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Composition 

This article presents a technique for using stochas- 
tic Petri nets for real-time realization of Nth-order 
stochastic compositions (a Markov process). The al- 
gorithm makes use of a data structure known as a 
stochastic Petri table. This table is compact and 
suitable for interactive performance on small com- 
puters. We also show how the inherently concur- 
rent nature of Petri nets can be used to implement 
real-time MIDI processing. Since readers may be un- 
familiar with Petri nets, we present a brief introduc- 
tion to the basic ideas behind the Petri net and 
compare it with the finite-state machine. 

Background 

Using a portable computer for real-time compo- 
sition has a number of advantages over off-line 
composition techniques (Alles 1977). Real-time 
composition provides immediate feedback to the 
composer that can improve productivity. In addi- 
tion, it is useful in a performance environment. 

The use of Markov chains for computer-assisted 
composition is not new; Stephen Schwanauer and 
David Levitt's book, Machine Models of Music, 
describe the composition, in 1955, of the Illiac 
Suite by Lejaren Hiller and Leonard Isaacson 
(Schwanauer and Levitt 1993). 

Attempts to realize Markov chain performances 
in real time are not new either, though the early 
work here (e.g., O1Haver 1978) only used first-order 
processes. As far as we know, higher-order Markov 
chain composition in real time has not been re- 
ported in the literature. 

A stochastic Petri table is a data structure that is 
shown to enable the computation of higher-order, 
real-time Markov processes. In the system de- 
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scribed here, we encode a melody using pitch class, 
and ignore tempo and timbre information to sim- 
plify the representation. The computation of the 
stochastic Petri table is an off-line process. The sto- 
chastic Petri table is compact (linear in the number 
of arcs), and enables real-time Markov chain com- 
putation. Our brute-force approach to computing 
the Petri table is easy to implement and slow to 
compute. A harder to implement-but faster-ap-
proach has been suggested, but remains untried. 
After the computation of the stochastic Petri table, 
the program writes it to a file to be read during 
start-up by the interactive performance program. 
Thus, this approach allows us to perform a pre- 
computation phase that permits fast execution of 
the real-time component. 

We are motivated to take the stochastic Petri net 
approach because we have seen other approaches in 
the literature that do not give real-time perfor- 
mance, and use more memory than is practical on 
portable computers (Moore 1990). A further motiva- 
tion for the use of Petri nets is the concurrent na- 
ture of user interfaces and music performance. It is 
often the case, for example, that a user will gener- 
ate interrupts during a performance. As shown be- 
low, these interrupts cannot be handled with a 
finite-state machine, but can be handled by Petri 
nets. 

Limits of the Finite-state Machine Model 

In this section we define the Turing machine, the 
finite-state machine, and identify the limitations of 
the finite-state machine model. We use these limita- 
tions to motivate our use of the Petri-net model 
that is discussed next. 

A Turing machine is an imaginary computing de- 
vice that consists of a control unit (which may as- 
sume one state at a time), a tape (which can store a 
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symbol), and a read-write head (which moves rela- 
tive to the tape and can relay information between 
the control unit and the tape). 

A finite-state machine is a deterministic device 
with a fixed number of states. A special case of the 
Turing machine, the finite-state machine is also 
known as a finite automaton. The finite-state ma- 
chine consists of a Turing machine with a single in- 
put tape and a read-only head (Ralston 1983). The 
output and next-state of a finite-state machine are 
a function of the machine's present state and in- 
puts (Katz 1994). 

Finite-state machines are often depicted by state 
diagrams (also called transition diagrams), which 
are directed graphs that show a finite-state ma- 
chine's input and output. A state diagram that rep- 
resents a gum-vending machine is shown in Figure 
1. The circles in Figure 1 represent states; each is 
labeled with the amount of money that has been 
put into the machine to get it into that state. The 
arrows represent transitions; each is labeled with 
the amount of money that must be put into the 
machine to cause that transition. 

One problem, though, is that the finite-state ma- 
chine model does not handle interrupts well. From 
a programmer's view, a sub-routine is serviced after 
the state of the machine is pushed onto a stack. 
The finite-state machine does not provide a stack, 
nor does it describe how an interrupt should be ser- 
viced, or to where it should return. 

A further limit of the finite-state machine model 
is that it cannot handle multiple asynchronous pro- 
cesses-it cannot "be" in multiple states at one 
time. This is really a result of its inability to allow 
for the synchronization of parallel activities. One 
way to perform this synchronization is through the 
use of token passing. 

Petri nets (discussed in the next section) can 
model this concurrency and handle and recover 
from interrupts, two features that are notably lack- 
ing in finite-state machines. 

Petri Nets 

A Petri net is a bipartite, directed graph that uses 
tokens to enable computations. The graph is bi- 

Figure 1. A finite-state ma-  with the amount of money 
chine diagram for a gum- that must  be put into the 
vending machine. The machine to cause that 
circles represent states; transition. The price of 
each is  labeled with the gum from this machine is 
amount o f  money that has 15c. The Petri net can rep- 
been put into the machine resent any finite-state ma- 
to get i t  into that state. chine, but the opposite is 
The arrows represent tran- not true. 
sitions; each is labeled 

nickel 

dime 

4.& 

release gum, reset 

partite because it uses two kinds of nodes called 
places and transitions. The graph is directed be- 
cause all connections in the graph consist of di-
rected arcs that lead from places to transitions or 
from transitions to places. Data entities known as 
tokens travel along the arcs and enable computa- 
tion (Peterson 1977). 

In the Petri net, places symbolize conditions and 
transitions represent computations. In addition, 
every transition is connected to input and output 
places. 

The Petri net may be represented graphically us- 
ing a Petri net diagram, or textually using a Petri 
net table. The primitives of the Petri net diagram 
are shown in Figure 2. The diagram is better suited 
for human communication, while the table is bet- 
ter suited for machine communication. Figure 3 
shows an example of a Petri net for a gum machine 
represented by both a Petri net diagram (Figure 3a) 
and a Petri net table (Figure 3b). 
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Figure 2. Petri ne t  primi- sition, or from a transition 
tives. The  Petri ne t  i s  a t o  a place. In this article, 
bipartite graph, because the  transition i s  some- 
there are t w o  types o f  t imes  represented b y  a 
nodes: places and transi- straight line, and other 
tions. It i s  a directed t imes  b y  a hol low rect- 
graph, because all arcs con- angle. 
nect  from a place t o  a tran- 

Place Multiple input place 

Transition(n I )
*-+m 
++ 

tn 	 Multiple output 
place

Transition 

The Petri net in Figure 3 represents the same sys- 
tem that was modeled with a finite-state machine 
in Figure 1. The finite-state machine cannot model 
interrupts, and these are present in the example of 
a real-time MIDI delay system, shown in Figure 4. 
The real-time MIDI delay system is designed to act 
like a 3-sec echo box with no decay and some maxi- 
mum number of echoes for every MIDI event. This 
has advantages over traditional approaches to 
achieving a 3-sec delay: there is no noise or decay 
in the repeated event, and the number of echoes is 
a parameter that may be set by the performer. 

The interrupt generated by the user, shown in 
Figure 4 by the Mouse-button token, is typical of 
user-generated events. User input occurs concur- 
rently with the execution of the main body of the 
program, and is asynchronous with respect to the 
execution of the code. 

The Petri net in Figure 4 is depicted as a Petri 
table in Figure 5. A fragment of the Pascal language 
source code that implements that Petri table is 
given in Figure 6. The system from which this ex- 
cerpt is taken was developed using Symantec Think 
Pascal (Symantec 1991)on an Apple Macintosh 
computer. The code was designed to be executed in 
a sequential fashion, so it does not enable the han- 
dling of true interrupts. Instead, the events are 
queued by the operating system and de-queued by 
the repeat [. . .] until button main-event loop of the 
program. For the case of parallel Pascal, a more di- 
rect translation from the Petri net to the code is 
possible. The advantage of this approach over the 

Figure 3. Petri diagram (a) 
and table (b)  for a g u m  
machine.  The  price of g u m  
is  15c and n o  change i s  
given. The stochastic Petri 
table shows the  present 
place, nex t  place, probabil- 
i t y  o f  transition, token 

name ,  and action caused. 
The  probability of leaving 
state zero is 0.15. The prob- 
ability o f  remaining i n  
state zero i s  1 - 0.15 = 

0.85. This example could 
be implemented as a Mar- 
k o v  chain. 

-- -- 

N a m T  p@ I 
w I P l i  

Enabling Tobnr 
0.05 

I 
I 

Tramirionr 
tl 

1 Acliom 

1 -
1 Nud Place 
1 p2 

1% b3 0.05 13 P4 
1% p( get gum 14 get gum pl 
w PI 0.10 15 ~3 
51 u2 0.10 16 fi 

finite-state diagram is the explicit use of interrupts 
in the highest level of design. 

Markov Chains 

In this section we present the Markov chain ab- 
straction, and show how it can be implemented 
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Figure 4. A Petri net for a Figure 5 .  A Petri table for 
real-time 3-sec MIDI de- a 3-sec delay This table 
lay From any place in the represents the same Petri 
Petri net (P1 ...P 71, an in- net shown by the Petri dia-
terrupt in the main-event gram of  Figure 4. The 
loop m a y  be generated by  in  the last row, second 
the user's input of a mouse column of  the Petri table 
click. Interruvts are hard indicates that the 
to implement with finite- mouse-button token will 
state machines. cause a jump from any 

place in the Petri net. 

-even1 

end 

echo-mar 

get event 

Figure 4 

Figure 5 

using transition tables. A Markov chain is a non-
deterministic finite-state machine; it can be repre-
sented by assigning probabilities to the transitions 
in the finite-state machine. In addition, the sum of 
all the probabilities leaving any Markov state must 
be equal to one. 

A Markov random process is classified as being 
continuous-valued or discrete-valued. For the pur-
pose of selecting pitches from a scale (finite set),we 
use the discrete-valued Markov random process 
(DVMRPor Markov chain).A Markov chain is a 
DVMRP with a countable or finite set of states. 

Next Place 
P2 
P3 
P2 
p6 
P4 
P5 
P3 
P1 
P 1 
P7 
P3 
ad 

Figure 6. Pascal code for 
the 3-sec MIDI delay net. 

Name 
stan 

begin I of main1 
rnitialiregrogram; 
transition := 1; 
repeat 

Case transition of 
1: Iscan for an event 1 
begin 
if midi-get(event1 then Ipll 
tran~ition :- 2 (got an event1 

e15e 
transition :- 1: 

end: (case 11 
2: loutput note I 
begin 
echo-event (event); 
if event.number-of-timesgut < max-echos then 
transition : =  3 

else 
transition := 5; 

10k. w e  echoed enough times, check the queue for old event31 
end: Icase 21 

3: (update and start again if any new events occur1 
begin 
if midi-get (event21 then 
transition := 4 la new event occured while we were echoing] 

else 
tzansition : =  2: lkeep echoing, no new inputs1 

end; l case  31 
4 :  
begin 
(event); lkeep old event for later) 
u--itelnl'sta$hingold event '1 : 
copy-event(event2, event); 
tran~itlon :- 2: 

end: lcase 41 
5 :  
begin 
if p e m p t y  then 
transitron := 1 (scan far fresh events1 

elSe 
transitlo" := 6; 

end; [case 51 
6 :  
begin (queue is not empty so get stashed event and echo it1 
remove-q(event1; 
rritelnl'removed old event'); 
transition := 2 ;  

end; (case 61 
end; Icasel 
until button; 
QultMidi; ldlscards memory and removes interrupt handlers) 

end. 

Transitions 
11 
12 
11 
15 
13 
14 
12 
12 
tl 
t6 
12 
t7 

The Markov chain satisfies the conditional proba-

Actions 
get event 

echo event 
get event 

check if q is empty 
get event 

store old event 
echo event 
echo event 
get event 

get old event 
echo event 
quit midi 

Place 
pl 
P2 
P2 
p3 
p3 
P4 
@ 
P5 
p6 
p6 
P7 

bility mass function expression 

Enablin~Tokens 

event 
-event 

echo-max 
-echoemax 

event 
-event 

-old-event 
old-event 

mouse button for all x,,...,x, and for all t, < ... < t, and for all n > 
0. The value of the random variab1e.k at time t will 
determine the conditional probabilities for the fu-
ture process values. The process values are called 
the process state, and the conditional probabilities 
are called the transition probabilities between the 
states. By observing many events, a program com-
putes the probability that X will have a specific 
value x at a particular time t. This is denoted 
P,(xlt). A ~ a r k o vprocess is stationary if the proba-
bilities are static. For our system, we assume that 
the Markov process is stationary because we per-
form off-line analysis. 

The transition table of probabilities uses 
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The resulting two-dimensional table represents 
the transition probabilities in a first-order Markov 
chain, as discussed by Charles Dodge and Thomas 
Jerse in their book Computer Music (1985). Like 
F. Richard Moore, these authors describe an N + 
1 -dimensioned table to represent an Nth order Mar- 
kov process. The brute-force approach to the com- 
position using Markov chains usually centers upon 
the creation of such a transition table. 

This table of arc-transition probabilities is usu- 
ally sparse, and so it requires a program to perform 
access and computation with a large, higher- 
dimensioned matrix containing many zero ele- 
ments. The probabilities assigned to the arcs may 
be arrived at by one of several methods. We use a 
technique of statistical analysis of an existing piece 
of music and have found this method described in 
the literature (Moore 1990). 

The order of a Markov process indicates the 
amount of event memory that the process has. For 
example, a zeroth-order Markov process has no 
event memory. A first-order Markov process takes 
into account a single "historical" event, and an 
Nth-order Markov process takes into account the 
last N events. 

To perform the analysis of a melody, we create a 
list of the pitch classes of the notes. For example, 
in the main theme of Louis Bonfils Black Orpheus, 
the notes are: 

E, C, BI A, A, G#, B, E, E, C, B, A, A, GI B, E, El F, 
GI A, D, D, Dl E, F, G, C, C, C, D, E, Fl B, B, C, D, 
E , E , C , B , A , A , G # , B , E , E , A # , A , G , G , F , E , A , D ,  
D , E , F / G , C , C , D , E , A , G # , E , E , G # , B , A , E , A ,  
A, B, C, D, C, B, A1 B, C, D, C, B, A1 B, C, Dl C, BI 
A, G. 

Converting into a pitch class requires that each 
note be assigned a number, for example: 

[ A A # B C C # D D # E F F # G G # ] =  [ I 2 3 4 5 6 7  
8 9 10 11 121. 

The Black Orpheus theme then becomes: 
8 ,4 ,3 ,1 ,1 ,12 ,3 ,8 ,8 ,4 ,3 ,1 ,1 ,11 ,3 ,8 ,8 ,9 ,11 ,  

1, 6,  6, 6, 8, 9, 11, 4, 4, 4, 6, 8, 91 3, 3, 4, 6, 8, 8, 4, 
3 ,1 ,1 ,12 ,3 ,8 ,8 ,2 ,1 ,11 ,11 ,9 ,8 ,1 ,6 ,6 ,8 ,9 ,11 ,  
4 ,4 ,6 ,8 ,1 ,121818 ,12 ,3 ,1 ,8 ,1 ,1 ,314 ,6 ,4 ,3 ,1 ,  
3 , 4 , 6 , 4 , 3 , 1 , 3 , 4 , 6 , 4 1 3 1 1 , 1 1 .  

The technique of converting a melody into its cor- 
responding pitch class is not new (Winsor 1987). 

These notes are hand-written into a file called 
no tes ,  and then read into an array of integers called 
note-array by the program. 

Assume that a note's occurrence is an indepen- 
dent, random event. We have written a procedure 
that compiles a table to record the frequency of 
occurrence into an array called the pmf-array[i]. 
Here, PMF is an abbreviation for the probability 
mass function. This is a statistical record of the fre- 
quency of occurrence of each note in the melody. It 
is treated as a discrete probability distribution func- 
tion so that 
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Figure 7. Code for compu- 
tation of  the Probability 
Mass Function (PMF). 

Compute the probability mass function array, pmf-array 

randomgick = random(0,l) 
sum = 0 
i = l  

repeat 


sum = sum + pmf-array [il 
i = i + l  


until sum >= randomgick 
play-note (i) 


must be true. 
We use the probability mass function array to 

bias our choice of a note by picking a random num- 
ber, randomqick from the range of 0 to 1.We then 
compute the cumulative mass function by sum- 
ming the elements of the probability mass function 
array until they exceed the value of randomgick. 
This is shown in the pseudocode given in Figure 7. 

A first-order Markov process requires that the 
transitions be used to compute a transition table 
that records the frequency of occurrence of each 
note. Each element in the transition table repre- 
sents the probability of that note being played. We 
compute the elements in the transition table by 
summing the number of transitions for each row 
and dividing each element in the row by that sum. 
This "normalizes" the PMFs so that each row will 
add up to one, i.e., 

hi 


The transition table for a first-order Markov pro- 
cess description of Black Orpheus appears in Figure 
8. It is possible to transform this transition table 
into a Markov diagram, but the results are clut- 
tered. The advantage of using the transition table is 
that it provides a compact and convenient form for 
representing and programming first-order stochas-
tic processes. Using this technique, an Nth-order 
Markov Process requires an N + 1-dimensional 
transition table. 

Suppose that we wish to compute Markov pro- 
cess probability tables from order 0 to 9, and store 
the results in the computer's memory. In general, 
the number of cells needed in all Nth-order stochas- 
tic processes from 0 to 9 involving p pitch classes 
has 

Figure 8. A transition table 
for a fist-order Markov 
process. In general, as the 
order of the process in- 
creases, the sparsity of 
the matrix increases. Us- 
ing this technique, an 
Nth-order Markov pro- 
cess requires an N + I -
dimensional transition 
table. 

elements when all the Nth-order processes are 
stored in N + 1-dimensional matrices. For twelve 
pitch classes and ninth-order processes, this gives a 
value of f(12, 9) = 6.75 x 101°, and any attempt to 
reduce this number may be foiled by the introduc- 
tion of pathologic data created by an advisory, For 
example, a large number of random numbers 
(much larger than the number of elements in the 
matrices) will eventually fill all the elements in 
the matrices with non-zero values. This is some- 
times referred to as a zeroth-order stochastic pro- 
cess. Nevertheless, it is practical, for low values of 
N, to perform the computation as described above. 
For example, Figure 9 shows the code needed to 
compute the first-order Markov chain for Black 
Orpheus. 

Using this approach, we can implement a second- 
order Markov process using the data structure 
shown in Figure 10. 

We find, using equation (11, that a ninth-order 
stochastic process over a twelve-tone system must 
make use of approximately 6.75 x 101° elements. 
To make matters worse, using a matrix approach re- 
quires that we iterate over zero-valued elements 
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Figure 9. The pseudocode Figure 10. The data struc- 
for computing a fist-order ture for a second-order 
stochastic composition. Markov array. 

procedure compute-1st-order 

begin 

subtract the order number to keep 
the window from exceeding the number 
of notes -- number-of-notes - order, 
note, the number-of-notes > order 
with notes do 

for each (notel and note2) in 

(note-array [i ] and 

note-array[i+l]) 


do 

increment the 


number-of-2nd-order-event 

[notel, note21 


normalize the probabilities 

in the 1st-order matrix 


end (compute first-order) 


procedure play-first-order- 

stochastic note 
-

begin 
pick = random(0,l) 
use the current row to perform a 

biased choice 

play the choice and store the 


next element 

end {play-first-order-stochastic-note) 


Figure 10 

when computing the cumulative mass function. 
One objective-a prerequisite for the interactive 
realization of Markov processes on small comput- 
ers-is to minimize the time it takes to compute a 
branch between nodes in the Markov chain. 

Algorithms are known (Press et al. 1992) that im- 
plement sparse matrices, which require space pro- 
portional to the number of elements. These sparse- 
matrix approaches reduce the amount of space 
needed, but cannot address the issue of execution- 
time reduction. Since many visited states have zero 
probability (using the matrix approach), the time 
that the program takes to compute a branch cannot 
be predicted. We have found that this creates un- 
even playback of the Markov chain in real-time per- 
formance. This is a primary motivation for our ap- 
proach, which has space requirements that are 
linear in the number of Markov states. 

Stochastic Petri Nets 

The Petri net approach removes the zero elements 
in the transition table. The Petri table for the first- 
order stochastic process shown above appears in Fig- 
ure 1 1. The program shown in Figure 13 imple- 
ments a second-order Markov process using a Petri 
net. Transition probabilities are defined as the con- 

Figure 1 1. A fragment of a Figure 12. The file format 
first-order Petri net table. for the stochastic Petri 
Removal of the zero ele- table. The columns appear 
ments in the Markov table in the order place, 
reduces the branch- probability, next- 
computation time. The place. 
number of rows is equal to 
the number of  transitions. 

Figure 11 

Figure 12 

ditional probabilities for moving between pairs of 
states. 

To implement the Petri table and take full advan- 
tage of the fact that the number of elements in the 
table is linear with respect to the number of transi- 
tions in the stochastic process, we need to write a 
program that can read Petri tables directly. First we 
establish a Petri table file format for a Markov 
chain that is stored as [place, probabi 1 i ty, 
next-place].This file format is illustrated in 
Figure 12. 

The Pascal data structure used to store the Petri 
net, with the next states and their probabilities, is 
defined in Figure 13. The pseudocode in Figure 14 
plays a row in the Petri table. Here, CMF stands for 
the cumulative probability mass function (com- 
puted by summing the probabilities of each of the 
transition arcs). To better understand the program, 
consider the Petri table shown in Figure 12. To play 
one row, we first pick a pseudorandom number 
from 0 to 1, inclusive. We then step from one row 
of the Petri table to the next until the cumulative 
mass function exceeds our probability pick. When 
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Figure 13. Declaration of Figure 14. Code to play 
the stochastic Petri table notes using the Petri table. 
data type. 

type (Petri-markov data types) 

( Data type used for the rows of the table in Figure 12 1 

petri-row-record = record 

place: integer; 

probability: real; 

nextglace: integer; 

end; (petri-row-record] 


row-array-type = array[l..351 of petri-row-record; 

( Data type used for the Petri table I 
petri-type = record 

row-array: row-array-type; 

number-of-rows: integer; 

currentglace: integer; 

end; (petri-array-type) 


[ Declare one table ) 

va r 
petri: petri-type; 

this occurs, we take the transition to the place that 
corresponds to the row at which we stogped. 

In case the cumulative mass function does not 
add up to one (due to round-off error), we provide 
a compound conditional test in the w h i l e  loop, 
( (place-name = place) and (cmf < p r o b s i c k )  ) ,  

that keeps us within the Petri table row. 
The Petri table is a faster method for realizing 

Markov chains than the Markov table, because of 
the elimination of the zero elements. It would be 
even faster to store the cumulative mass function, 
rather than the probability mass function. This 
saves a floating-point addition as the program iter- 
ates over each element in the Petri table. The tran- 
sition matrix requires 144 real numbers for a first- 
order Markov process. The Petri table needs only 
66 integers and 33 reals. Assuming that an integer 
is 2 bytes long and that a real is 4 bytes, there are 
144 x 4 bytes per real, or 576 bytes used for the 
Markov transition table and 66 x 2 + 33 x 4 = 264 
bytes for the Petri table. This saving grows as an 
exponential function of the order of the Markov 
process. 

Suppose we use the Black Orpheus example to 
compute a second-order Markov chain. To speed ex- 
ecution and eliminate the sparse matrices, we use a 
Petri net. A partial Petri net implementation for 
this Markov chain is shown in Figure 15. Here, we 
note that each of places has a transition probability 
that sums to one. Let R be the row number of the 
Petri table, and N1, N2, and N3 represent note 1, 

procedure playgetri-row (var petri: petri-type); 

(play one row in the petri-table implementation 


of the first order Markov chain) 

va r 


i: inteuer; 

place-name: integer; 

crnf: real: 

probgick: real; (a number between 0 and 1 )  

while-loop-not-done: boolean; 


begin 

(compute the cumulative probability mass function) 
cmf = 0; 
probgick = random(0,l) 
( Until we exit ) 


while-loop-not-done := true; 

with petri do 

begin 

i := currentglace; 

place-name := row-array[il.place; 

with row-array [il do 

begin 

while (place-name = place) 


and (cdf < probgick) do 

begin 

( Sum up the probabilities into the CMF ) 


crnf := crnf + probability; 

i := i t 1; (move to next row) 

end; (while place-name) 


( Play the chosen note 1 
make-tone(sca1e-arrayli], tone-time); 
currentglace := nextglace; 
end; [with row-array[il) 


end; [with petri) 

end; [playgetri-row) 


note 2, and note 3.  Pijk is the probability that note 
k will occur given the occurrence of notes i and j .  
A partial Petri table for this is shown in Figure 16. 

We have found that, for the Black Orpheus ex- 
ample, there are 378 elements in a forth-order Petri 
table. If a forth-order transition table were used, it 
would need 1 l5= 161,051 elements, about 426 
times more storage. Such improvements must be 
viewed with cautious optimism-more experimen-
tation is needed. 

To play such a table, a program must jump to a 
row, given two notes. A procedure picks a uni- 
formly distributed random number that varies from 
0 to 1 (called r, created using a linear congruential 
random number generator with a long period) (L1Ec- 
uyer, Blouin, and Couture 1993). The procedure 
then sums the probabilities to form the cumulative 
mass function. When the CMF exceeds r, the value 
for the next state, k ,  is obtained. For example, sup- 
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Figure 15. A partial sto- Figure 16. A partial sto- 
chastic Petri net. The tran- chastic Petri table. R is 
sition probabilities are the row number of  the 
shown on each arc. They table. N1 and N2 are two 
indicate the probability of notes in  the history of the 
the occurrence of a token. Markov chain. N3 is the 

next note in the chain and 
Pijk is the probability that 
N3 will occur given the oc- 
currence of notes N1 and 
N2. 

D4 p10 p3 PlO p l 0  

Figure 15 

R N1 N2 N3 Pijk 
1 1 1 3 0.25 
2 1 1 10 0.25 
3 1 1 11 0.50 
4 1 3 4 1.00 
5 1 6 6 1.00 
6 1 8 1 1.00 
7 1 10 3 0.50 
8 1 10 10 0.50 
9 1 11 3 0.67 

10 1 11 8 0.33 
11 2 1 10 1.00 
12 3 1 1 0.43 
13 3 1 3 0.29 
14 3 1 8 0.14 
15 3 1 10 0.14 
16 3 3 4 1.00 
17 3 4 6 1.00 
18 3 8 8 1.00 

Figure 16 

pose r = 0.30. Starting on row 1 in Figure 16, add- 
ing P,,,,,+ P ,,,,,,+ P ,,,,,,= 0.50 > 0.30. In Petri net 
parlance, k is a token that appears with a given 
probability. Note N1 becomes the old N2, N2 be- 
comes the old N3, and N3 takes on the value of the 
nextqlace,or, N1 tN2 tN3 tnextqlace. For 
added efficiency, an array (called the indirection 
array) gives us a pointer to the beginning of the list 

Figure 17. An  indirection 
array The first element 
indicates the next note's 
pitch class. The second ele- 
ment points to the first 
row in  the Petri table 
where the pitch class m a y  
be found. This keeps the 
procedure from having to 
perform a search for the 
next pitch class. 

of places that start with note number one. An ex- 
ample indirection array is shown in Figure 17. 

We have implemented fifth-order stochastic pro- 
cesses using Petri nets. After that, the 100-note ex- 
ample tends to be deterministic. With the ability to 
alter the order of stochastic control, in real time, 
the author has been able to obtain playback at a 
rate of 180 notes per sec. This rate was measured 
on an Apple Macintosh PowerBook 165 (which 
uses a Motorola MC68030 processor running at 33 
MHz with no math coprocessor) with sequentially 
changing orders of stochastic control (3, 4, and 5) 
over a 10-sec interval. Since fifth-order stochastic 
control is almost deterministic (for our example) 
it takes very little time to compute the branch (on 
average). 

Conclusion 

We have shown the stochastic Petri net paradigm 
may be used to create an efficient method for com- 
puting real-time Markov chains for composition 
and real-time interaction. We have also used the Pe- 
tri net paradigm to show how concurrent asynchro- 
nous user inputs may be specified in a high-level 
manner. The use of stochastic Petri nets to perform 
real-time Marlzov processes is, as far as we know, 
novel. 

In the future, we could eliminate the computa- 
tion of the cumulative mass function by storing the 
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cumulative mass function rather than the probabil- 
ity mass function. This would save the cost of one 
addition during the branching computation. In addi- 
tion, we think that the pre-computation of the sto- 
chastic Petri table could be made faster than the 
present implementation. 

This author believes that the Markov chain 
method of computation may be useful in the areas 
of network protocol simulation, parallel computer 
simulation, animation, and computer-assisted 
dance. On this topic, as on many others relating to 
the use of stochastic Petri nets in the arts, much 
work remains to be done. 

The source code and Macintosh-compiled version 
of the program described in this article are avail- 
able from the Computer Music Journal's World- 
Wide Web site in the directory with the uniform re- 
source locator ftp://www-mitpress.mit.edu/pub/ 
Computer-Music- Journal/Code/Lyon. 
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