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Abstract

This thesis addresses the problem of parallel parking a car equipped with

multiple sensors. The car is an autonomous robotic vehicle subject to

nonholonomic constraints. A kinematic simulation of the car is used to

investigate control and sensor regimes in multiple parking maneuvers. An

observer contains a car model with 25% steering-system and drive-train

acceleration errors. The car model is available to the observer at every

simulator time interval.

A short parking space requires multiple reversals of direction. Several s-

shaped curves are compared using the rate at which the car approaches the

curb as the objective function. A fifth-order parking polynomial is found

to dominate the other curves in curvature-constrained docking maneuvers.

An odometer, a steering-wheel angle meter, an orientation sensor and an

absolute position sensor enable correction of car-model error. The sensors’

reliability is inversely related to their availability. The 20 sample-per-

second internal sensors – the odometer and the steering-wheel angle meter

– give the observer the ability to perform dead-reckoning with 10%

measurement error. The external sensors – the orientation meter and the

absolute position sensor – are error-free but can be sampled only 5 times

per second.

Both ad-hoc logic and nonholonomic constraints are used to perform

sensor fusion. The combination of external and internal sensors
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outperforms either. Each by itself is, however, superior to open-loop

control using only the observer’s model.

Bang-bang control is used to change the steering-wheel angle and the drive-

train. Control of these variables allows the car to attain any feasible

configuration. Accelerations are piecewise constant, and velocity is

unconstrained. Proportional plus derivative control is used to formulate the

bang-bang control. The coefficients of the control equations are found by

experiment. Although the trajectory of the rear wheel is prescribed by the

parking polynomial, only the front wheel is subject to direct control.

All simulations are performed with STELLA™ (Structured Thinking

Experimental Learning Laboratory with Animation). STELLA allows

interactive set up and simulation of nonlinear, coupled, initial boundary

value problems. Some symbolic manipulations are performed with

MAPLE™.
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1. Introduction

In this chapter we define the parking problem, discuss its significance, and

describe our approach to solving it.

1.1. Problem Statement

The problem is to automate the process of parallel parking a car.

In order to formally state the problem, several assumptions are made. We

assume that the car is capable of autonomous control. For autonomous

control to be possible, the car must have sensors, effectors and sufficient

on-board computing power to run the parking program in real time.

The sensors must have some error and the nature of the error is assumed

unknown. Further, the worst-case error for the sensors is assumed to be

systematic error. We assume that there are two kinds of sensors, internal

and external, and that these sensors have an availability which is inversely

related to their reliability. The sensors are sampled at known rates.

There are two effectors in the car, one controls the 1-D motion, the other

controls the steering. We assume that the car steers with its front wheel and

that it has a limited turning radius. There are also limits on the car’s 1-D

and steering accelerations. The limits on acceleration and turning radius

are assumed to be known. It is assumed that the front of the car follows the

front wheel without slip, and so the car is subject to nonholonomic

constraints. We assume that the rear wheel remains parallel with the main
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axis of the car. No provisions are made to model the differential coupling

in the drive train or the width of the car: the model is essentially that of a

motor cycle.

The parking program is assumed to be capable of performing control using

the measurements provided by the sensors to alter effector commands. The

program contains a model of the car and it is assumed that this model has

error.

The parking space is assumed to be well approximated by a U-shaped

rectangle. The dimensions of the space are assumed to be known, without

error, to the parking program. For the purpose of control and comparison,

it is assumed that the distance to parking space curb is not a factor.

Given a car in a parking space with discrete sensor feedback, and modeling

errors in acceleration, car inertia and steering inertia, subject to

nonholonomic and kinematic constraints (curvature and acceleration),

develop a program that minimizes the time to park the car.

1.2. Approach

A theoretical model is developed as a basis for empirical research. The

model is applied using multiple experiments. The experiments are

performed by running simulations. This thesis consists essentially of two

parts: one is on model development and the other is on its application. In

order to develop the model, some data was collected. A test vehicle

provided data and permitted model validation.
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The path which the car follows is designed and tested against other paths.

Several s-shaped curves are compared using the rate at which the car

approaches the curb as the objective function. A fifth-order parking

polynomial is found to dominate the other curves in curvature-constrained

docking maneuvers.  It is known that the rear of the car must follow this

path and that the steering-wheel angle may be computed for any point on

the path.

In the simulator we have two models of the car, the plant and the plant

model. The plant is an error-free model of the car and is used to determine

the actual motion of the car.  The plant model is an erroneous model of the

car and is used to show the worst-case control scenario and to show the

effect of sensor fusion on control. The sensors are modeled in the

simulator and they measure the plant-states with systematic error.

The plant model is a part of a subsystem called the observer. The

observer’s function is to perform sensor fusion to provide plant-state

estimates for the controller. The observer can access the plant model at any

time during the simulation but its access to the plant is restricted by the

sensors and their error.

The controller is a subsystem which issues bang-bang control commands

which change 1-D and steering acceleration. Accelerations are piecewise

constant, and velocity is unconstrained. Proportional plus derivative

control is used to formulate the control decisions. Experiments are used to

find the coefficients of the control equations.
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1.3. Motivation

Computer-assisted parking may have commercial opportunities for car

manufacturers. There are also applications which are not obvious to the

lay-person.

The parking problem is a special case of goal-directed motion of an

autonomous land vehicle. There are constraints on rotation, velocity,

acceleration and collision. A solution to the parking problem has significant

implications for factory-floor motion planning. For example, the use of

automated vehicles for moving parts is becoming common. These vehicles

follow predefined paths that are inflexible. Motion-planning research,

presented here, has a major impact on the range of use of these vehicles.

Other applications of this research include autonomous-motion planning

and computer animation. Autonomous-motion planning is a requirement of

vehicles which cannot be operated remotely, as happens over great

distances (i.e., a planetary rover). Computer animation makes use of this

work by providing high-level goal-directed motion specification to an

animation programmer.

Automation helps to eliminate human error and make operations efficient.

It also insures safe, well-constrained operation while providing high-level

motion specification.

1.4. Summary of Thesis

Chapter 2 reviews some previous work in the field.
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Chapters 3 addresses the problem of static curvilinear path generation for

parking.  A curve for parking a car is derived and examples are shown.

Constraints on the curve include initial and final position, orientation and

curvature. There is also a constraint on the global curvature extrema; a

fifth-order polynomial results. To track the fifth-order polynomial’s

curvature, the relationship between the curvature of the back and the front

of the car is developed. This leads to the introduction of the nonholonomic

constraints on the car. The rest of the thesis addresses the problem of

tracking the curves under dynamic conditions.

Chapter 4 summarizes a study of open-loop bang-bang control in 1-D and

2-D. The open-loop control with plant-model error establishes a worst-case

performance on control. The open-loop control with no plant-model error

establishes a best-case performance on control. The bounds are used in a

comparative study in Chapter 5.

Chapter 5 summarizes a study of closed-loop bang-bang control in 1-D and

2-D. New sensor fusion techniques are developed which use sensors whose

reliability is inversely related to availability.

Chapter 6 summarizes the results found in the thesis and discusses topics

for future research.

Appendix A provides a derivation of the fifth-order polynomial using a

computer generated proof. A symbolic manipulation program (called

Maple) generates FORTRAN code that will compute the fifth-order

polynomial in minimum computer time.
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Appendix B defines holonomic and nonholonomic systems.

Appendix C shows that the effect of rolling resistance on the model

developed in Chapter 4 is negligible.

Appendix D describes the use of STELLA (Structural Thinking and

Experimental Learning Laboratory with Animation) for modeling and

simulation. Non-linear, time-varying systems may be represented with a

small set of graphical primitives and formulae. There are examples with

complex deterministic and stochastic relationships.

Appendix E contains a summary of simulation performed with different

proportional and derivative control mix ratios.

Appendix F provides experimental data which allows the measured

maneuver room to be mapped into the PSL parameter which takes into

account the worst-case plant-model error. This reduces the chance that

overshoot will result in a collision.

Appendix G examines the effect of changing the linear acceleration of the

car on the speed needed to steer it.

Appendix H compares various modeling errors in the plant model with

tracking performance.

Appendix I contains a glossary of symbols and terms used in the thesis.
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2. Historical Review

Machine assisted parking is not new. In 1933 Alfred Jackson was awarded a

patent for showing how to turn the steering wheel of a car while parking.

Over a dozen patents on parking have appeared between 1933 and 1988.

The most recent patent uses a computer controller attached to a hydraulic

valve in the steering system of a car with sensor feedback to determine car

position1. These patents laid claim to intellectual property without

providing implementation detail, leaving many unsolved problems [Good et

al. 1988] [Jackson 1933].

The rest of this chapter covers six categories of parking literature:

legislation on parking, planning, control, sensors, sensor-data fusion and

procedural knowledge representation.

2.1. Parking Legislation

The parking legislation is community oriented and non-technical. It

addresses three areas: finding and developing space, allocating space, and

enlisting the support of the public [Bair 1950]. Of these three areas, only

space-allocation appears relevant to the thesis.

The space-allocation literature establishes guidelines for car and parking-

space geometries. Much of the space-allocation literature is old and out of

1 Exactly how sensors determined the car’s position was not described.
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date. This is due to the rise in the number of small cars. In 1950, for

example, the recommended parking space was 2.4 meters wide and ranged

from 6.1 to 6.7 meters in length [Bair 1950]. Seven years later this

recommendation was unchanged [Ricker 1957]. Small car-parking stalls are

now less than 2.4 meters wide and less than 4.6 meters long. The increase

in the number of small cars has led to a 20% increase in the number of

small parking spaces since 1978. Cars currently range in size from under

1.6 meters in width and 4.3 meters in length to over 1.9 meters in width

and 5.5 meters in length. Further, turning radius (as defined in this thesis)

varies from 2.4 meters to 3.6 meters [Weant 1985]. Therefore, any

realistic parking algorithm must accommodate different car and parking

dimensions.

2.2. Planning

A plan is a course of action. The actions may be unordered, like a shopping

list, or they may be ordered, like putting on one’s socks and shoes [Cohen

et al. 1986]. This section establishes the position of the parking work with

respect to planning methodology. It is divided into three subsections,

general planners, path-planning and spatial reasoning.

2.2.1. General Planners

Planners are specialized production-system programs. In a production

system the control responsibility for rule selection may be contained within

the rules, lie outside the rules or be some combination of the two [Nilsson

1980]. Backtrack-control information in Prolog, for example, is found in
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the clauses [Clocksin and Mellish 1981]. A lack of domain-specific control

knowledge can lead to inefficiency in planning. Early examples of control

information incorporated into the rules are PLANNER [Charniak,

Sussman, and Winograd 1971], QA4 [Rulifson, Derksen, and Waldinger

1972] and CONNIVER [McDermott and Sussman 1972].

The STRIPS model was one of the first applications of forward production

[Fikes and Nilsson 1971]. In the STRIPS model the world consisted of

blocks that could be moved around by a simplified robot hand. Blocks

could be cleared, placed on top of each other and the robot hand could be

emptied. Several precondition formulas (used as implicational rules)

constrained production-rule firing. A database described the world to

which additional structures were appended. Forward production rules

modeled robot actions which altered a global database [Nilsson 1980].

The STRIPS approach generates plans in advance but error in execution

can cause plan failure. Improvement is obtained by applying partially

executed, and previous plans, via plan splicing or dynamic replanning.

These techniques provide an error execution recovery scheme [Vere 1985]

[Porta 1986].

Domain specific knowledge must be incorporated in any planner that plans

for real-world problems on a local level.

2.2.2. Path-Planning

Path-planning, the ladder moving problem, the Piano Mover's problem,

and the Voronoi-diagram approaches are applicable to the parking problem
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[Schwartz and Sharir 1983] [Ackman 1985]. There are two types of path-

planners, both of which find collision-free paths, the shortest-path planner

and the path planner.

Shortest-path planning algorithms find a collision-free minimum path for a

body among obstacles. The shortest-path planning problem is a harder

problem than the path-planning problem. Ackman proves that the shortest-

path planning is an NP-Complete (Nondeterministic Polynomial) problem

of O(2n), where n is the number of objects [Ackman 1985].

There has also been work in the reduction of path-planning to a problem of

search. One approach uses a digitized-terrain map to weight a grid

representation. Weights penalize elevation, mobility, cultural features and

military threats. A search through the grid develops a path [Mitchell and

Keirsey 1984]. There are also algorithms that plan on multiple levels. In

one instance, there are three levels that use varying abstraction: a mission

planner, a long range planner and a local planner. These planners plan for

mission goals, long-range paths and obstacle avoidance [Mitchell et al.

1984]. With respect to the multiple-level planning, a local planner solves

the parking problem.

A design technique using varying levels of abstraction is shared by a field

called intelligent control and this will be considered in Section 2.3.

2.2.3. Spatial Reasoning

Spatial reasoning includes the problem of reasoning with uncertain data to

establish position, orientation, speed, acceleration and plans to achieve
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goals. Uncertainty-reduction planning takes error specifically into account

[Hutchinson and Kak 1989]. Geometric planning, without error

considerations, may be performed off-line while local-planning, with

error, must take place on-line. Once geometric planning has taken place an

uncertainty-reduction planning phase begins. During this phase of planning,

failures are avoided by adding verification steps and potential local

recovery plans. One planner able to deal with error was SPAR. SPAR

performed error recovery by adding uncertainty-reduction goals, which

needed plan-execution check-points [Hutchinson and Kak 1990].

Another method of planning with error is dynamic replanning. Dynamic

replanning allows relaxation of implicit assumptions made by SPAR.

Apriori knowledge of goals is not always a reasonable assumption. When

this assumption is relaxed, SPAR (and static planners) will fail. Another

assumption is that events are on time. SPAR generates check-points and

contingency plans for on-line execution [Porta 1986]. Excellent arguments,

based on computation limits, may be advanced to support this type of

planning. In the parking problem, sensor data may be sampled slowly.

Local control of a correctly modeled system may be better effected by

classic control techniques.

Kinodynamic constraints are a combination of dynamic constraints (i.e.,

force, velocity and acceleration bounds) and kinematic constraints (i.e.,

collision avoidance). Time-optimal kinodynamic solutions have expanded

their sense of optimality from min-time to both min-time and safe obstacle

avoidance margins [Donald et al. 1989].
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The autonomous land vehicle literature addresses the maneuvering of a

point object in a weighted terrain, or the motion of a vehicle without

parking constraints [Mitchell et al. 1984]. This literature is not directly

applicable to automating the parking process.

There is literature on mathematical modeling of the car suspension and

outside forces during car motion [Speckhart 1973] [Yamada et al. 1967].

The models are complex and must be augmented for path generation. They

consider the bounce, pitch and roll motions of a sprung mass. It is beyond

the scope of this thesis to address a model of this complexity (which calls

for dynamical equations of motion with more than six degrees of freedom).

Recent spatial-reasoning research has addressed the nonholonomic

constraints that have plagued people since the invention of the cart [Edelen

1977]. One solution is based on a configuration-space approach [Latombe

1989]. Using the nonholonomic constraints (see Appendix B for a

definition), it is possible to establish a configuration space which may be

searched more efficiently than an unconstrained space [Laumond et al.

1988]. Using these techniques, as pointed out by Tournassoud, the motion-

planning problem is divided into the “local” and “global” planning

subproblems in a manner similar to Brook’s approach [Brooks 1982]

[Tournassoud 1988]. The nonholonomic find-path algorithm is able to solve

the nonholonomic-docking problem as a subproblem. The configuration-

space solutions to the find-path problem do not address the reduction of the

number of maneuvers and this is an important open problem [Tournassoud
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1988]. We have not found any previous solution to the nonholonomic find-

path problem in an uncertain configuration-space.

The parking problem has been reduced to a problem of search of the

configuration space by assigning metric weights based on obstacle

proximity. A path was derived based on the contribution of the weight to

an equipotential field. This approach is excellent for path generation,

particularly for safe paths, but does not consider the curvature constraints

inherent in parking a car [Dorst and Trovato].

Intercept control is a kind of spatial reasoning which uses homogeneous

coordinate transformations and numerical methods to minimize the time to

intercept a target. The homogeneous coordinate transformations rotate and

translate the interceptor relative to the target. This has some application in

the area of car parking. For example, when a car turns about its center, the

intercept-control approach can be used to determine when a collision will

occur. When a car is pulling into a space, intercept control determines

when to straighten out to avoid mounting the curb.

There are concepts surrounding the intercept-control work that pertain

only to the intercept problem. Details may be found in [Burke 1975] [Real

et al. 1986].

2.3. Control

Control system engineering uses feedback to satisfy constraints. There are

often constraints on stability, reduction of system response to noise,

realization of specific input/output relations (e.g., specified poles and
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zeros) and improvement of system robustness in the face of variation in the

open-loop dynamics [Safonov et al. 1977].

Plato is credited with the earliest thoughts about feedback in his approach

to economic regulation, but perhaps one of the first practical uses of

feedback was in the regulation of the speed of Watt’s steam engine in 1789

[Bennett 1979]. The 150-year phase (from 1790 to 1940) which followed

the steam engine regulation problem was characterized by practical

engineers solving problems which were beyond their theoretical

understanding. Theory began to have useful applications during World

War II where the need for high-speed servomechanisms became acute

[Bennett 1979].

The practical approaches to control which engineers have considered

between the time of Plato and about 1930 are beyond the scope of this

literature review. We can credit these early engineers with creating the

need for a theory which could explain their solutions. If practical engineers

waited for theoretical understanding to solve a problem, we might be

wearing bearskins instead of beepers.

The post-1930 control literature may be divided according to the taxonomy

which is shown in Figure 2.3-1. Control literature taxonomy has been

complicated with the advent of interdisciplinary approaches. The field of

systems science is one such example. It arises as a merger between artificial

intelligence and automatic control. In one approach, three collaborating

expert systems replace the classical plant/compensator control loop [Lirov

et al. 1988]. The heavy reliance upon heuristics in such an approach
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appears to make it lie in classic control; however, the use of the expert

system is new and places the approach in the field of intelligent control.
ontrol

Classic Control odern Control

euristics Stability 
Analysis

Transform 
Techniques ntelligent Control

ptimization
heory

Fuzzy Neural ierarchical

Figure 2.3-1. Post-1930 Control Literature Taxonomy.
The control literature taxonomy has been complicated by interdisciplinary approaches.

Classical control theory was developed between the 1930’s and the 1960’s.

These techniques include stability theory, transformation techniques and

heuristic intuition [Tse et al. 1989]. In classic control, direct methods are

used to formulate the control law in order to ensure that each of the design

constraints is satisfied [Safonov et al. 1977].

Classical stability theory and frequency-response analysis provides desired

stability and performance by manipulation of poles and zeros. This is a

mature theory when dealing with linear systems [Hung et al. 1952]. When

considering the stability and frequency response of non-linear equations the

analysis is more complex. This theory is not as mature as the linear control

theory [Lukes 1982].

Modern control theory uses a variety of mathematical disciplines:

optimization, calculus of variations, combinatorial search, etc. Modern

control system designs are based on models of the plant and the sensor

feedback. Uncertainty can create inefficient control designs. Poor or
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inefficient modeling of the operating environment and sensor error are

sources of uncertainty. While a precise strategy for reaching a goal may be

known, the relative position and orientation of the car is imperfectly

known. In addition, the dimensions of the objects in the environment and

therefore the precise target area are imperfectly known [Farreny et al.

1986].

Modern control is based on a body of knowledge called feedback control

theory [Ralston et al. 1983]. The parking problem has been formulated

with nonholonomic constraints (see Appendix B) and accurate models must

therefore be non-linear. Modern control offers numerical methods and

search techniques as a means for finding a control solution [Westcott 1969].

However, this approach is too complex to be solved on-line since searching

a nonholonomically constrained configuration-space requires considerable

computational resources1 [Barraquand et al. 1989].

There are some analytic solutions to nonlinear systems. For example,

Pontryagin’s minimum principal has been applied to a class of nonlinear

PDE systems [Huang et al. 1989].  However the systems were only

quadratic and 2-D.

Intelligent control is the discipline that designs Intelligent Machines to

perform anthropomorphic tasks with minimum supervision and interaction

1 Barraquand et al. suggest the use of a connection machine with 65,536 processors to search

nonholonomically-constrained configuration-space in less than a second [Barraquand et al 1989].
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with a human operator. It may involve elements of three different

disciplines: artificial intelligence, operations research and system theory

[Valvanis 1986]. It is difficult to apply classical control techniques of

stability analysis and frequency response to intelligent control solutions, but

the application of intelligent control has inspired new research in the area

of non-linear adaptive control.

Intelligent machines are hierarchical structures organized according to the

Principle of Increasing Intelligence with Decreasing Precision [Saridis

1988]. For example, the organization level performs information-

processing tasks in association with a long-term memory, the coordination

level deals with specific information-processing tasks with a short-term

memory only, and the execution level performs the execution of tasks

through hardware using feedback control methods [Saridis 1990].

Before the design of the control, the state variables, input, model, feedback

and goals must be known [Meystel Preprint]. Relaxation of this assumption

places us in an area that lies between artificial intelligence and control

system theory. There has been work unifying artificial intelligence and

control resulting in a hierarchic control approach [Kyriakopoulos 1991].

Search techniques in path-planning involve a generate-and-test approach

[Bonner et al. 1989].

Fuzzy logic control is another kind of modern control which can control

non-linear systems [Mamdani et al. 1984]. Farreny and Pradre design their
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fuzzy controller under the assumption that the car moves so slowly that

control lag is negligible1 [Farreny et al. 1986]. Their approach is to use

linguistic rules to perform high-level planning. Sugeno takes a fine motion

control approach to the formulation of the fuzzy rules for parking [Sugeno

et al. 1985].

The Farrenny and Pradre approach to describe the rules linguistically has a

linguistic approximation drawback. Suppose the knowledge engineer asks

“How much laundry do you have?” The answer of “Oh, just a little.”

involves qualitative linguistic terms whose meaning is difficult to quantify.

If the expert does not own a washing machine and dislikes doing laundry,

there may be a mere  eight to ten loads. Relative terms cause uncertainty.

Perhaps relative terms should not be used when quantities are known with

certainty.

Neural nets contribute another approach to non-linear control [Anderson et

al. 1989]. The adaptive part of the neural network indicates that there are

parameters requiring no precomputation and are formulated by a learning

algorithm. A drawback of this method is that thousands of training sessions

are needed to “teach” the network how to park [Widrow et al. 1990].

In summary, there are two intelligent control approaches to parking; fuzzy

control and neural network. The advantage of the fuzzy control approach is

that it deals directly with uncertainty in the parking problem [Farreny et al.

1 Simulation experiments show that this assumption is not realistic.
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1986]. There are disadvantages to fuzzy parking control: it may be difficult

for the operator to verbalize the knowledge, it is very difficult to give

general design procedures, the operator’s skill is important, and the control

results will not be better than the operator’s. In addition, published results

show parking failures. These failures of fuzzy control are attributed to

sensing and speed-control errors, the very errors which fuzzy control is

supposed to deal with [Sugeno et al. 1985]. The advantage of the neural

network approach is that it is self-learning and that it too deals directly

with uncertainty in the parking problem. The disadvantages to the neural

network approach are that the operator’s skill is important, the control

results will not be better than the operator’s and tens of thousands of

lessons are needed to train the controller [Widrow et al. 1990].

Modern control has made progress in the area of linear systems [Lewis

1986]. In order to use the theory of linear systems, linear approximations

must be made on point-to-point motion between sensor samples. For

example, in the Kalman filter, possible parameter variations are computed

using recursive least-squares-estimation algorithms [Durieu et al. 1986].

The Kalman filter is a kind of optimal estimator which grew from the

optimization theory branch of modern control (see Figure 2.3-1). The

Kalman filter uses a linear quadratic regulator (LQR) formulation to

estimate the state of a system. The LQR contains a linear model of the

system to be regulated. In the case of a non-linear system, the LQR’s model

must be a linear approximation. The LQR also contains a quadratic penalty

function and this is formulated using the value of the square of the
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deviation between the state of the system and the estimate of the system’s

state [Young 1969]. To make the computation tractable, it is assumed that

the noise statistics are known a priori  and that sensors are uniformly

sampled. Non-uniform sensor sampling of a non-linear system with

unknown noise statistics represents a significant relaxation of the

assumptions made by the Kalman filter approach [Maybeck 1990].

A current trend in robotics is to perform off-line planning followed by on-

line trajectory tracking. This reduces the dynamic path-planning problem

to static path-planning followed by tracking [Sing 1989].

Tracking without noise is a problem that may be solved using modern

control techniques [Athens and Falb 1966]. When sensors provide

incomplete information a reduced-order observer can be used to provide

an estimate of the state of the plant. If the sensor noise is Gaussian and the

system is linear, the Kalman filter is a provably optimal estimator. To

extend the Kalman filter’s abilities beyond the linear system, one may be

tempted to merge the Kalman filter with an intelligent controller; however,

this makes a complex and poorly understood system.

2.4. Sensors

A primary concern in the design of any autonomous system running in an

unpredictable environment is the use of sensor feedback. In order to

estimate the state of the plant, the observer must have feedback. Range

information is a key part of this feedback.
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Several devices are able to acquire range data. There are two basic

categories of range-finding devices: direct and indirect. Indirect devices

include stereoscopic vision and swept-focus; direct devices include

diffraction profilometry [DeWitt 1987], ultrasonic [Polaroid] [Texas

Instruments], RADAR and LADAR technologies [Wesolowicz 1987]. The

relationship of these sensors to one-another is shown in Figure 2.4-1

[Ruocco 1987].

Robot Vision Systems

2-D 3-D

Direct Range
Measurement

Indirect Range
Measurement

Ultrasonic Optical

Diffraction
Profilometry

Static LED
Array

Scanning
Laser

Figure 2.4-1. Sensor Taxonomy.
While optical range measurement technologies yield superior accuracy, ultrasonic sensors

are inexpensive, small and in common use.

In general, radar systems are more difficult and more expensive to produce

than sonar [Hovanessian 1988]. For this reason the radar approach has not

been given full consideration.

Determining path-length is easier than determining range since high-

accuracy odometers are available. If multispeed pancake synchros are used,
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accuracies of arc-seconds can be obtained [Diermengan 1990]1. Due to the

availability of excellent odometers we do not consider odometer sensor

error directly. We do model tire slippage, however.

2.4.1. 1-D Ultrasonic Ranging

Possibly the least expensive sensor available for ranging is the sonar. The

long wave length, poor angular resolution, low speed of sound and large

mismatch between the impedance of the transducers and air make the

choice of this sensor questionable [Ruocco 1987].

Wide-beam sonar systems require acoustical focussing. In addition, the

usual mode of operation of this sensor is to measure the time of flight of a

“chirp” after emission. The assumption that the sound will bounce back is

not necessarily a good one. Sound will not bounce toward the sonar

transducer if the angle of incidence decreases below a critical angle. The

result is that range is read as infinite. In addition, the problem of reflection

off secondary targets can cause an increase in round-trip distance for the

chirp.

1 A synchro is a rotating transducer used to convert shaft-angle position into an electrical signal or the

reverse. This is generally a three-phase device. Accuracy refers to the electrical angle as indicated by the

output voltage minus the rotor-position angle.
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Sensor A

Figure 2.4.1-1. Critical Angle of Sonar.
At the critical angle, the chirp will reflect away from the transducer and the distance will be

read as infinite. The critical angle is a function of the coefficient of specular reflection of
sound from the surface and of distance from target. If the properties of the reflecting
surface are unknown then the critical angle is uncertain. A smooth surface is shown.

Implementation errors form another class of sonar-system errors1. For

example, if temperature is not considered, the speed of sound in air could

significantly affect accuracy. Temperature variations over the span of 60 to

80 degrees Fahrenheit produce a 0.2 meter error at 10.7 meters [Polaroid].

This is a 2% error and may be acceptable under some circumstances.

1 The following data relates directly to the TI and Polaroid sonar systems.
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A single unfocussed beam is a characteristic of Polaroid sonar. This “wide”

beam system introduces uncertainty in perceived distance and in angular

resolution. Beam width is 0.9 meters at a distance of 1.8 meters, rendering

a doorway undetectable at that distance. One method for increasing the

angular resolution uses more than one transducer. Two sonar sensors can

double the area of coverage and increase the angular resolution by a

maximum of 50 percent [Everett 1985]. The idea is illustrated in Figure

2.4.1-2.

Sensor A

Sensor B
Object

Figure 2.4.1-2. A Multi-element Ultrasonic Ranging Array.
Beam-splitting will, at most, double the angular resolution. This figure discounts specular

effects. Sensors A and B are parallel to each other.

Another method for altering the angular resolution is to modify the system

beamwidth with an acoustic lens or horn. These devices can modify the

beam without any change in the electronics. Beams as narrow as one degree

are possible [Maslin 1983].

At 335 meters per second (speed of sound at sea level) the chirp travels 0.3

meters during its 1 ms. duration. This makes the measurement of short
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distances complicated. The chirp is made up of four discrete frequencies to

increase the probability of a reflection from a target with unknown

acoustic properties. Timing begins at the start of chirp emission and it is

not known which of the frequencies has triggered the receiver. Even with

these limitations, resolution of 0.006 meters can be obtained in the

processing range of 0.27 to 10.7 meters given a constant target [Maslin

1983]. Modifications to a Polaroid evaluation board resulted in resolutions

higher than 0.003 meters [Tam]1.

2.4.2. Posture Sensors

A posture sensor can determine car orientation by sensing the angle

relative to the car that reads the shortest distance to the target wall. The

target wall is the wall toward which the car is travelling. Posture sensors

are scanning sensors which may or may not move relative to the car. It is

possible to scan an area using car motion or to use a scanning array to

obtain range information.

There is also a kind of sensor called a lateral-scanning sonar-sensor. An

example of this is made using a parabolic collector, a Polaroid sonar and a

stepper motor. One implementation of a lateral-scanning sonar-sensor was

able to make a 180 degree scan in 25 steps [Ciarcia 1980]. This kind of

sensor could track the shortest distance between the car and a target wall,

thus enabling the computation of the car posture. The target wall is the wall

1 This report is included with data sheets from Poloroid and is not dated.
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of the parking space toward which the car is headed. The output of the

sensor is an angle measured relative to the main axis of the car.

An electronically scanned laser rangefinder is another kind of posture

sensor which uses an array of LASER diodes, each oriented in a precise

angle of increment from its neighbor. The advantage of electronic scanning

is that mechanical motion is eliminated. This makes the electronic scanner

faster and more accurate than its mechanical counterpart.

Shimada has shown that two CCD cameras can be used to sense a laser

array’s reflected beam with accuracies of 1% to 3% of the total distance to

target [Shimada 1990]. Currently available CCD technology will produce

full composite scans many times per second. Composite scans in each row

of the array will show all targets in the field of view.

2.5. Multiple Sensors and Data Fusion

The idea of using more than one sensor to complement the data of one

sensor with that of another is not new [Nelson et al. 1988]. The multi-

element sonar arrays, described earlier, are an example of a low-level

design which creates a better sensor system. High-level data fusion uses

data from multiple-sensors. Methods for data fusion are not as well

developed as those for the design and analysis of individual sensors.

Correlation is one method for determining the goodness of sensor

information. Other approaches to sensor fusion include the Dempster–

Shafer theory [Shafer 1976], possibility theory [Wang 1983], the Bayesian

approach [Davies and Jones 1986] and uncertainty evolution [Watanabe et
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al. 1990]. There has also been work integrating the Dempster-Shafer and

fuzzy set theories [Yen 1990]. Implementations  of the Dempster-Shafer

and fuzzy set synthesis have not been found, however.

Fuzzy geometric tolerancing is another method for performing sensor

fusion. Assuming a trapezoidal probability distribution, we can properly

model the distances in car-world. Fuzzy linguistic rules can assist here. For

example, if the car length is much smaller than the parking-space length,

then attempt a forward park, otherwise perform a backward park. These

types of fuzzy rules are difficult to quantify since the expert’s point-of-

view must be considered. One drawback to fuzzy geometric tolerancing is

that linguistic approximation is necessary [Farreny et al. 1986].

Another method for using multiple sensors is to deduce information of a

type which neither sensor could provide alone. For example, dual

odometers on the left and right drive wheels of a car are sensitive to

slippage but allow the computation of car orientation via dead-reckoning

[Wang 1988]. An internal sensor on steering-wheel orientation makes the

dual-odometer approach redundant.

A robot explores the world with sensors. The sensor-error characteristics

are often known in advance. There has been research on compiling spatial

information using imperfect sensor data. One method is to build a data

structure which contains spatial information about the world and some

means to determine the certainty of the spatial information provided. One

may build this data structure using a probabilistic approach, in which case

the data structure is called a stochastic map [Smith et al.].
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An alternative approach to forming navigation maps from uncertain sensor

data is to employ a consistent labeling scheme [Beckerman 1990]. This

technique is more symbolic than the stochastic map technique and uses a

non-local  approach to map generation. A non-local approach uses non-

adjacent pixels and will look at objects from all sides. According to

Beckerman, this methodology is excellent for treating systematic error and

out-performs the stochastic approach.

2.6. Procedural Knowledge Representation

Procedural knowledge can be expressed implicitly in the body of a

program [Barr et al. 1981]. An example, given by Barr and Feigenbaum, is

that of the lexicographic ordering algorithm which uses the knowledge that

“A comes before B” implicitly in the code.

Procedural knowledge may be used in the manipulation of abstract data

types in order to help find collision free paths [Lyon 1986]. In fact, the use

of a turtle as an example of how to trace continuous curves in 2-D (land

turtle) and 3-D (sea turtle), has led to turtle data types which are

manipulated with turtle commands [Abelson 1982].

Procedural knowledge is often incorporated into the configuration-space

approach to solving the find-path problem [Brooks 1982]. Even the

symbolic approach to representing spatial knowledge requires procedural

knowledge in order to manipulate the abstract data types [Kuipers 1979].

The manipulation of abstract data types is usually performed by procedures
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and these procedures contain knowledge about the abstract data types [Aho

et al. 1985].

2.7. Summary

Some parking patents are over half a century old [Jackson 1933] and so the

idea is not new. Parking legislation gives us a record of useful car and

parking-space geometries [Ricker 1957].

Planning developments allow us to consider the global find-path problem as

a solved subproblem [Brooks 1982]. However, the parking problem is a

nonholonomic-docking problem in an uncertain configuration-space. The

related nonholonomic find-path problem has been solved, but only in a

certain configuration-space [Tournassoud 1988].

Modern control provides theoretic support for tracking a pre-planned

trajectory in an environment with Gaussian noise [Durieu et al. 1986]. No

literature has been found to address the problem of tracking a pre-planned

trajectory using slowly-sampled sensors with systematic error. Intelligent

control gives several promising techniques but little is written on

performance prediction with these techniques [Saridis 1988].

Many sensors are available for posture measurement and three-dimensional

range finding but few are as practical and inexpensive as odometers

[Diermengan 1990] and sonars [Ruocco 1987].

There has been no literature found comparing sensor fusion techniques

(including evidential reasoning, possibility theory and the Bayesian
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approach) with ad-hoc procedural techniques for prediction [Hovanessian

1988]. There has been no literature found on combining systematic error

from slowly-sampled sensors with model inaccuracy.

The parking problem may be decomposed into two open subproblems,

solution to which could not be found in the literature. One is tracking pre-

planned trajectories using slowly-sampled sensors with systematic errors in

both the sensors and in the kinematic model. The other is the

nonholonomic-docking problem in an uncertain configuration-space.
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3. Derivation of a Curve for Parking a Car

In this chapter we discuss the 2-D docking curves traced by a car with

slope, curvature and nonholonomic constraints. The path traced by the rear

of the car is called the rear path  and the path traced by the front of the car

is called the front path. The rear and front paths are related by a one-to-

one mapping. Slope and curvature constraints are used to derive the rear

path and this results in a fifth-order polynomial. The front path and

corresponding steering-wheel angle are then formulated so that the rear

path tracks the fifth-order polynomial.

In the first half of this chapter we derive the rear path, and in the second

half of this chapter we derive the front path. The rear path is subject to

slope and curvature constraints; the front path is subject to nonholonomic

constraints.

3.1. The Rear Path

The problem of parking a car is a constrained 2-D spatial-reasoning

problem that draws attention to s-curves. A car executes a sequence of s-

shaped maneuvers, alternating between forward and backward motions. At

the end of each maneuver, it is desirable to bring the car parallel to the

curb and to straighten the front wheel. We therefore consider curves that

leave the front wheel and car in a specified orientation at the end of a

maneuver and whose maximum curvature is limited by the turning radius

of the car.
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There are constraints on slope and curvature at both maneuver end-points.

One end-point is fixed, the other constrained by the maximum deflection

permissible, given curvature limits. The slope of the curve at the maneuver

end-points is identical to that of the curb, and the front wheel is straight

(i.e., the curvature is zero). A parametric family of curves, described by a

fifth-order polynomial, results from these constraints. Under an error-free

assumption, the rear path will trace the shape of a fifth-order polynomial.

A line-segment of length L is used to represent the car. We assume that the

car operation is error-free and that the parking space has perfectly straight

walls which form a “U”. The following constants and state variables are

shown in Figure 3.1-1:
k5 ≡ curvature of the fifth-order polynomial,
L ≡ length of the car,
PSL ≡ Parking Space Length (equal to the distance between the car

in front and the car in back),
PSW ≡ the Parking Space Width (assume that this is large),
xf ≡ X-component of the front of the car,

yf ≡ Y-component of the front of the car,

xr ≡ X-component of the rear of the car (xr ε [0,PSL-L]) and

yr ≡ Y-component of the rear of the car.
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and front wheels.
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Figure 3.1-1. Parking Constraints.
The parking space has straight walls which form a “U”. Some sample maneuvers are

shown.

The car must avoid collision with the walls of the parking space (i.e., the

car in front and the car in back) and fit into the parking space. The rear-

path curvature must be strictly less than the maximum-allowable curvature

(|k5|<kmax)1. The rear path has specified slope and curvature at the

maneuver end-points.

3.1.1. Derivation by Docking Constraints

This section presents a derivation of a reference curve for the rear path. A

fifth-order polynomial is subjected to docking constraints which uniquely

define its coefficients.

1 Here 'strictly' is used to mean that the constraint applies to all points on the curve.
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Initially we investigated several s-shaped curves (two circular arcs, a cosine

curve, and a fifth-order polynomial) to determine their geometric

suitability for representing the path traced in parking a car. It was shown

that while all of them can accommodate initial and final position and

orientation constraints, only the fifth-order polynomial accommodates

initial and final curvature. The simpler curves have the advantage of

allowing the path to be traversed (assuming constant acceleration and

deceleration) about as rapidly as the fifth-order polynomial and achieve

greater penetration into the parking space. The disadvantage of these

curves is that they incur an additional time penalty in straightening out the

wheels at the maneuver end-points. This study showed representative

examples of the curves and illustrated the effect of the turning radius of the

car on the time required to park it [Lyon 1990].

The rear path during a single maneuver is represented as a (single-valued)
function yr = f(xr). The general form of a fifth-order polynomial is

y r(x r) = a 5

x r

x e




5

+ a 4

x r

x e




4

+ a 3

x r

x e




3

+ a 2

x r

x e




2

+ a 1

x r

x e
+ a 0

(3.1)

where x e = PSL −L, x r ∈ 0, x e[ ] , i. e. , 0 ≤
x r
x e

≤ 1
(3.2).

Let the car be parallel with the curb at the maneuver end-points:

y r' =
dy r

dx r
, y r' (0) = y r' (x e) = 0

(3.3).
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It is also desirable to have the front wheel of the car parallel to the curb at

the maneuver end-points. This will save steering-wheel alignment time at

the beginning and end of the maneuver. Steering while the car is in motion

also reduces tire wear. The wheels are parallel to the curb when the rear

path has zero slope and curvature. The rear-path end-points have X-

coordinates zero and PSL-L. Thus the fifth-order polynomial, as a function
of the X-coordinate, must have zero curvature at xr = 0 and

xr = xe, so that

k5(0) = k5(xe) = 0 (3.4).

Where  k5=f(xr) is the curvature and 1/k5 is the instantaneous rear turning

radius. The curvature is given [Faux 1979] by:

k5( x r) =
y r"

1 + y r'( )
2 

3 /2

(3.5).

To enforce the curvature end-point constraints, k5(0)=k5(xe) = 0, it is

necessary and sufficient to require that the second derivatives equal zero at

the rear-path end-points:
y r" (0) = y r"( x e) = 0 (3.6)

As shown in Appendix A, enforcing the docking constraints (3.3 and 3.6)

results in

y r(x r) = y e 6
x r

x e
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−15
x r

x e



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+ 10
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x e




3



 (3.7).

 Substituting (3.7) into (3.5) yields
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(3.8)

for the rear-path curvature. Recall that xe, is the target X-component of the

rear path and ye is the Y-component of the amplitude of the rear path.

Since cars have a limited turning radius, an inequality constraint is imposed
on the maximum curvature (kmax) of the rear path. This constraint causes
the amplitude (ye) of the fifth-order polynomial to be a function of the

maximum curvature. This function is computed numerically, because it
requires solving the curvature equation for a maximum.

To ensure that the curvature is constrained, |k5(xr)| < kmax, we find the

extrema of the curvature by setting the derivative of the curvature equal to
zero and solving for xr. This yields the positions of the extrema at the

inflection points used to find the maximum curvature. The extrema cannot

occur at the end-points since the curvature is zero there. The non-linear

nature of this problem requires a doubly-nested numerical method for

finding the maximum permissible fifth-order polynomial deflection. The

inside loop establishes the maximum curvature for a given deflection and

the outside loop alters the deflection. Exact solutions may be found for

specific cases, but analytic solutions are not forthcoming.
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3.1.2. Examples

Equations (3.7) and (3.8) are used to generate Figure 3.1.2-1. This figure

shows families of fifth-order polynomials and their respective curvatures.

Each fifth-order polynomial has a zero derivative and curvature at the end-

points as well as different amplitudes and curvature maximums.

yr k5

xr xr

Figure 3.1.2-1. Family of Fifth-Order Polynomials and Respective Curvatures.
The curves have varying amplitude with zero slope and curvature at the maneuver end-

points.

The location and value of the curvature maximum varies as a function of
the amplitude. In Figure 3.1.2-1, xe = 2 meters.

There is only one fifth-order polynomial with a curvature maximum, over
the feasible range of xr, equal to kmax. The maximum curvature, kmax, and

the maneuver room, xe, are car and parking-space specific.

We have shown that the parking problem requires specialized docking

constraints. The fifth-order polynomial is a minimum-order polynomial

designed to comply with these constraints. Numeric techniques are used to



38

find the fifth-order polynomial with curvature limited by the turning

radius of the car.

Further constraints to be addressed include limits on 1-D and steering

acceleration.

3.2. The Front Path

In this section we use nonholonomic constraints to determine what the front

path should be so that the rear path will result in a fifth-order polynomial.

Once the front path is found, we will derive the relationship between the

curvature of the front path and the steering-wheel angle.

Nonholonomic-dynamical systems arise whenever there are non-integrable

relations between coordinates and their time derivatives [Fox 1987] and

these systems must be solved numerically [Latombe et al. 1989]. This is not

surprising, considering the non-linear nature of the coupled differential

equations. With nonholonomic constraints, you can go anywhere, but not

any way!

The word “nonholonomic” comes from the Greek and means “not
altogether lawful.” Suppose that us is the sth state variable of a system with

N state variables, then a constraint not reducible to the form

f ( u1,u 2, . . . , uN, t) = 0

is a nonholonomic constraint. Examples of nonholonomic constraints

include inequality constraints (i.e., the car must be contained within the
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parking space). In fact, any dynamical system of two of more particles is

subject to at least one nonholonomic constraint.

If a system of L independent equations of constraint of the form

A rsdu s + A rdt = 0
s=1

N

∑

( r = 1,2, . . . , L) (3.9)

does not possess L integrals of the form

f r(u 1, u 2, . . . ,u N, t) = c r (3.10)

then the system of constraints is nonholonomic  [Rosenberg 1977].

An important characteristic of the nonholonomic constraints is that the

dimension of the space of accessible configurations is not reduced by

nonholonomic constraints. Therefore, given the proper set of maneuvers,

one may drive to any prescribed configuration.

In summary, a system is nonholonomic when the equations of constraint

cannot be integrated. A characteristic of a nonholonomic system is that the

number of parameters exceeds the number of degrees of freedom. The

excess is equal to the number of non-integrable equations of constraint

[Korenev 1967].

3.2.1. Derivation by Nonholonomic Constraints

The car has pose (xf, yf, θ5) and steering-wheel angle (φ5). These variables

are shown in Figure 3.2.1-1 and are functions of the front path-length, s5.
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Explicit functional notation is omitted for brevity. This notation is based on

the work of Barraquand and Latombe [Latombe et al. 1989]. The spatial

differential equations in this chapter usually appear in the literature as

temporal differential equations. The temporal formulations will be used in

Chapter 4, where speed is a function of time.

L

Y

θ5

x r ,y r( )

X

φ

( x f,y f)

Figure 3.2.1-1. 2-D Car States.
Car orientation (θ5) and steering-wheel angle (φ5) are in radians. The front of the car
(x

f
,y

f
) and length (L) are measured in meters. Width is neglected. The car length and

orientation are used to compute the car-rear location, for reverse maneuvers.

The angle, θ5, the car makes with the X-axis is called the car orientation.

The angle of the front wheel with respect to the main axis of the car, φ5, is

called the steering-wheel angle. The distance traversed by the front wheel

is denoted s5. The kinematic equations of car motion are derived by

Barraquand and Latombe and nonholonomically constrain the car [Latombe

et al. 1989]. The nonholonomic nature of the constraints is evident in

equations (3.11) through (3.13):

dx f

ds5
= cos (θ5 + φ5)

(3.11)
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dy f

ds5
= sin (θ5 + φ5)

(3.12)

dθ5
ds5

= k5 =
sin φ5

L (3.13).

Equations (3.11) and (3.12) arise because the point at which the wheels

touch the ground has zero velocity with respect to the car (the no-slip

condition)1. The no-slip condition requires car travel in the direction of its

wheels. The steering-wheel angle, φ5, is measured relative to the car

orientation. The velocity of the front of the car is tangent to the front

wheel. Dividing (3.12) by (3.11) results in

dy f

dx f

= tan (θ5 + φ5)
(3.14).

Proof of equation (3.13):

The front of the car turns about a circle whose radius, r, is measured by

the perpendicular distance between the front wheel and a ray fired from

the rear axle of the car as shown in Figure 3.2.1-2.

1 Ice and snow cause relaxation of the no-slip condition.
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L

Y

θ5

r

↑ ds5

dsr
x r ,y r( )

X

φ

( x f,y f)1
k5

Figure 3.2.1-2. The Turning Radius of the Car.
The turning radius of the car is measured by the perpendicular distance between a ray

emanating from the rear axle of the car and front wheel.

By applying trigonometric relations to Figure 3.2.1-2, and the result (from

differential geometry) that the derivative of the arc length of any path with

respect to the angle of the ray to the path is equal to the radius of

curvature, we obtain (3.13) Q.E.D.

Since the rear wheel is always parallel with the car axis,

dy r

dx r
= tan (θ5)

(3.15)

results.

The rear of the car is fixed relative to the front of the car and this results

in

x r = x f − L cos θ5

y r = y f − L sin θ5 (3.16).
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For the rear path to track a curve whose curvature is k5, subject to

constraints (3.11), (3.12) and (3.13), we must set the steering-wheel angle

so that

φ5 = arctan ( k5 L) (3.17).

Given constant steering angle, the front and rear of the car trace the arc of

a circle, and orientation changes as a linear function of s5 [Barraquand et

al. 1989].

3.2.2. Examples

In this section we solve the initial boundary value problem subject to

equations (3.7), (3.11-3.13) and (3.16-3.17). Test vehicle measurements

showed that the maximum of φ = 0.526 radians. Using L = 3.88 meters1 a

maximum value of 0.223 meters-1 for the curvature of the rear of the car

results; this correlates with the measured 0.26 meters-1 from field tests.

Assuming a car X-deflection of 2.4 meters, the fifth-order polynomial Y-

deflection, with a curvature maximum of 0.223 meters-1, is 0.23 meters.

This is found by using numeric methods.

1 The length of the car, when computing curvature, is measured from wheel-base to wheel-base.

The car’s bumper-to-bumper length is 4.3 meters, and this is used to compute the maneuvering room.
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Figure 3.2.2-1 shows the numerical solution and the tracks of the center of

the front and rear of the car as a function of the path length of the front of

the car.
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x f,y f

x f

Figure 3.2.2-1. Example Maneuver
All units are in meters. We show the solution to the nonholonomically constrained initial-

value problem.

Figure 3.2.2-2 shows that the car orientation and curvature are zero at the

maneuver end-points, and this means that the car is parallel with the curb

and that the front wheel is straight.
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Figure 3.2.2-2. Example Angles and Curvature
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The steering-wheel angle, car orientation and curvature are zero at the maneuver end-
points. the curvature for the rear of the car as described by the fifth-order polynomial (k5)

is in meters -1.The steering-wheel angle and car orientation are in radians.

Tabulated results show that the maximum curvature is 0.223 meters-1, the

Y-component of the final rear deflection is 0.23 meters and that the

maximum steering-wheel angle is 0.526 radians. Thus, the state variables

which describe the car motion are feasible.

Several experiments were performed to measure the maximum Y-

deflection for various values of PSL-L. The maximum Y-deflection is the

peak lateral excursion required for a maneuver. A graphical summary and

quadratic approximation to the data is shown in Figure 3.2.2-3.
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Figure 3.2.2-3. Maximum Y-Deflection vs. PSL-L.
Several experiments show that the maximum Y-deflection is almost quadratic in PSL-L.

When the maximum Y-deflection exceeds the available lateral maneuver room, the car will
mount the curb.

If the car approaches the curb, the parking space width cannot be

considered infinite and the car must back in to the space. If the car were to

pull forward, without sufficient space between the car and the curb, the car

would mount the curb.
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Several experiments were performed to measure the Y-deflection at the

maneuver end-points for various values of PSL-L. A graphical summary

and a quadratic approximation to the data is shown in Figure 3.2.2-4. The

deflection into the parking space is a quadratic function of the available

maneuver room. Simple circular arcs also yield a quadratic deflection as a

function of PSL-L.
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Figure 3.2.2-4. Y-Deflection vs. PSL-L.
Several experiment show that the deflection of the car at the maneuver end-points is almost

quadratic in PSL-L.

3.3. Summary

In this chapter we have used slope and curvature constraints to derive a

fifth-order polynomial, and this was shown (in [Lyon 1990]) to provide a

faster means of parking than other curves. We also derived the relationship

between the steering-wheel angle and the rear-path curvature.

This chapter established the state variables which determine car

configuration as a function of front-wheel path-length. In subsequent
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chapters, path-length will be a function of time, and the spatial differential

equations given here will be used in their temporal form.
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4. Open-loop Control

This chapter is divided into three main parts: Section 4.1 provides an

overview of 1-D open-loop control; Section 4.2 provides an overview of 2-

D open-loop control and Section 4.3 summarizes the open-loop simulation

results. Both Sections 4.1 and 4.2 contain subsections which provide details

on the plant, plant-model errors, the control law and a simulation.

Open-loop control establishes upper and lower bounds on controller

performance by modeling an observer with and without plant-model error.

This chapter reports performance bounds on plant-model overshoot when

there is acceleration error.

Let us establish the control nomenclature used in this thesis. Figure 4-1

shows an overview of an open-loop system with three main parts: the

controller, observer and plant. We assume that the plant model may

incorporate error.
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Plant Model

Plant

Controller

Observer

Figure 4-1. Open-loop Control.
The observer uses controller-input to estimate plant states. The controller uses the plant-

state estimate to formulate input.

The controller uses the plant-state estimation produced by the observer to

determine the control signals. These signals are applied to the plant model

and the plant. Error in the plant model will cause a reaction to the control

signals which is different from the plant’s reaction. This is called open-loop

control because there are no sensors between the plant and the observer.

The observer will perform sensor fusion to update the plant model in the

closed-loop control regime of Chapter 5. The difference between closed-

loop and open-loop control is the presence of sensor feedback between the

plant and the observer, otherwise the control regimes are identical.

4.1. 1-D Open-Loop Control

This section summarizes an investigation of 1-D open-loop control and is

divided into three parts: in Section 4.1.1 we assume that we have control of

an error-free plant model. This means that control signals will create a

plant-model reaction which is identical with the reaction of the plant. The
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controller can access the plant-model’s states without error and at high

speeds and this establishes a theoretical upper-bound on performance.

Section 4.1.2 summarizes the simulation results of the best-case scenario

described in Section 4.1.1 and Section 4.1.3 summarizes the worst-case

results when open-loop control is provided to an erroneous plant model.

Assume that the brake and accelerator are mutually exclusive and that the

car is either accelerating or braking at a constant, prespecified rate. Let
asmin = the braking deceleration and let asmax = the maximum acceleration.

Since cars can brake faster than they accelerate, |asmin| > |asmax|.

4.1.1.  1-D Open-Loop Control of an Error-Free Plant Model

This section establishes a plant model and a control law. This allows the

performance of experiments which show the best and worst-case

performances obtainable from open-loop control. In this section we assume

that there is no difference between the plant model and the plant in order to

formulate control procedures which work correctly under ideal conditions.

This creates an upper-bound on the controller performance. The error-free

approach is shown in Figure 4.1.1-1.

Plant Model

Controller

Observer

Figure 4.1.1-1. Error-Free Control.
The observer’s plant model is developed in parallel with the controller to establish a test-

bed for constructive modeling.
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The controller issues 1-D acceleration commands which the plant model

follows, without error. To simplify simulation, we assume that reverse

torque is used to brake the car and to cause backward motion. Electric cars

permit the application of reverse torque during a forward maneuver.

Parking space walls are static constraints and are considered known a

priori. The literature survey in Chapter 2 established the minimum parking

space length as 4.6 meters and the maximum parking space length as 6.7

meters. Further, it was established that the smallest cars are 4.3 meters

long. We assume that the parking space is 6.7 meters long and that the car

is 4.3 meters in length (3.88 meters axle to axle). As a result, the maximum

distance from the front of the car to the opposite wall of the parking space

(i.e., the next car) is 6.7 meters - 4.3 meters = 2.4 meters. Therefore, the

largest displacement during any single maneuver is 2.4 meters, the value

used for simulation.

The distance required to stop a car moving at speed 
ds
dt  is given by:

d b = 1
2 a s min

ds
dt




2

(4.1)
where

db is the distance needed to stop the car,

ds
dt is the speed, and

asmin is the braking deceleration.

In this thesis, speed is a scalar quantity which can go negative. During a

reverse maneuver, speed is negative, and watching the integral of the speed
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is like watching an odometer which turns backward when in reverse. This

has advantages which will become evident in simulation.

Little information is available on average acceleration and deceleration for

a car over the 0 to 2.4 meter range. For a comfortable ride, the vehicle

acceleration must be less than 1.95 m/s2 [Hauksdottir and Fenton 1985].

Power-train models show that car acceleration is highly non-linear and not

constant in the first 2.5 seconds of operation [Ha et al. 1989].

Due to the lack of car acceleration studies in the 2.4 meter range and

because car simulations may be verified with a real car, field tests were

performed. Two experiments with three trials each established estimates

for rates of acceleration and deceleration. The test vehicle was a 1989

Chevy Blazer truck. Experiments showed that the test vehicle accelerates at

0.83 m/s2 and decelerates at 1.4 m/s2 in a 2.4 meter interval.

When car position, s, plus braking distance, db, exceeds the objective path

length for the car (2.4 meters), the brakes are applied. In the forward

maneuver, the acceleration command is given by the following expression:

a s c
=

a smin for s + d b ≥ 2.4

a smax otherwise


a smax = 0. 83m/s 2

a smin = − 1. 4m/s 2
(4.2).

Integration of the speed results in path length. The initial path length and

speed are equal to zero.
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4.1.2. Simulation of 1-D Open-Loop Control of an Error-Free

Plant Model

This section summarizes the results of a simulation of 1-D motion. This

simulation uses the 1-D control law of (4.2). A graph of position, speed

and acceleration for 1-D motion is shown in Figure 4.1.2-1.

Time

 0.0 1.00 2.00 3.00 4.00
-4 .00

-2 .00

 0.0

2.00

4.00

s ds_dt dds_dt

1/24/91  7:38:19 AM

Figure 4.1.2-1. Graph of 1-D Motion.
Position is in meters, speed is in meters per second and acceleration is in meters per second

squared.

The resting position of the car is 2.41 meters, an overshoot of 0.01 meters

( a 0.4% error). The STELLA step size (dt) is 0.01 seconds, and this causes

the overshoot. For example, the identical simulation with a STELLA step

size of 0.1 seconds results in a resting position at 2.61 meters, an overshoot

of 0.2 meters (8% error). Step sizes of smaller than 0.01 seconds lead to

large simulation times.

Note that the peak speed of 1.59 m/s (3.6 mph) and the total simulation

interval of three seconds are consistent with field tests. In addition, 1.59
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m/s is slow enough so that a limit on the speed, i.e., a coasting period, is

unneeded.

In summary, no acceleration error and dt=0.01 seconds caused a 0.4%

overshoot. This is due to temporal quantization, since the same model with

dt=0.1 seconds resulted in an 8% overshoot.

4.1.3. Simulation of 1-D Open-Loop Control of an Erroneous

Plant Model

In this section we introduce error in the STELLA model of the plant.

During open-loop control, the acceleration parameter in the observer

consistently underestimates that of the plant by 25%, the objective is to

determine the effect of acceleration error on the observer’s plant-state

estimates. The plant model with error is shown in Figure 4.1.3-1.

 

Plant Model
with error

Plant

Controller

Observer

Figure 4.1.3-1. Open-loop Control using a Plant Model with Error.
The observer uses controller input to estimate plant states. The controller uses the plant-

state estimate to formulate input.

The 25% underestimation of acceleration could result from a combination

of payload and terrain changes which are unpredictable, i.e. hills, cargo,

snow or rolling resistance. Overestimating acceleration or underestimating
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deceleration is a non-catastrophic failure, since it results in undershoot.

The opposite error can cause a collision, and this is a catastrophic failure.

We investigate separately the effects of underestimating acceleration and

overestimating deceleration, then combine the errors for a worst-case

scenario. Equation (4.3) shows a 25% overestimation of the acceleration of

the plant model in the observer.

a s p
=

a s c
for a s c

≤ 0

0.75a s c
otherwise


 (4.3)

Where
a s p  = acceleration of the plant.
a s c  = linear acceleration command used by the plant-model.

The acceleration error causes the plant’s maneuver to take longer than the

observer’s. A comparison of the overshoot indicates that the acceleration

error makes no difference. From the observer’s point of view, the plant

stopped at 2.41 meters in both simulations. As would be expected,

however, the plant overshot by 1.16 meters (see

Figure 4.1.3-2b).

In summary, the observer’s plant model has a 25% lower acceleration than

the car. The observer uses the plant model as a reference and so is applying

the gas when it is actually time to brake. The result is that the car

overshoots.

Now assume there is error only in the estimate of the deceleration,
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a s p
=

1.33a s c
for a s c

≤ 0

a s c
otherwise


 (4.4)

and the braking distance, as computed by the observer, is updated to:

d b = 1
2(1.33)a s min

ds
dt




2

(4.5).

Figure 4.1.3-3b shows early halting caused by the observer’s overestimate

of the plant deceleration. The effect on the plant is shown in Figure 4.1.3-

3c.

Figure 4.1.3-3 shows that the observer’s overestimation of the plant’s

ability to brake causes the brakes to be applied too late to stop in the

allotted space. The plant reaches the same peak speed as the observer

because there is error in deceleration only. The deceleration overestimation

results in overshoot and an increased maneuver time.

Overestimation of deceleration leads to a plant travel of 2.66 meters, or a

0.26 meter overshoot.

We now combine the effects of a 25% acceleration and a deceleration error

into a single simulation. The combination of the errors is obtained by

changing  the control law in (4.4) to:

a s p
=

1.33a s c
for a s c

< 0

0.75a s c
otherwise


 (4.6).
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The observer reacts as expected, having a long period of acceleration with

an abbreviated deceleration. This is shown in Figure 4.1.3-4b.

Figure 4.1.3-4 shows that the observer’s overestimation of the plant’s

ability to brake and underestimation of the plant’s ability to accelerate

compounds the problem.

The resting position of the plant is 3.84 meters. The objective position is

2.40 meters, and the difference is 1.44 meters, a 60% overshoot. In the

following figures, position is in meters, speed is in meters per second and

acceleration is in meters per second squared.
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a. The Error-Free Plant

Time
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b. The Observer’s Plant Model
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c. Open-Loop Control of the Plant

Time
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Figure 4.1.3-2. Underestimation of Acceleration.
Figure b shows the plant-model with 25% underestimation of acceleration. Figure c shows

the observer’s underestimation of acceleration leading to overshoot. The observer
underestimates the plant’s ability to accelerate and so accelerates for too long. The plant
reaches a higher peak speed and therefore takes longer to slow down and maneuver time

increases.
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a. The Error-Free Plant
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b. The Observer’s Plant Model
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c. Open-Loop Control of the Plant

Time
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9/25/90  3:38:59 PM

Figure 4.1.3-3. Overestimation of Deceleration.
Figure a shows observer overestimation of the plant’s deceleration and this causes early

halting. Figure c shows overestimation of plant deceleration by the observer causing
overshoot.
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a. The Error-Free Plant
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b. The Observer’s Plant Model
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c. Open-Loop Control of the Plant

Time
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Figure 4.1.3-4. Underestimation of Acceleration and Overestimation of Deceleration.
Figure b shows the observer estimates with 25% acceleration and deceleration error. Figure

c shows the objective position (2.4 meters) being overshot by 60%.
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Error-Free Plant 
Model

5% 
nderestimation  
f Acceleration 

25%  
Overestimation of 
Deceleration

Acceleration 
Underestimation 
and Deceleration 
Overestimation

Overshoot 0 m .15 m 0.26 m 1.43 m

Peak Speed 1.59 m/s .93 m/s 1.67 m/s 2.00 m/s

Time when 
Deceleration 
applied

1.91 s .31 s 2.01 s 2.41 s

Total Maneuver 
Time

3.04 s .69 s 3.20 s 3.77 s

Figure 4.1.3-5. Summary of Open-loop Errors.
The overshoot from the combined errors almost linearly sums to form the combined

overshoot. The objective position is 2.41 meters.

Figure 4.1.3-5 shows that a 25% underestimation of acceleration causes a

48% overshoot and that a 25% deceleration error causes a 10.8%

overshoot. It also shows that the combined acceleration and deceleration

errors causes a 60% overshoot.

Given the errors in the plant model, the overshoot can be reduced (but not

eliminated) only through sensor feedback. The sensor feedback reduces

overshoot because it improves the observer’s braking-distance estimate and

this leads to earlier braking by the controller. Even perfect plant-state

estimates won’t eliminate overshoot because the braking-distance estimate is

a function of the overestimated deceleration.

In addition to considering acceleration and deceleration error we consider

rolling resistance as a source of error. Appendix C examines drag as a

source of error in modeling the plant and shows that rolling resistance

takes only 1% of the engine’s power and is therefore negligible.
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4.2. 2-D Open-Loop Control

The open-loop controller models the steering system as having rotational

inertia and alters steering acceleration to control steering-wheel angle. As

in Section 4.1, this section consists of three subsections: in Section 4.2.1 we

assume that we have 2-D control of an error-free plant model and so

plant-model reaction is identical with that of the plant. Since the controller

can access the plant-model’s state, without error and at high speeds, it

establishes a theoretical upper-bound on performance. Section 4.2.2

summarizes the simulation results of the best-case scenario described in

Section 4.2.1 and Section 4.2.3 summarizes the worst-case results when 2-

D open-loop control is provided to an erroneous plant model.

This section uses a temporal nonholonomic system of differential equations

which are derived from the spatial nonholonomic system of differential

equations in Chapter 3. To reflect the change of the independent variable
from the X-component of the rear of the plant (xr) to time (t), and to make

explicit that these equations are for the plant model, we introduce the

following notation:
x ≡ X-component of the front of the plant model,
y ≡ Y-component of the front of the plant model,
dx
dt  ≡ rate of change of the X-component of the front of the plant

model,
dy
dt  ≡ rate of change of the Y-component of the front of the plant

model,
s ≡ length of the path traveled by the plant-model,
ds
dt

≡
 
front-wheel plant-model speed,
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 θ ≡ plant-model orientation, angle formed by the main axis of the
plant with the X-axis of a Cartesian coordinate frame aligned with
the curb,

dθ
dt  ≡ rate of change of the plant-model orientation,

φ ≡ steering-wheel angle relative to the longitudinal centerline of the
plant model and

dφ
dt  ≡ rate of change of the steering-wheel angle of the plant model

relative its longitudinal centerline.

To obtain the temporal differential equations from the spatial differential

equations shown in (3.11-3.13), multiply both sides of equations (3.11-

3.13) by the time-variant speed, 
ds
dt , and substitute the plant-model notation

for the fifth-order polynomial notation, to obtain:

dx
dt

= ds
dt

cos (θ + φ)
(4.7)

dy
dt

= ds
dt

sin (θ + φ)
(4.8)

dθ
dt

= ds
dt

sin φ
L (4.9).

The car pose (x, y, θ) and steering-wheel angle (φ) are shown in Figure

3.2.1-1 as static curves. The only difference is that (4.7-4.9) describe

dynamic and not static curves.

In addition to the nonholonomic constraints, the rate at which the steering

wheel may be turned (the second derivative with respect to time of 3.17) is
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limited by the rotational inertia of the steering system and the limits on

steering torque.

4.2.1. 2-D Open-Loop Control of an Error-Free Plant Model

This section examines the plant model and controller. The goal is to

formulate a control law which enables the car to track the curvature of a

fifth-order polynomial using the error-free approach shown in Figure

4.1.1-1. The controller specifies angular acceleration to the steering

system. The curvature is computed from the steering-wheel angle, as

shown in (3.18). The length of the fifth-order polynomial is 2.41 meters

and this is computed numerically.

Recall that the reference curvature in (3.8) is a function of xr. This, in

turn, is a function of xf and θ5 as given in (3.16). The equations of (3.16)

are valid for the plant model as well, all that remains is that x, y and θ be
substituted for xf, yf and θ5. These state-variables are subject to the

nonholonomic constraints of (4.7-4.9). These constraints will produce

values for x and θ when the 1-D control starts the car motion. In equations
(3.3) and (3.8), xe and ye are restricted by the curvature maximum and are

computed before a maneuver is begun. The fifth-order polynomial traces a

reference path whose curvature is tracked during a maneuver.

 Since the car is subject to some overshoot we must restrict the range on

the X-component of the rear of the car’s deflection so that

0 ≤
x r

x e
≤ 1

(4.10)
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for going forward and

1 ≤ 1 −
x r

x e
≤ 0

(4.11)

for going backward.

All that remains is the formulation of the angular acceleration control. The

steering curvature as computed by (3.8) is

k f =
y e 120

x r
3

x e
5 − 180

x r
2

x e
4 + 60

x r

x e
3









1 + y e
2 30

x r
4

x e
5 − 60

x r
3

x e
4 + 30

x r
2

x e
3









2





3
2

(4.12)

for going forward and

k b =
y e 120

(1 − x r)
3

x e
5 −180

(1 − x r)
2

x e
4 + 60

(1 −x r)

x e
3







1 + y e
2 30

(1 − x r)
4

x e
5 −60

(1 −x r)
3

x e
4 + 30

(1 −x r)
2

x e
3







2







3
2

(4.13)

for going backward. Recall that L is the length of the car,  xe, the target X-

component of the back of the car and ye the total deflection of the ideal

fifth-order polynomial. The functional notation is omitted for brevity here.

Curvature is a function of the rear-component of the X-coordinate of the

car. The relationship between the front and rear coordinates is given in

equation (3.16). Both are subject to the temporal nonholonomic constraints

in (4.7-4.9).
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The difference between this controller and the 1-D controller of Section

4.1 is the difference between a servo controller and a tracking controller

[Athens and Falb 1966]. In a servo controller the command input (the

objective_position) is time-invariant. In the tracking controller the

command input (the reference path’s curvature) is time-variant.

The control law of this open-loop 2-D nonholonomically constrained

system is given by

aφ =
a φmax for e < 0

− a φmax otherwise

 (4.14)

where aφmax = 50 rad/s2

(4.15).

The key decision variable is e  and this is the result of a proportional plus

derivative control. The control is based on the steering-wheel angle and the

car orientation and this is given by

e = eφ + α θeθ (4.16)

where

eφ = φ − φ5 + α
dφ
dt

−
dφ5

dt


 (4.17),

eθ =

− θ −θ5 + αe
dθ
dt




for backup_ lights = 1

θ −θ5 + αe
dθ
dt

otherwise



 (4.18),

and
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e
dθ
dt

= dθ
dt

−
dθ 5

dt
(4.19).

The variable, backup_lights, is set equal to one when the car is backing up.

The mix ratio between the proportional and derivative control must be

found by experiment. The values

α
θ

= 2 and α = 0. 05 (4.20)

gave good results (See Appendix. E).

The steering-wheel angle of the car, as given by the fifth-order

polynomial, makes use of the fifth-order polynomial prescribed curvature

(4.12) and (4.13) and is:

φ 5 =
arcsin(k5 bL) for backup_ lights = 1

arcsin(k5 fL) otherwise

 (4.21).

Implicit in the nonholonomic constraints is the dependence of car

orientation on the speed of the car:

dθ 5

dt
= ds

dt

sin(φ5)

L (4.22).

The proportional component of the orientation control is obtained by

numerical integration of (4.22).

The 1-D component is altered for the purpose of accomplishing multiple

maneuvers. The maximum deflection of the fifth-order polynomial is

limited in order to limit the curvature extrema, as pointed out in Chapter
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3.



69

4.2.2. Simulation of 2-D Open-Loop Control of an Error-Free

Plant Model

This section establishes the best-case scenario for 2-D open-loop control by

assuming that the plant model is error-free. Figure 4.2.2-1 shows the

control result of error-free curvature tracking.

- . 2
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.4

.6

.8

1

1.2

1.4

1.6

- 3 - 2 - 1 0 1 2 3
x

y

x, y xr, yr
Scattergram for columns: X1Y 1  … X2Y 2

Figure 4.2.2-1. Error-Free Curvature Tracking.
An error-free plant model is used to control the plant curvature. On the left is the path traced

by the rear wheel; on the right, that of the front wheel.
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Figure 4.2.2-2. Angular Acceleration.
The resulting steering acceleration is proportional to the linear acceleration. If the plant

slows down we do not need to steer as fast.

Figure 4.2.2-2 shows the maximum acceleration is 6.85 rads/s2, and the

minimum is -4.20 rad/s2. The reason why the maximum and minimum

steering accelerations differ is that the car is first maneuvering forward

and then backward. During the backward maneuver the car is subjected to

rear-wheel steering and rear-wheel steering response differs significantly

from front-wheel steering response [Whitehead 1990]. An acceleration of

one radian per second squared is not realistic from the driver’s perspective,

but with the proper gear ratios and over small angular displacement, such

angular accelerations are possible.

This section on 2-D motion follows the development of 1-D motion in

Section 4.1 as closely as possible. Significant deviations from the

development of Section 4.1 include the symmetric-acceleration assumption

and the tracking nature of the servo. It was found from experiment that the



71

required angular acceleration exceeds the driver’s ability by a factor of 18

and that the steering system must be geared up appropriately for computer

control.

4.2.3. Simulation of 2-D Open-Loop Control of an Erroneous

Plant Model

This section examines the open-loop control shown in Figure 4.1.3-1. Two

1-D experiments showed that using engine-torque with an underestimation

of the angular-acceleration is worse than an overestimation of the angular-

acceleration. The Y-position of the front of the car at the end of two

maneuvers was selected as the criterion of optimality, since the steering-

wheel angle, car orientation and X-position of the front of the car were all

similar after two maneuvers.

A 25% angular-acceleration and underestimation of the engine torque are

implemented by

a s p
=

backward_ acc_ error for backup_ lights = 1

forward_ acc_ error otherwise

 (4.23)

backward_ acc_ error =
1.25a s c

for a s c
≤ 0

0.75a s c
otherwise


 (4.24)

and

forward_ acc_ error =
0.75a s c

for a s c
≤ 0

1.25a s c
otherwise


 (4.25).
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A simulation which uses this control law gives the results shown in Figure

4.2.3-1.
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Figure 4.2.3-1. Open-Loop Control with 25% Underestimation.
The plant model in the observer is shown by the (x, y) trace. The plant is shown by the

(x_p, y_p) trace.

Figure 4.2.3-1 shows the results after two maneuvers. After two

maneuvers the plant state vs. the observer estimates are off by 2.5 meters

in the X-component, 0.04 meters in the Y-component, 0.01 radians in the

car orientation and 0.006 radians in the steering-wheel angle.

Correction is clearly needed since the errors will increase with the number

of maneuvers.
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4.3. Summary of Open-loop Control

In this chapter we established the model for the car. Due to variation in

load and road condition, we assumed that there would be some modeling

error in the linear and steering acceleration in the car. Using simulation,

we introduced a plant model and a plant. By introducing error into the

plant model we were able to establish a lower bound on open-loop

controller performance. With the removal of error from the plant model

we obtained the upper-bound on open-loop controller performance. These

performance-bounds are compared with closed-loop performance in

Chapter 5.

In 2-D open-loop control we found that the rate at which the car

approaches the curb is 0.406 m/6.0 s = 0.067 m/s for the error-free

maneuvers and 0.443 m/6.0 s = 0.073 m/s for the maneuvers with error.

The increase is due to the observer’s underestimation of acceleration. The

resting X-coordinate error after two maneuvers is 2.5 meters; this indicates

the need for sensor feedback.
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5. Closed-Loop Control

Chapter 5 summarizes an investigation into closed-loop control, and this is

compared with open-loop control studied in Chapter 4. Closed-loop control

improves performance by using sensor feedback to the observer for

improving plant-state estimates. Improved plant-state estimates result in

better control.

Section 5.1 provides an overview of the closed-loop system. Section 5.2

covers internal and external sensors with a justification for sensors whose

reliability is inversely related to availability. Section 5.3 summarizes

closed-loop bang-bang control for 1-D motion using internal and external

sensors. Section 5.3 also shows that the 1-D sensor fusion techniques are

applicable to 2-D motion and give similar improvements in plant-state

estimates and controller performance.

5.1. System Overview

Sensor feedback is used by the observer to compensate for the error in the

plant model. Figure 5.1-1 shows an overview of a closed-loop system with

three main parts: a controller, an observer and a plant.
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Plant Model

Plant

Controller

Observer

Sensor 
Feedback

Commands 
from the 
controller

Plant-state estimates 
from the observer

Figure 5.1-1. Closed-loop Control.
The observer uses the plant model driven by the controller commands  to estimate plant

states. The controller uses the plant-state estimates to generate commands. Sensor feedback
is used to correct the observer’s estimate of the plant states.

The observer uses a plant model and sensor measurements to estimate the

state of the plant. The process that the observer uses to incorporate

measurements from different sensors is called sensor fusion.

There are two classes of sensors, internal and external. Their reliability is

inversely related to their availability. External sensors are more accurate

than internal sensors and dominate the internal sensors when they are

available.

Internal sensors measure the plant state relative to itself. An odometer is an

example of an internal sensor which measures the distance a car travels by

measuring tire motion. Since tires slip, the odometer will have some error.

We also assume that internal sensors have a 20 hertz sampling rate.

Candidate internal sensors are: the accelerometer, the tachometer and the

odometer. These sensors give equivalent data. Equivalent data means that
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data provided by any one of the sensors may be transformed into data

provided by any of the others.

External sensors measure the plant state relative to the environment. A

Sonar sensor is an example of an external sensor. We assume that external

sensors have a 5 hertz sampling rate.

5.2. 1-D Motion

This section summarizes 1-D bang-bang closed-loop control. The

controller issues an acceleration command to a servo in the car which

computes the torque needed to track the command. Plant-state estimates are

used by the controller to compute the acceleration command. The observer

uses a plant model as a reference to estimate plant states. Chapter 4 showed

that errors in the plant model have a significant impact on the error in the

observer’s estimates. This chapter examines the use of sensors to help

correct that error.

5.2.1. Internal Sensors

We consider the effect of a plant model updated by an odometer on

observer estimates and the resulting control.  The odometer under-reports

plant position by 10%. The plant model underestimates acceleration and

overestimates deceleration by 25%. The observer is updated by the

odometer at 20 hertz. The internal sensor feedback system is shown in

Figure 5.2.1-1.
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Controller

Plant 
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Plant
10% Error
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Plant-State 
Estimates

Controller 
Commands

Internal Sensor 
Feedback

Observer

s, ds
dta s

d^
dt

ŝ ,
s

Internal
Sensor

Figure 5.2.1-1. Internal Sensor Feedback.
The observer resets the plant-model’s position at a rate of 20 Hertz. The observer’s speed

estimate is reset using consecutive pairs of position measurements.

When the switch in Figure 5.2.1-1 is closed, the observer updates the plant-

model position. The odometer measures the plant position, with error. The

observer also updates its estimate of the plant’s speed. The speed is

estimated by dividing the difference between consecutive  position

measurements by the sampling interval.
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5.2.2. External Sensor

We model an ultrasonic sonar sensor as an external sensor. This gives

range data in the X-direction. We assume that we can ignore temperature

effects, errors and uncertainties normally associated with this sensor

(acoustic diffraction, wide beam angle and interference from other sonar

systems).

External sensors are assumed to be error free. During the time that

external sensors are not available, the last externally sensed data is used in

combination with the internal sensor to perform dead reckoning. When the

external sensor is available, its data dominates the internal sensor’s data, as

described below.

5.2.3 Sensor Fusion

The observer uses tachometry computed from tire turns combined with the

plant model’s output to perform dead-reckoning during the intervals of

time in which sonar-sensor data is unavailable. When sonar-sensor data is

available, it is an accurate measure of the remaining maneuver room in the

intended direction of travel. This data is used to update the internal sensor’s
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output as well as the plant-model states. We assume that the nature of the

sensor error is unknown.1

This brings up an important point concerning error assumptions. We have

tried to relax most assumptions made about sensors. For example, we do

not assume that there is Gaussian noise on the sensor, nor do we assume

that there will be systematic acceleration error. In fact, error could come

from ice, terrain, load or any of a slew of other sources. The less we know

about the errors we will encounter, the more intelligent our interpretation

of sensor data must be.

Another point concerning the approach taken here is that the sensors we

have selected do not provide the same data at the same rate. This avoids

sensor redundancy and places emphasis on a few good sensors rather than

on several lower-performance ones. In addition, the sensor dissimilarity

avoids the statistical approach to sensor fusion [Pons 1989]. A new

technique is developed for performing sensor fusion using sensors with

widely different characteristics.

The remainder of this section describes an experiment which fuses data

from 20-hertz internal sensors with 10% error and 5-hertz external sensors

with no error. This data is available to the observer. The only external

sensor is the sonar, and the only internal sensor is the odometer. The

1 If we knew that systematic error was the only kind of error we would encounter then we could adjust

the plant model. This would be an example of Model Reference Adaptive Control [Ciccarella 1989].
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odometer data is fused with the sonar data, and the resulting estimate is

used to correct the plant-model which overestimates acceleration by 25%

and underestimates deceleration by 25%.

Figure 5.2.3-1 shows a block diagram of the internal sensor and external

sensors used by the observer.

Controller

Plant 
Model

Plant

5 Hertz

x p

10% Error

20 Hertz

s p

Plant-State 
Estimates

Controller 
Commands

External and Internal 
Sensor Fusion

Observer

s, ds
dta s

d^
dt

ŝ ,
s

External 
Sensor

Internal
Sensor

Figure 5.2.3-1. Internal and External Sensors.
A five-hertz switch is used to symbolize the limitation of the sampling rate for the external

sensor.

We assume that the car moves in 1-D and so the X-component of the front

of the plant, and the length of the path traveled by the plant front-wheel,

are identical. This is also true for the plant model. The results of this

simulation are shown in Section 5.2.4.
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5.2.4. 1-D Simulation Results.

In this section we compare the open-loop control results of Chapter 4 with

the closed-loop control results of sections 5.2.1, 5.2.2 and 5.2.3.

Figure 5.2.4-1 shows a comparison of 1-D control regimes. Several plant

states and observer estimates are shown. The observer estimates show that

the controller is performing optimally, given the observer’s information.

As the information to the observer improves, so does its plant-state

estimate and the resulting controller performance.

The overshoot of the plant when it halts is a useful criterion. Better

observer estimates will reduce this overshoot. The overshoot is 3.76 m -

2.41 m =1.35 m for the open-loop case. The only action performed by the

controller is the application of the brakes at the right moment. The data for

the open-loop control is presented graphically in Figure 4.1.3-5. Both

acceleration underestimation and deceleration overestimation were used for

the open-loop results, since these assumptions maximized the overshoot.
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Position 
When the 

Brakes 
are 

Applied

Speed 
When the 

Brakes 
are 

Applied

Time 
When 

the 
Brakes 

are 
Applied

Position 
when 

speed is 
zero.

Time 
When 

Speed is 
Zero

Error-Free Plant 
Model (a) 1.51 m 1.59 m/s 1.9 s  2.41 m 3.04 s

Error-Free 
Sensing of the 
Plant with 25% 
Error in Plant 

Model (c)

1.49 m 1.64 m/s 1.7 s 2.77 m 3.2 s

Open-Loop 
Plant Model 

with error  
1.64 m 1.46 m/s 2.0 s   2.41 m 3.0 s

Open-Loop 
Plant (b) 2.06 m 1.89 m/s 2.0 s 3.76 m 3.7 s

Closed-Loop 
Observer with 

Internal Sensors 
1.49 m 1.60 m/s 1.8 s  2.89 m 3.5 s

Closed-Loop 
Plant with  

Internal Sensors  
(d)

 1.67 m 1.83 m/s 1.8 s  3.27 m 3.5 s

Closed-Loop 
Observer with 

External 
Sensors

1.46 m 1.63 m/s 1.9 s 3.07 m 3.5 s

Closed-Loop 
Plant with 
External 

Sensors  (e)

1.67 m 1.78 m/s 1.9 s 3.19 m 3.4 s

Closed-Loop 
Observer with  

Internal and 
External 
Sensors 

1.49 m 1.63 m/s 1.8 s  2.74 m 3.8 s

Closed-Loop 
Plant with  

Internal and 
External 

Sensors  (f)

 1.67 m 1.74 m/s 1.8 s 3.12 m 3.4 s

Figure 5.2.4-1. Comparison of 1-D Control Regimes.
The 1-D error-free sensing of the plant with 25% error in the plant model sets a best-case
performance bound for closed-loop control with 0.36 m overshoot. The open-loop plant
shows the worst-case response, with 1.35 m overshoot. The 1-D closed-loop plant with
internal sensors has a 0.86 m overshoot. The 1-D closed-loop plant with external sensors
has a 0.78 m overshoot. The 1-D closed-loop plant with internal and external sensors has

0.71 m overshoot. The letters in parenthesis refer to figures.
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The 1-D error-free plant model was discussed in Section 4.1.1. The 1-D

error-free plant model provides a best-case bound on the controller’s

performance. The position of the 1-D error-free plant model, and of the

plant model with error under open-loop control, is 2.41 meters, when the

speed is zero. This shows that the controller is performing optimally given

the observer’s information.

The 1-D error-free sensing of the plant, with 25% error in the plant

model, sets a lower best-case performance bound for closed-loop control.

Sensors are error-free and running at the simulator rate of 100 hertz.

Without using an adaptive reference model, and with no prior knowledge

of the plant-model error, this must be the best performance that we can

expect from any sensor fusion scheme. The overshoot using this scheme is

2.77 m - 2.41 m = 0.36 m.

The 1-D closed-loop plant with internal sensors has 25% error in the plant-

model and 10% error in the internal sensors. The internal sensors are

sampled at 20 hertz (Figure 5.2.1-1). The overshoot of the plant position

when the speed is zero is 3.27 m - 2.41 m = 0.86 m.

The 1-D closed-loop plant with external sensors has 25% error in the

plant-model and no error in the external sensors. Also, the external sensors

are sampled at 5 hertz. The overshoot of the plant position when the speed

is zero is 3.19 m - 2.41 m = 0.78 m.

The 1-D closed-loop plant with internal and external sensors has 25% error

in the plant-model.  There is no error in the external sensors. There is 10%
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error in the internal sensors which are sampled at 20 hertz (Figure 5.2.3-

1). The overshoot of the plant position when the speed is zero is 3.12 m -

2.41 m = 0.71 m.

In the 1-D closed-loop plant with internal and external sensors, the

performance after a single maneuver is slightly better than using external

sensors alone. An examination of the position of the plant when the speed is

zero shows that the fusion of external sensors with internal sensors will

reduce overshoot by 0.07 meters, for a single maneuver. It is also seen that

internal sensors reduce the single-maneuver overshoot obtained from open-

loop control by 1.35 meters - 0.89  meters = 0.46 meters. Closed-loop

sensor fusion reduce single-maneuver overshoot by 0.64 meters over the

open-loop case.

The observer underestimates the acceleration and overestimates plant’s

ability to brake. The result is that the plant accelerates for too long and

decelerates for too short a time. The underestimation of acceleration  in the

plant model causes the plant to attain a higher speed than the plant model.

At higher speeds it takes longer to brake, even when the deceleration is

known accurately.
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Figure 5.2.4-2. A Single Maneuver and 1-D Control Regimes.
 The above graphs show the length of the path traveled by the plant front-wheel (SSubP),

the front-wheel plant speed (DsDtSubP) and the 1-D acceleration for the plant
(ASubSSubP).
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Figure 5.2.4-2 shows several 1-D control regimes running in simulation

over a four second interval. Figure 5.2.4-2a  shows an upper-bound on

parking performance. This can never be attained when the reference model

has error. Figure 5.2.4-2c shows the result of error-free sensors sampling

at the simulator clock rate (100 hertz) using an erroneous reference model.

Figure 5.2.4-2b shows open-loop control (the limiting case as sensor

sampling rates approach 0 hertz).

The sensor fusion technique used here is used in the next section on 2-D

motion and yields similar results.

5.3. 2-D Motion

In the remaining half of this chapter we consider the effect of internal and

external sensor fusion on closed-loop 2-D control. The observer estimates

the states of the plant using internal sensors, external sensors and a plant-

model with error.

As in Chapter 4, this section summarizes a study of  2-D control using the

fifth-order polynomial to generate a reference path. Bang-bang control is

used to adjust the acceleration and the steering-wheel angle of the car.

Nonholonomic constraints are used by the observer to compute pose

(position and orientation).

We compare open-loop control against several closed-loop control regimes.

These regimes differ in the sensor data provided to the observer. Open-
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loop control is based on a plant-model with error and does not use sensors.

The closed-loop control regimes are based on internal sensors (dead

reckoning), external sensors and a combination of both. As a basis for

comparison we also show control based on error-free sensing of the plant

states. This provides a best-case limit on the parking performance and can

be compared with open-loop control (which provides a worst-case limit on

parking performance).

External sensors are sampled without error at 5 hertz and internal sensors

are sampled with 10% error at 20 hertz. The plant-model is used between

sensor readings and is always available to the controller. The plant-model

has 25% steering and linear acceleration error. Sensors compensate for the

error in the plant-model, improving performance.

5.3.1. Internal Sensors

We add sensors for steering-wheel angle and car-orientation to enable 2-D

dead-reckoning. It is assumed that we are able to sense the steering-wheel
angle (φp) and the odometer (sp) with 10% error and with 20 hertz

sampling, as shown in Figure 5.3.1-1. The sensors consistently under-

report the true magnitude of the sensed variables.

The ideal steering-wheel angle is a function of the fifth-order polynomial’s

curvature (as shown in Chapter 4). The controller is not able to set the

plant’s steering-wheel angle except by banging on the steering system. The

control law described in Chapter 4 is not altered. The only change is in the

accuracy of the plant-state estimate given to the controller by the observer.
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Figure 5.3.1-1. Dead Reckoning.
Dead reckoning uses only the internal sensors to obtain a better estimate of the plant-states.
As in Figure 5.2.1-1, the internal sensors are fast and error-prone. The only difference is

the additional sensor for the steering-wheel angle, φ
p
.

The sample-and-hold switches for the odometer and the steering-wheel

angle meter are actuated simultaneously and at 20 hertz. There is a single

simulator delay interval needed before the sample-and-hold attains the

measured value. The values measured by the internal sensors are multiplied

by 0.90 to model the 10% internal sensor measurement error.

5.3.2. External Sensors

We use ultrasonic ranging for pose (position and orientation). We assume

that the external sensors are able to run at a rate of five hertz and that they

have no error. Modeling external sensors with systematic error would

displace the entire parking trajectory with respect to the parking space.

During the intervals in which external sensors are not available, the plant-

model is updated by the internal sensors.
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, ŝ ,
dŝ
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Figure 5.3.2-1. External Sensors in 2-D.
The 2-D external sensors are able to read the pose (position and orientation) of the car with
respect to its environment. This gives the observer an error-free measure of the car’s pose

at a rate of five hertz.

It will be shown that control with external sensors is not much better than

control with internal sensors and that control with both internal and

external sensors is better than control with either one alone.

5.3.3. 2-D Sensor Fusion

In this section we describe a technique for fusing the information from the

internal and external sensors using the nonholonomic constraints on

orientation. A block diagram is shown in Figure 5.3.3-1.
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Figure 5.3.3-1. Internal and External Sensors Used by the Observer.
Internal sensors are sampled at 20 hertz and have 10% error while external sensors are

sampled at 5 hertz and have no error.

The plant model has a 25% error in linear and steering acceleration. The

observer fuses the internal and external sensors to reduce the plant-model

error. The plant steering-wheel angle is measured directly at 20 hertz with

10% error. This is used to improve the observer’s estimate of the steering-

wheel angle. External sensors cannot help improve the observer’s

estimation of the steering-wheel angle because the change in the plant’s

pose lags behind the change in the steering-wheel angle. Car orientation is

directly measured by an external sensor, without error, and is used to

update the observer’s estimate.

During the intervals of time when the externally sensed plant orientation is

not available, the observer uses the nonholonomic constraints on

orientation to incorporate the internally sensed estimate of the steering-

wheel angle with the fused estimate of speed. Thus
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dθ̂
dt

= dŝ
dt

sin (φ̂) /L
(5.1)

is the rate of change of orientation computed by fusing information from

internal sensors. Orientation is obtain via numeric integration of (5.1) and

exhibits cumulative error which is corrected by the external orientation

sensor. This is shown in Figure 5.3.3-2.
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Time
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1: ThetaSubP 2: ThetaSubP5 3: ThetaHat

1 1
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Figure 5.3.3-2. The Observer’s use of the External Orientation Sensor.
The plant’s orientation (ThetaSubP) is sampled accurately at 5 hertz by the orientation

sensor whose output is denoted ThetaSubP5. In between sensor samples the observer uses
(5.1) to compute an estimate of the plant’s orientation (ThetaHat).

Similarly, reference orientation is computed using

dθ5
dt

= dŝ
dt

sin (φ5) /L
(5.2).

Finally, the difference signals used to compute when to bang on the

steering combine (5.1) and (5.2) to obtain:

e dθ
dt

= dθ̂
dt

− dθ5
dt

(5.3).
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This is control law is just like that of Chapter 4, except for the introduction

of the sensor feedback for improving the plant-state estimates.

The fused estimate of speed is the result of numerically differentiating the

odometer reading at 20 hertz to obtain a tachometer reading with error,

adjusted by the derivative of the positional change using the external

sensors. The observer’s estimate of the speed of the plant diverges from the

true value of the plant. Since the odometer has 10% error it follows that

the minimum error in the derivative of the odometery is 10%  In addition,

we cannot account for what the car path looks like in between sensor

samples. This is particularly important in the case of the 5 hertz external

sensor which actually harm the observer’s estimate of the plant’s speed at

low velocity. This is shown in Figure 5.3.3-3.
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Figure 5.3.3-3. The Observer’s Estimate of Speed.
DsDt is the speed of the plant model. ApproxDsDtP20 is the 20 hertz derivative of the

odometer. ApproxDsDtP5 is the 5 hertz derivative of the external sensors. DsDtHat is the
observer’s estimate of the plant’s speed. DsDtSubP is the speed of the plant.
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The external sensors are too slow to help estimate the arc-length of the path

along the maneuver, and so the plant-model arc-length is updated directly

by the odometer at 20 hertz with 10% error. This shown in Figure 5.3.3-4.
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Figure 5.3.3-4. The Observer’s Estimate of Path length.
The plant’s front-wheel path length (SSubP) is sampled with 10% error at 20 hertz by the
odometer whose output is denoted OdSubP20. In between sensor samples the observer

uses the plant model to compute an estimate of the plant’s front-wheel path length (SHat).
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5.3.4. Simulation Results

In this section we compare the open-loop control results of Chapter 4 with

the closed-loop control results of Section 5.3.

Figure 5.3.4-1 shows a comparison of 2-D control regimes. Since there is

no single objective function to optimize, several plant states and observer

estimates are shown. The observer estimates are shown in order to establish

that the controller is performing optimally given the observer’s

information. As the information to the observer improves, so does its

plant-state estimation and the resulting controller performance.

In the 2-D open-loop control with error in the plant model, we established

the worst-case bound on controller performance. Open-loop control is

based on a plant-model with error and does not use sensors. This was

discussed in Chapter 4 where engine and steering acceleration were

underestimated by 25%. The overshoot of the plant when the speed is zero

is a useful criterion and is 3.76 m - 2.41 m =1.35 m. Better observer

estimates will reduce this overshoot.



96

Position 
When the 

Brakes 
are 

Applied

Speed 
When the 

Brakes 
are 

Applied

Time 
When 

the 
Brakes 

are 
Applied

Position 
when 

speed is 
zero.

Orientation 
when speed 

is zero.

Front-wheel 
angle when 

speed is 
zero.

Time 
When 

Speed is 
Zero

Error-Free Plant 
Model (a)

1.51 m 1.59 m/s 1.91 s  2.41 m 0 rad 0 rad 3.04 s

Error-Free 
Sensing of the 
Plant with 25% 
Error in Plant 

Model (c)

1.39 m 1.70 m/s 1.64 s 2.77 m .005 rad -.004 rad 3.26 s

Open-Loop 
Plant Model 
with error (b)

1.51 m 1.59 m/s 1.91 s   2.41 m 0 rad 0 rad 3.04 s

Open-Loop 
Plant

1.88 m 1.98 m/s 1.91 s  3.76 m -.46 rad -.039 rad 3.79 s

Closed-Loop 
Observer with 

Internal Sensors
1.47 m 1.63 m/s 1.78 s  2.90 m .0075 rad -.0034 rad 3.54 s

Closed-Loop 
Plant with  

Internal Sensors 
(d)

 1.63 m 1.85 m/s 1.78 s  3.27 m .0073 rad 0 rad 3.53 s

Closed-Loop 
Observer with 

External 
Sensors

1.41 m 1.69 m/s 1.77 s 3.10 m .0225 rad -.04 rad 3.57 s

Closed-Loop 
Plant with 
External 

Sensors (e)

1.60 m 1.84 m/s 1.77 s 3.21 m .0227 rad -.0338 rad 3.51 s

Closed-Loop 
Observer with  

Internal and 
External 
Sensors

 1.40 m 1.68 m/s 1.74 s  2.79 m
-.0315 

rad
-.00838  

rad 3.60 s

Closed-Loop 
Plant with  

Internal and 
External 

Sensors (f)

 1.56 m 1.81 m/s 1.74 s  3.16 m
-.0314 

rad
-.00375 

rad
3.47 s

Figure 5.3.4-1. Comparison of 2-D Control Regimes.
The open-loop plant shows the worst-case response with 1.35 m overshoot. The 2-D error-
free sensing of the plant, with 25% error in the plant model, sets a best-case performance

bound for closed-loop control with 0.36 m overshoot. The 2-D closed-loop plant with
internal sensors has a 0.86 m overshoot. The 2-D closed-loop plant with external sensors

has a 0.80 m overshoot. The 2-D closed-loop plant with internal and external sensors has a
0.75 m overshoot.
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The 2-D error-free sensing of the plant, with 25% error in the plant

model, sets a lower best-case performance bound for closed-loop control.

Sensors are error-free and running at the simulator rate of 100 hertz.

Without using an adaptive reference model, and with no prior knowledge

of the plant-model error, this must be the best performance that we can

expect from any sensor-fusion scheme. The overshoot using this scheme is

2.77 m - 2.41 m = 0.36 m.

The 2-D closed-loop plant with internal sensors has 25% error in the plant-

model and 10% error in the internal sensors. Also, the internal sensors

sample at 20 hertz. The overshoot of the plant position when the speed is

zero is 3.27 m - 2.41 m = 0.86 m.

The 2-D closed-loop plant with external sensors has 25% error in the

plant-model and no error in the external sensors. Also, the external sensors

sample at 5 hertz. The overshoot of the plant position when the speed is

zero is 3.21 m - 2.41 m = 0.80 m.

The 2-D closed-loop plant with internal and external sensors has 25% error

in the plant-model.  There is no error in the external sensors. which sample

at 5 hertz. There is 10% error in the internal sensors  which sample at 20

hertz. The overshoot of the plant position when the speed is zero is 3.16 m

- 2.41 m = 0.75 m.

In the 2-D closed-loop plant with internal and external sensors, the

performance after a single maneuver is slightly better than using internal

sensors alone. An examination of the position of the plant when the speed is
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zero shows that the fusion of external sensors with internal sensors will

reduce overshoot by 0.11 meters, for a single maneuver. It is also seen that

internal sensors reduce the single-maneuver overshoot obtained from open-

loop control by 0.49 meters. Closed-loop sensor fusion reduced single-

maneuver overshoot by 0.60 meters over the open-loop case. This

compares with the 1-D sensor fusion which reduced the overshoot by 0.71

m (as shown in Section 5.2.4).

If the orientation is non-zero at the maneuver end-point, the controller will

bang on the steering in an attempt to correct the orientation. The plant is

moving slowly at the maneuver end-point and steering changes have less

effect on the plant’s orientation. Even if the orientation is zero, the

steering-wheel of the plant never stays at zero. This is due to steering

reversals after every three bangs. The three bangs last three hundredths of

a second, each of which turn the front wheel by 
1
2 50 radians/s2 x (0.03)2 =

0.0225 radians (when the steering velocity is zero at the time of the bang).

This delay is due to the two integrators needed to numerically compute the

steering-wheel angle from the applied steering acceleration and to the delay

in the controller’s decision to bang. The controller’s decision to bang is

delayed by a simulator time interval (0.01 seconds) because of the next-

state equations used in the simulation.
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Figure 5.3.4-2. Multiple-Maneuvers and 2-D Control Regimes.
In cases show the position of the front (x_p, y_p) and rear (xr_p, yr_p) of the plant

sampled at uniform time intervals. The data tends to bunch up at the maneuver end-points
where the plant is moving slowly.
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Figure 5.3.4-2 shows several 2-D control regimes running in simulation

over a twenty second interval. Note that the open-loop control with

acceleration error has so much overshoot that the scale of Figure 5.3.4-2a

had to be altered. In addition,  Figure 5.3.4-2a  shows an upper-bound on

parking performance. Figure 5.3.4-2c shows that error-free sensing does

lead to a deflection smaller than the closed-loop sensor fusion show in

Figure 5.3.4-2f. The reason is that the rate at which the plant proceeds

along the Y-axis is a quadratic function of the available maneuver room.

Since the sensor fusion case takes more room to maneuver (due to

overshoot), it is able to proceed into the space faster.

In Figure 5.3.4-2a, there is no error in the plant’s maneuver and so none

accumulates. However, in Figure 5.3.4-2b, the error accumulates and must

be reduced with sensor feedback. Either external or internal sensor

feedback will keep the error from accumulating.

Several experiments were performed to determine the effect of modeling

error in the 10% to 25% range on the overshoot, average steering-wheel

angle and car-orientation errors. It was found that the change in the

average steering-wheel and car-orientation error was measured in

thousandths of a radian and that the overshoot is increased from 3.16

meters to 3.46 meters for a PSL-L of 2.4 meters, as modeling error varies

from 10% to 25%.
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5.4. Summary of Closed-Loop Control

In this chapter we developed a sensor fusion technique and applied it to a 2-

D system with nonholonomic constraints. We showed that in both 1-D and

2-D, sensor fusion reduced the amount of overshoot over using either

internal or external sensors alone. Simple proportional plus derivative

control gave us the ability to track a fifth-order polynomial, despite bang-

bang control constraints and an incomplete knowledge about the

acceleration  and steering performance of the model.

We have seen that multiple maneuvers are possible, in simulation, using

proportional plus derivative control and have used the nonholonomic

constraints to assist in the estimation of plant-states. As shown by equation

(5.3), the difference signals of Chapter 5 are identical to those of Chapter

4, except that they use the observer’s estimation for input.

The most remarkable result is that a simple control and sensor fusion

regime can work very well. Other, more complex techniques using neural

networks [Anderson et. al 1989] or fuzzy set theory [Farreny et. al 1986]

were not needed to park the car.
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6. Discussion and Conclusions

We have studied a new approach to parallel parking a car. The solution to

this problem led to the development of a criterion for the suitability of

curves for parking. This criterion is based on the rate at which a car

penetrates into the space and it is called the parking criterion.

We have developed a docking curve, the fifth-order polynomial,

independently of similar work in the field [Nelson et al. 1988]. The fifth-

order polynomial is a minimum-order polynomial designed to comply with

constraints on orientation and curvature. This polynomial dominates

steering-at-rest and the cosine curve with respect to the parking criterion,

because the fifth-order polynomial saves time by leaving the car and

steering wheel parallel with the curb at the maneuver end-points. The fifth-

order polynomial and cosine curves allow the car to be in constant motion.

In contrast, a piecewise circular path (steering-at-rest) requires that the car

be stopped at the midpoint of the maneuver before the steering wheel may

be turned. Neither steering-at-rest nor the cosine curve can provide for

steering-wheel control at the maneuver end-points.

The idea for using a reference path for the car to track is not new and

there are other curves which are better if the parking criterion is not used.

For example, the cubic spiral is a smoother path than the fifth-order

polynomial [Kanayama et Al. 1988]. The drawback of this curve is that it

has non-zero curvature at the maneuver end-points. The advantage is that
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the curve is the smoothest path for autonomous vehicles and this will

minimize the jerk exerted on passengers.

The idea of linking curves together to form a composite path is not new.

For example, composite clothoid segments have been linked together for

the purpose of path generation [Shin et Al. 1988]. This idea has not been

previously applied to the fifth-order polynomial, however.

Chapter 3 showed that the deflection into the parking space in a single

maneuver and the rate of parking-space penetration are approximated by

quadratic functions of the available maneuver room. This result follows

from the constant acceleration and deceleration used to maneuver the car.

Particles subject to constant acceleration have a displacement which

quadratically increases as a function of time, but this result is not shown in

more complicated approaches such as the nonholonomically constrained

configuration-space search [Barraquand et al. 1989], neural nets [Widrow

et al. 1990] or fuzzy control [Sugeno et al. 1985].

The work on configuration-space search [Barraquand et al. 1989] provided

a theoretical basis for the nonholonomic constraints used in this thesis. The

draw-back of configuration-space search is that it requires considerable

computational resource. With the introduction of a simple parking

criterion, the selection of a path becomes a computationally tractable

problem. This approach to reference path generation eliminates the heavy

computational machinery needed for configuration-space search.
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The advantage of using a parking criterion goes beyond the elimination of

heavy computational machinery. For example, fuzzy control and neural

network control run the risk of being suboptimal with respect to the

parking criterion.  With these approaches, the operator’s skill becomes the

limiting factor. In addition, the use of the parking criterion has led to fore-

knowledge of the time it will take to park. This information is not available

with the fuzzy or neural network control approaches. Literature shows that

the neural-network approach requires thousands of training sessions

[Widrow et al. 1990] and this is not needed with the approach used in this

thesis.

Numerical techniques, using Maple, allowed computation of the parameters

of the polynomial that provide the greatest penetration into the parking

space, subject to boundary and maximum curvature constraints. This

problem was mentioned by Nelson but he did not provide a means to solve

it [Nelson 1989].

The nonholonomic constraints allow the computation of the steering-wheel

angle as a function of the rear-path curvature. A car will have a rear path

which is, in general, different from the front path. The two paths have

different length and shape but they are isomorphic. Using these relations

we have developed a steering-wheel control which enables the rear of the

car to trace the path whose shape is that of a fifth-order polynomial. There

is no known previous reference to the generation of the path of the front of

the car from the curvature of the path of the rear of the car. There is also
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no work known on combining a fifth-order polynomial with the

nonholonomic constraints.

The overshoot which results from modeling error can be anticipated if it is

known a priori. Appendix F shows how the PSL-L should be set given the

modeling error and the measured maneuver room. Chapter 5 (and

Appendix H) show that overshoot is increased from 3.16 meters to 3.46

meters for a PSL-L of 2.4 meters, as modeling error varies from 10% to

25%. When the modeling error is altered, Figure F-1 must be recomputed.

In addition, Appendix H showed that a change in modeling error from 0 to

25% has a small effect on the average error. The maximum average

tracking error was shown to be 0.000385 radians. We did not find any

systematic comparison between tracking errors in neural network

controllers and fuzzy controllers. We have not had access to these types of

controllers and this has prevented any comparative study of tracking error.

Chapter 3 shows that as the car approaches the curb, it must back-up into

the parking space rather than pull forward, due to maneuver-room

requirements. Most drivers already known that one cannot pull forward

next to the curb without hopping the curb. Through the use of Figure

3.2.2-3, the computer can determine when to substitute a smaller PSL-L to

match the maximum Y-deflection to the available lateral maneuver room.

The problem of intercept control has been studied [Burke 1975], but its

application to the parking problem is novel. There is no other known

attempt to bring a robot as close as possible to an obstacle.
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The plant is a software simulation of a test vehicle (an S-10 Blazer). We

have used the test vehicle’s 1-D deceleration and acceleration measurements

and have incorporated nonholonomic constraints into the model. The plant

states are monitored with internal and external sensors. These sensors are

modeled in software. The internal sensors are fast and error-prone, the

external sensors are slow and error-free. These sensors provide

measurements to the observer. The observer is software which receives

information from the sensors and the plant-model and generates plant-state

estimates. The plant-model is a duplicate of the plant except for some

modeling errors. These modeling errors are corrected by the observer

through the use of the sensor-fusion techniques developed in this thesis.

This is the first work known to the author to combine nonholonomic

constraints and procedural knowledge to perform sensor-fusion. It should

be noted, however, that the idea of sensor fusion in the robotic vehicle is

not new [Maybeck 1990], but the assumption of systematic error and sensor

fusion with sensors whose reliability is inversely related to their

availability is novel. When the sensor measurements are distorted by noise

whose statistical property is known a priori, the sensor fusion techniques

developed in this thesis must be modified. Literature also reveals that the

fuzzy controller based maneuvers can result in collision when faced with

modeling errors [Sugeno et al. 1985]. With the approach used in this thesis,

collision is eliminated (given an a priori knowledge of maximum modeling

and sensor errors).
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Modeling sensors, whose reliability is inversely related to availability, led

to the development of a new sensor-fusion technique. This technique has

advantages over other techniques in that it can perform sensor fusion using

sensors with systematic error. The technique is computationally simple and

requires no statistical assumptions.

The technique was formulated under the premise that the plant-model error

is greater than the internal-sensor error and that the internal-sensor error

is greater than the external-sensor error. The external sensor overrides the

internal sensors, which are reset each time that an external sensor reading

is received.

The observer fuses the data from the plant-model and the sensors by using

the most recent sensor measurements to correct the plant-model’s error.

This results in the observer using the plant model like a high-order sample-

and-hold. As far as we know, this type of sensor fusion is new.

The controller is software which receives plant-state estimates from the

observer and transmits commands to the plant and plant-model. The

controller uses bang-bang commands which alter 1-D and steering

acceleration. This is the first work known to the author to use bang-bang

control on a system with nonholonomic constraints.

We have seen that the force needed to overcome the drag of rolling

resistance is 1% of the engine’s torque, and is therefore negligible. We

have yet to see a low-speed analysis of the rolling resistance of a car and so

this appears to be a novel result.
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Upper and lower bounds on parking performance were established using

open-loop and closed-loop control, respectively. In the case of open-loop

control, it was found that a 25% acceleration and deceleration error led to

an overshoot of 1.35 meters (over the objective distance of 2.4 meters) and

that closed-loop control with an error-free plant model gave an overshoot

of 0.01 meters, for a single 1-D maneuver.

When braking performance is overestimated, it is impossible to completely

eliminate overshoot and we must require a buffer zone around the car. For

the 2.4 meter maneuver, the plant overshot by 0.8 meters, assuming 25%

acceleration and deceleration error.

Several simulation experiments were performed in both 1-D and 2-D. The

1-D experiments led to the development of the approach used to control the

2-D plant. The results of the 1-D experiments allowed for a baseline

comparison with the 2-D experiments. For example, the overshoot in 1-D

is identical to the overshoot in 2-D (1.35 meters).

Each experiment varied a single parameter and several results of interest

were found. For example, the plant appeared to be stable with steering

accelerations of 25 radians/s2. The bang-bang acceleration on the steering

produced a finite number of resulting steering-wheel angles (8 for 50

radians/s2 and 14 for 25 radians/s2). This is due to small oscillation of the

path about the reference curve, which results in steering reversals after

every few bangs. The bangs vary from three to five hundredths of a

second, each of which turn the steering wheel by
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1
2 25 radians/s2 x (0.05)2 = 0.03125 radians (if the steering velocity were

zero at the time of the bang). If steering bangs lasted longer, the steering

wheel of the test vehicle could be turned from one steering extreme to the

other in about three tenths of a second. We have also found that reduction

of steering acceleration can cause tracking overshoot which results in an

increase in the maximum steering speed. Bang-bang control of a car is not

new and is cited as a method for moving a car in minimum time [Kirk

1970]. However, bang-bang control on the steering system of a car is novel

and so there is no literature available with which we may compare our

simulation results.

Appendix G shows that a change in the linear acceleration of the plant has

little effect on the steering speed. This is due to the bang-bang control used

on the steering.

Appendix E showed the result of several experiments which justify the

choice of the mix ratio in the proportional plus derivative control of

(4.20). These experiments showed that the difference in the average

tracking error for the steering-wheel angle and car orientation was less

than a thousandth of a radian over the given range of mix ratio values.

Proportional plus derivative control is well established [Frederick et Al.

1971] and when the reference curve is known a priori such control is not

optimal with respect to tracking error [Athans and Falb 1966]. However,

when the steering system is subject to bang-bang control, proportional plus

derivative control was the simplest control law to work with reasonable

tracking error and this is a novel result.
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To obtain the results reported, a simulator called STELLA (Structural

Thinking Experimental Learning Laboratory with Animation) was used.

The simulation  allows the user to vary parking space length, both sensor

and plant-model error, and to alter sensor sampling rates. In addition, the

user may alter the way the observer performs estimation by setting the

feedback mode. The available feedback modes are:

error-free (in this mode the plant is sensed without error at the
simulation rate),

open-loop (using the plant-model alone),
internal (using internal sensors and the plant model),
external (using external sensors and the plant model),
full-fusion (using external sensors, internal sensors and the plant

model), or
polynomial (the fifth-order polynomial’s curvature is used to set the

steering-wheel angle).

The output of STELLA consists of both numerical and graphical displays

of each variable. No other programs (aside from Maple procedures) were

written to perform the research described in this thesis. This type of

simulator is a powerful tool for both teaching and researching control

techniques. This is the first work, known to the author, on the development

of an interactive test-bed for an intelligent controller of this type.

It would be interesting to test the techniques developed in this thesis on

parking real cars. It would also be interesting to try the STELLA simulator

in a classroom setting.

It would be helpful to have a first-order lag in the response to the bang-

bang acceleration commands. This would enable the computation of the

jerk exerted by the motion of the car on the occupants of the vehicle.
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The sensor fusion techniques used in this thesis should be combined with

parameter estimation using least squares and a priori statistical knowledge

of the sensor noise (i.e., Kalman filter) [Young 1969].

Safe paths in the presence of obstacles could be generated by joining the

spines of a Voronoi diagram [Preparata et Al. 1985] with fifth-order

polynomials to create composite paths. These paths would be centered

between obstacles as well as have curvature and slope continuity.

The fifth-order polynomial formulation technique should be extendable to

3-D and this has interesting applications for space and underwater docking.

After the 3-D extensions to the fifth-order polynomial are developed it

would be interesting to perform multiagent path planning using the

hexidecitree data structure [Lyon 1986] or a 3-D Voronoi diagram. This

has applications in aircraft control and animation languages.
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Appendix A. Derivation of the Fifth-Order Polynomial

This appendix provides a derivation of the fifth-order polynomial using a

symbolic manipulation program called Maple [Char et al. 1988]. There are

three parts to this appendix: A.1 shows the derivation of a fifth-order

polynomial with arbitrary end-point slopes and curvatures, A.2 shows the

derivation of a fifth-order polynomial with zero end-point slopes and

curvatures and A.3 provides some example fifth-order polynomials.

The output of a Maple run is used to show the derivation of the fifth-order

polynomial used earlier in the thesis. The font and formatting are chosen so

that the computer output may be reproduced without alteration. Lines

preceded with a ‘#’ sign are comments.

A.1. Derivation of the Full Fifth-Order Polynomial

In this section we show the derivation for the fifth-order polynomial in the

most general form (non-zero curvature and slope at the maneuver end-

points). The next section shows at the derivation for a simpler form of the

fifth-order polynomial.

Let y0=y(0) and y1=y(1) be Y-components of the initial and final positions.

Let dy0=y′(0) and dy1=y′(1) be the initial and final orientations.

Let k0=k(0), k1=k(1) be the initial and final curvatures.
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Recall that in Chapter 3, u = 
x

PSL-L . This is no longer the case. The car

has executed a partial traversal of the parking space, so the X-distance still

to be traversed is arbitrary. Therefore, a controlling parameter (u) is

normalized to vary from zero to one. The initial X-coordinate is x0 and

that the final X-coordinate is x1. Then

x(u) = x0(1-u)+x1u and

u(x) = 
x-x0
x1-x0 for u ε [0, 1] and x ε [x0, x1], x1≠x0

For the remainder of this discussion we shall deal only with the normalized

parameter, u (this is the same as allowing x0 = 0 and x1 = 1). The fifth-

order polynomial has the following form:

y(u) = a5u5+a4u4+a3u3+a2u2+a1u+a0

Given: y0, dy0, dy1, k0, k1 and kmax. Note that y0, dy0, and k0 now refer

to the initial values at u = 0 rather than x = 0.

Find: a0, a1, a2, a3, a4, a5, and y1.

Through computer-assisted algebraic manipulation, a0...a5 may be

established in terms of the given. The variables y0, dy0 and k0 are supplied

by sensors. The variable y1 is free and will be determined, in part, by the

maximum curvature constraint. The straightforward method for finding

the maximum of k is to solve 
dk
du = 0 for u. This is used to find the locations

of the maxima for candidate values of y1, and these locations are used to
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find the actual maxima. Unfortunately, the roots of 
dk
du = 0 must be found

numerically before computing the curvature maxima. If the maximum

curvature is feasible then y1 must be decreased. The doubly-nested search

for the maximum feasible y1 results. The front wheel will generally not be

parallel to the curb and the desired target values of dy1 = 0 and k1 = 0 may

be infeasible.
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#Given:
#the fifth-order polynomial stated in general form:
                         5       4       3       2
                y := a5 u  + a4 u  + a3 u  + a2 u  + a1 u + a0

# the derivatives may be found simply:
                            4         3         2
                dy := 5 a5 u  + 4 a4 u  + 3 a3 u  + 2 a2 u + a1

                                3          2
                  ddy := 20 a5 u  + 12 a4 u  + 6 a3 u + 2 a2

#The general curvature equation is k:=ddy/((dy^2+1)^(3/2)):
                               3          2
                        20 a5 u  + 12 a4 u  + 6 a3 u + 2 a2
         k := -------------------------------------------------------
                       4         3         2               2     3/2
               ((5 a5 u  + 4 a4 u  + 3 a3 u  + 2 a2 u + a1)  + 1)

################################
# substitute u=0 for y, set equal to y0 and solve for a0
                                   a0 := y0

# substitute u=1 for y, set equal to y1 and solve for a1
                       a1 := y1 - a5 - a4 - a3 - a2 - y0

#  substitute u=0 for dy, set equal to dy0 and solve for a2
                     a2 := - dy0 + y1 - a5 - a4 - a3 - y0

#  substitute u=1 for dy, set equal to dy1 and solve for a3
                  a3 := dy1 - 3 a5 - 2 a4 + dy0 - 2 y1 + 2 y0
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#   substitute u=0 for k, set equal to k0 and solve for a4
a4 :=

   1/2

                    dy0                  y1                  a5
      (k0 + 4 --------------- - 6 --------------- - 4 ---------------
                   2     3/2           2     3/2           2     3/2
               (dy0  + 1)          (dy0  + 1)          (dy0  + 1)

                   dy1                  y0
         + 2 --------------- + 6 ---------------)
                  2     3/2           2     3/2
              (dy0  + 1)          (dy0  + 1)

             2     3/2
         (dy0  + 1)

#  substitute u=1 for k, set equal to k1 and solve for a5
a5 :=

   1/2

                    2     3/2
             k0 (dy0  + 1)               dy0                   y1
      (k1 - ------------------ - 6 --------------- + 12 ---------------
                   2     3/2            2     3/2            2     3/2
               (dy1  + 1)           (dy1  + 1)           (dy1  + 1)

                   dy1                   y0
         - 6 --------------- - 12 ---------------)
                  2     3/2            2     3/2
              (dy1  + 1)           (dy1  + 1)

             2     3/2
         (dy1  + 1)

#A FORTRAN program to calculate y follows:
t1 = dy0**2
t2 = t1+1
t3 = sqrt(t2)
t4 = t3*t2
t5 = dy1**2
t6 = t5+1
t7 = sqrt(t6)
t8 = t6**2
t10 = t7/t8
t21 = k1-k0*t4*t10-6*dy0*t10+12*y1*t10-6*dy1*t10-12*y0*t10
t22 = t7*t6
t23 = u**2
t24 = t23**2
t28 = t2**2
t30 = t3/t28
t41 = k0+4*dy0*t30-6*y1*t30-2*t21*t22*t30+2*dy1*t30+6*y0*t30
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t44 = t21*t22

t46 = t41*t4
y = t21*t22*u*t24/2+t41*t4*t24/2+(dy1-3/2*t44-t46+dy0-2*y1+2*y0)
  +*u*t23+(-2*dy0+3*y1+t44+t46/2-dy1-3*y0)*t23+dy0*u+y0

#A FORTRAN program to calculate k follows:
t1 = dy0**2
t2 = t1+1
t3 = sqrt(t2)
t4 = t3*t2
t5 = dy1**2
t6 = t5+1
t7 = sqrt(t6)
t8 = t6**2
t10 = t7/t8
t21 = k1-k0*t4*t10-6*dy0*t10+12*y1*t10-6*dy1*t10-12*y0*t10
t22 = t7*t6
t23 = u**2
t24 = u*t23
t27 = t2**2
t29 = t3/t27
t40 = k0+4*dy0*t29-6*y1*t29-2*t21*t22*t29+2*dy1*t29+6*y0*t29
t43 = t21*t22
t45 = t40*t4
t49 = dy1-3/2*t43-t45+dy0-2*y1+2*y0
t58 = t23**2
t74 = (5/2*t21*t22*t58+2*t40*t4*t24+3*t49*t23+2*(-2*dy0+3*y1+t43+t
  +45/2-dy1-3*y0)*u+dy0)**2
t75 = t74+1
t77 = t75**2
k = (10*t21*t22*t24+6*t40*t4*t23+6*t49*u-4*dy0+6*y1+2*t43+t45-2*
  +dy1-6*y0)*sqrt(t75)/t77

Note that the ‘+’ in column six is a continuation character.

The following is the Maple program needed to produce the preceeding

output. This is a computer assisted “proof”
#Given:
#the Fifth order polynomial stated in general form:

y:=a5*u^5 + a4*u^4 + a3*u^3 + a2*u^2 + a1*u + a0;

# the derivatives may be found simply:
dy:=diff(y,u);ddy:=diff(dy,u);

#The general curvature equation is k:=ddy/((dy^2+1)^(3/2)):
k:=ddy/((dy^2+1)^(3/2));

################################
# substitute u=0 for y, set equal to y0 and solve for a0
a0:=solve(y0=subs(u=0,y),a0);
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# substitute u=1 for y, set equal to y1 and solve for a1
a1:=solve(y1=subs(u=1,y),a1);

#  substitute u=0 for dy, set equal to dy0 and solve for a2
a2:=solve(dy0=subs(u=0,dy),a2);

#  substitute u=1 for dy, set equal to dy1 and solve for a3
a3:=solve(dy1=subs(u=1,dy),a3);

#   substitute u=0 for k, set equal to k0 and solve for a4
a4:=solve(k0=subs(u=0,k),a4);

#  substitute u=1 for k, set equal to k1 and solve for a5
a5:=solve(k1=subs(u=1,k),a5);

readlib(fortran):

#A FORTRAN program to calculate y follows:
fortran(y,optimized);

#A FORTRAN program to calculate k follows:
fortran(k,optimized);

Q.E.D.

A.2. Derivation of the Simplified Fifth-Order Polynomial

In this section we ensure that the car starts and finishes parallel to the curb

and that the steering wheel is also parallel to the curb. This leads to a

simpler form of the fifth-order polynomial which is used in the

simulations.

#Given:
#the Fifth order polynomial stated in general form:
y:=a5*u^5 + a4*u^4 + a3*u^3 + a2*u^2 + a1*u + a0;
# the derivatives may be found simply:
dy:=diff(y,u);ddy:=diff(dy,u);
#The general curvature equation is k:=ddy/((dy^2+1)^(3/2)):
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k:=ddy/((dy^2+1)^(3/2));
################################
# substitute u=0 for y, set equal to y0=0 and solve for a0
a0:=0;

# substitute u=1 for y, set equal to y1 and solve for a1
a1:=solve(y1=subs(u=1,y),a1);

#  substitute u=0 for dy, set equal to dy0=0 and solve for a2
a2:=solve(0=subs(u=0,dy),a2);

#  substitute u=1 for dy, set equal to dy1=0 and solve for a3
a3:=solve(0=subs(u=1,dy),a3);

#   substitute u=0 for k, set equal to k0=0 and solve for a4
a4:=solve(0=subs(u=0,k),a4);
#  substitute u=1 for k, set equal to k1=0 and solve for a5
a5:=solve(0=subs(u=1,k),a5);
 y;
                               5          4          3
                         6 y1 u  - 15 y1 u  + 10 y1 u
k;
                                 3           2
                         120 y1 u  - 180 y1 u  + 60 y1 u
                  --------------------------------------------
                            4          3          2 2     3/2
                   ((30 y1 u  - 60 y1 u  + 30 y1 u )  + 1)

Q.E.D.

A.3. Examples

In the first section we incorporated flexible end-point specifications

without the assumption that the steering-wheel angle and car orientation are

parallel with the curb. In the second section we designed a polynomial with

fixed end-point specifications.



134

Chapter 3 showed examples of the fifth-order polynomial with the

constraints of Section A.1. This sections shows a fifth-order polynomial

family with non-zero curvature and slope at the end-points.

y

u
Figure A.3-1. Ten Maneuvering Curves.

Curvature at u=0 is two, curvature at u=1 is zero.

Figure A.3-1 shows ten curves (y(u) vs. u) for maneuvering through a

parking space assuming y0 = 0, dy0 = 0, k0 = 2, dy1 = 0, k1 = 0 and y1 =

{1,2...10}. Figure 3.3-2 shows ten curvature curves for the corresponding

to the curves of Figure 3.3-1. The end-point curvatures conform to the

prescribed k0 = 2 and k1 = 0 constraints.
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k(u)

Figure A.3-2.  Ten Curvature Curves (k(u) vs. u).
Curvature at u = 0 is two and at u = 1 is zero.

dk
du

Figure A.3-3. Derivative of the Curvature Function.
These curves give the rate of change curvature with respect to u.

Figure A.3-3 shows the rate of change curvature with respect to u. This

gives a notion steering wheel’s angular velocity as a function of the path.
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The steering wheel’s angular velocity is limited by factors which have been

addressed in Chapter 5.

y

Figure A.3-4. Family of Fifth-order Polynomials.
dy 0 = dy1,dy 0 ∈ .25, . 5, .75,1, −.25,−. 5, −.75,− 1{ }

Figure A.3-4 shows a family of fifth-order polynomials with symmetric

end-point slopes. This shows some curve possibilities available for different

maneuvering situations. The only constraints used to generate the figure

are on the position and slope of the maneuver end-points: the maximum

curvature varies from curve to curve.
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Appendix B. Nonholonomic Systems

We have defined a car as an autonomous mobile robot with nonholonomic

constraints. In this section we define holonomic and nonholonomic systems.

The nonholonomic equations of constraint are derived and they play a

central role in the thesis.

A system is holonomic  when the equations of constraint involve time

derivatives of the coordinates that can be integrated to lead to equations

involving coordinates only. A system is nonholonomic  when the equations

of constraint cannot be integrated. A characteristic of a nonholonomic

system is that the number of parameters exceeds the number of degrees of

freedom. The excess is equal to the number of non-integrable equations of

constraint [Korenev 1967] [Fox 1987].

A car is an autonomous mobile robot with nonholonomic constraints

because the tires of the car roll so that the point of contact with the road is

at rest with respect to the road. The conditions for this to be the case must

necessarily involve velocity terms.

For example, if a wheel rolls in a horizontal plane so that it cannot slip

sideways, we must have the constraint:

x
.

sin θ − y
.

cos θ = 0 .

The tuple (x,y,θ) defines the position and orientation of the wheel as shown

in Figure B-1.
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y

x

θ

Wheel

y
.

x
.

s

Figure B-1. A Wheel Perpendicular to a Plane.
Since the wheel does not slip, the rate of change of orientation with respect to time is

related to the velocity.

The equation is not integrable and a system constrained by this equation is

nonholonomic. While the system has two degrees of freedom, the dynamic

specification requires x, y and θ.

Since the wheel does not slip, the rate of change of orientation with respect

to time is related to the velocity. The no-slip condition requires that the

velocity of the wheel be along the main axis of the wheel. Let s denote the

magnitude of this velocity. Then the x component of the velocity is

(a) x
.

= s cos θ

and the y component of the velocity is

(b) y
.

= s sin θ

Combining (a) and (b) results in the nonholonomic constraint

(c) x
.

sin θ − y
.

cos θ = 0
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Nonholonomic-dynamical systems arise whenever there are non-integrable

relations between coordinates and their time derivatives.
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Appendix C. Rolling Resistance

In this sections we show that the effect of rolling resistance on the model

developed in Chapter 5 is negligible. Rolling resistance is a drag force

generated when a roller moves along a horizontal surface while supporting

a load. Drag force was present when field testing the Blazer and so was

implicitly taken into account when estimating the parameters. Since it is

impossible to predict the terrain or cargo we must assume that it is also

impossible to precisely compute drag forces. We approximate drag force

with

Fd =
F gC

R (C.1)
where

Fd is the force of drag,

Fg is the force due to gravity,

R is the tire radius and
C is the coefficient of rolling resistance.

For pneumatic tires on a smooth road C  =  0.635 mm [Shames 1980]. For

the field test vehicle R  =  300 mm and mass is 1800 kg so that

Fg   =  1800 kg * 9.8 m/s2 = 17640 kg m/s2

and

Fd  =  17640 kg m/s2 * 0.635 mm/300 mm = 37 kg m/s2.
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Engine torque in the Blazer simulation during acceleration1 is

2829 kg m/s2. Thus the force due to drag is about 1% of the engine torque

during acceleration and is therefore negligible.

1 From simulation tables.
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Appendix D. The STELLA Notation

STELLA is a tool used for research in this thesis.  STELLA1 (Structural

Thinking and Experimental Learning Laboratory with Animation) runs on

an Apple Macintosh computer and assists in the numeric simulation of

complex models [Richmond et al. 1987].

Using four graphic primitives which represent specific formulae, complex

models may be represented. The underlying formulae consists of time-

varying, non-linear systems of difference equations. The four basic

primitives are shown in Figure D-1.

f lowf low2
(regulates 
rate into or 
out of a stock)

stock
(integrates)

converter
(contains a scalar function of 
time which may use other 
STELLA quantities as input)

cloud
(sink)

cloud
(source)

Figure D-1. The Four Basic Modeling Primitives.
Shown are the stock, two flows  (with clouds  at each end),  a converter  and an arc

connecting a converter  with a flow. The arc is used to connect the modeling primitives.

The stock  represents a discrete-time integrator and corresponds to a

system state variable. The flow  regulates the rate into and out of a stock

1 A trade-mark of High performance Systems, Lyme, NH.
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or, in Figure D-1, a cloud. The clouds  are infinite sources or sinks and

replace the stocks  when in-flow  or out-flow  is not important to the

process. The converter  provides a place holder for a formula whose inputs

and outputs are real numbers of finite precision that may be causally

related to other STELLA quantities. An arc between a converter  and the

flow  shows a causal relation.

STELLA is a discrete-time simulator which models continuous-time and

discrete-time systems. Continuous-time systems are often modeled with

differential equations and STELLA must approximate differential

equations with difference equations.

When performing a STELLA simulation there is a starting time and an

ending time. Suppose the starting time is zero and the ending time is T.

Divide the time interval, 0 ≤ t ≤ T into N equal increments, ∆t. Then

d
dt

x (t)[ ] ≈
x( t + ∆t) −x (t)

∆t

where

∆t = T
N .

Assume that ∆t is small enough so that the simulation signals can be

approximated by a piecewise-constant function that changes only at the

instants t = 0,∆t,...,(N-1)∆t; thus, for t = i∆t

d
dt

x (i∆t)[ ] ≈
x( i + 1[ ] ∆t) − x(i∆t)

∆t
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x(i∆t) is referred to as the ith value of x and is denoted by x(i). Rewriting

we obtain

d
dt

x (i)[ ] ≈
x (i + 1) − x(i)

∆t .

D.1. Example 1, Differential Equations in STELLA.

This section shows the implementation of a differential equation in

STELLA. The flows  represent time derivatives. The  stocks  are the

integrators. The stocks  integrate the flows via next-state equations of the

form:

Stock(i+1) = Stock(i) + ∆t* Flow(i).

Solving for the flow results in

Flow(i) = (Stock(i+1)-Stock(i))/∆t.

In the limit, as ∆t goes to zero, the difference equation becomes the

differential equation:

d(Stock(t))
dt  = Flow(t).

For example, if xs = displacement, ks = Hooke’s spring constant and ms =

mass, then the 2nd-order harmonic oscillator (for a spring-mass system)

results:

dx s
2

dt
2 +

k s
m s

x s = 0
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or

dv s

dt
= −

k s

m s
x s

with

dx s

dt
= v s .

dx_sub_s_dt

k_sub_s m_sub_s

v_sub_s

x_sub_s

dv_sub_s_dt

Figure D.1-1. Second Order Harmonic Oscillator.
The two coupled stocks  represent two coupled first-order differential equations.

Figure D.1-1 shows the four types of symbols mentioned in the previous

section, stocks, converters, flows  and clouds.
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 A run of the model produces Figure D.1-2.

Time

 0.0 6.00 12.00 18.00 24.00
-2 .00

-1 .00

 0.0

1.00

2.00

x_sub_s v_sub_s

5/20/90  6:40:14 PM

Figure D.1-2. A Second Order Harmonic Oscillator.
The time and date in the lower right corner of the illustration is retained in STELLA graphs.

Figure D.1-2 shows artifacts of the digital approximation to the curves

manifested by jaggies. In this simulation, ∆t  = 0.125.

D.2. Example 2, Asymptotic Stability

It can be shown, by Lyapounov-function construction, that the critical point

(0,0) of the autonomous system

dx a

dt
= − x a −x a y a

2 ,

dy a

dt
= − y a −y a x a

2

is asymptotically stable [Boyce et al. 1977]. What happens if the system

starts at (2,-2) and is constantly perturbed by zero-mean uniform noise?

Figure D.2-1 shows the model implemented in STELLA. Random  is a
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STELLA function which generates a series of non-replicable random

numbers uniformly distributed  between zero and one. To obtain a zero-

mean uniform noise source we bias the random function by -0.5.

dy_sub_a_dt

noise

x_sub_a

y_sub_a

dx_sub_a_dt

Figure D.2-1. A Model of a Non-Linear 2nd-Order Differential Equation.
The two STELLA stocks  represent the two coupled differential equations with noise.

The state equations given to STELLA follow:
x_sub_a = x_sub_a + dt * ( dx_sub_a_dt )
INIT(x_sub_a) = 2
y_sub_a = y_sub_a + dt * ( dy_sub_a_dt )
INIT(y_sub_a) = -2
dx_sub_a_dt = noise-x_sub_a-x_sub_a*y_sub_a^2
dy_sub_a_dt = -noise-y_sub_a-y_sub_a*x_sub_a^2
noise = RANDOM-.5

Figure D.2-2 shows the simulation results.
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Time
 0.0 6.00 12.00 18.00 24.00

-2 .00

-1 .00

 0.0

1.00

2.00

x_sub_a y_sub_a

5/20/90  7:07:26 PM

Figure D.2-2. Graph of Stochastic Non-linear, Coupled-Differential Equations.
Analytic results for such systems are elusive.

D.3. Summary

STELLA is a user-friendly tool for modeling complex stochastic and

deterministic relations, making their study accessible to students and

researchers.

STELLA can solve initial-value problems in non-linear stochastic systems

of differential equations. It is also a simulator that allows the design of

controllers through experiment.
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D.4. STELLA Notation

The STELLA notation is different from the thesis notation because subtle
character formatting (i.e., Greek characters, subscripts and
superscripts) are beyond STELLA’s abilities

ASubSMax  ≡ maximum linear acceleration used by the plant model
(asmax)

ASubSMin  ≡ minimum linear acceleration used by the plant model (asmin)

AdjPhi20 ≡ plant model steering-wheel angle adjusted by the internal
sensor at 20 hz with 10% error

Alpha ≡  proportional to derivative mix ratio for control (α)

AlphaSubPhi ≡  mix ratio for orientation vs. steering-wheel angle (αφ)

ApproxDsDtP5 ≡ linear approximation of the speed of the car based on the
5 hz external sensor sampling of the X and Y coordinates of the plant

ApproxDxDtP5 ≡ derivative of the externally sampled plant X-coordinate

ApproxDyDtP5 ≡ derivative of the externally sampled plant Y-coordinate

ASubPhi ≡ applied plant model steering acceleration in rad/s2

BackupLightsBin ≡ 1 if backing up, 0 otherwise

Clk5 ≡ 5 hz clock

Clk5_2dt ≡ 5 hz clock delayed by two simulator time intervals

Clk5Dt ≡ 5 hz clock delayed by one simulator time interval

Clk20 ≡ 20 hz clock

Clk20_2dt ≡ 20 hz clock delayed by two simulator time intervals
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Clk20Dt ≡ 20 hz clock delayed by one simulator time interval

ControlError ≡ amount the plant model acceleration parameters are off,
expressed as a real which varies from 0 to 1 where 0 is no error and
.25 is -25% error. A 1 will eliminate all control and the car will go
nowhere. For example, in the steering system: ASubPhiSubP =
ASubPhi * (1 - ControlError) * Steering Mode.

DSubBHat ≡ estimated distance needed to stop the plant as computed by the
controller (db)

DdphiDdt ≡ ASubPhi plant model steering acceleration

Dphi5Dt ≡ numerically approximated derivative of the reference path
steering-wheel angle

DphiDt   ≡ rate of change of the steering-wheel angle of the plant model

relative to its longitudinal centerline (
dφ
dt )

DsDt_1dt ≡ speed of the front of the plant model delayed by one simulator
time interval

DsDtHat ≡ observer’s reconstruction of the velocity of the front of the

plant which may use feedback (
dŝ
dt )

Dtheta5Dt  ≡ derivative with respect to time of the orientation prescribed
by the fifth-order polynomial taking the nonholonomic orientation

constraint into account (
dθ5
dt )

DthetaDt  ≡ rate of change of the plant model orientation (
dθ
dt

)
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DthetaDtHat  ≡ observer’s estimate of the rate of change of the plant’s

orientation with respect to time ( dθ̂
dt

)

DthetaDtSubP ≡ rate of change of the plant orientation with respect to time

DxDtSubP ≡ X-component of the front of the plant velocity

DyDtSubP ≡ Y-component of the front of the plant velocity

Ε ≡ error signal used to steer the plant (e)

ESubDthetaDt ≡ difference between the observer estimate of the derivative
with respect to time of the plant’s steering-wheel angle and the

reference path generator’s (
e dφ

dt
)

ESubTheta ≡ error contribution of the car orientation to the steering
control error ( e φ)

FeedbackMode ≡ controls the mode of observer estimation.
Closed loop sensor fusion ≡ 0,
open-loop plant model based estimation≡1,
error-free sensing of the plant≡2,
dead reckoning based estimation≡3,
external sensor based estimation≡4.
In feedback mode 5 the phi5 of the fifth-order polynomial is fed
directly into the plant and the plant is sensed directly by the observer.
Invalid feedback modes will yield wrong results.
Feedback mode is used in phi_hat, s_hat, theta_hat, ds_dt_hat and phi
sub p2

five ≡  rate, in hz, at which the external sensors sample

FWAError ≡ internal sensor error of 10%
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K5SubB ≡ curvature of the fifth-order polynomial for moving backward
(kb)

K5SubF ≡ curvature of the fifth-order polynomial for moving forward.
The curvature for moving forward is a mirror image about the X-
axis of the curvature for moving backward (kf)

L ≡  length of the car in meters

LinearAccFactor ≡ a dimensionless number used to vary the maximum 1-D
acceleration. 1-D acceleration is linearly proportional to the
LinearAccFactor and this factor must vary from [0..1]

OdSubP20 ≡  20 hz internal sensor sampling of the odometer

OdSubP20Dt ≡ one simulator time interval delay of the odometer

OdometerError ≡ erroneous sensor reading of -10%

Phi ≡ front wheel angle relative to the longitudinal centerline of the plant
model (φ)

Phi5 ≡ reference path steering-wheel angle, in radians (φ5)

PhiDt ≡ plant-model steering-wheel angle delayed by one simulator time
interval

PhiSubP20 ≡ 20 hz internal sensor sampling of the plant's steering-wheel
angle, in radians, measured with respect to the main axis of the car

PhiSubP20Dt ≡ one simulator time interval delay on the 20 hz steering-
wheel angle

PhiHat ≡ a feedback mode sensitive estimation of plant steering-wheel angle
( φ̂)
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PhiSubP ≡ steering-wheel angle of the plant relative to its longitudinal
centerline (φp )

PSLMinusL ≡ parking space length minus the car length. Also called the
maneuver room (PSL-L)

S ≡ length of the path traveled by the plant-model (s)

SDt ≡ path-length of the front wheel of the plant model delayed by one
simulator time interval

SteeringMode ≡ if 0 the steering is on, if 1 the steering is off

SHat ≡ feedbackmode sensitive reconstruction of the length of the path

traced by the front wheel of the car ( ŝ )

SSub_5f ≡ function which linearly interpolates the length of the path traced
by the front of the plant given PSL-L.

SSubP ≡ an internal sensor (odometer) output which measures the length of
the path traveled by the plant front-wheel (sp)

SteeringAccFactor ≡ dimensionless number used to vary the maximum
steering acceleration. Steering acceleration is linearly proportional to
the steering acceleration factor and this factor must vary from [0..1]

Theta ≡ plant model orientation, angle formed by the main axis of the plant
with the X-axis of a Cartesian coordinate frame aligned with the curb
(θ)

Theta5 ≡ orientation of the car as given by the fifth-order polynomial (θ5)

ThetaDt ≡ plant-model orientation delayed by one simulator time interval

ThetaSubP5 ≡ 5 hz sample-and-hold on the plant orientation
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ThetaHat ≡ mode sensitive observer reconstruction of the plant orientation

( θ̂ )

ThetaSubP ≡  plant orientation

XP5Dt ≡ 5 hz sample-and-hold on the plant X-coordinate delayed by one
simulator time interval

XSubP5 ≡ 5 hz sample-and-hold on the plant X-coordinate (xp)

xSubP ≡  X-position of the front of the plant

YSubP5 ≡ 5 hz sample-and-hold on the plant Y-coordinate (yp)

ye ≡ function which linearly interpolates the deflection of the fifth-order
polynomial given PSL-L

yrSubP ≡ Y-position of the rear of the plant

ySubP ≡ Y-position of the front of the plant
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D.5. The STELLA Code

In this section we show the STELLA diagrams and equations used to

construct the simulations described in the thesis.

ASubSMax

ASubSMin

ASubS

backup acc command

BackupLightsBin

DSubBHat

bu obj psn

dbu dt

DdsDdt

forward acc command

LinearSpeed

BackupLightsReal

DsDt

s

~

s sub 5f

DSubBHat

ASubSMin

PSLMinusLbu obj psn
BackupLightsBin

SHat

DsDtHat

SHat

LinearAccFactor

LinearAccFactor

ASubSMin

ASubSMax

BackupLightsBin

PSLMinusL

SingleManeuverMode

DsDtHat

a s max

dŝ
dt

s 5f

1-D Plant Model

Braking Distance Estimation

1-D Acceleration Controller

Backup Light Logic

Figure D.5-1. 1-D Plant Model with Longitudinal Controller.
The 1-D observer estimates the distance needed to brake the car.
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ASubPhiSubP

ASubSSubP

PlantBackwardAcceleration

DdphiDdtSubP

DdsDdtSubP

DthetaDtSubP

DxDtSubP

DyDtSubP

PlantForwardAcceleration

LinearSpeedSubP

SteeringSpeedSubP

xrSubP YrSubP

DphiDtSubP

DsDtSubP

PhiSubP

SSubP

ThetaSubP

xSubP

YSubP

ASubS

BackupLightsBin

ASubPhi

LThetaSubP

xSubP YSubP

Phi2SubP

ControlError

ControlError

ControlError

DsDtSubP

FeedbackMode

phi5
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SteeringMode
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DsDtSubP

FeedbackMode

ASubSMinSubPASubSMin

Nonholonomic Constraints

2-D Front and rear 
computations for the 
plant

1-D Plant

Plant Steering System

Figure D.5-2. The STELLA Diagram of the Plant.
The 2-D Front and rear computations for the plant include the nonholonomic constraints.
This enables the computation of the plant orientation (ThetaSubP) which supplies the key

information for computing the location of the rear of the plant (xrSubP, yrSubP).
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Figure D.5-3. The Reference Path Generator, Steering Controller and Plant Model.
The plant model steering system consists of two integrators which accumulate the steering

bangs applied by the steering controller (ASubPhi). The steering controller uses the
reference steering wheel angle (phi5) and the reference orientation (theta5) to compute the

steering control law.
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Figure D.5-4. Sensors, Clocks and Fusion.
The internal sensors sample at 20 hertz, the external sensors sample at 5 hertz. The two

system clocks run at 5 and 20 hertz. The sensor fusion is between the two external sensors
on position and the odometer.
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Figure D.5-5. Feedback Mode Logic, the Control Panel and Fusion.
The feedback mode logic is used to control how the observer performs sensor fusion. The

control panel organizes key converters for the STELLA operator.
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Figure D.5-6. 1 and 2-D Sensor Fusion in the Observer.
The plant model and sensor data are fused using both the internal and external sensors.

The STELLA converters, flows and stocks each contain STELLA

formulae. The STELLA formulae for Figure D.5-1 through D.5-6 follows:
AdjS5(t) = AdjS5(t - dt) + (AdjDsDt5) * dt
INIT AdjS5 =  0

AdjDsDt5 =  DsDt+adj_ds_dt_error_5
adj_ds_dt_error(t) = adj_ds_dt_error(t - dt) + (adj_ds_dt_g) * dt
INIT adj_ds_dt_error =  0
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adj_ds_dt_g =  Clk5Dt*(ds_dt_error-adj_ds_dt_error)
adj_ds_dt_error_5(t) = adj_ds_dt_error_5(t - dt) + (adj_ds_dt_g_5) *

dt
INIT adj_ds_dt_error_5 =  0

adj_ds_dt_g_5 =  Clk5Dt*(DsDtError5-adj_ds_dt_error_5)
adj_phi_error(t) = adj_phi_error(t - dt) + (adj_phi_g) * dt
INIT adj_phi_error =  0

adj_phi_g =  clk20_dt*(phi_error-adj_phi_error)
adj_s_error(t) = adj_s_error(t - dt) + (adj_s_g) * dt
INIT adj_s_error =  0

adj_s_g =  clk20_dt*(s_error-adj_s_error)
adj_theta_error(t) = adj_theta_error(t - dt) + (adj_theta_g) * dt
INIT adj_theta_error =  0

adj_theta_g =  Clk5Dt*(theta_error-adj_theta_error)
Alpha(t) = Alpha(t - dt)
INIT Alpha = .05

AlphaSubPhi(t) = AlphaSubPhi(t - dt)
INIT AlphaSubPhi = 2

BackupLightsReal(t) = BackupLightsReal(t - dt) + (dbu_dt) * dt
INIT BackupLightsReal =  0

dbu_dt =  if (BackupLightsBin=0) and (SHat≥PSLMinusL) then 1/dt else
if (BackupLightsBin=1) and (SHat≤bu_obj_psn) then
-BackupLightsReal/dt else 0

ControlError(t) = ControlError(t - dt)
INIT ControlError = .25

DphiDt(t) = DphiDt(t - dt) + (ddphi_ddt) * dt
INIT DphiDt =  0

ddphi_ddt =  ASubPhi
DphiDtSubP(t) = DphiDtSubP(t - dt) + (DdphiDdtSubP) * dt
INIT DphiDtSubP =  0

DdphiDdtSubP =  ASubPhiSubP
DsDt(t) = DsDt(t - dt) + (DdsDdt) * dt
INIT DsDt =  0

DdsDdt =  ASubS
DsDtSubP(t) = DsDtSubP(t - dt) + (DdsDdtSubP) * dt
INIT DsDtSubP =  0

DdsDdtSubP =  ASubSSubP
ds_dt_s_error_20(t) = ds_dt_s_error_20(t - dt) + (adj_ds_dt_g_20) *

dt
INIT ds_dt_s_error_20 =  0

adj_ds_dt_g_20 =  clk20_dt*(ds_dt_error_20-ds_dt_s_error_20)
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FeedbackMode(t) = FeedbackMode(t - dt)
INIT FeedbackMode = 0

od_sub_p20(t) = od_sub_p20(t - dt) + (od_sample) * dt
INIT od_sub_p20 =  0

od_sample =  clk20*(odometer_error-od_sub_p20)
Phi(t) = Phi(t - dt) + (SteeringSpeed) * dt
INIT Phi =  0

SteeringSpeed =   DphiDt
PhiSubP(t) = PhiSubP(t - dt) + (SteeringSpeedSubP) * dt
INIT PhiSubP =  0

SteeringSpeedSubP =  DphiDtSubP
phi_sub_p20(t) = phi_sub_p20(t - dt) + (phi_sample) * dt
INIT phi_sub_p20 =  0

phi_sample =  clk20*(fwa_error-phi_sub_p20)
s(t) = s(t - dt) + (LinearSpeed) * dt
INIT s =  0

LinearSpeed =  DsDt
SingleManeuverMode(t) = SingleManeuverMode(t - dt)
INIT SingleManeuverMode = 1

SSubP(t) = SSubP(t - dt) + (LinearSpeedSubP) * dt
INIT SSubP =  0

LinearSpeedSubP =  DsDtSubP
SteeringMode(t) = SteeringMode(t - dt)
INIT SteeringMode = 1

Theta(t) = Theta(t - dt) + (DthetaDt) * dt
INIT Theta =  0

DthetaDt =  DsDtHat*sin(PhiHat)/L
theta5(t) = theta5(t - dt) + (Dtheta5Dt) * dt
INIT theta5 =  0

Dtheta5Dt =  DsDtHat*sin(phi5)/L
ThetaSubP(t) = ThetaSubP(t - dt) + (DthetaDtSubP) * dt
INIT ThetaSubP =  0

DthetaDtSubP =  DsDtSubP*sin(Phi2SubP)/L
theta_sub_p5(t) = theta_sub_p5(t - dt) + (theta_sample) * dt
INIT theta_sub_p5 =  0

theta_sample =  clk5*(ThetaSubP-theta_sub_p5)
xSubP(t) = xSubP(t - dt) + (DxDtSubP) * dt
INIT xSubP =  0

DxDtSubP =  DsDtSubP*cos(ThetaSubP+Phi2SubP)
x_sub_p5(t) = x_sub_p5(t - dt) + (x_sample) * dt
INIT x_sub_p5 =  0
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x_sample =  clk5*(xSubP-x_sub_p5)
YSubP(t) = YSubP(t - dt) + (DyDtSubP) * dt
INIT YSubP =  0

DyDtSubP =  DsDtSubP*sin(ThetaSubP+Phi2SubP)
y_sub_p5(t) = y_sub_p5(t - dt) + (y_sample_2) * dt
INIT y_sub_p5 =  0

y_sample_2 =  clk5*(YSubP-y_sub_p5)
AdjPhi20 =  Phi+adj_phi_error
AdjS20 =  s+adj_s_error
AdjTheta5 =  Theta+adj_theta_error
adj_ds_dt_20 =  DsDt+ds_dt_s_error_20
adj_ds_dt_20_1dt =  DELAY(adj_ds_dt_20,DT)
approx_ds_dt_p20 =  (od_sub_p20-DELAY(od_sub_p20,1/20))/(1/20)
approx_ds_dt_p5 =  if adj_ds_dt_20<0 then

-sqrt(approx_dx_dt_p5^2+approx_dy_dt_p5^2) else
sqrt(approx_dx_dt_p5^2+approx_dy_dt_p5^2)

approx_dx_dt_p5 =  (x_sub_p5-DELAY(x_sub_p5,1/5))/(1/5)
approx_dy_dt_p5 =  (y_sub_p5-DELAY(y_sub_p5,1/5))/(1/5)
ASubPhi =  if e < 0 then ASubPhiMax else -ASubPhiMax
ASubPhiMax =  50*SteeringAccFactor
ASubPhiSubP =  ASubPhi*(1-ControlError)*SteeringMode
ASubS = if SingleManeuverMode=1 then
  if DsDtHat < 0 then 0
      else forward_acc_command
else
   if BackupLightsBin=0 then forward_acc_command
     else backup_acc_command
ASubSMax =  .83*LinearAccFactor
ASubSMin =  1.4*LinearAccFactor
ASubSMinSubP = ASubSMin *(1-ControlError)
ASubSSubP =  if SingleManeuverMode=1
     then if DsDtSubP < 0
        then 0
        else if DsDtSubP>0 and FeedbackMode = 1  and

PlantBackwardAcceleration=0 then -ASubSMinSubP else
PlantForwardAcceleration

      else if  BackupLightsBin=1
        then PlantBackwardAcceleration
         else PlantForwardAcceleration
BackupLightsBin =  if BackupLightsReal > 0 then 1 else 0
backup_acc_command =  if SHat≤bu_obj_psn then 0 else if SHat-

DSubBHat≤bu_obj_psn then ASubSMin else -ASubSMax
bu_obj_psn =  0
clk20 =  pulse(1, 0, 1/twenty)
clk20_2dt =  DELAY(clk20,2*dt)
clk20_dt =  DELAY(clk20,dt)
clk5 =  pulse(1, 0, 1/five)
Clk5Dt =  DELAY(clk5,DT)
clk5_2dt =  DELAY(clk5,2*dt)
dphi5_dt =  (phi5-DELAY(phi5,DT))/DT
DsDtDt =  DELAY(DsDt,DT)
DsDtError5 =   approx_ds_dt_p5-DsDtDt
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DsDtHat =  if FeedbackMode = 0 then FusedDsDt else if FeedbackMode =
1 then DsDt else if FeedbackMode=2 then DsDtSubP else  if
FeedbackMode=3 then adj_ds_dt_20 else if FeedbackMode=4 then
AdjDsDt5 else if FeedbackMode=5 then  DsDtSubP else 0

DSubBHat =  (DsDtHat^2)/(2* ASubSMin)
ds_dt_1dt =  DELAY(DsDt,DT)
ds_dt_error =   approx_ds_dt_p5-adj_ds_dt_20_1dt
ds_dt_error_20 =  approx_ds_dt_p20-ds_dt_1dt
DthetaDtHat =  DsDtHat*sin(PhiHat)/L
e =  eSubPhi+AlphaSubPhi*e_sub_theta
eSubPhi =    PhiHat-phi5 +Alpha*(DphiDt-dphi5_dt)
e_sub_dtheta_dt =  DthetaDtHat-Dtheta5Dt
e_sub_theta =  if BackupLightsBin=1 then -(ThetaHat-

theta5+Alpha*e_sub_dtheta_dt) else ThetaHat-
theta5+Alpha*e_sub_dtheta_dt

five =  5
forward_acc_command =  if SHat+DSubBHat ≥ PSLMinusL then -ASubSMin

else  ASubSMax
FusedDsDt =  adj_ds_dt_20+adj_ds_dt_error
fwa_error =  PhiSubP*.9
k5SubB =  (120*ye*(PSLMinusL-SLim)^3/PSLMinusL^5-180*ye*(PSLMinusL-

SLim)^2/PSLMinusL^4+60*ye*(
PSLMinusL-SLim)/PSLMinusL^3)/((30*ye*(PSLMinusL-SLim)^4/PSLMinusL^5-

60*ye*(PSLMinusL-SLim)^3
/PSLMinusL^4+30*ye*(PSLMinusL-SLim)^2/PSLMinusL^3)^2+1)^(3/2)
k5SubF =  (120*ye*SLim^3/PSLMinusL^5-

180*ye*SLim^2/PSLMinusL^4+60*ye*SLim/PSLMinusL^3)/((30
*ye*SLim^4/PSLMinusL^5-

60*ye*SLim^3/PSLMinusL^4+30*ye*SLim^2/PSLMinusL^3)^2+1)^(
3/2)
L =  2.6
LinearAccFactor =  1
odometer_error =  SSubP*.9
od_sub_p20_dt =  DELAY(od_sub_p20,DT)
Phi2SubP = if FeedbackMode=5 then phi5 else PhiSubP
phi5 =  if BackupLightsBin=1 then ARCTAN(k5SubB*L) else

ARCTAN(k5SubF*L)
PhiHat =  if FeedbackMode = 0 then AdjPhi20 else if FeedbackMode = 1

then Phi else if FeedbackMode=2 then  PhiSubP else if
FeedbackMode=3 then AdjPhi20 else if FeedbackMode=4 then Phi else
if FeedbackMode=5 then PhiSubP else 0

phi_dt =  DELAY(Phi,DT)
phi_error =  phi_sub_p20-phi_dt
phi_sub_p20_dt =  DELAY(phi_sub_p20,DT)
PlantBackwardAcceleration =  if ASubS<0 then ASubS*(1+ControlError)

else ASubS*(1-ControlError)
PlantForwardAcceleration =  if ASubS>0 then
ASubS*(1+ControlError) else
ASubS *(1-ControlError)
PSLMinusL = 2.4
SHat = if FeedbackMode = 0 then AdjS20 else if FeedbackMode = 1 then

s else if FeedbackMode=2 then SSubP else if FeedbackMode=3 then
AdjS20 else if FeedbackMode=4 then AdjS5 else if FeedbackMode=5
then SSubP else 0
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SLim = if SHat < 0 then 0 else if SHat > PSLMinusL then PSLMinusL
else SHat

SteeringAccFactor =  1
s_dt =  DELAY(s,dt)
s_error =  od_sub_p20-s_dt
ThetaHat =  if FeedbackMode = 0 then AdjTheta5 else if FeedbackMode =

1 then Theta else if FeedbackMode=2 then ThetaSubP else if
FeedbackMode=3 then Theta else if FeedbackMode=4 then AdjTheta5
else if FeedbackMode=5 then ThetaSubP else 0

theta_dt =  DELAY(Theta,DT)
theta_error =  theta_sub_p5-theta_dt
twenty =  20
xrSubP =  xSubP-L*cos(ThetaSubP)
x_p5_dt =  DELAY(x_sub_p5,dt)
YrSubP =  YSubP-L*sin(ThetaSubP)
s_sub_5f = GRAPH(PSLMinusL)
(0.00, 0.00), (1.00, 1.11), (2.00, 2.23), (3.00, 3.37), (4.00, 4.54),

(5.00, 5.74), (6.00, 6.98), (7.00, 8.28), (8.00, 9.65), (9.00,
11.1), (10.0, 12.6)

ye = GRAPH(PSLMinusL)
(0.00, 0.00), (1.00, 0.0392), (2.00, 0.158), (3.00, 0.357), (4.00,

0.642), (5.00, 1.02), (6.00, 1.49), (7.00, 2.06), (8.00, 2.75),
(9.00, 3.55), (10.0, 4.49)

The this code is sufficient to reproduce the STELLA simulation using

STELLA or some other computer language or simulator (after some

translation).
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Appendix E. Proportional and Derivative Control Mix Ratio

In Chapter 4 the key decision variable, e, was shown to have resulted from

a proportional plus derivative control. Recall that the control was based on

the steering-wheel angle and the car orientation and this is given by

e = eφ + α θeθ (4.16)

where

eφ = φ − φ5 + α
dφ
dt

−
dφ5

dt


 (4.17),

eθ =

− θ −θ5 + αe
dθ
dt




for backup_ lights = 1

θ −θ5 + αe
dθ
dt

otherwise



 (4.18),

and

e
dθ
dt

= dθ
dt

−
dθ 5

dt
(4.19).

With the variable, backup_lights, is set equal to one when the car is backing

up. The values

α
θ

= 2 and α = 0. 05 (4.20)

were said to give good results.

Since the values in (4.20) are central to the control of the car, we spend the

remaining portion of this appendix summarizing the experiments which led
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to their choice. The closed-loop simulation of Chapter 5 is used to establish

the best choice for the values in (4.20). The L1 error [Matthews 1987] is

used to establish a figure of tracking merit  The L1 error is given by:

L1( P,R) = P k − R k
k =1

N

∑

where P k = the plant state at k and

R k = the reference state at k. (E.1).

For a single maneuver, N=400 time intervals of 0.01 seconds (four seconds

of real-time). If the L1 error is divided by N the result is the average

error.

There are three plant states of concern, the orientation, the steering wheel

angle and the overshoot. The range of (4.20) used is given by:

α θ = 0 … 4[ ] and α = 0 … 0.1[ ]
(E.2).

Over the range in (E.2) the overshoot varied by less than 0.01 meters and

so was not a factor in selecting (4.20). Figure E-1. summarizes the

experimental results.
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α α θ L1(θ p,θ5) L1( φp, φ5)

0.05 0 0.136 0.146
0.05 2 0.046 0.154
0.05 4 0.050 0.214

0 2 0.041 0.263
0.03 2 0.047 0.138
0.05 2 0.046 0.154
0.07 2 0.053 0.177
0.10 2 0.056 0.199

Figure E-1. Summary of the L1 Errors for Various Mix Ratios

Dividing the L1 error by N=400 results in the average error. The maximum average error
over the range in (E.2) is in the steering-wheel tracking and is 0.0006575 radians.

There are no known analytic arguments for a specific mix ratio for such a

non-linear system. The only justification for the choices of the mix ratio

must therefore be made via experiment. The average error is so small in

the range selected (E.2) that it hardly matters if (4.20) is off a little. The

reader should note, however, that range was arrived at after many more

experiments than reported in Figure E-1.
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Appendix F. Measured Maneuver Room vs. PSL-L

Throughout the thesis the available maneuver room is called PSL-L  and

has been denoted as the X-component of the end-point of the fifth-order

polynomial. Chapter 5 has shown that despite error-free sampling of the

sensors, there will still be some overshoot due to modeling error. In this

appendix we assume that a sensor measures the available maneuver room

accurately and that the PSL-L is set such that the X-component of the front

of the plant is very close to the allowed maneuver room.

Assume that the car is subject to the closed-loop sensor fusion, sensor error

and modeling error described in Chapter 5. Using a modeling error of

25% several experiments are run using various PSL-L’s. The result is

shown in Figure F-1.
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Figure F-1. PSL-L vs. Measured Maneuver Room.
A quadratic best-fit polynomial approximation to the data gives a handy means of

computing the PSL-L given the maneuver room measurement. All measurements are in
meters.
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The overshoot varies from 20% to 4% (as measured maneuver room varies

from 1.25 to 5.25 meters). The reason is that braking distance (4.5) has a

constant acceleration modeling error and a quadratic velocity error. For

small maneuvers the velocity is low and the constant error dominates. For

large maneuvers the velocity is high and the velocity error dominates.

If the modeling error exceeds 25% overshoot will increase and Figure F-1

must be recomputed or a collision will occur. If the modeling error is less

than 25% we will not be taking full advantage of the available maneuver

room.
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Appendix G. Linear Acceleration and Steering Speed

In this section we examine the effect of changing the linear acceleration on

the steering speed. To alter the linear acceleration, we introduce an

acceleration factor (denoted af) and use it to alter the maximum and

minimum linear accelerations such that  a s c  (= linear acceleration of

Chapter 4) is multiplied by the acceleration factor.

- 3

- 2

- 1

0

1

2

3

4

- 1 - . 5 0 .5 1 1.5 2 2.5 3
x_p

dp
hi

_d
t_

p

a f = 1

- 3

- 2

- 1

0

1

2

3

4

- 1 - . 5 0 .5 1 1.5 2 2.5 3
x_p

dp
hi

_d
t_

p

a f = . 9

- 3

-2 .5
- 2

-1 .5
- 1

- . 5
0

.5

1
1.5

2
2.5

3
3.5

4

- 1 - . 5 0 .5 1 1.5 2 2.5 3
x_p

dp
hi

_d
t_

p

a f = . 8

- 3

-2 .5
- 2

-1 .5
- 1

- . 5
0

.5

1
1.5

2
2.5

3
3.5

4

- 1 - . 5 0 .5 1 1.5 2 2.5 3
x_p

dp
hi

_d
t_

p

a f = . 7

- 3

-2 .5
- 2

-1 .5
- 1

- . 5
0

.5

1
1.5

2
2.5

3
3.5

4

- 1 - . 5 0 .5 1 1.5 2 2.5 3
x_p

dp
hi

_d
t_

p

a f = . 6

- 3

-2 .5
- 2

-1 .5
- 1

- . 5
0

.5

1
1.5

2
2.5

3
3.5

4

- 1 - . 5 0 .5 1 1.5 2 2.5 3
x_p

dp
hi

_d
t_

p

a f = . 5

Figure G-1. Linear Acceleration vs. Steering Speed.
Dphi_dt_p is the steering speed of the plant in radians per second. X_p is the x-position of

the plant in meters. Af is the acceleration factor which is used to reduce the linear
acceleration of the plant.
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Figure G-1 shows that the steering velocity takes on discrete values, due to

the bang-bang control used on the steering, and that the maximum steering

velocity varies from 3 radians per second to 2.25 radians per second.

Figure G-1 also shows that the effect of changing the linear acceleration of

the plant on the steering speed is small.
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Appendix H. Modeling Error and Tracking Performance

In this appendix we look at the effect of changing the modeling error on

the performance of the model. As in Appendix F, we use the L1 error on

the orientation of the plant and the steering-wheel tracking. We also use the

x-deflection of the car when the speed is zero, to show the effect of

changing modeling error on overshoot. Figure H-1 summarizes the results.
Modeling Error L1(θ p,θ5)

Radians
L1( φp, φ5)

Radians

X-Deflection
when speed is

zero
0% .043 .136 2.41 m

5% .045 .131 2.48 m
10% .045 .132 2.55 m
15% .045 .135 2.62 m
20% .044 .136 2.75 m
25% .046 .154 2.86 m

Figure H-1. Modeling Error vs. Plant Performance.

Dividing the L1 error by N=400 results in the average error. The maximum average error
over the range in (H-1) is in the steering-wheel tracking and is 0.000385 radians.

It is evident from Figure H-1 that orientation and steering-wheel tracking

have small change in L1 error as modeling error is varied. The overshoot

has a much larger change, however.
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Appendix I. Glossary

I.1. Terms

connector ≡ a STELLA construct that links stocks to converters and
converters to other converters. Connectors depict causal linkages
within a model.

controller ≡ software which receives plant-state estimates formulated by
the observer and which issues commands to the plant model and the
plant.

converter ≡ a STELLA construct that transforms its input according to a
given formula. It is represented by a circle.

dead reckoning ≡ position estimation by the observer using only internal
sensors and the plant model.

external sensor ≡ a device which measures plant states relative to the
environment. In this thesis, the external sensor references are to
software which models an external sensor.

flow ≡ a STELLA pipe that represents a differential quantity directed into
or out of a stock.

front-wheel ≡ a part of the car which both steers and propels the car. When
referring to front-wheel’s steering parameters it is called the steering-
wheel and is given in radians and seconds (i.e., steering-wheel angle,
steering-wheel angular velocity and steering-wheel angular
acceleration). When referring to the front-wheel’s propelling
parameters it is called the front-wheel and is given in meters and
seconds (i.e., front-wheel path length, front-wheel velocity and front-
wheel acceleration).
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internal sensor ≡ a device which measures plant states relative to the plant.
In this thesis, the internal sensor references are to software which
models an internal sensor.

observer ≡ software which receives plant-model states and (if closed-loop)
sensor feedback. Its output is a plant-state estimate.

plant ≡ software which is assumed to correctly model a car. The plant
receives controller commands and its state variables are measured by
sensors.

plant model ≡ software which models (possibly incorrectly) a car. The
plant model reacts to controller commands and its state variables are
used by the observer.

STELLA ≡ Structural Thinking Experimental Learning Laboratory with
Animation, discrete event simulator.

stock ≡ a STELLA building block that integrates the output of a flow. A
stock is diagrammed as a rectangle.

front path ≡ the path traced by the front of the car.

rear path ≡ the path traced by the rear of the car.

I.2. Constants and Parameters

∝ ≡  the proportional to derivative mix ratio for control.

∝ φ ≡  the mix ratio for orientation vs steering-wheel angle.

a smax ≡  maximum 1-D acceleration for the plant model.

a smin ≡  minimum 1-D acceleration for the plant model. This is a negative

quantity.

∆t ≡ simulator time interval.
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kmax ≡ the magnitude of the minimum turning radius of the rear of the

plant.

L ≡ length of the plant and plant model.

PSL ≡ Parking Space Length (equal to the distance between the car in front
and the car in back).

PSW ≡ the Parking Space Width (assume that this is large).

xe≡ PSL-L ≡ X-component of the end-point of the fifth-order polynomial.

ye ≡ Y-component of the end-point of the fifth-order polynomial.

I.3. Variables

a s ≡  1-D acceleration command for the plant model.

a s p
≡  1-D acceleration command for the plant.

d b ≡  estimated distance to brake the plant for both forward and backward

motion. This is computed by the controller using observer plant-state
estimates and is used in both 1-D and 2-D operation.

e ≡ the difference signal used to steer the plant.

e d φ
dt

≡ the difference between the observer estimate of the derivative with

respect to time of the plant’s steering-wheel angle and the reference
path generator’s.

e dθ
dt

≡
 
the difference between the observer estimate of the derivative with

respect to time of the plant orientation and the reference path
generator’s.
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e φ ≡  weighted contribution of the estimated steering-wheel angle error

and its derivative with respect to time.

eθ ≡  weighted contribution of the estimated orientation error and its

derivative with respect to time.

k5 ≡ curvature of the fifth-order polynomial.

k b ≡ curvature of the fifth-order polynomial for moving backward.

k f ≡ curvature of the fifth-order polynomial for moving forward. The
curvature for moving forward is a mirror image about the X-axis of
the curvature for moving backward.

φ ≡ steering-wheel angle relative to the longitudinal centerline of the plant
model.

φ5 ≡   the steering-wheel angle of the car when the rear of the car follows

a fifth-order polynomial, without error.

dφ
dt  ≡ rate of change of the steering-wheel angle of the plant model relative

its longitudinal centerline.

φp ≡ steering-wheel angle relative to the longitudinal centerline of the

plant.

pose ≡ (x,y,θ) .

r ≡ turning radius of the front of the car when the rear of the car follows a
fifth-order polynomial, without error.

s ≡ length of the path traveled by the plant-model.

s5 ≡ length of the path traveled by the front of the car when the rear of the
car follows a fifth-order polynomial, without error.
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ds
dt

≡
 
front-wheel plant-model speed.

sp ≡ an internal sensor output which measures the length of the path

traveled by the plant front-wheel.

θ ≡ plant model orientation, angle formed by the main axis of the plant
with the X-axis of a Cartesian coordinate frame aligned with the curb.

θ5 ≡ car orientation.when the rear of the car follows a fifth-order
polynomial, without error.

dθ
dt  ≡ rate of change of the plant-model orientation.

θp ≡ an external sensor output which measures the plant orientation.

X,Y ≡ 2-D Cartesian coordinate axis embedded in the plant and aligned
with respect to the parking space.

x ≡ X-component of the front of the plant model.

y ≡ Y-component of the front of the plant model.

xp ≡ external sensor output which measures the deflection of the X-

component of the front of the plant.

yp ≡ external sensor output which measures the Y-component of the front

of the plant.

xf ≡  the deflection of the X-component of the front of the car when the

rear of the car follows a fifth-order polynomial, without error.

yf ≡ the Y-component of the front of the car when the rear of the car

follows a fifth-order polynomial, without error.

xr ≡ X-component of the rear of the plant (xr ε [0,PSL-L]).
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yr ≡ Y-component of the rear of the plant.

dx
dt  ≡ rate of change of the X-component of the front of the plant model.

dy
dt  ≡ rate of change of the Y-component of the front of the plant model.

dy
dx ≡ rate of change of the Y-component of the front of the plant model

with respect to its X-component.

y r' ≡
dy r

dx r
≡  rate of change of the Y-component of the rear of the plant

model with respect to X-component of the rear of the plant model.

y r" ≡
dy r'

dx r
≡  acceleration of the Y-component of the rear of the plant

model with respect to X-component of the rear of the plant model.

θ̂,
dθ̂
dt

, φ̂,
dφ̂
dt

, ŝ ,
dŝ
dt

, x̂ , ŷ ≡
 
estimates made by the observer. For example:

x̂  ≡ X-component of the front of the plant as estimated by the

observer; ŷ ≡Y-component of the plant as estimated by the observer.

I.4. Additional Variables, Constants and Parameters Introduced

in the Graphs

STELLA has the ability to produce graphs. These graphs portray the state-

variable values in STELLA using the STELLA names for these variables.

Due to limits in STELLA, the notation used for these graphs does not

match the thesis notation. What follows is a mapping between the variables

in the graphs and the thesis notation.
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ASubSSubP ≡ a s p
≡  1-D acceleration command for the plant.

dds_ddt ≡ the error-free plant  and observer’s plant model front-wheel
acceleration.

dds_dt_p ≡ the plant’s front-wheel acceleration from open-loop control.

dphi5_ddt ≡ the steering-wheel angular acceleration when the rear of the
car follows a fifth-order polynomial, without error.

dphi_dt ≡ dφ
dt  ≡ rate of change of the steering-wheel angle of the plant

model relative its longitudinal centerline.

ds_dt ≡ the error-free plant  and observer’s plant model front-wheel speed.

ds_dt_p ≡ the front-wheel plant speed from open-loop control.

DsDtSubP ≡ the front-wheel plant speed from closed-loop control.

OdSubP20 ≡  20 hz internal sensor sampling of the odometer.

SHat ≡ feedbackmode sensitive reconstruction of the length of the path

traced by the front wheel of the car ( ŝ ).

SSubP ≡  sp ≡ the length of the path traveled by the plant front-wheel.

ThetaHat ≡ mode sensitive observer reconstruction of the plant orientation

( θ̂ ).

ThetaSubP ≡ plant orientation.

ThetaSubP5 ≡ 5 hertz sample-and-hold on the plant orientation.

x_p ≡  X-position of the front of the plant.

xr_p ≡  X-position of the rear of the plant.
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y_p ≡  Y-position of the front of the plant.

yr_p ≡  Y-position of the rear of the plant.

I.5. Additional Variables, Constants and Parameters Introduced

in Appendix A

a0, a1, a2, a3, a4, a5 ≡ coefficients of the fifth-order polynomial.

dy0 ≡ initial slope of the fifth-order polynomial.

dy1 ≡ final slope of the fifth-order polynomial.

k0 ≡ initial curvature of the fifth-order polynomial.

k1 ≡ final curvature of the fifth-order polynomial.

t1,t2...t77 ≡ auxiliary variables introduced by Maple.

u ≡ auxiliary variable which, when varied from zero to one, inclusive,
generates a path.

x0 ≡ X-component of the start point of the fifth-order polynomial.

y0 ≡ Y-component of the start point of the fifth-order polynomial.

x1 ≡ X-component of the end point of the fifth-order polynomial.

y1 ≡ Y-component of the end point of the fifth-order polynomial.

I.6. Additional Variables, Constants and Parameters Introduced

in Appendix B.

x
. ≡ dx

dt .

y
. ≡

dy
dt .
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I.7. Additional Variables, Constants and Parameters Introduced

in Appendix C.

C ≡ coefficient of rolling resistance.

Fd ≡ force due to rolling resistance.

Fg ≡ force due to gravity.

R ≡ tire radius.

I.8. Additional Variables, Constants and Parameters Introduced

in Appendix D.

ks ≡ Hooke’s spring constant.

ms ≡ mass of a spring.

random ≡ a function used by STELLA to generate a series of values with
uniform distribution.

vs ≡ speed of the spring-mass system.

xa ≡ X-deflection.

xs ≡ deflection of the spring-mass system.

ya ≡ Y-deflection.

I.9. Additional Variables, Constants and Parameters Introduced

in Appendix E.

k ≡ interval index.

L1 Error ≡ A scalar figure of tracking merit where:
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L1( P,R) = P k − R k
k =1

N

∑
.

N ≡ number of intervals.

Pk ≡ plant state at interval k.

Rk ≡ reference state at interval k.


