
5. Digital Image Processing Fundamentals

There’s more to it than meets the eye.

– 19th century proverb

Digital image processing is electronic data processing on a 2-D array of numbers. The

array is a numeric representation of an image. A real image is formed on a sensor when an

energy emission strikes the sensor with sufficient intensity to create a sensor output. The

energy emission can have numerous possible sources (e.g., acoustic, optic, etc.). When

the energy emission is in the form of electromagnetic radiation within the band limits of the

human eye, it is called visible light [Banerjee]. Some objects will reflect only

electromagnetic radiation. Others produce their own, using a phenomenon called radiancy.

Radiancy occurs in an object that has been heated sufficiently to cause it to glow visibly

[Resnick]. Visible light images are a special case, yet they appear with great frequency in

the image processing literature.

Another source of images includes the synthetic images of computer graphics. These

images can provide controls on the illumination and material properties that are generally

unavailable in the real image domain.

This chapter reviews some of the basic ideas in digital signal processing. The review

includes a summary of some mathematical results that will be of use in Chapter 15. The

math review is included here in order to strengthen the discourse on sampling.

5 . 1 . The Human Visual System

A typical human visual system consists of stereo electromagnetic transducers (two eyes)

connected to a large number of neurons (the brain). The neurons process the input, using



poorly understood emergent properties (the mind). Our discussion will follow the eye,

brain and mind ordering, taking views with a selective focus.

The ability of the human eye to perceive the spectral content of light is called color vision.

A typical human eye has a spectral response that varies as a function of age and the

individual. Using clinical research, the CIE (Commission Internationale de L’Eclairage)

created a statistical profile of human vision called the standard observer. The response

curves of the standard observer indicate that humans can see light whose wavelengths have

the color names red, green and blue. When discussing wavelengths for visible light, we

typically give the measurements in nanometers. A nanometer is 10−9  meters and is

abbreviated nm. The wavelength for the red, green and blue peaks are about 570-645 nm,

526-535 nm, and 444-445 nm. The visible wavelength range (called the mesopic range) is

380 to about 700-770 nm [Netravali] [Cohen].
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Fig. 5-1. Sketch of a Human Eye

Fig. 5-1 shows a sketch of a human eye. When dimensions are given, they refer to the

typical adult human eye unless otherwise stated. Light passes through the cornea and is

focused  on the retina by the lens. Physiological theories use biological components to

explain behaviour. The optical elements in the eye (cornea, lens and retina) form the

primary biological components of a photo sensor. Muscles are used to alter the thickness of

the lens and the diameter of the hole covering the lens, called the iris. The iris diameter



typically varies from 2 to 8 mm. Light passing through the lens is focused upon the retina.

The retina contains two types of photo sensor cells: rods and cones.

There are 75 to 150 million rod cells in the retina. The rods contain a blue-green absorbing

pigment called rhodopsin. Rods are used primarily for night vision (also called the scotopic

range) and typically have no role in color vision [Gonzalez and Woods].

Cones are used for daylight vision (called the photopic range). The tristimulus theory of

color perception is based upon the existence of three types of cones: red, green and blue.

The pigment in the cones is unknown [Hunt]. We do know that the phenomenon called

adaptation (a process that permits eyes to alter their sensitivity) occurs because of a change

in the pigments in the cones [Netravali]. The retina cells may also inhibit each another from

creating a high-pass filter for image sharpening. This phenomenon is known as lateral

inhibition [Mylers].

The current model for the retinal cells shows a cone cell density that ranges from 900

cells/mm2  to 160,000 cells/mm2  [Gibson].  There are 6 to 7 million cone cells, with the

density increasing near the fovea. Further biological examination  indicates that the cells are

imposed upon a noisy hexagonal array [Wehmeier].

Lest one be tempted to count the number of cells in the eye and draw a direct comparison to

modern camera equipment, keep in mind that even the fixated eye is constantly moving.

One study showed that the eyes perform over 3 fixations per second during a search of a

complex scene [Williams]. Further more, there is nearly a 180-degree field of view (given

two eyes). Finally, the eye-brain interface enables an integration between the sensors’ polar

coordinate scans, focus, iris adjustments and the interpretation engine. These interactions

are not typical of most artificial image processing systems [Gonzalez and Woods]. Only

recently have modern camcorders taken on the role of integrating the focus and exposure

adjustment with the sensor.

The optic nerve has approximately 250,000 neurons connecting to the brain. The brain has

two components associated with low-level vision operations: the lateral geniculate nucleus



and the visual cortex. The cells are modeled using a circuit that has an inhibit input,

capacitive-type electrical storage and voltage leaks, all driving a comparitor with a variable

voltage output.

The capacitive storage elements are held accountable for the critical fusion frequency

response of the eye. The critical fusion frequency is the rate of display whereby individual

updates appear as if they are continuous. This frequency ranges from 10-70 Hz depending

on the color [Teevan] [Netravali]. At 70 Hz, the 250,000-element optic nerve should carry

17.5 million neural impulses per second. Given the signal-to-noise ratio of a human

auditory response system (80 dB), we can estimate that there are 12.8 bits per nerve

leading to the brain [Shamma]. This gives a bit rate of about 224 Mbps. The data has been

pre-processed by the eye before it reaches the optic nerve. This preprocessing includes

lateral inhibition between the retinal neurons. Also, we have assumed that there is additive

white Gaussian noise on the channel, but this assumption may be justified.

Physiological study has shown that the response of the cones is given by a Gaussian

sensitivity for the cone center and surrounding fields. The overall sensitivity is found by

subtracting the surrounding response from the center response. This gives rise to a

difference of Gaussian expression which is discussed in Chap. 10. Further, the exponential

response curve of the eye is the primary reason why exponential histogram equalization

was used in Chap. 4.

5 . 2 . Overview of Image Processing

An image processing system consists of a source of image data, a processing element and a

destination for the processed results. The source of image data may be a camera, a scanner,

a mathematical equation, statistical data, the Web, a SONAR system, etc. In short,

anything able to generate or acquire data that has a two-dimensional structure is considered

to be a valid source of image data. Furthermore, the data may change as a function of time.

The processing element is a computer. The computer may be implemented in a number of

different ways. For example, the brain may be said to be a kind of biological computer that



is able to perform image processing (and do so quite well!). The brain consumes about two

teaspoons of sugar and 20 watts of power per hour. An optical element can be used to

perform computation and does so at the speed of light (and with very little power). This is a

fascinating topic of current research [Fietelson]. In fact, the injection of optical computing

elements can directly produce information about the range of objects in a scene [DeWitt and

Lyon].

Such computing elements are beyond the scope of this book. The only type of computer

that we will discuss in this book is the digital computer. However, it is interesting to

combine hybrid optical and digital computing. Such an area of endeavor lies in the field of

photonics.

The output of the processing may be a display, created for the human visual system. Output

can also be to any stream. In Java, a stream is defined as an uninterpreted sequence of

bytes. Thus, the output may not be image data at all. For example, the output can be a

histogram, a global average, etc. As the output of the program renders a higher level of

interpretation, we cross the fuzzy line from image processing into the field of vision. As an

example, consider that image processing is used to edge detect the image of coins on a

table. Computer vision is used to tell how much money is there. Thus, computer vision

will often make use of image processing as a sub-task.

5 . 2 . 1 . Digitizing a Signal

Digitizing is a process that acquires quantized samples of continuous signals. The signals

represent an encoding of some data. For example, a microphone is a pressure transducer

that produces an electrical signal. The electrical signal represents acoustic pressure waves

(sound).

The term analog refers to a signal that has a continuously varying pattern of intensity. The

term digital means that the data takes on discrete values. Let s(t) be a continuous signal.

Then, by definition of continuous,
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We use the symbol R to denote the set of real numbers. Thus

R x x= { }:  is a real number , which says that R is the set of all x such that x is a real

number. We read (5.1) saying, in the limit, as t approaches a, such that a is a
member of the set of real numbers, s t s a( ) ( )= . The expression x P x: ( ){ } is read as

“the set of all x’s such that P(x) is true” [Moore 64].

This is an iff (i.e., if and only if) condition. Thus, the converse must also be true. That is,

s(t) is not continuous iff there exists a value, a such that:

lim s(t) ≠ s(a)

t → a 
(5.2)

is true.

For example, if s(t) has multiple values at a, then the limit does not exist at a.

The analog-to-digital conversion consists of a sampler and a quantizer. The quantization is

typically performed by dividing the signal into several uniform steps. This has the effect of

introducing quantization noise. Quantization noise is given, in dB, using

SNR b≤ +6 4 8. (5.3)

where SNR  is the signal-to-noise ratio and b is the number of bits. To prove (5.3),

we follow [Moore] and assume that the input signal ranges from -1 to 1 volts. That

is,

s t x x R x( ) :∈ ∈ − ≤ ≤{ } and 1 1 (5.3a)

Note that the number of quantization intervals is 2b . The least significant bit has a
quantization size of Vqe

b= −2  . Following [Mitra], we obtain the bound on the size of

the error with:

− ≤ ≤V e Vqe qe (5.3b)

The variance of a random variable, X, is found by σ X Xt x f x dx2 2( ) ( ) ,= ∫−∞
∞  where

f xX ( ) is a probability distribution function. For the signal whose average is zero, the

variance of (5.3b) is
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The signal-to-noise ratio for the quantization power is

SNR bb= ×( ) = +10 3 2 20 2 10 32log log log (5.3d)

Hence the range on the upper bound for the signal-to-quantization noise power is

SNR b≤ +6 4 8. (5.3).

Q.E.D.

In the above proof we assumed that uniform steps were used over a signal whose

average value is zero. In fact, a digitizer does not have to requantize an image so that

steps are uniform. An in-depth examination of the effects of non-linear quantization

on SNR is given in [Gersho]. Following Gersho, we generalize the result of (5.3),

defining the SNR as

SNRdB = 20 log
σ

< e(x)| p(x) >






(5.3e)

where

σ = standard deviation

and < e| p >  is the mean-square distortion  defined by the inner product between the

square of the quantization error for value x and the probability of value x. The inner

product between e and p is given by

< e| p >= e(x)p(x)dx
−∞

∞

∫ (5.3f).

where

e(x) = Q(x) − x( )2 (5.3g).

The inner product is an important tool in transform theory. We will expand our

discussion of the inner product when we touch upon the topic of sampling.

We define Q(x) as the quantized value for x.  Maximizing SNR requires that we select

the quantizer to minimize (5.3f), given a priori knowledge of the PDF (if the PDF is

available). Recall that for an image, we compute the PMF (using the Histogram

class) as well as the CMF. As we shall see later, (5.3f) is minimized for k-level

thresholding (an intensity reduction to k colors) when the regions of the CMF are

divided into k sections.  The color is then remapped into the center of each of the

CMF regions. Hence (5.3f) provides a mathematical basis for reducing the number of

colors in an image provided that the PDF is of zero mean (i.e, no DC offset) and has



even symmetry about zero. That is p(x) = p(−x) . Also, we assume that the quantizer

has odd symmetry about zero, i.e., Q(x) = −Q(−x).

A simple zero-memory 4-point quantizer inputs 4 decision levels and outputs 4

corresponding values for input values that range within the 4 decision levels. When

the decision levels are placed into an array of double precision numbers, in Java  (for

the 256 gray-scale values) we write:
public  void  thresh4( double  d[]) {
  short  lut[] = new short[256];
  if  (d[4] ==0)
   for  ( int  i=0; i < lut.length; i++) {
     if  (i < d[0]) lut[i] = 0;
     else  if  (i < d[1]) lut[i] = ( short )d[0];
     else  if  (i < d[2]) lut[i] = ( short )d[1];
     else  if  (i < d[3]) lut[i] = ( short )d[2];
     else  lut[i] = 255;
     System.out.println(lut[i]);
   }
   applyLut(lut);
}

We shall revisit quantization in Section 5.2.2.

Using the Java AWT’s Image class, we have seen that 32 bits are used, per pixel (red,

green, blue and alpha). There are only 24 bits used per color, however. Section 5.2.2

shows how this relates to the software of this book.

Recall also that the digitization process led to sampling an analog signal. Sampling a signal

alters the harmonic content (also known as the spectra) of the signal. Sampling a

continuous signal may be performed with a pre-filter and a switch. Fig. 5-2 shows a

continuous function, f (x), being sampled at a frequency of f s .

f s

f (x) Anti-aliasing
Filter

Fig. 5-2. Sampling System

The switch in Fig. 5-2 is like a binary amplifier that is being turned on and off every 1 / f s

seconds. It multiplies f (x) by an amplification factor of zero or one. Mathematically,



sampling is expressed as a pulse train, p(x) , multiplied by the input signal f (x), i.e.,

sampling is f (x) p(x) . .

To discuss the pulse train mathematically, we must introduce the notation for an impulse.

The unit impulse, or Dirac delta, is a generalized function that is defined by

δ (x)
−∞

∞

∫ dx = δ (x)
−ε

ε

∫ dx = 1 (5.4)

where ε  is arbitrarily small. The Dirac delta has unit area about a small neighborhood

located at x = 0. Multiply the Dirac delta by a function and it will sift out the values

where the Dirac delta is equal to zero:

f (x)δ (x)
−∞

∞

∫ dx = f (x)δ (x)
−ε

ε

∫ dx = f (0) (5.5)

This is called the sifting property of the Dirac delta. In fact, the Dirac delta is equal to

zero whenever its argument is non-zero. To make the Dirac activate, given a non-zero
argument, we bias the argument with an offset, δ (x − xoffset ). A pulse train is created

by adding an infinite number of Dirac deltas together:

p(x) = δ (x − n / f s )
n=−∞

∞

∑ (5.6)

f (x)p(x) = f (x) δ (x − n / f s )
n=−∞

∞

∑ (5.7)

To find the spectra of (5.7) requires that we perform a Fourier transform. The

Fourier transform, just like any transform, performs a correlation between a function

and a kernel. The kernel of a transform typically consists of an orthogonal basis

about which the reconstruction of a waveform may occur. Two functions are

orthogonal if their inner product < f |g > =0. Recall that the inner product is given by

< f |g >≡ f (x)g(x)dx ≡ inner product
−∞

∞

∫ (5.7a)

From linear algebra, we recall that a collection of linearly independent functions

forms a basis if every value in the set of all possible values may be expressed as a

linear combination of the basis set.  Functions are linearly independent iff the sum of

the functions is non-zero (for non-zero co-efficients). Conversely, functions are

linearly dependent iff there exists a combination of non-zero coefficients for which

the summation is zero. For example:



c1 cos(x) + c2 sin(x) = 0

iff  c1 = c2 = 0
(5.7b)

The ability to sum a series of sine and cosine functions together to create an arbitrary

function is known an the super position principle and applies only to periodic

waveforms. This was discovered in the 1800’s by Jean Baptiste Joseph de Fourier

[Halliday] and is expressed as a summation of sine and cosines, with constants that

are called Fourier coefficients.

f (x) = (ak coskt
k =0

∞

∑ + bk sin kt) (5.7c)

We note that (5.7c) shows that the periodic signal has discrete spectral components.

We find the Fourier coefficients by taking the inner product of the function, f(x) with

the basis functions, sine and cosine. That is:

ak =< f |cos(kt) >
bk =< f |sin(kt) >

(5.7d)

For an elementary introduction to linear algebra, see  [Anton]. For a concise summary

see [Stollnitz]. For an alternative derivation see [Lyon and Rao].

It is also possible to approximate an aperiodic waveform. This is done with the

Fourier transform. The Fourier transform uses sine and cosine as the basis functions

to form the inner product, as seen in (5.7a):

F(u) = f (x)e− j2πuxdx
−∞

∞

∫ =< f |e− j2πux > (5.8).

By Euler’s identity,

eiθ = cosθ + isinθ (5.9)

we see that the sine and cosine basis functions are separated by being placed on the

real and imaginary axis.

Substituting (5.7) into (5.8) yields

F(u) * P(u) = f (x) δ (x − n / f s )
n=−∞

∞

∑ e− j2πux







dx

−∞

∞

∫ (5.10)

where

P(u) = δ (x − n / f s )
n=−∞

∞

∑ e− j2πuxdx
−∞

∞

∫ (5.11)



The term

F(u) * P(u) ≡ F(γ )P(u − γ )dγ
−∞

∞

∫ (5.12)

defines a convolution. We can write (5.10) because multiplication in the time domain

is equivalent to convolution in the frequency domain. This is known as the

convolution theorem. Taking the Fourier transform of the convolution between two

functions in the time domain results in

< f * h|e− j2πux >=< f (γ )p(x − γ )dγ
−∞

∞

∫ |e− j2πux > (5.13)

which is expanded by (5.8) to yield:

= f (γ )p(x − γ )dγ
−∞

∞

∫








e− j2πux

−∞

∞

∫ dx (5.13a)

Changing the order of integration in (5.13a) yields

= f (γ ) p(x − γ )e− j2πuxdx
−∞

∞

∫










−∞

∞

∫ dγ (5.13b)

with

P(u) = p(x − γ )e− j2πuxdx
−∞

∞

∫ (5.13c)

and

F(u) = f (x)e− j2πux

−∞

∞

∫ dx (5.13d)

we get

F(u)P(u) = f (x) * p(x)e− j2πux

−∞

∞

∫ dx (5.14).

This shows that convolution in the time domain is multiplication in the frequency

domain. We can also show that convolution in the frequency domain is equal to

multiplication in the time domain. See [Carlson] for an alternative proof.

As a result of the convolution theorem, the Fourier transform of an impulse train is

also an impulse train,



F(u) * P(u) = F(u) * f sδ ( f − nf s )
n=−∞

∞

∑ (5.15)

Finally, we see that sampling a signal at a rate of f s  causes the spectrum to be

reproduced at f s  intervals:

F(u) * P(u) = f s F( f − nf s )
n=−∞

∞

∑ (5.16)

(5.16) demonstrates the reason why a band limiting filter is needed before the

switching function of Fig. 5-2. This leads directly to the sampling theorem which

states that a band limited signal may be reconstructed without error if the sample rate

is twice the bandwidth. Such a sample rate is called the Nyquist rate and is given by
f s = 2B Hz .

5 . 2 . 2 . Image Digitization

Typically, a camera is used to digitize an image. The modern CCD cameras have a photo

diode arranged in a rectangular array. Flat-bed scanners use a movable platen and a linear

array of photo diodes to perform the two-dimensional digitization.

Older tube type cameras used a wide variety of materials on a photosensitive surface. The

materials vary in sensitivity and output. See [Galbiati] for a more detailed description on

tube cameras.

The key point about digitizing an image in two dimensions is that we are able to detect both

the power of the incident energy as well as the direction.

The process of digitizing an image is described by the amount of spatial resolution and the

signal -to-noise ratio (i.e., number of bits per pixel) that the digitizer has. Often the number

of bits per pixel is limited by performing a thresholding. Thresholding (a topic treated more

thoroughly in Chap. 10) reduces the number of color values available in an image. This

simulates the effect of having fewer bits per pixel available for display. There are several

techniques available for thresholding. For the grayscale image, one may use the cumulative

mass function for the probability of a gray value to create a new look-up table. Another

approach is simply to divide the look-up table into uniform sections. Fig. 5-2 shows the

mandrill before and after  thresholding operation. The decision about when to increment the



color value was made based on the CMF of the image. The number of bits per pixel (bpp),

shown in Fig. 5-2, ranging from left to right, top to bottom, are: 1 bpp, 2 bpp, 3 bpp and 8

bpp. Keep in mind that at a bit rate of  28 kbps (the rate of a modest Internet connection

over a phone line) the 8 bpp image (128x128) will take 4 seconds to download. Compare

this to the uncompressed 1 bpp image which will take 0.5 seconds to download. Also note

that the signal-to-noise ratio for these images ranges from 10 dB to 52 dB.

Fig. 5-3. Quantizing with Fewer Bits Per Pixel

The code snippet allows the cumulative mass function of the image to bias decisions about

when to increment the color value. The input to the code is the number of gray values, k.

There are several methods to perform the quantization. The one shown in Fig. 5-3 is useful

in edge detection (a topic covered in Chap. 10). The kgreyThresh method follows:
public  void  kgreyThresh( double  k) {
    Histogram rh = new Histogram(r,"red");
    double  cmf[] = rh.getCMF();
    TransformTable tt = new TransformTable(cmf.length);
    short  lut[] = tt.getLut();
    int  q=1;
    short  v=0;
    short  dv = ( short )(255/k);
    for  ( int  i=0; i < lut.length; i++) {
        if  (cmf[i] > q/k) {



            v += dv;
            q++; //(k == q+1)||
            if  (q==k) v=255;
        }
        lut[i]=v;
    }
    tt.setLut(lut);
    tt.clip();
    tt.print();
    applyLut(lut);
}

5 . 2 . 3 . Image Display

One display device that has come into common use is the cathode-ray tube (CRT). The

cathode ray tube displays an image using three additive colors: red, green and blue. These

colors are emitted using phosphors that are stimulated with a flow of electrons. Different

phosphors have different colors (spectral radiance).

There are three kinds of television systems in the world today, NTSC, PAL and SECAM.

NTSC which stands for National Television Subcommittee, is used in North America and

Japan. PAL stands for phase alternating line and is used in parts of Europe, Asia, South

America and Africa. SECAM stands for Sequential Couleur à Mémorie (sequential

chrominance signal and memory) and is used in France, Eastern Europe and Russia.

The gamut of colors and the reference color known as white (called white balance) are

different on each of the systems.

Another type of display held in common use is the computer monitor.

Factors that afflict all displays include: ambient light, brightness (black level) and contrast

(picture). There are also phosphor chromaticity differences between different CRTs. These

alter the color gamut that may be displayed.

Manufacturers’ products are sometimes adopted as a standard for the color gamut to be

displayed by all monitors. For example, one U.S. manufacturer, Conrac, had a phosphor

that was adopted by SMPTE (Society of Motion Picture and Television Engineers) as the

basis for the SMPTE C phosphors.



The CRTs have a transfer function like that of (4.14), assuming the value, v ranges from

zero to one:

f (v) = vγ  (5.3)

Typically, this is termed the gamma of a monitor and runs to a value of 2.2 [Blinn].

As Blinn points out, for a gamma of 2, only 194 values appear in a look-up table of

256 values. His suggestion that 16 bits per color might be enough to perform image

processing has been taken to heart, and this becomes another compelling reason to

use the Java short for storing image values. Thus, the image processing software in

this book does all its image processing as if intensity were linearly related to the value

of a pixel. With the storage of 48 bits per pixel (for red, green and blue) versus the

Java AWT model of 24 bits per red, green and blue value, we have increased our

signal-to-noise ratio for our image representation by 48 dB per color. So far, we have

not made good use of this extra bandwidth, but it is nice to know that it is there if we

need it.


