by inheritance
2. Subclassing permits the incorporation of super class properties
3. Subclass creates and AKO hierarchy.

B.2.8 Inner Classes

Inner classes are classes that are defined locally within another class. These are
called nested classes. Nested classes can only be used within the containing
classes. For example:

/*
Thi s exanpl e shows
how to create a nested cl ass.
The Quter class is class called "Quter™.
The Inner class is class called "lnner".
The Quter class contains the Inner class.
I nner classes are useful for defining tenporary
ref erence data types.
*/
class Quter {

Inner i = new lnner();

public static void main(String args[]) {
Quter o = new Quter();
o.i.print();

class Inner {
void print() {
Systemout.printin("hello fromlnner class!");
}
}

20 Introduction to Computer Graphics

}

The output follows:
hello from I nner class!

Theinner classes are temporary and locally scoped. This means that classes that do
not contain the Outer class are unable to make instances of the Inner class directly.

For example:
cl ass Dont Work {
Inner i = new Inner();
}
creates the syntax error:
Error . Cass |Inner not found.
Quter.java line 23 Inner i = new Inner();

Thus the class DontWork cannot compile.

In the following example, methods are overridden in an inner implementation of a
non-inner class. This consititutes a new kind of design pattern (as of JDK 1.1)
called an adapter. The adapter pattern has seen increased use in the GUI class
libraries, but can lead to confusing code. It is probably better software engineering
to limit the use of adaptersto small classes. An example adapter follows:
public interface Accountable {
publ i c doubl e getBal ance();
public void setBal ance(double d);

}

public class Account abl eAdapter inplenments Accountable {
public doubl e getBal ance(){return O;};
public void setBal ance(double d){};

}

public class Custoner {
Account abl eAdapt er aa
= new Account abl eAdapter () {
public void setBal ance(double d) {
System out. println("bal ance ="+d);
super. set Bal ance(d);

Introduction to Computer Graphics

In summary,
1. Inner classes are aways dynamically allocated.
2. Instances of inner classes are available externaly.
3. You cannot make a new instance of an inner class externaly.
4. Inner class duration is temporary.
5. Inner classes are locally scoped.
6. Inner classes may not have static members.

B.2.9 This
The this reference can be used when areferenceis required as an argument to a
method. For example, the following class supports a print method that enablesit to
print itself:
public class ThisTest {
public static void main(String args[]) {
Thi sTest tt = new ThisTest();
tt.print();

public void print() {
System out. println(this);
}
public String toString() {
return "Hello from ThisTest!!";
}
}

Will output:
Hello from Thi sTest!!

The this reference permits disambiguation between the arguments to a method and
the class member variables. For example:
cl ass Constructor {
int x,y;
Constructor(int x, int y) {
this.x = x; // disanbiguate between x and this.x

21

22 Introduction to Computer Graphics

this.y =y; // whichyis y?

}

Constructor() {
this(10,20); // default values being set with this!

}

void print() {
Systemout. println("x,y="+x+","+y);

}

public static void main(String args[]) {
Constructor ¢ = new Constructor();
c.print();

}

}

In the above example we see that the constructor that takes not arguments
Constructor() invokes the constructor that takes arguments,
Constructor(int x, int y). This permits a default value to be set for the variables.

The this reference permits a class to make areference to an instance of itself. This

can be very useful, particularly when working with inner classes. For example:
class Quter {
int x=10;
Inner i = new I nner();
public static void main(String args[]) {
Quter o = new Quter()
o.i.print();
}
class Inner {
int x=20;
void print() {
Systemout.println("inner x= "+x);
Systemout.println("outer x= "+Quter.this.x);
}
}
}

Will print:
i nner x= 20
outer x= 10

Thus, the usage of the this reference in Outer.this permits a reference to the
instance variable in the outer class, from within the inner class.

Introduction to Computer Graphics

B.2.7 Interfaces

Aninterfaceislike an abstract class with only abstract methods and constant fields.
The interface can hold no method implementations and is defined just like aclass
except that it uses the keyword interface rather than class. What follows is the
MBNF for the interface declaration:

interfaceDeclaration —
<modifier > "interface" identifier ["extends' interfaceName
< ""interfaceName>] "{" <fieldDeclaration> "}" .

fiddDeclaration —

([docComment] (
methodDeclaration |
congtructorDeclaration |
variableDeclaration)) |
daticlnitidizer | ";" .

interfaceName -
identifier | (packageName "." identifier) .

Note that an interface declaration can extend multiple interfaces. The interface can
serve as another reference type, but can never be instanced. Thus classes that
implement an interface can aways be cast back to the interface type. Here are afew
of the properties of classes and interfaces:

1. Classand interface names populate the name-space of a package and
should be unigue to prevent name-space conflicts.

2. Interfaces can be declared as abstract, but thisis not needed.

3. Interface variables can never be set and are alocated with storage at
compiletime. It is possible to declare interface variables at static and
final, but thisis not needed.

4. All fieldsmust beinitialized.

Interfaces have no common ancestor, like Object.

o1

6. Field namesin an interface must be unique, or it isasyntax error.

For example:

23

24 Introduction to Computer Graphics

public interface Real Dunb {
double PI = 4;

}

public interface Dum {
double PI = 3;
}

public interface M xedUp extends Dum Real Dunb
{doubl e foo=PI;}

Error . Reference to Pl is anbiguous. It is defined in
interface real _dunb and interface dum constants.
constants.java line 17 {doubl e foo=PI;}

The following are some correct uses of interfaces. For the first example we show

how interfaces may be used to group constants together:
public interface constants {
double Pi_on_180 = Math. Pl / 180;
doubl e PI = Math. Pl
double Pi_on_2 = Math. PI/2;
double Pi_on_4 = Math. Pl/4;

}

Here is one where there isalarge array of symbols being stored:
public interface CplusplusText {
public static String cplusplusReservedWrds[] = {
"asnt',
"auto",
"br eak",
"case",
"catch",
"char",
"cl ass",
"const",
"conti nue",
"defaul t",
"del ete",
"do",
"doubl e",
"el se",
"enunt',
"extern",
"float",
"friend",

Introduction to Computer Graphics

"for",
"goto",
i,
"inline",
"int",
"l ong",
"new',
"operator",
"private",
"protected",
"public",
"register",
"return",
"short",
"si gned",
"sizeof ",
"static",
"struct",
"switch",
"this",
"t hrow',
try”,
"typedef",
"uni on",
"unsi gned",
"virtual",
"void",
"vol atile",
“whi | e"

}s

Using interfaces, Java has multiple inheritance of prototypes. It also has multiple
inheritance of constants. Consider the following example:
interface X {
double PI = Math. Pl ;
double PiOn2 = PI/2;
}
interface Y {
doubl e E = Math. E;

}

interface Z extends X Y{

}

public class

26 Introduction to Computer Graphics

Get sConst ant sFron¥Z
i mpl enents Z {

public static void main(
String args[]) {
System out. printl n(
"Pl="+Pl);
System out. printl n(
n E:"+E);

}

The GetsConstancesFromZ actually inherits constants from both the X and Y
interfaces. It isa compile-time error to have a name-conflict in multiply inherited
interfaces.

Here is an example of the interface extending multiple interfaces.
package i nterfaceExanpl e;
public interface Drawabl e {
public void draw();
}
public interface Myvable {
public void move(double x, double y);

}

public interface G aphi csObject extends Myvabl e, Drawable {
}
public class Manmal inplenments G aphi csObject {

private bool ean hasHair = true;

private double x = 0;

private double y = 0;

public void nmove(double _x, double _y) {
X _X;
y
}
public void draw() {}; // does nothing right now

_Yy;

}

public class Hunman extends Mammal {

public static void main(String args[]) {
Systemout.printin("Hello World!'");

Introduction to Computer Graphics 27

}

}
public class Doggy extends Mammal {

}

public class Student extends Human {

}

public class Professor extends Human {

}

Figure B.2.8-1 shows the output of the class hierarchy browser in Metrowerks
when used to view the relationships described above.

| inte-rfaceE::{ample.Dn:ngg'_-,-'l
14 interfaceExample Marmmal I_F}—|:| interfaceExarnple Professc

interfaceEx=armple Hurnan W{
| interfaceExarple Student

Fig. B.2.8-1. Interface Example showing A.K.O Hierarchy
B.3 Summary

This appendix covers some of the basic concepts of the data types. The two basic
types covered were the reference data types and the basic data types. Brief coverage
was made for the 8 basic data types. The primary reference datatype of interest is
the class data type. There are other data types, but these are covered in the
following appendix. The coverage of the class data type included coverage of the
getterand setter methods. Brief coverage was given to casting and the null
operator.

Casting isarather difficult topic and deserves amust larger coverage. We shall
expound on casting more when we cover Container Classesin alater appendix.
The inner class coverage was also brief. This shortened version tells you almost all
you need to know. Coverage could be expanded to include anonymous classes, but
thiswill be described once we start to cover adaptersin alater appendix.

28 Introduction to Computer Graphics

Finally, we covered the this reference. The this reference is not often used, but is,
none-the-lessimportant to understand, particularly when accessing outer class
variables.

